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Abstract

This thesis explores the generation and characterization of entangled photons source using a

type-1 crossed Beta-Barium Borate (BBO) crystal through the spontaneous parametric down

conversion (SPDC), with a focus on understanding the quantum entanglement phenomenon

and its application in quantum information and communication. Various experimental tests,

including Hanbury Brown and Twiss (HBT) experiment, visibility, Clauser-Horne-Shimony-

Holt (CHSH) inequality, and polarization correlation measurements, were conducted to char-

acterize the entangled photons source. Additionally, the quantum state tomography technique

was used to reconstruct the density matrix of the entangled photons. The results show that

the source generates moderately entangled, single photons, which violate the Bell inequality

as evidenced by the CHSH parameter of 2.629±0.021. The concurrence value of 0.708 and

linear entropy of 0.244 provide estimates of the degree of entanglement and noise present in

the entangled photons, respectively.
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Introduction
Entanglement is a fundamental concept in quantum mechanics, wherein the properties of multiple
particles become correlated to such an extent that their states are no longer independent of each
other. This strange phenomenon, famously referred to as "spooky action at a distance" by Einstein
[1], has been confirmed by plethora of experiments such as the Bell test experiments (1964) [2],
the Aspect experiment (1982) [3] the Weihs experiment (1998) [4] and many more, with profound
implications for our understanding of reality.

Given the potential of entangled photons to enable secure communication and powerful computa-
tional methods, they have become a vital component in contemporary quantum technologies. A
comprehensive understanding of the properties and behavior of entangled photons is therefore es-
sential for developing novel quantum technologies and advancing fundamental physics. Thus far,
entangled photons have been utilized in a diverse range of applications such as quantum telepor-
tation [5, 6] where the quantum state of one particle is transferred to another without physically
moving the particle; in quantum cryptography [7, 8], entangled photons create secure communi-
cation channels by detecting any attempt at interception or eavesdropping. They are also used as
quantum bits in quantum computing to process information faster than classical computers and in
precision measurement applications such as interferometry for detecting tiny changes in position or
time, making them useful in gravitational wave detection [9, 10]. Quantum ghost imaging [13, 14]
utilizes entangled photons to create high-resolution images by analyzing correlations between two
photons.

One of the approaches to generating entangled photons is by exploiting the nonlinear response of
certain materials during the interaction between incident light and matter. These are the nonlinear
optical processes that have garnered significant attention due to their crucial role in diverse appli-
cations such as optical communication, microscopy, and quantum computing. Unlike linear optical
processes, nonlinear effects stem from changes to the medium’s dielectric properties caused by the
applied field, resulting in the generation of new frequencies or the modification of the incident
radiations [15].

The goal of this master’s thesis is to investigate the process of generating and characterizing entan-
gled photons source through spontaneous parametric down conversion [16, 17, 24], a promising
method with significant potential to advance quantum technology. The sensitivity of this pro-
cess to experimental parameters, such as crystal properties and pump power, presents a significant
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challenge. By analyzing the properties of entangled photon pairs and optimizing experimental con-
ditions, this research aims to contribute to the quantum key distribution protocols while furthering
our understanding of quantum entanglement.

In this work, we focus on the generation and characterization of entangled photons source using a
crossed type-1 Beta-Barium Borate (BBO) crystal. The experimental setup involves the use of a
high power UV diode laser at 405 nm wavelength as the pump source to generate entangled photon
pairs of 810nm in the crystal.

To characterize the entangled photon source, we performed a series of experiments such as the
Hanbury-Brown and Twiss (HBT) experiment [18], CHSH inequality [19], visibility [21], polar-
ization correlation measurements[23] and quantum state tomography [22]. The HBT experiment
was used to study the photon statistics of the source. The CHSH inequality, polarization correlation
measurements and visibility experiments were used to verify the entanglement and to quantify the
degree of entanglement. Finally, the quantum state tomography experiment was used to reconstruct
the density matrix of the entangled photon pairs.

This thesis is organised into 5 chapters as follows:

• Chapter 1: It provides a theoretical explanation of nonlinear optical processes, with a focus
on the optics of nonlinear crystals and the SPDC process. It covers mathematical derivations
of the nonlinear equations governing the behavior of nonlinear crystals and discusses the
SPDC process and its relevance in generation of entangled photons. It also explains the
concept of phase matching, which is essential for achieving efficient nonlinear frequency
conversion.

• Chapter 2: Presents a comprehensive theoretical study of different schemes for generating
entangled photons using nonlinear crystals. The chapter covers Type-0, Type-I and Type-II
phase matching schemes through SPDC using bulk and periodically poled crystals. For each
scheme, the chapter provides a detailed explanation of the underlying theoretical principles,
along with corresponding schematics.

• Chapter 3: Here, we focus on the experimental characterization of entangled photons.
Specifically, we investigate the brightness of the entangled photon source, the heralding
efficiency, the Hanbury Brown and Twiss (HBT) experiment, the violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality, the visibility of the interference fringes, the polar-
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ization correlation measurements, and the reconstruction of the quantum state using quantum
state tomography. Detailed theoretical explanation for every method has been covered.

• Chapter 4: Experimental work on setting up the source to generate entangled photons and
results of various tests (mentioned in the chapter 3) that were performed to characterise the
source has been presented.

• Chapter 5: We summarize the experimental results and talk on limitations and improvi-
sation of the exisiting experimental setup along with the possible applications of entangled
photons in the field of quantum technology.
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Part I

Theoretical background

1 Nonlinear optical process

Nonlinear optics is a field of optics that focuses on the study of how light interacts with matter in
the presence of high-intensity electromagnetic fields. Nonlinear optical processes are characterized
by the generation of new frequencies, as well as the modulation of the amplitude or phase of the
incident light. To describe these processes, a set of equations known as nonlinear wave equations
are used [15].

In this section, we will delve into the fundamental principles of nonlinear optical processes, includ-
ing the physical mechanisms that govern them, the mathematical formalism employed to describe
them, and a few applications of these processes. This information is crucial for gaining a better
understanding of how light behaves in materials and for developing new technologies that rely on
nonlinear optical processes.

When light is incident on a dipolar medium then the dipoles start oscillating at the frequency
of the light beam. We treat this mechanism to be analogous to the classical simple harmonic
oscillator. But when we incident a beam with very high intensity, an anharmonicity is observed in
the oscillations of the simple harmonic oscillator. The mathematical representation of the above
physical mechanism is :

𝑑2𝑥

𝑑𝑡2
+2𝛾

𝑑𝑥

𝑑𝑡
+𝜔2

0𝑥 +𝛼𝑥
2 = 𝐹 = − 𝑒

𝑚
𝐸 (𝑡) (1)

where the first term contributes to the acceleration motion of the oscillator; the second term cor-
responds to the damping of the oscillation mainly due to non-radiative terms; the third term rep-
resents the restoring force of the electron towards its core; the last term is the one that brings
anharmonicity in the system. F is the force, e - electronic charge, m - mass of the electron. We can
ignore the fourth term when the beam intensity is low. But at high intensity, nonlinearities are in-
troduced leading to many new phenomena like second harmonic wave generation, sum-difference
frequency generation, etc.
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The polarization that happens inside a medium full of charges can be represented as ,

→
𝐷 = 𝜖𝑜

→
𝐸 +

→
𝑃 (2)

where
→
𝐷 is the displacement term ,

→
𝐸 is the electric field of the incident light ,

→
𝑃 is the polarization

term.

→
𝑃 =

→
𝑃𝐿 +

→
𝑃𝑁𝐿

where
→
𝑃𝐿 depicts the linearly polarized dipoles in the medium and

→
𝑃𝑁𝐿 corresponds to nonlinearly

polarised dipoles in the medium due to high intensity beam.

→
𝑃𝐿 = 𝜖0𝜒

(1)→𝐸

→
𝑃𝑁𝐿 = 𝜖0𝜒

(2)
→
𝐸2 + 𝜖0𝜒

(3)
→
𝐸3 + ...

𝜒 is the nonlinear susceptibility of the medium.

→
𝐷 = 𝜖0

→
𝐸 + 𝜖0𝜒

(1)→𝐸 +
→
𝑃𝑁𝐿

→
𝐷 = 𝜖0(1+ 𝜒(1))

→
𝐸 +

→
𝑃𝑁𝐿

→
𝐷 = 𝜖

→
𝐸 +

→
𝑃𝑁𝐿

On using Maxwell’s equations, we can get,

∇2→𝐸 − `0𝜖
𝜕2

→
𝐸

𝜕𝑡2
= `0

𝜕2
→
𝑃𝑁𝐿

𝜕𝑡2
(3)

Nonlinear optical processes can be broadly classified into two types: second-order and third-order
processes. Second-order processes involve the interaction of two photons with a nonlinear mate-
rial. The physical mechanism that governs this process is known as the second-order nonlinear
susceptibility denoted as 𝜒(2) . This quantity relates the induced polarization to the intensity of the
applied electric field as :

→
𝑃2
𝐿 = 𝜖0𝜒

(2)
→
𝐸2
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Electro optic effect, second harmonic generation and optical parametric amplification are some of
the second order processes.

Third-order nonlinear optical processes involve the interaction of three photons with a nonlinear
material. The physical mechanism that governs this process is known as the third-order nonlinear
susceptibility denoted as 𝜒(3) . The third-order nonlinear susceptibility is also a tensor, which
depends on the crystal symmetry of the material. The polarization is related to the electric field
through the third-order nonlinear susceptibility as follows:

→
𝑃3
𝐿 = 𝜖0𝜒

(3)
→
𝐸3

Third harmonic generation, Optical Kerr effect, Four wave mixing and Stimulated Raman scatter-
ing are some of the third order nonlinear processes.

2 Nonlinear optical crystal

The optics of nonlinear crystals is an intriguing area of research that delves into how light behaves
when it interacts with materials that possess nonlinear optical properties. Nonlinear crystals have
a remarkable capability to alter the frequency, polarization, and phase of light, rendering them
invaluable for various applications, including telecommunications, laser technology, and quantum
information processing. Having a grasp of the principles of nonlinear optics is critical for advanc-
ing current technologies and developing new ones.

There exist two fundamental types of media: isotropic and anisotropic. Isotropic media display a
uniform refractive index in all directions, while anisotropic media have refractive indices that rely
on both the direction of wave propagation and the polarization state of the incident beam. Nonlin-
ear crystals, in particular, have unique characteristics that depend on the polarization state of the
light beam. These beams are classified as either ordinary or extraordinary, with the corresponding
refractive indices referred to as the ordinary refractive index or extraordinary refractive index, re-
spectively. The direction where both ordinary and extraordinary refractive indices are equivalent is
termed the optic axis of the crystal. Crystals with a single optic axis are known as uniaxial crystals,
while those with two optic axes are referred to as biaxial crystals.

When the optic axis of a crystal is aligned with the Z-axis, the principal plane is the area in which
the wave vectors K and Z of a light wave are confined [24]. The ordinary beam, or o-beam,
is a light beam whose polarization is perpendicular to the principal plane. In contrast, the ex-
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traordinary beam, or e-beam, is polarized within the principal plane. The difference between the
refractive indices of ordinary and extraordinary beams is called birefringence. This property is a
critical characteristic of anisotropic media and is utilized in a variety of applications in optics and
photonics.

Δ𝑛 = 𝑛𝑜 −𝑛𝑒

where Δ𝑛 is the birefringence, 𝑛𝑜 is the ordinary refractive index and 𝑛𝑒 is the extraordinary re-
fractive index. The birefringence has its maximum value in the direction normal to the optic axis
and is zero along the optic axis.

In the plane that is perpendicular to the Z-axis, the refractive indices of the ordinary and extraordi-
nary beams are referred to as the principal values of the refractive index, represented by 𝑛𝑜 and 𝑛𝑒,
respectively [24]. The refractive index of the o-beam is independent of the direction of propagation
and is thus represented by a spherical surface with a radius of 𝑛𝑜. In contrast, the refractive index
of the e-beam varies with the polar angle (\), which is the angle between the optic axis Z and
the wave vector K. This variation is due to the anisotropic nature of the crystal and is described
mathematically as a function of the angle \ given by the equation,

𝑛𝑒 (\) = 𝑛𝑜

√︄
1+ tan2 \

1+ ( 𝑛𝑜
𝑛𝑒
)2 tan2 \

And is represented by an ellipsoid with semiaxes 𝑛𝑜 and 𝑛𝑒.

If 𝑛𝑜 > 𝑛𝑒, then it is a negative crystal; if 𝑛𝑜 < 𝑛𝑒 , then it is a positive crystal [Fig :1]

The walk off angle or birefringence 𝜌 can be represented as [Fig :2]:

𝜌(\) = ±arctan
(
𝑛𝑜

𝑛𝑒

)2
tan\ ∓ \

where the upper sign refers to a negative crystal and the lower sign to a positive one.
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(a) (b)

Figure 1: Refractive index dependence on the polar angle (\) in (a) negative (b) positive uniaxial
crystals.

We can use the correlation between 𝜌 and \ to orient uniaxial crystals. After the incident beam
passes through the crystal they are separated by 𝛿 at the output surface of the crystal which is given
by:

𝛿 = 𝐿 tan 𝜌

Knowing the crystal cut angle (\𝑐) which is between the optic axis Z and the normal to the crystal
surface is essential for designing and optimizing nonlinear optical processes and for controlling
the polarization of the output light [Fig :3]. By choosing the appropriate crystal cut angle, it is
possible to achieve different polarization properties of the output light, such as linear polarization,
circular polarization, or elliptical polarization which is given by:

\𝑐 = arctan

(
|𝑛2

𝑜 −𝑛2
𝑒 |𝐿

2𝛿𝑛2
𝑜

±
( | (𝑛2

𝑜 −𝑛2
𝑒)2𝐿2 |

|4𝛿2𝑛4
𝑜 |

−
𝑛2
𝑜

𝑛2
𝑒

)1/2)
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(a) (b)

(c)

Figure 2: Transmission of the wave vector (K) and beam vector (S) in an (a) isotropic medium and
anisotropic (b) negative and (c) positive uniaxial crystals (𝜌 is the birefringence angle).

Figure 3: Schematic representation of the uniaxial crystal with cut angle \𝑐.

3 Spontaneous parametric down conversion (SPDC)

Entangled photon pairs can be generated using various methods such as semiconductor quantum
dots, atomic ensembles, microresonators, and parametric amplifiers. Semiconductor quantum dots
emit entangled photons when excited by a laser, while atomic ensembles like rubidium vapor can
emit entangled photon pairs through collective excitation. Microresonators, such as whispering
gallery resonators, can generate entangled photons through spontaneous four-wave mixing, while
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parametric amplifiers amplify vacuum field fluctuations to produce entangled photon pairs. Each
of these methods has unique advantages and disadvantages and can be optimized for specific appli-
cations. We shall be specifically looking at the generation of entangled photons using spontaneous
parametric down conversion process.

When a beam of photons interacts with a nonlinear crystal, it undergoes a second-order optical
phenomenon known as spontaneous parametric down-conversion (SPDC) [26, 25] [Fig:4]. The
down-conversion process occurs when a photon, called the pump photon, interacts with a nonlinear
crystal and spontaneously splits into two lower-energy photons, known as the idler and signal
photons. This process is considered spontaneous, as it occurs without any external frequency
input. The phenomenon is referred to as parametric because it depends on the order of the electric
field and creates a phase relationship between the input and output fields. Therefore, the down-
conversion process is a result of the parametric interaction between the pump photon and the
nonlinear crystal, leading to the spontaneous creation of two photons.

Figure 4: Schematic representation of SPDC process. Pump photon (𝜔3) falls on a nonlinear
crystal with susceptibility 𝜒2 and gets converted to signal (𝜔2) and idler (𝜔1) photons.

This conversion process happens in accordance with the laws of conservation of energy and mo-
mentum. The conservation of energy says that the energy of the incident photons must be equal to
the energy of down converted photons (Fig:5). So,

ℏ𝜔3 = ℏ𝜔2 +ℏ𝜔1

𝜔3 = 𝜔2 +𝜔1

The conservation of momentum says that the momentum of pump photon must be equal to mo-
menta of signal and idler photons (Fig:6).

𝒌3 = 𝒌2 + 𝒌1
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Figure 5: Schematic representation of energy conservation in SPDC process.

Figure 6: Schematic representation of momentum conservation in SPDC process.

The mechanism that lies behind the down conversion process is Optical rectification. When a
nonlinear crystal is incident with a photon of frequency 𝜔 at very high intensity then there is a
generation of quasi-DC polarization which is responsible for resizing the dipoles and hence the
frequency with which they oscillate. This mechanism is seen only when we incident the nonlinear
crystal with high intensity beam (Fig:3).

Figure 7: Pictorial representation of Optical rectification from 𝜔→ 2𝜔.

In this SPDC process, we are shining pump photons with electric field 𝑬 (𝝎𝒑) having amplitude 𝐸𝑝

, wave vector 𝒌 𝒑 with frequency 𝜔𝑝 along z direction. Signal and idler photons having electric
field 𝑬 (𝝎𝒔) , 𝑬 (𝝎𝒊) ; amplitude 𝐸𝑠, 𝐸𝑖 ; wave vector 𝒌 𝒔, 𝒌 𝒊 of frequency 𝜔𝑠,𝜔𝑖 respectively are
generated.

So the expressions for the fields are:

𝑬 (𝝎𝒑) =
1
2
[𝐸𝑝𝑒

𝑖(𝑘 𝑝𝑧−𝜔𝑝𝑡) + 𝑐.𝑐] (4)

𝑬 (𝝎𝒔) =
1
2
[𝐸𝑠𝑒

𝑖(𝑘𝑠𝑧−𝜔𝑠𝑡) + 𝑐.𝑐]
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𝑬 (𝝎𝒊) =
1
2
[𝐸𝑖𝑒

𝑖(𝑘𝑖𝑧−𝜔𝑖𝑡) + 𝑐.𝑐]

Hence the total electric field E is:

𝑬 = 𝑬 (𝝎𝒑) +𝑬 (𝝎𝒔) +𝑬 (𝝎𝒊)

𝑷𝑵𝑳 = 2𝑑𝜖0𝐸
2 = 2𝑑𝜖0 [𝑬 (𝝎𝒑) +𝑬 (𝝎𝒔) +𝑬 (𝝎𝒊)]2

where 𝑑 = 1
2𝜒 (2) is a complex but well-known parameter that depends on the material’s strength,

nonlinearity, and geometrical variables, all of which are characteristics of the material.

Nonlinear polarization terms that are produced in the medium are :

𝑷
(𝝎𝒑)

𝑵𝑳 =
1
2
𝑑𝜖0 [2𝐸𝑠𝐸𝑖𝑒

(𝑘𝑠+𝑘𝑖)𝑧−𝜔𝑝𝑡 + 𝑐.𝑐] (5)

𝑷(𝝎𝒔)

𝑵𝑳 =
1
2
𝑑𝜖0 [2𝐸𝑝𝐸

∗
𝑖 𝑒

(𝑘 𝑝−𝑘𝑖)𝑧−𝜔𝑠𝑡 + 𝑐.𝑐]

𝑷(𝝎𝒊)

𝑵𝑳 =
1
2
𝑑𝜖0 [2𝐸∗

𝑠𝐸𝑝𝑒
(𝑘 𝑝−𝑘𝑠)𝑧−𝜔𝑖𝑡 + 𝑐.𝑐]

On substituting equations 4 and 5 into Maxwell’s equation (eq.3) , we get wave equation for 𝜔𝑝

wave:

∇2
→
𝐸𝜔𝑝 − `0𝜖

𝜕2
→
𝐸𝜔𝑝

𝜕𝑡2
= `0

𝜕2
→

𝑃
(𝜔𝑝)
𝑁𝐿

𝜕𝑡2
(6)

The LHS becomes,

∇2
→
𝐸𝜔𝑝 =

1
2
[
𝜕2𝐸𝑝

𝜕𝑧2 +2𝑖𝑘 𝑝
𝜕𝐸𝑝

𝜕𝑧
− 𝑘2

𝑝𝐸𝑝]𝑒𝑖(𝑘 𝑝𝑧−𝜔𝑝𝑡) + 𝑐.𝑐

Now using slowly varying approximation where 𝐸𝑝 varies slowly , we can neglect

|
𝜕2𝐸𝑝

𝜕𝑧2 | << |
𝜕𝐸𝑝

𝜕𝑧
|

So,

∇2
→
𝐸𝜔𝑝 ≈ 1

2
[2𝑖𝑘 𝑝

𝜕𝐸𝑝

𝜕𝑧
− 𝑘2

𝑝𝐸𝑝]𝑒𝑖(𝑘 𝑝𝑧−𝜔𝑝𝑡) + 𝑐.𝑐]

17



Substitute eq.5 to RHS of eq.6, we get,

𝜕2
→

𝑃
(𝜔𝑝)
𝑁𝐿

𝜕𝑡2
= −

2𝜔2
𝑝

2
𝜖0𝑑𝐸𝑠𝐸𝑖𝑒

𝑖[(𝑘𝑠+𝑘𝑖)𝑧−𝜔𝑝𝑡] + 𝑐.𝑐

Now eq.6 becomes,[
2𝑖𝑘 𝑝

𝜕𝐸𝑝

𝜕𝑧
− 𝑘2

𝑝𝐸𝑝 − `0𝜖 (−𝜔2
𝑝)𝐸𝑝

]
𝑒𝑖𝑘 𝑝𝑧 = `0𝜖0𝑑𝐸𝑠𝐸𝑖 (−2𝜔2

𝑝)𝑒𝑖(𝑘𝑠+𝑘𝑖)𝑧

𝑘2
𝑝 =

(𝜔𝑝

𝑐

)2
𝑛2
𝑝 = 𝜔2

𝑝`0𝜖0𝜖𝑟 = 𝜔2
𝑝`0𝜖

where 𝑛𝑝 is the refractive index seen by pump photon, c is the speed of light.

2𝑖𝑘 𝑝
𝜕𝐸𝑝

𝜕𝑧
= `0𝜖0𝑑𝐸𝑠𝐸𝑖 (−2𝜔2

𝑝)𝑒−𝑖(𝑘 𝑝−𝑘𝑖−𝑘𝑠)𝑧

Take Δ𝒌 = 𝒌 𝒑 − 𝒌 𝒔 − 𝒌 𝒊 . So,

𝑑𝐸𝑝

𝑑𝑧
= 𝑖

𝑑𝜔2
𝑝

𝑘 𝑝𝑐
2𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧 (7)

𝑑𝐸𝑝

𝑑𝑧
= 𝑖

𝑑𝜔𝑝

𝑛𝑝𝑐
𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧 (8)

In the way we have derived eq.8, we can also derive evolution equations for electric field ampli-
tudes of signal and idler photons. So the evolution equations of pump, signal and idler waves
are:

𝑑𝐸𝑝

𝑑𝑧
= 𝑖

𝑑𝜔𝑝

𝑛𝑝𝑐
𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧 (9)

𝑑𝐸𝑠

𝑑𝑧
= 𝑖

𝑑𝜔𝑠

𝑛𝑝𝑐
𝐸𝑝𝐸

∗
𝑖 𝑒

−𝑖Δ𝑘𝑧 (10)

𝑑𝐸𝑖

𝑑𝑧
= 𝑖

𝑑𝜔𝑖

𝑛𝑝𝑐
𝐸𝑝𝐸

∗
𝑠 𝑒

−𝑖Δ𝑘𝑧 (11)

Now let’s use the above three equations to show that energy is conserved in this process.

We know that Power = Intensity x Area. On using this formula (for pump photons) we get,

𝑃𝑝 (𝑧) = 𝐼𝑝 (𝑧)𝐴 =
1
2
𝜖0𝑐𝑛𝑝 |𝐸𝑃 (𝑧) |2𝐴 (12)
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where 𝑃𝑝 (𝑧) is the power of the pump photon incident on the crystal on an area A with intensity
𝐼𝑝 (𝑧). On differentiating the above equation with respect to z, we get,

𝑑𝑃𝑝 (𝑧)
𝑑𝑧

=
1
2
𝜖0𝑐𝑛𝑝𝐴

[
𝐸∗
𝑝

𝑑𝐸𝑃

𝑑𝑧
+𝐸𝑝

𝑑𝐸∗
𝑝

𝑑𝑧

]
𝑑𝑃𝑝 (𝑧)
𝑑𝑧

=
1
2
𝜖0𝑐𝑛𝑝𝐴

[
𝐸∗
𝑝𝑖𝑘 𝑝𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧 −𝐸𝑝𝑖𝑘 𝑝𝐸
∗
𝑠𝐸

∗
𝑖 𝑒

𝑖Δ𝑘𝑧
]

𝑑𝑃𝑝 (𝑧)
𝑑𝑧

=
1
2
𝜖0𝑐𝑛𝑝𝐴𝑖𝑘 𝑝

[
𝐸∗
𝑝𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧 −𝐸𝑝𝐸
∗
𝑠𝐸

∗
𝑖 𝑒

𝑖Δ𝑘𝑧
]

(13)

𝑑𝑃𝑝 (𝑧)
𝑑𝑧

=
𝑖

2
𝜖0𝑑𝜔𝑝𝐴

[
𝐸∗
𝑝𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧 −𝐸𝑝𝐸
∗
𝑠𝐸

∗
𝑖 𝑒

𝑖Δ𝑘𝑧
]

(14)

Similarly,

𝑑𝑃𝑠 (𝑧)
𝑑𝑧

=
𝑖

2
𝜖0𝑑𝜔𝑠𝐴

[
𝐸𝑝𝐸

∗
𝑠𝐸

∗
𝑖 𝑒

𝑖Δ𝑘𝑧 −𝐸∗
𝑝𝐸𝑠𝐸𝑖𝑒

−𝑖Δ𝑘𝑧] (15)

𝑑𝑃𝑖 (𝑧)
𝑑𝑧

=
𝑖

2
𝜖0𝑑𝜔𝑖𝐴

[
𝐸∗
𝑠𝐸𝑝𝐸

∗
𝑖 𝑒

𝑖Δ𝑘𝑧 −𝐸𝑠𝐸
∗
𝑝𝐸𝑖𝑒

−𝑖Δ𝑘𝑧] (16)

where 𝑃𝑠 (𝑧), 𝑃𝑖 (𝑧) represent the power of signal and idler photons.

From the above last three equations, we can get,

− 1
𝜔𝑃

𝑑𝑃𝑝

𝑑𝑧
=

1
𝜔𝑠

𝑑𝑃𝑠

𝑑𝑧
=

1
𝜔𝑖

𝑑𝑃𝑖

𝑑𝑧
(17)

which is the famous Manley-Rowe relation from which we can show that the total power is con-
served in the SPDC process i.e.

− 1
𝜔𝑃

𝑑𝑃𝑝

𝑑𝑧
=

1
𝜔𝑠

𝑑𝑃𝑠

𝑑𝑧
=

1
𝜔𝑖

𝑑𝑃𝑖

𝑑𝑧
= Γ (18)

(Γ is a constant)

𝑑𝑃𝑝

𝑑𝑧
+ 𝑑𝑃𝑠

𝑑𝑧
+ 𝑑𝑃𝑖

𝑑𝑧
= Γ(−𝜔𝑝 +𝜔𝑠 +𝜔𝑖)

𝑃 = 𝑃𝑝 +𝑃𝑠 +𝑃𝑖
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𝑑𝑃

𝑑𝑧
= Γ×0 = 0;𝜔𝑝 = 𝜔𝑠 +𝜔𝑖 (19)

So total power P is conserved.

Now for a degenrate parametric down conversion, say, from 2𝜔→ 𝜔+𝜔, for Δ𝑘 = 0,

𝑑𝐸𝑝

𝑑𝑧
= 𝑖

𝑑𝜔

𝑛1𝑐
𝐸𝑝𝐸

∗
𝑠 (20)

𝑑𝐸𝑝

𝑑𝑧
= 𝑖

𝑑𝜔

𝑛2𝑐
𝐸𝑠𝐸𝑖 (21)

Under no depletion approximation, 𝐸𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (pump photon) and also 𝐸𝑠 (0) = 0.(down con-
verted photon)

Again on differentiating Eq.20, we get,

𝑑2𝐸𝑠

𝑑𝑧2 = 𝑖
𝑑𝜔

𝑛1𝑐
𝐸𝑝

(
𝑑𝐸∗

𝑠

𝑑𝑧

)
On substituting 𝐸𝑠,

𝑑2𝐸𝑠

𝑑𝑧2 = 𝑖
𝑑𝜔

𝑛1𝑐
𝐸𝑝

(
−𝑖 𝑑𝜔

𝑛1𝑐
𝐸∗
𝑝𝐸𝑠

)
𝑑2𝐸1

𝑑𝑧2 =

(
𝑑𝜔

𝑛1𝑐

)2
|𝐸2 |2𝐸1 (22)

Υ2 =

(
𝑑𝜔

𝑛1𝑐

)2
|𝐸𝑝 |2

𝑑2𝐸𝑠

𝑑𝑧2 = Υ2𝐸𝑠 (23)

𝐸𝑠 (𝑧) = 𝐴𝑠𝑖𝑛ℎ(Υ𝑧) +𝐵𝑐𝑜𝑠ℎ(Υ𝑧) (24)

Now at z = 0, 𝐸𝑠 (𝑧 = 0) = 0; that means B = 0 implying that at z = 0, only pump photons are just
incident on the crystal and conversion process has not begun at.

So,
𝐸𝑠 (𝑧) = 𝐴𝑠𝑖𝑛ℎ(Υ𝑧)

20



Again, [
𝑑𝐸𝑠

𝑑𝑧

]
𝑧=0

= 𝑖
𝜔𝑑

𝑛1𝑐
𝐸𝑝 (0)𝐸∗

𝑠 (0) = 0

[
𝑑𝐸𝑠

𝑑𝑧

]
𝑧=0

= 𝐴Υ𝑐𝑜𝑠ℎ(Υ𝑧) |𝑧=0 = 𝐴Υ = 0 (25)

Here Υ ≠ 0, so A=0 which means 𝐸𝑠 (𝑧) = 0, so classically there will be no frequency down con-
version where there is no input field containing 𝜔 frequency. That is, without any quantum noise
we cannot generate any sub-harmonics. We can see that classical optics won’t allow for the SPDC
process to exist. So SPDC is purely a quantum mechanical process.

3.0.1 Birefringence Phase Matching

Birefringence refers to the characteristic of certain materials that results in their refractive index
being dependent on the polarization and direction of light propagation. Such materials are termed
optically anisotropic and are known as birefringent.

For a conversion process from 𝜔𝑝 → 𝜔𝑠 +𝜔𝑖,

The phase matching condition is Δ𝒌 = 0 =⇒ 𝒌 𝒑 − 𝒌 𝒔− 𝒌 𝒊 = 0

W.K.T,
𝒌 𝒑,𝒔,𝒊 = 𝜔𝑝,𝑠,𝑖𝑛𝑝,𝑠,𝑖/𝑐

where 𝒌 𝒑,𝒔,𝒊 are wave vectors of the pump, signal and idler photons; 𝑛𝑝,𝑠,𝑖 are the refractive indices
of the medium seen by pump, signal and idler photon; 𝜔𝑝,𝑠,𝑖 are the frequency of the pump, signal
and idler photons; c is the speed of light. Hence we get phase matching condition to be,

𝑛𝑝𝜎𝜔𝑝 −𝑛𝑠𝜎𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝜎𝜔𝑖 −𝑛𝑠𝜎𝜔𝑠]

3.0.2 Types of phase matching in uniaxial crystal

When the pump, signal, and idler photons have the same polarization, it is known as Type-0 phase
matching. Type-1 phase matching occurs when the signal and idler have the same polarization but
are orthogonal to the pump polarization. Type-2 phase matching occurs when the signal and idler
have orthogonal polarizations.
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Collinear phase matching occurs when the optical path of the pump, idler, and signal are all in
the same direction. On the other hand, non-collinear phase matching occurs when the signal and
idler photons propagate in directions that are not collinear with the pump photon direction.

From momentum and energy conservation, we can derive

𝑛𝑝𝜎𝜔𝑝 −𝑛𝑠𝜎𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝜎𝜔𝑖 −𝑛𝑠𝜎𝜔𝑠] (26)

𝜎 index represents the polarization state of the photons as ordinary or extraordinary. 𝑛𝜎 represents
the ordinary or extraordinary refractive index.

But, due to normal dispersion, w.k.t ,

𝑛𝑝𝜎 (𝜔𝑝) > 𝑛𝑠𝜎 (𝜔𝑠) ≥ 𝑛𝑖𝜎 (𝜔𝑖). (27)

Now we shall try which polarization states of the photons can phase match.

Case 1:𝑒 −→ 𝑒 + 𝑒
Pump, signal and idler photons are extraordinarily polarized. For this case, Eq.26 becomes:

𝑛𝑝𝑒𝜔𝑝 −𝑛𝑠𝑒𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑒𝜔𝑖 −𝑛𝑠𝑒𝜔𝑠]

and due to eqn.27, 𝑛𝑝𝑒 (𝜔𝑝) > 𝑛𝑠𝑒 (𝜔𝑠) ≥ 𝑛𝑖𝑒 (𝜔𝑖). Hence the conditions necessary for phase match-
ing are not met by these particular polarization states. Therefore, phase matching cannot occur for
these states of polarization.

Case 2: 𝑜 −→ 𝑜+ 𝑜
Pump, signal and idler photons are ordinarily polarized. For this case, Eq.26 becomes:

𝑛𝑝𝑜𝜔𝑝 −𝑛𝑠𝑜𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑜𝜔𝑖 −𝑛𝑠𝑜𝜔𝑠]

and due to eqn.27, 𝑛𝑝𝑜 (𝜔𝑝) > 𝑛𝑠𝑜 (𝜔𝑠) ≥ 𝑛𝑖𝑜 (𝜔𝑖). Hence the conditions necessary for phase match-
ing are not met by these particular polarization states. Therefore, phase matching cannot occur for
these states of polarization.

Case 3: 𝑒 −→ 𝑜+ 𝑜
Pump photons are extraordinarily polarized whereas signal and idler photons are ordinarily polar-
ized. For this case, Eq.26 becomes:

𝑛𝑝𝑒𝜔𝑝 −𝑛𝑠𝑜𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑜𝜔𝑖 −𝑛𝑠𝑜𝜔𝑠]
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As 𝜔𝑠 ≥ 𝜔𝑖, the RHS of the equation is negative. For LHS to be negative , 𝑛𝑒 < 𝑛𝑜, implies that
the crystal has to be negative. Negative uniaxial crystals, such as Beta Barium Borate (BBO), have
the ability to fulfill the conditions necessary for phase matching. Therefore, it is possible for phase
matching to occur in these types of crystals.

Case 4: 𝑜 −→ 𝑒 + 𝑒
Pump photons are ordinarily polarized whereas signal and idler photons are extraordinarily polar-
ized. For this case, Eq.26 becomes:

𝑛𝑝𝑜𝜔𝑝 −𝑛𝑠𝑒𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑒𝜔𝑖 −𝑛𝑠𝑒𝜔𝑠]

As 𝜔𝑠 ≥ 𝜔𝑖, the RHS of the equation is negative. For LHS to be negative, 𝑛𝑒 > 𝑛𝑜, implies that the
crystal has to be positive. So positive uniaxial crystals can satisfy the phase matching condition.

Case 5: 𝑒 −→ 𝑜+ 𝑒
Pump photons are extraordinarily polarized whereas signal is ordinarily and idler photons are ex-
traordinarily polarized. For this case, Eq.26 becomes:

𝑛𝑝𝑒𝜔𝑝 −𝑛𝑠𝑜𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑒𝜔𝑖 −𝑛𝑠𝑜𝜔𝑠]

Suppose we consider a degenerate source of SPDC, and assume linear dispersion relation for both
extraordinary and ordinary polarizations. So, 𝑛𝑝𝑒 (2𝜔𝑠) ≈ 2𝑛𝑝𝑒 (𝜔𝑠). Now, substituting 𝑛𝑝𝑒 (𝜔𝑠) =
𝑛𝑖𝑒 (𝜔𝑠) = 𝑛𝑒 (𝜔𝑠);𝑛𝑠𝑜 (𝜔𝑠) = 𝑛𝑜 (𝜔𝑠),
We write the above equation as,

3𝑛𝑒 (𝜔𝑠) ≈ 𝑛𝑜 (𝜔𝑠).

But this equation exists if 𝑛𝑒 < 𝑛𝑜. So only negative uniaxial crystals can phase match for these
polarization states.

Case 6: 𝑒 −→ 𝑒 + 𝑜
Pump photons are extraordinarily polarized whereas signal is extraordinarily and idler photons are
ordinarily polarized. For this case, Eq.26 becomes:

𝑛𝑝𝑒𝜔𝑝 −𝑛𝑠𝑒𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑜𝜔𝑖 −𝑛𝑠𝑒𝜔𝑠]

Considering all the assumptions from the case 5, and

3𝑛𝑒 (𝜔𝑠) ≈ 𝑛𝑜 (𝜔𝑖).
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The above equation is true only if 𝑛𝑒 < 𝑛𝑜. So only negative uniaxial crystals can phase match for
these polarization states.

Case 7: 𝑜 −→ 𝑒 + 𝑜
Pump photons are ordinarily polarized whereas signal is extraordinarily and idler photons are or-
dinarily polarized. For this case, Eq. 26 becomes:

𝑛𝑝𝑜𝜔𝑝 −𝑛𝑠𝑒𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑜𝜔𝑖 −𝑛𝑠𝑒𝜔𝑠]

Considering all the assumptions from the case 5, and

3𝑛𝑜 (𝜔𝑠) ≈ 𝑛𝑒 (𝜔𝑠).

The above equation is true only if 𝑛𝑜 < 𝑛𝑒 . So only positive uniaxial crystals can phase match for
these polarization states.

Case 8: 𝑜 −→ 𝑜+ 𝑒
Pump photons are ordinarily polarized whereas signal is extraordinarily and idler photons are or-
dinarily polarized. For this case, Eq.26 becomes:

𝑛𝑝𝑜𝜔𝑝 −𝑛𝑠𝑜𝜔𝑠 =
𝜔𝑝

𝜔𝑖

[𝑛𝑖𝑒𝜔𝑖 −𝑛𝑠𝑜𝜔𝑠]

Considering all the assumptions from the case 5, and

3𝑛𝑜 (𝜔𝑠) ≈ 𝑛𝑒 (𝜔𝑠).

The above equation is true only if 𝑛𝑜 < 𝑛𝑒 . So only positive uniaxial crystals can phase match for
these polarization states.

Type Positive uniaxial Negative uniaxial
Type-1 o � e + e e � o + o
Type-2 o � o + e e � e + o
Type-2 o � e + o e � o + e

Table 1: Summary of polarization states that allow phase matching between pump , signal and
idler photons.
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3.0.3 Quasi Phase Matching (QPM)

In a nonlinear media, quasi-phase matching is a technique used to successfully transmit energy
from the pump frequency to the signal and idler frequencies. This is accomplished by forming a
periodic structure inside the medium that allows energy to be transferred when the phase difference
between the pump and down-converted photons is equal to or less than 180° [27]. If the phase
difference surpasses 180°, the energy will flow back from the down-converted photons to the pump
photons. The medium’s coherence length is the space between which the sum of down-converted
frequencies and the phase of the pump is exactly 180° apart. The crystal axes are flipped at each
coherence length, allowing energy to flow from the pump to the down-converted photons.

Figure 8: Graph of conversion efficiency vs length of the crystal.

The mechanism is as follows:

Look at the figure :8 which depicts the conversion efficiency ([(𝑧)) along the length of the crystal
(z). We can seen that the conversion efficiency from pump photon to down converted photons is
sinusoidal when Δ𝒌 ≠ 0. To achieve Δ𝒌 = 0, we can use the QPM technique where the crystals are
periodically poled such that the wave vector of the periodic structure satisfies the phase matching
condition so that momentum is conserved.

Periodic poling is a technique used to produce a periodic reversal in the domain orientation of a
nonlinear crystal, resulting in a change in the sign of the nonlinear coefficient (𝑑 (𝑧)). This process
enables the efficient conversion of pump photons to down-converted photons within the coherence
length, where the nonlinear coefficient is positive. However, beyond this length, conversion from
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down-converted photons to pump photons reduces the conversion efficiency. To overcome this loss,
periodic poling reverses the nonlinear coefficient of the material, resulting in increased conversion
efficiency.

If 𝑲𝑸 is the wavevector of the material, Λ is the wavelength of the sinusoidally varying nonlinear
coefficient, d(z) where d(z) = 𝑑0𝑠𝑖𝑛(𝑲𝑸 𝒛), then

𝑲𝑸 =
2𝜋
Λ

For phase matching,

𝑲𝑸 = 𝚫𝒌 =
2𝜋
Λ

(a)

(b)

Figure 9: Periodically poled QPM structure. (a) At every coherence length, the domain of the
crystal is inversed. (b) Nonlinear coefficient along the length of the crystal.

Then the coherence length 𝐿𝑐 can be calculated as:

𝐿𝑐 =
𝜋

𝚫𝒌
=
𝛬

2

So if we make sure that the wavelength of the sinusoidally varying nonlinear coefficient d(z) is
twice the coherence length then phase matching conditions can be met [Fig :9].
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So we have discussed here only the classical aspect of SPDC and saw that it is a mechanism where
photons of higher energy get converted to photons of lower energy on passing through a nonlinear
medium. This process is in accordance with conservation of energy and momentum and they are
met through phase matching condition, Δ𝒌 = 0 where methods like Birefringence phase matching
and Quasi phase matching conditions have been used to meet this criterion.
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Part II

Schemes for generating entangled photons

4 Entanglement

In this section, let us understand how polarisation-entangled photon pairs can be produced. Con-
sider two SPDC sources (Imagine these two sources as two harmonic oscillators inside the same
nonlinear crystal which are spatially separated) which emit orthogonally polarised photon pairs
in a state | 𝐻,1⟩𝑠 | 𝑉,1⟩𝑖𝑎𝑛𝑑 | 𝑉,2⟩𝑠 | 𝐻,2⟩𝑖 where the labels (1, 2) denote any spatial, spectral or
temporal features from the respective sources 1 and 2 [4]. Now, we clearly know the polarization
state of the photons and it’s source. This introduces distinguishability between the photons. The
observed state here will just be product states.

Mathematically, entanglement of two states has been defined as,

|𝛹 ⟩𝐴𝐵 ≠ |Ψ⟩𝐴 ⊗ |Ψ⟩𝐵

where |Ψ⟩𝐴 belongs to Hilbert space A and |Ψ⟩𝐵 belongs to Hilbert space B. Implies we cannot
write the entangled state as tensor product of two independent states.

If we try to express the joint projective polarization measurement of the signal and idler photons
in a superposition basis,

| 𝜙𝑠,𝑖⟩ =
√

1/2( | 𝐻⟩𝑠,𝑖 + 𝑒𝑖𝜙𝑠,𝑖 | 𝑉⟩𝑠,𝑖)

Then probability for coincidence detection is given by,

𝑝(𝜙𝑠, 𝜙𝑖) =| ⟨𝜙𝑖 | ⟨𝜙𝑠 | Ψ⟩ |2= 1
2
(1+𝑅𝑒(𝑒𝑖(𝜙𝑠−𝜙𝑖) ⟨1|𝑖 ⟨1|𝑠 |2⟩𝑠 | 2⟩𝑖)) (28)

If we can distinguish the photon pairs emitted from the two sources, that is, ⟨1|𝑖 ⟨1|𝑠 |2⟩𝑠 | 2⟩𝑖 where s
and i corresponding to orthogonal states, then, the phase factor vanishes; hence we cannot observe
the characteristic non-local coherence of a polarization-entangled state. So we need to remove the
information regarding their spatial features. There are few methods through which we can remove
spatial distinguishability. For example, by interferometry, geometry, birefringence and momentum
selection.

• In the Interferometric method, amplitude interference of down-converted beams is accom-
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plished by employing either a polarizing beam splitter or a normal beam splitter. Specifi-
cally, the two orthogonal states of photons are made to interfere with a beam splitter. After
post-selection, which occurs at the output port of the beam splitter, entangled photons are
obtained.

• Entangled photons can also be obtained by superposing two pairs of orthogonally polarized
photons on a polarizing beam splitter, followed by post-selection. However, any residual
spatially distinguishable photons can be eliminated by implementing spatial filters, such
as the use of single mode fibers. It should be noted that this filtering process reduces the
efficiency of the source by at least 50%.

• Another approach to obtain entangled photons involves designing the nonlinear crystal to
ensure that the down-converted signal and idler cones overlap, using the appropriate phase
matching conditions, such as type-0, type-1 or type-2, to establish indistinguishability in
both spectral and spatial modes.

• The momentum selection method, typically employed by type-2 phase matching crystals,
involves selecting specific momentum components to achieve indistinguishability between
down-converted photons. For instance, one can select photons from the region of the inter-
section of two cones in type-2 crystals.

Once spatial distinguishability has been eliminated, it becomes evident that probability is depen-
dent on the phase factor. Maximum coincidence detection is achieved when the phases of both sig-
nal and idler are identical, resulting in maximally entangled photons. These maximally-entangled
states are referred to as Bell states. Thus, it is crucial to minimize phase dependence in order to
achieve high-quality entangled photons. Post-compensation and pre-compensation methods are
two techniques that can be used to remove the dependence of the phase factor on the pump wave-
length. Post-compensation reduces the relative phase as a function of pump wavelength only,
which can be achieved using 𝑌𝑉𝑂4 crystals.

𝜑(_𝑝,_𝑠,_𝑖) → 𝜑(_𝑝)

On the other hand, pre-compensation methods remove the dependence of the pump wavelength in
the phase factor so that it becomes a constant [𝜑(_𝑝) → 𝜑𝑐]. Wave plates can be used to eliminate
the constant phase factor, thereby producing Bell states.
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The down-converted wavelengths produced in SPDC cover a broad range, and passing them through
various optical components such as dispersive mediums can result in spectral distinguishability due
to wavelength-dependent phase. To remove this phase dependence and improve the quality of en-
tanglement, compensation crystals such as 𝑌𝑉𝑂4 can be employed.

Temporal distinguishability, on the other hand, can be eliminated using waveplates and nonlinear
crystals that are half as big as the main crystals used to down convert photons. The distinguishing
characteristics of the temporal wave function occur in the picosecond period, while the detector’s
timing resolution is on the order of nanosecond. Therefore, the experimental setup can aid in the
creation of indistinguishability.

We can see that the down converted photons are forced to become entangled in polarisation de-
gree of freedom. Photons from SPDC source are inherently entangled in time-energy, position-
momentum, orbital angular momentum degrees of freedom. But to measure these entangled pho-
tons we need sophisticated setups. For example, for time-energy entangled photons we would
need an interferometer based measurement. So it requires an interferometric alignment. Position-
momentum entangled photons are restricted by short distances because on coupling the photons to
a single mode fiber the information is lost whereas orbital angular momentum requires complex
spatial light modulators for making measurements.
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5 Types of schemes to generate entangled photons

5.1 Single crystal, single pass configuration

5.1.1 Type-2 Bulk crystals

On incident a pump beam perpendicular to a type-2 single bulk crystal we get two cones of sig-
nal and idler beam respectively [16]. One cone is ordinarily polarized where as the other cone
is extraordinarily polarized. The two cones are separated because of the walk-off angle experi-
enced by the extraordinary beam. We need to incident the pump beam in such a way that the two
cones intersect and at the point of intersection we have “indistinguishable” polarisation-entangled
photons [Fig: 10]. The reason for extracting photons at the point of intersection is that it enables
indistinguishability which is the main criterion of entangled photons. Choosing photons from any
other points will give us product states but not entangled photons.

The entangled state for this configuration can be mathematically represented as,

| 𝐻⟩1 | 𝑉⟩2 ± 𝑒𝑖𝜑 | 𝑉⟩1 | 𝐻⟩2

Figure 10: Schematic representation of type-II SPDC photon source.
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5.2 Double crystal, single pass configuration

Non-collinear configurations

5.2.1 Crossed type-1 crystals

We know that in type-1, down converted photos have the same polarization. Hence there is no
birefringence and the two cones overlap with each other. We can make use of two type-1 crystals
and orient their optic axis orthogonal to each other. For this orientation, we need to incident
diagonally polarized pump beam [Fig :11]. One crystal converts all horizontally polarized pump
photons whereas another crystal converts vertically polarised photons [29]. Since there is no walk-
off between the two beams, we can orient the crystal in such a way that the cones from both crystals
overlap perfectly and hence indistinguishability is established everywhere. Hence type-1 sources
are more efficient than the previously mentioned scheme.

Mathematically we can represent the entangled state as,

| 𝐻⟩1 | 𝐻⟩2 ± 𝑒𝑖𝜑 | 𝑉⟩1 | 𝑉⟩2

Figure 11: Schematic representation of crossed type-1 SPDC photon source.
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5.2.2 Flipped type-2 crystals:

We can use two type-2 crystals and orient the optic axis of one crystal at 1800 with respect to
another crystal [Fig :12]. Each crystal produces a set of rings whose polarization orientation is
also flipped by 1800. Indistinguishability is established in any diametric pairs across either ring
[30].

Figure 12: Schematic representation of SPDC in flipped bulk type-2 crystal.

5.2.3 Crossed type-2 crystals:

Using two type-2 bulk crystals, we can orient their optic axis orthogonal to each other. A diagonally
polarized pump beam can excite both crystals giving a set of down converted rings that are also
orthogonal to each other [31]. From this configuration, we get 12 intersection points for procuring
indistinguishable entangled photons.

The highlighted points 5, 6, 7, and 8 from the figure :13 are the standard Bell states, where pair (5,
6) originates from crystal 1 and pair (7, 8) originates from crystal 2. Points 1, 2, 3, and 4 are the
result of the product of two bell states generated simultaneously using photons from crystals 1 and
2. Points ( 9, 11) and (10, 12) are VV and HH states generated simultaneously by photons from
crystals 1 and 2 respectively.
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Figure 13: Schematic representation of crossed type-2 bulk crystals.

5.2.4 Sandwiched double crystals

We can also use two type-2 crystals whose optic axis are parallel to each other but are sandwiched
by a HWP [32] [Fig:14]. We can pump a vertically polarized beam instead of diagonal. First the
crystal converts a horizontal pump beam to a horizontally polarised ordinary beam and a vertically
polarised extraordinary beam. The HWP converts the vertical pump beam into a horizontal pump
beam and incidents it on the second crystal. The second crystal converts the vertical beam to a
vertically polarized ordinary beam and a horizontally polarised extraordinary beam.

Collinear schemes

5.2.5 Position correlations

We can also force position correlated photons in SPDC into polarization entanglement [4] [Fig
:15]. For example, we can use a type-0 PPKTP crystal and manipulate the polarization state of
only half of its down converted photons using a segmented HWP and later we can establish spatial
indistinguishability using an 𝛼- BBO crystal to overlap both the beams. We can use a wavelength
division multiplexer to separate signal and idler beams.
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Figure 14: Schematic representation of sandwiched source.

Figure 15: Schematic representation for conversion of position correlated photons to polarization
entanglement.

5.3 Single crystal - double pass

Non-collinear schemes

Using two routes for the pump beam within the same crystal is another way to create entanglement.
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5.3.1 Rail-cross scheme

In this scheme, the pump photon falls on the crystal and is reflected by using a mirror [33, 34, 37].
The down converted photons are also reflected making sure that they overlap with the second-pass
converted photons [Fig :16]. The entangled state is

| 𝐻𝐻⟩1 ± 𝑒𝑖Δ𝜑 | 𝑉𝑉⟩2

where Δ𝜑 is the phase difference due to the optical path length difference.

Variations in this phase shift will also be influenced by changes in the optical path length of the
pump and the SPDC photons, and we need to provide interferometric stability to this system.

Figure 16: Schematic representation of rail-cross scheme.

5.3.2 Sagnac interferometer

In this scheme, the pump photon is made to fall on the crystal on it’s both sides [Fig :17]. The pump
beam through one arm produces a signal and an idler beam which are horizontally polarized. From
another arm of the loop, the pump beam down converts into signal and idler beam with horizontal
polarization which are then converted to two vertically polarized light using an achromatic half
waveplate [35, 36]. The down converted photons from both arms interfere with the polarizing
beam splitter. This scheme ensures phase stability. In order to remove any kind of walk-off, we
need to make sure the crystal is placed symmetrically in the loop.
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Figure 17: Schematic representation of Sagnac interferometer.

Collinear schemes

5.3.3 Folded Mach-Zehnder

This scheme uses two loops where one loop sends a bidirectional pump beam onto the type-2
crystal and another loop collects down converted photons [Fig :18]. In the latter, one arm has
|HV> states whereas in another arm, by using a half wave plate, |HV> is converted to |VH> state.
Photons from both arms are made to interfere with a polarising beam splitter. Hence entangled
photons are generated. The disadvantage of this scheme is that it has 2 loops [38, 39]. Here, all the
emitted photon pairs are polarization entangled irrespective of their wavelengths and directions of
emission.

5.3.4 Sagnac configuration

In this scheme, both pump and down converted photons travel the same path and we can use type-
0, 1 or 2 phase matching [Fig :20]. Let’s take an example of a type-2 phase match condition. A
diagonally polarised pump beam is incident on PBS. PBS transmits vertically polarized light and
reflects horizontally polarised light. One arm converts |H> →|HV> which is passed through HWP
to get |VH>. In another arm, |V>→|HV>. Photons from both arms interfere with PBS. This scheme
is one of the most widely used schemes and offers great interferometric stability. [40, 41].
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Figure 18: Schematic representation of folded Mach-Zehnder setup.

Figure 19: Schematic representation of Sagnac configuration.

5.3.5 Folded sandwich configuration

This configuration has been noted for its brightest source in literature. This scheme has lesser
physical footprints than the Sagnac interferometer and also completely utilizes the pump beam.
Here [Fig :21], in the first trip, |V> pump beam is down converted to |VV> which is then converted
(by QWP) and reflected as |HH>. In the second trip, the reflected |V> pump beam is converted to
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|VV>. Both the converted photons are impinged on 𝑌𝑉𝑂4 crystal which removes spatial walk-offs
[42].

Figure 20: Schematic representation of the folded sandwich configuration.

5.3.6 Linear displacement interferometer

Even in this scheme [Fig :19], pump photons travel through different regions in the crystal. Here
the photons are pre-compensated and also post-compensated. We first incident a pre-compensated
pump photon onto BBO crystal. Its birefringence property will separate the pump photon into
two beams. We are manipulating the polarization of the photons using HWP. Again by using the
birefringence property, we are interfering both beams in the BBO cystal. The phase difference is
post-compensated using 𝑌𝑉𝑂4 crystal [43].

Figure 21: Schematic representation of linear displacement interferometer.
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Part III

Methods to characterise entangled photons
source
The characterization involves measuring the quantum correlations between the two photons, in-
cluding their polarization, phase, and spatial modes. Precise control and manipulation of these
properties are critical for many quantum information applications, such as quantum key distribu-
tion and quantum teleportation.

In this section, we focus on the experimental characterization of entangled photons. Specifically,
we investigate the brightness of the entangled photon source, the heralding efficiency, the Hanbury
Brown and Twiss (HBT) experiment, the violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality, the visibility of the interference fringes, the polarization correlation measurements, and
the reconstruction of the quantum state using quantum state tomography.

6 Methods:

6.1 Brightness

It is defined as the number of photon pairs emitted per unit time, per unit wavelength, per unit solid
angle, and per unit area of the crystal. The brightness of the photon pairs directly affects the quality
and fidelity of quantum entanglement, making it a crucial metric for many quantum information
processing applications [21].

The brightness of entangled photon pairs can be increased by using a variety of techniques. For
instance, the use of highly efficient detectors and optimized optical components can reduce the
loss of photons and enhance the collection efficiency, leading to higher brightness. Additionally,
the use of non-linear crystals with high nonlinearities and small cross-sectional areas can increase
the probability of photon pair generation and improve the brightness.

The characterization of entangled photons’ brightness requires precise measurement techniques,
such as coincidence counting, which involves detecting the coincident arrival of the two entangled
photons. The coincidence rate, defined as the number of coincident events per unit time, can be
used to determine the brightness of the photon pairs.

The measurement of the brightness can provide important information about the quality of entan-
glement. For example, a high coincidence rate indicates a high degree of correlation between the
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entangled photons, while a low coincidence rate may indicate a poor quality of entanglement due
to photon loss or decoherence. Moreover, the brightness can also affect the fidelity of quantum
teleportation and quantum cryptography protocols, making it a critical parameter to optimize in
these applications.

6.2 Heralding efficiency

It refers to the probability of detecting one of the entangled photons, called the herald photon, and
thereby heralding the presence of the other entangled photon [23].

In reality, various factors can cause losses, including the absorption of the crystal, the reflection
and scattering of photons, and the inefficiency of detectors. These losses can reduce the heralding
efficiency of the process, leading to a lower probability of detecting the entangled photon pair.

6.3 Hanbury Brown -Twiss experiment (HBT)

The source of SPDC must produce single photons that are quantum in nature, and not classical.
To verify this, we can employ the second-order correlation function which also ensures that the
generated photons exhibit the property of antibunching, meaning they are equally spaced from
each other and hence considered single photons [18].

After the down conversion, idler photons are directly sent to a single photon detector which are
used as a trigger. Signal photons are sent to fiber based beam splitter whose 2 outputs are connected
to single photon detectors. If the electromagnetic fields are classical in nature, then they passes
through both the paths in the beam splitter. If they are particles (quantum), then there is 50%
probability to pass in either of the two outputs. We record the coincidence counts in all three
detectors and calculate the second order correlation function.

Second order correlation function is given by,

𝑔2(𝜏) = ⟨𝐼 (𝑡)𝐼 (𝑡 + 𝜏)⟩
⟨𝐼 (𝑡)⟩⟨𝐼 (𝑡 + 𝜏)⟩

where I(t) is the intensity of the light beam and 𝜏 is the time delay in the intensity correlation .

Non classical light show sub Poissonian photon statistics and they have,

𝑔2(𝜏 = 0) < 1
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6.4 Visibility

The visibility of an interference pattern provides a quantitative measurement of the contrast be-
tween the bright and dark fringes produced by the interference of waves [21]. This measure is
related to the coherence properties of the light source, and it is particularly useful for investigating
the coherence of photons in an interferometer. When multiple waves interfere, they create con-
structive or destructive interference, depending on their relative phase. The degree of coherence
between the waves is a significant factor in determining the visibility of the interference pattern
because it affects the probability of constructive interference. In the case of photons, perfect coher-
ence means that they have the same polarization, frequency, and phase. When photons are perfectly
coherent, the interference pattern will have high visibility, indicating a high degree of constructive
interference. However, if the photons are not perfectly coherent, the interference pattern’s vis-
ibility will decrease, resulting in a lower degree of constructive interference. Additionally, the
visibility of the interference pattern can be used to distinguish between entangled and independent
photons. Entangled photons exhibit a higher degree of coherence and visibility, leading to a more
pronounced interference pattern compared to independent photons.

The visibility is calculated as :

𝜐 =
𝐶𝑚𝑎𝑥 −𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥 +𝐶𝑚𝑖𝑛

Which can be written as ,

𝜐 =
𝑃𝐻𝐻 +𝑃𝑉𝑉 −𝑃𝐻𝑉 −𝑃𝑉𝐻

𝑃𝐻𝐻 +𝑃𝑉𝑉 +𝑃𝐻𝑉 +𝑃𝑉𝐻

(29)

where 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 are maximal and minimal coincidence count rates. 𝑃𝛼𝛽 is the probability of
getting coincidence counts in 𝛼 and 𝛽 polarization states.

For an ideal entanglement case, 𝜐 = 1(100%).

6.5 CHSH inequality

To prove the photons are entangled, we will have to first prove they are non local. The property
of entangled quantum systems is that upon measuring one quantum system we can predict the
properties of the other entangled system. This would imply that the information is being passed
between the two systems more than the speed of light but this violates causality. So Einstein, Boris
Podolsky and Nathan Rosen (in 1935) [19] argued that the quantum theory is incomplete and there
are certain local variables that are hidden in these quantum systems and they are responsible for the
property of entanglement. This is the famous EPR paradox and it showed that quantum mechanics
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is nonlocal (Locality means that the information between two particles cannot be communicated
faster than the speed of light).

John Stewart Bell demonstrated that the local hidden variable theory is inconsistent with the statis-
tical predictions of quantum mechanics by investigating the EPR paradox. To prove Bell’s theorem,
various tests, known as Bell’s inequality tests, have been conducted. The CHSH inequality test is
one of the most commonly used tests to verify Bell’s theorem.

Let’s send a correlated pair of particles to A and B. Let the correlation between the two particles
be _ which is locally present but is hidden away from us. Let the value of _ be present in each
pair and vary as per the probability distribution ρ(λ). A and B’s outcomes are a , b 𝜖 {-1 , 1 } and
they follow a probability distribution of A(a, _ ) & B(b, _), where a & b represent the experimental
settings of their measuring instruments, which we are free to modify. The expectation value of
their outcome is given by:

𝐸 (𝑎, 𝑏) =
�

_

𝐴(𝑎,_)𝐵(𝑏,_)𝜌(_)𝑑_

𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) =
�

_

𝐴(𝑎1,_)𝐵(𝑏1,_)𝜌(_)𝑑_−
�

_

𝐴(𝑎1,_)𝐵(𝑏2,_)𝜌(_)𝑑_

𝐸 (𝑎1, 𝑏1)−𝐸 (𝑎1, 𝑏2) =
�

_

[𝐴(𝑎1,_)𝐵(𝑏1,_)−𝐴(𝑎1,_)𝐵(𝑏2,_)±𝐴(𝑎1,_)𝐵(𝑏1,_)𝐴(𝑎2,_)𝐵(𝑏2,_)

∓𝐴(𝑎1,_)𝐵(𝑏1,_)𝐴(𝑎2,_)𝐵(𝑏2,_)]𝜌(_)𝑑_

=

�

_

[𝐴(𝑎1,_)𝐵(𝑏1,_) (1± 𝐴(𝑎2,_)𝐵(𝑏2,_)) − 𝐴(𝑎1,_)𝐵(𝑏2,_) (1± 𝐴(𝑎2,_)𝐵(𝑏1,_))] 𝜌(_)𝑑_

Take the absolute values on both sides:

|𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) | =
�

|𝐴(𝑎1,_)𝐵(𝑏1,_) (1± 𝐴(𝑎2,_)𝐵(𝑏2,_))

−𝐴(𝑎1,_)𝐵(𝑏2,_) (1± 𝐴(𝑎2,_)𝐵(𝑏1,_)) |𝜌(_)𝑑_

On using the triangle inequality : |𝑎− 𝑏 | ≤ |𝑎 | + |𝑏 |

|𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) | ≤
�

|𝐴(𝑎1,_)𝐵(𝑏1,_) (1± 𝐴(𝑎2,_)𝐵(𝑏2,_)) |

−|𝐴(𝑎1,_)𝐵(𝑏2,_) (1± 𝐴(𝑎2,_)𝐵(𝑏1,_)) |𝜌(_)𝑑_
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As |𝐴(𝑎,_)𝐵(𝑏,_) | ≤ 1(because maximum value of probability distributions can be 1)

|𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) | ≤
�

[(1± 𝐴(𝑎2,_)𝐵(𝑏2,_)) − (1± 𝐴(𝑎2,_)𝐵(𝑏1,_))] 𝜌(_)𝑑_

|𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) | ≤
[�

(1± 𝐴(𝑎2,_)𝐵(𝑏2,_))𝜌(_)𝑑_
]
−

[�
(1± 𝐴(𝑎2,_)𝐵(𝑏1,_))𝜌(_)𝑑_

]
|𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) | ≤ 2− |𝐸 (𝑎2, 𝑏2) −𝐸 (𝑎2, 𝑏1) |

𝑆 = |𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) | + |𝐸 (𝑎2, 𝑏2) +𝐸 (𝑎2, 𝑏1) | (30)

𝑆 = |𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) +𝐸 (𝑎2, 𝑏2) +𝐸 (𝑎2, 𝑏1) | ≤ 2

Now lets consider the particles to be quantum.

Let 𝛷𝑎 and 𝛷𝑏 be the orientation of the polarizers in arms A and B and are kept in the x-z plane
[32]. The projection operators of both polarizers are given by :

Π𝑎 = |𝑛+𝑎⟩⟨𝑛+𝑎 | − |𝑛−𝑎 ⟩⟨𝑛−𝑎 |

Π𝑏 = |𝑛+𝑏⟩⟨𝑛
+
𝑏 | − |𝑛−𝑏 ⟩⟨𝑛

−
𝑏 |

Let 𝛼, 𝛽 be the angle of orientation for both polarizers. On rewriting the projection operators in
Pauli matrices,

Π𝑎 =
−→𝜎.−→𝑎 ;Π𝑏 =

−→𝜎.
−→
𝑏

and

−→𝑎 = cos(𝛼)�̂� + sin(𝛼) �̂�
−→
𝑏 = cos(𝛽)�̂� + sin(𝛽) �̂�

The source produces the photon pairs in the state,

|𝜓⟩ = 1
√

2

[
| 𝐻⟩1 | 𝐻⟩2 ± 𝑒𝑖𝜑 | 𝑉⟩1 | 𝑉⟩2

]
The joint operator acting on the entire state |Ψ> will be given by:

Π = Π𝑎 ⊗Π𝑏
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Expectation value of both orientations is given by,

𝐸 (𝑎, 𝑏) = ⟨𝜓 |Π𝑎 ⊗Π𝑏 |𝜓⟩

=
⟨𝐻𝐻 |Π𝑎 ⊗Π𝑏 |𝐻𝐻⟩

2
+ ⟨𝐻𝐻 |Π𝑎 ⊗Π𝑏 |𝑉𝑉⟩

2
+ ⟨𝑉𝑉 |Π𝑎 ⊗Π𝑏 |𝐻𝐻⟩

2
+ ⟨𝑉𝑉 |Π𝑎 ⊗Π𝑏 |𝑉𝑉⟩

2

Sustituting the values of −→𝑎 and
−→
𝑏 :

𝐸 (𝑎, 𝑏) = 1
2
[⟨𝐻𝐻 | (cos(𝛼)−→𝜎 𝑥 + sin(𝛼)−→𝜎 𝑧) ⊗ (cos(𝛽)−→𝜎 𝑥 + sin(𝛽)−→𝜎 𝑧) |𝐻𝐻⟩

+⟨𝐻𝐻 | (cos(𝛼)−→𝜎 𝑥 + sin(𝛼)−→𝜎 𝑧) ⊗ (cos(𝛽)−→𝜎 𝑥 + sin(𝛽)−→𝜎 𝑧) |𝑉𝑉⟩

+⟨𝑉𝑉 | (cos(𝛼)−→𝜎 𝑥 + sin(𝛼)−→𝜎 𝑧) ⊗ (cos(𝛽)−→𝜎 𝑥 + sin(𝛽)−→𝜎 𝑧) |𝐻𝐻⟩

+⟨𝑉𝑉 | (cos(𝛼)−→𝜎 𝑥 + sin(𝛼)−→𝜎 𝑧) ⊗ (cos(𝛽)−→𝜎 𝑥 + sin(𝛽)−→𝜎 𝑧) |𝑉𝑉⟩]

.

This can be simplified to

𝐸 (𝑎, 𝑏) = cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) = cos(𝛼− 𝛽)

The S parameter can be calculated as,

𝑆 = |𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) +𝐸 (𝑎2, 𝑏2) +𝐸 (𝑎2, 𝑏1) |

𝑆 = cos(𝛼1 − 𝛽1) − cos(𝛼1 − 𝛽2) + cos(𝛼2 − 𝛽2) + cos(𝛼2 − 𝛽1)

Now, for the choices of 𝛼1 = 0�, 𝛼2 = 90�𝑎𝑛𝑑𝛽1 = 45�, 𝛽2 = 135�, we get,

𝑆 = 2
√

2

So quantum mechanism puts a upper bound of 2
√

2 to the value of S. So if the photons are nonlocal
and correlated, then they must obey the condition 2 < 𝑆 ≤ 2

√
2 .

6.6 Polarization correlation measurements

At the polarizers, the state of the down converted photons are in a superposition of both horizontal
and vertical photons. If we measure horizontal (/vertical) state in one arm, the superposition state
in another arm also collapses to horizontal /vertical state depending on which states have been
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entangled. Hence we will get high coincidence counts. If we project non - entangled states on the
polarisers, then we will obviously get low coincidence counts. We can use this criteria to assess
which all polarization degrees of freedom are entangled.

In general, if |𝛼⟩ is the polarization angle of a polarizer at A and |𝛽⟩ is the polarization angle of a
polarizer at B, the probability of finding the incoming two photon state, 𝜌, being projected on to
polarization state |𝛼𝛽⟩ is given by [44] :

𝑝𝛼𝛽 = 𝑇𝑟{𝜌 |𝛼𝛽⟩⟨𝛼𝛽 |}

If the polarization state of the photon pair is in a pure state |𝛹 ⟩, then

𝑝𝛼𝛽 = |⟨𝛼𝛽 |𝛹 ⟩|2}

If the source has produced the state:

|Φ±⟩ = 1
√

2
[| 𝐻⟩1 | 𝐻⟩2± | 𝑉⟩1 | 𝑉⟩2]

So the probability of its projection onto polarization state |𝛼𝛽⟩ is given by,

𝑝𝛼𝛽 = |⟨𝛼1 |⟨𝛽2 |Φ±⟩|2 = 1
2
| [cos𝛼 cos 𝛽± sin𝛼 sin 𝛽] |2

=
1
2

cos2(𝛼∓ 𝛽)

By looking at the pattern of variations in 𝑝𝛼𝛽 , we can find out whether our source has produced
the state |Φ+⟩ or |Φ−⟩.

6.7 Quantum state tomography

Quantum state tomography is a method to characterize the property of an unknown quantum sys-
tem. We know that measurement destroys the quantum state, hence limiting us from making mul-
tiple measurements on the same state to measure all its properties. In this technique, in order
to know the complete state of a photon, we perform multiple measurements on an identical en-
semble of down converted photons by projecting them onto different bases and hence calculating
their probabilities. We use this probabilistic mixture to construct a density matrix which helps in
characterizing the entangled photons [22].
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Let us look step by step on how to construct a density matrix.

We shall use | 00⟩, | 11⟩, | 01⟩,10⟩ as the basis states. For a single qubit, we can represent the
density matrix as:

�̂� =
1
2

3∑︁
𝑖=0

𝑆𝑖�̂�𝑖

using the Stokes parameter S and Pauli matrices �̂�. Stokes parameter can be represented as (where
| 0⟩, | 1⟩are basis states):

𝑆0 = 𝑃|0⟩ +𝑃|1⟩

𝑆1 = 𝑃 1√
2
( |0⟩+|1⟩) −𝑃 1√

2
( |0⟩−|1⟩)

𝑆2 = 𝑃 1√
2
( |0⟩+𝑖 |1⟩) −𝑃 1√

2
( |0⟩−𝑖 |1⟩)

𝑆3 = 𝑃|0⟩ −𝑃|1⟩

where 𝑃|Ψ⟩ denotes the probability of measuring the state |Ψ>. We can see that 𝑆0 is always 1.

But S parameters are used for orthogonal bases and T parameters which are S-like parameters are
used for representing nonorthogonal bases on the Poincare sphere. But the problem is,

�̂� ≠
1
2

3∑︁
𝑖=0

𝑇𝑖𝜏𝑖

W.K.T 𝑆𝑖 ≡ 𝑇𝑟{�̂�𝑖 �̂�} and similarly 𝑇𝑖 ≡ 𝑇𝑟{𝜏𝑖 �̂�} where 𝜏𝑖 ≡| Ψ𝑖⟩⟨Ψ𝑖 |− | Ψ⊥
𝑖
⟩⟨Ψ⊥

𝑖
|

Hence we will have to convert T parameters into the S parameters to construct the density matrix
and can use the relation,

©«
𝑇0

𝑇1

𝑇2

𝑇3

ª®®®®®¬
=

1
2

©«
𝑇𝑟{𝜏0�̂�0} 𝑇𝑟{𝜏0�̂�1} 𝑇𝑟{𝜏0�̂�2} 𝑇𝑟{𝜏0�̂�3}
𝑇𝑟{𝜏1�̂�0} 𝑇𝑟{𝜏1�̂�1} 𝑇𝑟{𝜏1�̂�2} 𝑇𝑟{𝜏1�̂�3}
𝑇𝑟{𝜏2�̂�0} 𝑇𝑟{𝜏2�̂�1} 𝑇𝑟{𝜏2�̂�2} 𝑇𝑟{𝜏2�̂�3}
𝑇𝑟{𝜏3�̂�0} 𝑇𝑟{𝜏3�̂�1} 𝑇𝑟{𝜏3�̂�2} 𝑇𝑟{𝜏3�̂�3}

ª®®®®®¬
©«
𝑆0

𝑆1

𝑆2

𝑆3

ª®®®®®¬
Now we shall use the three Strokes parameters as co-ordinate axes in 3D space of the Poincare
sphere. It is necessary for all physical states to be contained within a sphere. Pure states are
located on the surface, with linearly polarized states positioned on the equator and circular states
situated at the poles. Inside the sphere, mixed states can be found, with the center representing a
completely unpolarized state or totally mixed state. This arrangement characterizes the location of
different types of states within the sphere.
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Figure 22: The Bloch Poincare sphere. 𝑆1, 𝑆2, 𝑆3 represent the three orthogonal bases.
Different values of S / T refers to different points on the three axes, finally identifying the

unknown state.

For a n-qubit state tomography,

𝑆𝑖1,𝑖2,...𝑖𝑛 =

(
𝑃𝜓1 −𝑃𝜓⊥

1

)
⊗

(
𝑃𝜓2 −𝑃𝜓⊥

2

)
⊗ ...⊗

(
𝑃𝜓𝑛

−𝑃𝜓⊥
𝑛

)

�̂� =
1
2𝑛

3∑︁
𝑖1,....𝑖𝑛=0

𝑆𝑖1,....𝑖𝑛𝜎𝑖1 ⊗ ˆ𝜎𝑖2 ⊗ ....⊗𝜎𝑖𝑛

We can also represent a given density matrix in the form of a Werner state :

�̂�𝑊 = 𝑃 |𝛾⟩⟨𝛾 | + (1−𝑃) 1
4
𝐼

where ⟨𝛾 | is the maximally entangled state; 1
4 𝐼 is the totally mixed state.
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(a) (b)

(c)

Figure 23: A series of projective measurements on the (a) right-circular (b) diagonal and (c) hor-
izontal axes to identify the unknown state in the Poincare sphere.Red circles are the projective
measurements of the unknown state (Darkened red circle).

Errors: real tomography

Tomography of a single-qubit suffers from various sources of errors, such as statistical errors,
imperfections in optical components, detection inefficiencies, and drifts in the produced states.
These errors affect the estimation of an unknown state by producing a Gaussian error ball instead
of a point on the Poincare sphere.

Measurement errors in the basis result in two cones on the Poincare sphere, which meet at the
sphere’s center. This produces a disc with a certain width on the surface and tapers to a point at
the center, converting a plane to a disc with uniform thickness. Statistical errors further affect the
knowledge of the unknown state by producing a Gaussian error ball. All the errors that contribute
are Gaussian as the photons generation and detection statistics are Gaussian.
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Figure 24: Representation of unphysical state (error ball) on Poincare sphere.

The use of orthogonal bases in tomography is preferred over non-orthogonal bases, as non-orthogonal
bases give rise to non-symmetric error balls. Moreover, there is a possibility that the error ball lies
outside the sphere, implying the presence of unphysical states. To avoid this, an upper bound is
set for the global maximum using the maximum likelihood technique to ensure physical states. In
order to obtain physical states through tomography, it is necessary to ensure that the estimated den-
sity matrix only contains legally allowed states. To achieve this, it is important to set a maximum
value for the likelihood function.

The likelihood function provides information about the unknown state, by assigning probabilities
to certain regions of the Poincare sphere. This means that some states are more likely to occur than
others, and the likelihood of certain states is more favored than others. This approach allows for
the selection of states that are most consistent with the data while excluding unphysical states lying
outside the sphere. Therefore, setting a maximum value for the likelihood function is essential to
ensure the accuracy and validity of the tomography results.

Firstly, in order for our density matrix to be legal / physical, our matrix must be non-negative -
definite - Hermitian density matrix of trace one. So, if any matrix �̂� has to be non-negative, then
[45],

⟨Ψ| �̂� | Ψ⟩ ≥ 0;∀ | Ψ⟩

But any matrix which is non-negative definite can be written as :

�̂� = �̂�†�̂�
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On substituting,
⟨Ψ|�̂�†�̂� | Ψ⟩ ≥ ⟨Ψ′ | Ψ′⟩ ≥ 0

where | Ψ′⟩ = �̂� | Ψ⟩ and for the matrix to be Hermitian,

(�̂�†�̂�)† = �̂�†(�̂�†)† = �̂�†�̂�

To ensure normalization,

�̂� =
�̂�†�̂�

𝑇𝑟{�̂�†�̂�}

Now, the physical density matrix is given by :

�̂�𝑝 =
�̂�†(𝑏)�̂�(𝑏)

𝑇𝑟{�̂�†(𝑏)�̂�(𝑏)}

b represents 𝑏′
𝑖
𝑠 which are the components of the matrix �̂�.

Now we need to define a maximum likelihood function.

We will assume that we are using Gaussian counting statistics. If we make a total of Ξ measure-
ments and let 𝑚𝜐 be the number of measurements obtained for 𝜐th measurement. The expected
values for these measurements on an unknown state �̂�𝑝 are given by 𝑚𝜐 = N⟨Ψ𝜐 | �̂�𝑝 |Ψ𝜐⟩ where
N is the unknown normalization value. As the number of measurements made is not specific, we
define N= 𝑛𝜐

𝑃𝜐
.The probability of obtaining 𝑚𝜐 from �̂�𝑝 is given by :

𝑃(𝑚1,𝑚2, ..𝑚Ξ) =
1
NΠ

𝜐
𝑒𝑥𝑝

[
−(𝑚𝜐 −𝑚𝜐)2

2�̂�2
𝜐

]
Thus the likelihood that the matrix �̂�𝑝 (𝑏1, 𝑏2, ...𝑏𝑚2) could produce the measured data (𝑏1, 𝑏2, ..𝑏Ξ)
is :

𝑃(𝑏1, 𝑏2, ..𝑏Ξ) =
1

𝑁𝑜𝑟𝑚
Π
𝜐
𝑒𝑥𝑝

[
−(N<Ψ𝜐 | �̂�𝑃(𝑏1,𝑏2,...𝑏𝑚2)|Ψ𝜐>−𝑚𝜐)2

2N<Ψ𝜐 | �̂�𝑃(𝑏1,𝑏2,...𝑏𝑚2)|Ψ𝜐>

]
where Norm is the normalization constant and

𝑚𝜐 (𝑏1, 𝑏2, ...𝑏𝑚2) =N⟨Ψ | �̂�𝑃 (𝑏1, 𝑏2, ...𝑏𝑚2) |Ψ𝜐⟩

We can maximise the above probability function or take a minimum of negative of log of the above
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equation.As N is unknown, we define 𝑏′
𝑖
=N𝑏𝑖.

L(𝑏′1, 𝑏
′
2, ...𝑏

′
𝑚2) =

∑︁
𝜐

[
(<Ψ𝜐 | �̂�𝑃(b′1,b′2,...b′

𝑚2)|Ψ𝜐>−𝑚𝜐)2

2<Ψ𝜐 | �̂�𝑃(b′1,b′2,...b′
𝑚2)|Ψ𝜐>

+
log(⟨Ψ𝜐 | �̂�𝑃 (𝑏′1, 𝑏

′
2, ...𝑏

′
𝑚2) |Ψ𝜐⟩)

2

]
We need to numerically minimize this function and find the values for 𝑏′

𝑖′𝑠. This is the maximum
likelihood function. The density matrix constructed out of these 𝑏′

𝑖′𝑠 will give us physical states
only.

The next question we need to answer is, how can we characterize the photons using a density
matrix?

1] Fidelity : It is a measure of how close the experimentally constructed density matrix is to the
theoretically derived density matrix. Fidelity is given by :

𝐹 (𝜌1, 𝜌2) = (𝑇𝑟{
√︃√

𝜌1𝜌2
√
𝜌1})2

where 𝜌1, 𝜌2 are theoretical and experimentally calculated denity matrix.

2] Concurrence: It is a measure of the degree of entanglement for two-qubit systems. It is defined
as:

𝐶 = 𝑚𝑎𝑥{0,√𝑎1 −
√
𝑎2 −

√
𝑎3 −

√
𝑎4}

where 𝑎′
𝑖
𝑠 are the eigenvalues of the non - Hermitian matrix 𝐴 which can be arranged in decreasing

order as 𝑎1 ≥ 𝑎2 ≥ 𝑎3 ≥ 𝑎4.

𝐴 is defined as :
�̂� = �̂�Σ̂ �̂�𝑇 Σ̂

where Σ̂ is the spin flip matrix given by :

Σ̂ =

©«
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

ª®®®®®¬
For product states, the concurrence ranges from 0 to a maximum value of 1 for Bell states.
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3] Linear entropy: The linear entropy quantifies the degree of mixture in a quantum state. The
linear entropy for a two-qubit system is defined by:

𝑆𝐿 =
1
4
(1−𝑇𝑟 ( �̂�2))

𝑆𝐿 ranges from 0 for pure states to 1 for a completely mixed state.

4] Purity: Purity is a crucial measure of entangled photons that characterizes the degree of cor-
relation between the entangled state and the mixed state. It provides valuable information about
the degree of entanglement and the amount of noise and decoherence present in the system. The
purity of the entangled photon state can be quantified using the density matrix formalism

𝑃 = 𝑇𝑟 (𝜌2)

The purity ranges between 0 and 1, where a value of 1 corresponds to a pure state, while a value
of 0 corresponds to a maximally mixed state.

Measuring both purity and linear entropy can offer a comprehensive understanding of the behavior
of the entangled photons. In particular, when observing a high level of entanglement between
the photons alongside a low level of purity, this implies that the photons are combined with other
states, thereby degrading their quantum coherence. Conversely, if a low level of entanglement is
observed between the photons, but a high level of purity is detected, this suggests that the photons
are not entangled, but their quantum coherence remains intact.
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Part IV

Experimental generation and
characterisation of entangled photons
source

7 Experimental setup on the generation of entangled photons

Figure 25 depicts a schematic diagram of the experimental setup used to generate polarization-
entangled photons. The apparatus consists of a pump laser with 15mW power and 405nm wave-
length that incidents a vertical beam of photons onto a crossed type-1 BBO crystal after passing
through a half waveplate and a precompensation crystal [𝑌𝑉𝑂4]. The down converted photons of
degenerate wavelengths of 810nm are emitted at a half opening angle of 3° which are passed into a
post compensation crystal [𝑌𝑉𝑂4]. Later a long pass filter is used to block pump photons and pass
only the signal and idler beam into polarisers which are then collected by the fiber collimators to
pass through the polarization maintaning fibers to direct them on the avalanche photodiodes (APD)
in the coincidence logic counter. We have used quED - Entanglement Demonstrator from qutools
to perform the experiment [Fig :26].

If we look at the down conversion process closely, we are using a type-1 crossed BBO crystal.
So the incident photon must be diagonally polarised. Detailed mechanism of down conversion in
crossed type-1 crystal is explained in chapter 2. Hence we are placing a HWP oriented at 22.5° to
the vertical polarization of the laser source. To differentiate between horizontal and vertical pho-
tons, a pre-compensation crystal [𝑌𝑉𝑂4] was employed, which introduced a slight delay between
them so that both photons incident simultaneously on both the BBO crystals. First crystal down
converts vertically polarised pump beam to horizontally polarised signal and idler beam; second
crystal down converts horizontally polarised pump beam to vertically polarised signal and idler
beam. The two down converted cones are made to overlap with each other using a post compen-
sation crystal [𝑌𝑉𝑂4] which removes spatial and temporal walk - offs. We can choose any two
diametrically opposite points to obtain the polarization entangled state :

| 𝐻⟩1 | 𝐻⟩2 ± 𝑒𝑖𝜑 | 𝑉⟩1 | 𝑉⟩2.
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Figure 25: Schematic representation of entangled photons source.

Figure 26: Experimental setup on generation of entangled photons.
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Figure 27: Schematic representation of generation of entangled photons in our setup.

8 Experimental results on the characterization of entangled pho-
tons source

1.Brightness :

Brightness = Number of coincidence counts/s/mW

Experimental result:

Brightness = 114.92 cps/mW

2.Heralding efficiency:

Heralding efficiency is the ratio of observed coincidence counts to the single counts of signal/idler
counts.

Experimental result:

Heralding efficiency = 0.0756

We have obtained 7.5% heralding efficiency.

3.HBT experiment:

Experimental procedure :

The down converted photons are directly passed into the long pass filters to incident them on the
single photon detectors. As the detectors measure coincidence counts, we can write the second
order correlation in terms of probabilities as (for 𝜏 = 0 case) :
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𝑔2(0) = 𝑃𝑡12
𝑃𝑡1𝑃𝑡2

where 𝑃𝑡12 is the probability of measuring coincidence counts in all three detectors simultaneously.
𝑃𝑡1/2 is probability of finding coincidence counts in trigger and 1𝑠𝑡 or 2𝑛𝑑 detector. Probabilities
can be expressed in terms of triple coincidences as 𝑃𝑡12 =

𝑁𝑡12
𝑁𝑡

and double coincidences 𝑁𝑡1, 𝑁𝑡2 .
So,

𝑔2(0) = 𝑁𝑡12𝑁𝑡

𝑁𝑡1𝑁𝑡2

𝑁𝑡 is the single count of the trigger (idler) detector.

Figure 28: Schematic of HBT experiment

Experimental result:

In our experiment, the obtained value of 𝑔2(0) = 0.003919 ± 0.003, which is less than 1, supports
the fact that the photons are quantum in nature and have spatial coherence. Hence the source
produces single photons.
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Figure 29: Experimental data of HBT experiment.

The three detectors are connected to the control unit of Qutools. This image is displayed on
Qutools control unit screen showing the triple coincidence counts (white line) ; single counts of
trigger channel (orange line ) and first detector (blue line); double coincidence counts of trigger
and first detector (green line) , trigger and second detector (pink line).

4.Visibility:

Experimental procedure:

Set the polarizers in both the arms at (H, H), (V, V), (V, H), (H, V) polarization states and note
down their coincidence counts. Use the visibility formula given in the equation.29 to estimate the
available pairs of entangled photons.

Figure 30: Optical schematic for visibility measurement.
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Figure 31: Experimental data of visibility.

Experimental result:

Experimentally, we have obtained visibility of 97.6% in H-V basis and 89.1% in D-A basis.

5.CHSH inequality:

Figure 32: Schematic for CHSH inequality

59



Experimental procedure:

The polarizer for the signal beam is set at two angles (𝑎, 𝑎′) and similarly, for the idler beam, we set
(𝑏, 𝑏′) in the polarizer. We can make 4 pairs of combinations of polarizers [(𝑎, 𝑏), (𝑎, 𝑏′), (𝑎′, 𝑏), (𝑎′, 𝑏′)]
out of these four angles. For each pair of these combinations, the expectation values are calculated
as ,

𝐸 (𝑎1, 𝑏1) =
𝐶 (𝑎1, 𝑏1) −𝐶 (𝑎1, 𝑏

⊥
1 ) −𝐶 (𝑎⊥1 , 𝑏1) +𝐶 (𝑎⊥1 , 𝑏

⊥
1 )

𝐶 (𝑎1, 𝑏1) +𝐶 (𝑎1, 𝑏
⊥
1 ) +𝐶 (𝑎⊥1 , 𝑏1) +𝐶 (𝑎⊥1 , 𝑏

⊥
1 )

where 𝐶 (𝑎1, 𝑏1) are the coincidence counts. 𝑎⊥1 , 𝑏
⊥
1 are the perpendicular directions to a , b. So we

require 16 pairs of basis to evaluate the S parameter. We can calculate the S value by,

𝑆 = |𝐸 (𝑎1, 𝑏1) −𝐸 (𝑎1, 𝑏2) +𝐸 (𝑎2, 𝑏2) +𝐸 (𝑎2, 𝑏1) | ≤ 2
√

2

Experimental result:

Experimentally we have obtained S = 2.629±0.021 which is within the range 2 < 𝑆 ≤ 2
√

2. Hence
the generated photons are non local.

Figure 33: Experimental data for CHSH inequality.
Coincidence counts for all 16 basis choices has been displayed.

6.Polarization correlation measurements :

Experimental procedure:

We consider any four bases of our choice for polariser A and rotate the polariser B in 360° for every
basis choice and look at the variations in their coincidence counts by plotting them on a graph. We
have chosen horizontal, vertical, diagonal and antidiagonal basis for polariser A and concidence
counts for every 10° rotation of polariser B is noted.
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Figure 34: Schematic for polarization correlation measurements.

Figure 35: Experimental Data for polarization correlation measurement.
We can assess the level of entanglement in different polarization states.

Experimental result :

We can see from the graph, figure 35 that the curves follow the pattern cos2(𝛼+ 𝛽). Hence we can
conclude that |Φ−⟩ Bell state has been generated where

|Φ−⟩ = 1
√

2
[| 𝐻⟩1 | 𝐻⟩2− | 𝑉⟩1 | 𝑉⟩2] .
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7.Quantum state tomography :

Now let’s see how to make these measurements experimentally.

We shall use a quarter wave plate, polarizer and single photon detector in both arms to make
polarization measurements [Fig:36]. Quarter waveplate is used to project the unknown state on
to circular basis states. Based on various configurations given in Table 2 , we shall note down
the coincidence counts for various basis states. We can calculate the Stokes parameter and hence
density matrix out of it. We shall apply maximum likelihood technique on the desity matrix to
make sure we get physical states.

Projection on to the basis Angle of QWP Angle of polariser
|𝐻⟩ 0° 0°
|𝑉⟩ 0° 90°
|𝐷⟩ 45° 45°
|𝐴⟩ 45° −45°
|𝑅⟩ 45° 90°
|𝐿⟩ 45° 0°

Table 2: Polarization analysis setup.

Figure 36: Schematic of Quantum state tomography
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H V D A R L
H 1987 83 1540 582 663 1391
V 51 2543 693 1804 1622 924
D 1217 1025 531 1720 395 1834
A 735 1523 1700 509 1811 421
R 672 1605 389 1818 152 574
L 1280 913 1938 374 515 1695

Table 3: Experimental data of quantum state tomography.
Coincidence counts for various basis has been noted.

Experimental results:

We have experimentally obtained the density matrix to be :

Figure 37: Tomographically obtained density matrix.

𝜌 =


0.416 0.0609+ 𝑖0.0263 0.0315+ 𝑖4.65𝑒−03 −0.239+ 𝑖0.289

0.0609− 𝑖0.0263 0.034 0.0239+ 𝑖0.0114 −0.0312− 𝑖6.86𝑒−03
0.0315− 𝑖4.65𝑒−03 0.0239− 𝑖0.0114 0.0247 −0.0617− 𝑖0.0195
−0.239− 𝑖0.289 −0.0312+ 𝑖6.86𝑒−03 −0.0617+ 𝑖0.0195 0.524


Eigen Values : 0.85751 , 0.14249 , 0.0 , 0.0

From this density matrix we can estimate the following quanities:

1. Fidelity = 0.71 ± 0.0012

2. Concurrence = 0.708 ± 0.003
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3. Linear entropy = 0.244 ± 0.0026

4. Purity = 0.755 ± 0.0015

The fidelty of 0.71 indicates that there is 71% overlap between experimentally constructed density
matrix 𝜌 to the theoretically derived density matrix |Φ−⟩⟨Φ− |. The concurrence of 0.708 indicates
that the entangled photons have a significant degree of entanglement, but not perfect entanglement.
The linear entropy of 0.244 indicates that the entangled photons are in a relatively pure state and
a certain amount of noise is present in the system. The purity of 0.755 suggests that the entan-
gled photons are not maximally mixed, which is consistent with the relatively low value of linear
entropy.

Hence we can conclude that the source is generating moderately entangled photons but not
maximally entangled Bell states.

Due to the nonlocal correlations, entangled photons are a valuable resource in quantum communi-
cation and cryptography which allow for the implementation of protocols that are provably secure
against eavesdropping and make possible tasks that are impossible with classical resources.

Quantum key distribution (QKD) [46, 47] is a well-known application of entangled photons, where
two parties use quantum states to establish a secret key for encryption. In entanglement-based
QKD protocols, Alice and Bob share a pair of entangled photons, using the correlations between
their measurements to establish a shared secret key that is secure against eavesdropping. Entangled
photons can also be used for quantum teleportation [5, 50], a process that involves transferring the
quantum state of a particle from one location to another without physically moving the state itself.

Additionally, entangled photons can be used for quantum random number generation (QRNG)
[48, 49], a process for generating truly random numbers using quantum states. The measurement
outcomes of entangled photons are truly random and unpredictable, making them ideal for QRNG
applications. Lastly, entangled photons can be used for quantum dense coding [51, 52], a process
for transmitting two classical bits of information using only one qubit. Alice and Bob share an
entangled pair of photons and use measurements to send and receive information efficiently.
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Part V

Summary and outlook
In this thesis, we have seen various schemes that can be used to generate entangled photons using
nonlinear crystals. We have used crossed type-1 BBO crystal to generate the entangled state

|Φ−⟩ = 1
√

2
[| 𝐻⟩1 | 𝐻⟩2− | 𝑉⟩1 | 𝑉⟩2] .

The entangled photon source exhibits a CHSH parameter of 2.629±0.021, indicating a violation of
the Bell inequality. The visibility is higher in the HV basis (94%) than in the AD basis (89%), and
the HBT value is 0.003919, indicating low photon bunching. The source has a high brightness (114
cps/mW) but low heralding efficiency (7.5%). The relatively large standard deviation (21) suggests
some noise in the system. Overall, the source can produce entangled photons, with desirable
properties for quantum information processing, but may have limitations in practical applications
due to low heralding efficiency. We conducted polarization correlation measurements to assess the
level of entanglement in different polarization states.

The fidelity of 0.71 says that there is only 71% overlap between the theoretically derived density
matrix |Φ−⟩⟨Φ− | and experimentally constructed density matrix. The concurrence value of 0.708
confirms that the state is entangled. It implies that the two qubits are strongly correlated, and their
states are interdependent, even when they are separated by a large distance. This suggests that there
may be some noise or errors present in the system, which can affect the degree of entanglement.
The purity value of 0.755 indicates that the state is not maximally mixed, meaning that it is not
a completely random state. This is consistent with the presence of entanglement in the system,
as entangled states are typically not completely random. The linear entropy is a measure of the
degree of entanglement in a quantum system. It quantifies the degree of mixedness or impurity in
the system, with a value of zero indicating a pure state and a value of one indicating a completely
mixed state. The linear entropy value of 0.244 suggests that the state is moderately entangled, as
this value is greater than zero but less than the maximum value of 1.

The generation of entangled photon pairs in BBO crystals is limited by non-linear processes, re-
sulting in a low yield of entangled photons. The degree of entanglement in SPDC sources can
be degraded by crystal imperfections, pump beam fluctuations, detector inefficiencies, and photon
losses. Imperfections in the nonlinear crystal can cause photon pairs to be emitted with different
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frequencies, polarizations or spatial modes, reducing correlation between the photons. Fluctuations
in the pump beam intensity, duration or spatial profile can lead to variations in the phase-matching
conditions and emission cones, affecting entanglement. Detector inefficiencies and photon losses
due to absorption, scattering or other environmental interactions can reduce the number of entan-
gled photon pairs and introduce noise, degrading the observed entanglement. Moreover, precise
alignment and stabilization of the optical setup is necessary.

In order to increase the efficiency of photon generation, we can use various alternative sources of
entangled photons, such as periodically poled crystals (PPKTP , PPLN) which can provide a high
degree of tunability in the wavelengths of the entangled photons produced. Another method is
using a nonlinear waveguide, where the photons are confined to a small area, leading to a higher
photon pair production rate. Photonic crystal fibers, which confine the photons to a hollow core,
can also be used to generate entangled photons. In addition, optical fibers doped with rare-earth
ions, such as erbium, can also generate entangled photon pairs via SPDC. To increase the detection
efficiency of the current setup, superconducting nanowire single photon (SNSP) detectors can be
utilized. The anisotropy in correlations between the HV and AD basis may be due to the geometry
of the experimental setup, which can be optimized through better optical alignment to improve the
overall degree of entanglement.

The future of entangled photons is promising, as they offer a powerful tool for quantum commu-
nication and information processing. With the development of advanced techniques for producing
and detecting entangled photons, researchers are exploring new applications and potential break-
throughs in areas such as cryptography, sensing, and metrology. The use of entangled photons for
secure communication, such as quantum key distribution, is particularly promising, as it allows
for the creation of unhackable communication channels. In addition, entangled photons can be
used for quantum metrology, enabling high-precision measurements beyond the limits of classical
methods. Moreover, the emergence of new materials and technologies for generating and manipu-
lating entangled photons, such as quantum dot arrays and on-chip waveguides, is opening up new
avenues for research and development. Overall, the future of entangled photons is bright, with
significant potential for revolutionizing the way we communicate and process information.
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