
TOPOLOGICAL PHASES ON LIEB
LATTICE

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Anirban Sharma

20121049

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2017

Supervisor: Dr. Mukul Laad

c© Anirban Sharma 2017

All rights reserved







Acknowledgements

I am extremely grateful to Dr. Mukul S Laad for providing me an oppor-
tunity to work with him at Institute of Mathematical Sciences, Chennai. I
would like to thank him for the amount of time spent in explaining me the
intricacies of the problem and lessons on how to go about a problem. It was
a great learning experience.

I would like to thank Dr. Mukul Kabir for his interest. I highly appreci-
ate the amount of time he spent to discuss problems with me. It was great
having conversations with him.

I would like to thank Dr. Rejish Nath for his constant support through
out my IISER life.

I would like to express my gratitude towards the Physics Department,
IISER for providing me an opportunity to carry out the project at IMSc.

Finally, I would like to thank my parents, brother and friends for their
constant mental and emotional support. I would like to dedicate the thesis
to my parents.



Abstract

We show that a Mott transition is possible in our model with a dimer placed
on each site of a Lieb lattice. To illustrate this, we map the lattice problem to
an impurity problem. Then we solve the impurity problem to show the Mott
transition. We then investigate the band structure of the non-interacting
problem using the tight binding approximation. We show that the band
structure is topologically non-trivial. To check the stability of BCPs, we in-
troduce di�erent hoppings. We get quadratic band crossing points(QBCPs),
tilted Dirac cones in the band structure. Then we introduce the electric �eld
in the system in z direction to see the e�ect of inversion symmetry breaking.
As the inversion symmetry is broken, we then introduce Rashba spin orbit
coupling type interaction in the Hamiltonian to check its e�ect on the BCPs.
Finally, the model is mapped to a two orbital per site model. We are able
to show that the topologically non-trivial features can be found in a system
having an odd and an even parity orbital at each site.
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Chapter 1

Introduction

There has been a consistent search to �nd materials which shows exotic prop-
erties and are of extreme interest. Since the discovery of quantum hall e�ect
in 1980s, there has been a constant search for new topological states of mat-
ter. Since then, a tremendous amount of work has been done in this �eld.
The Shastry Sutherland lattice is an example of this. The lattice was pre-
dicted theoretically �rst and few years down the line, it was experimentally
found in real materials. Hence, we plan to come up with results which could
serve as prescription for experimentalists to look for new materials which can
host novel phases. The phases would be already predicted theoretically.

The area of topological insulators has been a very active �eld in the last
decades and still continue to be one. The topological insulators are di�erent
from the normal insulators in that the topological insulators behave as an
insulator in the bulk but acts as a conductor on the surface because of the
presence of gapless surface states. There are certain parameters by which one
can check if an insulator is topologically trivial or non-trivial. This quantity
is known as the Z2 invariant[2] [3]. One should keep in mind that the gapless
edge survives the e�ects of weak perturbation. However, this is not true if
time reversal symmetry is broken.

In my thesis, I start with a model on a Lieb lattice. A Lieb lattice is a two
dimensional section of a pervoskite structure and pervoskite structure is seen
extensively. Then we consider the various phases in the model. We show a
Mott metal insulator transition in the model. Then we go to the topologi-
cal aspect of the band structure. We start with the simplest case with only
two hoppings-one inter dimer and another intra dimer hopping. The second
chapter deals with the basics of Green's functions at zero temperature and
then introduction to Berry phase. In the next section, the methods have
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been discussed. To solve the model, DMFT technique has been used. Also
the lattice model was mapped to Falicov Kimball impurity model.

The next chapter describes the model along with the results with various
hoppings and e�ects of electric �eld. We also study the e�ects of Rashba
spin orbit coupling in the system, which arises when the centerosymmetry is
broken due to electric �eld or any other source. The model is also mapped
to the Haldane model, which shows that a topological transition is possible.

In the next chapter, we map the model to a two-orbital per site system
and we investigate if the features of the dimer model still survives. We want
to investigate what happens when the 2D layers are stacked to give a 3D
structure.
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Chapter 2

Theory

2.1 Many Body Physics

2.1.1 Green's function

Solving a Hamiltonian is often a di�cult task. Most of the times, the total
Hamiltonian cannot be solved exactly. Usually, the Hamiltonian is divided
into two parts - one which can be exactly solved and other the remaining
parts of the Hamiltonian.

H = H0 + V (2.1)

where H0 is the exactly solvable part. H0 is chosen in a fashion such that
the e�ects of V are small. For a start, H0 is solved �rst and then V is
introduced. We will be using the interaction representation. In interaction
representation, both the operator and the state evolves. Let O and Ψ be an
operator and a state repectively. They evolve as in the following fashion:

O(t) = eiH0tOe−iH0t (2.2)

Ψ(t) = eiH0te−iHtΨ(0) (2.3)

If we de�ne an evolution operator U(t) = eiH0te−iHt such that Ψ(t) =
U(t)Ψ(0) and assume that [H0, V ] 6= 0 and U(0) = 1. Di�erentiating U(t)
with respect to time gives us a di�erential equation:

∂

∂t
U(t) = −iV (t)U(t) (2.4)

=⇒ U(t) = 1− i
∫ t

0

dt1V (t1)U(t1) (2.5)

Similarly, we can write an integral equation for U(t1) and plug it in the above
equation. We can keep on doing that and the �nally, we will get a form for
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U(t):

U(t) =
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2......

∫ tn−1

0

dtnV (t1)V (t2).....V (tn) (2.6)

If we introduce a time-ordering operator T, the whole series can be re-written
as

U(t) = 1 +
∞∑
0

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2....

∫ t

0

dtnT [V (t1)V (t2)...V (tn)] (2.7)

= T exp

[
−i
∫ t

0

dt1V (t1)

]
(2.8)

Now we de�ne an operator S(t,t') called the S matrix which is given by
Ψ(t) = S(t, t′)Ψ(t′). It can be shown that the operator can be written as
S(t, t′) = Texp[−i

∫ t
t′
dt1V (t1)] where T is the time ordering operator. The

main motive is to �nd the ground state of the H. Let us assume that the
exact ground state of H0 be Ψ0. It is assumed that the system is in state
Ψ0 at t → ∞ where the e�ects of interactions are not considered. The
system is then adiabatically varied upto time t = 0. Ψ(0) is the ground state
wavefunction of the system at time t=0 in interaction representation. It
has been shown that at zero temperature Ψ(0) = S(0,−∞)Ψ0. At t=0, the
interaction is switched on. The next step is to calculate the Green's function.
The electron Green's function in Heisenberg representation is given by

G(η, t− t′) = −i 〈|Tcη(t)c†η(t′) |〉 (2.9)

where η can be momentum wave vector or spin and T is the time ordering
operator. The expectation is taken with respect to the ground state of the
total Hamiltonian H. The operators are in interaction representation. We
change the state |〉 into its interaction representation using the S-matrix. |〉0 is
the ground state of the system without any interaction at zero temperature.
Using the properties of S-matrix and time operators, the Green's can be
written as

G(η, t− t′) = −i0 〈|T ĉη(t)ĉ†η(t′)S(∞,−∞) |〉0
0 〈|TS(∞,−∞) |〉0

(2.10)

If there is no interaction, then the free or unperturbed Green's function is

G(0)(η, t− t′) = −i0 〈|T ĉη(t)ĉ†η(t′) |〉0 (2.11)

Similarly, phonon Green's function can be written as

D(q, t− t′) = i
0 〈|TAq(t)A−qS(∞,−∞) |〉0

0 〈|S(∞,−∞) |〉0
(2.12)
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where Aq = aq + a−q is the phononic displacement operator. It is possible to
have a system where there both electronic and phononic contributions come
into the Hamiltonian. In that case, the ground state will be a combinaton
of the ground states for the electrons, phonons. The next step would be
to calculate the Green's fucntion. If we expand the S-matrix, the Green's
function can be written as a series:

G(η, t− t′) =
∞∑
n=0

(−i)n+1

n!

∫ ∞
−∞

dt1....

∫ ∞
−∞

dtn

0 〈|T ĉηV̂ (t1)V̂ (t2)......V̂ (tn)ĉ†η(t
′) |〉0

0 〈|S(∞,−∞) |〉0
(2.13)

In order to evaluate the time ordered expectation of the brackets 0 〈|T ĉηV̂ (t1)V̂ (t2)

...V̂ (tn)ĉ†η(t
′) |〉0, we will need to understand how to pair the operators. The

following rules should be followed:

• When we pair the operators, there should be equal number of creation
and annihilation operator. Mathematically, it can be thought that the
action of a annihilation operator on a 〈| is equivalent to action of a
creation operator on a |〉 or vice versa. So, if there are unequal number
of creation and annihilation operators, then the �nal bra and ket would
be orthogonal and hence the expectation would be zero. Physically, this
is to ensure the particle number is conserved.

• For a The operators should have the same index. Let us take the
take the example of a fermionic creation operator c†α which when acted
upon |〉0 creates an electron in the α state. Now before the action of
〈|0, it must be acted upon by a lowering operator to have a non-zero
expectation. Now, the point is the lowering operator should have the
same α i.e. cα will act. Then, the expectation will be �nite.

• All possible pairings of creation and annihilation operator should be
considered. Also each pair should be time ordered. Let us consider the
following example:

0 〈|T ĉα(t)ĉ†β(t1)ĉγ(t2)ĉ†δ(t
′) |〉0

=0 〈|T ĉα(t)ĉ†β(t1) |〉00 〈|T ĉγ(t2)ĉ†δ(t
′) |〉0

−0 〈|T ĉα(t)ĉ†δ(t
′) |〉00 〈|T ĉγ(t2)ĉ†β(t1) |〉0

(2.14)
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This is known as the Wick's theorem. If there are n creation and
destruction operators, there are n! ways possible to pair them. There
is a negative sign in front of the second term. This is because when two
fermionic operators are interchanged, it picks up a negative sign. So,
if there are odd number of interchanges, there will be a negative sign.

• In order to pair a term having a combination of di�erent kinds of op-
erators, each type of operator is paired seperately. This is because the
electron operators will commute with the phonon operators.

0 〈|T ĉk(t)ĉ†k1(t1)Âq1(t2)ĉk2(t3)ĉ†k3(t4)Âq2(t
′) |〉0 =

0 〈|T ĉk(t)ĉ†k1(t1)ĉk2(t3)ĉ†k3(t4) |〉00 〈|TÂq1(t2)Âq2(t
′) |〉0 (2.15)

So the electron operators will be paired further independently of the
phonon operators. The Wick theorem will be applied to both the op-
erators.

• If both the operators act at the same time, then the ordering of the
operators is as follows:

0 〈|T ĉ†k1(t1)ĉk2(t2) |〉0 = δk1=k20 〈| ĉ†k1(t1)ĉk2(t2) |〉0 = δk1=k2nf (εk1)
(2.16)

where nF is the fermionic number operator. If they are at di�erent
times, the creation operator is put to the right.

So, it can be seen that each term in the expansion will either be a Green's
function or a number operator. So if we have only V (t1), it is the �rst order
interaction. We can have higher order interactions in the Green's function
calculation where we consider V (t1)....V (tn).

2.1.2 Feynman Diagrams

Expanding the series representation of Green's function will yield many terms
with more number of operators and hence it becomes very di�cult to keep
track of the terms. So, it is useful to represent the terms using Feyman di-
agrams. It also helps us to keep the terms which contribute to the actual
physical process and discard the rest. The electron Green's function is rep-
resented by a line with momentum written on it and an arrow is put on the
line to indicate the direction of time �ow. Similarly, for the phonon case, the
line is now replaced by dotted line. Here, there is no arrow. The number
operator is represented by a loop. This is because both the operators are at
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same time, so it has to close back to itself.
A diagram with a single electron line and single phonon line will represent a
electron phonon interaction. At each vertex, the total incoming momentum
will be equal to total outgoing momentum. Now one important thing to note
is that a diagram can either be connected or disconnected. The disconnected
diagrams are those which can be separated into two distinct parts without
making a cut.
The next thing is to evaluate the expectation 0 〈|S(∞,−∞) |〉0. This can be
written as a series given by

0 〈|S(∞,−∞) |〉0 =
∞∑
n=0

(−i)n

n!

∫ ∞
∞

dt1......

∫ ∞
∞

dtn×0〈|TV (t1)V (t2)....V (tn) |〉0

(2.17)
This term will also give rise to terms known as vacuum polarization terms.
So, it would be tedious to �rst �nd the diagrams for the numerator in the
expansion for Green's function and then the vacuum polarization. However,
there is a theorem which simpli�es the calculation. According to the theorem,
the disconnected diagrams in the expansion of the term in the numerator gets
cancelled by the vacuum polarization diagrams in the denominator. Hence,
only the contributions from the connected diagrams are included to calculate
the Green's function.

2.1.3 Dyson's Equation

Interacting Green's function include self energy terms which is basically the
energy change because of interaction. It is often easier to work in the Fourier
domain(energy) while calculating. The Fourier transform is given by:

G(p, E) =

∫ ∞
∞

dteiE(t−t′)G(p, t− t′) (2.18)

Similarly, for a phonon, the frequency domain Green's function is de�ned as

D(q, ω) =

∫ ∞
∞

dteiωtD(q, t) (2.19)

Upon calculating the various terms in the expansion, we get the �nal inter-
acting Green's function as [4]

G(p, E) = G(0)(p, E) +G(0)(p, E)2Σ(1)(p, E) + ...... (2.20)

where G(0)(p, E) is the unperturbed Green's function and Σ(1)(p, E) is the
�rst order self energy. There will be other higher terms having higher order
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self-energies. Final incorporating all the terms, it can be shown that,

G(p, E) =
G(0)(p, E)

1−G(0)(p, E)Σ(p, E)
(2.21)

where Σ(p, E) is the total self-energy, calculated by summing all the self-
energies. This is known as the Dyson's equation. So, if we know both
interacting and non-interacting Green's function, then self-energy can be
calculated using this equation. Everything we have considered was for zero
temperature. At non-zero termperatures, the expectation value is calculated
by averaging over all the possible con�gurations. For non-zero temperatures,
Matsubara Green's function are de�ned which works in complex plane. From,
Matsubara Green's function, the retarded Green's function is obtained by
analytic continuation.

2.2 Band Topology

Let us now look at the topological aspect of the band structure. As we
know in topology, continuous deformation changes the shape of an object,
however, keeps the genus conserved. In physics, the continuous deformation
is equivalent to adiabatic continuity. Let us consider a system having a
ground state and an excited state with an energy di�erence ∆E between
them. By adiabatic continuity it is meant that if the Hamiltonian is varied
slowly, the two levels don't cross each other. The time scale of varying
the Hamiltonian is much less than than that determined by the uncertainty
principle(t << ~

∆E
). So two states will be same topologically, if they can be

connected adiabatically to each other. To understand the band topology, it
is �rst required to understand what the Berry phase is and what it implies.

2.2.1 Berry Phase

The concept of Berry phase was �rst introduced in 1983[5]. Let us consider a
Hamiltonian which depends on some parameter R. The Hamiltonian is varied
adiabatically by varying the parameter. The wavefunction of the system
acquires a phase, other than the phase dictated by time evolution. This
geometric phase is known as the Berry phase.

Let |Ψ(t) > be the wavefunction of the system at time t. It evolves as

i~
∂|Ψ(t) >

∂t
= Ĥ(R)|Ψ(t) > (2.22)

Ĥ(R)|n(R) >= En|n(R) > (2.23)
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[|n(R) >] form a basis at each instant. So, if a system is prepared in one
of the eigen states, say |n(R(0) >, the wavefunction of the system at any
instant will be given by

|Ψ(t) >= exp

{
(− i

~

∫ t

0

dt′En(R(t′)))

}
exp{(iγn(t))}|n(R(t)) > (2.24)

The �rst exponential corresponds to the phase factor due to time evolution
and the second is the factor due to geometric phase. We plug this in the time
dependent Schrodinger wave equation. We get the LHS as

i~
∂|Ψ(t) >

∂t
= i~[

−i
~
En(R(t)) exp{(iγn(t))}|n(R(t)) > +i ˙γn(t) exp{(iγn(t))}|n(R(t)) >

+ exp{(iγn(t))}∂|n(R(t)) >

∂t
] exp

{
(− i

~

∫ t

0

dt′En(R(t′)))

}
(2.25)

The RHS reads as

Ĥ|Ψ(t) >= En exp

{
(− i

~

∫ t

0

dt′En(R(t′)))

}
exp{(iγn(t))}|n(R(t)) > (2.26)

Upon equating the two, we get

˙γ(t)|n(R(t)) >= i
∂

∂t
|n(R(t)) > (2.27)

=⇒ γ̇n(t) = i < n(R(t)|∇Rn(R(t)) > . ˙R(t) (2.28)

Over a circuit, i.e. R(0)=R(t), we will have

γn(C) = i

∮
C

< n(R(t)|∇Rn(R(t)) > .dR (2.29)

We will now show that γn(C) is real. Orthonormality guarantees

< n(R)|n(R) >= 1 (2.30)

=⇒ ∇R < n(R)|n(R) >= 0 (2.31)

=⇒ < ∇Rn(R)|n(R) > + < n(R)|∇Rn(R) >= 0 (2.32)

=⇒ (< n(R)|∇Rn(R) >)∗+ < n(R)|∇Rn(R) >= 0 (2.33)

=⇒ 2Re(< n(R)|∇Rn(R) >) = 0 (2.34)
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Hence, γ is imaginary. Using Stokes theorem,

γn(C) = −Im
∫ ∫

dS.∇× < n|∇n >

= −Im
∫ ∫

dS. < ∇n| × |∇n > +Im

∫ ∫
dS.× < n|∇ × |∇n > (2.35)

THe second term goes to zero. Therefore, expanding this in terms of eigen
basis [|m(R) >], we get

γn(C) = −Im
∫ ∫

C

dS.
∑
m6=n

< ∇n|m > × < m|∇n > (2.36)

We need to evaluate these terms.

H|n >= En|n > (2.37)

=⇒ ∇(H|n >) = ∇En|n > (2.38)

=⇒ ∇H|n > +H∇|n >= En∇|n > (2.39)

=⇒ < m|∇H|n > + < m|H(∇H|n >= En < m|∇n > (2.40)

=⇒ < m|∇H|n >= (Em − En) < m|∇n > (2.41)

Let us de�ne

Vn(R) = Im
∑
m 6=n

< n|∇H|m > × < m|∇H|n >
(Em − En)2

dS (2.42)

γn(C) = −
∫ ∫

C

dS.Vn(R) (2.43)

Similar to magnetic �eld, Vn is a curl of a vector. So, Vn(R) can be thought
as a magnetic �eld.
Let us consider system having two states + and -.which has energy E+ and
E− respectively. Let the system has a degeneracy at some point R∗ i.e.
E+(R∗) = E−(R∗).
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Expanding the Hamiltonian near the degeneracy (R is very close to R∗),
we get the Hamiltonian upto �rst order as

H(R) = H(R∗) +∇H(R∗)(R−R∗) (2.44)

Di�erentiating both sides with respect to R,

∇H(R) = ∇H(R∗) (2.45)

Therefore, using equation(21)

V+(R) = Im
< +(R)|∇H(R∗)| − (R) > × < −R|∇H(R∗)|+R >

(E+(R)− E−(R))2
(2.46)

In order to evaluate V+(R). Let us assume that the point of degeneracy is
R∗ = 0 and E± = 0. A spin-1

2
Hamiltonian can be represented by 2*2 matrix

and we know that the Pauli matrices span the space of all 2*2 matrices. So
we can write the Hamiltonian in terms of Pauli matrices. Let us de�ne:

|+〉 =

[
1
0

]
, |−〉 =

[
0
1

]
Therefore, at some point R in parameter space, we can have

σx|± >= |∓ >, σy|± >= ±i|∓ >, σz|± >= |± > (2.47)

where the σx, σy, σz are the Pauli spin matrices. This is true only when the
spin points towards the �eld and if we vary the �eld slowly, this can be
achieved. Using this assumption, we have

Vx+ = Im
< +|σy|− >< −|σz|+ >

2R2
= 0 (2.48)

Vy+ = Im
< +|σz|− >< −|σx|+ >

2R2
= 0 (2.49)

Vz+ = Im
< +|σx|− >< −|σy|+ >

2R2
=

1

2R2
(2.50)

Plugging this into the main equation, we get

V+(R) =
R

2R3
(2.51)

Now the �eld has a singularity at R = 0, which is the point of degeneracy.
Therefore, any C enclosing the degeneracy will have a non-zero phase.

γn(C) = −
∫ ∫

C

dS.
R

R3
= −1

2
Ω(C) (2.52)

. This can be thought as the solid angle viewed from the point of degener-
acy. Also, in analogy with Gauss's law, it can be viewed as the magnetic �ux
through loop C because of a pseudo magnetic charge at the degeneracy[5].
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Chapter 3

Methods

3.1 Dynamical Mean Field Theory

Mean �eld thoeries are extensively used for solving a many body Hamiltonian.
It is di�cult to solve the many body Hamiltonian exactly for a large number
of particles because of very high number of degrees of freedom. So, by using
mean �eld approximation, the degrees of freedom can be reduced. If we have
a particle, the mean �eld approximation gives us the average �eld due to all
other particles in the system at that point. In this way, instead of having
individual terms and their interactions, by considering an average �eld we
can reduce the number of degrees and hence simplify the problem.

There are many mean �eld theories. Each uses some di�erent sets of
approximations. However, the basic tenet behind each of them is still the
same. In order to solve our problem, dynamical mean �eld theory has been
used. Quantum mechanical many body systems are di�cult to solve in �nite
dimensions because of the complicated algebra involved.We know that even
the same holds for classical models. TheWeiss molecular �eld theory becomes
exact as Z → ∞. Dynamical mean �eld theory usually maps the problem to
models which are exact in the limit of in�nite dimensions.

3.1.1 Motivations for using in�nite dimensions

If the system under consideration is a perfect crystalline, then each lattice
point will have the same number of neighbours, which is called the coordina-
tion number, often denoted by the symbol 'Z'. If we look at three dimensional
simple cubic lattice(d=3), the number of nearest neighbours is Z=6. If we
expand 1

Z
, we can see that the higher order terms goes as 1

6
, 1

36
and becomes

negligible. So the higher order terms don't contribute signi�cantly as com-
pared to the lower order. They decay faster. So the problem can be extended
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to in�nite dimensions where it becomes exact and only the zeroth order term
contributes.

3.1.2 Classical Spin Model

Before moving to the dynamical mean �eld theory, it is important to know
the classical spin model and the e�ect of dimensions on it. If we consider the
classical Heisenberg model, the Hamiltonian of which is given by

H = −1

2
J
∑
<ij>

SiSj (3.1)

where J is the coupling and Si is the spin. The sum is over nearest neighbours
and the factor of 1

2
is introduced to avoid double counting. To solve the

model, mean �eld approximation is used. The aim would be to obtain the
thermal average of magnetization, mi =< Si >The e�ective Hamiltonian
becomes an interaction between the spin and an average("molecular") �eld.
So the mean �eld Hamiltonian is

HM = −Hw

∑
i

Si + constant (3.2)

where Hw = J
∑

j < Sj >. Here the correlated spin �uctuations at di�erent
sites have been neglected. If the coordination number Z is very large i.e. the
limit Z →∞, then the Hw will not be �nite. So, the J needs to be rescaled
as J → J

Z
. In the limit Z → ∞, the spin �uctuations can be neglected and

the total Hamiltonian can be replaced by a local one and it becomes a single
site problem which is easier to solve.

3.1.3 Hubbard model in high dimensions

The next thing would be to know the e�ects of dimensionality on quantum
mechanical lattice models. The single orbital spin-1

2
Hubbard model on a D

dimensional cubic lattice is given by,

H =
t√
2D

∑
<ij>,σ

c†iσcjσ + U
∑
i

ni↑ni↓ (3.3)

The �rst term in the Hamiltonian is the kinetic energy and the second is the
interaction term. The parameters in the Hamiltonian are scaled to obtain
a non-trivial density of states and a �nite kinetic energy(cite the paper by
Metzner and Volhardt) as D → ∞. Considering nearest neighbor hopping,
the kinetic energy can be written in the momentum space as
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Hkin =
∑
k,σ

ε(k)c†k,σck,σ (3.4)

ε(k) =
2t√
2D

D∑
n=1

cos(kn) (3.5)

The density of states for the system is given by

ρ(ε) =
∑
k

δ(ε− ε(k)) (3.6)

The density of states sum is nothing but the probability density of an event
ε = εk. Also ki are chosen randomly from k1, ....., kD. It has been shown that
in the limit of in�nite dimensions the non-interacting density of states tends
to a Gaussian distribution in in�nite dimensions[6].

ρ(ε)→ exp
{

(−ε2/2t2)
}
/
√

2πt2(D →∞) (3.7)

This result directly follows from the central limit theorem. Since kis are cho-
sen randomly, εk is the sum of random numbers. Also the kis are independent
of each other. Therefore, in the limit of in�nite dimensions, the distribution
should be a Gaussian.

Now the interaction gives rise to self energy terms. Each internal line
in the irreducible self energy diagram contributes in O( 1√

d
). However each

site has 2d neighbouring sites i.e. each of them contribute in O(d). Now
if the number number of vertices is less than twice the number of internal
lines, then the diagram doesn't contribute towards the self energy in the limit
d→ ∞. So only the diagrams at a single site contribute to the self energy
term i.e. the �eld is local[7]. Momentum conservation is no longer needed for
individual vertices. However, it is dynamical in time. Consider a single site.
If we look at it for a long time, we will �nd that the spin of the electron at
that site keeps on changing. This is because of hopping. As electrons with
di�erent spins hop from one site to another, the spin at the local site keeps
on changing, hence, dynamical. So the self energy would be a function of
time not space. In the fourier space, the self energy would be independent of
momentum. However, the momentum would be re�ected in the total Green's
function in the band energy. We would be using DMFT approximation to
solve our model.
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3.2 Equation of Motion for Green's fucntion

The other way to obtain a Green's function is using the equations of motion
developed by Zubarev [8]. Let us consider operators A(t) and B(t). The
equation of motion(~ = 1) for the Green's function << A(t);B(t′) >> is

i
d

dt
<< A;B >>=

d

dt
θ(t− t′) < [A(t), B(t′)] > + << i

dA(t)

dt
;B(t′) >>

(3.8)
where θ is the heavside function. The second term on the right side of the
equation will be equal to << [A(t), H(t)];B(t′) >>. So, this is a higher order
Green's function. Similarly, an equation of motion will be written for the
higher order Green's function and so on. A chain of equations will be formed.
In some cases, the sets of equation acquires a closed form. In those cases,
we get the exact Green's function. In other cases, the higher order Green's
function is decoupled to close the set of equations. The decoupling is usually
done considering some physical process in some limits. After decoupling,
the averages of the decoupled terms are calculated self-consistently. Lacroix
used a decoupling scheme to solve the Anderson model using the equations
of motion and obtained the Kondo resonance[9]. This method have been in
use since a long time [10].

3.3 Falicov-Kimball Model

In order to solve a lattice Hamiltonian, it is often mapped to an impurity
problem. The Falicov Kimball model is basically a single site impurity model.
It is a spinless model i.e. the model has two species of spinless electrons. It is
assumed that one of the species doesn't hop. The conduction electron hops.

H = −t
∑
<ij>

(c†icj + h.c) + U
∑
i

nicnid (3.9)

where nic and nid is the number operator for conduction and localized elec-
trons respectively. Since, nid= [0,1], we can write vi = Unid = [0, U ].
vi follows a binary alloy distribution the probability distribution of which
is given by P (vi) = (1 − x)δ(vi) + xδ(vi − U). For a symmetric case,
x =< nid >= 1

2
=< nic >.

Himp =
∑
k

εkc
†
kck +

∑
k

tk(c
†
ick + h.c) + Unicnid (3.10)

where c†k(ck) is the creation(annihilation) operator for the bath or conduction
electrons. The last term is the on-site repulsion between the conduction and
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the impurity electrons. To understand the dynamics of the model, we have
to calculate the Green's function. We will be using the equation of motion
for the Green's function which was �rst developed by Zubarev [8]. Equation
of motion for the on-site diagonal impurity Green's function is given by

ωGii = 1 +
∑
k

tk < ck, c
†
d > +U < nidck; c

†
i > (3.11)

where Gii =< ci; c
†
i > is the Fourier transform of the Green's function in

time domain.

(ω − U) < nidck; c
†
i >=< nid > +

∑
k

tk < nidck; c
†
i > (3.12)

(ω − εk) < ck; c
†
i >= tkGii (3.13)

(ω − εk) < nidck; c
†
i >= tk < nidci; c

†
i > (3.14)

These four equations are in a closed form. Solving them we get the the on-site
Green's function as

Gii(ω) =
1− < nid >

ω −∆(ω)
+

< nid >

ω − U −∆(ω)
(3.15)

where ∆(ω) =
∑

k

t2k
ω−εk

. This is called the bath function. However, self

consistency in bath demands εk → εk + Σ(ω). So, ∆(ω) =
∑

k

t2k
ω−εk−Σ(ω)

.
The self energy is independent of momentum in in�nite dimensions. Its a
function of frequency only. For the Bethe lattice, ∆(ω) = t2Gii(ω).

3.4 Metal-insulator transition

To study the metal-insulator transition in the system, we have to �nd the
interacting density of states. The interacting density of states is related to
the imaginary part of the Green's function by

ρint(ω) = − 1

π
Img(G(ω)) (3.16)

The green's function has to be calculated self consistently. The algorithm to
get the interacting Green's function is given here.

• For a start, we have to consider some value of G0. The then the bath
function has to be calculated using the formulae

G0 =
1

ω + µ−∆(ω)
(3.17)
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• Once we get the bath function, we have to calculate the impurity
Green's function. The impurity Green's function can be calculated
using[11][12]

G(ω) =
wo

(ω + µ−∆(ω))
+

w1

(ω + µ− U −∆(ω))
(3.18)

where wo + w1 = 1. w1 can be thought as the probability that the
site is occupied by an impurity electron. Since we are considering the
symmetric case in our problem, the numerators are both equal to 0.5.

• Using Dyson's equation,we can get the self energy from the impurity
Green's function and G0.

Σ(ω) = (
U

2
− 1

2G(ω)
)±

√
(

1

2G(ω)
− U

2
)2 +

1

2

U

G(ω)
(3.19)

As it is evident from the above relation, the self energy can have two
values because the square root dependence. We choose that branch of
the self energy which gives us positive density of states since negative
density of states doesn't make sense.

• The next step is to calculate the lattice Green's function

Glattice =
1

N

∑
k

1

ω + µ− ε(k)− Σ(ω)
(3.20)

• Self consistency demands that the impurity Green's function should be
equal to the lattice Green's function.Hence, we set Glattice = G(ω).

• After this, we will update the value of G0 from G(ω) using the Dyson-
equation discussed in Chapter 2.

• This loop has to continued until convergence is reached. By conver-
gence, it is meant that the value of lattice Green's function equals that
of the impurity Green's function

This method has been used to solve various models [13]. Once the Green's
function is obtained, the interacting density of states can be easily obtained.
The metal insulator transition can be shown by varying U and its e�ect on
the density of states.
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Chapter 4

4.1 Model

The model consists of a Lieb lattice. On each lattice point, we place a dimer.
The dimers are arranged in such a fashion that two adjacent dimers are
perpendicular to each other and the atoms of one dimer are equidistant from
the two atoms of the adjacent dimer.The Lieb lattice has a unit cell having
three sites. Let us name them as 1,2 and 3. On each of them, we place a
dimer having two atoms labelled by indices a and b. The Hamiltonian for the
model will have terms for intra-dimer as well as inter-dimer hopping apart
from the onsite energies.

Figure 4.1: Lieb lattice and the model with intra dimer and one inter dimer
hopping

The total Hamiltonian for the model can be written as

Htotal = Hintra +Hinter +Hon−site (4.1)
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The intra-dimer hopping is captured in the Hamiltonian as

Hintra = −t
∑
i

(c†ia1cib1 + c†ia2cib2 + c†ia3cib3) + h.c. (4.2)

where c†ia1 refers to the creation operator of the atom `a' of 1st the dimer
at ith unit cell and t is the hopping parameter. The inter-dimer hopping
Hamiltonian for the lattice will be given by

Hinter = −t′
∑
i

(c†ia1cia2 + c†ia1cib2) + h.c− t′
∑
i

(c†ib1cia2 + c†ib1cib2) + h.c.

− t′
∑
i

(c†ia3cia2 + c†ia3cib2) + h.c− t′
∑
i

(c†ib3cia2 + c†ib3cib2) + h.c.

− t′
∑
i

(c†ia1c(i+1)a2 + c†ia1c(i+1)b2) + h.c− t′
∑
i

(c†ib1c(i+1)a2 + c†ib1c(i+1)b2) + h.c.

− t′
∑
i

(c†ia3c(i+1)a2 + c†ia3c(i+1)b2) + h.c− t′
∑
i

(c†ib3c(i+1)a2 + c†ib3c(i+1)b2) + h.c.

If we make a dimer transformation of the form a+ = 1√
2
(ca + cb) and a− =

1√
2
(ca − cb) with respect to bond axis.

c†ia1cib1 = (
a†+i1 + a†−i1√

2
)(
a†+i1 − a

†
−i1√

2
)

=
1

2
(a†+i1a+i1 + a†−i1a+i1 − a†+i1a−i1 − a

†
−i1a−i1)

c†ib1cia1 =
1

2
(a†+i1a+i1 + a†+i1a−i1 − a

†
−i1a+i1 − a†−i1a−i1)

The terms can be re-written as

− t
∑
i

(c†ia1cib1) + h.c. = −t
∑
i

(a†+i1a+i1 − a†−i1a−i1) = −t
∑
i

(na+i1
− na−i1

)

(4.3)
Using this, we get the intra-dimer Hamiltonian as

Hintra = −t
∑
i

(na+i1
−na−i1

)−t
∑
i

(na+i2
−na−i2

)−t
∑
i

(na+i3
−na−i3

) (4.4)

Similarly, we can get the inter-dimer Hamiltonian as

Hinter = −2t′
∑
i

(a†+i1a+i2+a†+i2a+i3+a†+i1a+(i+1)2+a†+i3a+(i+1)2)+h.c. (4.5)
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So, now the �nal Hamiltonian in the can be written as

H = −2t′
∑
<ij>

(a†+ia+j +h.c.)+(V − t)
∑
i

n+i+(V + t)
∑
i

n−i+U
∑
i

n+in−i

(4.6)
If we consider that the Hamiltonian with intra-dimer and one inter-dimer
hopping, we can see that only the a+ electron hops from one site to another
while a− doesn't. However, there is an onsite interaction between the a+ and
a− electron. So, it can be mapped to the Falicov-Kimball model as discussed
in the previous chapter. A Mott transition is expected in this case. When
t = t′, the dispersionless a− band is exactly at the Von-Hove singularity of
the lower a− band. When < n+ >=< n− >= 0.5, we get the results as
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Figure 4.2: a)Mott-transition in the DOS b)Self energy for parameters t = t′

[1]

All the inter-dimer hopping strengths are same here because of the trans-
lation symmetry. Using the tight binding approximation, the terms can be
written in the momentum space as

a†+i1a+i2 = −2t′
∑
k

a†+k1a+k2e
ıkym

2

So, the tight binding Hamiltonian for the non-interacting case can be written
as

H0(k) =
∑
k

Φ†kH(k)Φk (4.7)

where Φk = (a+1k, a+2k, a+3k, a−1k, a−2k, a−3k) is the spinor, a+1k refers to the
creation operator for an electron of + species at site 1 in the unit cell of the
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lattice. k is the two dimensional momentum. Since, the a− electrons are
dispersionless, we can consider only the a+ electrons for now. So the tight
binding Hamiltonian matrix for the a+ in momentum space can be written
as

H(k) =


V1 − t −4t′ cos

(
ky
2

)
0

−4t′ cos
(
ky
2

)
V2 − t −4t′ cos

(
kx
2

)
0 −4t′ cos

(
kx
2

)
V3 − t

 (4.8)

When all the on-site energies are equal V1 = V2 = V3, we call it the symmetric
case. For the symmetric case, we have the energy eigenvalues as

E1 = V − t+ 4

√
t′2 cos2(

kxa

2
) + t′2cos2(

kya

2
) (4.9)

E2 = V − t− 4

√
t′2 cos2(

kxa

2
) + t′2cos2(

kya

2
) (4.10)

E3 = V − t (4.11)

When V1 = V3 6= V2, we call it the staggered case. For the staggered case
with V1 = V2 = 0 andV2 = V , we get the eigenvalues as

E1 = −t (4.12)

E2 =
V − 2t+

√
V 2 + 64t′2(cos2 (kxa

2
) + cos2 (kya

2
)

2
(4.13)

E3 =
V − 2t−

√
V 2 + 64t′2(cos2 (kxa

2
) + cos2 (kya

2
)

2
(4.14)

If we consider the symmetric case where the the on-site energies at the three
sites are equal, we can see that there is a point where the three bands touch.
The three bands touch in a linear fashion i.e. the energy dispersion around
that point is a linear function of the momentum. We put V1 = V2 = V3 =
1 and t = 1. The band touching point is (π, π). Let us consider some
momentum k = M + p where M is the band crossing point. Now, if we make
a small momentum(|p| << 1) expansion of the Hamiltonian around the band
touching point, the low energy Hamiltonian upto �rst order of the expansion
will be

H(k) ∼ 2t′

 0 py 0
py 0 px
0 px 0

 = 2t′L.B (4.15)
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where

Lx =

0 1 0
1 0 0
0 0 0

 , Ly =

0 0 0
0 0 1
0 1 0

 , Lz =

 0 0 i
0 0 0
−i 0 0

 (4.16)

B = (px, py, 0) and Lx, Ly and Lz are pseudo spin-1 matrices which obey
the SU(2) Lie algebra, which implies that the matrices satisfy the relation
[Li, Lj] = iεijkLk. This is similar to a Hamiltonian of a system having a
spin L in an external magnetic �eld 'B'. If we calculate the eigenvalues of
the low-energy Hamiltonian, we get the eigenvalues as ε = 0,±2t′

√
p2
x + p2

y.
This can be re-written as ε = 2t′|p|m where m = 0,±1. Thus, the energy
eigenvalues of the low-energy Hamiltonian is quantized and mimicks that of
a spin-1 system.
Now, if we consider the con�guration with staggered potential, we can see
that only two of the bands touch at a point. The �at band still exits but the
band dispersion is not linear around the point. It is quadratic in character.
Hence, such points are called quadratic band crossing point(QBCP). If we
expand the low energy e�ective Hamiltonian around the point for the two
bands can be witten as

H(k) ∼ 1

m0

[
p2
x pxpy

pxpy p2
y

]
= dII + dxσx + dzσz (4.17)

where m0 = (V2−t)
4t′2

, σ are the Pauli matrices, I is the identity matrix.

dI =
p2x+p2y
2m0

, dx = pxpy
m0

, dz =
p2x−p2y
2m0

[14]. This Hamiltonian looks like a Dirac
Hamiltonian. As we have been seen that there are band touching points in
the dispersion. So, the next thing would be to understand the topological
nature of the band touching points. The Berry phase for the band touching
points can be calculated using

Bn = i

∮
C

dp. 〈unp| ∇p |unp〉 (4.18)

around a contour C enclosing the band touching point in momentum space
and |unp〉 denotes the Bloch eigenvector for the nth band where n is any of
the bands involved in degeneracy. It can be shown that Bn = 2π for both of
them[5].

QBCPs are the points of degeneracy in the bands. Let us de�ne the Berry
phase over a contour C

exp{(iγn(C))} = exp

{
(i

∮
C

dR < n|∇|n >)

}
(4.19)

30



Now dS∇× 〈n| ∇ |n〉 looks like the �ux linked. So, the area integral will
give the charge enclosed. In our case, the term ∇× < n|∇|n > can be iden-
ti�ed as analogous to magnetic �eld. So, the the �eld will be because of a
magnetic dipole.
Now points of degeneracy are the points of singularity in ∇× < n|∇|n >.
If we close a contour having a degeneracy, the Berry �ux will be non-zero.
The allowed values of Berry �ux(= 2Wπ, W is the winding no. which is
an integer) are quantized. Therefore, they cannot vary continuously when
the contour is deformed adiabatically to a point. At a point, the Berry �ux
should be zero. So it has to be a constant or invariant. Therefore, contours
having degeneracies cannot be shrunk to a point since there will be non-zero
�ux. Thus the points are topologically protected.

When Bn is non-zero, the band touching point is protected. It remains
una�ected upon introducing weak perturbations.
The next logical step is to check if the QBCP survives when additional hop-
pings are allowed. We introduce diagonal hopping in the system

4.2 E�ects of Additional Hopping

So, we introduce t� hopping in the system. When we have t′′ hopping in the
model,i.e. from the dimer at site 1 in ith unit cell to the site 1 at (i+1)th
unit cell or vice versa and same for the electrons at site 3, the additional part
in the Hamiltonian is given by

H = −t′′
∑
i

(c†1bixc1a(i+1)x + h.c) (4.20)

where c†1bixc1a(i+1)x represents hopping from the site a in dimer at position
1 in the (i + 1)th sublattice to the site b of dimer at position 1 in the ith
sublattice along x direction. Using tight binding approximation for the t′′

hopping along y direction, we will get

H(k) = −t′′
∑
k

(cos(kya)a†+k3a+k3 + i sin(kya)a†+k3a−k3

− i sin(kya)a†−k3a+k3 + cos(kya)a†−k3a−k3) (4.21)

Similarly along x-axis, we will get

H(k) = −t′′
∑
k

(cos(kxa)a†+k1a+k1 + i sin(kxa)a†+k1a−k1

− i sin(kxa)a†−k1a+k1 + cos(kxa)a†−k1a−k1) (4.22)
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Incorporating all these terms in the model, we get the new tight binding
matrix as

V1−t−
t′′ cos (kxa) −4t′ cos (

kya

2
) 0 −it′′ sin(kxa) 0 0

−4t′ cos (
kya

2
) V2−t −4t′ cos ( kxa

2
) 0 0 0

0 −4t′ cos ( kxa
2

)
V3−t−

t′′ cos(kya) 0 0 −it′′ sin(kya)

it′′ sin(kxa) 0 0 V1+t+
t′′ cos(kxa) 0 0

0 0 0 0 V2+t 0

0 0 it′′ sin(kya) 0 0 V3+t+
t′′ cos(kya)


(4.23)

We can see from the matrix that now a− can hop from one site to another.
This can be viewed as a process in which a− changes into a+ and then the
a+ electron hops. Also no extra symmetry is broken by introducing this
hopping. The four fold symmetry is still there. Also one more important
thing to note is that the terms a†+a− and a†−a+ have opposite signs. The
band structures have been plotted with parameters V1 = V3 = 0, V2 = 1 and
t = t′ = 1, t′′ = 0.5.

4.2.1 Results

(a) (b)

Figure 4.3: Dispersion relation for staggered case for a)a+ bands b)a− bands
with parameters (t = 1, t′ = 1.0, t′′ = 0.5, V1 = V3 = 0, V2 = 1)

From the band structure, it is clear that the �at band acquires a dispersion
which was previously dispersionless. However, the quadratic band crossing
point(QBCP) still remains una�ected. However, new topologically important
features come up in the band structure. Tilted Dirac cones can be seen in
the band dispersion which is evident from the cross section of the band
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dispersions (4.4). The QBCP is at a point (π, π) which lies at the boundary
of the �rst Brillouin zone.

(a) (b)

Figure 4.4: Cross section of the band structure through the a)plane kx = π
and b)the diagonal plane (kx = ky) with parameters t = 1, t′ = 1.0, t′′ =
0.5, V1 = V3 = 0, V2 = 1. The band crossing point of the two lower a+ bands
at (π, π) is a QBCP. Two a− bands touch at a surface.

The top three bands in the cross section are a− and the lowest three
ones are a+. There is band inversion which can be seen. There are three
band inversions which is evident from the cross sectional view(4.4). Number
of band inversions are important if one wants to calculate the topological
Z2 index. The Fermi surfaces have been plotted for ω corresponding to the
Von-Hove singularities in the density of states. The Fermi surfaces show
interesting features.

(a) (b)

Figure 4.5: Fermi surface for the a+ bands for Von-Hove singularity at a)ω =
−4.275 and at b)ω = −1.3659 for parameters t = 1, t′ = 1.0, t′′ = 0.5, V1 =
V3 = 0, V2 = 1
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(a) (b)

Figure 4.6: Fermi surface for the a+ bands for Von-Hove singularity at a)ω =
0.488 and for the a− bands at b)ω = 0.5 for parameters t = 1, t′ = 1.0, t′′ =
0.5, V1 = V3 = 0, V2 = 1

For the a− bands in the �gure above, there are two elliptical pockets
which are perpendicular to each other. On top of this, there is a circular
pocket. The Fermi surfaces will help us predict various properties. Existence
of such kind of Fermi surfaces will help us map various properties of the
dimer model in the real system. This kind of Fermi surfaces have been seen
in Bi-square net [15]. Also similar to the Bi-net structure, the band structure
has anisotropic Dirac cones.

(a) (b)

Figure 4.7: Fermi surface for a− bands with (t = 1, t′ = 1.0, t′′ = 0.5, V1 =
V3 = 0, V2 = 1) for Von-Hove singularity at a)ω = 1.4809 and b)ω = 2
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The top surface for the Fermi surface at ω = 2 looks like a �at surface.
Therefore, it corresponds to the delta peak in the density of states. The
edges are also dispersionless.

(a)
(b)

Figure 4.8: a)Fermi surface for a− with (t = 1, t′ = 1.0, t′′ = 0.5, V1 = V3 =
0, V2 = 1) for Von-Hove singularity at ω = 1.4809 and b)DOS for all the
bands.

The blue part in the DOS plot corresponds to the a+ bands and the green
one for the a−. Here we plot the band structure for t = 1, t′ = 0.75, t′′ =
−0.5, V 1 = V 2 = V 3 = 1 (symmetric con�guration). In this case, only the
lower two a+ bands touch at a QBCP. In the a− bands, we can see tilted
Dirac cones.

(a) (b)

Figure 4.9: Dispersion relation for symmetric case for (a)a+ bands and (b)a−
bands with parameters V1 = V2 = V3 = 1, t = 1, t′ = 0.75, t′′ = −0.5
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Among the a+ bands, only lower two bands touch at point. The touching
point is a QBCP. Because of t′′ hopping, the �at band acquires dispersion.
Along the kx = π plane, there are anisotropic Dirac cones. However, one
interesting thing to observe is that there is a surface touching between the
top a− bands.

(a) (b)

Figure 4.10: Cross section of the band structure for through a)plane kx = π
and b) plane kx = ky with parameters V1 = V2 = V3 = 1, t = 1, t′ = 0.75, t′′ =
−0.5

(a) (b)

Figure 4.11: DOS for a) a+ and b)a− bands with parameters V1 = V2 = V3 =
1, t = 1, t′ = 0.75, t′′ = −0.5

The lower part of the DOS resembles that of a two-dimensional band.
There are four Von-Hove singularities in the density of states for a+ bands
and four for a− bands. There are electron pockets which can be seen in the
Fermi surface plots.
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Figure 4.12: Fermi surface for
symmetric case for lower bands
with (t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
−3.266

Figure 4.13: Fermi surface for
symmetric case for lower bands
with (t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
0.276

Figure 4.14: Fermi surface for
symmetric case for lower bands
with(t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
1.486

Figure 4.15: Fermi surface for
symmetric case for lower bands
with (t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
1.926

Now if we consider the Fermi surface at ω = 2.244, it can be seen that
there is Fermi surface nesting. This is because the blue bands(in the corners)
in the �gure disperses only along one direction. So using a nesting vector, it
can be taken the other end.
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Figure 4.16: Fermi surface for
symmetric case for top bands
with (t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
1.992

Figure 4.17: Fermi surface for
symmetric case for top bands
with (t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
2.244

Figure 4.18: Fermi surface for
symmetric case for top bands
with (t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
2.496

Figure 4.19: Fermi surface for
symmetric case for top bands
with a(t = 1, t′ = 0.75, t′′ = −0.5)
for Von-Hove singularity at ω =
2.76

Figure 4.20: DOS(zoomed view) for symmetric case with t = 1, t′ = 0.75, t′′ =
−0.5
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The next case is when the intra-dimer hopping is equal to the nearest
inter-dimer hopping. The parameters are V1 = V2 = V3 = 1, t = t′ =
1.0, t′′ = −0.5.

(a) (b)

Figure 4.21: Band structure for a) a+ and b)a− bands with parameters V1 =
V2 = V3 = 1, t = 1, t′ = 1, t′′ = −0.5

Figure 4.22: Cross section of the band dispersions for through the plane
kx = π with (t = 1, t′ = 1.0, t′′ = −0.5)
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Figure 4.23: Cross section of the band dispersions for through the diagonal
planekx = ky with (t = 1, t′ = 1.0, t′′ = −0.5)

Figure 4.24: DOS for symmetric case for a− bands (t = 1, t′ = 1.0, t′′ = −0.5)

Figure 4.25: DOS for symmetric case for a−(t = 1, t′ = 1.0, t′′ = −0.5)
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Figure 4.26: Fermi surface for
symmetric case for a+ bands (t =
1, t′ = 1.0, t′′ = −0.5) for Von-
Hove singularity at ω = −4.27

Figure 4.27: Fermi surface for
symmetric case for a− bands with
(t = 1, t′ = 1.0, t′′ = −0.5) for
Von-Hove singularity at ω = 0.27

Figure 4.28: Fermi surface for
symmetric case for a+ bands (t =
1, t′ = 1.0, t′′ = −0.5) for Von-
Hove singularity at ω = 1.5

Figure 4.29: Fermi surface for
symmetric case for a+ bands (t =
1, t′ = 1.0, t′′ = −0.5) for Von-
Hove singularity at ω = 2
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Figure 4.30: Fermi surface for symmetric case for a− band with t = 1, t′ =
1.0, t′′ = −0.5 for Von-Hove singularity at ω = 2.1

This is one of the most interesting Fermi surfaces. The Fermi surface has
three pockets. The outer one is open. There are two inner pockets. This
type of Fermi surface is found in Strontium Ruthenate. Recently, calculations
have been done to get the Fermi surface [16]. The Fermi surface is because
of the a− which is odd under inversion.

Figure 4.31: Fermi surface for
symmetric case for a− band with
t = 1, t′ = 1.0, t′′ = −0.5 for Von-
Hove singularity at ω = 2.35

Figure 4.32: Fermi surface for
symmetric case for a− bands with
t=1,t'=1.0,t�=-0.5 for Von-Hove
singularity at ω = 2.4865
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Figure 4.33: Fermi surface for symmetric case for a− bands with (t = 1, t′ =
1.0, t′′ = −0.5) for Von-Hove singularity at ω = 3.75

4.2.2 Diagonal hopping

If we have a diagonal hopping instead of an hopping to the opposite side, we
get some interesting features in the band structure.
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Figure 4.34: Cross section of the band dispersions for through the diagonal
plane a)kx = π and b)kx = ky with V1 = V2 = V3 = 1, t = 1, t′ = 0.75, t′′ =
0.5, t′′ is the diagonal hopping parameter

In the band structure, we can see that three bands touch at a single band.
However, the middle band acquires dispersion and have a quadratic behaviour
around the band touching point. This kind of band structure has been found
in K4 lattice[17]. So, this kind of band touching points can be realized in this
model. Also many anisotropic Dirac cones come up. By anisotropic, I mean
the curvature of the cones are di�erent in di�erent directions. One thing to
note is that the Hamiltonian ha s four fold symmetry. So there will be four
such points instead of two as seen in the cross sectional cuts.
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4.3 E�ects of Electric Field

In order to check the stability the of the the QBCPs or other topologically
important points, we introduce the e�ect of an electric �eld. The electric �eld
Ez is turned on in a direction perpendicular to the plane of the Lieb lattice.
Now the e�ect of electric e�ect will to polarize. Consider the displacements
of site a and site b in the dimer as Xa and Xb respectively.

H =
∑
i

j=1,2,3

g(Xanjai +Xbnjbi) (4.24)

where njai = c†jaicjai is the number operator for the site a of the dimer at
position j in the ith unit cell and g is nothing but the interaction strength.
If we make a transformation about the centre of mass such that Xa+Xb

2
= X+

and Xa−Xb

2
= X− and use a+, a−, we will get the Hamiltonian in momentum

space as

H =
∑
k

j=1,2,3

gX+(n+jik + n−jk) + gX−(a†+jka−jk + a†−jka+jk) (4.25)

where n+ji = a†+jia+ji. The Hamiltonian is no longer invariant under inver-
sion. This is because of the mixing term. Both a†+ka−k and its hermitian
conjugate has the same sign. So inverting them doesn't keep the Hamilto-
nian same. By inverting, it means that site a goes to site b and site b goes
to site a with respect to the centre of mass. The new tight binding matrix
in momentum space will be given by:



V1−t+gX+−
t′′ cos (kxa) −4t′ cos (

kya

2
) 0 −it′′ sin(kxa)+

gX−
0 0

−4t′ cos (
kya

2
) V2−t+gX+ −4t′ cos ( kxa

2
) 0 gX− 0

0 −4t′ cos ( kxa
2

)
V3−t+gX+−
t′′ cos(kya) 0 0 −it′′ sin(kya)+

gX−
it′′ sin(kxa)+

gX−
0 0

V1+t+gX++
t′′ cos(kxa) 0 0

0 gX− 0 0 V2+t+gX+ 0

0 0 it′′ sin(kya)+
gX−

0 0
V3+t+gX++
t′′ cos(kya)


(4.26)
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4.3.1 Results
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Figure 4.35: a)Cross section for the (a)a+ bands and (b) a− bands in the
band structure with parameters t = 1, t′ = 0.75, t′′ = 0, g = 0.2, V1 = V3 =
0, V2 = 1
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Figure 4.36: a)Cross section for the (a)a+ bands and (b)a− bands in the
band structure with parameters t = 1, t′ = 0.75, t′′ = −0.5, g = 0.2, V1 =
V3 = 0, V2 = 1

It can be seen that the dirac cones become gapped once the electric �eld is
introduced. This is because of the hybridisation. The hybridiation goes as
sin(k) which is an odd function. Thus at time reversal invariant momenta,
it goes to zero and the gap closes. When there is elctric �eld, the inversion
symmetry is broken and then the gap becomes non-zero at special points.
Now it can be seen that when the electric �eld is high, the gaps are more
prominent. However, the QBCP still stays the same. It is stable under the
action of electric �eld.

45



1 2 3 4 5 6

ky

-3

-2

-1

1

ã

(a)
0 1 2 3 4 5 6

ky

1.0

1.5

2.0

2.5

3.0

ã

(b)

Figure 4.37: a)Cross section for the (a)a+ bands and (b) a− bands in the band
structure with parameters t = 1, t′ = 0.75, t′′ = 0, g = 1, V1 = V3 = 0, V2 = 1
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Figure 4.38: a)Cross section for the (a)a+ bands and (b) a− bands in the
band structure with parameters t = 1, t′ = 0.75, t′′ = −0.5, g = 1, V1 = V3 =
0, V2 = 1

4.4 Rashba term

Rashba e�ect is generally de�ned as the phenomenon of momentum depen-
dent splitting of bands. The Rashba term arises because of breaking of
centrosymmetry. If we think a1 as creation operator of spin up fermions.
(a†+1a+2 will act as a spin �ip operator where an a1 is �ipped to a2. Using
this analogy, we can conclude that a†+1a+2 + hc will act as σx where σx is
the x-component of an orbital pseudospin. Similarly, i(a†+1a+2−h.c) will act
as the y component of the pseudospin. And in the low momentum region,
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sin(k) ∼ k. Hence, the Hamiltonian can be written as

Hr = −eEa
∑
k

[sin (ky/2)(a†+k1a+k2 + h.c.)− i sin (kx/2)(a†+k1a+k2 − h.c.)]

(4.27)
Here 1 and 2 in the subscript labels the bands involved in degeneracy of the
+ bands at a point. Rashba term in the Hamiltonian will be introduced in
the Hamiltonian between the bands involved in the band touching point. If
we remember the QBCP in the simplest case, only the lower two a+ bands
touch. In order to investigate the e�ects of this term, we start with the
simplest case with no other hopping. We are considering a Lieb lattice (with
no dimers). The �rst case involves only two hoppings t and t' where t is
the nearest neighbour hopping and t' is the diagonal hopping between sites
1 and 3 in the Lieb lattice.

(a) (b)

Figure 4.39: a)Cross section of the bands with (V1 = V2 = V3 = 1, t = 1, t′ =
0.75,m = 0.5, g = 0.5) through plane kx = π and b) diagonal plane kx = ky

For the results obtained above and below for both the symmetric and stag-
gered case, the strength of the electric �eld, denoted by g, and the strength
of Rashba coupling, denoted by m, are both equal to 0.5. The results here
are for a Lieb lattice without the dimers.
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(a) (b)

Figure 4.40: a)Cross section of the bands with (V1 = V3 = 0, V2 = 1, t =
1, t′ = 0.75,m = 0.5, g = 0.5) through plane kx = π and b) diagonal plane
kx = ky

We can see that because of the Rashba term, both the Dirac point and
QBCP becomes gapped. Since, this is valid for the simplest case, the same
argument can be used for the dimer case. We now introduce the Rashba
term in the dimer model on Lieb lattice. We consider the case with only one
intra-dimer hopping and two nearest neighbour inter-dimer hopping one of
which is the diagonal hopping.
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V1=V2=V3=1, t=1, t'=0.75, t''=0.5,m=0.3,g=0.5,Plane :k_x =π
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Figure 4.41: a)Cross section of the bands with (V1 = V2 = V3 = 1, t = 1, t′ =
0.75, t′′ = 0.5,m = 0.3, g = 0.5) through plane kx = π and b) diagonal plane
kx = ky. Here t′′ is the diagonal hopping.

We know from the diagonal hopping case, that there was a triple band
touching point at (π, π). This point becomes gapped upon introduction
of Rashba coupling in presence of electric �eld. The Dirac points become
gapped. However, one interesting fact to notice is that the band touching
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point at (π, 0) and tripple band touching point at (0, 0) and (2π, 2π) retain
their character. The QBCP at (π, 0) maintains its spin-1

2
structure despite

the symmetry breaking terms. Similarly, the tripple band crossing point has
a spim-1 structure which remaims preserved.

4.5 Haldane Model

Quantum Hall e�ect is usually seen in two dimensional electron systems when
there is a uniform external magnetic �eld. However, Haldane showed that
the same can be obtained without any magnetic �ux through the unit cell
by breaking time reversal symmetry.

Consider a honeycomb-net model which can be seen in 2D graphite. It
consists of two sub-lattices A and B. Let the nearest neighbor hopping pa-
rameter be t1 and the next nearest hopping parameter be t2. The on-site
energy on sites A and B be V+M and V-M respectively, where V is the aver-
age potential and M is the inversion symmetry breaking on-site energy. So,
without loss of generality, V can be set to 0. In order to break the time-
reversal symmetry, a magnetic �ux density B is introduced perpendicular to
the plane of graphite. The magnetic �ux through the unit cell is zero. This
is one of the assumption.

When a particle moves around a closed contour enclosing a �ux, it ac-
quires a phase exp

{
[i(e/~

∫
A.dr]

}
[18], where A is the vector potential. A

next nearest complex hopping is introduced. So, in this case, the �ux enclosed
by the t2 hopping will have a non-zero phase. Consider the displacements
a1, a2, a3 from site B to nearest site A. De�ne b1 = a2 − a3, b2 = a3 − a1,
where bis are the next nearest displacements. If we consider all of these, the
Hamiltonian[19] can be written as

H(k) = 2t2 cosφ[
∑
i

cos (k.bi)]I + t1[
∑
i

[cos (k.ai)σx + sin (k.ai)σy]]

+ [M − 2t2 sinφ
∑
i

sin (k.bi)]σz (4.28)

The two bands will touch at degenerate points if all the coe�cients of the σs
become zero at the zone boundaries. Using this, one can �nd that the this
happens when |M | =

∣∣3√3t2 sinφ
∣∣. This marks a topological transition in the

system. Now we will apply the same logic in our dimer model on Lieb lattice.
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We consider the spin half case. Initially, the low energy Hamiltonian for
the staggered case near the QBCP could be written as

H0 = d0σ0 + dxσx + dzσz (4.29)

where σ0 is the identity operator. When there is Rashba spin orbit coupling,
we get terms in the Hamiltonian like

− eεa
∑
k

[sin

(
ky
2

)
(a†k1ak2 + a†k2ak1)− i sin

(
kx
2

)
(a†k1ak2 − a†k2ak1)] (4.30)

The term (a†k1ak2 +a†k2ak1) can be identi�ed as σx for a pseudospin. Similarly,
−i(a†k1ak2−a†k2ak1)→ σy. After incorporating the Rashba spin-orbit coupling
term in the Hamiltonian

H0 = d0σ0 + [dx(k)− eεa sin

(
ky
2

)
].σx + eεa sin

(
kx
2

)
.σy + dzσz (4.31)

Since the Hamiltonian under consideration is for small momentum, sin(k) ∼
k. If the y-component of the pseudospin is kept �xed and the x and z axis
rotated by π

2
, then σx → σz and σz → −σx. The new Hamiltonian will be

H = d0(k)σ0 − dz(k)σx + eεakxσy + [dx(k)− eεaky]σz (4.32)

We know that the coe�cient of σz gives us the mass term.
As ε increases, there will be a point where the mass term will change sign
which will mark the topological transition.

50



Chapter 5

Extensions of the model

5.1 Two-orbital model

As we have been seen in the previous case, upon the transformation, there
were two kinds of electron. One belonging to the a+ band and other to the
a−. So, if we remember a+ = ca+cb√

2
. Now if we invert the dimer with respect

to its center of mass i.e. a → b and b → a, a+ remains the same. However,
a− picks up a negative sign. So, it is evident that a+ is even under inversion
whereas a− is odd.
Now the next thing would be to map the previous model with dimers to a
model having two orbitals at each site. Let us name them as a and b. One of
the orbitals, ”a”, is even under parity and the other odd. We will �rst begin
with the simplest case i.e. only nearest neighbour hopping and then will
consider other hopping. For consistency with the dimer model, we demand
that only electrons in a orbital hop. So, the Hamiltonian can be written as

Hkin = −t
∑
i

(c†ai1ycai2y+c†ai2xcai3x+c†ai1yca(i+1)2y+c†a(i+1)3xcai2x)+h.c. (5.1)

Htotal = Hkin +
∑
i

V1c
†
ai1cai1 + V2c

†
ai2cai2 + V3c

†
ai2cai2 (5.2)

The tight binding Hamiltonian in matrix form for the lattice in momentum
space is

H(k) =


V1 −2t′ cos

(
ky
2

)
0

−2t′ cos
(
ky
2

)
V2 −2t′ cos

(
kx
2

)
0 −2t′ cos

(
kx
2

)
V3

 (5.3)
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Let us �rst consider the staggered case i.e. V1 = V3 = V .The eigenvalues of

the matrix are E = V,E+ =
(V2−V )+

√
(V2−V )2−4V2V+16t′2(cos2( kx

2
)+cos2(

ky
2

))

2
, E− =

(V2−V )−
√

(V2−V )2−4V2V+16t′2(cos2( kx
2

)+cos2(
ky
2

))

2

(a) (b)

Figure 5.1: a)Band dispersion of the `a' bands in region [0, 2π] for staggered
case and (b) density of states with t = 1, V1 = V3 = 0, V2 = 1

The band structure shows a quadratic band crossing point(QBCP). The
QBCP is at (π, π). There is a �at band, which is dispersionless. The density
of states have also been plotted for the bands. The edges of the density of
states resemble that of a two dimensional band. The two dimensionaal char-
acter is evident from the band dispersion dispersion plot. The band disperses
along both kx and ky. The delta function in the density of states coreespond
to the �at band. At the band touching point, the density of states is non-zero.
This has important implications when the interaction e�ects are considered.
We would like to investigate the Fermi surface at the Von-Hove simgulari-
ties. There are two Von-Hove singularities in this case. The fermi surfaces
corresponding to the two Von-Hove singularities have been plotted. There
are pockets.
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(a) (b)

Figure 5.2: Fermi surface for Von-Hove singularity a)at ω = −1.08 and
b)ω = 2.0808 with (t = 0.75, V 1 = V 3 = 0, V 2 = 1)

If we put V = 0, we get the orthonormalised eigenvector corresponding
to E = V (�at band),E+ and E− respectively are


− cos( kx

2 )√
cos2( kx

2
)+cos2(

ky
2

)

0
cos
(

ky
2

)
√

cos2( kx
2

)+cos2(
ky
2

)

 ,


cos
(

ky
2

)
√

cos2( kx
2

)+cos2(
ky
2

)+E2
+

E+√
cos2( kx

2
)+cos2(

ky
2

)+E2
+

cos( kx
2 )√

cos2( kx
2

)+cos2(
ky
2

)+E2
+

 ,


cos
(

ky
2

)
√

cos2( kx
2

)+cos2(
ky
2

)+E2
−

E−√
cos2( kx

2
)+cos2(

ky
2

)+E2
−

cos( kx
2 )√

cos2( kx
2

)+cos2(
ky
2

)+E2
−


(5.4)

(a) (b) (c)

Figure 5.3: Eigenvector for a)the middle band b)lower band c)top band for
staggered case case with t′ = 0.75 and V1 = V3 = 0, V2 = 1

The eigen-vectors show that that the inversion symmetry is there. One
can also get the Wannier states by calculating the Fourier transform of
the eigenvectors. This will give us the real space shapes of the orbitals.
Now, we will investigate the symmetric case(t′ = 0.75, V1 = V2 = V3 =
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1). In this case, we have Dirac point. The eigen values are E1 = V +

2
√
t2 cos2(kxa

2
) + t2cos2(kya

2
), E2 = V − 2

√
t2 cos2(kxa

2
) + t2cos2(kya

2
), E3 = V

(a) (b)

Figure 5.4: a)Band dispersion of the `a' bands in region [0, 2π] and (b) density
of states for symmetric case with t = 0.75, V1 = V2 = V3 = 1

(a) (b)

Figure 5.5: Fermi surface for Von-Hove singularity a)at ω = −0.5 and b)ω =
2.5 (t = 0.75, V1 = V2 = V3 = 1)

The corresponding eigenvectors are:

1√
2


1

− cos( kxa
2 )√

cos2( kxa
2

)+cos2(
kya

2
)

−
cos
(

kya

2

)
√

cos2( kxa
2

)+cos2(
kya

2
)

 , 1√
2


−1

− cos( kxa
2 )√

cos2( kxa
2

)+cos2(
kya

2
)

−
cos
(

kya

2

)
√

cos2( kxa
2

)+cos2(
kya

2
)

 ,


0

−
cos
(

kya

2

)
√

cos2( kxa
2

)+cos2(
kya

2
)

cos( kxa
2 )√

cos2( kxa
2

)+cos2(
kya

2
)


(5.5)
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(a) (b) (c)

Figure 5.6: Eigenvector for a)the middle band b)lower band c)top band for
symmetric case with t′ = 0.75 and V1 = V2 = V3 = 1

If we consider a point in the momentum space, say (kx, ky). If we invert
about the ky axis, kx → −kx, f(kx) = f(−kx) where f is the function under
consideration. So, the eigenvectors has cos(k) in its component and we know
cos is an even function. So, the eigenvectors will have inversion symmetry.
From the �gures above, it can be veri�ed that the inversion symmetry is
there.
We want to remove the macroscopic degeneracy. So we introduce next near-
est neighbour interactions. The stability of the band touching points can be
checked by introducing the next nearest hopping. Let t′ be the next nearest
hopping parameter. The next nearest hopping is the diagonal hopping be-
tween sites 1 and 3. Also at the same time, t′′ hopping is introduced, which
is the hopping from one edge centre to the center of opposite edge i.e. from
site 1 in one unit cell to site 1 in adjacent unit cells and site 3 in one unit cell
to site 3 in its adjacent unit cells. in The tight binding Hamiltonian matrix
for the non interacting fermions in momentum space is

H(k) =


V1 − t′′ cos (kxa) −2t cos

(
ky
2

)
−4t′ cos (kya

2
) cos (kxa

2
)

−2t cos
(
ky
2

)
V2 −2t cos

(
kx
2

)
−4t′ cos (kya

2
) cos (kxa

2
) −2t cos

(
kx
2

)
V3 − t′′ cos (kya)


(5.6)

We will begin with the symmetric case �rst i.e. all the on-site potentials are
same i.e. V1 = V2 = V3 = 1.
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(a)

(b)

Figure 5.7: a)Band structure for symmetric case for electrons in a orbital
with parameters t = 0.75, t′ = 0.6, t′′ = −0.5, (b)Cross section of the band
dispersions in �g(a) for a orbital electrons through plane kx = π

The quadratic band crossing point still remains. It remains una�ected by
additional hopping as expected. The additional hoppings introduced in the
system doesn't break any symmetry which protects the QBCP. Now if we
look at the cross section of the band structure along the plane kx = ky, two
anisotropic Dirac points can be seen. There are four such points because of
the four fold symmetry. The anisotropic Dirac points have di�erent Fermi
velocity along di�erent directions. There are two Von-Hove singularity in the
density of states.

Figure 5.8: Cross section of the band structure for a orbital through the
plane kx = ky with parameters t = 0.75, t′ = 0.6, t′′ = −0.5
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(a) (b)

Figure 5.9: a)DOS for symmetric case for a bands with (t = 0.75, t′ =
0.6, t′′ = −0.5), (b)Number density for symmetric case for a bands for the
DOS in �g(a)

Similarly, the band dispersions, density of states for staggered cases with
V1 = V3 = 0, V2 = 1 are also plotted.

(a)

(b)

Figure 5.10: a)Band structure for staggered case for electrons in a orbital
with parameters V1 = V3 = 0, V2 = 1, t = 0.75, t′ = 0.6, t′′ = −0.5, (b)Cross
section of the band dispersions in �g(a) for a orbital electrons through plane
kx = π

There is a quadratic band crossing point(QBCP) at (π, π). It is clear
from the �gure above that introduction of additional hopping doesn't have
any e�ect of the QBCP. It remains as it was without additional hoppings.
However, the �at band becomes dispersive. Both diagonal hopping and the
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hopping from one edge center to the opposite edge center doesn't break the
four-fold symmetry. So, looking at the cross sectional plane kx = π will
give us information about ky = π plane since rotation by π doesn't change
anything.

Figure 5.11: Cross section of the band dispersions for a through the diagonal
plane kx = ky with parameters V1 = V3 = 0, V2 = 1, t = 0.75, t′ = 0.6, t′′ =
−0.5

(a) (b)

Figure 5.12: a)DOS for staggered case for a bands with (t = 0.75, t′ =
0.6, t′′ = −0.5), (b)Number density for staggered case for a bands for the
DOS in �g(a)

Now we introduce mixing between the orbitals - a and b. However the
mixing is non-local i.e. the orbital "b" at position 1 mixes with orbital "a"
at positions 2 and vice-versa. Similar is the mixing between site 2 and site
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3. This is done in order to map it to the mixing of a+ and a− in the dimer
model.

V1−2t′′ cos (kxa) −4t cos (
kya

2
) −4t′ cos (

kya

2
) cos ( kxa

2
) 0 0 0

−4t cos (
kya

2
) V2 −4t cos ( kxa

2
) i sin

(
kya

2

)
0 i sin( kxa

2 )
−4t′ cos (

kya

2
) cos ( kxa

2
) −4t cos ( kxa

2
) V3−2t′′ cos(kya) 0 0 0

0 −i sin
(

kya

2

)
0 V1 0 0

0 0 0 0 V2 0
0 −i sin( kxa

2 ) 0 0 0 V3


(5.7)

We plot the eigenvalues to get the band structure. In this case, since there
is an orbital mixing, we expect that the b bands won't be dispersionless
anymore. They will acquire dispersion.

Figure 5.13: Dispersion relation
for symmetric case for a bands
with (t = 0.75, t′ = 0.6, t′′ =
−0.5)

Figure 5.14: Dispersion relation
for symmetric case for b bands
with (t = 0.75, t′ = 0.6, t′′ =
−0.5)

Figure 5.15: Cross section of the band dispersions for all bands through the
plane kx = π with parameters t = 0.75, t′ = 0.6, t′′ = −0.5, V1 = V2 = V3 = 1
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Figure 5.16: Cross section of the band dispersions for all bands through the
plane kx = ky with parameters t = 0.75, t′ = 0.6, t′′ = −0.5, V1 = V2 = V3 = 1

From the band structure, it is clear that the QBCP still remains. Mixing
of the orbitals doesn't break any symmetry. Hence, the QBCP is stable even
if there is mixing. The QBCP is in the `a' orbital bands. The cross section
along the plane kx = π shows that there are two anisotropic Dirac cones in
each side while along the plane kx = ky, there are three.

Figure 5.17: DOS for the symmetric case with t=0.75,t�=0.6,t"=-0.5
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Figure 5.18: Fermi surface for
symmetric case for a with (t =
0.75, t′ = 0.6, t′′ = −0.5) for Von-
Hove singularity at ω = −1.099

Figure 5.19: Fermi surface for
symmetric case for a with (t =
0.75, t′ = 0.6, t′′ = −0.5) for Von-
Hove singularity at ω = 0.95683

Figure 5.20: Fermi surface for
symmetric case for b with (t =
0.75, t′ = 0.6, t′′ = −0.5) for Von-
Hove singularity at ω = 0.99684

Figure 5.21: Fermi surface for
symmetric case for b with (t =
0.75, t′ = 0.6, t′′ = −0.5) for Von-
Hove singularity at ω = 2.0023

We will look at the staggered case with the same parameter set and orbital
mixing where the mixing strength is 0.3
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Figure 5.22: Dispersion relation
for symmetric case for a bands
with (t = 0.75, t′ = 0.6, t′′ =
−0.5)

Figure 5.23: Dispersion relation
for staggered case for b bands
with (t = 0.75, t′ = 0.6, t′′ =
−0.5)

Figure 5.24: Cross section of the band dispersions for all bands through the
plane kx = π with parameters t = 0.75, t′ = 0.6, t′′ = −0.5, V1 = V3 = 0, V2 =
1
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Figure 5.25: Cross section of the band dispersions for all bands through the
diagonal plane kx = ky with parameters t = 0.75, t′ = 0.6, t′′ = −0.5, V1 =
V3 = 0, V2 = 1

Figure 5.26: DOS for the staggered case with t=0.75,t�=0.6,t"=-0.5
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Figure 5.27: Fermi surface for
staggered case for lower bands
with (t = 0.75, t′ = 0.6, t′′ =
−0.5) for Von-Hove singularity at
ω = −1.8182

Figure 5.28: Fermi surface for
staggered case for lower bands
with (t = 0.75, t′ = 0.6, t′′ =
−0.5) for Von-Hove singularity at
ω = −0.0272

Figure 5.29: Fermi surface for
staggered case for top bands with
(t = 0.75, t′ = 0.6, t′′ = −0.5)
for Von-Hove singularity at ω =
−0.00316

Figure 5.30: Fermi surface for
staggered case for top bands with
(t = 0.75, t′ = 0.6, t′′ = −0.5)
for Von-Hove singularity at ω =
0.99548

Lastly, one can extend this two dimensional Lieb lattice model with
dimers to three dimensions. Each layer is stacked over the other. This is
done in a fashion such that the vertical hopping is only between the dimers
at position 2. The extension would give us an insight into whether the system
would be in a strong topological insulator or weak topological insulator. In
three dimensions, there are four Z2 invariants[2] which one has to calculate.
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Chapter 6

Discussion

In the previous chapter, all the results have been compiled according to the
various cases. The model with a dimer on each site of a Lieb lattice supports
Dirac cones when the on-site potentials are equal. For the staggered con�g-
uration, we get a quadratic band crossing point at (π, π) which is the edge
of the �rst Brillouin zone. One important thing to notice is that we haven't
considered spin-orbit coupling in the �rst case. The three bands touching
together for the a+ species is a special case because it is possible only when
a)the inter-dimer hopping amplitudes are equal,b) there is four-fold symme-
try, and c) no spin orbit coupling [20]. Both the BCPs have non- zero Berry
phase. So, these are topologically non trivial points.
Once diagonal hoppings are introduced in the Hamiltonian, the �at band
disperses. However, the point where the three bands touch still survives
because none of the conditions mentioned above is broken. This kind of be-
haviour has been seen in K4 crystal where isotropic Dirac cones emerge[17].
The band touching point will now be pseudospin-1 Dirac cone since there are
three bands which touch are degenerate at a point.

Due to additional hopping, a− starts to hop. When there is only diago-
nal hopping, a− hops by hybridising with a+. The a− converts into an a+

and then a+ hops. The next thing to observe is that the many of the Fermi
surfaces at Von-Hove singularities have electron and hole pockets. There are
cases in which there is Fermi surface nesting. Then there will be nesting
instability depending on the �lling. If the band is partially �lled, then the
most dominant instability may be a superconducting instability. There can
be various other instabilities. The anisotropic Dirac cones that we have seen
in the band structure can also be found in real systems[15].

The next thing to notice would be the e�ect of electric �eld. Electric
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�eld induces a hybridisation or mixing between the a+ and a− fermions. It
breaks the inversion symmetry. Because of this reason, gaps open at the
Dirac points. Rashba e�ect is present in a system when the inversion sym-
metry is broken. It may be due to electric �eld or if the crystal itself lacks
the symmetry.

The two orbital model also hosts some of the interesting topological fea-
tures of the dimer model. The two orbital on each Lieb lattice system may
be seen in some materials. One of the orbital may be s, which is even under
parity. Then the other may be p or f. It is also possible to have a (p,d)
combination.

6.1 Mean-�eld Theory

The e�ects of interaction can be studied using mean �eld theory. The Hamil-
tonian in the momentum can be written as

H =
∑
k

[ε+(k)a†+ka+k + ε−(k)a†−ka−k] + V
∑
µ

na+µna−µ (6.1)

where na+µ = a†+µa+µThe interaction term is the one which makes it di�cult
to solve the Hamiltonian. We use Wick's theorem to decouple the interaction
term. The Wick's theorem will consider all the possible pairings of creation
and annihilation operator.

a†+a+a
†
−a− = (a†+a+)(a†−a−)− (a†+a−)(a†−a+) (6.2)

Now because of the electric �eld, < a†+a− >6= 0. We de�ne order parameters
∆0 =< a†+a− >= ∆eiθ. This is the excitonic order parameter. We also de�ne
∆1 =< a†+a+ >,∆2 =< a†−a− >.

na+na− = (na+ −∆1 + ∆1)((na− −∆2 + ∆2) (6.3)

= −∆1∆2 + a†+a+∆2 + a†−a−∆1 (6.4)

Here we have neglected the �uctuations. If we de�ne a spinor Ψ† = (a†+, a
†
−),

the �rst term in the Wick decoupling can be written as

I1 = −∆1∆2 +
[
a†+ a†−

] [∆2 0
0 ∆1

] [
a+

a−

]
(6.5)
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We can de�ne mz = ∆1 −∆2 and m0 = ∆1 + ∆2.

mz =< a†+a+ − a†−a− >=
[
a†+ a†−

] [1 0
0 −1

] [
a+

a−

]
=< Ψ†σzΨ > (6.6)

mz =< a†+a+ + a†−a− >=
[
a†+ a†−

] [1 0
0 1

] [
a+

a−

]
=< Ψ†σ0Ψ > (6.7)

where σ0 is the identity matrix. Re-writing I1 in terms of mz,m0,Ψ and
Pauli matrices we get

I1 =
m2
z −m2

0

4
+
m0Ψ†σ0Ψ

2
− mzΨ

†σzΨ

2
(6.8)

= (
m2
z

4
− mzΨ

†σzΨ

2
)− (

m2
0

4
− m0Ψ†σ0Ψ

2
) (6.9)

For the second term in the Wick decoupling, we get

I2 = (a†+a−)(a†−a+) (6.10)

= (a†+a− −∆0 + ∆0)(a†−a+ −∆∗0 + ∆∗0) (6.11)

= −|∆0|2 + a†+a−∆∗0 + a†−a+∆0 (6.12)

= −|∆0|2 + Ψ†
[

0 ∆∗0
∆0 0

]
Ψ (6.13)

Similar to m0,mz, we de�ne

mx = ∆0 + ∆∗0 =< a†+a− + a†− + a+ >=< Ψ†σxΨ > (6.14)

my = −i(∆0 −∆∗0) = −i < a†+a− − a
†
− + a+ >=< Ψ†σyΨ > (6.15)

If we go to the original ca, cb dimer basis, mx =< na − nb >µ. This is the
polarization on each bond µ. On the other hand, my = i < c†acb − c

†
bca >µ.

Using mx and my, I2 can be written as

I2 = −
m2
x +m2

y

4
+ Ψ†(

mx

2
σx +

my

2
σy)Ψ (6.16)

Using this form of I1 and I2, the mean �eld Hamiltonian can be written as

H =
∑
k

Ψ†kH0(k)Ψk−
U

2

∑
µ

Ψ†µ(mxσx+myσy+mzσz)Ψµ+
U

4
(m2

x+m2
y+m2

z)

(6.17)
The next step would be to get the mean �eld free energy. The gap equations
can be obtained by minimizing F with respect to the order parameters ∆i

i.e. ∂F
∂∆i

= 0. This is what is going to be done next.
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