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Abstract
The power spectrum of primordial curvature perturbations of our universe is very well measured

on the largest observable length scales by cosmic microwave background (CMB) anisotropies. But
on smaller scales, observational constraints on it are much weaker. In this thesis, we study various
probes of primordial perturbations on small scales, namely CMB spectral distortions, primordial black
holes, and secondary gravitational waves. We use these probes to constrain parametric forms of the
primordial power spectrum. We investigate the dependence of these constraints on the shape of the
spectrum. We then show how the same methodologies can be used to constrain an underlying model
of inflation.
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Chapter 1

Preliminaries

Cosmology as we know it today started after the discovery of general relativity by Einstein, and the
development of the simplest cosmological model by Friedmann, Lemaitre, Robertson, and Walker.
After several decades of observations of galaxies, type IA supernovae, and the cosmic microwave
background (CMB), we have a very good, albeit incomplete, picture of what the universe looks like
at present, and what it looked like for the majority of the past 13.8 billion years.

Some of the most profound statements about our universe are statistical in nature. The best example
of this is the Cosmological Principle, which states that if we look at our universe upon coarse-graining
it over smaller scales, we find it to be homogeneous and isotropic on the largest observable length
scales, meaning that there are no special locations, and there are no preferred directions from any
vantage point. The validity of the cosmological principle hugely simplifies theoretical models of
our universe, as it allows us to assume the simplest kind of background cosmology which is the
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe.

Another statistical piece of information with significant implications for our universe is the
primordial power spectrum. This is a function of the length scale which quantifies the degree of
curvature perturbations at each length scale that our universe started with. The power spectrum has
been measured accurately at the largest observable length scales from the CMB observations by the
Planck satellite [1]. The most popular mechanism for the physical origin of the power spectrum
is inflation: an era when the very early universe expanded very quickly. The focus of this thesis
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CHAPTER 1. PRELIMINARIES

is on observational imprints of the power spectrum on smaller scales and on current and future
observational limits on it.

In the following sections, we lay a basic theoretical foundation for describing the evolution of the
FLRW universe. We will introduce the mechanism of inflation and how it determines the primordial
power spectrum. We will then review the observational status of the primordial power spectrum.

1.1 Basics of FLRW cosmology

We have collected below some fundamental concepts and equations in FLRW cosmology that will be
used throughout this article.

1. The line element for the FLRW metric in polar coordinates is

ds2 = gµνdx
µdxν = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
. (1.1)

2. We often specialize to the spatially flat FLRW metric, which has k = 0. When we do linear
perturbation theory around this metric it is convenient to use Cartesian coordinates. The line
element for the flat FLRW metric in Cartesian coordinates is

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) . (1.2)

3. The Einstein tensor for the flat FLRW metric is given by

G0
0 = 3H2 , (1.3a)

G0
i = 0 , (1.3b)

Gi
0 = 0 , (1.3c)

Gi
j = (2Ḣ + 3H2)δij . (1.3d)

4. The stress energy tensor corresponding to the FLRW metric can be written as that of a perfect

2



1.1. BASICS OF FLRW COSMOLOGY

fluid, and is given by

Tµν = (ρ+ p)uµuν − pgµν , (1.4)

where ρ is the energy density, p is the pressure, uα is the 4-velocity.

5. Since we are using the (+, -, -, -) metric signature, the normalization of the 4-velocity is

uµuµ = 1. (1.5)

This follows from the fact that the 4-velocity of an observer is the timelike basis vector in their
comoving frame.

6. Since the metric and stress energy tensor are both isotropic, the perfect fluid is at rest in the
comoving coordinates, thus

ui = 0 = ui . (1.6)

From the normalization of the 4-velocity eq. (1.5) we get

u0 =
1√
g00

. (1.7)

Thus, for the FLRW metric eq. (1.1), we get

uµ = (1, 0, 0, 0) = uµ . (1.8)

7. The Einstein equations for the FLRW metric reduce to two equations- the first Friedmann
equation which is the 00 component, and its time derivative, which is called the second
Friedmann equation.

H2 =
8πG

3
ρ− k

a2
, (1.9a)

Ḣ +H2 = −4πG

3
(ρ+ 3p) . (1.9b)

3



CHAPTER 1. PRELIMINARIES

1.2 Implementing inflation with a single scalar field

The two biggest motivations for inflation are that it can generate primordial perturbations consistent
with what we see in the CMB, and that it can expand the universe by such an amount that the largest
observable scale today went from being smaller than the Hubble radius H−1 to being larger than it at
the time of the CMB. The latter motivation is in order to explain why the entire CMB is observed to
have nearly the same temperature; it indicates that even the most distant parts of the CMB must have
been in contact in the past. Thus, what we need from a model of inflation is that it:

1. Ensures that the largest observable scale today is inside the Hubble radius at some time in
the past. This is often measured by the number of e-folds by which the scale factor expands
between the Hubble radius exit of a reference scale kpivot and the end of inflation, given by

Npivot = ln

(
af
a∗

)
. (1.10)

2. Generates a spectrum of primordial perturbations consistent with what is observed from the
CMB.

The simplest mechanism of implementing this is having a single canonical scalar field be the
dominant constituent of the universe. The scalar field can drive a sufficient amount of inflation for
suitable forms of its potential, and suitable values of the potential parameters and initial field. In this
case it is called the inflaton. The action of a canonical scalar field ϕ is

S[ϕ(x), ∂µϕ(x)] =

∫
d4x
√
−g
[
1

2
∂µϕ∂µϕ− V (ϕ)

]
. (1.11)

For the FLRW metric this leads to the equation of motion

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (1.12)

where V ′(ϕ) denotes dV/dϕ. Note that we have neglected the spatial gradient term in the action and
equation of motion as we are working in a homogeneous universe.
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1.2. IMPLEMENTING INFLATION WITH A SINGLE SCALAR FIELD

The stress energy tensor of the field is given by

T µν =
2√
−g

δS

δgµν
. (1.13)

The energy density (kinetic + potential) of the scalar field is

ρ =
1

2
ϕ̇2 + V (ϕ) , (1.14)

and the pressure is

p =
1

2
ϕ̇2 − V (ϕ) . (1.15)

Further, when ∂µϕ∂µϕ > 0, if we define the 4-velocity of the field as

uα =
∂αϕ√
∂µϕ∂µϕ

, (1.16)

then we can write the stress energy tensor of a scalar field as that of a perfect fluid eq. (1.4), with
the fluid variables given by eq. (1.14)-eq. (1.16). This tells us that when ∂µϕ∂µϕ > 0, a scalar field
behaves exactly as a perfect fluid.

With the energy density coming from the scalar field, the first Friedmann equation is

H2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V (ϕ)] . (1.17)

1.2.1 The slow roll approximation and the slow roll parameters

Given just the potential V (ϕ) and the initial conditions ϕi and ϕ̇i, it is in principle possible but very
tedious to see whether they lead to sufficient e-folds of inflation. A better alternative is to characterise
inflationary dynamics by introducing a ’hierarchy’ of parameters called slow roll parameters, defined

5



CHAPTER 1. PRELIMINARIES

by

ϵ0 =
Hi

H
, (1.18)

ϵn+1 =
1

ϵn

dϵn
dn

, n ≥ 0 , (1.19)

where Hi is the initial value of the Hubble parameter, and N is the number of e-folds of inflation after
t = ti.

When a canonical scalar field is the dominant component, we have

ϵ1 =
3ϕ̇2

2ρ
, (1.20)

ϵ2 =
1

H

(
2
ϕ̈

ϕ̇
− ρ̇

ρ

)
. (1.21)

The slow roll parameters do not contain any new information that the field initial conditions and
equation of motion do not have. They are just a different parametrization of the field’s dynamics. We
can show that an accelerating expansion is equivalent to the condition ϵ1 < 1:

Ḣ =
d

dt

(
ȧ

a

)
=
ä

a
−H2 . (1.22)

Thus, ä > 0 if and only if

ϵ1 = −
Ḣ

H2
< 1 . (1.23)

Also, ϵ1 ≪ 1 implies that the kinetic energy of the field is negligible in comparison to the potential
energy, coming from eq. (1.20). When both ϵ1, ϵ2 ≪ 1, we have ϕ̈ ≪ Hϕ̇ cf. eq. (1.21). Then,
the first term in the scalar field equation of motion eq. (1.12) can be neglected and we can reduce
a second-order problem to a first-order problem. These approximations result in the dynamical

6



1.2. IMPLEMENTING INFLATION WITH A SINGLE SCALAR FIELD

equations of ’slow roll inflation’:

3Hϕ̇ ≃ −V ′(ϕ) , (1.24)

H2 ≃ V (ϕ)

3M2
Pl

. (1.25)

When these equations are valid, H is entirely a function of V . Further, when ϕ monotonically
increases or decreases with time, as is usually the case during inflation, we can use ϕ instead of t
as the time variable. This enables us to write the slow roll parameters in terms of the shape of the
potential, ie. V and its derivatives wit respect to. ϕ:

ϵ1 ≃
M2

Pl

2

(
V ′(ϕ)

V

)2

, (1.26)

ϵ2 ≃ 2M2
Pl

[(
V ′(ϕ)

V

)2

− V,ϕϕ
V

]
. (1.27)

These approximate expressions only hold when the slow roll parameters are small. In numerical
calculations, we give initial conditions many e-folds before the end of inflation, and at such early
times we use the slow roll approximation to give initial conditions—given the initial field value, the
field velocity does not need to be specified and is determined by eq. (1.24). The fact that the slow roll
equation of motion eq. (1.24) is first order instead of the original equation of motion eq. (1.12) allows
us to find analytical solutions for ϕ(t) in the slow roll approximation for a lot of potentials, while it is
more difficult to find an analytical solution to eq. (1.12).

For building more complicated models, one can consider non-canonical fields, for which the kinetic
term in the Lagrangian is different from ∂µϕ∂µϕ/2, or fields that are nonminimally coupled to gravity,
which have a term explicitly dependent on the spacetime geometry in their action. Also, one does not
have to limit themselves to a single field by any means. Models beyond canonical single field inflation
are out of the scope of this thesis.

7



CHAPTER 1. PRELIMINARIES

1.3 The evolution of primordial perturbations

We can now turn to the focus of this thesis: primordial perturbations. We can make a lot of predictions
with linear perturbation theory in cosmology. Throughout this thesis, we will deal with linear
perturbations in an FLRW background, except when we deal with secondary gravitational waves.
The reader can refer to [2], [3], and [4] for extensive reviews on cosmological perturbation theory.

In the FLRW background metric, the metric perturbations can be decomposed according to their
behaviour under local spatial rotations on an equal time hypersurface. This property leads to the
classification of perturbations as scalars, vectors, and tensors under the group of rotations in 3 spatial
dimensions. Scalar perturbations are invariant under rotations. Vector and tensor perturbations, as
their names indicate, transform as vectors and tensors respectively.

A cornerstone result of linear cosmological perturbation theory is the decomposition theorem. It
states two things:

1. Scalar, vector, and tensor perturbations of the metric give rise to scalar, vector, and tensor
perturbations respectively in the stress energy tensor.

2. Scalar, vector, and tensor perturbations evolve completely independently of each other.

Note that both these statements are only being made for linear perturbation theory. We will see that
the decomposition theorem does not apply at higher orders in perturbation theory when we discuss
secondary gravitational waves.

We have developed a simple proof for the decomposition theorem for flat and curved FLRW
backgrounds. The reader can refer to the Appendix for this proof and for the issue of gauge fixing
in cosmological perturbation theory. In the subsequent sections, we are going to make use of the
decomposition theorem and work with gauge invariant quantities. We will also restrict ourselves to a
flat FLRW background, as there is strong observational evidence from the CMB that our universe is
close to being spatially flat [1].

8



1.3. THE EVOLUTION OF PRIMORDIAL PERTURBATIONS

1.3.1 Scalar perturbations

We shall work in the so-called longitudinal gauge. There are two degrees of freedom in the scalar
perturbations, which are the gauge invariant quantities Φ and Ψ, called the Bardeen potentials. The
metric in terms of ΦandΨ is

ds2 = (1 + 2Φ)dt2 − a2(1− 2Ψ)δijdx
idxj . (1.28)

From this perturbed metric it is tedious but straightforward to get the perturbed Einstein tensor at
linear order. To write down the Einstein equations, we now need to model the perturbations in the
stress energy tensor.

We consider the case of a scalar field, which does not have anisotropic stresses at linear order in
perturbations because we can write it as a perfect fluid as shown by eq. (1.16). The scalar perturbations
generated by a scalar field are

T 0
0 = δρ = ϕ̇δϕ̇− ϕ̇2Φ + V ′(ϕ)δϕ , (1.29)

T 0
i = ∂iδσ = ϕ̇∂iδϕ , (1.30)

T i
i = δpδij = δij(ϕ̇δϕ̇− ϕ̇2Φ− V ′(ϕ)δϕ) . (1.31)

A useful quantity to define is the so called comoving curvature perturbationR.

R = Φ+
2ρ

3H
Φ′ +HΦ
ρ+ p

. (1.32)

Note that a prime denotes the derivative with respect to conformal time dη = dt/a. R is gauge
invariant. We will now derive the equation of motion ofR in the presence of a scalar field.

On substituting the scalar field perturbations eq. (1.29)-eq. (1.31) in the Einstein equations in the
appendix eq. (A.40), after some further algebra, gives the equation of motion ofR. We have stated the
below equation in Fourier space, as it becomes much more convenient to analyze linear perturbations

9



CHAPTER 1. PRELIMINARIES

in Fourier space since different Fourier modes are not coupled.

R′′
k + 2

z′

z
R′

k + k2Rk = 0 , (1.33)

where z =
aϕ′

H
. (1.34)

We also define the Mukhanov Sasaki variable vk as vk ≡ Rkz. The equation of motion of v is

v′′k +

(
k2 − z′′

z

)
vk = 0 . (1.35)

1.3.2 Vector perturbations

The metric with vector perturbations is given by

ds2 = dt2 − 2a(t)(∂iB + Si) . (1.36)

Note that we are only considering scalar fields which are perfect fluids, whose stress energy tensor
perturbations are given by eq. (1.29)-eq. (1.31). There are no vector perturbations in the stress energy
tensor. Thus, there are no sources for Bi and Si. We will not discuss them further in this thesis.

1.3.3 Tensor perturbations

Tensor perturbations are described by the transverse and traceless tensor hij . Tensor perturbations do
not require gauge fixing as hij is already gauge invariant. The metric for tensor perturbations around
an FLRW background is

ds2 = dt2 − a2(δij + hij)dx
idxj . (1.37)

In the absence of anisotropic stresses, the Fourier space Einstein equation for hij is given bya

h′′k + 2Hhk + k2hk = 0 . (1.38)

10



1.4. QUANTIZING PRIMORDIAL PERTURBATIONS

Note that the notation in this equation hides the fact that hij has two degrees of freedom. This
corresponds to two polarizations called + and ×. However, in the absence of anisotropic stress the
evolution of the two polarizations is identical, hence the indices ij are usually suppressed.

In analogy with scalar perturbations, for the variable uk ≡ ahk,

u′′k +

(
k2 − a′′

a

)
uk = 0 . (1.39)

1.4 Quantizing primordial perturbations

After obtaining how metric perturbations evolve, the question we now address is what are the initial
conditions to evolve them from, and at what time should the initial conditions be imposed.

In an inflating universe, successively smaller scales are exiting the Hubble radius as time passes.
If we go far back enough in time, even the largest observable scales today were much smaller than
the Hubble radius. In Fourier space this means k ≫ H, where H = aH = a′/a is called the
comoving Hubble radius. Small wavelength modes don’t feel the expansion of the universe and
evolve as they would in Minkowski spacetime. As a result, we can apply standard quantum field
theory and canonically quantize them.

At linear order in the slow roll parameters, the quantities z′′/z and a′′/a appearing in the evolution
equations of vk, eq. (1.35), and uk, eq. (1.39), are given by

z′′

z
=

4 + 6ϵ1 + 3ϵ2
2η2

, (1.40)

a′′

a
=

2 + 6ϵ1
η2

. (1.41)

When the slow roll approximation holds well, ϵ1 and ϵ2 can be neglected in the numerators. Then

z′′/z = a′′/a = 2/η2 , (1.42)

so vk and uk have the same equation of motion. We work with vk here, and the analysis for uk is

11
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identical. The equation of motion for vk becomes

v′′k +

(
k2 − 2

η2

)
vk = 0 . (1.43)

The solution to this is

vk(η) = c1

(
1− i

kη

)
e−ikη + c1

(
1 +

i

kη

)
eikη . (1.44)

Now, we quantize vk canonically. Note that we now have to include its dependence on the full vector
k instead of its magnitude k. Parts of the below discussion on quantization follow the discussion in
[5].

v̂k(η) = vk(η)âk + v∗k(η)â
†
−k , (1.45)

with the canonical commutation relation

[âk, â
†
k′ ] = δ3(k + k′) . (1.46)

The canonical commutation relation can also be written as

[v̂k, v̂
′
k′ ] = iδ3(k + k′) . (1.47)

On calculating [v̂k, v̂
′
k′ ] from eq. (1.45) and eq. (1.46), and equating it to the RHS of eq. (1.47), we

get

vk(η)v
∗′
k′(η)− v∗k(η)v′k′(η) = i . (1.48)

On substituting vk(η) from eq. (1.44), we get

|c1|2 − |c2|2 =
1

2k
. (1.49)

12



1.4. QUANTIZING PRIMORDIAL PERTURBATIONS

The vacuum state |0⟩ is defined by ak|0⟩ = 0. The Hamiltonian operator for v̂k is given by

Ĥ =

∫
d3x

(
1

2
π̂2 +

1

2
(∇v)2 + 1

2
m2

eff (η)v̂
2

)
, (1.50)

where π̂ = v̂′k , (1.51)

m2
eff (η) =

z′′

z
=

2

η2
. (1.52)

On substituting the mode expansion eq. (1.45) in the Hamiltonian eq. (1.50) and taking the vacuum
expectation value, we get

⟨0|Ĥ|0⟩ = 1

4
δ3(0)

∫
d3kEk(η) , (1.53)

where Ek = |v̂′k|2 + ω2
k|vk|2 , (1.54)

ωk = k2 − 2

η2
. (1.55)

The δ3(0) is an artefact of integrating over an infinite volume. At early times, we have

lim
η→−∞

vk(η) = c1e
−ikη + c2e

ikη . (1.56)

Thus, we have

limη→−∞Ek(η) = 4(|c1|2 + |c2|2)k2 . (1.57)

We demand that the vacuum state is the ground state of the Hamiltonian. Thus, we minimize eq. (1.57)
given the constraint eq. (1.49), which gives us

|c1| =
1

2k
, c2 = 0 . (1.58)

Upto an irrelevant phase, this uniquely determines the Bunch-Davies mode function-

vk(η) =
1

2k

(
1− i

kη

)
e−ikη . (1.59)

This is our initial condition for vk(η) at sufficiently early times, meaning at times when k is sufficiently

13
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greater thanH.

We can carry out an identical analysis for uk(η) and arrive at the same Bunch-Davies mode
function.

Thus, when we solve for primordial perturbations during inflation, for each scale k at which we
want the primordial perturbations, we start evolution at a sufficiently early time, when k ≫ H, and at
this time we impose the Bunch-Davies initial conditions:

lim
k/H→∞

(vk(η), uk(η))→
1√
2k
e−ikη . (1.60)

1.5 Primordial power spectra

When it comes to making contact of the analysis of the previous sections with observations, what we
observe is the correlation functions of the variables R, v, u etc. Theoretical calculations give these
correlations as vacuum expectation values. We observe two point correlations from the CMB, which
in Fourier space means we observe the power spectra. The scalar power spectrum is defined by∫ ∞

0

dk

k
PR(k) =

∫
d3k

∫
d3(x− x′)
(2π3)

⟨0|R̂(η,x)R̂(η,x′)|0⟩e−ik(̇x−x′) . (1.61)

On using the mode decomposition eq. (1.45), we get

PR(k) =
k3

2π2
|Rk|2 =

(
k3

2π2

)(
|vk|
z

)2

. (1.62)

Similarly, the tensor power spectrum is

PT (k) =
k3

2π2
|hk|2 =

(
k3

2π2

)(
|uk|
a

)2

. (1.63)
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However, it is a convention to multiply the RHS by a factor of 4/M2
Pl

. Thus, in this thesis we will use
the following definition:

PT (k) =

(
4

M2
Pl

)(
k3

2π2

)(
|uk|
a

)2

. (1.64)

Note that since the primordial tensor power spectrum has not been detected yet, in this thesis when
we use ’primordial power spectrum’ or ’power spectrum’ we will always mean the scalar power
spectrum. The scalar and tensor spectral indices are defined by

ns = 1 +
d lnPR

d ln k ,
(1.65)

nT =
d lnPT

d ln k
. (1.66)

The tensor to scalar ratio r is defined as

r(k) =
PT (k)

PR(k)
. (1.67)

1.5.1 Calculating the power spectra in slow roll inflation

In this subsection, we calculate the power spectra assuming that the slow roll approximation holds
well during inflation, meaning ϵ1 and ϵ2 are≪ 1 during inflation.

z is related to a in terms of the slow roll parameters as

z =
√
2ϵ1MPl

. (1.68)

Also, we can express the slow roll parameters in terms ofH and η as

ϵ = 1− H
′

H2
, (1.69)

ϵ2 =
ϵ′

Hϵ
. (1.70)
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Using the above three equations, we get

z′′

z
= H2

[
]2− ϵ1 +

3

2
ϵ2 +

ϵ′2
2H

]
, (1.71)

a′′

a
= H2(2− ϵ1) . (1.72)

We can rewrite eq. (1.69) as

η = −
∫ (

1

1− ϵ1

)
d

(
1

H

)
. (1.73)

On integrating this by parts and substituting ϵ2 from (1.82), we get

η = − 1

(1− ϵ)H
−
∫ (

ϵ1ϵ2
(1− ϵ1)3

)
d

(
1

H

)
. (1.74)

Since we assume ϵ1, ϵ2 ≪ 1, we can ignore the second term. Thus, at leading order in the slow roll
approximation,

H ≃ − 1

(1− ϵ1)η
. (1.75)

Using this expression forH in eq. (1.71) and eq. (1.72), we get

z′′

z
=

4 + 6ϵ1 + 3ϵ2
η2

, (1.76)

a′′

a
=

2 + 3ϵ1
η2

. (1.77)

Also, at leading order in the slow roll parameters, ϵ1 and ϵ2 are constants. The solution of the evolution
equation eq. (1.35) that satisfies the Bunch-Davies initial condition at η → −∞ is given by

vk(η)

(
−πη
4

)1/2

exp

[
iπ

2

(
v +

1

2

)]
H1

ν (−kη) . (1.78)

H1
ν is the Hankel function of the first kind. At late times, when−kη → 0, the scalar and tensor power

spectra are time independent, which can be deduced from inserting in eq. (1.78) the asymptotic form
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of the Hankel function:

lim
x→0

H2
ν (x) ∝ x−1/2 . (1.79)

Thus, the solutions vk and uk are Hankel functions of the same form as eq. (1.78), with ν for vk and
uk respectively given by

νs ≡
3

2
+ ϵ1 +

ϵ2
2
, (1.80)

νT ≡
3

2
+ ϵ1 . (1.81)

We now want to evaluate the power spectra in the super Hubble limit (−kη) → 0. We use the
asymptotic form of the Hankel function H1

ν (x) as x→ 0:

H1
ν (x) ≃

−iΓ(ν)
π

(
2

x

)ν

. (1.82)

Using this in the definitions of the power spectra eq. (1.62) and eq. (1.64), we get

PR(k) =

(
1

32π2M2
Pl
ϵ1

)(
Γ(νS)

Γ(3/2)

)(
k

a

)2(−kη
2

)1−2νS

, (1.83)

PT (k) =

(
1

2π2M
Pl

)(
Γ(νT )

Γ(3/2)

)(
k

a

)2(−kη
2

)1−2νT

. (1.84)

We evaluate the above expressions in terms of quantities at Hubble exit (not atHubble exit), i.e. when
k = H. We do this by noting that, from eq. (1.75) and the fact that ϵ1 is constant at leading order in
slow roll,

1− ϵ1 = (−kη)−1
k=H = (−Hη)−1

k=H . (1.85)

17



CHAPTER 1. PRELIMINARIES

Using this, we get

PR(k) =

(
H2

2πϕ̇

)2(
Γ(νS)

Γ(3/2)

)
22νS−3(1− ϵ1)2νS−1 , (1.86)

PT (k) =

(
2H2

π2M2
Pl

)2(
Γ(νS)

Γ(3/2)

)
22νS−3(1− ϵ1)2νS−1 , (1.87)

where the RHS are evaluated at k = H. Using the slow roll approximation ϵ1, ϵ2 ≪ 1, we can further
simplify the above as

PR(k) ≃
(
H2

2πϕ̇

)2

k=H
, (1.88)

PT (k) ≃
(

8

M2
Pl

)(
H

2π

)2

k=H
. (1.89)

To get the spectral indices in terms of the slow roll parameters, we use the below result.(
dy

d ln k

)
k=H

=

(
dy

dt

dt

d ln a

d ln a

d ln k

)
k=H

=

(
ẏ

H

d ln a

d ln k

)
k=H
≃
(
ẏ

H

)
k=H

. (1.90)

Using this result in the definitions of ns and nT we get

ns ≃ 1− 2ϵ1 − ϵ2 , (1.91)

nT = −2ϵ1 . (1.92)

It is to be understood that the LHS is a function of k and the RHS is evaluated at the Hubble exit of
that k. The tensor to scalar ratio r is

r ≃ 16ϵ1 . (1.93)

Thus, r = −8nT . (1.94)

r = −8nT is dubbed the ’consistency relation’ of single field slow roll inflation.
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1.6 Ultra slow roll

The usefulness of the slow roll approximation comes from the fact that it results in a smooth, nearly
scale-invariant power spectrum, which matches very well with observations by Planck. However, we
have not measured the power spectrum on scales smaller than those probed by Planck. It is interesting
to consider departures from slow roll when these small scales are exiting the Hubble radius during
inflation. In this section, we discuss the mechanism of ultra slow roll (USR), which is a popular
mechanism employed for generating a peak in the primordial power spectrum on small scales.

The slow roll approximation may fail not only if V (ϕ) becomes steep, which is what happens at
the end of inflation, but also if it suddenly becomes extremely flat. This scenario is called USR.

In USR, in the field equation of motion eq. (1.12), it is the term V ′(ϕ) term that is negligible,
instead of ϕ̈. Thus, the evolution of the field becomes insensitive to the potential, except for the fact
that the expansion rate of the universe still depends on V (ϕ). The field equation of motion during
USR is

ϕ̈+ 3Hϕ̇ = 0 . (1.95)

For USR, the primordial power spectrum is not exactly given by eq. (1.88), but it is a good
approximation and enough to convey our next point. Using the definition of ϵ1, in eq. (1.88), we
can write

PR(k) ≃
H2

8π2M2
Pl
ϵ1
. (1.96)

From eq. (1.20), we have

ϵ1 ≃
3ϕ̇2

2V
. (1.97)

From eq. (1.95), we find that ϕ̇2 ∝ e−6N where N is the number of e-folds. Thus, we have ϵ1 ∝ e−6N

and we find from eq. (1.96) that the power spectrum rises as it has ϵ1 in the denominator. This results
in an upward slope in the power spectrum for scales k which exited the Hubble radius in the USR
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Figure 1.1: The USR-1 potential of eq. (1.98). It has an inflection point at ϕ ≃ 0.39M
Pl

.

era. After USR ends, the power spectrum again starts to drop, and thus we get a peak in the power
spectrum due to USR.

We end with an example of a USR model and its power spectrum. We consider the
phenomenological potential called ’USR-1’ discussed in [6]. The potential is given by

V (ϕ) = V0
3x4 − 4αx3 + 6x2

(1 + βx2)2
, (1.98)

where x = ϕ/v. To evaluate the power spectrum, following [6], we fix the parameters V0 = 4 ×
10−10M4

Pl
, v =

√
0.108M

Pl
, α = 1, β = 1.4349, and Npivot = 50.

1.7 Aims of this thesis

In the above sections, we encountered strong motivations from cosmology for an inflationary scenario
and the physics of such an era. The most important thing now is to confront inflation with
observations.
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Figure 1.2: Power spectrum for the USR-1 potential, for the parameter values mentioned in the text.
It is consistent with the Planck observations on the largest scales and has a peak at smaller scales.

The best constraints on inflation by far come from CMB anisotropies [1], which probe the largest
observable scales. However, they cannot probe scales smaller than roughly k ≃ 0.2 Mpc−1, which
is the limit beyond which the CMB anisotropies are too damped by diffusion to be detectable by
Planck. To probe much smaller scales, one can turn to structures in the universe, but the problem here
is that the overdensity needed for a galaxy to start forming is so large that it cannot be treated with
perturbation theory, so modeling the physics and mapping a model of primordial perturbations to the
corresponding observables becomes much more difficult.

In the recent past, some new avenues have emerged for constraining primordial perturbations on
small scales while still staying in the framework of perturbation theory. In this thesis, we will look at a
few of these—namely CMB spectral distortions, primordial black holes, and secondary gravitational
waves. We will then use these probes to derive constraints on parametric forms of the primordial
scalar power spectrum and an inflationary model.
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Chapter 2

Probes of primordial perturbations on small
scales

2.1 Introduction

What do we gain by probing smaller scales? There are two main benefits. The first is that probing a
new range of scales means that we are probing a new period in the inflationary era, the period when
those scales left the Hubble radius. This point is illustrated in fig. 2.1. The second benefit is that the
constraints on primordial perturbations from small scale probes are far weaker than the constraints
from CMB anisotropies, as we will see in later chapters. This allows for the possibility of the power
spectrum having a large amplitude on smaller scales, which can lead to interesting phenomenology
during inflation such as ultra slow roll, and interesting phenomeology in the universe after inflation,
like primordial black holes and secondary gravitational waves.
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Figure 2.1: A rough picture of the scales probed by various cosmological observables for the USR-1
inflation scenario discussed in section 1.6. The upper x-axis shows the scales that exit the Hubble
radius at the corresponding field value on the lower x-axis. Probing a new range of scales allows
us to probe a new part of the inflaton potential. In the figure, FIRAS refers to constraints from
the sensitivity of the FIRAS instrument to CMB spectral distortions, PTA refers to constraints from
pulsar timing arrays, PBH refers to constraints from bounds on primordial black hole abundance,
and SGW refers to constraints from the sensitivities of future gravitational wave observatories like
the Laser Interferometer Space Antenna and Big Bang Observer. These probes are discussed in the
forthcoming sections.

2.2 CMB spectral distortions

The CMB is the most perfect blackbody seen in the sky. This observation, however, is surprisingly
old. The latest measurement of the CMB frequency spectrum dates back to 1996, by the FIRAS
instrument on board the COBE satellite[7].

The FIRAS measurement did not detect any deviations from the blackbody spectrum in the CMB.
This non-detection places substantial constraints on the primordial power spectrum, and the sensitivity
of the proposed experiment called PIXIE is expected to strengthen these constraints by more than
three orders of magnitude [8].
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There are an infinite number of ways for a spectrum to be different from the blackbody shape. We
are helped by the fact that we have a robust understanding of the thermodynamics of the radiation era,
through which we have classified CMB spectral distortions into 3 broad types: the µ distortion, the
y distortion, and the r distortion. We describe below how the dissipation of primordial perturbations
leads to spectral distortions in the CMB. The discussion here follows that in [9].

2.2.1 Thermalization in the radiation era

In the radiation era, after neutrino decoupling and electron-positron annihilation, thermal equilibrium
is maintained by interactions between electrons and photons, which balance the energy and particle
number between photons and baryons. Three processes are involved in maintaining this equilibrium:

1. Double Compton scattering:

e− + γ ←→ e− + γ + γ . (2.1)

2. Bremsstrahlung

3. Compton scattering:

e− + γ ←→ e− + γ . (2.2)

When all three processes are efficient, they quickly thermalize the baryon-photon plasma after any
energy injection. As the temperature of the baryon-photon plasma drops, these processes lose their
efficiency and perturbatons in the energy or particle number form spectral distortions in the CMB.

The first process to become inefficient is Double Compton scattering. This happens at the redshift
of z ≃ 1.98 × 106. As it is a process that changes photon number, it becomes harder to balance
the particle number. At high enough redshifts Compton scattering is still very efficient, so energy
redistribution between photons and baryons is easy. Thus, deviation from thermal equilibrium in this
period arises from a particle number imbalance between baryons and photons, which shows up as a
nonzero chemical potential in the CMB spectrum. The chemical potential is denoted by the usual
symbol µ, and this is called the µ distortion.
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Below the redshift of z ≃ 5 × 104, Compton scattering also becomes inefficient. This leads to
deviations from thermal equilibrium appearing as a y distortion in the CMB spectrum. The same
signature is in fact produced by galaxy clusters through the Sunyaev-Zeldovich effect. At the level of
the global average over all directions, the signal from the Sunyaev-Zeldovich effect dominates over
the signal we would expect from the radiation era, so the y distortion is not useful for our purpose of
constraining primordial perturbations.

There is one oversimplification in the above picture of thermalization physics. The transition
between the eras that lead to µ and y distortions is not sharp at z ≃ 5 × 104, but occurs over an
extended period 3 × 105 ≥ z ≥ 104. In this period, the shape of the distortion matches neither that
of the µ or y distortions, and unlike the µ and y distortions, it also depends on the redshift at which
energy is injected. This is known as the r distortion.

2.2.2 Formation of the µ distortion

It can be shown that most of the fluctuations at a given wavenumber k dissipate when k equals the
diffusion damping scale kD: [10]

kD ≃ 4.0× 10−6(1 + z)3/2Mpc−1 . (2.3)

Equivalently, most of the fluctuations dissipate at the redshift

z ≃ 4.5× 105
(

k

103 Mpc

)2/3

. (2.4)

Approximating the transition between the µ and y distortion eras to be sharp, we can express the
value of µ with the help of a window function:

µ ≃
∫ ∞

kmin

k2dk

2π2
PR(k)W (k). (2.5)

The cutoff kmin is introduced both because an analytical treatment of thermalization becomes harder
for larger scales, and because it can be numerically verified that the contribution of the large scale
primordial power spectrum obtained from the CMB to spectral distortions is small.
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The expression for the window function, from a numerical fit, is [9]

W (k) ≃ 2.27

exp
−

[
k̂

1360

]2
1 +

[
k̂

260

]0.3
+ k̂

340

− exp

−[ k̂
32

]2
 (2.6)

Figure 2.2: Window function for the µ distortion. It rises as k2 for k ≲ 102 Mpc−1 and falls off as
exp(−k) for k ≳ 104 Mpc−1.

There is a nonzero value of µ expected from the Planck ΛCDM model itself, which corresponds to
extrapolating the observed power law spectrum on CMB scales upto k ≲ 0.2Mpc−1 to smaller scales
k ≥ 1Mpc−1. This value is of the order of 10−8 [11]. This is much below the sensitivity of FIRAS
and even PIXIE and is not important when deriving constraints on the small scale power spectrum.

The most recent measurement of the frequency spectrum of the CMB dates back to 1996. It was
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done by the FIRAS instrument on board the COBE satellite. It did not detect any spectral distortions
from the CMB, but it placed an upper bound of µ < 9 × 10−5 (95% CL) [7]. The most popular plan
for a future observatory is the PIXIE experiment, with a sensitivity of µ ≲ 3× 10−8 [8].

2.3 Primordial black holes from inflation

There is an interesting possibility that black holes (PBHs) formed in the very early universe before
the scales that we observe in the CMB reentered the Hubble radius. If these black holes possess mass
in a certain range, they can explain a fraction of or even all of the dark matter in the universe today
([12], [13]).

A promising mechanism for forming PBHs is provided by inflation. When a large overdensity
enters the Hubble radius, it can undergo gravitational collapse to form a black hole. USR inflation,
discussed in section 1.6, can generate such large overdensities, which correspond to peaks in the
primordial power spectrum. We will discuss PBHs in detail in the following sections.

2.3.1 Formation of PBHs

When a mode enters the Hubble radius, if its amplitude is sufficiently large, there are overdense
Hubble patches which collapse to form PBHs. Thus, the statistics of the primordial density
perturbations will tell us what abundance of PBHs to expect and their masses. For a Gaussian field of
density perturbations, its entire statistics is captured by its power spectrum which is called the matter
power spectrum. We will use the so called Press-Schechter formalism to predict the PBH abundance
from the matter power spectrum.

We assume that the density contrast after inflation δ(k) = δρ/ρ is a Gaussian random field. We
write it as

P (δ) =
1√
2πσ2

e−
δ2

2σ2 . (2.7)

We consider that only perturbations with a δ larger than a certain δc will collapse to form PBHs.
A discussion of the theoretical modelling needed to derive the value of δc is out of our scope. The
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fraction of perturbations that have an overdensity above δc is denoted β and given by

β =

∫ 1

δc

P (δ)dδ . (2.8)

The upper limit of the integral is 1 and not infinity, because our analysis is valid only for linear
perturbation theory which holds for δ < 1. However, in our context, 1 lies far into the tail of the
Gaussian due to the smallness of σ2(k). So, it is a good approximation to set the upper limit of the
integral to infinity, and we obtain

β ≃
∫ ∞

δc

P (δ)dδ =
1

2

[
1− erf

(
δc√
2σ2

)]
. (2.9)

The matter power spectrum is related in a simple way to the primordial scalar power spectrum PR(k)

on super-Hubble scales. In the radiation dominated era,

Pδ(k) =
16

81

(
k

aH

)4

Ps(k) . (2.10)

We now introduce a smoothing scale R in the problem, with the help of a window function W (kR)

as follows:

σ2(R) =

∫ ∞

0

dk

k
Pδ(k)W

2(kR) . (2.11)

It is common to use a Gaussian window function

W (kR) = e−
k2R2

2 . (2.12)

Owing to the absence of any other length scale in the problem that differs considerably from the
Hubble radius (aH)−1, we set

R = (aH)−1 . (2.13)

Now we consider the result of the gravitational collapse. The mass of the resulting PBH is related to
the mass inside the Hubble radius at that time MH , the only mass scale in the problem. The entire
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mass inside the Hubble radius does not collapse to a black hole. We model the finite efficiency of the
collapse saying that the PBH mass M is a fraction γ of MH ,

M = γMH . (2.14)

Using eq. (2.13), we find that R and M are related as

R =
21/4

γ1/2

(
g∗, k
g∗, eq

)1/12(
1

keq

)(
M

Meq

)1/2

, (2.15)

where eq denotes the instant of matter radiation equality. Since we know the redshift of matter
radiation equality observationally, we know the mass Meq. Substituting this above, we obtain

R = 4.72× 10−7
( γ

0.2

)−1/2
(
g∗, k
g∗, eq

)1/12(
M

M⊙

)1/2

Mpc . (2.16)

Using the above results we arrive at the present fraction of PBHs of mass M in dark matter:

fPBH(M) = 21/2γ3/2β(M)

(
Ωmh

2

Ωch2

)(
g∗, k
g∗, eq

)−1/4(
M

Meq

)−1/2

. (2.17)

On using known values of Ωmh
2, Ωch

2 and Meq we get

fPBH(M) =
( γ

0.2

)3/2( β(M)

1.46× 10−8

)(
g∗, k
g∗, eq

)1/12(
M

M⊙

)1/2

. (2.18)

To summarize, given a primordial power spectrum, we obtain the matter power spectrum eq. (2.10),
and its variance eq. (2.11) using the window function eq. (2.12). We write σ2(R) as σ2(M) using the
relation between R and M eq. (2.15), which gives us the fraction β(M) from eq. (2.8). We can
interpret β(M) as the fraction of the total energy density of the universe contributed by PBHs of mass
M , Finally, after substituting β(M) in eq. (2.18) we obtain the abundance of PBHs of mass M .
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2.3.2 Observational constraints on fPBH

PBHs lead to a variety of astrophysical phenomenology, which allows us to place observational
constraints on them for a wide range of PBH masses. The most elementary observational constraint
that we should consider is the fact that since the energy density of PBHs scales as cold dark matter
(CDM), this energy density can at most be that of CDM, which is Ωch

2, measured from CMB
observations. In short, fPBH ≤ 1. If the equality holds, PBHs are the full answer to the puzzle of the
nature of CDM. We have mentioned various other ways to independently constrain the abundance of
PBHs below, though the list is not exhaustive. Our discussion here follows that in [12].

1. Evaporation: There are two ways in which evaporation through Hawking radiation constrains
PBHs. The first is that it severely constrains the abundance of PBHs that formed so long ago
and are so light that the age of the universe exceeds their lifetime, i.e.

H−1
0 ≳ tH ∼ 1063

(
M

M⊙

)
yr . (2.19)

As a consequence, PBHs with M ≲ 10−18M⊙ would have completely evaporated by now.
Since most of the contribution to the age of the universe comes from after matter-radiation
equality, we do not need to consider the tiny correction due to the time of formation of PBHs in
the radiation era.

Another way in which evaporation constraints PBH abundance is through observational
constraints on the background of Hawking radiation expected from PBHs that have been
emitting it since they formed. An example of such a constraint is a constraint on the
extragalactic γ ray background.

We should note that constraints from evaporation ignore the effects of the evolution of the mass
of a PBH after its formation, e.g. due to accretion or mergers.

2. Gravitational microlensing: This is an observable effect that does not rely on either the
primordial or the black hole nature of PBHs, but just on the fact that they are compact objects.

There are observational constraints on fPBH from stellar microlensing from within and outside
the Milky Way. Stellar microlensing occurs when a compact object in the mass range 5 ×
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10−10 ≲ M/M⊙ ≲ 10 crosses our line of sight to a star. There are also constraints on PBHs
with 10 ≲M/M⊙ ≲ 100 from non-observation of strong lensing of fast radio bursts.

3. Dynamical interactions: These refer to the disruptions in stellar orbits due to encounters with
compact objects like PBHs. There are observational constraints on fPBH from dynamical
effects on the stellar populations of ultra-faint dwarf galaxies, and on wide binaries in the Milky
Way.

4. Accretion: Accretion onto PBHs in the radiation era can lead to spectral distortions in the CMB.
PBHs with mass in the range 103 ≲M/M⊙ ≲ 1012 are constrained from the FIRAS constraint
on the CMB µ distortion.

2.4 Secondary gravitational waves

The word "secondary" in secondary gravitational waves (SGWs) is due to the fact that these are a
prediction of second order perturbation theory. In contrast to linear perturbation theory, at second
order the equation of motion of the tensor perturbations hij acquires a source term that is second
order in the scalar perturbations. We shall state the equation of motion in Fourier space without
proof:

hλ′′ + 2Hhλ′ + k2hλ = Sλ , (2.20)

where h is the Fourier mode of the tensor perturbation, H is the comoving Hubble radius, S is the
source term, and λ ∈ {+, ×} is the polarization index. The position space perturbation hij(η,x) is
decomposed into its polarizations as

hij(η, x) =

∫
d3k

(2π)3/2
[
e+ij(k)h

+
k (η) + e×ij(k)h

×
k (η)

]
eik·x , (2.21)
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where the polarization tensors are

e+ij(k) =
1√
2
[ei(k)ej(k)− ēi(k)ēj(k)]

e×ij(k) =
1√
2
[ei(k)ēj(k) + ēi(k)ej(k)]

(2.22)

and the polarization vectors are defined such that ei(k), ēi(k), and k̂ form an orthonormal set of
vectors.

2.4.1 Solving for the SGW spectrum

We are now looking to solve eq. (2.20) in a radiation dominated background. We will make a further
approximation by neglecting anisotropic stress and setting Φ = Ψ. This allows us to write the source
term as [14]

Sλ
k (η) = 4

∫
d3p

(2π)3/2
eλij(k)p

ipj {2Φp(η)Φk−p(η)

+
[
Φp(η) + ηΦ′

p(η)
] [

Φk−p(η) + ηΦ′
k−p(η)

]}
.

(2.23)

We consider inflation to be driven by a single canonical scalar field. There is no source
of polarization of the tensor perturbations in this case, so the equations of motion for the two
polarizations are in fact identical. Owing to this fact, we will drop the polarization label λ from
our subsequent expressions unless polarization is important. Also, we will multiply the tensor power
spectrum resulting from eq. (2.20) without the polarization index with a factor of 2 to account for the
2 polarizations.

Given all the above, we proceed to solve eq. (2.20) through the Green’s function method. But
first, since the primordial quantity whose power spectrum we compute is the comoving curvature
perturbationR and not Φ, we substituteR for Φ in the above using the relation

Φk(η) = T (kη)Rk(η) , (2.24)
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where the transfer function in the radiation era is

T (kη) = 9

(kη)2

[
sin(kη/

√
3)

kη/
√
3
− cos(kη/

√
3)

]
. (2.25)

The Green’s function method tells us that the solution for the tensor mode is

hsk(η) =
1

a(η)

∫ η

dη̃gk(η, η̃)a(η̃)Ŝ
s(η̃,k) , (2.26)

with the Green’s function for eq. (2.20) during radiation domination is given by

gk(η, η̃) =
sin(k(η − η̃))

k
θ(η − η̃) . (2.27)

The next few steps are straightforward but very tedious. We substitute the Green’s function and the
source term explicitly into eq. (2.26), which gives us the solution for hk(η). We obtain the tensor
power spectrum using eq. (1.63). We state the expression for Ph(k) omitting its algebraic derivation:

Ph(k, η) =
2

81k2η2

∫ ∞

0

dv

∫ 1+v

|1−v|
du

[
4v2 − (1 + v2 − u2)2

4uv

]2
PS(kv)PS(ku)

×
[
I2c (u, v) + I2s (u, v)

]
,

(2.28)

The overline in Ph(k, η) is because we have averaged over time scales of a few kη, assuming that we
are working with small scales kη ≫ 1. In the above expression, the functions Ic and Is are given by

Ic(v, u) = −
27π

4v3u3
Θ(v + u−

√
3)
(
v2 + u2 − 3

)2
, (2.29)

Is(v, u) = −
27

4v3u3
(
v2 + u2 − 3

) [
4vu+

(
v2 + u2 − 3

)
ln

∣∣∣∣3− (v − u)2

3− (v + u)2

∣∣∣∣] . (2.30)

For brevity, we introduce the kernel K(u, v) using

Ph(k, η) =
2

81k2η2

∫ ∞

0

dv

∫ 1+v

|1−v|
du K(u, v)PS(kv)PS(ku) . (2.31)

K(u, v) is plotted below.
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Figure 2.3: The kernel K(u, v) appearing in eq. (2.31). The black lines enclose the region over which
it is integrated for obtaining the SGW spectrum. The kernel vanishes along the limit points of the du
integral, and diverges as u→ 0 or v → 0.

The energy density of gravitational waves ΩGW (k, η) is given by

ΩGW(k, η) =
ρGW(k, η)

ρcr(η)
=

1

24

(
k

H

)2

Ph(k, η) =
k2η2

24
Ph(k, η) . (2.32)

Our target is to obtain ΩGW (k, η0)h
2, the present day energy density in gravitational waves. To do

this, we evolve ΩGW (k, η) to the present day, which gives (we omit the η0 hereafter)

ΩGW (k)h2 = 1.38× 10−5
( g∗,k
106.75

)−1/3
(

Ωrh
2

4.16× 10−5

)
ΩGW (k, η) . (2.33)

2.4.2 Observing SGWs in pulsar timing arrays

Pulsars have a very robust periodicity, meaning that the arrival times of their pulses can be accurately
predicted by theoretical modeling. This enables their use as a GW observatory, as extra noise in the
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times of arrival (TOAs) of pulses from the corresponding theoretical model for the particular pulsar
can be used to infer a GW passing through the line of sight. The sensitivity to ΩGW (f) is proportional
to the variance to which a pulsar’s period can be determined.

Since we are interested in an isotropic background of GWs, we need to cross-correlate pulsars on
different lines of sight to detect a common isotropic noise source in their TOAs, and the more pulsars
we observe the better our constraints on the GW background. This is how pulsar timing arrays (PTAs)
are used as GW observatories. The frequency range a PTA is most sensitive to corresponds to the total
time span of its observations. This time span is of the order of years, corresponding to frequencies in
the nanohertz range, and wavenumbers in the range 106 − 107 Mpc−1.

The most simplified version of the constraints on a gravitational wave from a PTA is obtained by
assuming a power law spectral shape of ΩGW (f)h2, and then reporting the upper bound or a detection
on it at a reference frequency fref . Typically fref is taken to be 1 yr−1 = 31.7× 10−9 Hz. The bound
on ΩGW (f)h2 turns out not to be highly sensitive to the spectral index of the power law and lies in
the order of magnitude ΩGWh

2 ≲ 10−10. The lack of sensitivity to the spectral index enables us to
use the same bound as a reasonable approximation in our case where the SGW frequency spectrum is
more complex than a power law. For concreteness, we take the bound at the value corresponding to
the NANOGrav 2020 detection for a scale-invariant Ph(k): [15]

ΩGW (1 yr−1)h2 ≃ 6.4× 10−10 . (2.34)

Note that the NANOGrav publication reports the value for ΩGW (1 yr−1)h2 for ΩGW (f) assuming it
has a spectral index of 13/3. We have converted that upper bound to that for a scale invariant ΩGW (f),
with the reasoning that if we expect the GW spectrum to have a peak in the relevant frequency band,
it would have both a positive and a negative slope on either side of the peak and so it should not be
approximated to have a positive or negative slope over the entire observational frequency range. The
conversion scheme is taken from Figure 3 in [16].

For our purposes the equality eq. (2.34) is no different than an upper bound, since for both an
equality and an upper bound the interpretation of our constraints is that only power spectra that
generate an ΩGWh

2 below the RHS value are consistent with observations.
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2.4.3 Observing SGWs in interferometers

The mechanism of detecting GWs from an interferometer is well-known. A GW passing through the
apparatus of an interferometer changes its relative arm lengths, which is detected as a phase difference
between beams of laser light passing through the different arms. Like for PTAs, in order to detect an
isotropic GW background we need to cross-correlate the signals of more than one interferometers and
identify the common contribution of the GW background. Parts of the discussion here follow that in
[17].

The quantity measured in an interferometer is the GW strain h(t), defined as the relative difference
in arm length. Without going into details, we will state that h(t) is given by convolving the tensor
perturbations at the interferometer location with the instrument response:

h(t) =

∫ ∞

−∞
df

∫
d2Ωk̂

∑
A

Rλ(f, k̂)hλ(f, k̂)e
i2πf(t−k̂·x⃗/c) . (2.35)

Equivalently, in the frequency domain,

h̃(f) =

∫
d2Ωk̂

∑
A

RA(f, k̂)hA(f, k̂)e
−i2πfk̂·x⃗/c . (2.36)

Now we come to the cross-correlation between two detectors. This is given by〈
h̃1(f)h̃

∗
2 (f

′)
〉
=

1

2
δ (f − f ′) Γ12(f)Sh(f) , (2.37)

where the quantity Sh(f) is defined as

Sh(f) =
3H2

0

2π2

ΩGW

f 3
, (2.38)

and the quantity Γ12(f), called the overlap reduction function, is given by

Γ12(f) =
1

8π

∫
d2Ωk̂

∑
A

RA
1 (f, k̂)R

A∗
2 (f, k̂)e−i2πfk̂·(x⃗1−x⃗2) , (2.39)

where x⃗1 and x⃗2 are the positions of the interferometers. The overlap reduction function depends on
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both the distance between the interferometers and their orientation.

The noise for an interferometer is modeled as a noise spectral density Pn(f). It has the same
dimensions as S2

h(f). We can now write the expression for the signal-to-noise ratio (SNR) ρ for a
cross-correlation between two interferometers:

ρ =
√
2T

[∫ fmax

fmin

df
Γ2
IJ(f)S

2
h(f)

PnI(f)PnJ(f)

]1/2
, (2.40)

where T is the total time of observation. A GW spectrum is said to be detected if it results in an SNR
larger than the chosen threshold, which we choose to be ρ = 1. Also, we choose T = 1 yr. Thus, our
observational upper bounds correspond to a GW spectrum which will lead to an SNR of unity after
one year of interferometer observations.
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Chapter 3

Deriving small scale constraints on the power
spectrum

In this chapter, we use the theory of primordial perturbations and their phenomenological
consequences on small scales to derive constraints on the power spectrum. We also show how
constraints on the power spectrum can be interpreted as constraints on the inflaton potential when
we have an underlying model of single field inflation.

3.1 Constraining parametric power spectra

The key difference between the current observational status of primordial perturbations on CMB
scales and on the scales of spectral distortions, PBHs and SGWs is that on the CMB scales we have
directly observed the power spectrum in the data, while for the small scale probes we only have upper
bounds on their magnitudes from instrument sensitivities. Thus, the difference is that on CMB scales
the constraints are from effects of the primordial perturbations that are already observed in the data,
while on small scales the constraints are from the non-detection of these effects.
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3.1.1 Parametrization of the power spectrum

On small scales we have much less information available to derive constraints, as all the small
scale constraints we have discussed reduce the power spectrum to a single observable quantity by
integrating over it, viz. µ for the µ distortion cf. eq. (2.5), ΩGW (1 yr−1h2) for PTAs, and the SNR ρ

for interferometers cf. eq. (2.40). This is in contrast to the CMB data which has one data point per
multipole for both temperature and polarization.

We treat the power spectrum at CMB scales and at small scales separately. We are able to do this
because the amplitude of the power spectrum at the CMB scales is measured to be of the order of
10−9, which is so small that it has a negligible effect on all observables discussed in the previous
chapter. We treat large and small scales separately by approximating the power spectrum as a sum of
spectra for large and small scales:

PR(k) ≃ PR,large(k) + PR,small(k) , (3.1)

where we classify large scales as k ≲ 1 Mpc−1 and small scales as k ≳ 1 Mpc−1. In the next chapter,
we will work with profiles for PR,small(k) which have a peak on small scales, thus we can neglect
PR,large(k) on small scales. Also, for these profiles for PR,small(k), the amplitude falls off at small
scales. Thus, it is a good approximation to take the behaviour of PR(k) to be given by

PR(k) ≃

PR,large(k), k ≲ 1 Mpc−1 ,

PR,small(k), k ≳ 1 Mpc−1 .
(3.2)

Since we will be concerned only with PR,small(k) from now, we will drop the subscript "small"
from now. In our subsequent expressions, PR(k) should be understood to mean PR,small(k), and
the expressions should be understood to be valid only for small scales k ≳ 1 Mpc−1.

Since we have only a single observable quantity that can be used to constrain the power spectrum,
we cannot derive proper constraints if we choose a highly tunable parametrization of the spectrum,
e.g. a series expansion where we want to constrain each coefficient. The most useful parametrization
for which we can derive proper constraints is when we vary the amplitude at the peak of the power
spectrum and the wavenumber kp at which this peak occurs, keeping the shape of the spectrum fixed.
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For simplicity, we have so far only worked with spectral shapes that have a single peak, but this
restriction is not necessary. Our parametrization is expressed as

PR(k) = PR(kp)f

(
k

kp

)
. (3.3)

By definition of kp, we have 
f

(
k

kp

)
= 1, k = kp ,

f

(
k

kp

)
< 1, k ̸= kp .

(3.4)

For convenience, we denote

A ≡ PR(kp) . (3.5)

Thus, we work with a power spectrum of the form

PR(k) = PR(k,A, kp) = Af

(
k

kp

)
. (3.6)

Note that sometimes a slightly different normalization for f(k/kp) is used in the literature:∫ ∞

−∞
f

(
k

kp

)
d ln k = 1 . (3.7)

We have used this parametrization for the lognormal spectrum in the next section because it
conforms with literature and makes it easy to compare our plots with those in the literature. However,
we have not used this parametrization for other power spectra because it is in general difficult to
perform the integral eq. (3.7) analytically.
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3.1.2 Constraints from the CMB µ distortion

The value of the chemical potential µ in the CMB is given by eq. (2.5). For our parametrization of
the power spectrum, we can write

µ = µ(A, kp) ≃
∫ ∞

1 Mpc−1

dk Af

(
k

kp

)
W (k) . (3.8)

Note that we can take A out of the integral, so µ(A, kp) is simply proportional to A.

µ(A, kp) ∝ A . (3.9)

From the FIRAS observations we have the following upper bound:

µ(A, kp) ≤ 9× 10−5 . (3.10)

Using this inequality, we can generate constraints on the A vs kp plane. The constraint will be in the
form of a curve Amax(kp). This means that for each value of the peak wavenumber kp, there is a peak
amplitude Amax(kp) at which the upper bound eq. (3.10) is saturated, and the peak amplitude needs
to be equal to or below Amax(kp) in order to be consistent with observations.

Now, our task is to find the function Amax(kp) from the property that it saturates the upper bound
eq. (3.10). This is made easy by eq. (3.9), the fact that µ(A, kp) simply depends on A by a linear
proportionality. Thus, we can evaluate µ(A, kp) at any arbitrary value of A, and then using the linear
proportionality we obtain Amax(kp) through

Amax(kp) = A

(
9× 10−5

µ(A, kp)

)
, (3.11)

for any value of A. The curve Amax(kp) is what is shown on power spectrum constraint plots (fig. 4.1
and fig. 4.2, discussed in the next chapter).
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3.1.3 Constraints from fPBH bounds

The observational bounds on fPBH for various mass ranges can be collected and represented as
a function fPBH,max(M). In the minimal scenario where we do not consider any astrophysical
constraints on fPBH (citing the astrophysical uncertainties which are involved in most of them), we
have fPBH,max(M) = 1. Otherwise, is smaller than unity where astrophysical constraints exist.

The remaining uncertainties are those in the formation mechanism of PBHs, namely the uncertainty
in the exact value of δc and the uncertainty in the window function eq. (2.12). However, once we look
at the constraints from PBHs, we will find both the above kinds of uncertainties do not drastically
change the power spectrum constraints from fPBH bounds.

To obtain constraints from fPBH bounds, we first start by mapping a PBH mass to a scale kp. When
a scale k enters the Hubble radius (k = aH), if the amplitude PR(k) is large, a region of size r = aH

can collapse into a PBH. Thus, we can map a peak wavenumber kp to a PBH mass M using eq. (2.16)
and kp = 1/R. For default values of the parameters in eq. (2.16), this gives

kp = 1.59× 106
(
M

M⊙

)−1/2

Mpc−1 . (3.12)

Then, after choosing a peak scale kp, we numerically invert the function fPBH(A, kp) to obtain the
value of Amax such that

fPBH(A, kp) = fPBH,max(M(kp)) . (3.13)

By repeating this for different scales kp, we construct the Amax vs kp curve which is the constraint
plot. Due to the restrictions and approximations in our theoretical modeling, our power spectrum
constraints from fPBH bounds are valid for the range 0.01 Mpc−1 ≲ k ≲ 1016 Mpc−1. This is
because scales k ≤ 0.01 Mpc−1 enter the Hubble radius after matter-radiation equality, so we cannot
assume a radiation background as we have done in our model. Moreover, the power spectrum is
already constrained to be small on these large scales, so constraints from fPBH on these scales will
not reveal anything new. For small scales k ≳ 1016 Mpc−1, from eq. (3.12) we see that the PBHs will
be so light that they will evaporate before the present day, so we cannot use fPBH bounds to constrain
the power spectrum on these scales.
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We will now assess the impact of the uncertainty in δc on the constraints. We have considered the
fPBH bounds from [12].

Figure 3.1: Constraints from fPBH bounds on the same power spectrum with δc = 1/3 and 0.4. The
power spectrum is taken to be a lognormal power spectrum eq. (4.1) with σ = 0.5. A on the y-axis is
defined such that A/(

√
2πσ) is the amplitude of the power spectrum at the peak kp.

We find that the two constraint plots do not differ by even a single order of magnitude. This is
a consequence of the very high sensitivity of fPBH to the overall constant A multiplying the power
spectrum. As we should expect, the constraint plot for the smaller value of δc is slightly below the
one with the larger value. This is because a smaller δc allows primordial perturbations with a smaller
amplitude to form PBHs, which can be seen quantitatively from eq. (2.9) and eq. (2.18). In the next
chapter, we choose to show constraints for δc = 1/3.

3.1.4 Constraints from Pulsar Timing Arrays

When deriving constraints from GW observatories, we assume that the GW signal is entirely due to
SGWs. The observational upper bound for PTAs is taken to be eq. (2.34). Due to our parametrization
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eq. (3.6) of the power spectrum, we have

ΩGW (f, A, kp)h
2 ≤ 6.4× 10−10 . (3.14)

From eq. (2.31) and eq. (2.32), we obtain

ΩGW (f, A, kp)h
2 ∝ A2 . (3.15)

We again derive constraints in the form of a functionAmax(kp), whereAmax is the value ofAwhich
satisfies eq. (3.14).

Using eq. (3.14) and eq. (3.15) we construct the constraint curve Amax(kp):

Amax(kp) = A

(
6.4× 10−10

ΩGW (1yr−1,A, kp)h2

)1/2

, (3.16)

for any value of A.

3.1.5 Constraints from GW interferometers

For GW interferometers our observational upper bound comes from eq. (2.40), with our convention
T = 1 yr−1 and our imposed threshold being ρ < 1.

From the power spectrum parametrization eq. (3.6) we have

ρ = ρ(A, kp) , (3.17)

and from substituting the parametrization in the expression eq. (2.40) we have

ρ(A, kp) ∝ A2 . (3.18)

Again, our constraint plot is the curve Amax(kp), where Amax is the value of A that gives ρ = 1.
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We construct Amax(kp) using the above results as:

Amax(kp) = A

(
1

ρ(A, kp)

)1/2

, (3.19)

for any value of A.

In principle, we can apply this analysis to any interferometer system where there are more than
one interferometer configurations that can be correlated. However, in practice this is not useful for
current LIGO-like interferometers, since their sensitivity is too low to provide meaningful constraints
on the GW background. Concept interferometers envisioned to operate in the future have the required
sensitivity. We have considered the Laser Interferometer Space Antenna (LISA) [18] and the Big
Bang Observer (BBO) [19] as examples.

Since LISA and BBO are future experiments, the interpretation of these constraints is different
from the constraints from µ distortions and PTAs. Now the interpretation is that for a given kp, only
values ofA equal to or aboveAmax will be detectable by LISA or BBO (subject to our imposed values
on the threshold on ρ and the observing time T ). Or, in other words, only values of A below Amax

can be ruled out in the absence of a detection.

3.2 Constraining an inflationary potential

In this section, we consider the case when we have an inflaton potential that gives rise to the power
spectrum. As an example, we consider the USR-1 potential introduced in eq. (1.98):

V (ϕ) = V0
3x4 − 4αx3 + 6x2

(1 + βx2)2
, (3.20)

where x ≡ ϕ/v . (3.21)

The parameters of the potential are V0, α, β, and v. We do not have enough observational information
to constrain all of them simultaneously. We can proceed by doing something very analogous to how
we parametrized the power spectrum.

Analogous to how we varied A ≡ PR(kp) in the power spectrum, we choose to vary V0 in the
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inflaton potential. The mathematical meaning of both these parameters is identical—they are an
overall constant multiplying the function. In fact, V0 and A are proportional to each other if all other
parameters are fixed.

The other parameter that we choose to vary is not explicit in eq. (3.20). However, it is still a quantity
that holds important information about the inflationary era. We are referring to the number of e-folds
of inflation after a chosen scale kpivot exits the Hubble radius during inflation. This quantity, often
denoted Npivot or N∗ in the literature (we will stick with the former), is an important quantity for
CMB observations. The values of the scalar spectral index ns and the tensor-to-scalar ratio r at any
particular kpivot depend on the value of Npivot. This is because varying Npivot does not change the
shape of the inflaton potential at all, it only changes the range of scales that exited the Hubble radius
during inflation. Increasing Npivot moves the Hubble crossing of each scale during inflation to an
earlier time, and thus it does not change the shape of the power spectrum but just increases the scale
at which it peaks. We thus conclude that the parameters V0 and Npivot are in direct correspondence
with A and kp in the power spectrum respectively, and so we can use the same methodology that we
used to constrain the power spectrum to constrain V0 and Npivot.

There are two more important considerations that apply when we are trying to constrain V0 and
Npivot. These arise from the need to respect existing observational constraints from the CMB data.
The first is that CMB observations constrain Npivot to lie roughly between 50 to 60. Thus, when
we are constraining the power spectrum, we want constraints over all kpeak values, but when we are
instead constraining the inflaton potential and pivot scale e-folds, we only need constraints over the
range 50 ≲ Npivot ≲ 60.

The second point is that in the simple scenario we are considering, changing the value of V0 changes
the power spectrum on all scales, including the large scales probed by CMB anisotropies. But we
already have very strong constraints on the amplitude as well as the slope of the power spectrum on
these large scales. Thus, if we assume our inflationary model to describe both the largest and smallest
scales, then it is not very useful to constrain V0 from small scale observables because the strongest
constraint on V0 by far comes from the CMB anisotropies probed on large scales. In this thesis,
we have not attempted to combine constraints from small scale probes with constraints from CMB
anisotropies.
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Chapter 4

Results and Discussion

4.1 Constraining a lognormal power spectrum

A lognormal power spectrum is a useful parametrization of a power spectrum with a single peak. It
is given by

PR(k) =
A√
2πσ

exp

[
− ln(k/kpeak)

2

2σ2

]
. (4.1)

The parameter σ determines the width of the peak of the power spectrum, increasing σ increases the
width.

Below, we have shown the constraints obtained for the lognormal spectrum. We have considered
three values of σ in order to see how the constraints depend on the width of the spectrum. Previous
work on constraining lognormal spectra on small scales has been done by [20], but they have not
considered constraints from fPBH bounds. We have developed upon their results by considering
constraints from fPBH bounds and implications for PBH formation.
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Figure 4.1: Constraints on the lognormal spectrum for three different values of σ. We have not shown
constraints below k = 1 Mpc−1 as larger scales are constrained by CMB anisotropies. Also, we have
not shown constraints above k ∼ 1016 Mpc−1 because of a numerical difficulty—the time required to
calculate the overlap reduction function from eq. (2.39) for the BBO increases exponentially due to the
oscillatory nature of the integral involved, and we could not find a satisfactory analytic approximation
for the function at large frequencies.

These plots indicate that constraints on the power spectrum depend significantly on its width.
Recall fig. 2.1 at the beginning of Chapter 2. In that figure, only CMB constraints come from
measurements rather than upper bounds. These are free-form constraints, so they do not depend on the
shape of the spectrum as they are constraints on the shape of the spectrum itself in a sense. However,
the other constraints, such as the µ distortion, PBHs, and SGWs do depend on the spectrum’s shape.
These are constraints on quantities that are obtained by integrating over the power spectrum over
corresponding ranges of scales. Integrals of the power spectrum cannot constrain its shape to an
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appreciable extent, thus we should expect these constraints to be dependent on the spectrum’s shape.

The length scales corresponding to small scale constraints in fig. 2.1 come from constraint plots in
the literature that are derived for fixed shapes of the power spectrum. Specifically, constraints from
µ distortions assume a power spectrum that grows as k4 and vanishes after a cutoff [13], and SGW
constraints assume a δ function power spectrum. However, fig. 4.1 indicates that the length scales
probed by any observable depends on the width of the peak of the power spectrum, and so the scales
shown in fig. 2.1 are not universal, they depend on the width of the power spectrum being considered.

An important implication of the dependence of power spectrum constraints on its width is on PBHs.
As seen in fig. 4.1, for σ = 0.5 there is a window of scales between k ∼ 105 − 107 Mpc−1 where
the power spectrum can have a peak and form appreciable PBHs. However, this window completely
disappears for σ = 2. This indicates that it is harder to form appreciable PBHs while remaining
consistent with observations. fig. 4.1 also indicates that the reason for this does not have to do with
the physics of PBHs (as the power spectrum constraints from fPBH don’t change substantially with
the shape of the spectrum), but it has to do with the physics of the other small scale probes of the
power spectrum: µ distortions and SGWs (as the constraints from these probes depend substantially
on the width of the spectrum).

4.2 Constraining a broken power law power spectrum

A broken power law is another parametrization for a peaked power spectrum. It has three parameters,
one more than the lognormal. These parameters are a constant multiplier, and the slopes on each side
of the peak. Thus, like the lognormal, it allows control over the amplitude of the peak and the peak
width, and unlike the lognormal it also allows control of how one-sided the peak is. The broken power
law spectrum is given by [21]

PR(k) =
As(α + β)

β(k/kp)α + α(k/kp)β
. (4.2)

Here, α is the logarithmic slope of the spectrum on large scales k < kp, and β is the slope on small
scales k > kp.

The broken power law parametrization was introduced in [21], and [22] constrained it on small
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scales from fPBH bounds and PTA observations. We have developed upon their results by considering
constraints from the µ distortion and GW interferometers.

Figure 4.2: Constraints on the broken power law spectrum. The values 0.5 and 4 for α and β are
chosen to conform with the values chosen in [22].

fig. 4.2 indicates that a smaller value of the slope at large scales α extends constraints from all
probes towards smaller scales, and a smaller value of the slope at small scales β extends all constraints
towards larger scales. This might seem counterintuitive at first; it seems like changing the small
scale behaviour of the spectrum affects its observability on small scales instead of large scales. To
understand this, we should recognize that the observational constraints from any observable depend
on the behaviour of the power spectrum over the range of scales which the observable is sensitive
to. Thus, when the peak of the power spectrum is at a smaller scale than the scales which the
observable is sensitive to, the scales probed by the observable lie in the large-scale (i.e. k < kp) part
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of the spectrum. Thus, it is the small-scale part of the spectrum which determines the observational
constraints. The same explanation holds for why the small-scale (i.e. k > kp) slope of the spectrum
extends observational constraints towards larger scales.

4.3 Constraining the USR-1 potential

We are constraining the USR-1 potential eq. (1.98):

V (ϕ) = V0
3x4 − 4αx3 + 6x2

(1 + βx2)2
, (4.3)

where x = ϕ/v. The parameters that we fix are v =
√
0.108M

Pl
, α = 1, and β = 1.4349. The

parameters that we choose to vary are V0 and Npivot, as discussed in the previous section. We have
shown our constraints on the USR-1 model below.

Figure 4.3: Constraints on the USR-1 model from the FIRAS upper bound on µ and the NANOGrav
detection of ΩGWh

2.

53



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.4: Constraints on BBO on the power spectrum for the USR-1 model.

There are two points to note about the above plots:

1. We have not shown constraints stating that the power spectrum is bounded above by a value
greater than unity, since when the power spectrum is above unity we cannot rely on linear
perturbation theory that has been assumed to be valid in all our theoretical calculations.

2. When we are looking to constrain the inflationary potential rather than its resulting power
spectrum, the peak wavenumber kpeak is determined by the number of e-folds after pivot scale
crossing. Since the number of e-folds is constrained to be roughly between 50 to 60 from CMB
observations, we only need constraints on the power spectrum over the corresponding range of
kpeak values.

54



Chapter 5

Conclusions and outlook

The objectives achieved through the work in this thesis are:

1. An understanding of the phenomenology on various ranges of small scales that are sensitive to
primordial scalar perturbations.

2. A demonstration of how to derive constraints on the primordial perturbations on small scales
while still staying in the realm of perturbation theory.

3. An understanding of the degree to, and the manner in which constraints on the power spectrum
depend on its assumed spectral shape.

4. An understanding of the implications of the dependence of power spectrum constraints on its
shape for PBH formation.

5. An understanding of how to interpret constraints on primordial perturbations as constraints on
the underlying model of inflation.

6. A simple proof of the decomposition theorem which is a key result of cosmological perturbation
theory.
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Appendix A

A simple proof of the decomposition theorem

In this section we will discuss linear perturbation theory around a background FLRW cosmology.

In the FLRW background metric, the metric perturbations can be decomposed according to their
behaviour under local spatial rotations on an equal time hypersurface. This property leads to the
classification of perturbations as scalars, vectors, and tensors under the group of rotations in 3
dimensions. Scalar perturbations are invariant under rotations. Vector and tensor perturbations, as
their names indicate, transform as vectors and tensors respectively.

The decomposition theorem: According to the decomposition theorem in general relativity, which
we will prove in this section, at linear order the scalar, vector and tensor perturbations are decoupled
from each other, i.e. each type of metric perturbation is only affected by the same type of source,
namely scalar, vector and tensor perturbations in the stress energy tensor. This allows us to analyze
scalar, vector and tensor perturbations separately.

A.1 Defining the metric and matter perturbations

We first obtain the most general linear perturbations to the flat background FLRW metric eq. (1.2)
and the background perfect fluid stress energy tensor. We are working in Cartesian coordinates.

The general linear perturbation to this metric is a symmetric rank 2 tensor in 4 dimensions. Thus,
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it has 10 components or 10 degrees of freedom. The SVT decomposition distributes these degrees of
freedom among quantities that transform as scalars, vectors and rank 2 tensors under rotations in the
3 spatial dimensions. The line element of the perturbed metric is

ds2 = (1 + 2A)dt2

−2a(t)(B,i + Si)dtdx
i

−a2(t)[(1− 2ψ)δij + 2E,ij

+Fi,j + Fj,i + hij]dx
idxj . (A.1)

This allows us to compute the linear perturbations to the background Einstein tensor eq. (1.3). They
are found to be

δG0
0 = −6H(ψ̇ +HA) +

2

a2
∇2[ψ − aH(B − aĖ)] , (A.2a)

δG0
i = 2(ψ̇ +HA),i −

1

2a
∇2Vi , (A.2b)

δGi
j = −δij

[
2ψ̈ + 2H(3ψ̇ + Ȧ) + 2(2Ḣ + 3H2)A

+
1

a2
∇2

(
A− ψ +

1

a

[
a2(B − aĖ)

]·)]
+

1

a2

(
A− ψ +

1

a

[
a2(B − aĖ)

]·),i

,j

+
1

2a
[∂i(V̇j + 2HVj) + ∂j(V̇

i + 2HV i)]

−1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij

)
. (A.2c)

Now we turn to the stress energy tensor. It turns out that the most general perturbation to the
background stress energy tensor allowed in a perturbed flat FLRW metric is not simply a general
perturbation to the perfect fluid stress energy tensor eq. (1.4). In order to see this, let us first write the
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general perturbation to the perfect fluideq. (1.4) which has the 4-velocity eq. (1.8):

δT 0
0 = δρ , (A.3a)

δT 0
i = (ρ+ p)δui , (A.3b)

δT i
j = −δpδij . (A.3c)

We can write the 4-velocity perturbation as

δui = v,i + δu⊥i , (A.4)

where δu⊥i,i = 0. From these expressions we see that δT µ
ν has 3 scalar degrees of freedom (δρ, δp and

v), and 2 vector degrees of freedom δu⊥i . However, a general symmetric tensor has 4 scalar, 4 vector
and 2 tensor degrees of freedom, which means we are missing something in eq. (A.3).

In addition to the perturbation of the perfect fluid eq. (1.4), the spatial components δT i
j contain extra

degrees of freedom in the form of one scalar which has a traceless contribution, one transverse vector
and one transverse traceless tensor. These extra degrees of freedom represent anisotropic stress, we
denote them as πS , πV

i and πT
ij respectively. The general perturbed stress energy tensor is given by

δT 0
0 = δρ , (A.5a)

δT 0
i = (ρ+ p)δui , (A.5b)

δT i
j = −δpδij −

(
∂i∂j − δij

∇2

3

)
πS

−πV i
,j − π

V j
,i − πT i

j . (A.5c)

We can see that it has the correct number of degrees of freedom of each class.

The Einstein equations obeyed by the linear metric and matter perturbations are

δGµ
ν = δT µ

n u . (A.6)
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A.2 Gauge transformations and gauge invariant quantities

The metric perturbations eq. (A.1) and matter perturbations eq. (A.5) are gauge dependent. We will
avoid the issue of fixing a gauge and take the approach of working with gauge invariant quantities.
In order to construct gauge invariant quantities out of the perturbations in eq. (A.1), we will first
derive how each of the perturbation variables transforms under a gauge transformation. A gauge
transformation is defined by

x̃µ = xµ + δxµ(xα) . (A.7)

We can break up the spatial part of δxµ into a transverse vector and the gradient of a scalar and
write

δxµ = (δt, δx,i + δx⊥i ) , (A.8)

where δx⊥i,i = 0. We denote all functions in the new coordinates with tildes. x̃µ are coordinates of
the same point in the new coordinates. Consider a rank 2 tensor field Hµν(x

α), which is split into a
background and perturbation as

Htot
µν (x

α) = Hµν(x
α) + δHµν(x

α) . (A.9)

We write

(Hµν + δHµν)(x
α) = (Hµν + δHµν)(x

α(x̃α)) (A.10a)

= x̃ρ,µx̃
σ
,ν(H̃ρσ + ˜δHρσ)(x̃

α) (A.10b)

=
(
δρµ + δxρ,µ

) (
δσν + δxσ,ν

)
(H̃ρσ + ˜δHρσ)(x̃

α) (A.10c)

= H̃µν(x̃
α) + δxρ,µH̃ρν(x̃

α) + δxσ,νH̃µσ(x̃
α) + ˜δHµν(x̃

α) (A.10d)

= H̃µν(x
α) + δxβH̃µν,β(x̃

α)

+δxρ,µH̃ρν(x̃
α) + δxσ,νH̃µσ(x̃

α) + ˜δHµν(x̃
α) . (A.10e)

We have neglected terms beyond linear order in the perturbations above. We define the background
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part of the tensor to be the same in both coordinate systems, i.e.

H̃µν = Hµν . (A.11)

Thus, we get the gauge transformation law

δHµν = ˜δHµν + H̃µν,αδx
α + δxρ,µH̃ρν + δxσ,νH̃µσ . (A.12)

Equivalently,
˜δHµν = δHµν −Hµν,αδx

α − δxρ,µHρν − δxσ,νHµσ . (A.13)

On applying this transformation law to the perturbed metric δgµν from the line element eq. (A.1),
we obtain the gauge transformation laws for the metric perturbations.

Ã = A− δ̇t , (A.14)

B̃ = B +
δt

a
− a ˙δx , (A.15)

ψ̃ = ψ +Hδt , (A.16)

Ẽ = E − δx , (A.17)

S̃i = Si − a ˙δx⊥i , (A.18)

F̃i = Fi − δx⊥i , (A.19)

h̃ij = hij . (A.20)

We find that the scalar and vector perturbations are affected only by the scalar and vector degrees
of freedom in the gauge transformations respectively. The tensor perturbations are gauge invariant.
Since there are 4 scalar and 4 vector degrees of freedom in the perturbed metric eq. (A.1) and 2 scalar
and 2 vector degrees of freedom in the gauge choice eq. (A.8), we should have 2 scalar and 2 vector
degrees of freedom that are gauge invariant. Using eq. (A.14) - eq. (A.20), we can construct the gauge
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invariant metric perturbations as follows:

Φ ≡ A+ [a(B − aĖ)]· , (A.21)

Ψ ≡ ψ − [aH(B − aĖ)] , (A.22)

Vi ≡ Si − aḞi . (A.23)

where Vi,i = 0.

The next step is to write the Einstein equation in terms of gauge invariant variables. We can derive
the gauge transformation law for δGµ

ν in the same way as we derived the law for a tensor with two
lower indices eq. (A.13), the result is

˜δG
µ

ν = δGµ
ν −Gµ

ν,αδx
α − δxρ,νGµ

ρ + δxµ,σG
σ
ν . (A.24)

On substituting the expression eq. (A.8) for δxµ in the above and using the property Gi
i = Gj

j (i
and j not summed over), we get

˜δG0
0 = δG0

0 − Ġ0
0δt , (A.25a)

˜δG0
i = δG0

i −
(
G0

0 −
Gk

k

3

)
δt,i , (A.25b)

˜δGi
j = δGi

j − Ġi
jδt . (A.25c)

Using these transformation laws, we can construct the gauge invariant version of the Einstein
tensor:

δG00 = δG0
0 + Ġ0

0[a(B − aĖ)] , (A.26a)

δG0i = δG0
i +

(
G0

0 −
Gj

j

3

)
[a(B − aĖ)],i , (A.26b)

δGij = δGi
j + Ġi

j[a(B − aĖ)] . (A.26c)

On substituting the gauge invariant variables eq. (A.21)-eq. (A.23) and the perturbed Einstein tensor
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eq. (A.2), we get

δG00 = −6HΨ̇− 6H2Φ +
2

a2
∇2Ψ , (A.27a)

δG0i = 2Ψ̇,i + 2HΦ,i −
1

2a
∇2Vi , (A.27b)

δGij = −δij
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

+
1

a2
∇2(Φ−Ψ)

]
+

1

a2
∂i∂j(Φ−Ψ)

+
1

2a
[(V̇j + 2HVj),i + (V̇ i + 2HV i),j]

−1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij

)
. (A.27c)

Now we turn to the stress energy tensor. Owing to the Einstein equations, δT µ
ν has the same gauge

transformation law eq. (A.25) as δGµ
ν , and the same operations that make δGµ

ν gauge invariant must
also make δT µ

ν also gauge invariant. i.e. the gauge invariant stress energy tensor is given by

δT 0
0 = δT 0

0 + Ṫ 0
0 [a(B − aĖ)] , (A.28)

δT 0
i = δT 0

i +

(
T 0
0 −

T j
j

3

)
[a(B − aĖ)],i , (A.29)

δT i
j = δT i

j + Ṫ i
j [a(B − aĖ)] . (A.30)

Using this, we obtain the gauge invariant density, pressure and velocity perturbations, denoted with
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an overbar:

δ̄ρ = δρ+ ρ̇[a(B − aĖ)] , (A.31)

δ̄p = δp+ ṗ[a(B − aĖ)] , (A.32)

v̄ = v + a(B − aĖ) , (A.33)
¯δu⊥i = δu⊥i , (A.34)

π̄S = πS , (A.35)

π̄V
i = πV

i , (A.36)
¯πT i
j = πT i

j . (A.37)

We see that δu⊥i and the anisotropic stresses gauge invariant. Thus, the gauge invariant perturbed
stress energy tensor looks like

δT 0
0 = δ̄ρ , (A.38a)

δT 0
i = (ρ+ p) ¯δui , (A.38b)

δT i
j = −δ̄pδij −

(
∂i∂j − δij

∇2

3

)
πS

−πV i
,j − π

V ,i
j − πT i

j . (A.38c)

Finally, the gauge invariant Einstein equations are

δGµν = δT µ
ν . (A.39)
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For clarity, we set 8πG = 1 in this section. In terms of the metric and stress energy perturbations,

−6HΨ̇− 6H2Φ +
2

a2
∇2Ψ = δ̄ρ , (A.40a)

2Ψ̇,i + 2HΦ,i −
1

2a
Vi = (ρ+ p) ¯δui , (A.40b)

−δij
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

+
1

a2
∇2(Φ−Ψ)

]
+

1

a2
∂i∂j(Φ−Ψ)

+
1

2a
[(V̇j + 2HVj),i + (V̇ i + 2HV i),j]

−1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij

)
(A.40c)

= δ̄pδij −
(
∂i∂j − δij

∇2

3

)
πS − πV i

,j − π
V j
,i − πT i

j . (A.40d)

A.3 Proving the decomposition theorem

Having obtained the gauge invariant Einstein equations, we can start proving the decomposition
theorem. First, we will prove the decomposition theorem for scalars. The idea is to separate out
the scalar terms in the Einstein equations by using the properties V i

,i = 0, hij,j = 0 and hii = 0.

The 00 component eq. (A.40a) is already entirely in terms of scalars. The 0i components
eq. (A.40b) contain scalars and divergenceless vectors. We consider the three 0i equations as a vector
equation and take its divergence to obtain

δG0i,i = δT 0
i,i , (A.41)

which in terms of the perturbations is

2∇2(Ψ̇ +HΦ) = (ρ+ p)∇2v . (A.42)

The ij components eq. (A.40d) contain scalars, divergenceless vectors and transverse traceless
tensors. We can consider the ij components as a single rank 2 tensor equation. On taking its trace we
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obtain

δGii = δT i
i , (A.43)

which in terms of the perturbations is

−3
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

+
1

a2
∇2(Φ−Ψ)

]
+

1

a2
∇2(Φ−Ψ) = −3δ̄p . (A.44)

It seems like we have used all the Einstein equations to obtain the equations eq. (A.40a), eq. (A.42)
and eq. (A.44). However, the trace of the ij components depends only on the ij components where
i = j, so we have not utilized the ij components where i ̸= j yet. To eliminate the vector and tensor
components from these equations, we can simply take the divergence twice.

δGi,jj,i = δT i,j
j,i , (A.45)

which in terms of the perturbations is

1

a2
∇2[∇2(Φ−Ψ)] = −∇2(∇2πS) . (A.46)

Consider eq. (A.42) and eq. (A.45). They equate the Laplacians of two quantities. This does not
imply that the quantities themselves are equal—they can differ by any solution of Laplace’s equation.
However, the Fourier transforms of the two quantities are the same (a fact that demonstrates that the
Fourier transform is not an invertible operation in general). In Fourier space it is also simpler to invert
derivative operations. These facts indicate that it is simpler to work with the Einstein equations in
Fourier space than in real space. Hence, we write eq. (A.40a), eq. (A.42), eq. (A.44) and eq. (A.45)
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in Fourier space:

−6HΨ̇− 6H2Φ− 2

a2
k2Ψ = δ̄ρ , (A.47a)

2(Ψ̇ +HΦ) = (ρ+ p)v , (A.47b)

−3
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

]
+2

1

a2
k2(Φ−Ψ) = −3δ̄p , (A.47c)

1

a2
(Φ−Ψ) = −πS . (A.47d)

From the last equation above it is immediately apparent that Φ ̸= Ψ if and only if there is a scalar
source of anisotropic stress.

Next, we prove the independent evolution of the vector perturbations. For this, consider two
equations: the curl of the 0i components of the Einstein equations eq. (A.39), and the curl of the
divergence of their ij components. In Fourier space these equations are:

ϵijkkjδG0k = ϵijkkjδT 0
k , (A.48a)

ϵijkkjδGlk,l = ϵijkkjδT l
k,l . (A.48b)

In terms of the metric and stress energy perturbations,

− 1

2a
ϵijkkj(−k2Vk) = (ρ+ p)ϵijkkjδu

⊥
k , (A.49a)

− 1

2a
ϵijkkj(V̇k + 2HVk) = ϵijkkjπ

V
k . (A.49b)

We can rewrite eq. (A.49a) as

ϵijkkj
[
k2Vk − 2a(ρ+ p)u⊥k

]
= 0 . (A.50)

Thus, [k2Vk−2a(ρ+p)u⊥k ] is a vector whose divergence, i.e. inner product with k is zero (by definition
of Vk and δu⊥k ) and curl, i.e. cross product with k is also zero. This implies that it is a constant vector.
But generally we assume statistical isotropy in cosmology, which is a good assumption as far as we
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know. This means that there is no preferred direction in Fourier space, so the constant vector must be
the zero vector, i.e.

Vi =
2a

k2
(ρ+ p)δu⊥i . (A.51)

It should be kept in mind that this equality is in Fourier space—it does not necessarily imply that Vi
and δu⊥i are equal in position space unless some boundary conditions are imposed on both of them.
But no matter the relation between them in position space, our analysis of the vectors in Fourier space
remains valid.

Using the same analysis as above for eq. (A.49b), we obtain

ϵijkkj(V̇k + 2HVk + 2aπV
k ) = 0 . (A.52)

Thus, we have

V̇i + 2HVi = −2aπV
i . (A.53)

It is apparent that the vector perturbation in the metric decays as a−2 if there is no vector source of
anisotropic stress. This applies to e.g. a perfect fluid as it has πV

i = 0.

Vi ∝ a−2 when πV
i = 0 . (A.54)

Note that this is also a component-wise conclusion- it holds for each individual component i of the
vector equation eq. (A.53). On substituting eq. (A.51) in the above, we have a different physical
interpretation:

(ρ+ p)δu⊥i ∝ a−3 , (A.55)

when there is no vector source of anisotropic stress. This equation can also be written as

[(ρ+ p)δu⊥i ]
· + 3H(ρ+ p)δu⊥i = 0 . (A.56)
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We now use the definitions for the sound speed and the equation of state of the matter:

c2s ≡
ṗ

ρ̇
, (A.57)

w ≡ p

ρ
. (A.58)

Using these in eq. (A.56) we get

0 = (ρ+ p)δu̇i
⊥ + (ρ̇+ ṗ)δu⊥i + 3H(ρ+ p)δu⊥i

= ρ(1 + w)δu̇i
⊥ + ρ̇(1 + c2s)δu

⊥
i + 3Hρ(1 + w)δu⊥i . (A.59)

We now divide the equation by ρ(1 + w) and use the relation

ρ̇

ρ
= −3H(1 + w) (A.60)

to get

δu̇i
⊥ − 3Hc2sδu

⊥
i = 0 . (A.61)

Thus,

δu⊥i ∝ a3c
2
s . (A.62)

To interpret this dependence of δu⊥i on the scale factor, let us take a moment to understand what
the 4-velocity components δu⊥i actually mean. Firstly, δu⊥i is a one-form, but 4-velocity refers to the
corresponding vector δui ⊥, so we actually want to deal with δui ⊥. In our case, δui ⊥ = δu⊥i since
we have been using the spatial metric δij to raise and lower spatial indices.

The components of 4-velocity are uµ = dxµ

dτ
, where τ is the proper time defined by

τ =

∫ √
dτ 2 =

∫ √
ds2 , (A.63)

where the last equality is because we use the (+, −, −, −) metric signature, else we would have
dτ 2 = −ds2. Now, the spatial velocity dxi

dt
is the velocity measured by an observer at rest in the
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comoving coordinates. We have

dxi

dt
=

dxi

dτ

dτ

dt
=
ui

u0
. (A.64)

There is one more subtlety remaining, which arises due to the nature of our coordinates. To see it, let
us derive the value of the speed of light, which we can do by setting dτ 2 = 0. Assuming that light
travels in the i = 1 direction without loss of generality, we have

0 = dτ 2 = dt2 − a2(dx1)2 . (A.65)

Thus, the speed of light is

dx1

dt
=

1

a
. (A.66)

This dependence of the speed of light on the scale factor is only a result of our choice of coordinates.
If we want to match our interpretation of velocity in flat space, we want to have coordinates in which
the speed of light is unity. This can be achieved by using conformal time η instead of t as the time
coordinate, since

dxi

dη
= a

dxi

dt
. (A.67)

For this reason we refer to vi ≡ dxi

dη
as the physical velocity. From eq. (A.62), we have

δv⊥i ∝ a−1+3c2s . (A.68)

It is interesting that for a hypothetical component of the universe with w > 1/3 and no vector
anisotropic stress, the divergenceless part of the physical velocity perturbation δv⊥i increases with
time. However, as soon as δv⊥i ∼ 1, this increase will stop, simply because speeds greater than the
speed of light are not possible. In this limit, we have

δv⊥i ≃ const. . (A.69)

This can be taken to mean that any component of the universe having c2s ≡ ρ̇/ṗ > 1/3 will eventually
tend to c2s ≤ 1/3.
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We can interpret this in terms of the equation of state by writing c2s in terms of w as follows:

ẇ =

(
p

ρ

)·

(A.70a)

=
ṗ

ρ
− pρ̇

ρ2
(A.70b)

= (c2s − w)
ρ̇

ρ
(A.70c)

= 3H(w − c2s)(1 + w) . (A.70d)

Thus, we have

c2s = w − ẇ

3H(1 + w)
. (A.70e)

Finally, we prove the independence of the tensors from scalars and vectors. Here the procedure
is a slightly more algebraically involved, but conceptually straightforward. It is possible to uniquely
project out the transverse traceless part of a tensor, which is what we are going to do here. We
know that this will completely isolate the terms with hij in δGij and the term with πT i

j in δT i
j , since

by definition these are the transverse traceless parts of the metric and stress energy perturbations
respectively.

The transverse projection operator to a vector v in Euclidean space is

P i
j = δij −

rirj
r2

. (A.71)

This operator subtracts out the component of any vector along r. In vector notation, the action of
this operator on any vector v is

Pv = v − (v · r̂)r̂ . (A.72)

We thus obtain the transverse part H i tr
j of any tensor H i

j as

H i tr
j = P i

l P
m
j H

l
m . (A.73)
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Next, to obtain the transverse traceless part, we subtract the trace of H i tr
j from H i tr

j . The result is

H i TT
j = P i

l P
m
j H

l
m −

1

2
P i
jP

m
l H

l
m . (A.74)

In our case, when analyzing the Einstein equations, by the transverse traceless part we mean the
part that is transverse to the wave vector k in Fourier space, and traceless. On applying eq. (A.74) to
δGij = δT i

j in Fourier space, with the vector r in eq. (A.72) set to k, we find the transverse traceless
part of the spatial Einstein equations to be

δGi TT
j = δGi TT

j , (A.75)

which is found to be

1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij

)
= πi T

j . (A.76)

We have carried out the algebra leading to the above equation in some detail in Appendix A.

Note that we can also use the transverse projection operator eq. (A.73) to obtain the vector evolution
equation from the 0i component of eq. (A.39), since the terms involving vectors are the only terms
transverse to k. To obtain the vector evolution equation from the ij component, we would first take
the divergence along the i index which will remove the terms involving tensors and keep the terms
involving scalars, and half of the terms involving vectors. Then we would again apply the transverse
projection operator to isolate the terms involving vectors. Here we opted to take the curl of these
equations because it seems less algebraically involved and more connected to our intuition about
vectors.

Thus, we have proved that the evolution of each of the 3 classes of metric perturbations—scalars,
vectors and tensors, is independent of the other two classes, and depends only on stress energy
perturbations of the same class.
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A.4 Generalizing to curved FLRW universes

Here, we consider curved universes with the metric

ds2 = dt2 − a2(t)( dr2

1− κr2
+ r2dθ2 + r2 sin2 θdϕ2) . (A.77)

Here, −∞ < κ < ∞. κ < 0 corresponds to an open universe and κ > 0 corresponds to a closed
universe. We cannot use Cartesian coordinates x = r cos θ, y = r sin θ cosϕ, z = r sin θ sinϕ as this
transformation is not invertible for κ ̸= 0. The background Einstein tensor is

G0
0 = 3

(
H2 +

κ

a2

)
, (A.78a)

G0
i = 0 , (A.78b)

Gi
j = 2Ḣ + 3H2 +

κ

a2
. (A.78c)

The form of the background stress energy tensor is the same as that for the flat universe.

The metric perturbations can again be taken of the form eq. (A.1):

ds2 = (1 + 2A)dt2

−2a(t)(B,i + Si)dtdx
i

−a2(t)[(1− 2ψ)γij + 2E,ij

+Fi,j + Fj,i + hij]dx
idxj . (A.79)

The difference from the flat case is that the spatial metric that we use to raise and lower spatial
indices is not δij , but γij , which is a diagonal metric given by

γrr =
1

1− κr2
, γθθ = r2 , γϕϕ = r2 sin2 θ . (A.80a)

Note that in this section, unless mentioned otherwise, all covariant derivatives correspond to the
spatial metric γij , not the FLRW metric.

It is a bit tedious to prove that the metric perturbations have exactly the same gauge transformation
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laws as in the case of the flat FLRW metric— eq. (A.14)-eq. (A.20), we show some slightly tricky
parts of the calculation in Appendix B. The proof is in fact general and applies to any diagonal spatial
metric γij , i.e. any 4 dimensional metric

ds2 = dt2 − a2(t)γijdxidxj , (A.81)

where γij is diagonal and does not depend on t.

Due to the perturbations having the same gauge transformation laws, the gauge invariant
perturbations are the same as that for the flat case, and given by

Φ ≡ A+ [a(B − aĖ)]· , (A.82)

Ψ ≡ ψ − [aH(B − aĖ)] , (A.83)

Vi ≡ Si − aḞi . (A.84)

Since the background stress energy tensor is the same as the flat case, the gauge invariant stress
energy tensor is found by the same laws eq. (A.28), and is the same as eq. (A.38) with the partial
derivatives replaced by covariant derivatives.

The gauge invariant Einstein tensor is given by

δG00 = −6HΨ̇− 6H2Φ +
2

a2
∇2Ψ+

6κ

a2
Ψ , (A.85)

δG0i = 2Ψ̇;i + 2HΦ;i −
1

2a
∇2Vi −

κ

a
Vi , (A.86)

δGij = −δij
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

+
1

a2
∇2(Φ−Ψ)− 2

κ

a2
Ψ

]
+

1

a2
∇i∇j(Φ−Ψ)

+
1

2a
[(V̇j + 2HVj);i + (V̇ i + 2HV i);j]

−1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij +

2κ

a2
hij

)
. (A.87)
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Thus, the gauge invariant Einstein equations are

−6HΨ̇− 6H2Φ +
2

a2
∇2Ψ+

6κ

a2
Ψ = δ̄ρ , (A.88a)

2Ψ̇;i + 2HΦ;i −
1

2a
∇2Vi −

κ

a
Vi = (ρ+ p)(v̄;i + δu⊥i ) , (A.88b)

−δij
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

+
1

a2
∇2(Φ−Ψ)− 2

κ

a2
Ψ

]
+

1

a2
∇i∇j(Φ−Ψ)

+
1

2a
[(V̇j + 2HVj);i + (V̇ i + 2HV i);j]

−1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij

)
(A.88c)

= δ̄pδij −
(
∇i∇j − δij

∇2

3

)
πS − πV i

;j − π
V j
;i − πT i

j . (A.88d)

Now, the procedure to decouple the scalar, vector and tensor equations is the same as that used for
the flat metric. We start with separating the scalar equations from the Einstein equations:

δG00 = δT 0
0 , (A.89a)

δG0i ;i = δT 0
i
;i , (A.89b)

δGii = δT i
i , (A.89c)

δGi;jj;i = δT i;j
j;i . (A.89d)
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The resulting evolution equations for the scalar variables are

−6HΨ̇− 6H2Φ +
2

a2
∇2Ψ+

6κ

a2
Ψ = δ̄ρ , (A.90)

∇2(2Ψ̇ + 2HΦ) = (ρ+ p)∇2v , (A.91)

−3
[
2Ψ̈ + 2H(3Ψ̇ + Φ̇) + 2(2Ḣ + 3H2)Φ

+
1

a2
∇2(Φ−Ψ)− 2

κ

a2
Ψ

]
+

1

a2
∇2(Φ−Ψ) = −3δ̄p , (A.92)

1

a2
∇2[∇2(Φ−Ψ)] = −∇2(∇2πS) . (A.93)

We find that the only modification from the flat universe is that a term 6κ
a2

gets added to the 00

component and the trace of the ij components of the Einstein equations.

Now we consider the vector equations. We can still take the curl like we did for the δij spatial
metric, but we need to give some extra justification on how we can make taking the curl a tensor
operation and why it works for decoupling the vector equations.

In a curved space, the Levi-Civita symbol ϵijk is not a tensor. However, it can be easily modified
to make the result a tensor while preserving its property of being antisymmetric in all its indices— it
turns out that the quantity

¯ϵijk ≡ ϵijk√
|g|

(A.94)

behaves like a tensor. Here, g refers to the determinant of the metric γij , which is positive, but the
expression contains |g| because it also applies to metrics where g can be negative. The curl operation
on a vector V looks like

(∇× V )i = ϵ̄ijk∇jVk . (A.95)

Secondly, we can explain why the curl operation decouples the vector equations from the 0i and ij
components of Einstein equations. The reason why the curl operation works for the flat universe is
because the terms involving scalars in the 0i component of the Einstein equation and the divergence of
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the ij component are of the form ∂is, where s is a scalar perturbation. On taking the curl of these terms
we get ϵijk∂j∂ks, which vanishes because the partial derivatives commute and ϵijk is antisymmetric
in j and k, this is the reason why the curl of a gradient is zero. In a curved space, we have covariant
derivatives instead of partial derivatives. Covariant derivatives do not commute in general, so the
operator ϵ̄ijk∇j∇k does not vanish in general. But it turns out that covariant derivatives commute on
a scalar, i.e.

∇i∇js = ∇j∇js . (A.96)

This is why taking the curl in the equations

ϵijkkjδG0k = ϵijkkjδT 0
k , (A.97)

ϵijkkjδGlk,l = ϵijkkjδT l
k,l , (A.98)

still decouples the evolution equations of the vector perturbations. These evolution equations in
Fourier space are

Vi =
2a

k2 − 2κ
(ρ+ p)δu⊥i , (A.99)

V̇i + 2HVi = −2aπV
i . (A.100)

It can be seen that our analysis on the behaviour of (ρ+p)δu⊥i and the physical velocity δv⊥i obtained
for the flat universe also holds here.

Finally, we can decouple the tensor evolution equations by taking the transverse traceless
component of the ij component of the Einstein equations.

1

2

(
ḧij + 3Hḣij −

1

a2
∇2hij +

2κ

a2
hij

)
= πi T

j . (A.101)
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