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Abstract

Protein interaction networks are ubiquitous in the functioning of organisms. Inspired by the work
of Leskovec et al. on changes in the resilience of such networks, we observe how quantitative
characteristics of protein interaction networks change over the evolutionary scale. We find that the
spectrum of the Laplacian of the network has features that are similar for similar species, and this
correlation can be used to guess the biological genera of species, only knowing its protein network.
We then generate a clustering of species using a metric for comparison between different networks.
We are currently working on observing how different such a generated tree is from the tree of life
generated using sequence data. The thesis follows the following plan:

Chapter 1 We start by introducing protein interaction networks and discussing why their study
is important. We then give the motivation for our study, describing the work of Leskovec et al. on
the resilience of the network and how it has inspired our work. Finally, we give a brief description
of the aim of our study.

Chapter 2 covers all the necessary background theories used. We broadly discuss three broad
aspects: the study of networks, using statistics for working with datasets, and the workings of
Phylogenetic Trees. In this chapter, we develop our problem in detail and discuss the ideas we
used to study the problem at hand.

In Chapter 3 we discuss some of the existing results which we reproduce in particular the
calculation of spectral entropy of some synthetic networks and real divergence between real data.
We move to get the spectral entropy for our data and then discuss our exploration of the spectrum
of the Laplacian, and finally, come up with a hierarchical clustering to quantify if our method can
be extended to generate trees similar to the existing phylogenetic tree.

With Chapter 4, as a conclusion, we summarize all the methods and results. We then discuss
the limitations of our study and its potential.

xi



xii



Contents

Abstract xi

1 Introduction 5

2 Methods and Background 9

2.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Laplacian of graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Dynamics on Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Protein Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Phylogenetic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Results and Discussion 27

3.1 Protein Interaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Summary and Outlook 37

Appendices 39

.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

.3 Phylogenetic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiv



List of Figures

1.1 Interactome resilience for 171 species with at least 1,000 publications in the NCBI
Pub Med (LOWESS fit; R2 = 0.36). Figure taken from [19]) . . . . . . . . . . . . 6

2.1 Friendship network between members of two different karate clubs. Data from
Zachary [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Ensemble of information streams for random walk dynamics. A simple system of
three fully connected constituents. The figure illustrates the information streams
and their corresponding activation probabilities changing over time. Figure taken
from [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 a. The horseshoe shaped ribonuclease inhibitor (shown as wire frame) forms a
protein–protein interaction with the ribonuclease protein. The contacts between the
two proteins are shown as colored patches.(left; taken from Wikipedia) b. Protein
interaction network of Homo Sapiens generated using our data(right) . . . . . . . . 21

2.4 (Left) Illustration of the phylogenetic tree generation through likelihood meth-
ods[Taken from Wikipedia].(Right) Illustration of nucleotide substitution model
[Taken from presentation slides of the RAxML authors] . . . . . . . . . . . . . . . 23

2.5 Schematic of the primitive algorithm. We club the two species with minimum
distance between their distributions. Introduce the clubbing as a new leaf and
update the distance between this new leaf and all other existing species. Repeat
this process. Obtain a binary tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Spectral entropy as a function of 1
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Chapter 1

Introduction

Evolution has shaped a massive diversity of life on the planet. We often want to study these organ-
isms in the light of evolution which will be the underlying idea of the thesis as well. The organisms
exhibit several phenotype and biological functions which are the results of the interaction between
several molecular components and their environment. All of these interactions between molecules
such as DNA, RNA, and proteins can be represented as networks. Such biological networks have
gained a lot of attention in recent years[17]. There are several classified networks like the protein-
protein interaction network and transcription factor-target regulation networks. As the interactions
evolve, so do the networks. We will be focusing on the physical protein-protein interaction map.
A lot of work has been done on DNA sequences to understand gene functions and their evolution
but there is still a lot not known about how the changes lead to the rewiring of the protein interac-
tion network. Multiple studies have been able to map the interaction between proteins using high
through-put experiments such as affinity purification [9, 4] and yeast two-hybrid systems[16, 15].

Amongst many of the works on protein interaction networks, we were motivated by the results
of Leskovec et al.[19] on evolution of resilience in protein interaction networks across the tree of
life. The authors observe that interactomes became more resilient to network failures along an
evolutionary scale(Fig 1.1). We briefly describe their work here. Resilience in these interactomes
is characterized by measuring how much the interactome fragments on random removal of some
fraction f of the total nodes. Say if a graph G f has k isolated components on removal f fraction
of the total nodes from the original network. The connectivity of this graph is quantified using
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normalized Shannon diversity.

Hmsh(G f ) =�
1

logN

k

Â
i=1

pi log pi

where N is the number of proteins in the network and pi = |Ci|/N is the proportion of proteins in
the i

th component. pi can also be interpreted as the probability of seeing a protein from component
Ci when sampling proteins from the fragmented interactome. 1

N
is the normalization factor com-

pensating different network sizes. It is evident from the definition that the higher the fragmentation
higher the entropy. Thus, the resilience of the network is defined by measuring the entropy over a
range of fragmentation rates

Resilience(G) = 1�Hmsh(G f )d f

The following result is obtained when we calculate the resilience for the available species

Figure 1.1: Interactome resilience for 171 species with at least 1,000 publications in the NCBI
Pub Med (LOWESS fit; R2 = 0.36). Figure taken from [19])

This very interesting result raised several questions on whether we observe similar changes in
other properties associated with these networks. We decided to observe if there are evident patterns
in how interactions occur given a network and how the interactions are affected due to the changes
in topological connections of species over the evolutionary time scale. We will start by replicating
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some results to validate the code. We quantify the networks using specific quantitative measures
such as a distribution, using these numbers to compare networks. We also test our methods of
comparing networks across evolutionary scale by using them against synthetic network models.
Finally, We use our metric to form a hierarchical clustering which is like a phylogenetic tree. We
compare this hierarchy against the clustering generated using the protein sequences. All of this is
done over the same interaction data set as used by Leskovec et al.
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Chapter 2

Methods and Background

For all the topics described here, a lot more details can be given we only describe the parts which
are directly relevant to the results we obtain, putting the relatively longer proofs or indirect results
in the appendix.

2.1 Networks

A network, for us, is a collection of vertices and edges which can be used to represent interaction
in some system. For example (see Fig 2.1), if we draw edges between a set of people that know
each other with the people as nodes, we get a social network. These mathematical objects allow us
to model the system in a simple manner and gain insights into it.

Figure 2.1: Friendship network between members of two different karate clubs. Data from Zachary
[18]
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We will be using the term network and graph interchangeably. A graph will be represented as
a pair G = (V,E)

2.2 Laplacian of graph

The Laplacian matrix is another form of representation of a graph beside the adjacency matrix. For
an undirected, unweighted network is an n⇥n symmetric matrix L with the components given as

Li j =

8
>>><

>>>:

ki if i = j

�1 if i 6= j if an edge b/w i and j

0 otherwise

where ki is the degree of node i. We can write this further as

Li j = kidi j�Ai j

L = D�A

where D is a diagonal matrix with node degrees as its diagonal entries.

A primary part of the project is dealing with the Laplacian matrix as it turns up in diffusion
over networks which we will see later. Thus, we want to know some of its relevant properties.

2.2.1 Properties of Laplacian

1. Every row of Laplacian sums to zero
This can be shown very simply starting with Li j = kidi j�Ai j

Â
j

Li j = Â
j

(kidi j�Ai j) = ki� ki = 0

2. Eigenvalues of Laplacian are non-negative real
Laplacian is a real symmetric matrix and therefore has real eigenvalues. Further, taking
any eigenvalue l and its corresponding normalized eigenvector v. Thus, we have Lv = lv,
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vT Lv = l and we proceed as follows

Â
i j

Ai j(vi� v j)
2 = Â

i j

Ai j(v
2
i
�2viv j + v

2
j
)

= Â
i

kiv
2
i
�2Â

i j

Ai jviv j +Â
j

k jv
2
j

= 2Â
i j

(kidi j�Ai j)viv j = 2Â
i j

Li jviv j = 2vT Lv

Since the LHS is always non-negative all eigenvalues are non-negative.

3. At least one of its eigenvalues is zero
From the first property, every row sums to zero making the vector with all entries as 1 an
eigenvector with eigenvalue zero

2.3 Network Models

2.3.1 Erdos-Renyi Model

Given a graph with n nodes and probability p with which we may place an edge between any two
nodes. The ensemble of random graphs we can generate are called Erdos-Renyi graphs. Each
graph G in this ensemble appears with probability

P(G) = p
m(1� p)(

n

2)�m

where m is the number of edges in the network. ER model is one of the simplest forms of random
graphs while they fail to capture a lot of features about the working system. They are of importance
as a building block and as synthetic network to test our methods over.

2.3.2 Configuration Model

Configuration networks are generalized random graphs, which are good reference models for
studying real-world networks. This is primarily because they can have heterogeneous degrees
of the nodes. An ensemble of configuration networks corresponding to a given degree distribution
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is generated either by rewiring or randomly selecting two stubs(incomplete edges) at a time. Work-
ing with configuration networks can also give us insights into how resilient a network is against
rewiring. We briefly describe the method of how we generate the configuration networks here

Algorithm
We use a standard library from graph-tool [12] to obtain the ensemble of configuration models. The
algorithm iterates through all the edges in the given network and tries to swap its target or source
with the target or source of another edge. The choice of sample edges is implemented using the
Metropolis-Hastings acceptance/rejection algorithm. The vertex degree distribution converges for
a sufficiently large number of iterations. A description of how the Metropolis-Hastings algorithm
works is given in the appendix.1.2.

2.3.3 Barabasi-Albert Model

Many networks found in everyday life, like the world wide web, citation networks, etc have degree
distributions that follow power laws tail end. Even protein-protein interaction networks have been
shown to exhibit similar scale-free behavior scale [7]. People have devised ways of generating
such networks with mechanistic incite to generate such scale-free networks. The method used to
generate them is commonly called preferential attachment. We will use this model as the synthetic
network due its relevant properties.

2.4 Dynamics on Networks

We can give a general form of an equation for a dynamical system with a single variable on a
network as

dxi

dt
= fi(xi)+Â

j

Ai jg ji(xi,x j)

here the first term, in some sense, represents the intrinsic dynamics, and the second term on the
right gives the effect from the bonds. That said, we are primarily interested in diffusive dynamics
on networks. Starting with Fick’s laws of diffusion, we have the diffusion flux is proportional to
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the negative of the concentration gradient

∂c

∂ t
=�DDc

where D is the Laplace operator. We can extend this to the networks in the following way. Assume
some concentration ci on i

th site and concentration c j at the j
th site which is a neighbor to the i

th

site. We also take all the constants to be 1 then the equation will be given as

dci

dt
=�Â

j

Ai j(ci� c j)

= Â
j

(di jki�Ai j)c j

dc

dt
=�Lc

Domenico et al. extend the idea of such dynamics and give a field theory for the same. We describe
the framework here.

2.4.1 Framework

Start with a vector space such that its dimension equal to the number of nodes N. Nodes of the
network are identified to the basis vectors of this vector space (only the basis vectors are identified,
i.e. sum of two nodes does not have to be a node). Basis vectors, i.e. the nodes, are represented as
hi| where i ranges from 1 to N. The connections are then encoded by a time varying operator Ŵ (t)

which represents the weighted and directed adjacency matrix.

Domenico et al.[6] assume a field hf | on this vector space spanned by the nodes {hi|} as basis.
This field is called the information field as depending on the system of study it can represent bits
of information like small packets of energy or concentration of signaling molecules. Depending on
the choice of a F , the system can take up several forms of dynamics. We take a general linearized
form of this field on the network as

∂thf(t)|= hf(t)|F(t,Ŵ (t))

where Ŵ (t) is the adjacency matrix encoding the edges of the graph. The solution for the above
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can be given using a propagator for the dynamics as

hf(t)|= hf(0)|Ŝ(t)

We assume the initial conditions that the information seed is on any of the i
th nodes with uniform

probability pi =
1
N

,i.e we have hf(0)| = ÂN

i=1 pif0hi|. In such a situation the expected flow of
information from the i

th node is given as f0
N
hi|Ŝ(t)the j

th node to i
th node or the contribution of the

field value at t
th node due to j

th node is

f0

N
hi|Ŝ(t)| ji

For systems where the propagator is diagonalizable, we can write it as

Ŝ(t) =
n

Â
l=1

sl(t)ŝ l(t)

where sl is the eigenvalue associated with the l
th eigenvector and sl is the outer product of l

th right
and left eigenvectors. On substituting this form to the expected flow between one pair of nodes we
see there are N operators dictating the flow and thus we call these operators {ŝ l(t)} as information
streams. Figure 2.2 represents these streams on nodes.

Figure 2.2: Ensemble of information streams for random walk dynamics. A simple system of three
fully connected constituents. The figure illustrates the information streams and their corresponding
activation probabilities changing over time. Figure taken from [6]
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A self-loop traps some part of the field on the node itself that we get by the term hi|ŝ l|ii. With
the stream size {f0

N
sl(t)} being equal to the expected trapped field on top of all nodes (Appendix

.1.1) overall expected trapped field is the summation of all stream sizes ÂN

l=1
f0
N

sl(t) =
f0
N

Z(t). To
study the dynamics of the complete field we can restrict ourselves to the study of trapped field as
it is directly related to the stream size. We can then describe any dynamics by taking a relevant
superposition of the streams.

r̂(t) =
N

Â
l=1

rl(t)ŝ (l)(t)

=
Ŝ(t)

Tr(Ŝ(t))

The coefficient rl gives the weight associate with each stream, rl =
f0
N

sl(t)
f0
N

Z(t)
.

Further, these weights can take up a probabilistic interpretation of discretizing the field. As-
suming the field to be discretized into infinitesimal small quanta with a large number of them
contributing to the stream size. The number of participating packets is given as n(t)h = f0

N
Z(t) and

for the l
th stream n

l(t)h = f0
N

sl(t). Thus, rl =
n

l(t)
n(t) gives the probability that one quanta partici-

pates in the activation of l
th stream. Thus we have an additional probabilistic interpretation to the

eigenvalues of the propagator S

We model protein interaction networks by assuming that proteins interact in accordance with
their concentration gradients and follow diffusive dynamics. This can be translated back to the
framework described in the previous section

∂thf(t)|=�hf(t)|L

and the propagator then is Ŝ = e
�tL, similarly, we get r̂ , which is given the name density matrix

[5]

r̂ =
e
�tL

Tr(e�tL)

As we can see, we want to work with the density matrix as it governs the flow over the network.
For this, we want to study this matrix thus, we will study its characteristic values, i.e., eigenvalues
extensively.
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2.5 Statistics

As clear from the discussion above, we will be working extensively with probability distributions
and would want ways to study them and often compare one with another.

2.5.1 Comparing Distributions

The distributions that we will be working with come from real network data. The distributions
cannot be assumed to be coming from the same underlying populations. We can neither make
assumptions about the populations being governed by some parametric form such as the normal
distribution. Thus, we will rely on non parametric hypotheses tests.

Rank Sum test

We start with two distributions of sizes m and n, respectively. Rank the two n+m values from
both samples in ascending order. Label one of the samples as first does not matter which. The test
statistic(TS) for the test is defined as the sum of the rank of the data in the first sample. Assuming
H0 to be the hypothesis that two of the populations are identical and say that the test statistic TS
has value t. To reject the null hypothesis with significance value a for the two sided test we have

P(T S t) a
2

or
P(T S� t)� a

2
where both the probabilities are calculated under the assumption that H0 is true. We reject the null
hypothesis if the p value given by the data set is less than or equal to a where the p value is given
as

p value = 2Min(P(T S t),P(T S� t))

In order to know the probabilities, we need to know the distribution to which the TS belongs to
when H0 is true. When the null hypothesis is true we know that the n+m values and any random
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selection of n values as a sample will belong to the same distribution using this one can show that
when H0 is true.

E[T S] =
n(n+m+1)

2

Var(T S) =
nm(n+m+1)

12

Additionally, when both n and m are both big enough the test statistic has approximately a normal
distribution. Thus, allowing us to calculate the properties. For any ties in the ranking, the average
of the ranks is allotted to all the values with the same rank. This test is also called the Mann-
Whitney test.[14]

Kolmogorov Smirnov Test

Again we start with two populations and one measurable characteristic, say same biological species
and its height. We want to know if the two sample sets are statistically identical. KS- test proceeds
the following way. The samples of observations are a1, . . . ,an and b1, . . . ,bm. For every t denote
by A(t) the fraction k/n of subscripts i for which ai  t. The function defined in this way is the
empirical distribution of the a’s. Similarly we define the distribution for the distribution b’s. The
KS statistic for the comparison is given as

T S = sup
t

|A(t)�B(t)|

where A(t) and B(t) are the empirical distribution functions of the samples. The probability of
statistic compared against the Kolmogorov distribution with appropriate significance value. An
intuitive way of understanding the test when the number of samples are same is by associating
with the samples a path of length 2r leading from origin to the point (2r,0). If the samples are
indistinguishable, the sampling makes all the possible paths equally probable. [3]

Kruskal-Wallis Test

While we described the Whitney-Mann test, which works for two distributions, we often work with
more than two distributions. Say we have n populations each with distribution Pi of the property
of interest of the i

th population. The null hypothesis will be given as H0 : P0 = P1 = . . .= Pn. The
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alternative hypothesis being that not all distributions are equal. The test statistic for the test is given
as

T S =
n

Â
i=1

R
2
i

ki

where Ri is the sum of the ranks of sample corresponding to the i
th

population and ki is the sample
size of the i

th population. To figure out the significance value we use the approximation that for
sufficiently large ki the distribution

12
K(K +1)

T S�3(K +1)

follows a chi-squared distribution with n�1 degrees of freedom. Rejecting H0 if the above distri-
bution is greater than equal to the corresponding value of the chi-square distribution.

2.5.2 Entropy

Entropy of a random variable gives a measure of the uncertainty in the possible outcomes. For
a given random variable X entropy is defined as a function of its probability distribution. One
classical measure of entropy of a random variable is the Shannon entropy which is give as

H(X) =�Â
x

px log px

where by convention 0log0 ⌘ 0. A good intuition about this definition is that it can be used to
quantify the resources needed to store information.[11]

Von Neuman entropy is the extension of the classical Shannon entropy and is used to define the
entropy of quantum states. For a quantum state r the Von Neuman entropy of the quantum state

S(r) =�tr(r log2 r)

and if lx are eigenvalues of r then the above can be reduced to .2.1

S(r) =�Â
x

lx log2 lx

18



Spectral Entropy

Domenico et al. define a matrix corresponding for a given network G as

r̂ =
e
�tL

Z

where L is the Laplacian of the network, t is constant parameter interpreted as taking role of time
and Z = Tr(e�tL). The matrix is called the density matrix and is defined by the motivation that it
needs to follow the properties of density matrix from quantum mechanics such as being positive
semi-definite. The Von Neuman Entropy for this matrix is called the spectral entropy for network

S(t) =�Tr(r̂(t) ln r̂(t))

this can be further simplified using li(r) = Z
�1

e
�bli(L) as

S(r) =�
N

Â
i=1

li(r) log2 li(r)

S(G) =
1

Z ln2

N

Â
i=1

e
�bli(L)[lnZ +bli(L)]

= log2Z +
b

ln2
Tr[Lr]

where G is the corresponding network.[1] The spectral entropy defined this way overlaps with
the Von Neuman entropy of the information streams described above under continuous diffusion
dynamics. Through either of the descriptions the entropy is of the measure of diffusion across the
network. Higher the entropy more de-localized the diffusion is, and lower the entropy higher the
localization of information is. Further, one can use the Laplacian directly as well for the density
matrix, but entropy from such density matrix violates subadditivity.

Relative Entropy

Relative entropy is a measure of closeness between any two given probability distributions. Say
we have two distributions p(x) and q(x) defined over the same domain space with same number of
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indices, the relative entropy is defined as

H(p(x) k q(x))⌘ Â
x2X

p(x) log
✓

p(x)

q(x)

◆

Relative entropy is also called Kullback-Leibler Divergence, and is often used to compare sample
distribution against a model probability distribution. While relative entropy is a good measure of
closeness, it has some limitations in the way we can use it to compare distributions. Starting with
the first issue is that it is not a distance metric and which can be used for clustering. Additionally,
it is not symmetric. Thus, we instead use one of its variant.

Jensen Shannon Divergence

Jensen Shannon Divergence is a variation of Kullback-Leibler divergence and is given as

JSD(P k Q) =
1
2

D(P kM)+
1
2

D(Q kM)

where M = 1
2(P+Q). The square root of the Jensen-Shannon divergence is the distance metric [6].

2.6 Protein Networks

Before discussing any details of our analysis of the protein interaction networks. It is a good idea
to get a sense of what are protein interaction networks. While proteins do interact chemically
sometimes the primary mode of interaction between proteins is physical contact. Proteins also in-
teract with several other bio molecules but when we say protein interaction networks we restrict to
only one protein interacting with other proteins. All such interactions form the protein interaction
network. Thus, a node on the network is protein and if they interact we put an unweighted edge
between them.
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Figure 2.3: a. The horseshoe shaped ribonuclease inhibitor (shown as wire frame) forms a pro-
tein–protein interaction with the ribonuclease protein. The contacts between the two proteins are
shown as colored patches.(left; taken from Wikipedia) b. Protein interaction network of Homo
Sapiens generated using our data(right)

2.6.1 Data Set

We use the data set compiled by Leskovec et al. which we filter for some parts. We will briefly
describe the data set being used here for a detailed discussion please refer to the supplementary
information provided by Leskovec et al. The data set is publicly available at SNAP library.

In terms of numbers we start with 1840 species (1539 bacteria, 111 archaea, 190 eukarya)
involving 14,50,633proteins (1.4 mil) and 87,62,166 protein interactions (8.7 mil). Only ex-
perimentally supported and human expert curated physical(direct) protein-protein interactions are
considered to build the interactomes. Physical or direct interactions include regulatory interactions,
binary interactions, signaling interactions, kinase-substrate pairs, metabolic enzyme-coupled inter-
actions and protein complexes. Indirect functional interactions are dropped. We use these inter-
actions to create undirected unweighted networks. The data has been obtained from the STRING
database. Two salient features of the data sets are that one the datasets is quality controlled and
that it is species-specific as no computationally predicted datasets are included or by orthology.

There are several biases associated with the protein data said, with only a limited number of
interactions known for the widely studied species. Leskovec et al. have broadly classified biases
into types a. Inter species data bias and b. intra species data bias.
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Inter-species Bias Data associated with model organisms is much more widely studied and pre-
served which leads to considerable variation in the quality and amount of data kept for
species.

Intra-species Bias In a species often highly expressive gene-coded proteins in certain cell lines
get focused upon more so than others leading to further variability.

To address some of the biases in the protein interaction data set associated with the inter-species
bias, the original authors use data such that the publication count greater for interactome of species
is greater than 1000 in order to prevent biasing from tail end less studied. We work with 404
species allowing species with publication count greater than 100 and the largest connected com-
ponent of each of the interactomes to include some additional tail end organism and see how the
results change. In order to make data usable for us we convert the edge list in the form of protein
names to numbers and prepare a dictionary of the same for reference.

Tree of life as described by Hug et al. is used to characterize evolution in each of the species.
Given a species s, its evolution ts is calculated as the total branch length (i.e., nucleotide substitu-
tions per site) from the root of the tree to the leaf representing species s.[19]

2.7 Phylogenetic Trees

Phylogenetic trees are hierarchical clustering that represent the evolutionary history of organisms.
Such phylogenetic trees can either be rooted or unrooted. While it is common to work with un-
rooted trees when it comes to biological species as we seek to get an idea of the relationship
between different species and are not sure about the existence of a single starting point.

Maximum Likelihood tree

Maximum likelihood is a popular method of phylogeny inference. One particular implementation
of maximal likelihood is followed by RAxML-NG[8], which we use in order to generate our tree.
Maximum likelihood relies on Bayesian inference. Some basic features of the trees that we gener-
ate are 1. they are unrooted 2. they are binary. To take an example, say we have 4 taxa the number
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Figure 2.4: (Left) Illustration of the phylogenetic tree generation through likelihood meth-
ods[Taken from Wikipedia].(Right) Illustration of nucleotide substitution model [Taken from pre-
sentation slides of the RAxML authors]

of possible unrooted trees for this situation is 3. The method generates all possible trees and as-
signs each of them a score. Before moving to give the scoring criteria, it is important to know
that the number of possible trees grows exponentially (there are almost 1067 trees when we work
with 2000 taxa) thus it is not sensible to look through all the possible trees. Instead, the program
follows a greedy logic and selects the local maxima rather than the global maxima. The scoring
criteria are given by using the following idea. The gene/alignment sequence associated with the
species is taken. This sequence is assumed to evolve following time-reversible Markov chains i.e.
each site in a sequence evolves and mutates to some other nucleotide. Then per-site likelihood is
calculated for each sequence. We start with a parsimonious tree and then we apply lazy sub tree
arrangements such as grafting and pruning.

2.7.1 Our Clustering

We use a sequential, agglomeration, hierarchic, non-overlapping method(SAHN) for obtaining a
bifurcating tree of the organisms. This is implemented using the Scipy linkage library. We describe
the details of the algorithm here.

We input the pairwise distance between N points, which here are the JSD between any two
modified eigenvalue spectra of the density matrices of species. The output that we get is a step
wise dendrogram. The step wise dendrogram data structure is defined in the following way:
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Definition 2.7.1. A step wise dendrogram is a list of K�1 triples (ml,nl,dl)(l = 0, . . . ,K�2) such

that dl 2 [0,•) and K is the cardinality of of a given set S0. Further, ml,nl 2 Sl, where Sl+1 has

been recursively defined as (Sl\{ml,nl})[ kl and kl /2 S\{ml,nl} is a label for a new node.

The set S0 is the initial set of data points. At every step, we add a new node labeled kl , which
is the hypothetical parent of ml and nl . The set S is then updated by adding this new label, and
its children (ml,nl) are removed. ml and nl are selected .The result is a node containing all initial
nodes. The distance for this particular new node can be updated through different choices. We
similarly make choice of new pairs to cluster based on their distance. [10] The pseudo code for the
primitive algorithm is given here. The exact algorithm differs in the implementation and has some
additional properties, in particular, being faster and maintaining a list of neighbors for each node.
The details of the original algorithm can be read in detail from the work of Mullner.[10]

Algorithm 1 Working definition of a hierarchical clustering(Taken from [10])
1: procedure PRIMITIVE CLUSTERING(S,d) . S : node labels, d : pairwise dissimilarities
2: K |S| . Number of input nodes
3: L [] . Output list
4: size[x] 1 for all x 2 S

5: for l 0, . . .{K�2} do
6: (m,n) argmin(SxS)\Dd

7: Append (m,n,d[m,n]) to L

8: S S \{m,n}
9: Create a new node label k /2 S

10: Update d with the information

d[k,x] = d[x,k] = Formula(d[m,x],d[n,x],d[m,n],size[m],size[n],size[x])

for all x 2 S.
11: size[k] size[m]+ size[n]

12: S S

13: end for
14: return L . the step wise dendrogram as ((K�1))⇥3-matrix)
15: end procedure
(As usual, D denotes the diagonal in the Cartesian product)
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The clustering algorithm we use is an improvement over this primitive clustering algorithm
The primitive clustering is considered to be the benchmark for the algorithm which we use. A
schematic of the primitive algorithm can be given as follows

Figure 2.5: Schematic of the primitive algorithm. We club the two species with minimum distance
between their distributions. Introduce the clubbing as a new leaf and update the distance between
this new leaf and all other existing species. Repeat this process. Obtain a binary tree

2.7.2 Data Set

We pick the organisms common in work of Leskovec et al. and Hug et al. There are situations
where there are ”two” different organisms belonging to the same species but having different
strains. For our purposes, we identify them as the same common organism and use them for
comparison. After filtering the organisms, we find that there are around 180 species common to
the two data sets. We want to generate a tree for these 200 species using the method used by Hug
et al. They generate the tree in the following way. Alignments generated from the SSU rRNA
genes of the species are obtained. SSU rRNA genes longer than 600 bp are aligned, the alignment
is stripped of columns containing more than 95%. They then put this data to generate maximum
likelihood tree using RAxML with relevant parameters. The tree generated in this way is mostly
congruent with those generated using ribosomal protein sequences. We use the same method to
generate a tree for our work. We compare this tree against the tree generated using the clustering
algorithm described above.
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Chapter 3

Results and Discussion

We reproduce some of the existing results on synthetic networks before applying our techniques
to real-world data. This helps us verify the working of the code. All the results against which the
working of code is compared are from the work of Domenico et. al [1]. Almost all the codes by us
are publicly available here.

We implement spectral entropy calculations for the Erdos-Renyi network for various link prob-
abilities, p. For each value of p we average over 10 samples of 30 possible graphs of size 50. The
original paper does the sampling for higher numbers of network size 200 but since the aim of the
exercise was to only verify the working, in the interest of time we reduced the numbers.

Figure 3.1: Spectral entropy as a function of 1
b for Erdös-Rényi networks from the paper (left) and

my code (right)
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Next, we use the multi-layer networks based on structure and function built from the human
microbiome. This consists of 18 layers each one corresponding to a body site. These layers have
been partitioned into community types, by using Dirichlet multinomial mixture models, that may
be associated with complex diseases [2]. We compare the Jensen-Shannon distance between each
pair of layers for different for beta = 0.1 as calculated by Domenico et al. for the same against
ours.

Figure 3.2: Hierarchical clustering of human microbiome sites. The Jensen-Shannon distance
matrices with b = 0.1 from the paper (right) and my code (left)

In both the cases we are able to reproduce the results as can be seen by comparing the trend in
the first case and the community clusters in the second. We do similar verification for calculating
spectral gap and KL divergences.

3.1 Protein Interaction Networks

The modules of code which could be verified against available data were verified. We now move
to working with the results of the protein interaction network data. We started with calculating the
normalized spectral entropy of networks of the species plotting it against the evolutionary scale.
We use the evolutionary scale as defined in the above chapters and obtained the following results.
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Figure 3.3: Variation in entropy against evolution

b here is the time scaling constant t . As we see, the spectral entropy decreases with the time
constant indicating that the overall information flow across networks gets more localized. No
difference is seen in flow across the evolutionary scale, indicating that the overall flow does not
seem to have changed.

With not much to observe in the spectral entropy, we start with more basic characteristics of
the network. We start with plotting the eigenspectra of the species. Instead of directly plotting
the eigenvalues we plot the cumulative frequency distribution of eigenvalues of density matrix
normalized against their maxima.
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The idea of observing on an individual species scale was put on hold and instead a domain-
based comparison was adopted as it made more sense to start at a slightly more coarse-grained
level. On plotting the above graph, we observed a very interesting transition in domains of the
scaled eigenvalues around the line y = x. In order to quantify these observations we started with
distance measures and Kolmogorov type of test.

3.1.1 Network Comparison

We want to observe if we can compare two different kinds of networks. When networks are of
the same size, it is a fairly straightforward process we generate a distribution of the same number
of values in the same space. Thus we can directly apply the Jensen Shannon Divergence over
the two distributions. We start with comparing the eigenvalue distributions against two types of
distributions, one a uniform probability distribution and second the distribution of configuration
networks. In the case of configuration networks corresponding to each species we generate 20

30



configuration networks and the average of divergence against the 20 of these networks. Following
are the results that we obtain

Figure 3.4: Distance of each species against different distributions. Against uniform distribution
on left and against its configuration networks on right.

Visually the mean divergence of bacteria is fairly distinct from that of archaea and Eukaryota.
To quantify this visual difference we perform the Whitney-Mann test in pairs and find that, all three
populations are distinct. Additionally, we also perform the Kruskal-Wallis test which also distin-
guishes the three populations stating that at least one of the observations is different. According to
the currently accepted tree of life, Archaea and Eukaryota share more recent ancestry as compared
to bacteria. This point is also evident from the closeness of Eukaryota to the archaea. The above
results are common for both comparisons against the uniform distribution and the configuration
models. The second set of information to draw from the above analysis is that the distribution of
eigenvalues are not flat. An important point to note is that all comparisons have been done against
b = 0.1 for the density matrix. This is primarily due to the observations from a separate set of runs
where most meaningful results are found for b  1 and b ⇡ 0.1

Before moving forward, we want to verify if such a comparison method works by using the
method to compare synthetic networks. We perform two experiments for this. In first, we take
50 samples each of the Barabasi-Albert Model and Stochastic Block Model. We then generate
50 configuration model instances for each network. On calculating Jensen Shannon divergence
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between the original network and its corresponding 50 configuration models and taking the mean
value of the divergence we observe the following

Figure 3.5: The mean js-div between original networks and their configuration networks. BA on
left SBM on right for several beta

We provide the visual representation of eigenvalue distribution in the appendix..4 As can be
seen from either the visual representation of the distribution or the above graph the synthetic net-
works generated from such rewiring resemble closely their original ones in regards to diffusive
properties. This is expected as the degrees remain the same as node identities don’t matter much
even when connections change over them.

Moving to the second run. We generate 50 iterations of each BA and SBM 1000 node for both
types of models and then generate 50 more BA and SBM with same parameters. Calculating JS
divergence of the newly generated model against the ones generated in first step and taking mean
value we obtain the following
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Figure 3.6: The mean js-div between original networks and the newly generated networks. BA on
left SBM on right for several beta

The result for this run is again very similar to the previous run and bear the same explanation.
Finally, for beta > 1 the results seem to get getting skewed. This can be possibly due to lower-
valued eigenvalues starting to take values in very small order(<�10).

Until now, all the analysis was restricted to using networks of the same sizes, but this does
not allow us to do a direct comparison of the species. With all species having different network
sizes, we want to be able to compare them directly. The definition of the density matrices allows
us to do this. With the eigenvalues of density matrix restricted to the same domain i.e 2 [0,1] we
are allowed to do a comparison of them. We do this comparison in the following way we bin the
distributions by keeping the number of bins around the average size of all networks that is 1000
(the exact average is 788.3875). Once the interval is binned we see their occurrence frequency in a
particular bin. By this method all distributions are in same space and with same number of indices.
This allows us to use the Jensen Shannon divergence on these distributions now. Applying this
method for comparing all the species with each other we observe the following
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Figure 3.7: Distance of each species against different distributions. Against uniform distribution
on the left and against its configuration networks on right.

A significant amount of clustering is seen with species from the same domain being much
more closer than the ones from different domain. This process additionally has allowed us to give
a distance metric between any two networks. This matrix allows us to cluster the species using a
SAHN clustering method and create a realization of phylogenetic tree.

We can summarize the above method briefly using the schematic(Fig 3.8), we start with a
network of N nodes use the function of Laplacian. Take the eigenvalues of the new matrix. Do this
for networks of all species. All the eigenvalues lie in the same domain and we bin this domain to
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get distributions of the same size and then take the distance between the distributions.

Figure 3.8: Schematic of comparing network of different sizes.

Now that we have a distance metric between all the distributions, we generate a SAHN cluster-
ing. We also take the sequence data for organisms from the same species to generate the maximum
likelihood tree. The figure below gives a visual comparison between the SAHN algorithm and the
tree generated using maximum likelihood. Visually the clustering obtained from SAHN does not
seem to be very similar to the tree generated using maximum likelihood. We are currently working
on using a quantitative metric to compare the two clustering to allow us to validate our results.

Figure 3.9: Tree generated using RAxML(left) and SAHN(right)
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A different version of the above trees with collapsed branches is shared below for better visu-
alization.

Figure 3.10: Same comparison but for better visualization with help of phlo.io [13]
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Chapter 4

Summary and Outlook

The study of biological networks has, in recent times, garnered a lot of attention. This involves
studying the network architecture, associated evolutionary mechanisms, and other features of such
networks. Of particular interest to us are the protein interaction networks. Inspired by Leskovec et
al.’s work on changes in the resilience of such networks across the evolutionary scale, we decided
to observe how protein interactions modeled as diffusion change over both the evolutionary scale
and the scaling constant b . We find that using the spectrum of the density matrices of the network
of a species, we can, after all, classify the species into their evolutionary domains. Then we moved
to study how this distribution looks like and giving a distance measure between all the distributions
allowing us to recreate a ”tree of life” of our own. We are currently working on observing how
different such a generated tree is from what the original tree of life is.

While a lot of analysis is still ongoing, there are several ways of making the already obtained
results more concrete and a lot of new possible directions to work on. The protein interaction
networks that we use are not complete mappings, with a lot of protein mappings missing. Addi-
tionally, the protein network structures described themselves are subject to errors in experimental
measures, and the edges often have some associated confidence values. Incorporating such issues
using some stochastic or ensemble approach could be possible but was out of the scope of the
project. We can also try to work with a much more realistic interaction modeling. This modeling
does not necessarily detail but is rather specific, perhaps using something like weighted networks
or boolean/directional networks. In conclusion, there are a lot of possible avenues to explore and
study, with some very interesting results already observed on our system.
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Appendices
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.1 Networks

.1.1 Dynamics on Networks

Framework

We can get the expected amount of trapped field by l
th stream in the following way.

f0

N

N

Â
i=1
hi| ˆS(t)|ii= f0

N
Tr(S(t))

=
f0

N

N

Â
i=1

=
f0

N
sl(t)

Here, the trace of each of the stream operators is one since they are the outer product of the left
and right eigenvectors of propagators.

.1.2 Network Model

Metropolis-Hastings Algorithm

The metropolis-Hastings algorithm is a Markov Chain Monte Carlo method for obtaining a random
sample from a probability distribution. We have a probability distribution say p(x) from which we
wish to sample. We create a Markov chain of samples. Starting with f (x) which is a simpler form
of p(x) where p(x) = f (x)

N

X0 X1 Xt Xt 0

Figure 1: Markov Chain of samples

The initial set of samples would not be very useful, but the samples that we will obtain later in
time should resemble the desired distribution. To do this we start with a candidate easier candidate
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distribution i.e the normal distribution

g(Xt+1|Xt) = N(Xt ,s2)

This function is dependent on the immediately previous sample and does not have to be normal.
Selecting a symmetric normal distribution is called the Metropolis algorithm and using an asym-
metric distribution as the Metropolis-Hastings algorithm both follow similar idea but differ in the
following sense. We will be describing the Metropolis algorithm. We take the previous sample
Xt , take a normal distribution centered around this and select the next sample from this normal
distribution. The next step once we have a new candidate for the sample is whether we accept or
reject this candidate. We accept this candidate with P(Xt ! Xt+1). The acceptance probability is
obtained using the idea of detailed balance. We have the following condition

f (m)g(n|m)P(m! n) = f (n)g(m! n)P(n! m)

From the above condition we can get

P(m! n) = Max

⇣
f (b)

f (a)

⌘

We thus have the Markov chain constructed and can now get the desired distribution.

.2 Statistics

.2.1 Entropy

Von Neumann Entropy

Von Neumann Entropy for a density matrix is given as

S(r) =�Tr(r log2 r)

which in turn is

S(r) =�
N

Â
i

lilog2li
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by convention 0log0 = 0

Proof:

Tr(A) = Â
j

h j|A| ji

The following are the important ideas that we use
1. Trace of a matrix is same independent of the basis we can choose any basis
2. Density Matrix r is hermitian therefore orthonormal eigenvector always exist
3. r = ÂN

i
li|iihi| is the spectral decomposition of the density matrix with eigenvalues li’s and

eigenvectors |ii
4. Choose the basis to be orthonormal eigenvectors.

Tr(r log2 r) = Â
i

hi|r log2 r|ii

= Â
i

hi|r
⇣
(r� I)� (r� I)2

I
+

(r� I)3

I
. . .

⌘
|ii

since r|ii= li|ii we have

= Â
i

hi|r
⇣
(li� I)� (li� I)2

I
+

(li� I)3

I
. . .

⌘
|ii

= Â
i

hi|r log2 li|ii

= Â
i

log2 lihi|r|ii

= Â
i

li log2 lihi|ii

= Â
i

li log2 li

check condition on 1. r for the Taylor expansion 2. Obtained li
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.3 Phylogenetic Trees

.3.1 Tree Formats

Newick tree format or New Hampshire tree format is a popular format for writing trees in a readable
format. The specification of the file format is given as follows;

Each terminal leaf of a tree represents a species. All strings end with a semi-colon. The leaves
in the outermost hierarchy are the oldest/closest to the root node. Any objects inside the brackets
and separated by a coma are at the same level of hierarchy. Thus, a leaf described by the string
”(((A,B),(C,D)),(E,F,G)); ” will look something like this

Figure 2: Example of a Newick tree

We can incorporate branch lengths by adding the length against the species separated by a
colon(”(A : 0.1,(B : 0.2,C : 0.3)); ”). We describe the specifications in detail as some of the code
involved converting the Newick Tree format into our linkage matrix for us to compare two cluster-
ing.

.4 Results
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Figure 3: Distribution of eigenvalues from the first run described. (Top Left) Eigenvalues for the
50 BA models (Bottom Left) Eigenvalue distribution for one particular model and its configuration
models. Similarly, for the SBM model on the right.

Figure 4: Distribution of eigenvalues from the second run described. (Top Left) Eigenvalues for the
50 SBM models (Bottom Left) Eigenvalue distribution for one particular model and configuration
(Top right) (Bottom right)
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