
EXCHANGE RATE FORECASTING

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Shipra Kumar

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2017

Supervisor: Amit Mitra

c© Shipra Kumar 2017

All rights reserved

Certificate

This is to certify that this dissertation entitled EXCHANGE RATE FORECASTING

towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute

of Science Education and Research, Pune represents study/work carried out by Shipra

Kumar at Indian Institute of Technology, Kanpur under the supervision of Amit Mitra,

Professor, Department of Mathematics and Statistics , during the academic year

2016-2017.

Amit Mitra

Committee:

Amit Mitra

Uttara Naik-Nimbalkar

Dedicated to Dr. A. Raghuram,

Dept of Mathematics, IISER, Pune

and to my parents

Declaration

I hereby declare that the matter embodied in the report entitled EXCHANGE RATE

FORECASTING are the results of the work carried out by me at the Department of

Mathematics and Statistics , Indian Institute of Technology, Kanpur under the supervision

of Amit Mitra and the same has not been submitted elsewhere for any other degree.

Shipra Kumar

Acknowledgments

This thesis would not have been possible without the guidance of Dr. Amit Mitra, Professor,

IIT, Kanpur. It was his constant motivation and guidance that helped me during the whole

process of diving into a completely new field. I am also thankful to Dr. Uttara Naik-

Nimbalkar, who has always been there for me in an academic capacity ever since I have

known her. Her constant words of motivation was what kept me going. Dr. A Raghuram,

who has been more than a professor for me. A mentor, a friend, Dr. Raghuram has been a

source of motivation on various levels. It was him who introduced me to mathematics, and

for that I would always be grateful to him. Among others, I would like to extend heartfelt

gratitude to all my professors at IISER, Pune, especially Dr. Chandrasheel Bhagawat and

Dr. Kaneenika Sinha who not only were my academic mentors but also helped me grow

personally.

This thesis would be incomplete if I do not mention my friends who have been an inexplicable

part of these 5 years. First, I would like to thank my friends at IIT, Kanpur. They made IIT,

Kanpur a home away from home for me. Shubham Karnawat, Anupreet Porwal, Sandeep

Kumar, Kanupriya Agarwal, Shanu Vashishtha, Gaurav Doshi, Nilay Jain, Shailendra Singh,

I thank you for the constant support and friendship. Deeksha Adil, Lipi Jain, Anirban

Sharma, Prachi Atmasiddha, Subhadra Mokashe, Darshini Ravishankar, Prashali Chauhan,

Kunal Mozumdar, Chris John, Papia Bera, Varun Prasad, Debarun Ghosh, Ajith Nair,

Visakh Narayan, Dileep, you guys made me the person I am today. Thank you for all the

support during the ”Math years” and before.

Last but not the least, I would like to thank my mom, my dad and my brother for constantly

being there.

ix

x

Abstract
Forecasting of exchange rates between currencies is of utmost importance in the financial

world because its implication on imports-exports, trading and world economy in general.

Since exhange rates data is a sequential data, modelling was traditionally done by time se-

ries analysis. However, forecasting using even non-linear time series models like the ARCH

and the GARCH model did not give better forecasts in comparison to the simplest of the

models , the random walk or the AR(1) model. However, with a growing interest in artificial

neural networks modelling since 1980s, they were also increasingly used for time series mod-

elling. The neural network models gave a better forecast than the time series models used.

Attempts were then made to combine the two modelling techniques to see if a hybrid model

would perform better than either of the two models. With the advent of newer optimisation

techniques like genetic algorithms in machine learning, these were incorporated as well to

build new models. There was also an attempt to see how newer mathematical constructs

like the fuzzy logic could be used for building an artificial neural networks (Jang, 1993). By

2006, Hinton had proposed a new probabilistic model for data modelling which was called

the deep belief network. Time series modelling done using these models gave better fore-

casts in comparison to even the fixed geometry neural network models. In this thesis, I have

attempted to study the theoretical basis behind such model and combine the forecasts of all

the models used using information theoretic averaging. This is done to study whether an

average of the forecasts gives a better forecast value than the individual models.

xi

xii

Contents

Abstract xi

1 Literature Review 1
1.1 Introduction . 1
1.2 Existing Models- A Review . 2
1.3 Literature Review . 2
1.4 Problem Statement . 4

2 Machine Learning Models 5
2.1 Neural Networks . 5
2.2 Genetic Algorithms and Neuro-Genetic Model 21
2.3 Neuro- Fuzzy Systems . 33
2.4 Comparison with Random Walk Model . 43

3 Combination Of Forecasts 45
3.1 Information Theoretic Averaging . 45
3.2 Averaging Machine Learning Models . 48

xiii

xiv

Chapter 1

Literature Review

1.1 Introduction

For any economy, exchange rate within countries is defined as the price of one unit of the

currency of one country in terms of the currency of the other country. Exchange rate is

a factor that directly impacts international trade, that is with respect to the exports and

imports, day-to-day businesses and finance between two countries. Therefore, exchange rates

are a key factor which feature in the international economy as a whole. Forecasting currency

exchange rates then becomes an important problem in International Economics and Finance.

This is a challenging problem in economics as mathematically modelling and forecasting the

exchange rates becomes difficult due to uncertainty in international trade and capital flows.

Classically, an exchange rate forecasting is considered to be a problem in time series analy-

sis. However,there have also been numerous studies in recent times which combine classical

mathematical models of time series with computational tools of machine learning. This is

done to generate new models that improve the accuracy of forecasting these rates.

Exchange rate forecasting has always been a challenging area of research for applied statisti-

cians and econometricians. Apart from working with large data sets that constitute exchange

rates modelling, it may also happen that forecasting has to be done sometimes with incom-

plete data sets. This is a possible situation where a time series analysis may fall short

and modern algorithms in machine learning may be required for modifications in modelling.

Hybrid methodology of combining various models is another computational technique that

seeks to combine properties of various models to improve the forecasting power. We start

with a review of the existing literature.

1

1.2 Existing Models- A Review

Numerous studies show us that models based on time series models fail to deliver superior

forecasts to the simplest of all models, the simple random walk or AR(1) model. Exchange

rates exhibit significant non-linearities. Many studies on sequential data modelling have

shown that these non-linearities ,though also modelled by time-series models like the GARCH

model, are better captured by Artificial Neural Network models. Artificial Neural Networks

are data-driven and self-adaptive which make them highly desirable. This provides a major

advantage when compared to the traditional approaches of modelling, which tend to become

difficult to model with increasing complexity of the model. It has been shown that a neural

network can approximate any continuous function to desired accuracy (Hornik,1991). Neural

networks also provide us with the advantage that we need not specify the relationship between

output and input beforehand. It has been shown through numerous models that ANN models

are significantly better than existing statistical models in terms of forecasting ability.

Other than Neural Networks, there exist machine learning techniques like the Adaptive Neuro

Fuzzy Inference System (ANFIS), Deep Learning and evolutionary methods like Genetic

Algorithms which are used for sequential data forecasting. Apart from using these models

in seclusion, the newer trend in time series forecasting is the use of hybrid models. Hybrid

models are models which combine time series modelling and machine learning techniques

mentioned to come up with better forecasts. Real world data is rarely purely linear or non-

linear, thus a hybrid models helps capture complexities of the model better than a simple

time series model or ANN model. Some of them are discussed in the next section.

1.3 Literature Review

Zhang(2001) [1]showed that a hybrid methodology that combines both ARIMA and ANN

models indicate that the combined model can be an effective way to improve forecasting ac-

curacy achieved by either of the models used separately. Autoregressive integrated moving

average (ARIMA) is a linear model that is used extensively in time series forecasting. It

is because they can represent several different types of time series, i.e autoregressive pro-

cesses(AR), moving average processes (MA) and combined AR and MA (ARMA) processes.

However, they are restricted by the assumed linearity of the model. Thus, the non-linearities

that are present in the exchange rate data model cannot be captured. However, Artificial

Neural Networks are proficient in capturing the underlying function of any given data set and

hence can capture the non-linearity of a model satisfactorily. Additionally, no prior model is

2

required for further modelling as features are extracted and modelled from data itself. Since

both models have been extensively used for forecasting, ARIMA models and ANNs have of-

ten been compared in terms of the superiority in forecasting performance. In this paper, for

British Pound/USD exchange rate, a hybrid methodology that combines both ARIMA and

ANN models is proposed. This is done by first deriving an ARIMA model from the data and

then, modelling the residuals obtained by Neural Networks. Experimental results indicated

that the combined model achieved a better forecasting rate than either of the models used

separately.

Nag and Mitra (2002) [2]showed that use of a hybrid artificial intelligence method, based

on neural network and genetic algorithm indicated superior performance compared to the

traditional non-linear time series techniques and also fixed-geometry neural network models.

Training a neural network based on standard training algorithms like the backpropagation

algorithm tends to suffer from serious drawbacks. These include, but are not limited to,

convergence to a local minima instead of a global minima and the search for optimal net-

work architecture through manual experimentation and finetuning. This paper thus puts

forward an improved model where parameters for network architecture are optimised using

genetic algorithms rather than manual experimentation is used for exchange rate forecasting

for the deutsche mark/US dollar, the Japanese yen/US dollar and the US dollar/British

pound rates. Genetic algorithm is a search procedure which tries to find the optimal set

of parameters in the search space for getting a optimal and improved neural network. The

forecasts using the genetically optimised neural network is seen to give a better forecast in

comparison to the the feedforward neural network.

Chao, Shen and Zhao (2011)[3], used deep belief network (DBN) to predict both British

Pound/US dollar and Indian rupee/US dollar exchange rates and compare it to forecast-

ing results obtained using feedforward neural network. Deep Belief Network is a generative

neural network model and consists of many hidden layers. A DBN is composed of many

units of a probabilistic model called a Restricted Boltzmann Machine or RBM. An RBM is

a recurrent two layer neural network which assigns a probabilistic model to the incoming

data using symmetrically weighted connections between the two layers. The first layer in an

RBM corresponds to inputs (visible units v) and the second layer to the hidden units. This

paper showed that a DBN model for forecasting exchange rates of British Pound/US dollar

(GBP/USD) and Indian rupee/US dollar (INR/USD) achieved results were superior to that

of forecasting using a feedforward neural network.

Khashei,Hejazi,Bijari(2006)[4] showed how ANNs and fuzzy regression are combined to over-

3

come the limitations posed by using incomplete data sets. Artificial Neural Networks usually

require a large amount of data to make exchange rate predictions. Fuzzy forecasting meth-

ods ,on the other hand, are capable of making predictions even with incomplete data sets.

However, it has been seen experimentally that their performance is not always satisfactory.

Thus, this paper proposed a model which sought to combine ANN and fuzzy regression

methods to get improved forecasting in cases where data sets were incomplete.

There exist other papers like Atsalakis and Valavanis(2009)[5] which elucidate how forecast-

ing with hybrid models like ANFIS give us improved forecasts. Thus, different models have

been experimented with to show us how different techniques in machine learning are used

for forecasting exchange rates.

1.4 Problem Statement

The basic idea of the model combination in forecasting is to use each models unique feature

to capture different patterns in the data. Theoretical and empirical findings suggest that

combining different methods can be an effective and efficient way to improve forecasts. Thus,

this project aims to look at methodology that is used to combine classical mathematical

models of time series with modern tools, mainly computational statistical and machine

learning techniques in detail. The next part of the project would be to look at different

techniques of generating hybrid models and looking at a combination of forecasts obtained

by using concepts in Baysian statistics and Information theory. This would be done to see

if a better forecast can be obtained by a combination of forecasts of different models.Thus,

we begin by looking at what these machine learning techniques are and explain the basics

of the techniques used in the models.

4

Chapter 2

Machine Learning Models

One of the most basic machine learning tools that are used in studying a time series data

and their forecasting is neural networks. Artificial Neural Networks are extremely efficient

in approximating non-linear functions to any desired accuracy. Papers by Refenes (1996),

Weigend et al. (1992), Hann and Steurer (1996) observe that ANN models perform much

better than linear time series models and even random walk for some exchange rate data.

We thus begin by studying neural network in detail.[6, 7]

2.1 Neural Networks

A neural network is a machine learning tool which is used for processing large amount of data.

A computational system which tries to mimic the human brain for processing information,

it is a massive processor whose components are parallely distributed. These components

form what is called a ”layer” in a neural network and each layer is composed of multiple

”neurons” or nodes. It is at these nodes that information is processed and passed onto a

neuron of the next layer using weighted connections. Thus, the three essential features of an

artificial neural network (ANN) are the basic processing units known as neurons; the network

architecture which describes how neurons in each layer are connected to each other and also

the number of hidden layers between inputs and the ouputs; and the training algorithm for

the neural network that helps us find the optimal values of the parameters of the network

architecture that is used performing a particular task.

Definition 1. Neural Network A neural network is an interconnected group of neurons

in a massively parallel distributed processor. It has a layer of nodes of inputs followed by

a layer or multiple layers of hidden nodes and finally an output layer. It is an important

5

Figure 2.1: Structure of a Neuron

computational tool in machine learning and data sciences, used in tasks like approximating

an unknown function, pattern recognition, signal processing and sequential data analysis.

Definition 2. Neurons An artificial neuron ,the mathematical equivalent of biological neu-

rons in the brain, are the basic units of an artificial neural network. An artificial neuron

receives inputs from neurons of the previous layer and performs a weighted sum of the inputs

it receives.

Definition 3. Activation Function An activation function is typically a monotonically

increasing, differentiable function which is used to define the output of a neuron. An acti-

vation function takes the weighted sum of the inputs produced at a neuron and passes the

resultant through the function to get an output of the neuron. The most commonly used acti-

vation functions include sigmoid function, hyperbolic tan function and the identity function

Neural Networks have been increasingly used in statistical analysis. They provide net-

work representation for statistical constructs like regression, methods of density estimation

(parametric and non parametric). Many problems of modeling have both statistical and

neural network inputs. Some neural networks have probabilistic elements (like Boltzmann

machines) and there is an increasing effort to embed neural networks in general statistical

framework. The subsequent sections will talk about the neural network architecture, the

training algorithm and the results obtained.

6

(a) Single Layer FFNN (b) Multilayer FFNN (c) Recurrent NN

Figure 2.2: Types of Neural Networks

2.1.1 Neural Network Architecture

Neural networks can be single layer feedforward neural network, multilayer feedforward neu-

ral network or recurrent network.

• Single Layer Feedforward Neural Network The simplest feedforward neural net-

work wherein connections between the units do not form a cycle. It consists of two

layers a layer of input nodes which are fed directly to layer of output node via a series

of weights.

• MultiLayer Feedforward Neural Network A feedforward neural network which

has the presence of one or more hidden layers in addition to input and output layers.

• Recurrent Neural Network This type of network is where the output of a neuron

affects part of the input given to the neuron because it consists of at least one feedback

loop at that neuron.

2.1.2 Artificial Neuron : Structure and Function

As described at the beginning of the section, a neuron is the basic building block of any

neural network. A neuron in itself is a computational unit which has three components.

• Input weights and bias A neuron has incoming inputs from the previous layer. Each

of these inputs is assigned a weight at the neuron, which signifies the strength of each

input. More specifically, an input xj is one layer is connected to the k-th neuron in

7

(a) Identity Function (b) Sigmoid Function (c) Tanh function

Figure 2.3: Types of Activation Functions

the next layer by wkj. In addition to the inputs, an extra term +1 is sometimes added

to the input layer which is multiplied by wk0 (i.e 0th input for the k-th neuron) and is

known as the bias term (Figure 2.1).

• Adder Let xis represent the input which are multiplied by suitable weights wi. Σ is

the function that adds them up such that vi = Σwixi. This Σ is known as the adder

in the neuron and the resultant vi is fed to the activation function which comes next

to get the output.

• Activation FunctionThese are monotonicaly increasing, differentiable functions which

acts on the weighted sum of inputs vi to get an output. Thus output yi = φ(vi), where

φ is the activation fucntion and vi is the weighted sum as described above. These

function include

– Identity function: φ(v) = v, v ∈ (−∞,∞)

– Sigmoid function: φ(v) = 1
1+e−v , v ∈ (−∞,∞), φ(v) ∈ [0, 1]

– Tanh function: φ(v) = e2v−1
e2v+1

, v ∈ (−∞,∞), φ(v) ∈ [−1, 1]

2.1.3 Training Neural Network

Training a neural network includes optimising a cost function and updating the weights and

biases as a result of that training. The cost function ξ(ei) is a function of errors ei = di − yi

where di is the desired output and yi is the output as defined above. Cost function are

typically convex function, which makes them easier to optimise. Examples of cost functions

are:

8

• (ei)
2

• |ei|

Since yi = φ(vi), where vi = Σwixi is a function of weights w = [w1, w2, ...wi, .., wk], therefore

the error and the cost function also become a function of w. Thus, the cost function can also

be written as ξ(w). In a single layer feedforward network, the most widely used algorithm for

optimising the cost function is the Gradient Descent Algorithm. Gradent descent algorithm

Algorithm 1: Gradient Descent Algorithm

1 Initialise w = w(0).
2 Update w by moving along the gradient of the cost function ξ(w)

w(n+ 1) = w(n)− η∂ξ(w)

∂w

∣∣∣∣
w=w(n)

where η > 0 is the learning rate.
3 Repeat until convergence.

is a method for updating weights w of the network by trying to minimise the cost function

ξ(w) at each point. In gardient descent, we take steps in a direction where the cost function

is minimised and it is proportional to the negative of the gradient of the function at the

current point. The proportionality constant is determined by η which determines how large

or small the steps are to be taken. The value of η is important to the convergence of the

algorithms. If η is very small, the algorithm will take a large time to converge to the optimal

value of w. If η is large, the algorithms may become unstable and never reach the true

optimal value as it will oscillate to large values of the cost function and might even diverge

for critical values.

Now, ∆w(n) = w(n+ 1)− w(n) = −η ∂ξ(w)
∂w

Using Talyor’s Expansion,

ξ(w(n+ 1)) ≈ ξ(w(n))− η
∣∣∣∣∣∣∣∣∂ξ(w)

∂w

∣∣∣∣∣∣∣∣2
This shows that at every iteration, the cost decreases.

In a neural network of multiple hidden layers, the algorithm used for weight updates is

the Backpropagation Algorithm. It consists of a forward pass and a backward pass. In

the forward pass, input is applied and with fixed weights over the whole network,we get

9

Figure 2.4: Learning trajectory for different rates of η

an output by propagating the effect of input layer by layer.In the backward pass, the error

obtained because of the difference between the output of the network and the target value is

propagated in a backward pass over the network which results in the weights of the network

getting adjusted so as to minimise the error. The cost function used in the algorithm is

inavriably a convex function, which makes them easy to differentiate and derive the required

quantities. We assume that the cost function used is ξ(w(n)) = 1
2

∑
e2
j(n) and hence, derive

the algorithm.

While backpropagation is a steepest descent algorithm, the Marquardt-Levenberg algo-

rithm is an approximation to Newton’s method. It is also a modification to the Gauss-Newton

method of optimization. [8]

We first define the functions for the gradient and Hessian of the cost function ξ(w). The gra-

dient is denoted by the function, g and it is calculated as follows for weights w1, w2, . . . , wn.

g = ∇ξ(w) =

[
∂ξ

∂w1

,
∂ξ

∂w2

, . . . ,
∂ξ

∂wn

]T
The Hessian H of a function is defined as:

H = ∇2ξ(w) =


∂2ξ
∂w2

1

∂2ξ
∂w1∂w2

· · · ∂2ξ
∂w1∂wn

∂2ξ
∂w2∂w1

∂2ξ
∂w2

2
· · · ∂2ξ

∂w2∂wn

...
...

. . .
...

∂2ξ
∂wn∂w1

∂2ξ
∂wn∂w2

· · · ∂2ξ
∂w2

n


10

Algorithm 2: The Backpropagation Algorithm

1 The basic equations at j-th neuron in the outer layer

vj(n) =
m∑
i=0

wij(n)xi(n)

yj(n) = φ(vj(n))(φ is the activation function)

ej(n) = dj(n)− yj(n)

ξ(n) =
1

2

∑
j∈C

e2
j(n) (C is output layer neurons)

2 The derivations and calculation of delta δ

∂ξ(n)

∂wji(n)
= −ej(n)yi(n)φ′(vj(n))

Define

δj(n) = − ∂ξ(n)

∂vj(n)
= ej(n)φ′(vj(n))

. This δj(n) is the local gradient for any neuron j.
3 Weight update for the connection between j-th neuron in the outer layer and i-th

neuron in the layer before the outer layer (If the neural network has k layers and
k-th layer is the outer layer, then the i-th neuron is in k-1-th layer)

∆wji(n) = −η ∂ξ(n)

∂wji(n)

.

∆wji(n) = ηδj(n)yi(n). (η is learning rate)

4 In case the j-th neuron is a neuron in one of the hidden layers,

δj(n) = − ∂ξ(n)

∂vj(n)
= − ∂ξ(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂ξ(n)

∂yj(n)
φ′(vj(n))

Since, ξ(n) = 1
2

∑
k∈C

e2
k(n) (k is the output node in set C of neurons in output layer)

∂ξ(n)

∂yj(n)
=
∑
k

ek
∂ξ(n)

∂yj(n)

=
∑
k

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
= −

∑
k

δk(n)wkj(n)

11

. In addition, we also define the Jacobian matrix J of e(i) where e(i) is the error at time i.

J(m) =


∂e1
∂w1

∂e1
∂w2

· · · ∂e1
∂wn

∂e2
∂w1

∂e2
∂w2

· · · ∂e2
∂wn

...
...

. . .
...

∂em
∂w1

∂em
∂w2

· · · ∂em
∂wn


We know that in Newtons’ Method, we minimise

∆ξ(w(n)) = ξ(w(n+ 1))− ξ(w(n))

' gT (n)∆w(n) +
1

2
∆wT (n)H(n)∆w(n)

By differentiating the equation with respect to ∆w(n) and equating it to 0, we get

g(n) +H(n)∆w(n) = 0

∆w(n) = −H(n)−1g(n)

In the Gauss-Newton method, we assume ξ(w) = 1
2

∑
e2
j(w). Thus,

∇ξ(w) = JT (w)e(w)

∇2ξ(w) ≈ JT (w)J(w)

. Using the equation from Newtons’ method, we can easily see that

∆w = −(JT (w)J(w))−1JT (w)e(w)

. However, for the calculation of ∆w, we need to calculate (JT (w)J(w))−1. Thus, JT (w)J(w)

should be an invertible matrix. We know that JT (w)J(w) is always a non- negative definite

matrix. However, for it to be a non-singular matrix, it should have a row rank m, i.e. the

m rows should be linearly independent. To ensure that this condition holds true, we apply

a Marquardt-Levenberg modification to the Gauss-Newton method by adding a diagonal

matix δI to the term, where I is the identity matrix and δ is a small positive constant.

Thus, the modified Gauss-Newton equation becomes

∆w = −(JT (w)J(w) + δI)−1JT (w)e(w)

12

As, we have already seen standard backpropagation algorithm calculates terms like

∂ξ

∂wji
=
∂
∑
e2
j(w)

∂wji

. For the Marquardt-Levenberg algorithm, we need to calculate terms for the Jacobian

matrix
∂ej(w)

∂wji

. These terms for the Jacobian matrix can be calculated using the terms for the standard

backpropagation algorithm with one modification at the final layer. In standard backpropa-

gation , we calculate ∂ξ
∂wji

= −ejyiφ′(vj) at the final layer. However, in Marquardt-Levenberg

algorithm this is modified to
∂ej

∂wji(n)
= −yiφ′(vj). The rest of the terms are then calculated

using the backpropagation algoritm.

At each iteration, the weights are updated and the performance goal (i.e. sum of square of

errors) is calculated. The algorithm is assumed to have converged when the norm of the

gradient

∇ξ(w) = JT (w)e(w)

is less than some predetermined value, or when the sum of squares has been reduced to some

error goal.

In the Baysian regularization method[9], we add a regualization term to the cost function

ξ(w) =
∑
e2
j(w). The new cost function that is to be optimised now becomes

ξ(w) = β
∑

e2
j(w) + α

∑
w2
j

, where α and β are cost function parameters. If α � β, then the training algorithm

will drive the errors smaller. If α � β, training will lead to weights of smaller magnitude

at the expense of network errors, thus producing a smoother network response. In the

Baysian regularisation training algorithm, we assume a prior distribution on the weights

p(W |α,M), where M is the model in consideration. When the data D is taken for training,

the distribution of the weights is updated according to the Bayes’ Rule:

p(w|D,α, β,M) =
p(D|w, β,M)p(w|α,M)

p(D|α, β,M

p(D|w, β,M) is the likelihood function of the data occuring given the weights and p(D|α, β,M)

13

is the normalisation factor. Assuming

p(D|w, β,M) =
1

ZD(β)
exp(−β

∑
e2
j(w))

p(w|α,M) =
1

ZW (α)
exp(−α

∑
w2
j)

. Here, ZD(β) = (π
β
)
n
2 and ZW (α) = (π

α
)
N
2 , n is the number of data points and N is the

number of network parameters. Combining all the equations, we get the posterior probability

of the weights as

p(w|D,α, β,M) =

1
ZD(β)ZW (α)

exp(−(β
∑
e2
j(w) + α

∑
w2
j))

p(D|α, β,M)

=
1

ZF (α, β)
exp(−(ξ(w))

The optimal weights should maximise the posterior probability of the weights. From the

equation above, we can see that the objective of maximising the posterior probability is

equivalent to minimizing the regularized cost function.

For the optimisation of the regularisation parameters α and β, we have assumed a uniform

prior p(α, β|M) on them. By Bayes Rules, we have :

p(α, β|D,M) =
p(D|α, β,M)p(α, β|M)

p(D|M)

Since the prior is uniform, the posterior probabilty is maximised if p(D|α, β,M) is maximised.

From the equations above, we can see that

p(D|α, β,M) =
ZF (α, β)

ZD(β)ZW (α)

The cost function is a convex function. Therefore, in a small area surrounding a minimum

point, we can expand ξ(w) around the minimum point of the posterior wMP , where the

gradient is zero. Solving for the normalization constant yields

ZF ≈ (2π)
N
2 (det((HMP)−1))

1
2 exp(−ξ(wMP))

where H = β∇2(
∑
e2
j) +α∇2(

∑
w2
j) is the Hessian matrix of the cost function. Placing this

result into p(D|α, β,M) = ZF (α,β)
ZD(β)ZW (α)

and taking derivatives with respect to the log of the

14

equation and setting it to 0, we get:

αMP =
γ

2(wMP)2
and βMP =

n− γ
2
∑
e2
j(w

MP)

γ = N − 2αMP tr(HMP)−1 in the above equation.

Algorithm 3: Baysian Regualrisation Training Algorithm

1 Initialize α, β and the weights for the network.
2 Using Levenberg-Marquardt algorithm, minimize the objective function

ξ(w) = β
∑

e2
j(w) + α

∑
w2
j

3 Compute the γ = N − 2αMP tr(HMP)−1 using of the Gauss-Newton approximation to
the Hessian available in the Levenberg-Marquardt training algorithm:

H = ∇2ξ(w) = 2βJTJ + 2αI

. The Jacobian matrix as defined before is the Jacobian matrix of errors computed.
4 Compute α and β.
5 Repeat till convergence.

Training of a neural network can happen in two modes:

1. Sequential Mode- In this mode, the update of weights is done after presentation of

each training example. For example, the weight of the neural network is updated after

(x1, y1) is presented. The updated network now is trained on the training example

(x2, y2) and the weight is updated again. This goes on till all the training examples are

presnted to the network. Presentation of all the training example once to the network

is defined as an epoch.

2. Batch mode -In this mode, the update of weights is done after presentation of all the

training examples.

Sequential mode of training requires less computational storage than the batch mode of

training. The use of pattern by pattern weight update makes the algorithm stochastic in

nature. Thus, there it is less likely to get trapped in a local minimum. However, sequential

training because of its stochastic nature makes it difficult to establish theoretical convergence

conditions for the algorithm. This can easily be done when batch mode of training is used.

Batch training accurately calculates gradient vectors at each point, thereby convergence to

15

Figure 2.5: Error plot for Validation Set

a local minimum is guaranteed under simple conditions.

For checking the overfitting of the model, we use a part of data as validation data. After a

period of training the network, we fix all the weights and the bias and compute the output

for the validation set. The errors for the validation set are then calculated. The training is

then resumed for another period and the process is repeated. Typically, the model gives a

higher error on the validation set than the training set. This means that the mean square

error, which is the performance goal of the network, keeps on decreasing with each epoch.

Sometimes, however, as the neural network starts to overfit the training data, the error on

the validation starts increasing. It is at this point that we stop the training of the neural

network.

2.1.4 Results

The codes for the neural network were written in MATLAB and the simulations were run for

different architectures of the neural network. In the first part, we used a feedforward neural

network with one hidden layer. Activation functions used were tanh on the first layer and

purelin or identity on the second layer. The training used was the Baysian Regularization

algorithm. We assumed that the model was y(t)= f(y(t-1),y(t-2),... , y(t-d)). The d was

differered. The data was exchange rate data on US dollar/Euro from 2011 to present day.

The data was normalised by using the formula data point−Min
Max−Min

It was divided into three sets:

70 % for the training data, 15% for the validation data and remaining 15% for the test data.

16

The contant µ was kept at 0.005 and was changed at the rate of 0.1 for improving the fit.

The maximum epochs for training was kept to be at 1000. An ”epoch” describes the number

of times the algorithm sees the ENTIRE data set. So each time the algorithm has seen all

samples in the dataset, an epoch has completed. The training done was online training and

in each epoch, all the training examples were presented and resulted in weights update of

the network. The performance of the neural networks was measured as the mean square

error or MSE. The training was carried to the full 1000 epochs if the performance goal, i.e.

the difference in MSE between each epoch= 10−7 was not reached. Otherwise, the training

was terminated at the epoch that the performance goal was reached. In the next part of the

simulation, the number of neurons in the hidden layer was differed keeping the value of the

d same.

Number of inputs Number of Training Performance Validation Performance Test Performance

hidden nodes

4 10 2.080140e-04 2.765050e-04 9.939453e-04

5 10 2.301353e-04 2.988231e-04 2.468123e-03

6 10 2.797359e-04 2.787228e-04 2.257220e-03

8 10 2.184029e-04 2.921051e-04 2.237289e-03

10 10 2.069532e-04 2.771385e-04 9.960684e-04

12 10 2.060887e-04 2.770555e-04 8.663912e-04

15 10 2.062721e-04 2.770395e-04 1.090613e-03

Table 2.1: Performance of neural network keeping the number of hidden units same

Number of inputs Number of Training Performance Validation Performance Test Performance

hidden nodes

12 10 2.155171e-04 2.832236e-04 3.106627e-03

12 15 2.973352e-04 3.008010e-04 2.038894e-03

12 20 2.054431e-04 2.778482e-04 7.293144e-04

12 24 2.061975e-04 2.774234e-04 6.658699e-04

12 30 2.156659e-04 2.766033e-04 6.727146e-04

Table 2.2: Performance of neural network keeping the number of input units same

17

Thus, we select a neural network of inputs 12 and hidden nodes 24.

Figure 2.6: Training Data of Neural Network with input=12,hidden=10

Figure 2.7: Test Data of Neural Network with input=12,hidden=10

18

Figure 2.8: Performance of Neural Network with input=12, hidden=10

Figure 2.9: Training Data of Neural Network with input=12,hidden=24

19

Figure 2.10: Test Data of Neural Network with input=12,hidden=24

Figure 2.11: Performance of Neural Network with input=12, hidden=24

20

2.2 Genetic Algorithms and Neuro-Genetic Model

Genetic Algorithms are a search mechanism for optimum solution in the search space using

techniques borrowed from concepts in natural genetics and selection. It requires the con-

version of the space over which we need to find the optimised solution into a string , most

common of which is using the binary{0, 1} for integer solutions. In case of real or complex

solutions, the space can also constitute vectors of the required solution. For example if we

have to optimise f(w1, w2), then the search space will constitute a vector of w1 and w2 over

which the algorithm will be applied. In this thesis, we will use the terms ”strings” or ”vec-

tor” interchangeably.

The algorithm leads to finding of the fittest among string structures with a structured yet

randomized information exchange to form a search algorithm. Genetic algorithms have been

characterised by robustness as they are not limited by assumptions concerning continuity,

existence of derivatives, uni-modality and other auxiliary information, unlike the optimisa-

tion techniques used in neural networks. These algorithms perform an effective search for

better string structures using only require payoff values i.e. value of fitness function asso-

ciated with individual strings. This characteristic makes a GA a more canonical method

than many search algorithms. A genetic algorithm is also different from more traditional

optimisation approaches in the way that it works with a population of strings at a time

rather than a single string.

Definition 4. Genetic Algorithms A genetic algorithm (GA) is an optimisation method

based on concepts of natural selection and genetics for solving constrained and unconstrained

problems. This algorithm works with a population of solution vector or strings at each itera-

tion and selects the ”fittest” vector to be propagated to the next population also also produce

new vectors for the enxt generation. Over successive generations, the algorithms tends to

converge towards an optimal solution.[10]

Definition 5. Fitness function Fitness function is the function which is to be optimised

and is used in genetic algorithms as a tool for finding the value of the variable over which

the function is maximum in the given population.[10]

A simple genetic algorithm is composed of three operators:

1. Selection- It is a process in which individual strings are copied according to their

objective function values or the fitness function. This function, as defined above, is

the measure of profit, utility, or goodness that we want to maximize. Strings with a

higher value have a higher probability of reproducing.

21

2. Crossover- It is the process where members of the newly reproduced strings in the

mating pool are mated at random. For each pair of strings, an integer position k along

the string is randomly selected where k is anywhere between the 1st position on the

string and one less than last position on the string, that is the (l-1)th position for a

string of length l. New strings are created by swapping all characters between positions

k + 1 and l between the two strings.

3. Mutation-It is a process of extremely small probability that leads to random alteration

of the value of a string position. In binary coding, this simply means changing a 1 to

a 0 and vice-versa.

2.2.1 Genetic Algorithms: A simple example

A simple example of how genetic algorithm works will be illustrated with an example of

finding the maimum value of the function f(x) = x3 over the set of integers x ∈ [1, 64].

Aim: To find x such that f(x) is maximum.

Solution: Through calculus, we already know the maximum of the function will exist at x =

64. Since the optimisation has to be done over a set of integers, we first convert the set of inte-

gers into binary numbers. These will create a set of vectors [(0,0,0,0,0,0,0),(0,0,0,0,0,0,1),(0,0,0,0,0,1,1),....

(1,0,0,0,0,0,0)]. We select a random population of 4 vectors, say:

(0,0,1,0,1,0,0)= 20;

(0,1,1,0,0,0,0)=48;

(0,0,0,1,0,0,1)=9;

(0,0,1,0,0,0,0)=16

Calculating f(x) = x3, we get the fitness functions as The probabilty of each vector get-

Vector Value Fitness function Probability

(0,0,1,0,1,0,0) 20 8000 0.0648
(0,1,1,0,0,0,0) 48 110592 0.896
(0,0,0,1,0,0,1) 9 729 0.0059
(0,0,1,0,0,0,0) 16 4096 0.0331

Total =123417 1

Table 2.3: Fitness values for the first population

ting selected is calculated by pi = fi
Σfi

, where Σfi is the value of the total fitness of all

the vectors in the populaton. Since (0,1,1,0,0,0,0)=48 has a very high fitness function, it

22

has a very high probability(=0.896) of getting selected and passed onto the next genera-

tion. Once a vector has been selected for reproduction, an exact replica of the string is

made. This vector is then entered into a mating pool for further genetic operator action

for the creation of a next population. Thus, highly fit vectors have a higher number of

offspring in the succeeding generation. Suppose the vectors selected to be considered for

reproduction are (0,0,1,0,1,0,0)= 20, (0,1,1,0,0,0,0)=48, (0,0,1,0,0,0,0)=16. We randomly

mate (0,0,1,0,1,0,0)= 20, (0,1,1,0,0,0,0)=48 by crossing them over at position 2. Thus, the

new strings created are (0,0,1,0,0,0,0)= 16 and (0,1,1,0,1,0,0)=56. Thus, the new randomly

selected population is

(0,1,1,0,0,0,0)=48;

(0,0,1,0,0,0,0)= 16;

(0,1,1,0,1,0,0)=56;

(0,0,1,0,1,0,0)= 20.

We immediately see that in the next generation we have a better vector (0,1,1,0,1,0,0)=56

which is close to the true value at which we get the optimal solution x = 64.

As we keep iterating it over the next few populations, the algorithm will converge to a point

x in the search space which is very close to the true value. In the next section, we will dis-

cuss why the genetic algorithms work and give us the optimal values and the Fundamental

Theorem of Genetic Algorithms, also known as the Schemata Theorem.

2.2.2 Genetic Algorithms: The Schemata Theorem

Definition 6. A schema (Holland, 1968, 1975) is a similarity template describing a subset

of strings with similarities at certain string positions.

A schema H is a way of detemining how similar to vectors are in the search space. We

will elucidate this using the binary numbers as an example as has been done in the previous

section. A schema on the vector of binary numbers can be defined as a vector formed on the

set {1,0,*}, which is an extension of the set {1,0} on which the binary vectors are formed.

The * can represent wither 1 or 0. For example, a schema (1,*,1,0,0) can refer to either

vector of (1,1,1,0,0) or (1,0,1,0,0). Thus, the schema represents the fact that the above

vectors (1,1,1,0,0) and (1,0,1,0,0) are similar.

Definition 7. Order of a schema The order of a schema H, denoted by o(H) is defined as

the number of fixed positions present in the template. For example, the order of the schema

(0,1,1,*,*,1,*,*) is 4.

23

Definition 8. Length of a Schema The length of a schema H, denoted by δ(H) is defined

as the distance between the first and last specific position in the vector. For example, the

schema (0,1,1,*,*,1,*,*) has defining length δ = 5 because the last specific position is 6 and

the first specific position is 1.

Schemas are generally known as the building blocks of a population in genetic algorithms.

Schemas with their property of attaching a similarity template to vectors help us divide the

vectors in a population into groups of their schema types. This helps us in understanding the

underlying mechanism of how the genetic algorithm work on the schemas in the population,

thereby giving us the mechanism of how GAs work on the whole population. The net effect

of the genetic operators like selection and crossover on the whole can be easily seen by their

action on the schemas present in the population. Some schemas contain more definite infor-

mation than others. For example, the schema (0,1,1,*,1,*,*) tells us more about the structure

of the possible vectors of the form than the schema (0,*,*,*,*,*,*). Combinatorially, there

are 3l schemas that can be formed for a binary vector of length l. Furthermore, for n vectors

in a population, there are at most n.2l schemata contained in the population because each

string represents 2l possible schemas. We will now look at how genetic algoritmhs work on

the schemas present in the population. This will be done by studying the net effect of genetic

operators like selection, crossover and mutation on a particular schema H in the population.

The first operator that we will look at is the selection operator. Given time step t,

suppose there are m vectors of a particular schema H that is present in the population P (t).

Thus for the time t, we write m = m(H, t) . We already know that the basic premise of

a vector getting selected for reproduction in a genetic algortihm is its fitness according to

the fitness function assigned to the problem. Thus, in a population, P (t), a vector Pi gets

selected with probability pi = fi
Σfi

, where Σfi is the value of the total fitness of all the vectors

in the population. Based on fitness values, we select another generation of n individuals for

time step t+ 1. Thus, the number of vectors that are the representation of schema H in the

population P (t+ 1) is denoted as m(H, t+ 1) and this quantity is calculated using the total

fitness values of all the vectors that represnted schema H in the population P (t). Thus,

m(H, t+ 1) = m(H, t).n.
f(H)

Σfi

= m(H, t)
f(H)

f̂

24

wheref(H) is the average fitness of the vectors of schema type H at time t and f̂ is the

average fitness of the entire population. This shows us that the schemas with average fitness

that is greater than the average population fitness have an increasing representation in the

next generation of population that is formed. Also, schemas with average fitness lesser than

the average population fitness tend to have lesser representation over the generations which

may even cause them to die out completely.

The second operator in consideration is the crossover operator of genetic operator. Crossover

is an operator which randomly selects a position in the length of the vector and then crosses it

over with another vector at that position to create two new vectors. Crossover in a schema

has the effect of retaining it for the next generation or destroying it in the generation in

consideration itself. This is beacuse if the crossover site is a number more that the length of

the schema δ(H), the scheam is retained. Otherwise, it is destroyed. For example, for the

schema (0,1,1,*,1,*,*) , a crossover at position 3 would break the schema (0, 1, 1, |∗, 1, ∗, ∗)
whereas a crossover at position 5 will retain the schema (0, 1, 1, ∗, 1, |∗, ∗). Therefore, a

schema with length δ(H) and the vector of length l has the choice of having l − 1 crossover

sites. Thus, the schema in the process of crossover is destroyed by probability pd = δ(H)
l−1

.

The probabilty of survival of the schema would then be

ps = 1− δ(H)

l − 1

. If the crossover has a random probability pc assigned to it, then

ps ≥ 1− pc.
δ(H)

l − 1

. We now combine this with the results we had for the selection operator by assuming that

the two operators are independent. The number of vectors that follow schema H in the time

step t+ 1 can now be calculated as

m(H, t+ 1) ≥ m(H, t).
f(H)

f̂
.

(
1− pc.

δ(H)

l − 1

)
As we discussed that selection of a schema depends on its average fitness in comparison to

the average population fitness, crossover depends on the length of the schema. Schemas with

short lengths have a higher chance of survival. Thus, schemas with short lengths and average

fitness above the average fitness of the population are sampled at increasing rates with each

generation.

25

The last operator that we will discuss is mutation. Mutation is an operator that alters the

value of the vector at a position, i.e. by changing 0 to 1 at a certain position and vice

versa. For a schema to survive, all the specified positions must not be altered. Therefore if

the probability of mutation is pm, the schema survives with probability(1− pm)o(H), where

o(H) is the order of the schema as defined above (assuming mutation at each position is

independent).Since, the probability of mutation is generally taken to be an extremely small

value, the probability of survival of schema can be approximated by 1− o(H).pm.

We now derive the Fundamental Theorm of Genetic Algorithms. This algorithms gives

us the number of vectors of a particular schema that can be expected in the next generation or

at time step t+1 when the genetic operators of selection, crossover and mutation are applied.

Assuming each of the operators are independent and ignoring the small cross-product terms,

we get

m(H, t+ 1) ≥ m(H, t).
f(H)

f̂
.

(
1− pc.

δ(H)

l − 1

)
.(1− o(H).pm)

≥ m(H, t).
f(H)

f̂
.

(
1− pc.

δ(H)

l − 1
− o(H).pm

)
The Fundamental theorem then states that short, low- order, above-average schemata re-

ceiveare increasingly represnted in subsequent generations.

2.2.3 Neuro-Genetic Model: Algorithms and Training

For the neuro-genetic model for forecasting, two different approaches were used. In the

first part, the genetic algorithm was applied to optimise the set of weights used in the neural

network while keeping the architecture fixed. The architecture was determined by the results

of the previous section on neural network models.The second part involved applying genetic

algorithm on the architecture of the neural network and then training the neural network,

i.e. the number of inputs and the number of neurons in the hidden layer. The number of

inputs considered was on a set of integers from [1,20] and the number of neurons in the

hidden layer was [1,30]. The simulations were run on MATLAB and the data that was used

was US Dollar/Euro exhange rate data from 2011 to present day. The performance of each

neural network was measured by mean square error or MSE and the fitness function was

taken to be f(x) = 1
MSE

(fitter the neural network, lesser the mean square error).

26

Algorithm 4: Genetic Algorithm applied on weight vector

1 Convert all the set of weights used in training of network into a single vector.

2 Initialise a population of 50 vectors of weights.

3 For each vector, initialise the weight of the neural network with the vector and train

the neural network.

4 Calculate the performance of each neural network and then calculate the fitness

values of each of the neural network.

5 Based on the fitness values, select the weight vectors with highest fitness and pass it

onto the next generation as elite children. The pSelect was a random value

generated between [0.75,1].

6 Apply other operators of six- point crossover (crossover at 6 positions) and mutation

and create crossover and mutation children.

7 Repeat till 100 iterations. For each generation, note down the set of weights that has

given the least mean square error upon training.

8 Select the set of weights which gives the least MSE over the generations and train

your neural network using those set of weights.

27

Algorithm 5: Genetic Algorithm applied on network architecture

1 Convert the set of integers [1,20] and [11,30] into binary vectors.

2 Initialise the binary vectors of [1,20] and [11,30] into the initial population for

number of input nodes and number of hidden nodes respectively .

3 Let VI be the vector for the input in the population and VH be the vector for the

hidden node.

4 For each vector VI and VH , initialise the number of inputs and the number of hidden

nodes of the neural network .

5 Calculate the performance of each neural network and then calculate the fitness

values of each of the neural network.

6 Based on the fitness values, select the vector VI and VH with highest fitness and pass

it to the next generation as elite children.The pSelect was a random value generated

between [0.75,1].

7 Apply other operators of three- point crossover (crossover at 3 positions) and

mutation on the vectors VI and VH in the population and create crossover and

mutation children

8 Repeat till 100 iterations. For each generation, note down the number of inputs that

has given the least mean square error upon training.

9 Select the number of input and hidden nodes which gives the least MSE over the

generations and train your neural network using the same number of inputs and

hidden nodes.

2.2.4 Results

For a neural network of 12 inputs and 24 hidden nodes, we applied the genetic algorithm as

described in the algorithm 1 above. The algorithm gave the minimum MSE at 59th iteration

for the 14th weigth vector.

28

Figure 2.12: Training Data of Network with Genetic algorithm on Weights

Figure 2.13: Test Data of Network with Genetic Algorithm on Weights

29

Figure 2.14: Performance of Network with Genetic Algorithm on Weights

A part of table that shows the training performance and test performance for a part of

population is shown as follows:

Population Mean MSE of Test Performance

number population

51 8.275065e-04 6.418594e-04

52 8.654775e-04 6.226621e-04

53 1.052213e-03 6.456736e-04

54 8.428374e-04 6.211825e-04

55 8.354304e-04 6.363530e-04

56 7.883199e-04 6.368228e-04

57 8.200971e-04 6.296454e-04

58 1.835029e-03 6.291646e-04

59 7.907987e-04 5.987798e-04

60 8.716574e-04 6.302475e-04

Table 2.4: Mean MSE and Test Performance of Populations of weights

In the second part, genetic algorithm was applied on the architecture of the neural net-

30

work, i.e the number of input units and the number of hidden nodes. The minimum MSE

was found at the 9th iteration for input units=14 and hidden nodes=28.

Figure 2.15: Training Data of Network with Genetic algorithm on Architecture

Figure 2.16: Test Data of Network with Genetic Algorithm on Architecture

31

Figure 2.17: Performance of Network with Genetic Algorithm on Architecture

A part of table that shows the training performance and test performance for a part of

population is shown as follows:

Population Mean MSE of Test Performance

number population

1 1.186607e-03 6.587150e-04

2 9.039590e-04 6.483756e-04

3 8.422916e-03 6.336099e-04

4 6.608447e-03 6.700080e-04

5 1.432892e-02 6.472539e-04

6 1.370173e-03 6.330162e-04

7 7.333263e-04 6.374157e-04

8 1.192145e-03 6.337274e-04

9 7.786330e-04 6.158535e-04

10 1.302913e-03 6.281796e-04

Table 2.5: Mean MSE and Test Performance of Populations of number of input and hidden
nodes

32

2.3 Neuro- Fuzzy Systems

Classically, the general theories in mathematics are constructed on sets which are clearly

defined. However, human language is is not as precise and definitive as mathematics is. For

example, if we say the temperature is cold, it may require a broad set fo temperatures to

define what ”cold” means to different people. In classical logic, the truth values are assigned

to a quantity is true or false i.e. the temperature is either cold or hot. In fuzzy logic,however,

the temperature is characterised by various boundaries of truth values which accomodate

temperatures which may fall in the range of ”very cold”, ”cold”, ”moderately cold”, ”mod-

erately hot”, ”hot” and ”very hot”. Fuzzy logic as conceptualised by Lofti Zadeh in 1965 is

an attempt to bridge this vagueness of human linguistics into a mathematical concept.

A fuzzy concept is an intuitive way of mathematcally conceptualising the qualitatve descrip-

tion used in everyday language. Additionally, it can easily accomodate imprecise data on

which the logic has to be applied. We will begin by formally defining what fuzzy logic is.

2.3.1 Fuzzy Logic and Inference

Definition 9. Fuzzy Logic Fuzzy logic is a superset of conventional(Boolean) logic that has

been extended to handle the concept of partial truth- truth values between ”completely true”

and ”completely false”. The importance of fuzzy logic derives from the fact that most modes

of human reasoning and especially common sense reasoning are approximate in nature.

Fuzzy logic and the rules associated were formally defined by Zadeh in a groundbreaking

paper in 1965. The basic premise on which defines the characteristics of a fuzzy logic are

listed below (Zadeh,1965)[11]:

1. In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning.

2. In fuzzy logic everything is a matter of degree.

3. Any logical system can be fuzzified.

4. In fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently , fuzzy

constraint on a collection of variables

5. Inference is viewed as a process of propagation of elastic constraints.

Fuzzy logic,as seen in the construct above, is seen as a generalization of classical logic. It

is a system which can be used to deal with problem which have imprecise data or in which

the rules of inference are formulated in a very general way making use of diffuse categories.

Fuzzy logic offers a whole continuum of truth values for logical propositions instead of just

0 or 1. For example, a proposition P in a fuzzy logic can be assigned a truth value of 0.3

33

(a) Trinagular MF (b) Trapezoid MF (c) Gaussian MF

Figure 2.18: Types of Membership Functions

whereas its complement is assigned a truth value of 0.5. In fuzzy logic, truth values of a

proposition and its negation need not necessarily add up to 1.

The most important mathematical construct that in involved in the fuzzy logic is the mem-

bership function. Suppose there are elements {x1, x2, x3...xn}, which belong to set A . In a

classical setup, the elements either belong to set A or they do not. Thus, if x1 belongs to set

A, it has a ”membership” of 1. Otherwise it has a ”membership” of 0. However, in a fuzzy

logic setup, the element x! can be present in the set A with a degree of membership which

can be any real number between (0,1). For example, if the membership of temperatures is

defined in the sets ”Very Cold”, ”Cold and ”Moderately Cold”, then a temperature of 10◦C

can belong to each of the sets with degree of memberships 0.4, 0.5 and 0.05 respectively.

We will now formally define the membership function for a fuzzy logic setup.

Definition 10. Membership Functions Let X be a classical universal set. A real function

µA : X → [0, 1] is called the membership function of A and defines the fuzzy set A of X.This

is the set of all pairs (x, µA(x)) with x ∈ X. (Rojas, 1996)[12]

A fuzzy set A described on the set X with elements {x1, x2, . . . , xn}can be defined as can

be described in the following way

A = µ1/x1 + µ2/x2 + . . .+ µn/xn

. There are different types of membership function, of which we will describe three.

• Triangular function: defined by a lower limit a, an upper limit b, and a value m, where

34

a < m < b.

µA(x) =


0 if x ≤ a

x−m
m−a , if a < x ≤ m

b−x
b−m , if m < x < b

0 if x ≥ b

• Trapezoidal function: defined by a lower limit a, an upper limit d, a lower support

limit b, and an upper support limit c, where a < b < c < d.

µA(x) =


0 if x < a or x > d

x−a
b−a , if a ≤ x ≤ b

1 if b < x < c

d−x
d−c , if c < x ≤ d

• Gaussian function: defined by mean m and a standard deviation k ¿ 0.

µA(x) = e−
(x−m)2

2k

The set operations defined on a fuzzy set is:

1. Union: µA⋃
B(x) = max(µA(x), µB(x))∀x ∈ X

2. Intersection: µA⋂
B(x) = min(µA(x), µB(x))∀x ∈ X

3. Complement: µAc(x) = 1− µA(x)∀x ∈ X.

In a fuzzy set, classical rules of complement may not apply. Thus,

A
⋃

Ac 6= X

A
⋂

Ac 6= Φ

In classical set theory, there exists an isomorphism between the there operators of set theory

(union, intersection and complement) and logic (OR, AND, NOT) respectively. A similar

isomorphism can be drawn for fuzzy set operations and fuzzy propositional logic. The fuzzy

(OR,AND, NOT) operators must be defined in such a way that the relations defined by the

operators are analogous to their equivalents in classical set theory and logic.

One example of defining (OR,AND, NOT) for a fuzzy logic set is :

1. OR (∨̃) =maximum function

2. AND (∧̃) =minimum function

35

3. NOT (¬̃) = 1-x.

Other examples of the operators can include multiplication x AND y = (x ∗ y) and x OR

y = 1 − (1 − x) ∗ (1 − y). With the operators (OR,AND,NOT) now defined, we show with

an example how Fuzzy Inference is done. Fuzzy inference rules have the same structure

as classical ones[12].

• Let

R1 : If(X∧̃Y) thenW.

R2 : If(X∨̃Y) thenZ.

• ∧̃ = min function and ∨̃= max function.

• Let the truth values of X and Y be 0.6 and 0.8 respectively. Then,

(X∧̃Y) = min(0.6, 0.8) = 0.6

(X∨̃Y) = max(0.6, 0.8) = 0.8

This is interpreted by the fuzzy inference mechanism as meaning that the rules R1

and R2 can only be partially applied, that is percentage of application of rule R1 is

60% and that of rule R2 to 80%. The result of the inference is a combination of the

propositions W and Z.

2.3.2 Fuzzy Inference System

From the example above, we can see that there are five functional blocks in any Fuzzy

Inference System[13]:

1. A fuzzification interface which transforms the crisp inputs into degrees of match

with linguistic values.

2. A rule base containing a number of fuzzy if-then rules.

3. A database which defines the membership functions of the fuzzy sets used in the fuzzy

rules.

4. A decision-making unit which performs the inference operations of the rules.

5. A defuzzification interface which transform the fuzzy results of the inference into a

crisp output.

The inference by the fuzzy inference systems is then done in the following sequence[13]:

36

Figure 2.19: Fuzzy Inference System

1. Fuzzification-Compare the input variables with the membership functions on the

premise part to obtain the membership values of each linguistic label.

2. Combine (through a specific fuzzy logic operator(OR, AND, NOT)) the membership

values on the premise part to get the weight of each rule.

3. Generate the fuzzy output (consequent) of each rule depending on the weight obtained

in the previous step.

4. Defuzzification-Aggregate the weighted consequents to produce a crisp output.

The three main types of Fuzzy inferences that exist are as follows[13]:

1. The output is the weighted average of each rules crisp output. The weight of each out-

put is detemined by the output membership function.The output membership functions

used in this scheme must be monotonic functions.

2. Mamdani Inference SystemThe overall fuzzy output is derived by applying max

operation to the fuzzy outputs (each of which is equal to the value obtained when fuzzy

operator applied to the inputs and the output membership function of each rule)., at

each point. This gives us the membership function that represents ”max” output at

each point.The final crisp output is then chosen using various criterion; some of them

are centroid of area, bisector of area, mean of maxima, maximum criterion, etc .

3. Sugeno-Takagi Inference System The output of each rule is a linear combination

of input variables plus a constant term, and the final output is the weighted average

of each rules output.

2.3.3 ANFIS Architecture and Training

Since we would be using a Sugeno-type Inference System to train our ANFIS For simplicity,

we assume the fuzzy inference system under consideration has two inputs x and y and

37

Figure 2.20: Architecture of ANFIS for Sugeno-type Inference

one output z. Suppose that the rule base contains two fuzzy if-then rules of Takagi and

Sugenos type Since we would be using a Sugeno-type Inference System to train our ANFIS

for exchange rate data, we would present a simple ANFIS model to illustrate how it is

trained.

Suppose we have two inputs x and y and one output z. The rule-base accoring to Sugeno-

Takagi inference system would be :

1. Rule 1: If x is A1 and y is B1, then f1 = p1x+ q1y + r1.

2. Rule 2: If x is A2 and y is B2, then f2 = p2x+ q2y + r2.

As shown in figure 2.8, we describe each of the layers in the ANFIS structure.

1. Layer 1: This is the layer where the inputs x and y are associated to their linguistic

variables Ais and Bis respectively. The membership function is defined

O1
i = µAi

(x)

This value detemines to the degree to which the given x satisfies the linguistic value

Ai. The membership function can be any function as described in the previous section.

Suppose we take the membership function to be the Gaussian function. Then,

µAi
(x) = e

− (x−ai)
2

2bi

38

The parameters used in the membership function {ai, bi} are known as premise pa-

rameters. As the values of these parameters change, the membership functions varies

accordingly.

2. Layer 2:This is the node where the operator is applied. In the rule above, we have

stated the operator to be ”AND” operator, which signifies multiplication. Other

”AND” operators could also be used instead of multiplication, like maximum. This

gives us the weight obtained for each rule.

wi = µAi
(x)× µBi

(y)

3. Layer 3: The i-th node in this layer normalises the weights obtained in the previous

layer for the i-th rule.

w̄i =
wi∑
wj

4. Layer 4:The nodes at this layer calculate the output for each rule.

O4
i = w̄ifi = w̄i(pix+ qiy + ri)

{pi, qi, ri} are known as the consequent parameters.

5. Layer 5: The nodes at this layer calculate the overall output.

O5
1 =

∑
i

w̄ifi

For type-1 fuzzy inference systems, the extension is quite straightforward. In an ANFIS

for type-1 fuzzy inference system, the output of each rule is induced jointly by the output

membership funcion and the firing strength. For type-2 fuzzy inference systems, we replace

the centroid defuzzification operator with a discrete version which calculates the approximate

centroid of area and then construct an ANFIS similar to that ot type-3 ANFIS model. The

training for an ANFIS is done using a hybrid training algorithm, which uses both gradient

descent and Least Squares Estimate. The training is an online or sequential mode of training.

We now describe the Least squares estimate or the LSE algorithm. Let the function that

is approximated by the ANFIS be F . Then for input I and parameters S of the network,

output O

O = F (I, S)

39

Algorithm 6: Hybrid Online Training for ANFIS

1 Initialize the input membership functions and the rules for the ANFIS structure
2 Identify the premise paramters and the consequent parameters.
3 In the forward pass, keep the premise parameters fixed. Pass the node outputs and

use the values to adjust consequent parameters using Least Squares Estimate.
4 In the backward pass, keep the consequent parameters fixed. Using the errors

obtained from the target and the output and gradient descent algorithm, adjust the
values of the premise parameters

5 Repeat till convergence.

If there exists a function H such that the composite function H ◦F is linear in some elements

of S then these elements can be identified by Least Squares Method. Thus, if the parameter

set S can be decomposed into two sets

S = S1 ⊕ S2 (⊕ direct sum)

, such that H ◦ F is linear in the elements of S2. Thus,

H(O) = H ◦ F (I, S)

which is linear in the elements of S2. If the values of S1 are given, then H(O) = B is

calculated. H ◦ F = A is a linear function of given input I and unknown parameters

S2 = X. Thus, the function can now be written as

AX = B

, which is a standard linear least square problem.

X = (ATA)−1ATB

. This computation is however expensive as it involves calculation of inverse of a matrix.

Moreover, if ATA is a singular matrix, inverse does not exist. As a result, we use sequential

formulas to compute the LSE of X. This sequential method of LSE is more efficient compu-

tationally. Specifically, let the ith row vector of matrix A be ai and the ith element of B be

40

bi. Then, then X can be calculated iteratively using the sequential formulas:

Xi+1 = Xi + Si+1ai+1(bTi+1 − aTi+1Xi)

Si+1 = Si −
Siai+1a

T
i+1Si

1 + aTi+1Sai+1

The initial conditions are X0 = 0 and S0 = γI, where γ is a positive large number and I is

the identity matrix of dimension M ×M , where M = |X|. In online training, we modify the

equation Si+1 = 1
λ

[
Si −

Siai+1a
T
i+1Si

1+aTi+1Sai+1

]
. The factor λ ∈ (0, 1) is to account for the time-varying

characteristics of the incoming data. In an online training, we need to give more weightage

to the newer incoming data pairs and also decay the effects of old data pairs. λ is a factor

is added to the equations gives more weightage to the newer data pairs. The smaller λ is,

faster the effects of old data decay.

2.3.4 Results

We used a Takagi-Sugeno Fuzzy Inference system for modelling the exchange rate data

and the modelling was done using MATLAB. The exchange rate data was USDollar/Euro

exchange Rate data from 2011 to present day.We assumed that the model was y(t)= f(y(t-

1),y(t-2),... , y(t-d)). We took d=12 using the results of the neural network model. The

input were put into fuzzy clusters who’s numbers were differed, based on their values. Based

on the number of clusters,rules were formed. These are listed as follows:

• If input-1 is in cluster-1, input-2 is in cluster-1,...., input-12 is in cluster-1, then output

is in cluster-1.

• If input-1 is in cluster-2, input-2 is in cluster-2,...., input-12 is in cluster-2, then output

is in cluster-2.

• If input-1 is in cluster-n, input-2 is in cluster-n,...., input-12 is in cluster-n, then output

is in cluster-n.

The clusters were assigned using FCM subroutine in MATLAB.These clusters were then

assigned gaussian membership functions. The rate of learning was 0.01 and the rate of

decease and increase of step size was 0.9 and 1.1 respectively. The performance was measured

in terms of mean square error or MSE.

41

Clusters Training Performance Test Performance

4 1.9334e-04 7.9942e-04

5 1.9917e-04 0.0013

6 1.8353e-04 9.8560e-04

8 1.7377e-04 0.1484

10 1.5773e-04 6.4684e-04

Table 2.6: Training and Test MSE on ANFIS Model

Figure 2.21: Training Data

42

Figure 2.22: Test Data

2.4 Comparison with Random Walk Model

The four models that were studied in detail were Neural Network model, Neural Networks

with Genetic Algorithms, Neuro-Fuzzy Models. The test performance was obtained for four

of them and these are now compared to the Random Walk Model. As studied in literature,

forecasts with time series model fail to beat the random walk model or AR(1).

43

Figure 2.23: Forecasting using Random Walk

Model Test Performance

Neural Network 6.6587e-04

GA-Weights 5.9878e-04

GA-Architecture 6.1585e-04

ANFIS 6.3072e-04

Random Walk 0.0615

Table 2.7: Test Performance of Different Models

Thus, forecasting using machine learning models yield much better forecasts compared

to the random walk model.

44

Chapter 3

Combination of Forecasts

In most statistical modeling applications, there are several models that are a priori plausible.

However, it is a common practice in statistics to select the best model out of thos which

give the best performance value. This performace can be measured by several statistical

quantities like the Mean Square Error, Mean Absolute Error, Root Means Square Error ,etc.

However Granger and Bates in a 1969 paper proposed a combination of the model forecasts

and showed that it produced much better results. Hoeting et.al 1999 also derived the Baysian

Model averaging for a linear model and generalised linear model.

This chapter will look at how to combine all the proposed models for a proposition and see if

the forecasting results with the model is better. This is generally done by assigning weights

to all plausible models and to work with the resulting weighted estimator. This leads to the

class of model averaging estimators.The method that we are going to discuss in the next

section is of assigning weights by a model selection criterion , Akaikes information criterion

(AIC).

3.1 Information Theoretic Averaging

Let M = (M1,M2, ..Mn) be the models in consideration that are going to be used for the

estimation of a quantity µ. Model averaging by the definition involves finding non-negative

weights (w1, w2, ..wn). Then the quantity µ that is calculated will be

µ = Σwkµk

45

, where µk is the quantity of interest estimated by each of the model.

Let Ik denote an information criterion of the form

Ik = −2logLk + 2sk

, where sk refers to the number of parameters of the model and Lk defines the likelihood of

the model in the AIC criterion. We use and the weight for the model Mk is then defined as

wAIC,k =
exp(−AICk/2)∑n
l=1 exp(AICl/2)

When the Bayesian information criterion (BIC) is used, we use with

sk = log(n)qk

where n is the sample size of the data taken and qk is the number of parameters of the model.

The weights are then calculated similarly to the AIC criterion.

wBIC,k =
exp(−BICk/2)∑n
l=1 exp(BICl/2)

We now try to provide the motivation for the derivation of AIC.

We assume that there is a function f which denotes the true distribution of a quantity. Now,

using statistical or machine learning techniques, we find out a model that approximates the

given data. We call this model g, which depends on parametes θ. As, defined in the

last chapter, the K-L information I(f, g) is the information lost when model g is used to

approximate f and is defined as

I(f, g) =

+∞∫
−∞

f(x)log

(
f(x)

g(x|θ)

)
dx

As we can clearly infer, the best model loses the least amount of information and deviates

the least from the true model. Mathematically, this is equivalent to minimising the function

I(f, g). However, calculating the integral requires the knowledge of f and the parameters θ.

46

Thus, we try to calculate the estimate of K-L information rather than its true value.

I(f, g) =

+∞∫
−∞

f(x)log

(
f(x)

g(x|θ)

)
dx

=

+∞∫
−∞

f(x)log(f(x))dx−
+∞∫
−∞

f(x)log(g(x|θ))dx

= Ef (log(f(x))− Ef (log(g(x|θ))

In this equation, Ef (log(f(x)) becomes a constant if we assume thatf is the true distribu-

tion. This leaves only Ef (log(g(x|θ)) to be calculated.

Akaike now showed a critical relationship between the information- theoretic criterion of

K-L divergence and the likelihood of the model. In the abover integral, only Ef (log(g(x|θ))
needs to be calculated. Assuming, we do not know the true values of θ, this leaves us to

calculate

EyEx[log(g(x|θ̂(y)))]

, where y is the data that we have. The θ̂ is the maximum likelihood estimator of the

parameter θ of the model g. Although only y denotes data, we assume that both x and

y are independent random samples from the same distribution. Akaike found an aymp-

totic result which showed that the maximized log-likelihood value was a biased estimate of

EyEx[log(g(x|θ̂(y)))]. This bias was estimated approximately equal to K, the number of

estimable parameters in the model g Mathematically, this result is:

log(L(θ̂|data))K = Ef (log(f(x))− I(f, g(x|θ̂)

, This finding makes it possible to combine estimation (i.e., maximum likelihood or least

squares) and model selection under a unified optimization framework.

relativeE(K − L) = log(L(θ̂|data))K

. Akaike multiplied this above equation by a factor of -2. This is statistically known as the

Akaike’s information criterion:

AIC = −2log(L(θ̂|data)) + 2K

47

.

In the special case of least squares estimation for a regressionproblem , AIC is expressed as

AIC = nlog(σ2) + 2K

, Here, σ2 is defined as mean square error of the residuals obtained from the fitted model.

σ2 =
Σε2

n

Here, ε refers to the residulas obtaned from the fitted model and n is the number of data

points . AIC for models then becomes very easy to compute when we know the values of

K or number of parameters of the model. The BIC value of the model in consideration is

calculated similarly with modified value of sk as defined above.

For a set of models, these values are then calculated. However, since the number of pa-

rameters are arbitrary, they can also give large AIC values. To counter this, we calculate a

quantity ∆k for each modelMk in consideration. This quantity is calculated as:

∆k = AICk − AICmin

where AICmin is the minimum AIC of a model in the set of models being considered. The

best model then has an AIC=0. Also, the larger the value of ∆k, the worse the model is.

Thus, we can remove those models from consideration by a principle knows as ”Occam’s

razor”, where models with a threshold AIC values were removed from the set of models

being considered.

3.2 Averaging Machine Learning Models

Using these AIC values, we calculated the weights to be assigned to each machine learning

model for forecasting. Further, we also saw that averaging the model forecasts yielded a

better forecast than the individual forecast of each model. The AIC and BIC of each model

was calculated using the training performance of the model. Lesser the training error, more

likely the model would be closer to the true model. The quantity of interest that was

estimated was the test performance or the forecasting power of the combination of models.

48

Model Test AIC BIC ∆AIC ∆BIC

Performance

Neural Network 6.6587e-04 -7.981×103 -8.6567×103 252.589 0

GA-Weights 5.9878e-04 -8.0016×103 -3.9669×103 232.2266 4.689844×103

GA-Architecture 6.1585e-04 -7.8063×103 -2.4425×103 427.5893 6.2142×103

ANFIS 6.3072e-04 -8.2339×103 -3.8075×103 0 4.849×103

Table 3.1: Model Averaging Parameters

Model Averaging Test Performance

AIC 6.9161e-04

BIC 6.6587e-04

Table 3.2: Test Performance on Model Averaging using Test Performance Values

Model Averaging Training Performance Test Performance

AIC 4.0271e-05 1.7617e-04

BIC 5.4935e-05 1.7136e-04

Table 3.3: Test Performance on Model Averaging using actual data

Thus, model averaging showed a better result compared to all the individual models.

49

Figure 3.1: Training Data using Model Averaging- AIC

50

Figure 3.2: Test Data using Model Averaging- AIC

Figure 3.3: Training Data using Model Averaging- BIC

51

Figure 3.4: Test Data using Model Averaging- BIC

52

Bibliography

[1] G. P. Zhang, “Time series forecasting using a hybrid arima and neural network model,”
Neurocomputing, vol. 50, pp. 159–175, 2003.

[2] A. K. Nag and A. Mitra, “Forecasting daily foreign exchange rates using genetically
optimized neural networks,” Journal of Forecasting, vol. 21, no. 7, pp. 501–511, 2002.

[3] J. Chao, F. Shen, and J. Zhao, “Forecasting exchange rate with deep belief networks,” in
Neural Networks (IJCNN), The 2011 International Joint Conference on, pp. 1259–1266,
IEEE, 2011.

[4] M. Khashei, S. R. Hejazi, and M. Bijari, “A new hybrid artificial neural networks and
fuzzy regression model for time series forecasting,” Fuzzy sets and systems, vol. 159,
no. 7, pp. 769–786, 2008.

[5] G. S. Atsalakis and K. P. Valavanis, “Forecasting stock market short-term trends using
a neuro-fuzzy based methodology,” Expert Systems with Applications, vol. 36, no. 7,
pp. 10696–10707, 2009.

[6] S. Haykin and N. Network, “A comprehensive foundation,” Neural Networks, vol. 2,
no. 2004, p. 41, 2004.

[7] S. Kumar, Neural networks: a classroom approach. Tata McGraw-Hill Education, 2004.

[8] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt
algorithm,” IEEE transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

[9] F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian learning,”
in Neural Networks, 1997., International Conference on, vol. 3, pp. 1930–1935, IEEE,
1997.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1989.

[11] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.

[12] R. Rojas, Neural networks: a systematic introduction. Springer Science & Business
Media, 2013.

53

[13] J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,” IEEE transactions
on systems, man, and cybernetics, vol. 23, no. 3, pp. 665–685, 1993.

54

