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Abstract

The first observation run of advanced LIGO returned a surprising 3 detections of coalescing

Binary Black Hole (BBH) systems. Having shown much promise as strong Gravitational

Wave candidates lying within the aLIGO detector sensitivity, efforts are now being directed

at fine-tuning our searches to detect more Compact Binary Coalescence (CBC) sources,

especially ones involving Neutron Stars. A combination of algorithmic and software speed-

up strategies have been explored for achieving a low-latency detection of signals from these

systems, to generate timely alerts for Electromagnetic Follow-up observations. In this study,

we investigate another mathematical technique, called Random Projection,which guarantees

the preservation of information in high-dimensional data structures under projection to a

lower dimension following the Johnson-Lindenstrauss lemma. We explore the applicability

of Random Projections for reducing Gravitational Wave templates in order to speed up the

computation of matched filtering in the time domain.
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Preliminaries

Definition 0.0.1. The Euclidean Distance between two d-dimensional vectors u, v ∈ Rd,

also known as the l2-norm, is defined as:

‖ u− v ‖22=

√√√√ d∑
i=0

(u2i − v2i )

Definition 0.0.2. The Inner Product between two d-dimensional vectors u, v ∈ Rd is defined

as:

u · v =
d∑
i=0

(uivi)
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Chapter 1

Introduction

Figure 1.1: GW150914: Signals from the first
ever Gravitational Wave Detection

September 14, 2015. 09:50:45 UTC.

The twin LIGO (Laser Interderometer

Gravitational-Wave Observatory) detectors

at Livingston, LA and Hanford, WA were

still in their sixth engineering run when they

picked up an identical loud signal, 7 millisec-

onds apart. Months of intensive data screen-

ing, testing and analysis finally confirmed

the two chirping sinuosoidal signals (de-

picted in the adjacent figure[3]) to have come

from an astrophysical source: the merger of

two black holes, 36M� and 29M� in mass

into a single black hole having a mass of

62M�. The deficit of almost 3M� was re-

leased as energy in the form of Gravitational

Waves. This first confirmed detection of Gravitational Waves was christened GW150914,

marking the date and indicating that many more were to follow. The era of Gravitational

Wave astronomy had begun. In this study, we shall investigate mathematical methods of

data analysis to try speeding up our searches for Gravitational Wave signals extracted from

the tonnes of noisy data collected by LIGO.
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1.1 Gravitational Wave Data Analysis

Compact Binary Coalescences (CBCs) involving pairs of Neutron Stars or Black Holes are the

most promising sources of Gravitational waves detectable within the sensitivities of advanced

LIGO. The most popular technique for finding CBC Gravitational Wave signals in LIGO

data is matched filtering. This involves a noise-weighted correlation of the detector data with

a set of theoretically modelled templates, which characterise the signal from a binary system

in terms of its strain amplitude A(t) and phase φ(t) evolution.

Figure 1.2: A Gravitational Wave template [2]

As illustrated in Figure 1.2, the Gravitational Wave templates of CBCs are chirping

sinusoids. The strain h(t) frequency and amplitude increases in frequency as the binary

components revolve around each other faster in successively shorter orbits, radiating energy

in the form of Gravitational Waves. This is known as the inspiral phase. As we shall see in

chapter 4, this portion is modelled using the Post-Newtonian expansion of the perturbative

Einstein field equations to find an approximate solution. The waveform frequency reaches its

maximum close to the merger phase, when the components collide. This portion is harder

to model and requires the use of Numerical Relativity. Post-merger, the system rests down

in the ringdown phase, which can be modelled using the Quasi-Normal modes of black holes.

Gravitational Wave signals come in two independent polarisations: the plus polarisation

(h+) and the cross polarisation (h×), inclined at an angle of π/4 with respect to each other.

The waveform observed at a detector can be expressed as[14]:

h(t) = F+(θ, φ, ψ)h+(t; ξ) + F×(θ, φ, ψ)h×(t; ξ) (1.1)

3



Where F+ and F× are the detector response functions :

F+(θ, φ, ψ) = −1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (1.2)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ (1.3)

These functions depend on the sky coordinates of the binary system (θ, φ) and the po-

larisation (ψ). They characterise the strength of an incoming signal relative to the detector

orientation. The LIGO interferometers have the maximum sensitivity to detect signals that

arrive perpendicular to their face, and specifically for polarisations along the lengths of the

arms. These 3 parameters are extrinsic to the modelling of the templates, being independent

of the binary system in question. Two additional extrinsic parameters are the time of arrival,

(ta) and the initial phase (φ0) of the binary. The functional form of the two polarisation

phases is in Eqn(1.1) is given by:[6]

h+(t) = −(1 + cos2 ι)

2

(
GM
c2D

)(
ta − t

5GM/c3

)−1/4
cos [2φ0 + 2φ(t− ta;M,µ)] (1.4)

h×(t) = (− cos ι)

(
GM
c2D

)(
ta − t

5GM/c3

)−1/4
sin [2φ0 + 2φ(t− ta;M,µ)] (1.5)

Where G is the Gravitational constant and c is the velocity of light. D, M, and µ

constitute the intrinsic parameters of the binary. D represents the distance to the source.

If m1 and m2 are the two component masses, the following parameters are determined from

them: The total mass (M) = m1 + m2, the reduced mass µ = (m1m2)/M , the symmetric

mass ratio η = µ/M and the chirp mass M = µ3/5M2/5 = η3/5M .

The antenna response functions from Eqn.(1.2)(1.3) can be treated as constant over the

time from which the signal starts arriving until the coalescence time.[6]. The incoming
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inspiral strain can thus be written as:

h(t) = −
(
GM
c2Deff

)(
ta − t

5GM/c3

)1/4

cos [2φ0 + 2φ(t− ta;M,µ)] (1.6)

We can represent the detector data stream when a signal (s(t)), assumed to be similar

to a template, (h(t)) is present as:

x(t) = s(t) + n(t)

where n(t) represents the noise. The data in the Fourier domain is given by:

x̃(f) =

∞∫
−∞

ei2πftx(t)dt (1.7)

We use Matched Filtering to extract the signal s(t) from the data x(t). The match

filter output is defined as:

y = 〈x|h〉 = 〈s|h〉+ 〈n|h〉 (1.8)

Here, the inner product is defined as:

〈a|b〉 = 4Re

∞∫
0

ã∗(f)b̃(f)

Sh(f)
(1.9)

Sh(f) represents the one-sided noise

power spectral density (PSD), defined as:

E[ñ(f)ñ∗(f)] =
1

2
δ(f − f ′)Sh(f) (1.10)

The adjacent figure [17] shows the aLIGO

noise PSD along with the principle sources

of noise.
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Noise in the detector stream is assumed to be stationary gaussian noise which randomly

fluctuates about a mean value of zero. In this case, the noise component of the matched

filter, 〈n|h〉 would be negligible and the signal component, 〈s|h〉 would dominate IF the

template closely matches the signal.

The Signal to Noise Ratio (SNR) of the matched filtering calculation between the data

and a template is defined as:[21]

ρ ≡ 〈s|h〉√
E[〈n|h〉2]

(1.11)

Assuming we have normalised templates, the noise output of the filter turns out to be a

gaussian random variable with zero mean and unit variance. This makes the denominator

in Eqn.(1.11) unity, and hence

ρ = 〈s|h〉 = 4Re

∞∫
0

s̃∗(f)h̃(f)

Sh(f)
(1.12)

Time Domain Filtering

The matched filtering operation can be carried out in the time domain. Here, we depict the

discretely sampled data as x[t] and the template we match it with, also sampled at the same

rate, as h[t]. We weigh these time series with the inverse of the noise PSD, a process known

as whitening. This suppresses those frequencies at which the interferometer sensitivity is

low. Matched filtering in the time domain involves convolving a whitened data stream with

a whitened template:

ρ[τ ] =
N−1∑
t=0

x [τ − t]h [t] (1.13)

This gives us a time series of SNR, ρ[τ ] which peaks at the time corresponding to the

maximum overlap between the signal and the template. This operation can also be thought

of as a series of time-shifted inner products of the whitened data and the whitened template.
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1.2 EM Follow-up and Low-latency Searches

Figure 1.3: Electromagnetic emission from
a Binary Neutron Star merger

One of the next big achievements in this field will

be the first successful Electromagnetic follow-up

observation of a Gravitational Wave source, es-

pecially a compact binary containing at least one

Neutron Star. Such mergers have been modelled

[23] to emit afterglow emissions coming from vari-

ous astrophysical processes. Binary Neutron Star

(BNS) mergers are believed to be the progenitors

of Short Duration Gamma Ray Bursts (SGRBs).

SGRB as well as X-ray emission from a BNS sys-

tem are modelled to take place a mere seconds

after the merger. Transient signals in the opti-

cal spectrum (kilonovae) coming from the tidal

tail of the surrounding gas are expected to start

coming a few hours post merger and last for an

order of a few days. Radio afterglows from the ejecta are longer lasting transients which

may last for weeks post merger. Observing an event in both the EM and GW spectra would

have many invaluable advantages. It is thus imperative to detect Gravitational Wave signals

as soon as possible, so as to provide timely alerts to observatories for follow-up. This has

led to the development of low-latency online search pipelines, like GSTLAL[22]. Figure 1.4

summarises the current time delays involved in various stages of the GW search pipeline.

Figure 1.4: The buildup of latency: From signal to sky-search
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1.2.1 Fast Time Domain searches: A problem in data reduction

Let us look at the numbers involved in carrying out Time-Domain (TD) matched filtering

searches using Gravitational Wave templates. The templates are generated using various

combinations of intrinsic binary parameters like masses and spins. To ensure that we conver

the parameter space efficiently, the number of templates we have to produce ranges from

tens of thousands to a few million. In addition, the template lengths vary from a few seconds

for binary black holes to over 20 minutes for binary neutron stars. If sampled at a rate of

4096 Hz., the templates have a number of time points of the order of a few million. The TD

convolutions involved in the matched filter calculations now become computationally very

expensive. Scanning a stream of data with a huge template bank, with all templates within

it sampled at millions of time points makes this a high-dimensional problem. We imagine

each sampling point in the template time series to be a dimension of a vector space. Each

template thus represents a data vector in this space, and we have many such templates. This

is where data reduction techniques, which we shall read about in the next chapter, are useful.

They can either help us reduce the number of templates we need to compare the data with,

or the effective number of time points used in the computations.
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Figure 1.5: A problem in dimensionality reduction...
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Chapter 2

Data Reduction and Fast

Gravitational Wave Searches

Big Data has revolutionised the information age we live in. Every passing day, we leave a

digital footprint in terms of the web pages we visit, the things we buy online, the songs we

listen to, and so on. Beyond personal information, the immense digitisation of the material

world, like e-print newspapers, books and journals, photographs and forensic data have led to

a surge in the development of data analytic techniques for efficient ways of storing, handling

and querying large amounts of data.

Different kinds of digital data structures are visualised as vector spaces in high dimen-

sions, populated with data-vectors representing real-world objects. A popular example is

the ‘bag of words’ representation of textual data in the form of books or documents. Here,

we imagine every word in the English language as being one dimension along a vector space

of rank equal to the size of the entire English vocabulary. We can populate this vector space

with any form of textual documents as data vectors. Each vector (document) has an integral

magnitude of components along a particular word-axis equivalent to the number of times

that word is used inside it. For example, if a document contained just the first paragraph of

this chapter, it would have a magnitude of: 7 along the ‘the’ axis, 4 along the ‘and’ axis, 4

along the ‘data’ axis and 1 along the ‘forensic’ axis. At the same time, you will appreciate

that a huge number of vector components corresponding to words which do not belong to

the text, like ‘panda’, ‘iridescent’ and ‘relativity’ are zeros. Regardless of how verbose a
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book or a document is, the proportion of words it contains would be negligible to the total

size of the vocabulary. This is an example of a sparse data structure.

If we populate the bag-of-words vector space with books from a library, we would find

that data vectors corresponding to books that are of a particular subject, say Physics, tend

to cluster together. This is because they would have stronger components along scientific

word-coordinates like ‘magnetism’ and ‘momentum’. One would thus expect to find clusters

of books corresponding to different subjects distributed along the vector space. Figure 2.1

summarises the different kinds of data structures based on their distributions in a given high

dimensional space.
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Figure 2.1: Types of Data distributions in 3 Dimensions

As we increase the number of dimensions in our representative data space, we run into

several problems. Richard E. Bellman coined the term ‘The Curse of Dimensionality ’ to de-

scribe the various counter-intuitive phenomena that occur as dimensionality increases far and

beyond the 3 dimensions of the physical world we live in. Examples include the exponential

sparsification of data due to the n-fold increase in volume corresponding to a linear increase

in the dimensionality, n. This leads to an overwhelming percentage of relatively orthogonal

vectors in high dimensional spaces (more on this in chapter 3). High-dimensional data is

very hard to store, handle and make computations with. Even polynomial time algorithms

are largely inefficient when the dimensionality exceeds a few orders of magnitude.

Data Reduction involves converting or projecting high dimensional data into lower di-

mensions, without affecting the inherent structure or relationships between the data vectors.

This carries an assumption that a given high dimensional data distribution actually has a

lower intrinsic dimensionality. It is an effort to transform the data into another space of a

lower rank, consisting of a fewer number of basis vectors. There are a number of ways to do
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this, the most common being Singular Value Decomposition.

2.1 Singular Value Decomposition

The Singular Value Decomposition (SVD)[27] theorem states that any rectangular matrix

can be decomposed in the following way:

Amn = UmmΣmnV
T
nn (2.1)

Such that:

• The columns of U are the orthonormal eigenvectors of AAT ,

• The rows of V T are the orthonormal eigenvectors of ATA,

• Σ is a diagonal matrix containing the square roots of the eigenvalues of U , which are

the same as the eigenvalues of V , arranged in descending order:

σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ ... ≥ σn ≥ 0

Singular Value Decomposition picks out the directions, or eigenvectors along which

the data distribution (or variability) is maximum. The singular values (σs) quantise the

magnitudes of this variability. They are the eigenvalues corresponding to each basis vector

pointing in a certain eigendirection.

Truncated SVD

The data reduction part comes in the Truncated SVD representation, which is identical to

eqn.(2.1), except that it includes only the first r out of n significant singular values and

their corresponding basis vectors. In other words, it is a reconstruction of the data using a

basis of vectors which captures the inherent data distribution. We assume that the (n− r)
basis eigenvectors which are left out do not contain significant information about the data.
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We shall look at how SVD works with an example of a dataset in 3 dimensions, which

helps us visualise the procedure.

SVD in 3 Dimensions

Figure 2.1b in the preceding section is actually the 3-dimensional representation of individual

athletes who took part in the Rio 2016 Olympic games. The athletes are scattered along 3

coordinates corresponding to their height, weight and age. This dataset comprising data of

11,538 athletes from 205 countries was taken from the Rio 2016 Official Website.[1]
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Rio 2016 Athlete data

Figure 2.2: Rio 2016 Athletes: Weight vs Height

The dataset has the following inherent

structure: we expect taller athletes to weigh

more, and hence their height vs weight scat-

ter should follow a somewhat linear trend

(Figure 2.2). Though I did not qualify for

Rio, the red dot representing my own com-

ponents along the height and weight axes

places me as a perfectly average olympic ath-

lete. I would be cast as an outlier from this

distribution only if a third dimension signi-

fying the number of push-ups a person can

do were added. The third axis which we do

add, thankfully, is that of age. We expect the linear Height-Weight trend to be followed for

athletes across all ages, since age does not introduce characteristic biases in either height or

weight. Hence, in the 3 dimensions of height, weight and age, we expect this data set to lie

along a plane: the linear height-weight trendline extended along the age axis. A truncated

SVD does precisely this: it picks out this plane and projects the data along its principal

axes.

Figure 2.3a helps visualise the SVD plane for the Rio 2016 data scatter. The diagonal

matrix of eigenvalues for this dataset is:

12



Height (m)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

W
ei

gh
t 

(K
g)

20
40
60
80
100
120
140
160
180

A
g
e
 (

Y
r)

0

10

20

30

40

50

60

70

Rio 2016 Athlete data

(a) Actual Data

180 160 140 120 100 80 60 40 20
Principal Axis 1

40

30

20

10

0

10

20

30

40

50

P
ri

n
ci

p
a
l 
A

x
is

 2

SVD Projection of Rio 2016 Athletes
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Figure 2.3: Visualising Rio 2016 Athletes in different bases

Σ =

8175.32 0 0

0 739.14 0

0 0 23.85


The third principal component, (23.86) is over two and one orders of magnitude lower as

compared to the first two components respectively. Hence, we can use the truncated SVD

including only the first two basis vectors to reconstruct the entire dataset in 2 dimensions.

The 2-D scatter of the athletes along this SVD plane is depicted in Figure 2.3b We observe a

larger distribution, capturing greater variation in the data scatter along this plane. Contrast

this with Figure 2.2, which is essentially a direct projection of the dataset onto the Height-

Weight plane by suppressing the Age axis.

The truncated SVD thus helps us perform computations on this dataset in only 2 Dimen-

sions, which is faster. How to characterise the conservation of the properties of our dataset?

One such metric is the Euclidean Distance. It tells us how close two data points (athletes)

are to each other. Athletes of a similar age, height and weight are separated by a smaller

distance. A weightlifter and a gymnast will have a greater distance separating their corre-

sponding data points. Figure 2.4a shows the scatter of pairwise distances in 3 Dimensions

compared with the same in the 2D SVD plane. It shows a perfectly linear trend. What this

means is that two athletes placed a certain distance apart in the 3D scatter have the same

separation in the Principal plane as well. The distribution plots of pairwise distances in 3D

13
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Figure 2.4: Conservation of data structure under SVD

and reduced 2D also match perfectly as seen in Figure 2.4b.

Summarising, we can compare relationships between a dataset faster using reconstructed

vectors in a lower dimension. While this was just a toy example to help us visualise the

technique, one can really speed up calculations in applications involving larger dimensions,

just like the problem posed in section 1.2.1.

2.2 Dimensionality reduction of Gravitational Wave Tem-

plates

The problem of a Time-Domain (TD) matched filtering based Compact Binary search in-

volves convolving a large number of Gravitational Wave templates hα[t] with the incoming

signal s[t]. The number of templates taken from the parameter space is of the order of a few

tens of thousand to a million (105−106), while the number of time samples is of the order of

a few million (106). GSTLAL, a TD search pipeline for aLIGO, uses the LLOID [10] algo-

rithm to reduce the dimensionality in both the time-sample as well as template space. For

reducing the number of templates, they apply Singular Value Decomposition. For reducing

the time-point dimension, they use frequency based subsampling.

14



2.2.1 Reduction of Template space using SVD

In order to lower the rate of false positives, a high SNR threshold is used for characterising a

detection. As a consequence, the template bank constructed is densely populated such that

adjacent templates have a minimal match of 0.97. This ensures a small maximum loss of

SNR with respect to a given template. This arrangement also has a flip side: the more we

populate our parameter space with templates, the greater number of similar templates we

generate. This introduces degeneracies within a set of the templatebank. These are exploited

using SVD, which eliminates the degeneracies by producing a set of orthogonal basis vectors

which are used to reconstruct the templates.

Consider a template bank containing N templates sampled at M time points. The N×M
template data matrix is represented as HNM . The αth template can be reconstructed using

Singular Value Decomposition of the template data matrix as[11]:

hα[t] =
N∑
ν=1

vανσνuν [t] (2.2)

Where V is the matrix of N row vectors forming an orthogonal basis along the Principal

Components of H, and σ is the diagonal matrix of eigenvalues in decreasing order.
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Figure 2.5: SVD of a Gravitational Wave templatebank

15



The time domain expression of the SNR (1.13) can be thus written as:

ρα[τ ] =

j−1∑
t=0

x[τ − t]
N∑
ν=1

vµνσνuν [t] (2.3)

Owing to redundancies in the template waveforms, assume that we have k < N signif-

icant components. The templates can now be reconstructed using only the basis vectors

corresponding to the first k significant eigenvalues:

h′α[t] =
k∑
ν=1

vανσνuν [t] (2.4)

The SNR from the reconstructed templates is given by:

ρ′α[τ ] =

j−1∑
t=0

x[τ − t]
k∑
ν=1

vµνσνuν [t] (2.5)

Since the truncated SVD reconstruction is not perfect, we get errors in the value of the

reconstructed SNR. These are characterised by the Fractional SNR loss, given by:

δρα
ρα

= 1− |ρ
′
α|
|ρα|

(2.6)

The average Fractional SNR Loss turns out to be equal to the summation of all the

discarded Singular Values.

〈δρ
ρ
〉 =

1

2N

N∑
α=N ′+1

σ2
α (2.7)

This means that the accuracy of reconstruction can be tweaked by adjusting the number

of SVD basis vectors used in reconstruction. Cannon et al. [11] found that we can use

an order of magnitude lower number of basis vectors compared to the number of templates

whilst keeping the average fractional loss in SNR of the order of 0.001.
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2.2.2 Reduction of Time-sample space

Figure 2.6: Frequency-based subsampling

The LLOID algorithm uses frequency-based subsampling to reduce the number of

time points used in the match calculation. As given in equation 1.6, The frequency of the

Gravitational Wave chirps increases as the signal evolves with time. The aLIGO sensitivity

ranges from 10 Hz. to about 10 KHz. Hence, an incoming inspiral signal has a frequency of

10 Hz., which increases by over two orders of magnitude by the time it reaches the merger

phase.

According to the Nyquist frequency criterion, the minimum frequency at which a

signal can be sampled without loss of information is twice the maximum frequency component

present in the signal. This criterion is exploited by slicing a Gravitational Wave template

into different parts based on frequency. The inspiral section, which evolves slowly with a

lower frequency, can be sampled at a lower rate, reducing the number of time points. The

subsequent slices are sampled at successively higher frequencies (Figure 2.6). This obviates

the need of sampling the entire signal at the maximum frequency (4096 Hz.) that captures

the merger part.

It is worthwile noting that if a typical binary Neutron Star-Black Hole signal, lasting for

about 5 minutes is sampled at the second lowest frequency i.e. 64 Hz, the number of time

points will be reduced from 1,228,800 to 19,200 time points, but with a significant loss of

information.
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An Alternative Dimensionality Reduction Technique

A disadvantage of the SVD approach is the heavy computation involved in finding the

reduced set of basis vectors. In some scenarios, this may negate the computational efficiency

gained in working with this lower dimensional basis. We pose the following question: Is there

a faster way of projecting data into lower dimensions, while conserving its structure the way

SVD does? SVD is indeed the optimal way of finding an appropriate basis to project data

into. What if we do not take the effort to find such a basis altogether? What if we project

our data onto random subspaces? Will we still preserve how it is distributed? Sounds like

an idea too good to be true. But that is what they say about all good ideas...
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Chapter 3

Random Projections

In mathematics you don’t understand

things. You just get used to them.

John von Neumann

Random Projection is a powerful mathematical technique for dimensionality reduction. It

was conceived following the seminal result by William B. Johnson and Joram Lindenstrauss

[19] in the early 1980s. The fundamental idea is that linearly projecting data in high di-

mensions to a random subspace preserves the inherent geometry of its distribution. In other

words, the common metrics of closeness between pairs of data vectors, like the Euclidean

distance and Inner Product are conserved under such a projection with a high probability,

within a given error tolerance. Further, we can reduce the dimensionality of our system log-

arithmically with respect to the number of data vectors, irrespective of the original number

of ambient dimensions. In this chapter, we will understand how this technique works, how

it is applied and what advantages it offers over other data reduction techniques.
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Random Projections have found applications in a variety of fields. Bingham et al. have

used it to classify images and textual data, and compared its performance against DFT, DCT

and SVD [7]. In a similar application, Papadimitriou et al. use Random Projection as a

precursor to Latent Semantic Indexing [26]. It has been used for developing face recognition

software by Goal et al[16]. S. Dasgupta has used this technique to classify and characterise

Gaussian clusters [12]. The immense capability Random Projection offers in going down

to low dimensions makes it valuable to design training sets of feature vectors for Machine

Learning algorithms, as demonstrated by Fradkin et al [15]. Random Projection has also

found scientific applications, having been used for MRI image analysis and compressive signal

processing.[9]

3.1 The Technique

Consider a high-dimensional space with d-dimensions, populated with n vectors. A vector

in this space is represented by vd. Random Projection, as the name suggests, is a projection

of this high d-dimensional vector space into a lower dimensional subspace involving k <<

d coordinates, using a projection matrix having k random vectors in d dimensions. The

projection of a single vector can be represented as :

 k

 =
1√
k

 k × d




d



vk =
1√
k

Rk×du
d (3.1)

The entire dataset can be represented by a data matrix of n column vectors in d-
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dimensions: Vdn. The Random Projection of all data vectors together to a subspace forms

a data matrix of n projected column vectors in k-dimensions: V ′kn. This transformation can

be represented by:

V ′kn =
1√
k
RkdVdn

How does one determine the Random Projection matrix, R? This matrix can have

its entries picked randomly from different types of distributions. The selection of R has no

bearings on the nature of our dataset. The simplest kind of distribution is a standard normal

(Gaussian) distribution. It turns out that any distribution having the property of zero mean

and unit variance can serve the purpose of Random Projection. This fact can be exploited

to make computations involving these matrices faster and more efficient. We shall discuss

Random Projection matrices generated from alternative distributions in section 3.2.2.

Take, for now, the Gaussian case, withRij ∈ N (0, 1). We can imagine the k×d matrix as

a set of k randomly generated basis (row) vectors in a d-dimensional space. Mathematicians

would be quick to point out that if we want to call this process a projection onto a k-

dimensional subspace, the basis of the projection matrix R needs to be orthogonal. It seems

implausible that our randomly generated vectors can guarantee this, since orthonormalisation

of a set of vectors involves an application of the elaborate Gram-Schmidt process.

This requirement is not perfectly satisfied, but adequately taken care of by exploiting an

aspect of the curse of dimensionality. As pointed out in the previous chapter, the exponential

sparsification of randomly distributed data in high dimensions leads to an overwhelming

percentage of pairs of vectors being nearly orthogonal. The higher the dimension, the more

orthogonal pairs of vectors become. This is illustrated in Figure 3.1a. Surprisingly, this

degree of orthogonality is dictated by the number of dimensions alone, regardless of how many

vectors populate the space (Figure 3.1b). As table 3.1 shows, it follows a neat
√
N
N

relation

for an N-dimensional vector space. As we shall see later, Gravitatioinal Wave templates have

an ambient dimension of N over a million dimensions, so we are safe on the orthogonality

front.
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Figure 3.1: Orthogonality of Vectors in Higher Dimensions: The percentage of orthogonal pairs
depends only on the ambient dimension (a) and not on the population (b)

Table 3.1: Deviation from orthogonality for pairs of vectors in successively higher dimensions

N
Standard Deviation
From Distribution

√
N
N

100 0.098 0.100
500 0.044 0.044
1000 0.031 0.031
5000 0.014 0.014

Normalisation is trivial once we have a quasi-orthogonal basis. The factor 1√
k

in equation

3.1 is not for normalisation, but for scaling the norm of vectors in the dataset, a property

crucial to make Random Projections work. The row vectors of a Random Projection matrix

are thus almost orthogonal to each other. As an example, we use a [R : 2000 × 5000]

projection matrix in section 5.3. The mean square deviation of the entries of RRT from the

entries of the corresponding rank-2000 Identity matrix, (I2000) is 0.008, less than a percent.

Hence, we now have a fast and computationally cheap technique of projecting data onto a

nearly orthogonal subspace. We now claim that such a projection guarantees a preservation

of distance metrics within the dataset, even when the projection scales the dimensionality

down to an order logarithmically lower in the number of data points we have. Let us

investigate how this is achieved theoretically.
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3.2 Why Random Projections work: A Theoretical Back-

ground

Consider a set of m vectors populating a high dimensional space having d components.

Lemma 3.2.1 (Johnson, Lindenstrauss[19]). For any 0 < ε < 1 and any integer m, there

exists a positive integer k such that

k =
24 log n

2ε2 + 3ε3
(3.2)

Then for any set V of m points in Rd, there exists a mapping f : Rd → Rk such that ∀xi, xjε
V,

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2 (3.3)

With a high probability. Further, this mapping can be found out in linearised polynomial

time.

For its application to Random Projection, this lemma is often restated in its distributional

form:

Lemma 3.2.2 (Distributional Johnson-Lindenstrauss).

Pr[(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2] ≥ 1− 1

n2
(3.4)

Proof. [13]

Let x ∈ Rd be a vector in the original d-dimensional space.

x = [x1, x2, x3, ..., xd]

Take the mapping f : Rd → Rk to be the linear transformation using a k × d matrix R,

having its entries taken from a Gaussian distribution with mean 0 and a standard deviation

of 1: Rij ∈ N (0, 1)
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Under the projection

(Rx)i =
1√
k

d∑
j=1

Rijxj

x will be transformed to the k-dimensional vector Rx

Rx = [(Rx)1, (Rx)2, (Rx)3, ..., (Rx)k]

Let ‖x‖2 represent the Euclidean Norm i.e. the squared Euclidean distance from the

Origin.

We begin by proving norm conservation.

Proposition 3.2.1. The linear mapping R : xd → (Rx)k preserves the norm of all data

vectors upto a multiplicative factor of (1± ε) with a high probability.

Pr{(1− ε)‖x‖2 ≤ ‖Rx‖2 ≤ (1 + ε)‖x‖2} ≥ 1− 1

n2
(3.5)

The squared norm of the projected vector is:

‖Rx‖2 =
k∑
i=1

(Rx)2i (3.6)
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We start out by finding the expected value of this projected norm:

E
(
‖Rx‖2

)
= E

(
k∑
i=1

(Rx)i

)2

=
k∑
i=1

(
E(Rx)2i

)

=
k∑
i=1

1

k
E

(
d∑
j=1

(Rijxj)

)2

=
k∑
i=1

1

k

∑
1≤j,k≤d

xjxkE(RijRik)

=
k∑
i=1

1

k

∑
1≤j,k≤d

xjxkδjk

=
k∑
i=1

1

k

d∑
j=1

x2i

=
k∑
i=1

1

k
‖x‖2

Hence,

E
(
‖Rx‖2

)
= ‖x‖2 (3.7)

The expected value of the norm of the transformed vector in the k-dim space is equal to

its original norm in the d-dim space.

This does not prove norm preservation, yet. We need to prove that the distribution of

the norm value under projection is tightly concentrated around its expected value. For this,

we propose the following non-constructive proof using the probabilistic method:

We aim to find P [‖Rx‖2 ≥ (1 + ε)‖x‖2], P [‖Rx‖2 ≤ (1− ε)‖x‖2] and show that these

probabilities are tiny.
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Define a new vector Z:

Z =

√
k

‖x‖
(Rx) (3.8)

The components of which are

zi =
1

‖x‖
RTx (3.9)

Therefore,

‖Z‖2 =
k∑
i=1

1

‖x‖2
(RTx)2 = k

‖Rx‖2

‖x‖2
(3.10)

Let y = ‖Z‖2

The Probability we are looking for is:

P
[
‖Rx‖2 ≥ (1 + ε)‖x‖2

]
= P [y ≥ (1 + ε)k]

= P
[
eλy ≥ e(1+ε)k

]
......(∀λ ≥ 0)

By Markov’s Inequality [24]:

P [y ≥ a] ≤ E
[y]

a

Therefore,

P
[
eλy ≥ e(1+ε)k

]
≤ E[eλy]

e(1+ε)k

≤
k∏
i=1

E[eλy
2
i ]

e(1+ε)k

≤

(
E[eλy

2
i ]

e(1+ε)k

)k

≤
(

1√
1− 2λ · e(1+ε)

)k
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Setting λ = ε
2(1+ε)

:

P
[
eλy ≥ e(1+ε)k

]
≤

[
(1 + ε)e−ε

] k
2

≤ e(−ε
2/2−ε3/3)k/2...

(
using log(1 + x) ≤ x− x2

2
− x3

3

)

The corresponding mirrored probability, P [‖Rx‖2 ≤ (1− ε)‖x‖2] ≤ e(−ε
2/2−ε3/3)k/2

can be proved in a similar manner.

How to ensure these tail bounds fall steeply? Equation 3.2 suggests taking the following

value of k:

k =
4 log n
ε2

2
+ ε3

3

This implies,

P
[
‖Rx‖2 ≥ (1 + ε)‖x‖2

]
= P

[
‖Rx‖2 ≤ (1− ε)‖x‖2

]
≤ exp

(
−(ε2/2 + ε3/3)

2
k

)

≤ exp

(
−(ε2/2 + ε3/3)

2

4 log n

(ε2/2 + ε3/3)

)

≤ e−2 logn

Hence,

Pr{‖Rx‖2 /∈ (1± ε)‖x‖2} ≤ 2

n2
(3.11)

The norm of a single projected vector is tightly concentrated around that of the original

vector in a high dimensional space.

Since x is an arbitrary vector in the d-dimensional space, this property will hold true for

any distance vector dx in the space, where dx = xi − xj and xi, xj are data vectors.
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Therefore, we can extend norm preservation to the conservation of all pairwise distances,

by union bonding over all such distance vectors. If the total number of data vectors is n, we

have a total of
(
n
2

)
= n(n−1)

2
pairs.

This gives the following probability for all pairwise distances to lie outside the ε−embedding:

P [∪xi] ≤
n∑
i=1

P [xi]

≤ n(n− 1)

2

2

n2

Pr{‖Rxi −Rxj‖2 /∈ (1± ε)‖xi − xj‖2} ≤ 1− 1

n

Therefore,

Pr{(1− ε)‖xi − xj‖2 ≤ ‖Rxi −Rxj‖2 ≤ (1 + ε)‖xi − xj‖2} ≥ 1− 1

n
(3.12)

which is very high for large n, thereby completing our proof.

3.2.1 Conservation of Inner Products

Here we prove the above JL bounds for another metric for closeness between data points,

namely, the Inner Product. The inner product is a far more important metric for our bigger

picture, since the matched filtering output of a Gravitational Wave search is the Inner

Product between the data and a template at the point of their maximum overlap. 1.1

The inner product between to vectors x and y can be written as 〈x · y〉 = xTy. We can

re-write this in terms of the Euclidean distance between x and y as:

xTy =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
(3.13)

Now, if we project the two vectors under Random Projections to k-dimensions:

x→ Rx
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y → Ry

The Inner Product between the projected vectors can be written as:

(Rx)TRy =
1

4

(
‖Rx+ Ry‖2 − ‖Rx−Ry‖2

)
(3.14)

Applying the distributional JL lemma on both the distance terms separately followed by

a union bound achieves the following bound on the conservation of Inner Products:

Pr[(1− ε)xTy ≤ (Rx)TRy ≤ (1 + ε)xTy] ≤ e
−
(
ε2

8

)
(3.15)

The JL Lemma thus guarantees the preservation of the Inner Product metric as well, in

a Randomly Projected subspace. This preservation however strongly depends on the value

of the original inner product, as we shall see in the following corollary[20]:

Corollary 3.2.2. (Relative distortion bounds) If θ is the angle between two d-dimensional

vectors x and y, We obtain the following relative distortion bound for the conservation of

their inner product:

Pr[(1− ε)xTy ≤ (Rx)TRy ≤ (1 + ε)xTy] ≤ exp

(
−ε

2

8
cos2 θ

)
(3.16)

Proof. The angle θ is related to the inner product by cos θ = ‖x‖·‖y‖
xT y

If x and y are both normalised,

cos θ =
1

xTy

Dividing both sides of 3.16 by xTy, we get:

Pr

[
1− ε

cos θ
≤ (Rx)TRy

xTy
≤ 1 +

ε

cos θ

]
≤ e

(
− ε

2

8

)
(3.17)

Setting η = ε
cos θ

and solving the JL bound for η recovers eqn. (3.14) to prove the corollary.

29



3.2.2 Alternate Distributions

Looking back at our proof for the Johnson Lindenstrauss lemma, we notice a surprising fact.

Though we have used a projection matrix having i.i.d. standard gaussian entries, the only

property of the Normal distribution we have utilised is the fact that its first two moments are

zero and one respectively. What this means, is that any distribution having 0 mean and unit

variance can be used to construct a Random Projection matrix! This fact can be exploited

to construct matrices which are easy to construct and fast to project with. Achlioptas [4]

gives 2 such distributions:

1. Sparse Distribution:

This Random Projection matrix is sparse, with the fact that 2/3rd of its entries are

zeros:

rij =


+
√

3, with probability1
6

0, with probability2
3

−
√

3 with probability1
6

(3.18)

2. Binary Distribution:

This Random Projection matrix has its entries taken from a binary distribution:

rij =

+1, with probability1
2

−1, with probability1
2

(3.19)

3.3 Experiments with Random Projection

Having seen the theoretical guarantees Random Projections offer, let us put them into prac-

tice. We start off by analysing a set of normalised d-dimensional vectors randomly distributed

in the [−1, 1]d hypercube. Following is the list of parameters of our dataset:

• m : Number of data vectors = 1000

• d : Original dimension = 20,000
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• ki : Values of projected dimension, ∈ [15000, 10000, 5000, 2000]

The size of the Random Projection matrix projecting from d = 20000 to a lower dimension

of k is 20000 × k. I have projected the entire dataset to 4 different values of reduced

dimensionality. Let us check out various properties of this dataset under Random Projection.

Norm Preservation

Norm preservation was the premise in proving the Johnson Lindenstrauss lemma. Since we

started with a set of normalised vectors, it would be interesting to see how the norms of the

projected vectors are distributed around 1.0

0.96 0.98 1.00 1.02 1.04
Norm under Random Projection Space

0

10

20

30

40

50

60

70

80

#
 o

f 
v
e
ct

o
rs

Norm Preservation

k = 15000
k = 10000
k = 5000
k = 2000

Figure 3.2: Conservation of Norm

The projected norm distribution for all reduced dimensions is peaked around 1.0, with

a standard deviation given in table 3.2. The skewed trend for the first three projections

towards mean values less than 1.0 is an artifact of the randomness; it changes if we use a

different projection matrix.
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Distance Preservation

The Union bound guarantees a better conservation bound for preservation of pairwise dis-

tances. Figure 3.3 displays the scatter of the projected pairwise distances to the dimensions

(a) : k1 = 15, 000, (a) : k2 = 10, 000, (a) : k3 = 5000 and (a) : k4 = 2000 resepectively.

We observe scatter trends that look like ellipses with their major axes oriented aling the 45◦

straight line. The ellipses get fatter, that is their scatter increases in variance as we project

the data onto lower dimensions.
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(b) k2 = 10000
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(c) k3 = 5000
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Figure 3.3: Distance Preservation under Random Projection
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Inner Product Preservation
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(b) k2 = 10000
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Figure 3.4: Inner Product Preservation under Random Projection

The distortion of Inner Products closely matches that of the Euclidean distances for the

dataset above. It should be noted though that this dataset is uniformly distributed in the d-

hypercube and normalised, and hence the distribution of Inner Products in the original space

is strongly centred around 0.0. This means most pairs of vectors are nearly orthogonal. As

we shall see later, the scatter plots look different if the vectors lie along the same or opposite

directions.
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Relative Errors in conservation
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Figure 3.5a shows the following relative error in the distribution of pairwise Euclidean

distances:

∆ =
‖xi − xj‖2 − ‖Rxi −Rxj‖2

‖xi − xj‖2

Not surprisingly, the variances of the Errors vary inversely with the degree of dimen-

sionality reduction. The same trend holds for Errors in the conservation of Inner Products

Figure 3.5b. Here, I have plotted the absolute differences between pairwise inner products

in the full space and under projection.

In Appendix A, we have repeated the experiments with Random Projection from this

section using Achlioptas’ Sparse RP matrix (Equation 3.18). The scatters and the dis-

tributions we obtain are identical to the Gaussian case. Table 3.2 summarises the Errors in

conservation of different metrics under both types of projections. Given that the JL lemma

guarantees an ε = O
(√

logn
k

)
embedding for a reduced dimension of k, it is interesting to see

whether the relative errors scale accordingly for our set of reduced dimensions. The Sparse

Random Projection thus gives us a computationally faster way to apply the RP technique.
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Table 3.2: Comparison of Errors: Gaussian vs Sparse Projections

1
3

√
logn
k

Norm Euclidean Distance Inner Product

Estimated Gaussian Sparse Gaussian Sparse Gaussian Sparse
k1 0.007 0.005 0.005 0.006 0.005 0.008 0.008
k2 0.009 0.007 0.006 0.007 0.007 0.010 0.009
k3 0.012 0.010 0.009 0.010 0.010 0.014 0.013
k4 0.020 0.015 0.015 0.015 0.015 0.022 0.022

Relative Distortion of Inner Products

Corollary 3.2.2 gives a relative distortion bound for Inner Products under Random Projec-

tions. The bound is strong for strongly correlated or anti-correlated (opposite) pairs of data

vectors, and weak for uncorrelated or orthogonal pairs. This fact has important implications

for conserving match values between pairs of Gravitational Wave templates, which we shall

see in chapter 4. In this section, we attempt to verify and reproduce the relative distortion

bounds under the framework for Random Projections being developed.

We experiment with a set of 8 normalised vectors in 300 dimensions, distributed such

that the following 8 pairs amongst them display a range of Inner Product values from -1.0

to 1.0. We shall check how strongly the bounds depend on the relative Inner Product, and

how the Inner Products are conserved as we reduce the dimension from 300 to 10. The way

we calculate the associated probabilities, is given below:

1. Take any one pair of vectors x and y in 300 dimensions. Their dot product here is P.

2. Choose a reduced dimension of k = 100.

3. Generate 2000 independent Random Projection matrices going from N=300 to k=100.

4. Project x and y into each of these 2000 100-dim subspaces and calculate the dot product

in that space (Call this Q)

5. For each of the 2000 instances, determine the ratio of the dot product in reduced space

to that of the original space, i.e. Q/P. Pick a tolerence value of ε and count it if Q/P

lies within (1± ε).
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6. The empirical probability for the conservation of the dot product when the space is

reduced to 100 dimensions is then given by the number of times Q/P is within (1± ε),
divided by 2000.

7. The bound failure probability is simply 1 subtracted by the probability calculated

above.

The above set of calculations are repeated for all 8 vector pairs, and all values of reduced

dimensions ranging from 10 to 300 in an increment of 10.
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Figure 3.6: Probabilities for Inner Product Conservation for different tolerances. We observe that
orthogonal pairs are conserved with a far less probability compared to adjacent/anti-adjacent pairs
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Chapter 4

Random Projections of Gravitational

Wave Templates

We have seen that Random Projections in accordance with the theory for datasets uniformly

spread in a high dimensional space. We now turn our attention towards applying them to

reduce the time sample space of Gravitational Wave templates. In this chapter, we try to

address the following questions: Do Random Projections work at all for datasets containing

periodic time series? If yes, what is the parameter space to choose our set of templates from?

How closely should they populate the space? What number of templates should we pick,

and what are the associated Johnson Lindenstrauss conservation bounds? What degree of

dimensionality reduction could we achieve? Finally, we shall see results of how good a job

Random Projections do in preserving template information in a lower dimension, and discuss

the time of operation for projecting with different RP matrices.

4.1 Templates

Before we dig deep into their dimensions, let us look at what kind of Gravitational Wave

templates we are working with. We use inspiral-only binary waveforms, modelled up to

the Innermost Stable Circular Orbit (ISCO). The lower cutoff frequency is set at aLIGOs

sensitivity threshold, 10 Hz. The generated waveforms evolve up to their ISCO frequencies

or the upper cutoff frequency of 2048 Hz. whichever is higher. This also sets our sampling
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rate at twice this value, 4096 Hz., based on the Nyquist criterion.

The waveforms are generated using the Post-Newtonian (PN) approximation [8], which

computes the evolution of the orbital phase φ(t) of the binary by perturbative expansion

of its characteristic velocity v = (πMF )1/3 (M = Total Mass of the binary system, F =

Frequency of the Gravitational Wave). This evolution is characterised by the following pair

of differential equations:

φ(t) =
v3

M
(4.1)

v̇ =
−F(v)

E ′(v)
(4.2)

Where F(v) is the Gravitational Wave luminosity and E ′(v) is the derivative of the

binding energy with respect to v. Different models of PN waveforms arise owing to different

ways of expanding the ratio −F(v)
E′(v)

. The waveform model we use is TaylorT4, in which the

rational polynomial −F(v)
E′(v)

is expanded in v to a consistent PN order.

Next, we determine the intrinsic parameter ranges of the binary to choose our set of

templates from. How to determine the individual mass parameters? For this, let us go back

to our motivation: We wish to develop a fast and computationally cheap search technique by

reducing the time-sample dimension. One of its important outcomes would be to generate

quick alerts for possible follow-up observations, as discussed in chapter 1. For this, at least

one of the binary components must be a Neutron Star (NS). This requirement has an added

advantage. The chirp time of a binary is inversely proportional to its total mass. This is

because more massive systems tend to lose their energy through GW emission faster. Hence,

Black Hole-Black Hole (BH-BH) signals last for a very short time, of the order of seconds,

and have a relatively lower number of time samples in their corresponding templates. At

the other end, some NS-NS signals may last for over 20 minutes. Random Projections are

expected to give more elegant results if the templates have a high dimensionality in the first

place, and hence having a Neutron Star in our binary systems is useful.

We now look at NS-NS and NS-BH systems. An important factor to consider is how

closely the templates populate the parameter space. One metric used to determine this is

the match. It tells us how alike two templates are, and what is the degree of overlap between

them. If can defined as the maximum inner product (overlap) value obtained as we slide two

templates relatively over the difference in their chirp times. In order to ensure that we do
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not miss out on signals or gain false positives, the template space is populated such that the

match between any two adjacent templates is 0.97 i.e. they have a 97% overlap[25]. This

enables us to cover the parameter space as effectively as possible.

The minimal match requirement leads to an inverse relation of the density of template

population at a given mass range with the total mass in that range. This means that

the lighter NS-NS regime has a greater number density of templates as compared to NS-

BH or BH-BH. In other words, if we want to include a fixed number of templates in our

templatebank, we would be able to cover a larger portion of the parameter space for NS-BH

binaries as compared to the NS-NS ones.
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Is there such a limit to the number of

templates that we can include in our tem-

plate bank? Yes. It arises because of a limi-

tation in using one Random Projection ma-

trix across an entire bank. Refer to the adja-

cent figure which shows the shortest and the

longest waveforms from a particular bank

of 7000 waveforms. The difference in their

chirp times is almost 2 minutes. If we use

Random Projections to go down to a partic-

ular dimension k, the shape of the projection

matrix would be the length of the longest

template times k. In this case, the longest waveform would be transformed effectively.

However, the shorter one would waste almost half of the projection components operating

upon the zero-padded section in its initial portion. This might result in significant loss of

information.

Hence, there is a need to divide the entire templatebank into sub-banks, such that there

is little difference in chirp-times of the shortest and longest waveforms within a sub-bank.

Given that we had to start with a limited number of templates, and wanted to cover a sizeable

chunk of the parameter space, we fixed a Neutron Star-Black Hole (NS-BH) templatebank

having the following mass parameters:

39



• Neutron Star mass range: (m1) = 2M� − 3M�

• Black Hole mass range: (m2) = 7M� − 9M�

We define the following additional mass parameters for a binary:

• Total Mass: M = m1 +m2

• Symmetric Mass Ratio: η = m1·m2
M2

• Chirp Mass: M = η3/5M

This governs the rate of frequency sweep at PN-order.
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Figure 4.1: Our chosen NS-BH Template Bank. The sub-bank for one Random Projection is
highlighted in red.

Figure 4.1 displays the distribution of templates in the template bank. It has a total

of around 8000 templates, generated using PYCBC[28]. From this, we choose a sub-bank

having mass ranges m1 ∈ [8.3, 9.0],m2 ∈ [2.0, 2.2] to test Random Projections. This bank

was chosen such that the largest chirp time difference between any pair of templates within

it was only 20 seconds. The sub-bank is highlighted red in the figure. The reason we chose

500 as the number of templates in the sub-bank, is elucidated in the next section.
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4.2 Targeted Reduced Dimension
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Figure 4.2: Determining the degree of Dimensionality Reduction

We shall now proceed to determine what degree of dimensionality reduction we can

achieve for the templates in our sub-bank. The ambient dimensionality i.e. the number of

time samples in each template is 1,270,805 or ∼ 1.2 million. However, this fact is irrelevant.

Recall that the JL estimate for reduced dimension (Equation 3.2) depends only on the

number of data vectors or templates (n) occupying the data space:

k =
24 log n

2ε2 + 3ε3
(4.3)

In Figure 4.2a, we plot curves for the targeted reduced dimension based on the number

of templates in a sub-bank, corresponding to different values of expected distortion (error

limit). We observe that these curves begin to saturate for n ≥ 500. This means that even

if we populate the template space beyond this, we should not expect to achieve a greater

reduction in dimensionality for a given error tolerance.

That is why we chose to start with 500 NS-BH templates. Next, we needed to set a value

for the error tolerance, ε to determine the reduced dimension(k). Figure 4.2b displays the

relation between ε and k for 500 data points. We chose a value of ε = 5 and the corresponding

reduced dimension of k = 20000, a 60-fold reduction from the original template dimension.
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4.3 Whitening, Projection and Match Calculation

Before projecting the templates, we whitened them with the following analytical form of the

advanced LIGO noise power spectral density[5], plotted in Figure 4.3a.

Sh(f(x)) =
10−49

Hz.

[
x−4.14 − 5−x

2

+ 111

(
1− x2 − x4/2

1 + x2/2

)]
(4.4)

Here x = f/f0; f0 = 215.0 Hz. being the frequency of maximum sensitivity for aLIGO.
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Figure 4.3

We use a [1270805 × 20000] Gaussian matrix for our Random Projection. Figure 4.3b

shows an example whitened template, and how its randomly projected data vector looks if

plotted as a time series. Doing the latter is downright wrong since the reduced templates

no longer constitute time series in the conventional sense. However, take a moment to

realise that the seemingly noisy object in the second plot might effectively preserve all the

information present in the well-defined template in the first plot. We are claiming that this

randomly projected construct is in every bit as good as a painstackingly modelled template.

The match value for a pair of templates is calculated by determining the maximum

overlap between the two templates as the shorter one is slid over the longer one over the

difference in their chirp times. At this point, we project both templates to the RP subspace,

and compute their direct inner product. This is the value of their match in the RP subspace.
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4.4 Results

We shall now look at the results of projecting our 500 template sub-bank to a reduced sub-

space of 20000 dimensions. In order to verify whether the geometry of this high-dimensional

space is preserved under RP, we shall look at pairwise match values as a metric to determine

the relative closeness of pairs of templates. If the match values are preserved in the reduced

subspace within the given tolerance, we can conclude that the templates are structured in a

manner similar to their distribution in the full space.
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Figure 4.4: The density scatter of pairwise match values under Random Projection shows a near-
perfect linear trend

Figure 4.4 is a density scatter plot of match values in the original dimension against

those in the reduced subspace. We see that they match very closely, lying along the 45◦

line. We observe that Random Projections do a much better job of conserving the inner

product relations in this dataset compared to the uniform dataset in lower dimensions we

experimented with in chapter 3. The high ambient dimensionality of the data enables us to

better replicate the JL bounds in reducing dimensionality. It is interesting to see that the

scatter is not too distorted for inner products greater than 0.5, as predicted by the weaker

relative distortion bound.
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In Figure 4.5, we see the distribution of pairwise match values across the dataset. Both

distributions match very closely, indicating a strong preservation of template space structure.

This means that templates previously far apart do not have greater overlaps in the reduced

space, thereby obviating the worry of an increased rate of false positives.
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Figure 4.5: A comparison of the pairwise Match distribution at full resolution and under Random
Projection

0.10 0.05 0.00 0.05 0.10
time lag(s)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a
u
to

co
rr

e
la

ti
o
n

Self-Ambiguity function in time

Full Template
Projected Template

Figure 4.6: Autocorrelation function for a
template and its projected vector

Another way of verifying the conservation of tem-

plate properties is to look at the autocorrelation

function of a single template around its time of

arrival (peak value). The adjacent plot shows a

perfect match between the autocorrelation of a

template and its projected vector.
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4.4.1 Signal Detection in the presence of Noise
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Figure 4.7: Cross-correlation of a template with a simulated noisy data generated from it.

We took template # 203 from our sub-bank and simulated data by adding Gaussian

colored noise of magnitude 100 to it. The chunk of data was whitened using the aLIGO

PSD. The data was generated such that a cross-correlation with the same template (# 203)

would give an SNR of 10. The SNR time series for the full resolution correlation is given by

the blue line in Figure 4.7. We correlated the same chunk of data under Random Projection

and compared it to the RP-reduced template # 203. We observe that the black dashed SNR

time series corresponding to it exactly matches the original time series at the SNR peak at

zero time shift. For other time lags where the value of the SNR is close to zero, the Randomly

Projected matches fluctuate differently, with a slightly greater distortion. This is expected

and explained by the relative distortion bounds on orthogonal Inner Products 3.2.1.
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4.4.2 Errors in SNR conservation
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Figure 4.8: Relative loss of SNR under Random Projection

Figure 4.8 shows the relative loss of match values under Random Projection. The mean

of the distribution is -0.0051, with a standard deviation of 0.039 (just under 4%). The

distortion is hence less than the 0.05 limit we set using the JL bound. The degree of

dimensionality reduction we achieve is impressive, with over a 50-fold decrease. Contrast

this to using subsampling (2.2.2) at its coarsest to reduce the number of time points to

around 20000. Doing so would mean sampling the latter stages of the waveform far below

the Nyquist rate and losing information. With Random Projection, we achieve the same

without losing information. The 4% loss in accuracy means that we might miss out on that

proportion of candidate events in a single detector. This value is skewed due to some pairs

showing deviations larger than 0.1 (highlighted in green). Let us look at which pairs show

such deviations.
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A word on the outliers
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Figure 4.9

Figure 4.8 shows a number of pairs which show a

relative pairwise SNR loss of greater than 0.1. In

fact, there are 24302 such pairs. Losing 10% of

SNR or more is detrimental. What causes these

pairs to deviate in the projection space? The rea-

son this happens, is because all these pairs of vec-

tors are relatively close to being orthogonal in the

original space. As we saw in section 3.2.1, the JL

lemma does not guarantee a strong inner product

conservation for values that are originally close to

being orthogonal. Hence, we observe these out-

liers. Figure 4.9 shows the distribution of their

match values, which has a mean value of 0.01 with a deviation of 0.005. On the brighter

side, it is unlikely that these outliers would affect a search over the templatebank. This is

because even if the signal mimicked one of the templates in these pairs, a 10% deviation in

the SNR would likely not show up as a false positive, since they being nearly orthogonal

ensures that the SNR is obtained low in the first place.

4.4.3 Relative loss of Optimal SNR

The most optimal SNR is obtained through a cross-correlation of a template with a signal

comprised of the same template. Without added noise, if the template is normalised, the

value of the optimal SNR is 1.0, the norm of the template. We now investigate how the

optimal SNR is affected under Random Projection. This reduces to checking the norm

conservation. Figures 4.10a and 4.10b represent this conservation for a Random Projection

to 20000 and 50000 dimensions respectively. Ideally, we would like to have all values of the

relative loss to be under 0.01. This is easily satisfied for a projection to 50000 dimensions

(Mean deviation 0.004). For 20000 dimensions (Mean deviation = 0.002), we observe that

the SNR loss values just spill over this threshold for a handful of templates.
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Figure 4.10

What is a good trade-off between setting a particular threshold for limiting the SNR loss,

and reducing the computational complexity by projecting lower in dimension? This question

needs to be addressed while building a search pipeline using Random Projections. As a first

estimate, an maximum error of less than 0.01 is good for a low-latency offline search where

a timely trigger generation is of prime importance.
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Chapter 5

Applying Random Projections to

Data streams

Having tested the immense power of Random Projections to preserve the information con-

tained within a Gravitational wave time domain template in far fewer dimensions, we turn

to the problem of applying these reduced templates in time domain searches. We first dis-

cuss the challenges involved in projecting data streams using Random Projections, and then

present an algorithm to do this efficiently. We analyse for what regimes of a Gravitational

Wave search can our algorithm be applied to: Can we use it in an online search? What plan

of action can we implement for targeted searches in an offline mode? Finally, we investigate

an attractive scheme to combine Random Projections and SVD in order to carry out searches

over entire template banks.

The Challenge

This problem of projecting data streams turns out to be extremely non-trivial, primarily

because of the fact that we cannot carry out time domain convolutions using RP-reduced

templates. The reason for this limitation is clear: a convolution of two time series involves a

series of sliding inner products of one template over the other. We have seen that Random

Projections conserve the direct inner product between two templates very well. However, if

we shift one of the templates by a time step in a convolution, it no longer represents the same
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template-vector in our time-sample space. By time-shifting, we are essentially performing

a rotation of the template vector, and hence changing its orientation completely. This of

course changes its inner product with respect to the second template which does not undergo

the same rotation.

5.1 Data Streams and Convolutions

Fig [5.1] illustrates the operation of matched filtering using a single templateh(t). Let the

length of the whitened template be d time samples, also known as its chirp time. We have

a data stream x(t)of length l > d time samples. This whitened data stream consists of a

stationary gaussian noise series n(t) with the signal (approximated as the template with

added noise, whitened using 4.4) present somewhere inside it: x(t) = h(t) + n(t). The data

can be visualised using a series blocks, each block representing one time sample.

The time domain correlation, represented by Equation 1.13:

ρα[τ ] =
l−1∑
t=0

x[τ − t]h[t] (5.1)

is a sliding inner product operation over successive time steps τ . Figure 5.1 depicts this

operation at full resolution. We have a sliding window which holds the template which we

want to match the data with. Convolution involves sliding this window over the entire data

stream, and calculating the inner product at each instance. When the sliding window passes

exactly across the window where the signal is present in the data, the template and the

signal completely overlap, giving the maximum match value. This time instant represents

the time of arrival τarrival of the signal.

5.2 Sketches using Random Projections

We can implement Random Projections to speed up the above operation. How do we project

the data stream into the Random Projection subspace? The idea is to form sketches of

the data stream: a sketch being the Random Projection vector corresponding to a sliding
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Figure 5.1: Time Domain Correlation

window in the convolution. Figure 5.2 illustrates the procedure. We’ll begin by elucidating

thte different periods of dimension involved in the algorithm:

• l : The number of time samples or blocks in the data stream.

• d : The length of a sliding window, equal to the length of templates in the sub-bank.

• k : The length of a sketch, i.e. the projected dimension of a template/sliding window.

This is of the O(log d).

• n : The number of time steps a sliding window slides over during a convolution. This

is equal to (l + d− 1). This is also the number of sketch vectors generated.

The time domain convolution requires n = l+ d− 1 sliding window inner product opera-

tions. The Sketching approach involves projecting all these sliding windows using a Random
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Projection matrix, to k dimensions. These sketches will then be compared with the RP-

reduced template. The convolution will now involve n inner products of the n sketches with

the reduced template, where each inner product will have k components. Hence, the com-

plexity of the time domain matched filtering reduces from O(ld) to O(lk) = O(l log d).

Figure 5.2: Random Sketching

This makes it faster than the corresponding operation done at full resolution. But there’s

a caveat: we have to include the computational cost of calculating these sketch vectors. The

Random Projection to form the sketch of one sliding window involves a matrix multiplication

of the k×d projection matrix and the n dimensional window. This process has a complexity

of O(kd), and hence an O(lkd) for l such sketches. This eventually ends up being costlier

than a time domain convolution involving complete templates.
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Fast Sketch Computations

P. Indyk et al. [18] suggest using the Cooley-Tukey radix-2 algorithm[29] for a fast computa-

tion of the sketches. Popularly known as the Fast Fourier Transform (FFT) algorithm, it can

be used to reduce the complexity involved in the matrix multiplication step of the Random

Projection. It exploits the fact that the d-dimensional sliding windows can be represented

as a single-shift circulant matrix, which is diagonalised by multiplication with the Fourier

Vandermonde matrix in O(log d) steps. One such operation gives us the first of the k com-

ponents of the projected vector in one go for all the d sketches. Repeating this d times gives

us all the sketches in O(d log d) time, as opposed to O(d2) for a naive projection. Once the

sketches are ready, the match calculation requires a O(dk) = O(d log d) time. This approach

is also discussed in [30].

Another way to speed up this process is to use sparse Random Projections, introduced

in section 3.2.2. These matrices only require k additions per projection, and hence all the

sketches can be computed in O(kl) time. Table 5.1 summarises the theoretical complexity

of all the aforementioned processes. The sparse projection is expected to give the fastest

results in principle, and we are working towards developing a pipeline to integrate it into a

search.

Table 5.1

Method Complexity
Full Time Domain O(ld)

Naive Random Sketches O(ld log d)

Cooley-Tukey Random Sketches O(l log2 d)
Sparse Random Sketches O(l log d)

5.3 Combining Random Projections with SVD

The Random Projection technique offers a promising way of reducing the time-dimension. It

achieves a far greater decrease in complexity compared to the existing technique of frequency-

based subsampling. While this project started with the aim of finding a faster alternative to

the existing SVD-based LLOID algorithm, we found that both approaches are fundamentally

different. SVD reconstructs the SNR by using a truncated basis of principal vectors of the
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templates. Random Projections projects all the templates onto a subspace of the ambient

time-sample dimension. We now wonder, can we tame the beast we set out to conquer? Can

Random Projections be used in conjunction with SVD to create an algorithm which reduces

dimensionality optimally in both the template and the time dimensions?

To investigate this, we perform experiments using the same set of whitened templates

from the NS-BH sub-bank, but resampled to 10,000 time points. We call this the full reso-

lution template bank. Next, we project the entire bank using Gaussian Random Projection

to two dimensions: k1 = 5000 and k2 = 2000. We call these two reduced template banks

RPbankA, having 5000 dimensions and RPbankB, having 2000 dimensions. We test whether

we can perform a Singular Value Decomposition of these reduced banks which gives results

identical to an SVD of the original template bank.
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Figure 5.3

We compare the distribution of Singular Values obtained for the full template bank

against those for each of the reduced banks in Figure 5.3b. The distributions have a very

precise overlap for both reduced banks. This is quite a significant and a rather non-intuitive

result. The SVD on a template bank, as explained in chapter 2, works to exploit the

degeneracies specific to the phase evolution of adjacent templates. It is indeed interesting

to note that this technique works even for the Randomly Projected template vectors, which

are no longer time series but mathematical constructs which preserve distance relations

within pairs of templates. In a broad sense, this can be explained by the fact that Random

Projections also conserve how the data is geometrically distributed in a reduced dimension,

and hence do not change in what direction the principal components lie.
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RP + SVD for signal detection
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Given that the principal components of the RP-

reduced templates are identical to those of the origi-

nal templates, can we apply SVD to reconstruct the

projected templates and use them to detect signals?

Here we present a primitive analysis of how effectively

Random Projections can combine with SVD to reduce

the dimensionality both in the number of templates

and time-points, and whether this gives results com-

patible with their counterparts at full resolution. We

have generated sample data by adding noise to one of

the templates (template # 315) as shown in the adjacent figure.

Table 5.2: Comparison times for SVD computation using Full vs. Reduced Templates

Template bank Time taken to compute SVD
Full Templates

(dimension: 10000)
13.22 seconds

RP-Templates,
dimension = 5000

4.6 seconds

RP-Templates,
dimension = 2000

517 milliseconds

Testing RP+SVD for a toy search model: In Figures 5.4 and 5.5, we plot the

Maximum correlation values between the data, simulated by adding noise to template #

315, with the entire sub-bank of 500 templates. Each subplot displays these search plots

for different kinds of reduced templates: 5.4a Original templates at full resolution, 5.4b

Using only SVD on them, 5.5a Randomly Projected templates, and 5.5b SVD of Randomly

Projected templates. It is evident that all methods produce comparable results, with the

latter two being significantly faster to compute. Using RP in conjunction with SVD certainly

holds good promise for future work.
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Conclusions and Future Work

We have investigated how Random Projections can be implemented for reducing the dimen-

sionality of CBC Gravitational Wave templates in terms of their time sampling points. We

have found that we can reduce this dimensionality by over 60 times the original lengths of

the templates, whilst preserving the information present in the time series. We tested the

conservation of different metrics defining the closeness and the distribution of templates in

the high-dimensional space. The accuracies obtained for this conservation under a high de-

gree of reduction are within an error of 4%. These can be improved by projecting to higher

dimensions following the bounds derived from the Johnson-Lindenstrauss Lemma.

The results obtained are very promising and this opens several avenues in furthering this

approach to find applications in real time compact binary searches. Two such options have

been explored in this work. The first one was to sketch an algorithm for applying Random

Projection to scan data streams and carry out its complexity analysis. The second was to

explore the possibility of combining Random Projection with Singular Value Decomposition

of templates to obtain a two-fold dimensionality reduction.

In the future, we plan to implement the Random sketching algorithm and test it for

searching signals in real data. This would give us a better idea of the errors involved and the

rate of false positives in order to determine the efficacy of using RP-reduced templates in a

search pipeline. It would also be interesting to see whether templates generated by including

component spins from the binary system as additional intrinsic parameters can be reduced

effectively using a combination of Random Projection and SVD.
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Appendix A

Experiments with Sparse Random

Projections

Here we present the results of the experiments with Random Projections from section 3.2.2,

performed using Achlioptas’ Sparse Random Projection matrix. Recall that this matrix

has 2/3rd of its entries zeros, and the rest partitioned equally into ±
√

3. This greatly

speedens up calculating the projection. Instead of performing a matrix-vector multiplication

to project the vector, Sparse Projection only requires a couple of additions to compute each

projected component. In this section, we verify the conservation of various data metrics from

section3.3, using Sparse Random Projections.

1. Norm Preservation
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Figure A.1: Conservation of Norm
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In addition to speeding up our calculations, Sparse projection matrices are also easier

to store. Owing to their structure, we do not need to store every float value, which

is either 0, +
√

3 or −
√

3. It thus suffices to store the indices corresponding to the

non-zero entries and use them as masks while projection. The sparse nature of these

matrices occupy much less storage memory compared to their Gaussian counterparts.

2. Distance Preservation
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(b) k2 = 10000
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(c) k3 = 5000
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Figure A.2: Distance Preservation under Random Projection
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3. Inner Product Preservation
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(b) k2 = 10000
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Figure A.3: Inner Product Preservation under Random Projection

4. Relative Errors
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We hence obersve the Sparse Random Projections give results identical to Gaussian Random

Projections. This property will prove to be vital in speeding things up for an application of

Random Projections in an online Gravitational Wave search pipeline.

61



Bibliography

[1] Rio 2016 official website. https://www.rio2016.com/.

[2] Website: Sounds of spacetime. https://www.soundsofspacetime.org/.

[3] Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., Adams,

C., Adams, T., Addesso, P., Adhikari, R., et al. (2016). Observation of gravitational waves

from a binary black hole merger. Physical review letters, 116(6):061102.

[4] Achlioptas, D. (2001). Database-friendly random projections. In Proceedings of the twen-

tieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 274–281. ACM.

[5] Ajith, P. and Bose, S. (2009). Estimating the parameters of nonspinning binary black

holes using ground-based gravitational-wave detectors: Statistical errors. Phys. Rev. D,

79:084032.

[6] Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., and Creighton, J. D. (2012).

Findchirp: an algorithm for detection of gravitational waves from inspiraling compact

binaries. Physical Review D, 85(12):122006.

[7] Bingham, E. and Mannila, H. (2001). Random projection in dimensionality reduction:

applications to image and text data. In Proceedings of the seventh ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 245–250. ACM.

[8] Buonanno, A., Iyer, B. R., Ochsner, E., Pan, Y., and Sathyaprakash, B. (2009). Compar-

ison of post-newtonian templates for compact binary inspiral signals in gravitational-wave

detectors. Physical Review D, 80(8):084043.

[9] Candes, E. J. and Romberg, J. K. (2005). Signal recovery from random projections. In

Electronic Imaging 2005, pages 76–86. International Society for Optics and Photonics.

62

https://www.rio2016.com/
https://www.soundsofspacetime.org/


[10] Cannon, K., Cariou, R., Chapman, A., Crispin-Ortuzar, M., Fotopoulos, N., Frei, M.,

Hanna, C., Kara, E., Keppel, D., Liao, L., et al. (2012). Toward early-warning detec-

tion of gravitational waves from compact binary coalescence. The Astrophysical Journal,

748(2):136.

[11] Cannon, K., Chapman, A., Hanna, C., Keppel, D., Searle, A. C., and Weinstein, A. J.

(2010). Singular value decomposition applied to compact binary coalescence gravitational-

wave signals. Physical Review D, 82(4):044025.

[12] Dasgupta, S. (2000). Experiments with random projection. In Proceedings of the Six-

teenth conference on Uncertainty in artificial intelligence, pages 143–151. Morgan Kauf-

mann Publishers Inc.

[13] Dasgupta, S. and Gupta, A. (1999). An elementary proof of the johnson-lindenstrauss

lemma. International Computer Science Institute, Technical Report, pages 99–006.

[14] Fairhurst, S. (2009). Triangulation of gravitational wave sources with a network of

detectors. New Journal of Physics, 11(12):123006.

[15] Fradkin, D. and Madigan, D. (2003). Experiments with random projections for ma-

chine learning. In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 517–522. ACM.

[16] Goal, N., Bebis, G., and Nefian, A. (2005). Face recognition experiments with random

projection. In Proceedings SPIE Vol, volume 5779, pages 426–437.

[17] Harry, G. M., Collaboration, L. S., et al. (2010). Advanced ligo: the next generation of

gravitational wave detectors. Classical and Quantum Gravity, 27(8):084006.

[18] Indyk, P., Koudas, N., and Muthukrishnan, S. Identifying representative trends in

massive time series data sets using sketches.

[19] Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of lipschitz mappings into a

hilbert space. Contemporary mathematics, 26(189-206):1.

[20] Kabán, A. (2015). Improved bounds on the dot product under random projection

and random sign projection. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 487–496. ACM.

63



[21] Luan, J., Hooper, S., Wen, L., and Chen, Y. (2012). Towards low-latency real-time

detection of gravitational waves from compact binary coalescences in the era of advanced

detectors. Physical Review D, 85(10):102002.

[22] Messick, C., Blackburn, K., Brady, P., Brockill, P., Cannon, K., Cariou, R., Caudill,

S., Chamberlin, S. J., Creighton, J. D. E., Everett, R., Hanna, C., Keppel, D., Lang,

R. N., Li, T. G. F., Meacher, D., Nielsen, A., Pankow, C., Privitera, S., Qi, H., Sachdev,

S., Sadeghian, L., Singer, L., Thomas, E. G., Wade, L., Wade, M., Weinstein, A., and

Wiesner, K. (2017). Analysis framework for the prompt discovery of compact binary

mergers in gravitational-wave data. Phys. Rev. D, 95:042001.

[23] Metzger, B. D. and Berger, E. (2012). What is the most promising electromagnetic

counterpart of a neutron star binary merger? The Astrophysical Journal, 746(1):48.

[24] Mitzenmacher, M. and Upfal, E. (2005). Probability and computing: Randomized algo-

rithms and probabilistic analysis. Cambridge university press.

[25] Owen, B. J. and Sathyaprakash, B. S. (1999). Matched filtering of gravitational waves

from inspiraling compact binaries: Computational cost and template placement. Phys.

Rev. D, 60:022002.

[26] Papadimitriou, C. H., Tamaki, H., Raghavan, P., and Vempala, S. (1998). Latent seman-

tic indexing: A probabilistic analysis. In Proceedings of the seventeenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems, pages 159–168. ACM.

[27] Strang, G. (2006). Linear Algebra and Its Applications. Thomson, Brooks/Cole.

[28] Usman, S. A. et al. (2016). The PyCBC search for gravitational waves from compact

binary coalescence. Class. Quant. Grav., 33(21):215004.

[29] Vazirani, U., Papadimitriou, C., and Dasgupta, S. (2006). Algorithms. McGraw-Hill

Education.

[30] Zhao, X. (2006). High performance algorithms for multiple streaming time series. PhD

thesis, New York University.

64


	Abstract
	Introduction
	Gravitational Wave Data Analysis
	EM Follow-up and Low-latency Searches

	Data Reduction and Fast Gravitational Wave Searches
	Singular Value Decomposition
	Dimensionality reduction of Gravitational Wave Templates

	Random Projections
	The Technique
	Why Random Projections work: A Theoretical Background
	Experiments with Random Projection

	Random Projections of Gravitational Wave Templates
	Templates
	Targeted Reduced Dimension
	Whitening, Projection and Match Calculation
	Results

	Applying Random Projections to Data streams
	Data Streams and Convolutions
	Sketches using Random Projections
	Combining Random Projections with SVD

	Appendices
	Experiments with Sparse Random Projections

