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SYNOPSIS

The main motivation for this thesis is to provide a general analytical framework to get

the ground state profile correctly such that, associated ground state properties of a spin-1

Bose-Einstein condensate (BEC) under harmonic confinement are accurately known. In

the following, we summarize the key issues and the way we have addressed those in this

thesis.

• To the best of our knowledge, there was no existing general framework that can

analytically estimate the ground state profile of spinor condensates with accuracy

under harmonic trapping, which is routinely used in experiments. The ground state

profiles are used to be estimated using the Thomas-Fermi (T-F) approximation

[S1], which could be problematic for various reasons. One of the limitations is

that it cannot estimate the condensate profile in the low-density region of the trap.

Rather, according to the T-F approximation, the density profile sharply vanishes

at the Thomas-Fermi radius, which is far from reality. To get the profile near this

region, one had to rely on numerical simulation. One method to go beyond the T-F

approximation exists for scalar BEC, which can model the profile in the low-density

region [S2], but there it comes with a discontinuity in the condensate profile near

the T-F radius.

• For homogeneous spinor BEC, investigation of phase transition at di�erent values of

p and q (the linear and quadratic Zeeman terms) has been done in detail [S3]. First,

we looked into this problem for a trapped condensate (where density is not uniform)

under the T-F approximation. We have shown that all the stationary states, that

are the ground state candidates, can be obtained via the T-F approximation in a

unified manner. We showed that the T-F approximated energy densities for di�erent

stationary states can be compared locally to get to the lowest energy domain-forming
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structures. This analytical method of ours can capture a plethora of domain-forming

possibilities in a unified way for a generic trapping potential [S4,S5].

• However, an analysis under the T-F approximation although believed to be mostly

accurate for large condensates, can break down even for a large condensate in two

distinct cases,

– when there exist competing energies of ground state candidates such that,

the error in the T-F approximation for not taking the kinetic energy (K.E.)

contribution is of the order of the energy di�erence of those candidate states.

– For multi-component states when di�erent components have di�erent T-F radii,

which inevitably leads to an indication of domain formation in the ground state,

under the T-F approximation. This may not be the case if the tail part of the

distribution of the Zeeman components is properly taken into account.

• This requires developing a framework that takes into account the K.E. contribution

in a continuous manner throughout the condensate. The framework should be multi-

modal as well, as it has to treat di�erent Zeeman projections for spinor condensate

on an equal footing, which is important as the single-mode approximation often fails

to describe the sub-component distributions accurately.

• Keeping these in mind, we have developed a multi-modal variational method (VM)

using the low-lying harmonic oscillator states to model the low-density region of the

condensate profile. This method can produce an accurate and continuous condensate

profile of a harmonically trapped spin-1 BEC and produces refined predictions about

associated ground state properties. We apply the VM in the two distinct cases,

– In the absence of the magnetic field, the ground state candidates have a negli-

gible energy di�erence with the T-F approximated ground state for a harmon-

ically trapped condensate with the anti-ferromagnetic type of spin interaction.

This renders the T-F approximated results inconclusive. The VM includes the

K.E. and produces conclusive results even for small condensates with particle

numbers as low as 500 [S6].

– At particle number ƒ 500, the T-F approximation completely breaks down in

3-D condensates and the VM captures an accurate density profile in such a



xiv

regime. This number can be higher for di�erent choices of trapping frequency

corresponding to the 3-D isotropic harmonic trapping.

– In the presence of magnetic field, the VM corrects the T-F approximated pre-

diction of domain formation in the multi-component ground state. While the

SMA becomes inaccurate in estimating the sub-component density distribu-

tion, the VM produces accurate analytical expressions of the condensate pro-

files for each sub-component [S7].

• The VM accurately estimates the profile of the condensate and hence, the total

energy of the ground state. The VM estimated total energy can be used to get

to the phase diagram of trapped condensates. We look into the phase transition

between the phase-matched and polar states (defined later) and estimate the phase

boundary in (q, p) parameter space for a condensate with ferromagnetic type of

spin-spin interaction under 3-D isotropic harmonic confinement to draw a detailed

comparison with that of the homogeneous situation (in the absence of the trapping).

We show that a unique scaling factor emerges, which shows the universality of these

boundaries with respect to varying numbers of condensate particles [S7].
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Abstract

In this thesis, we develop general methods to analytically obtain the ground state profiles

and associated ground state properties of a spin-1 Bose-Einstein condensate under har-

monic confinement with contact interaction. Firstly, from the Gross-Pitaevskii equation,

we obtain the number density and energy density profiles of all possible stationary states

using the Thomas-Fermi approximation for generic confinement. These stationary states

compete to become the ground state in di�erent parameter regimes. We show that a

general method exists that can capture a lot of domain structures in a unified way. We

show that by comparing the Thomas-Fermi approximated energy densities of di�erent

stationary states of a trapped system, under an essential constraint of the same chemi-

cal potential of the neighboring domains, one can actually capture the full spectrum of

possible domain structures. While it is generally accepted that the Thomas-Fermi ap-

proximation is accurate for large condensates where the density is high enough to neglect

the kinetic energy contribution compared to the interaction energies, we encounter sit-

uations, where even for large condensates, the Thomas-Fermi approximated predictions

become inconclusive. We show that in the absence of the magnetic field, the Thomas-

Fermi approximation predicts a ground state with which the other competing stationary

states have a small energy di�erence, and the di�erence is of the order of the error intro-

duced by the Thomas-Fermi approximation itself. Also in the presence of the magnetic

field, for multi-component stationary states, the Thomas-Fermi approximation indicates

domain structures in the ground state. In contrast, numerical simulations do not pre-

dict the same. The single-mode approximation, on the other hand, is also inaccurate in

producing the sub-component profiles of the multi-component ground states. In such sit-

uations, one needs a multi-modal method to explain the ground state profiles and related

properties analytically. We introduce a multi-modal variational method that smoothly

xix
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incorporates the kinetic energy contribution and analytically estimates the complete pro-

file of the number density. In the absence of the magnetic field, this variational method

not only produces a more accurate prediction for large condensates but also is accurate

for condensates with particles as low as 500. For multi-component stationary states, the

variational method accurately estimates the tail part of each sub-components ruling out

the domain formation possibility in the ground state. We employ the variational method

to analytically estimate the phase transition boundaries between the phase-matched and

polar states for a condensate with a ferromagnetic type of spin-spin interaction under 3-D

isotropic harmonic trapping. This helps to draw a detailed comparison with the same

phase transition in a homogeneous system, i.e., in the absence of trapping. There exists

universality of these phase boundaries with respect to varying numbers of condensate

particles under a scaling of the coordinates that comes out from the analytical calculation

of the variational method. The multi-modal variational method introduced in this thesis

opens up the route for a range of analytical studies that requires the ground state profiles

to start with.



Chapter 1

Introduction

In the late nineteenth century, a major challenge for theoretical physics was to explain the

observed specific intensity of the black-body radiation as a function of the wavelength.

One of the first major contributions came from Wilhelm Wein. The Wien distribution

law partly explained the high-frequency or the low-wavelength region of the curve. In

1900, Lord Rayleigh and Sir James Jeans came up with a classical formulation based on

the equipartition theorem which is now known as the Rayleigh-Jeans Law. This was able

to explain the low-frequency region of the curve but failed to explain the high-frequency

region. The classical formulation also predicted the famous ultraviolet catastrophe, which

showed that the classical ideas that were trusted for more than two centuries may not

be adequate. Later that year, Max Planck came up with an empirical expression that

explained the curve accurately both in the high- and low-frequency range of the spectrum.

Planck’s blackbody radiation law was based on a hypothesis of quantization of the energy

carried by the light, which is widely regarded as the birth of quantum mechanics. Albert

Einstein took the concept of quantization further and successfully explained the photo-

electric e�ect in 1905. The underlying principle that led to Planck’s radiation law was

still a mystery back then.

In 1925, Satyendra Nath Bose, while teaching at the University of Dhaka came to

the realization that particle indistinguishability is essential in explaining the celebrated

Planck’s radiation law. After getting rejections for publishing the results, he sent the

manuscript to Albert Einstein, who he thought would understand the implications of this

idea. Einstein recognized the importance of this work and submitted this manuscript on

1



2 CHAPTER 1. INTRODUCTION

his behalf to Zeitschrift für Physik [1].

In Bose-Einstein statistics, the expectation value of the number of particles (bosons)

occupying an energy state ‘i is [2],

ÈniÍ = 1
e—(‘i≠µ) ≠ 1 , (1.1)

where — = 1
kBT

, with kB being the Boltzmann constant and T is the absolute temperature.

At this finite temperature T , the chemical potential µ should be lower than the lowest

allowed energy state of the system. Otherwise, the expectation value of the number of

particles in the lowest energy state becomes negative. The Bose-Einstein statistics not

only provided a concrete picture of Planck’s black-body radiation formula, but it also

marked the birth of quantum statistics.

1.1 Bose-Einstein Condensation

1.1.1 Theoretical prediction

Albert Einstein extended the Bose-Einstein statistics for particles [3, 4]. All particles

with integer spins, i.e., the bosons follow this fundamental quantum statistics. If we

consider identical non-interacting free particles in a box of volume V = L
3, subjected to

periodic boundary conditions, the single-particle wave function can be succinctly written

as, Âk = ( 1
L)3/2 exp (ikr), where k = 2fi

L (n1, n2, n3). Here, n(1,2,3) can be any positive or

negative integer. If we think in terms of the k-space, states form a three-dimensional grid

with regular spacing of 2fi
L . So a volume of 8fi3

V would contain a single particle eigenstate

in the k-space. Thus, the density of the plane waves in the k-space is V
8fi3 . When the

volume V itself is large, we can treat the problem in a continuum manner. For particles

with mass m, the energy is ‘ = p2

2m , where p is the momentum. The momentum p is

related to k as p = ~k, thus, ‘ = ~2k2

2m . The number of single particle eigenstates confined

in a small shell in k-space is converted in the small energy range d‘ [2] as

g(‘)d‘ =4fik
2
3

d|k|
d‘

d‘

43
V

8fi3

4

= V m
3/2

Ô
2fi2~3 ‘

1/2
d‘.

(1.2)
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One can fill the single-particle states being guided by the Bose-Einstein distribution at a

given temperature T . At a chemical potential µ, the total number of particles N is,

N(µ) =
⁄ Œ

0

1
e—(‘≠µ) ≠ 1g(‘)d‘, (1.3)

for ‘ ≠ µ ⌅ 0. Assuming the lowest energy state to be such that ‘0 = 0, the chemical

potential should be µ Æ 0. It is interesting to note that, if we increase the chemical

potential and make it come closer to the lowest eigenenergy, the expectation of the number

of particles in the lowest energy state diverges according to the Bose-Einstein statistics.

If we put µ = ‘0 in Eq.1.1, Èn0Í diverges. For µ = 0,

N(µ = 0) = V m
3/2

Ô
2fi2~3

⁄ Œ

0

1
e—‘ ≠ 1‘

1/2
d‘

=V

3Ô
2fimkBT

h

43 2Ô
fi

⁄ Œ

0

Ô
z

ez ≠ 1dz,

(1.4)

where the last term is the Reimann zeta function ’(3/2) and the thermal de Broglie

wavelength is defined as, ⁄T = hÔ
2fimkBT

. As a result,

N(µ = 0)
V

= ’(3/2)
⁄

3
T

, (1.5)

is a critical density, which is the maximum allowed density under the continuum approxi-

mation [2]. If we add more particles into the system, the chemical potential being zero, or

in close proximity to the ground state would only allow the particles to be accommodated

in the ground state. This phenomenon is called the Bose-Einstein condensation and it

happens at a transition temperature Tc defined as,

kBTc = h
2

2fim

Q

a N

V ’(3/2)

R

b
2/3

. (1.6)

When the temperature is further lowered beyond this Tc, the thermal de Broglie wave-

length becomes comparable to the interparticle separation. The quantum mechanical

wave functions of particles start to overlap. As a result, the particles start to lose their

"identity" and behave as a whole. This is the reason Bose-Einstein condensate (BEC) is

considered a macroscopic quantum state.
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In 1938 Firtz London [5] had proposed Bose-Einstein condensation to be responsible

for the superfluidity in Helium. But the e�ect of interaction on BEC in realistic samples

was not clear. In 1947 Bogoliubov [6] answered this question with his new perturbative

approach. Later in 1956, the mathematical description of the Bose-Einstein condensation

was generalized in the presence of interaction by Oliver Penrose and Lars Onsager [7].

They also proposed a general criterion for the Bose-Einstein condensation, which is also

known as the Penrose-Onsager criterion that, the Bose-Einstein condensation is present

whenever a single-particle quantum state is occupied by a finite fraction of the particles

of the system. One of the most seminal contributions in the theoretical advancement of

this field came in 1960 when Eugene Gross [8] and Lev Pitaevskii [9] independently came

up with a mean-field analysis and proposed that, due to the macroscopic occupation of

the ground state, the BEC can be described in terms of a wave function. The govern-

ing equation of this wave function (order parameter) is the celebrated Gross-Pitaevskii

equation.

1.1.2 Road Towards Experimental Realization: The cold race

Temperature required for the BEC transition is of the order of 100 nK. We will briefly

discuss the scientific pursuit toward achieving such temperatures.

The first modern idea of the cooling mechanism came from Michael Faraday, who

noticed that under high-pressure, gas liquefies and when the pressure is released the

liquid is again converted to gas. He deduced that the amount of heat needed for this

liquid-to-gas transition is provided by the surroundings and thus, this process in principle

reduces the surrounding temperature. Michael Faraday liquefied many gases and achieved

a temperature of 143 K. He was not able to liquefy hydrogen, nitrogen, and oxygen, thus

naming them permanent gases. These were not at all permanent gases, and J. D. van

der Waals theoretically showed in low enough temperatures and high enough pressure

these gases can be liquefied. Later, the nitrogen and the oxygen gases were liquefied.

The remaining piece of the puzzle was hydrogen. Physicist James Dewar and his closest

competitor Kamerlingh Onnes were fascinated by this challenge. Both of them worked

tirelessly to be the first to liquefy the hydrogen. James Dewar came out to be the first

to do so and attained the lowest temperature recorded at that time which was around

21 K. Just after his success, it was realized that the boiling point of the newly found
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(on earth) inert gas helium is at an even lower temperature at around 4 K. This time

Kamerlingh Onnes won the race to liquefy the Helium gas (in 1908) and attain an even

lower temperature of 1.5 K. By immersing a mercury wire in the liquid helium he noticed

that the resistance of the mercury in response to the current flow suddenly vanishes, which

he termed superconductivity.

The race towards absolute zero led to this observation of the phenomenon known as

superconductivity, which in turn gave a hint that new properties of matter await in the

low-temperature regions. This was achieved more than a decade before the first prediction

of the Bose-Einstein condensation.

1.1.3 Experimental Observation of the Bose-Einstein conden-

sate

After the theoretical prediction of the Bose-Einstein condensation phenomenon, the sci-

entific community tried to get this new phase experimentally. But to get to even lower

temperatures towards absolute zero, it required new cooling technologies.

To experimentally realize the Bose-Einstein condensate, hydrogen is a suitable element.

Being the lightest atom, the BEC transition temperature (Eq.1.6) for hydrogen is expected

to be larger than other elements. Still, it needed to cool down to µK range. The first step

towards this goal came from the laser cooling technique [10, 11].

In laser cooling, carefully tuned lasers are employed that can cool down atoms. If we

tune the laser slightly below the transition frequency allowed by the atom, only atoms

coming toward the laser source would see it blue-shifted due to the Doppler e�ect. If the

blue-shifted laser light is resonant with the allowed transition frequency, the atoms absorb

it and later release photons with greater energy. This way atoms cool down even further.

But this method can only reduce the temperature of the sample to the mK region.

A magnetic trap that confines such a system relies on the fact that the energy of an atom

carrying a magnetic moment µ placed under the magnetic field B varies as E = ≠µ · B.

If the magnetic field varies in space, then the atoms with hyperfine projections for which

µ becomes parallel to the magnetic field, would cluster around the higher magnetic field

to reduce its energy (high-field seeking states). Similarly atoms with low-field seeking
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hyperfine projections for which the contribution in energy is positive would try to cluster

in the lower magnetic field strength. In free space, there can be a minimum of the varying

magnetic field but there cannot be any maximum [12]. As a result, only low-field seeking

states with magnetic moment anti-parallel to the magnetic field get trapped inside a

magnetic trapping[13].

The last stage of the cooling process is the evaporative cooling technique [14]. This

is quite similar to the way a cup of co�ee cools down. The molecules carrying more

energy leave the co�ee cup, and the remaining molecules redistribute. In this way, the

temperature of the co�ee gets reduced. In a very similar manner, an additional radio-

frequency field is applied to the system which assists the high-energy particles to escape

the system and thus, reduces temperature to attain the Bose-Einstein condensate. The

only issue with this method is that a significant amount of the trapped particles are lost in

the process. Using the dimple trap [15], it was shown that this limitation can be avoided.

Figure 1.1: The velocity distribution in a two-dimensional plane for Rb-87 for three
di�erent temperatures, first observed in JILA [16]. (left image) When the temperature is
slightly above the critical temperature, the velocity distribution is smooth and is Maxwell-
Boltzmann-like. (middle image) Just below the critical temperature, a sharp peak in the
velocity distribution can be observed which is indicative of a large population in the ground
state, hence the indication of BEC. (right image) Reduction in temperature further only
makes the peak more pronounced and it can be deduced that a pure BEC has formed.
Image source- Wikipedia (https://en.wikipedia.org/wiki/Bose–Einstein_condensate).

As expected, the e�ort to get to a Bose-Einstein condensate started with hydrogen

atoms. But, due to technical issues, it was di�cult for the MIT group of Greytak and
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Kleppner to overcome the challenge to cool down to the BEC transition temperature.

Later, following a "gut intuition" Eric Cornell and Carl Wieman selected the heavier 87Rb

for this purpose [17]. In 1995 the BEC was first observed by them with only 3000 atoms

[16] at around a transition temperature of 170 nK. A few months later, Wolfgang Ketterle

managed to get the Bose-Einstein condensate with almost half a million 23Na particles

[18]. In the same year, 7Li was Bose-condensed [19] which had a very low density and is

generally very unstable due to the attractive interaction. Finally, in 1998, after a long

battle of almost two decades, the Greytak-Kleppner group achieved the BEC of hydrogen

atoms [20] at a much higher transition temperature of 50µK.

The experimental success rekindled theoretical interests [21–23] and attracted a lot of

attention from both atomic- and condensed-matter physics communities. The unprece-

dented experimental control of BEC allows for the precision measurements [24–29]. In

recent times, BEC is often hailed for being the ideal candidate as a quantum simulator

[30–37]. To this date, not only other alkali isotopes of Potassium [38, 39] and Cesium [40]

but strontium [15] and some rare-earth metal isotopes of Erbium (168
Er) [41], Dysprosium

(160
Dy, 162

Dy, and 164
Dy) [42, 43], and Ytterbium (170

Y b) [44] have also been successfully

Bose-condensed.

1.2 Spinor Bose-Einstein Condensate

The magnetic trapping technique only allows for the formation of the BEC with the low-

field seeking hyperfine projections [45, 46]. As a result, all the constituent atoms in the

BEC are of a single spin type. After the formation of BEC inside the magnetic trap,

if the BEC can be held in some other way that does not energetically prefer a single

spin state, then the spin degrees of freedom on top of the density variation can result

in a richer system. The optical trap [47], which uses the electric dipole moment of the

constituent atoms induced by the optical electric field [48], does this job. Furthermore,

with a radio-frequency sweep [47], the atoms undergo a spin-flip transition which leads to

atoms relaxing toward the equilibrium distribution [49]. Such a BEC with spin degrees of

freedom is often referred to as spinor BEC. The BEC with no spin degrees of freedom is

called a scalar BEC. Creation of spinor BEC [49–53] led to significant theoretical research

[54, 55] on the ground state properties of the spinor condensates with particles having
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hyperfine unity (spin-1).

1.2.1 Some unique features of spinor condensate

For a spinor BEC with all possible hyperfine projections corresponding to spin-f (with

integer f), the BEC will have a vector order parameter with (2f +1) components [47, 56].

The density distributions for various spin degrees of freedom open up the possibility

of having rich spin-textures [57–60] which could show some unique topological features

[61–64]. Due to the spin-gauge symmetry [48], spinor-BEC supports some unique vortex

structures like fractional vortices [65], Alice vortices [66–68] and also non-Abelian vortices

[69, 70].

The soliton structure appearing in the spinor condensate has some unique features,

where having more than one component allows for the formation of dark-bright soliton

complexes [71–74]. Spinor condensates can support quasiparticles like magnons [75–77]

and magnetic solitons [78, 79] along with some interesting skyrmion structures [80–82].

Under spin-spin interactions, spinor condensates provide a rich ground state phase

diagram [83]. The controllable parameters like magnetic fields can be tuned to force the

system to undergo phase transitions. The spinor condensate prepared in a non-equilibrium

state also undergoes spin oscillation dynamics [48], which is a subject of intense study

as it occurs on a time scale that is much slower than that in solids. The spin oscillation

dynamics [83–88] also depends on the external magnetic field that can be controlled with

excellent precision. This sensitivity to the magnetic field opens up the possibility of

using the spinor condensate in sensing for example as a magnetometer [89–93] and as an

interferometer [94].

In this thesis, we focus on ground state structures of trapped spin-1 BEC, i.e., the

condensate atoms have hyperfine spin-1. Domain structure arising in a spin-1 condensate

in di�erent situations is an active area of research [95–113]. We understood that there is

a need to develop an analytical method that can predict di�erent domain formation pos-

sibilities of a trapped spin-1 BEC in a unified way. We show that it is, in general, possible

under the Thomas-Fermi approximation to analytically predict (in Chapter 3) a plethora

of domain formation possibilities that arise due to the interplay of the interactions, trap-

ping potential, and external magnetic fields. We show that under a single essential con-
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straint of the same chemical potential for all the stationary states, the Thomas-Fermi

approximated energy density can reveal a rich variety of domain structures in a general

manner. The Thomas-Fermi approximation applies to large condensates where the kinetic

energy contribution could be neglected in comparison to the contribution coming from

the interaction terms.

Although the Thomas-Fermi approximation is generally more or less accurate in the

central region of the trap where the condensate density is large, away from the trap center

as the trapping potential increases, the Thomas-Fermi approximation gives an inaccurate

condensate profile. This is due to the fact that the Thomas-Fermi approximation throws

away the kinetic energy contribution. So there is obviously a need for a better analytical

method. In Chapter 4, we construct a multi-modal variational method that overcomes all

these limitations of the Thomas-Fermi approximation and produces accurate results for

situations where the kinetic energy contribution must be included.

In Chapter 4, we probe the ground state property of the spin-1 system inside harmonic

confinement and in the absence of the magnetic field. In such a system, the Thomas-Fermi

approximated energy di�erence of the competing stationary states is very small for an

anti-ferromagnetic type of spin-spin interaction. Even for large condensates, the relative

energy di�erence is so small that the kinetic energy contribution (which the Thomas-

Fermi approximation disregards) can alter the conclusion about the ground state. As a

result, the Thomas-Fermi approximation is inconclusive in such a situation even for large

condensates. Our variational method overcomes this problem and finds the ground state

much more accurately. The condensate profile that the variational method estimates is

in excellent agreement with numerically simulated accurate profiles for large condensates

as well as for small condensates with particle numbers as low as 500.

In Chapter 5, we demonstrate the multi-modal nature of the variational method in

more details by dealing with the multi-component stationary states. The Thomas-Fermi

approximation actually breaks down and indicates the wrong physical scenario of domain

formation in such situations. On top of that, the widely used single-mode approximation

is also incapable of producing an accurate sub-component density distribution. Situations

like this force one to rely on numerical simulation in the absence of a trustworthy analyt-

ical method. However, numerical analysis in higher dimensional space is also computa-
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tionally very expensive. We demonstrate that in the presence of the magnetic field, our

multi-modal variational method produces an accurate description of the multi-component

ground state structures. We show that the method estimates the phase transition bound-

aries between di�erent ground states for a condensate under harmonic confinement. For

a condensate with a ferromagnetic type of spin-spin interaction, the phase transition

boundaries between the phase-matched and the polar states are estimated for di�erent

particle numbers. We demonstrate the similarity and the contrast of this phase transition

for trapped condensate with that of the homogeneous situation (in the absence of trap-

ping). We also show the universality of the phase-transition boundaries with respect to

the number of condensate particles.

The motivation of the thesis is to produce an alternative and accurate analytical method

that can be relied upon to probe the ground state structures of a spin-1 BEC under

confinement. The methods shown in this thesis may be used in other analyses that

require accurate ground state density profiles, on which depends the values of the total

energy and energy density distribution. Our method, being a fairly general one, could be

extended easily to higher spin systems as well.



Chapter 2

Spin-1 Bose-Einstein Condensate:

Basic formalism

In this chapter, we will briefly discuss some basic and known theoretical aspects of spin-1

BEC which are used in the subsequent chapters. The contents of this chapter are mainly

compiled from the nice review article by Kawaguchi and Ueda [83].

2.1 Hamiltonian for contact interaction

The field operator for a spin-1 BEC has three components corresponding to three Zeeman

projections. Under mean-field approximation, one can express these field operators in

terms of the mean fields (complex numbers) or the wave functions. Assuming the fluctu-

ations are negligible, one can get to the equation of motion corresponding to these mean

fields that is the Gross-Pitaevskii (GP) Equation [83].

The second-quantized Hamiltonian for the field operators can be written as a sum of

the non-interacting and interaction terms,

Ĥ = Ĥsp + Ĥint. (2.1)

The non-interacting or single-particle Hamiltonian accommodates the kinetic energy con-

tribution, potential energy due to confinement, and also includes the e�ect of the magnetic

11
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field,

Ĥsp =
⁄

dr
1ÿ

m,mÕ=≠1
Â̂

†
m

S

U ≠ ~2

2M
Ò2 + U(r) ≠ p(fz)mmÕ + q(f 2

z )mmÕ

T

VÂ̂mÕ , (2.2)

where M is the mass of a boson undergoing Bose-Einstein condensation and U(r) is the

trapping potential. The e�ect of a small magnetic field B is captured in the last two

terms, where p and q are the linear and quadratic Zeeman terms. The linear term is

defined as p = ≠gµBB, where g is the Landé g-factor and µB is the Bohr magneton. The

quadratic Zeeman term is a combination of the contributions coming from the magnetic

field B and from a microwave or light field, i.e., q = qB + qMW . For a hyperfine energy

splitting, �E = Eint ≠ Ei, which is the energy di�erence between the initial (Ei) and

intermediate energies (Eint), the second order perturbation determines, qB = (gµBB)2

�E .

Due to the other contribution coming from qMW , which can be implemented by shining

a linearly polarized microwave field that is o�-resonant with the other hyperfine states,

one can tune the linear (p) and quadratic (q) Zeeman terms independently. The fz in the

last two terms of Eq.(2.2) is the z-component of the Pauli spin-1 matrices [83],

fx = 1Ô
2

S

WWWWWU

0 1 0

1 0 1

0 1 0

T

XXXXXV
, fy = iÔ

2

S

WWWWWU

0 ≠1 0

1 0 ≠1

0 1 0

T

XXXXXV
, fz =

S

WWWWWU

1 0 0

0 0 0

0 0 ≠1

T

XXXXXV
. (2.3)

We assume the system to be dilute so that only two-body contact interaction is present.

If two identical spin-f particles are exchanged, the many-body wave function changes by

a phase factor (≠1)2f . For the combined hyperfine spin F and the relative angular mo-

mentum L of such a pair, a two-body interaction will change the spin and the orbital part

of the wave function by (≠1)F+2f and (≠1)L respectively [83]. So, in such an interaction

F +L should be an even number. For low-energy collisions, it can be safely assumed that

L = 0, or a s-wave scattering. As a result, for a spin-1 BEC the interaction can only

happen when the combined hyperfine spin is either F = 0, or F = 2. Interaction through

F = 1 channel is prohibited.

The Hamiltonian for the two-body contact interaction can be modeled as

Ĥint =
ÿ

F=0,2

S

U1
2

⁄
dr

⁄
drÕ

gF”(r ≠ rÕ)
Fÿ

M=≠F
Â†

FM(r, rÕ)ÂFM(r, rÕ)
T

V, (2.4)
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where ”(r ≠ rÕ) is a delta function, ÂFM(r, rÕ) is a pair-annihilating operator that an-

nihilates a pair of bosons at a position r and rÕ with total spin F and projection M,

i.e.,

ÂFM(r, rÕ) =
1ÿ

m1,m2=≠1
ÈF , M|1, m1, 1, m2ÍÂ̂m1(r)Â̂m1(rÕ), (2.5)

and the gF is the interaction strength in spin-F channel which is related to the s-wave

scattering length aF as gF = 4fi~2

M
aF .

The interaction Hamiltonian can be further simplified and expressed as [83]

Ĥint = 1
2

⁄
dr

3
c0 : n̂

2(r) : +c1 : ˆ̨
F

2(r) :
4

, (2.6)

using n̂ and F̂i which are the number- and spin density operators respectively,

n̂(r) =
1ÿ

m=≠1
Â̂

†
m(r)Â̂m(r), (2.7)

F̂i =
1ÿ

m,mÕ=≠1

1
fi

2

mmÕ
Â̂

†
m(r)Â̂mÕ(r), (2.8)

where fi (for i = x, y, z) are the Pauli spin-1 matrices defined earlier in Eq.2.3. The

notation : : in Eq.2.6 represents the usual normal ordering. Written in this way, c0 and c1

are the combinations of the s-wave scattering lengths in spin-0 and spin-2 channels, i.e.,

c0 = 4fi~2

M

a0 + 2a2
3 , c1 = 4fi~2

M

a2 ≠ a0
3 , (2.9)

which can be identified as the spin-independent and spin-dependent interaction coe�cients

respectively.

2.2 Mean-field theory

To construct the mean-field theory, the field operators can be expressed as complex num-

bers,

Â̂m(r) =
ÿ

i

�mi(r)âmi, (2.10)

where �mi(r) takes care of the spatial dependence for a magnetic quantum number m and

spatial mode i. Thus, {�mi(r)} denotes a complete set of orthonormal basis functions
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that satisfy the completeness relation,

ÿ

i

�ú
mi(r)�mi(rÕ) = ”(r ≠ rÕ). (2.11)

The basis functions also satisfy the orthonormality condition, i.e.,

⁄
dr �ú

mi(r)�mj(r) = ”ij. (2.12)

The bosonic annihilating operators follow a commutation relation,

[âmi, â
†
mÕj] = ”ij”mmÕ , [âmi, âmÕj] = [â†

mi, â
†
mÕj] = 0, (2.13)

which ensures that the field operators also satisfy the following computation relations,

[Â̂m(r), Â̂mÕ(rÕ)] = 0, [Â̂†
m(r), Â̂

†
mÕ(rÕ)] = 0,

[Â̂m(r), Â̂
†
mÕ(rÕ)] = ”mmÕ”(r ≠ rÕ).

(2.14)

In mean-field approximation, one can safely assume that all the bosons occupy a single

spatial mode i = 0 given the magnetic quantum number m. As a result, the spin state

can be written as,

|›Í = 1Ô
N !

ÔN |vacÍ, (2.15)

where N is the number of particles in the condensate and |vacÍ is the particle vacuum.

The operator O is defined as

Ô =
1ÿ

m=≠1
›mâ

†
m0, (2.16)

subjected to the normalization condition of the spinor, q1
m=≠1 |›m|2 = 1. Following the

commutation relation Eq.2.13, it is straightforward to show that, [âm0, Ô] = ›m. This can

be used to get to the relation,

âm0ÔN = N›mÔN≠1 + ÔN
âm0, (2.17)

that one can use to calculate the mean values corresponding to the field operators and

correlation functions [83]. If we assume the following definition for the wave function,

Âm(r) =
Ô

N›m�m0(r), the mean values of the field operator and the correlation functions
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can be succinctly expressed in terms of the wave functions as

È›|Â̂m(r)|›Í = È›|Â̂†
m(r)|›Í = 0,

È›|Â̂†
m(r)Â̂mÕ(rÕ)|›Í = Â

ú
m(r)ÂmÕ(rÕ),

È›|Â̂†
m1(r1)Â̂†

m2(r2)Â̂m3(r3)Â̂m4(r4)|›Í =
Q

a1 ≠ 1
N

R

bÂ
ú
m1(r1)Âú

m2(r2)Âm3(r3)Âm4(r4).

(2.18)

The expectation value of the field operator vanishes but the experimentally observable

correlation functions are non-zero, which makes this mean-field construct particularly

important as it becomes a number-conserving theory [83]. Using the mean-field construct

one arrives at Eq.2.18, which will be used to get the mean-field approximated Hamiltonian

from the second-quantized Hamiltonian that was constructed in the last section. From

the mean-field Hamiltonian, one can get to the GP equations, which we will see in the

next section.

2.3 Gross-Pitaevskii equation

Using the mean-field theory one can replace the Hamiltonian, comprising of the interacting

(Eq.2.6) and non-interacting parts (Eq.2.2), with its expectation value,

È›|Ĥ|›Í = E[Â] =
⁄

dr
S

U
1ÿ

m,mÕ=≠1
Â

ú
m(r)

3
≠ ~2

2M
Ò2 + U(r) ≠ p m + q m

2
4

Âm(r)

+ c0
2 n

2(r) + c1
2 |F(r)|2

T

V,

(2.19)

where the 1/N term in Eq.2.18 is neglected assuming that the number of condensate

particles, N , is very large. The number- and spin-density expectation values follow from

Eq.2.7-2.8,

n(r) = È›|n̂(r)|›Í =
1ÿ

m=≠1
Â

ú
m(r)Âm(r)

Fi(r) = È›|F̂i(r)|›Í =
1ÿ

m,mÕ=≠1
Â

ú
m(r)(fi)mmÕÂmÕ(r),

(2.20)

where (fi)mmÕ is the mm
Õ element of the i = (x, y, z) spin-1 Pauli matrices (Eq.2.3). One

can get to the Gross-Pitaevskii (GP) equation that dictates the dynamics of the mean
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fields (Âm(r, t)) from the energy functional Eq.2.19 [83],

i~ˆÂm(r, t)
ˆt

= ”E[Â]
”Âú

m(r, t)

=
3

≠ ~2

2M
Ò2 + U(r) ≠ p m + q m

2
4

Âm(r, t)

+ c0n(r, t)Âm(r, t) + c1

1ÿ

mÕ=≠1
F(r, t).fmmÕÂmÕ(r, t).

(2.21)

This time-dependent GP equation is a set of three coupled equations corresponding to

the elements of the vector order parameter, i.e., Â1(r, t), Â0(r, t), and Â≠1(r, t), which are

the time-dependent wave functions for three possible Zeeman projections.

2.4 Stationary states and Phase Diagram in absence

of trapping

The time-dependent wave function can be written as a combination of a time-independent

part and a time-dependent part following the ansatz,

Âm(r, t) = Âm(r) exp
3

≠ iµt

~

4
, (2.22)

where µ is the chemical potential. The GP equation Eq.2.21 can be further simplified

following this ansatz, which yields three coupled time-independent GP equations,

Q

a ≠ ~2

2M
Ò2 + U(r) ≠ p + q ≠ µ + c0n(r) + c1Fz(r)

R

bÂ1(r) + c1Ô
2

F≠(r)Â0(r) = 0, (2.23)

Q

a ≠ ~2

2M
Ò2 + U(r) ≠ µ + c0n(r)

R

bÂ0(r) + c1Ô
2

F≠(r)Â≠1(r) + c1Ô
2

F+(r)Â1(r) = 0, (2.24)

Q

a ≠ ~2

2M
Ò2 + U(r) + p + q ≠ µ + c0n(r) ≠ c1Fz(r)

R

bÂ1(r) + c1Ô
2

F+(r)Â0(r) = 0, (2.25)

where Fz(r) = |Â1(r)|2 ≠ |Â≠1(r)|2, and the function F±(r) follows the usual definition,

F+(r) = Fx(r) + iFy(r) =
Ô

2
5
Â

ú
1(r)Â0(r) + Â

ú
0(r)Â≠1(r)

6
,

F≠(r) = Fx(r) ≠ iFy(r) =
Ô

2
5
Â1(r)Âú

0(r) + Â0(r)Âú
≠1(r)

6
.

(2.26)
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The time-independent GP equations can be solved to get the possible stationary states

and the energy and other parameters characterizing the stationary states. A simple

situation can be in the absence of confinement, U(r) = 0. In such a situation, the system

will have a constant number density (homogeneous) and thus, one can ignore the kinetic

energy term as well. Note that, in the next chapter, we will derive all the details of the

stationary states in a more realistic condition, that is in the presence of the trapping

potential. So, for brevity, we will not include the detailed derivations of the standard

results of homogeneous condensate. We list the results of the homogeneous condensate in

the following.

In the absence of trapping, there can be a total of five possible stationary states. There

can be two ferromagnetic states, one with all the atoms in the m = 1 spin projection (let

us call it (1,0,0)), and another with all the atoms in m = ≠1 denoted as (0,0,1). The

stationary state for which all the atoms are in m = 0 is known as the polar state, which

is denoted as (0,1,0). The other two states are the anti-ferromagnetic state denoted as

(1,0,1), for which m = 0 spin projection is empty with the other two filled, and another

stationary state with all the spin projections populated or (1,1,1) state. The reason for

such a notation for the stationary states will be discussed later in the next chapter.

States chemical potential energy desity

(1,0,0)
Ferro1

c0n ≠ p + q + c1n
1
2c0n

2 ≠ pn + qn + 1
2c1n

2

(0,1,0)
Polar

c0n
1
2c0n

2

(0,0,1)
Ferro2

c0n + p + q + c1n
1
2c0n

2 + pn + qn + 1
2c1n

2

(1,0,1)
Anti ≠
Ferro

c0n + q
1
2c0n

2 + qn ≠ p2

2c1

(1,1,1) c0n + c1n ≠ (p2≠q2)
2q

1
2c0n

2 + (q2≠p2+2qc1n)2

8c1q2

Table 2.1: The energy and chemical potential for the possible stationary states for spin-1
condensates in the absence of trapping.
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The detailed derivation for the stationary states for the homogeneous spinor condensate

is given in [83]. We summarize the energy density and the chemical potential correspond-

ing to all the stationary states in Table 2.1. Note that the linear and the quadratic

Zeeman terms can be tuned independently, which we have discussed previously. So, by

comparing the energy of the stationary states, one can draw a set of phase diagrams of

the condensate ground states in the (q, p) parameter space which are shown in Fig.2.1.
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1

0.5

p2=2c1nq

(a) c1 > 0
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q

p=q
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(0,1,0)

(1,0,0)

(0,0,1)
(1,1,1) 2

p2=q2+2c1nq

(c) c1 < 0

Figure 2.1: Phase diagram in (q, p) parametric space of a spin-1 BEC in absence of any
confinement with (a) anti-ferromagnetic (c1 > 0), (b) absent (c1 = 0), and (c) ferro-
magnetic (c1 < 0) spin-dependent interaction. The linear and quadratic Zeeman term is
represented as p and q respectively.

For an anti-ferromagnetic type of spin-spin interaction, the ferromagnetic, polar, and

anti-ferromagnetic states become the ground state for di�erent parameter regions de-

pending on the strength of p and q values (Fig.2.1(a)). The phase transition between the

anti-ferromagnetic to ferromagnetic state(s) is of second-order in nature in the sense that

the first derivative of energy with respect to p changes in a continuous manner across the

phase boundary [83]. Across other transition boundaries for this case, the first derivative

of energy with respect to p and q change abruptly. In the absence of the spin-dependent

interaction (Fig.2.1(b)), only the polar state and the ferromagnetic states become the

ground state. For positive values of the quadratic Zeeman term, the polar state becomes

the ground state in the region where |q| > |p|. The ferromagnetic state (1,0,0) is preferred

to become the ground state if the linear term is positive and the other ferromagnetic state

(0,0,1) becomes the ground state for negative values of the linear Zeeman term. For all

the possible phase transitions in this case, the first derivative of energy with respect to p

and q changes discontinuously across the phase boundaries. If the spin-spin interaction is

of the ferromagnetic type (c1 < 0), the (1,1,1) state becomes the ground state for a range

of positive values of p and q (Fig.2.1(c)). Other than this state, the ferromagnetic states
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or the polar state are favored to become the ground state for di�erent regions of the (q, p)

parameter space. Note that the first derivative of total energy with respect to p changes

abruptly across the phase boundaries between the ferromagnetic state (p = 0 line), while

the same changes smoothly across the other phase boundaries shown in Fig.2.1(c). In

that sense, the phase transition between the PM to polar or PM to ferromagnetic states

are second-order phase transition for a homogeneous condensate [83].

Interesting to note that, one can have a phase transition between the polar and fer-

romagnetic states for the anti-ferromagnetic type of spin interaction, as can be seen in

Fig.2.1(a). But, a similar phase transition does not happen when the spin interaction is

of ferromagnetic type (Fig.2.1(c)). The number density n, for a homogeneous condensate,

can be treated as a free parameter, which is used to scale the linear and quadratic terms

in Fig.2.1(a) and Fig.2.1(c). The situation would be di�erent for a trapped condensate

where the number density varies over space.

In the next and subsequent chapters, we will focus on the realistic situation of the

condensate under confinement. The energy and the phase diagram given in this section

are important in the sense that they can be compared with the results that we will get in

the subsequent chapters, to apprehend the contrast between the trapped and untrapped

scenario.
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Chapter 3

Domain formation in a trapped

spin-1 BEC

In the previous chapter, we discussed the basic formalism of mean-field theory for spin-1

BEC, from which we got to the Gross-Pitaevskii equation. From the time-independent

GP equation, the stationary states were obtained in the absence of trapping. Energy

densities of the stationary states revealed phase diagrams in (q, p) parameter space, under

the assumption of a constant number density for all the stationary states.

However, in a realistic scenario, the BEC is formed inside a confining potential, which

is, in general, harmonic and unless the potential is switched o�, there is no way to neglect

the trapping. The constant number density assumption is thus invalid, as the trapping

geometry dictates the number density of the condensate. However, the GP equation being

non-linear, it is di�cult to find the density profile in the presence of derivatives. In this

chapter, we investigate the stationary state structures in the presence of generic trapping.

We employ the Thomas-Fermi approximation that is typically valid for condensates with

large enough density to neglect the kinetic energy contribution compared to the interac-

tion energies. Under this approximation, we find out the energy density profile for each

stationary state as a function of space. This would allow us to compare the energy den-

sities of all the stationary states locally, which is required to understand possible domain

formation scenarios. We would use terms like ’phase separation’ or ’phase-coexistence’ or

’domain formation’ equivalently in what follows.

21
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Phase separation over space of multi-component BEC under trapping was theoretically

investigated by Timmermans [95] who named it "potential separation", as opposed to the

phase separation which does not require any external fields. A common example of phase

separation that does not require any external field is oil-water separation. In contrast,

fluids of di�erent specific weights undergo a phase separation which is the "potential

separation", that requires the presence of external fields, e.g., the gravitational field.

In an optically trapped sodium spinor condensate, spin domain formation was reported

by Stenger et. al., [49] which was followed by a detailed theoretical justification by

Isoshima et. al., [99]. Since then, it has been an active area of interest to understand

the spin domain formation of trapped spin-1 condensate [96, 100, 101, 114], even at zero

magnetic fields [115, 116]. The spinor condensate is not unique when it comes to phase

separation, it has also been observed in binary condensates where the interplay between

intra- and inter-species interaction is responsible for this phenomenon [97, 98, 102, 104–

107, 109, 110, 112, 117]. The instability induced phase separation in spin-orbit coupled

condensates [103, 108, 111, 118] has also attracted a lot of attention in recent years.

To get to the spin domain formation in the ground state of a spinor BEC, the Thomas-

Fermi (T-F) approximation has been extensively used in literature [54, 99, 102, 104, 119]

on a case to case basis. The analytical ease that the T-F approximation provides is a

reasonable first step to understand phase separation under entrapment when the trap size

is bigger than the healing length [114]. While the domain formation studies have been

mainly carried out on a case-by-case basis, in this chapter, we will show that under the

essential constraint of constant chemical potential, the GP dynamics in T-F approximation

is capable of capturing the full spectrum of possible phase-coexistence scenarios in a unified

manner, for any trapping geometry.

3.1 Stationary states in the presence of trapping po-

tential

One needs to know the details of all the possible stationary states to get to the ground

state structure under given conditions. The solution of the time-independent GP equation

Eq.2.23-2.25 provides all the necessary details of the stationary states. In presence of a
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generic trapping potential U(r) we follow the ansatz,

Âm(r) =
Ò

nm(r) exp
1

≠ i◊m

2
exp

Q

a≠iµt

~

R

b, (3.1)

where the real part of the mean-field corresponds to the sub-component density. The

chemical potential µ and the individual phase ◊m constitute the imaginary part of it.

By stationary state, we mean here the stationarity of nm(r), where the phase oscillation

due to the chemical potential is always present. One does not consider here the spatial

dependence of ◊m as well, because that will result in velocity, which will go against the

stationarity of phase.

Following this ansatz, one can equate the real and the imaginary part of each time-

dependent GP equation separately. The imaginary part (plugging in the ansatz Eq.3.1 in

the GP equation given in Eq.2.21) produces the evolution equations of the sub-component

number densities, which are the amplitude of the mean-fields,

ṅ0(r) = ≠
4c1n0

Ô
n1n≠1 sin ◊r

~ , (3.2)

ṅ±1(r) =
2c1n0

Ô
n1n≠1 sin ◊r

~ , (3.3)

where the ◊r is the relative phase defined as, ◊r = ◊1 + ◊≠1 ≠ 2◊0. For a stationary state,

the sub-component densities do not change with time, so the temporal derivatives on the

left side of the equations are zero. If the spin-spin interaction is absent (i.e., c1 = 0), these

equations are trivially satisfied. But in the presence of spin-spin interaction (i.e., c1 ”= 0),

for stationary states, at least one of the sub-components has to be empty (i.e., n1 or n0 or

n≠1 is zero). On the other hand, if all the sub-components are filled then sin ◊r = 0 must

be satisfied, which implies that the relative phase should be 0 or fi. The stationary state

where all the sub-components are filled with the relative phase ◊r = 0 is called the phase-

matched (PM) state and the same with ◊r = fi is called the anti-phase-matched (APM)

state. In what follows, we will represent the stationary states as (n1, n0, n≠1), where nm

is the placeholder for the binary notation, 0 or 1. If the sub-component is populated we

represent it as 1, and 0 if it is empty. In this notation, for example, the anti-ferromagnetic

state is represented as (1, 0, 1) where the sub-components corresponding to m = 1 and

m = ≠1 are populated.
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Similarly, the phase dynamics equations are obtained from the real part of the time-

dependent GP equation following the same ansatz,

~
Ò

n0(r)◊̇0 =
Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ

R

b
Ò

n0(r) + c1
Ò

n0(r)
1
n1 + n≠1 + 2Ô

n≠1n1 cos ◊r

2
,

(3.4)

~
Ò

n±1(r)◊̇±1 =
Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ + q û p

R

b
Ò

n±1(r) ± c1
Ò

n±1(r)
1
n1 ≠ n≠1

2

+ c1n0

Q

a
Ò

n±1(r) +
Ò

n1(r)n≠1(r) cos ◊r

R

b

T

V.

(3.5)

Here, we have assumed that the phases have negligible variations over space. The spatial

variation is significant in vortex solutions. But, in what follows, we are not considering

any vortex solution. Now, assuming that the sub-components are populated, one can

re-write the corresponding phase equations as

~◊̇0 = 1
Ò

n0(r)

Q

a ≠ ~2Ò2

2M
+U(r)+ c0n≠µ

R

b
Ò

n0(r)+ c1
1
n1 +n≠1 +2Ô

n≠1n1 cos ◊r

2
, (3.6)

~◊̇±1 = 1
Ò

n±1(r)

Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ

R

b
Ò

n±1(r) ± c1
1
n1 ≠ n≠1

2
+ q û p

+ c1n0

Q

a1 +
ı̂ıÙnû1(r)

n±1(r) cos ◊r

R

b.

(3.7)

Having known the structure of the stationary states from the density dynamics equations

Eq.3.2-3.3, one can solve the phase equations under the stationarity conditions that reveals

the sub-component density profiles over space. The same ansatz also simplifies the energy

expression given in Eq.2.19,

E =
⁄

dr e(r)

=
⁄

dr
S

U ≠
1ÿ

m=≠1

Ò
nm(r)~

2Ò2

2M

Ò
nm(r) + U(r)n(r) ≠ p

1
n1 ≠ n≠1

2
+ q

1
n1 + n≠1

2

+ c0
2 n

2(r) + c1
2

1
n1 ≠ n≠1

22
+ c1n0

1
n1 + n≠1 + 2Ô

n1n≠1cos◊r

2
T

V,

(3.8)
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where e(r) is the energy density. Plugging the expressions of sub-component densities in

the above equation, one can get to energy density and the total energy corresponding to

each stationary state.

To get a detailed picture of the possible stationary states under confinement, one has

to solve the phase equations Eq.3.6-3.7. For that, one can use the Thomas-Fermi approx-

imation, where it is assumed that the number of particles present in the condensate is so

large that the interaction energy is much bigger than the kinetic energy.

3.1.1 Single-component states

The stationary state where only one of the sub-components is populated and the other

two are empty are termed as a single-component state. There are a total of three pos-

sible single-component states, the polar state is the one where the m = 0 component

is populated only. The other two are the ferromagnetic stationary states. Among the

ferromagnetic states, if m = 1 is populated and the other two are empty, we denote it as

F1 or (1,0,0) and if m = ≠1 is only populated, this is denoted as (0,0,1) or F2.

Ferromagnetic state F1 or (1,0,0) state

For this stationary state, the phase equation Eq.3.7 corresponding to ◊̇1 under the sta-

tionarity condition reads,

~◊̇1 = 0 = 1
Ò

n1(r)

Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ

R

b
Ò

n1(r) + c1
1
n1 ≠ n≠1

2
+ q ≠ p

+ c1n0

Q

a1 +
ı̂ıÙn≠1(r)

n1(r) cos ◊r

R

b.

(3.9)

In this state, only the n1 component is populated, with n0 = n≠1 = 0. As a result, n1 = n,

where n is the total number density. Under the T-F approximation, the kinetic energy

term can be neglected, and the solution provides the number density,

n(r) = n1(r) = µ + p ≠ q ≠ U(r)
c0 + c1

. (3.10)
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This can be used to get the T-F approximated energy density (neglecting the first term

in the energy density expression given in Eq.3.8) of this stationary state,

e
T F
F 1 (r) =

1
U(r) ≠ p + q

2
n(r) + c0

2 n
2(r) + c1

2 n
2(r)

=
1
U(r) ≠ p + q

2
Q

aµ + p ≠ q ≠ U(r)
c0 + c1

R

b +

3
µ + p ≠ q ≠ U(r)

42

2(c0 + c1)
.

(3.11)

The spatial variation of the T-F approximated energy density is only dictated by the

trapping potential.

Ferromagnetic state F2 or (0,0,1) state

For this state, only the n≠1 is populated thus, n≠1 = n, where n is the total density.

Under the T-F approximation the phase equation for ◊̇≠1 can be solved using stationarity

condition to get the spatial variation of the number density,

n(r) = n≠1(r) = µ ≠ p ≠ q ≠ U(r)
c0 + c1

. (3.12)

Using this number density expression one can get to the energy density for this stationary

state,

e
T F
F 2 (r) =

1
U(r) + p + q

2
n(r) + c0

2 n
2(r) + c1

2 n
2(r)

=
1
U(r) + p + q

2
Q

aµ ≠ p ≠ q ≠ U(r)
c0 + c1

R

b +

3
µ ≠ p ≠ q ≠ U(r)

42

2(c0 + c1)
.

(3.13)

Note that, the di�erence between the number- and energy density of the ferromagnetic

states is the sign of the linear Zeeman term p, which can be positive or negative depending

on the direction of the magnetic field. It is only natural that the direction of the magnetic

field will favor one of the ferromagnetic states.

Polar state

The polar state is a single-component state, where n0 ”= 0 and the other two sub-

components are empty i.e., n±1 = 0. Imposing stationarity condition, the T-F approxi-
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mated Eq.3.6 provides the number density expression,

n0(r) = n(r) = µ ≠ U(r)
c0

. (3.14)

The energy density for this stationary state is,

e
T F
P ol(r) = U(r)n(r) + c0

2 n
2(r)

= U(r)
Q

aµ ≠ U(r)
c0

R

b +

1
µ ≠ U(r)

22

2c0
.

(3.15)

3.1.2 Multi-component states

If more than one sub-components are populated, the stationary state can be classified

as a multi-component state. There are a total of five possible multi-component states

for this spin-1 case. Out of these, there can be three stationary states for which two

sub-components are populated while one of the components is empty. This is the case for

the anti-ferromagnetic state and the two possible mixed-ferromagnetic states (1,1,0) and

(0,1,1). The other possibility is when all three components are populated, which is the

case for the PM and the APM state.

Anti-ferromagnetic (AF) state or (1,0,1)

In this stationary state, the m = 0 component is empty and the other two components

are occupied, i.e. n0 = 0 and n±1 ”= 0. So, the phase equations corresponding to ◊̇1 and

◊̇≠1 under the T-F approximation are,

U(r) + c0n ≠ µ + c1
1
n1 ≠ n≠1

2
+ q ≠ p = 0 (corresponding to ◊̇1), (3.16a)

U(r) + c0n ≠ µ ≠ c1
1
n1 ≠ n≠1

2
+ q + p = 0 (corresponding to ◊̇≠1), (3.16b)

which can be solved to get to the sub-component densities n±1. Firstly, the summation

of these two equations yields the total number density,

n(r) = µ ≠ q ≠ U(r)
c0

. (3.17)
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Now subtracting Eq.3.16b from Eq.3.16a one can get the magnetization density, i.e.,

n1 ≠ n≠1 = p

c1
. (3.18)

The total number density is the sum of the sub-component densities, i.e., n(r) = n1 +n≠1.

Now using the total number density and the magnetization density, one can write the sub-

component densities as

n1(r) = µ ≠ q ≠ U(r)
2c0

+ p

2c1
, (3.19a)

n≠1(r) = µ ≠ q ≠ U(r)
2c0

≠ p

2c1
. (3.19b)

The corresponding energy density for this stationary state is

e
T F
AF (r) = U(r)n(r) + qn(r) + c0

2 n
2(r) ≠ p

2

2c1

=
3

U(r) + q

4Q

aµ ≠ q ≠ U(r)
c0

R

b +

1
µ ≠ q ≠ U(r)

22

2c0
≠ p

2

2c1
.

(3.20)

Mixed-ferromagnetic state: MF1 or (1,1,0)

If the sub-components corresponding to the Zeeman projections m = 0 and m = 1 are

only populated with m = ≠1 sub-component being empty (n≠1 = 0), the stationary state

is of the mixed-ferromagnetic type represented as (1,1,0). For this stationary state, the

phase equations corresponding to ◊̇1 and ◊̇0 under the T-F approximation read,

U(r) + c0n ≠ µ + c1n1 + q ≠ p + c1n0 = 0 (corresponding to ◊̇1), (3.21a)

U(r) + c0n ≠ µ + c1n1 = 0 (corresponding to ◊̇0). (3.21b)

The total number density for this state, n(r) = n1(r) + n0(r). Using this relation in

Eq.3.21a, the total number density expression is obtained as

n(r) = µ + p ≠ q ≠ U(r)
c0 + c1

. (3.22)

Now, Eq.3.21b can be rewritten as,

U(r) + c0n ≠ µ + c1
1
n ≠ n0

2
= 0, (3.23)



CHAPTER 3. DOMAIN FORMATION IN A TRAPPED SPIN-1 BEC 29

where the total density expression (Eq.3.22) can be plugged in, which yields the sub-

component density expressions

n0(r) = p ≠ q

c1
, (3.24a)

n1(r) = µ + p ≠ q ≠ U(r)
c0 + c1

≠ p ≠ q

c1
. (3.24b)

Using these expressions the energy density can be easily obtained as

e
T F
MF 1(r) = U(r)n(r) ≠ pn1 + qn1 + c0

2 n
2(r) + c1

2 n
2
1 + c1n0n1

= U(r)

1
µ + p ≠ q ≠ U(r)

2

c0 + c1
+

c0
1
µ + p ≠ q ≠ U(r)

22

2(c0 + c1)2

+ c1
2

Q

aµ + p ≠ q ≠ U(r)
c0 + c1

≠ p ≠ q

c1

R

b
2

.

(3.25)

Mixed-ferromagnetic state: MF2 or (0,1,1)

For this stationary state, n1(r) = 0, and the other two components are populated. The

phase equations corresponding to the filled components under the T-F approximation

U(r) + c0n ≠ µ + c1n≠1 + q + p + c1n0 = 0 (corresponding to ◊̇≠1), (3.26a)

U(r) + c0n ≠ µ + c1n≠1 = 0 (corresponding to ◊̇0), (3.26b)

can be solved to get to the total number and sub-component density distributions. The

sub-component densities can be added to get total density i.e., n(r) = n0(r) + n≠1(r).

Following the similar approach as discussed for the case MF1 state, one obtains

n(r) = µ ≠ p ≠ q ≠ U(r)
c0 + c1

, (3.27a)

n0(r) = ≠p ≠ q

c1
, (3.27b)

n≠1(r) = µ ≠ p ≠ q ≠ U(r)
c0 + c1

+ p + q

c1
. (3.27c)
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The energy density for this state is

e
T F
MF 2(r) = U(r)n(r) + pn≠1 + qn≠1 + c0

2 n
2(r) + c1

2 n
2
≠1 + c1n0n≠1

= U(r)

1
µ ≠ p ≠ q ≠ U(r)

2

c0 + c1
+

c0
1
µ ≠ p ≠ q ≠ U(r)

22

2(c0 + c1)2

+ c1
2

Q

aµ ≠ p ≠ q ≠ U(r)
c0 + c1

+ p + q

c1

R

b
2

.

(3.28)

Just like the ferromagnetic states, the number- and the energy density of the mixed-

ferromagnetic states only di�er in the sign of the linear Zeeman term p.

Phase-matched (PM) state or (1,1,1) with ◊r = 0

As discussed earlier, for a stationary state with all the sub-components occupied, the

relative phase has to assume the value ◊r = 0 or fi. Such a stationary state corresponding

to ◊r = 0 is also known as the phase-matched (PM) state. In such a situation, the phase

equations under T-F approximation reads

U(r) + c0n ≠ µ + c1
1
n1 + n≠1 + 2Ô

n≠1n1
2

= 0, (3.29a)

U(r) + c0n ≠ µ + c1
1
n1 ≠ n≠1

2
+ q ≠ p + c1n0

Q

a1 +
ı̂ıÙn≠1(r)

n1(r)

R

b = 0, (3.29b)

U(r) + c0n ≠ µ ≠ c1
1
n1 ≠ n≠1

2
+ q + p + c1n0

Q

a1 +
ı̂ıÙ n1(r)

n≠1(r)

R

b = 0, (3.29c)

corresponding to m = 0, 1, ≠1 components. Now, to solve these equations, we can define

a new parameter k(r) =
Ú

n1(r)
n≠1(r) which simplifies these equations further as

µ ≠ c0n ≠ U(r) = c1n≠1
1
1 + k(r)

22
, (3.30a)

U(r) + c0n ≠ µ + c1n≠1
1
k

2(r) ≠ 1
2

+ q ≠ p + c1n0

Q

a1 + 1
k(r)

R

b = 0, (3.30b)

U(r) + c0n ≠ µ ≠ c1n≠1
1
k

2(r) ≠ 1
2

+ q + p + c1n0

Q

a1 + k(r)
R

b = 0, (3.30c)
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where k(r) is a positive quantity. As all the sub-components are populated in this state,

this parameter cannot be zero, i.e, k(r) > 0. Now, subtracting Eq.3.30b from Eq.3.30c,

one can get the relation

≠2c1n≠1
1
k

2(r) ≠ 1
2

+ 2p + c1n0

Q

ak(r) ≠ 1
k(r)

R

b = 0. (3.31)

One can rearrange this equation to write the n0(r) component in terms of the n≠1(r) and

k(r) as

c1n0 =
2c1n≠1

1
k

2(r) ≠ 1
2

≠ 2p

k(r) ≠ 1
k(r)

. (3.32)

On the other hand, the addition of Eq.3.30b and Eq.3.30c leads to

2U(r) + 2c0n ≠ 2µ + 2q + c1n0

Q

a2 + k(r) + 1
k(r)

R

b = 0, (3.33)

which can also be rearranged to get to another expression of n0(r) as a function of the

same n≠1(r) and k(r) as

c1n0 =
2k(r)

1
µ ≠ c0n ≠ U(r) ≠ q

2

1
1 + k(r)

22

=
2k(r)

1
c1n≠1

1
1 + k(r)

22
≠ q

2

1
1 + k(r)

22 ,

(3.34)

where we have used the relation Eq.3.30a to write it in a more simplified form.

Now, equating the right side of Eq.3.32 and Eq.3.34,

3
c1n≠1

1
k

2(r) ≠ 1
2

≠ p

4

k2(r) ≠ 1 =

3
c1n≠1

1
1 + k(r)

22
≠ q

4

1
1 + k(r)

22 , (3.35)

which provides the allowed value of k(r),

k(r) = q + p

q ≠ p
, (3.36)

while the other solution k(r) = ≠1 is unphysical as this parameter is strictly positive
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(by definition, 0 < k(r) < Œ). This also restricts the PM state in a region, |q| > |p|

in the (q, p) parameter space. As the total density is the sum of the sub-component

densities, i.e., n(r) = n1(r) + n0(r) + n≠1(r), one can also write the n0 component as,

n0 =
1
n ≠ (1 + k

2(r))n≠1
2
. Now using this, Eq.3.32 can be rewritten as

c1

3
n ≠ (1 + k

2(r))n≠1

4
=

2c1n≠1
1
k

2(r) ≠ 1
2

≠ 2p

k(r) ≠ 1
k(r)

, (3.37)

which can be easily solved by using k(r) = q + p

q ≠ p
that yields the sub-component density

n≠1(r). Using the expression for n≠1(r), the n0(r) can be obtained using Eq.3.34 and

n1(r) from the relation, n1(r) = k
2(r)n≠1(r). So, the sub-component densities of the PM

state are

n≠1(r) = (q ≠ p)2

4q2

Q

an(r) + q
2 ≠ p

2

2c1q

R

b, (3.38a)

n+1(r) = (q + p)2

4q2

Q

an(r) + q
2 ≠ p

2

2c1q

R

b, (3.38b)

n0(r) = (q2 ≠ p
2)

2q2

Q

an(r) ≠ q
2 + p

2

2c1q

R

b, (3.38c)

where n(r) is the total density,

n(r) =
µ ≠ U(r) + (p2≠q2)

2q

(c0 + c1)
. (3.39)

The energy density expression for this state can be easily found using the number density

expressions,

e
T F
P M(r) = U(r)n(r) ≠ p

1
n1 ≠ n≠1

2
+ q

1
n1 + n≠1

2
+ c0

2 n
2(r) + c1

2
1
n1 ≠ n≠1

22

+ c1n0
1
n1 + n≠1 + 2Ô

n1n≠1
2

= U(r)
S

Uk1 ≠ U(r)
c0 + c1

T

V + c0
2

S

Uk1 ≠ U(r)
c0 + c1

T

V
2

+ c1
2

S

Uk1 ≠ U(r)
c0 + c1

≠ p
2 ≠ q

2

2qc1

T

V
2

,

(3.40)

where, k1 = µ + (p2≠q2)
2q .
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Anti-phase-matched (APM) state or (1,1,1) with ◊r = fi

The stationary state corresponding to the relative phase ◊r = fi, with non-empty sub-

components, is known as the APM state. For this state, we follow a similar strategy

as used for the PM state to get the number and energy density expressions. The T-F

approximated phase equations,

U(r) + c0n ≠ µ + c1
1
n1 + n≠1 ≠ 2Ô

n≠1n1
2

= 0, (3.41a)

U(r) + c0n ≠ µ + c1
1
n1 ≠ n≠1

2
+ q ≠ p + c1n0

Q

a1 ≠
ı̂ıÙn≠1(r)

n1(r)

R

b = 0, (3.41b)

U(r) + c0n ≠ µ ≠ c1
1
n1 ≠ n≠1

2
+ q + p + c1n0

Q

a1 ≠
ı̂ıÙ n1(r)

n≠1(r)

R

b = 0, (3.41c)

can be simplified by introducing the parameter k(r) =
Ú

n1(r)
n≠1(r) ,

µ ≠ c0n ≠ U(r) = c1n≠1
1
1 ≠ k(r)

22
, (3.42a)

U(r) + c0n ≠ µ + c1n≠1
1
k

2(r) ≠ 1
2

+ q ≠ p + c1n0

Q

a1 ≠ 1
k(r)

R

b = 0, (3.42b)

U(r) + c0n ≠ µ ≠ c1n≠1
1
k

2(r) ≠ 1
2

+ q + p + c1n0

Q

a1 ≠ k(r)
R

b = 0. (3.42c)

The case when k(r) ”= 1: Following the same procedure, first we add Eq.3.42b and Eq.3.42c,

2U(r) + 2c0n ≠ 2µ + 2q ≠ c1n0

Q

ak(r) + 1
k(r) ≠ 2

R

b = 0, (3.43)

where Eq.3.42a can be used to get the relation between the sub-component n0(r) and

n≠1(r),

c1n0 = 2k(r)
q ≠ c1n≠1

1
1 ≠ k(r)

22

1
1 ≠ k(r)

22 , (3.44)

To get to the above relation, we have assumed that k(r) ”= 1. Similarly subtracting

Eq.3.42b from Eq.3.42c one gets to

≠2c1n≠1
1
k

2(r) ≠ 1
2

+ 2p ≠ c1n0

Q

ak(r) ≠ 1
k(r)

R

b = 0, (3.45)
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which can be rearranged to find another relation between n0(r) and n≠1(r),

c1n0 = 2k(r)

3
p ≠ c1n≠1

1
k

2(r) ≠ 1
24

1
k2(r) ≠ 1

2 . (3.46)

Now equating the right side of the Eq.3.44 and Eq.3.46, one can rearrange and get to the

relation
1
p ≠ q

2
k

2(r) ≠ 2pk(r) +
1
p + q

2
= 0, (3.47)

which leads to the solution for k(r),

k(r) = p + q

p ≠ q
, (3.48)

while the other solution is k(r) = 1. Note that, we have already considered k(r) ”= 1.

Now, one can rewrite Eq.3.44 by replacing the n0 component as, n0(r) = n(r) ≠
1
1 +

k
2(r)

2
n≠1(r) and then substituting k(r) one can determine the n≠1(r) component which

in turn determines the other sub-component densities as well. For this state, the sub-

component densities are

n≠1(r) = (q ≠ p)2

4q2

Q

an(r) + q
2 ≠ p

2

2c1q

R

b, (3.49a)

n+1(r) = (q + p)2

4q2

Q

an(r) + q
2 ≠ p

2

2c1q

R

b, (3.49b)

n0(r) = (q2 ≠ p
2)

2q2

Q

an(r) ≠ q
2 + p

2

2c1q

R

b, (3.49c)

and the total density n(r) comes out to be,

n(r) =
µ ≠ U(r) + (p2≠q2)

2q

(c0 + c1)
. (3.50)
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The energy density expression for this state can be easily found using the expressions of

number density

e
T F
AP M(r) = U(r)n(r) ≠ p

1
n1 ≠ n≠1

2
+ q

1
n1 + n≠1

2
+ c0

2 n
2(r) + c1

2
1
n1 ≠ n≠1

22

+ c1n0
1
n1 + n≠1 ≠ 2Ô

n1n≠1
2

= U(r)
S

Uk1 ≠ U(r)
c0 + c1

T

V + c0
2

S

Uk1 ≠ U(r)
c0 + c1

T

V
2

+ c1
2

S

Uk1 ≠ U(r)
c0 + c1

≠ p
2 ≠ q

2

2qc1

T

V
2

,

(3.51)

where, k1 = µ+ (p2≠q2)
2q . Note that, the number density and the energy density expressions

for the APM state are similar to that of the PM state. The only di�erence is that, due

to the positivity of the parameter k(r) = p+q
p≠q , the APM state is restricted in the |p| > |q|

region of the (q, p) parameter space.

The case when k(r) = 1: This condition is met when n1(r) = n≠1(r) is satisfied, which

also makes the magnetization density (defined as, n1(r) ≠ n≠1(r)) to go to zero. For this

condition the Eq.3.42a-3.42c can be written as

µ ≠ c0n ≠ U(r) = 0, (3.52a)

U(r) + c0n ≠ µ + q ≠ p = 0, (3.52b)

U(r) + c0n ≠ µ + q + p = 0. (3.52c)

Now, Eq.3.52a itself, determines the total number density,

n(r) = µ ≠ U(r)
c0

, (3.53)

which imposes the condition that this case is only restricted to the situation (from the

other two equations) when p = 0 and q = 0 (zero magnetic field). In this case, the m = 1

and m = ≠1 are equally populated. The energy density for this special case is,

e
T F
AP M(r)

------
n1=n≠1, p=0, q=0

= U(r)n(r) + c0
2 n

2(r)

= U(r)
Q

aµ ≠ U(r)
c0

R

b +

1
µ ≠ U(r)

22

2c0
.

(3.54)
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Note that for p = 0 and q = 0, the sub-component number densities of the APM state

can be described by a one-parameter family of solutions. We will discuss the situation in

Chapter 4 in a more detailed manner.

3.2 Domain formation possibilities:

In the last section, we have found all possible stationary states and their details regarding

the number density distribution and associated energy density expressions. One can com-

pare these energy density expressions that reveal which stationary state is energetically

favored locally. This will reveal the domain-forming structures if any, but to ensure the

stability of such domain structures, the chemical potential of the neighboring stationary

states should be the same. So, under a single essential constraint of the constant chemical

potential, one can compare the energy densities of all the stationary states to get to the

domain structures.

3.2.1 In the absence of spin interaction

We will start with the simplest possible case, where the spin interaction is absent or

negligibly present, i.e., c1 ƒ 0. This is the situation sitting at the boundary of the

two broad regimes namely c1 > 0 (anti-ferromagnetic type of interaction) and c1 < 0

(ferromagnetic type of spin interaction). We follow here the standard scheme of dividing

the parameter regime of spin interactions as is done for the free condensate [83] to have

a direct comparison (Fig.2.1). Note that, the stationary state structures that we have

discussed so far are present when the spin interaction is present. For c1 = 0, the right side

of the Eq.3.2-3.3 become zero for any sub-component population, a necessary condition for

the stationary states. Notice that one can relax the PM and APM phase criteria here. The

phase equations Eq.3.6-3.7 for the stationary state under the T-F approximation become

even simpler to solve for c1 ƒ 0. Setting c1 = 0, under the T-F approximation, one can

now easily get the corresponding energy densities of the seven basic spin configurations

following the similar analysis shown in the previous section. As an example, for the anti-

ferromagnetic state n0 component is empty, so for c1 ƒ 0, the solution should obey the

stationarity of the sub-component phases, i.e., ◊̇±1 = 0 (from Eq.3.7) resulting in,
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U(r) + c0n ≠ µ û p + q = 0, (3.55)

when n = n1 + n≠1. Thus, the T-F profile for the AF state in the absence of spin

interaction would be,

c0n(r) = µ ≠ q ≠ U(r), (3.56)

when p = 0. Here p = 0 is the condition for the existence of this phase. Following the

similar approach that we have already discussed in the previous section, one can get to

the number density and energy density expressions, and also the parameter restrictions

(if any) for all the stationary states for c1 = 0 (summarized in Table 3.1).

States Variation of density Energy density Restriction

(1,0,0)
F1

c0n(r) = µ+p≠q ≠U(r) e1 = [U(r)≠p+q][µ+p≠q≠U(r)]
c0

+ [µ+p≠q≠U(r)]2
2c0

none

(0,1,0)
P

c0n(r) = µ ≠ U(r) e2 = U(r)[µ≠U(r)]
c0

+ [µ≠U(r)]2
2c0

none

(0,0,1)
F2

c0n(r) = µ≠p≠q ≠U(r) e3 = [U(r)+p+q][µ≠p≠q≠U(r)]
c0

+ [µ≠p≠q≠U(r)]2
2c0

none

(1,1,0) c0n(r) = µ ≠ U(r) e4 = U(r)[µ≠U(r)]
c0

+ [µ≠U(r)]2
2c0

p = q

(1,0,1) c0n(r) = µ ≠ q ≠ U(r) e5 = [U(r)+q][µ≠q≠U(r)]
c0

+ [µ≠q≠U(r)]2
2c0

p = 0

(0,1,1) c0n(r) = µ ≠ U(r) e6 = U(r)[µ≠U(r)]
c0

+ [µ≠U(r)]2
2c0

p = ≠q

(1,1,1) c0n(r) = µ ≠ U(r) e7 = U(r)[µ≠U(r)]
c0

+ [µ≠U(r)]2
2c0

p = q = 0

Table 3.1: Number density and energy density of the stationary states at c1 = 0. All the
mixed states are restricted in p, q parameter states.

Note that, the restrictions present on the parameters corresponding to the last four
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phases in Table 3.1, which are p = q, p = 0, p = ≠q, and p = q = 0 arise from the solutions

of phase equations in the absence of spin interaction. An immediate consequence of these

parameter restrictions is that, except for the case i.e. p = q = 0, the states (1, 1, 0),

(1, 0, 1), and (0, 1, 1) cannot exist together. So, there is no domain formation for these

phases anywhere over the (q, p) parameter space except at the origin.
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Figure 3.1: (a) Possibility of coexisting phases and domain formation in (q, p) parameter
space of trapped spin-1 BEC for c1 = 0. The states (1, 0, 0), (0, 0, 1) and (0, 1, 0) are
represented by F1, F2 and P for better visibility. Phase separation is not possible in the
shaded region (q > 0 with |q| > |p|). (b) For a uniform two-dimensional harmonic trap,
the distance (r0) from the center of the trap where the phase separation occurs is shown
schematically. For positive q (shaded region), no domain structure is found.

Fig.3.1(a) is a phase diagram showing the coexistence possibilities of the first three

phases (1, 0, 0), (0, 1, 0) and (0, 0, 1) in di�erent regions of the on the qp-plane at c1 = 0.

This gives us a clear idea as to where on this phase diagram the domain formation can

be expected, depending upon any particular form of the trapping potential U(r), which

is considered to be harmonic trapping in this context. The phases (1,1,0) and (0,1,1) can

only exist along the diagonal lines p = q and p = ≠q respectively. The AF phase (1,0,1)

only exists along the q-axis, whereas (1,1,1) can exist only at the origin (of the qp-plane). A

pair-wise comparison of energy densities of stationary states with same chemical potential

captures the possible phase-coexistence inside a harmonic trap for negative values of the

quadratic Zeeman term, q (see Fig.3.1(b)). This also includes an estimation of the radius

of phase boundaries under harmonic confinement. The same comparison is su�cient to
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deduce that no phase separation or domain formation is possible for q > 0. Note that, in

principle, the ferromagnetic and the polar states can coexist in the region I and VI, (in

Fig.3.1(a)) still there is no phase separation in this region (Fig.3.1(b)). This will be clear

when we will discuss the reason for not getting phase separation for q > 0.

As an example, let us choose a region (III) where the first three single-component

phases can exist. We can assume the trapping potential to be a 2D harmonic confinement,

U(r) = 1
2Ÿr

2, where Ÿ is related to the trapping frequency Ê as, Ÿ = MÊ
2. A comparison

of energy densities of the (1, 0, 0) and (0, 1, 0) states,

�e12 © e1 ≠ e2 =
(p ≠ q)

1
2U(r) ≠ (p ≠ q)

2

2c0
, (3.57)

implies that the state (1, 0, 0) energetically is favored below a radius r
2
0 = (p≠q)/Ÿ because

(p ≠ q) > 0. The state (0, 1, 0) should be existing for r > r0 and is the peripheral state

when (1, 0, 0) sits at the core of the harmonic trap. This type of domain formation cannot

happen when (p≠q) is negative as r
2
0 > 0, which implies that the phase separation between

the F1 and P is only possible in region-I, II, III and IV of Fig.3.1(a), where (p ≠ q) > 0.

Under the T-F approximation, these pair-wise comparisons of energy density reveals

the ground state domains of stationary states for c1 = 0. Note that, in the regions marked

as III and IV in Fig.3.1(a), all three types of phase separation are allowed. No cases can

be found for simultaneous domain formation including all three states. As we are doing

a pair-wise comparison, in situations where there are more than one possibility of phase

separations, one can start the analysis by first considering which of the states is energet-

ically favored at the center of the trap. This is a logical first step as the condensation in

an experimental situation arises first at the central region because of the density being

maximum there [120]. For example, in region-III one can start with the F1 state that

is energetically minimum at U(r) = 0, the center of the trap. Out of the two domain-

forming possibilities with either the polar or F2 states, the polar state wins because the

separation can happen at a smaller radius than that with the F2 state. Now, when the

polar or (0,1,0) state is in the outer region, one can check that the (0,0,1) never wins

energetically over (0,1,0).

The T-F approximated energy densities of the three unrestricted stationary states (F1,
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P, and F2) are compared simultaneously (not a pair-wise comparison) to get the phase

diagrams (Fig.3.2) on an U(r) vs p and U(r) vs q planes under the constraint of a constant

chemical potential.
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Figure 3.2: Phase-coexistence of a spin-1 BEC without spin interaction (c1 = 0). (a)
and (b) showing phase separation for opposite linear Zeeman terms. These sub-figures
are symmetric under the change in the direction of the magnetic field, which determines
the sign of p. Depending on the sign of p, the ferromagnetic states swap their positions,
which is natural as the direction of the magnetic field favors one out of the two possible
ferromagnetic states. (c) The quadratic Zeeman term is fixed at a negative value. The
phase boundaries remain una�ected by the change of chemical potential (µ). In this and
all the following figures, p, q, and U(r) are shown in Hz, obtained by dividing the energy
by Planck’s constant, h.

If the quadratic Zeeman term q is su�ciently negative with |q| > |p|, phase separation

between ferromagnetic and polar phases is observed, where near the center of the trap

(1,0,0) state is energetically favored when the linear Zeeman term is positive (Fig.3.2(a)).

Similarly, when p is negative and the above-mentioned condition is met, domain structure
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with the other ferromagnetic state (0,0,1) occupying the central region along with the

polar state in the peripheral region is observed (see Fig.2.1(b)). For small negative values

of q, such that |q| < |p|, domain formations between the ferromagnetic states are observed.

For this situation, if p is positive F1 or the (1,0,0) state is energetically lowest at the trap

center (Fig.3.2(a)) which corresponds to region-II in Fig.3.1(a). Whereas, F2 or the (0,0,1)

state is favored at the central region when p is negative (see Fig.2.1(b)) which corresponds

to region-V of Fig.3.1(a).

All possible domain structures involving the stationary states can be observed for nega-

tive values of q, which is shown in Fig.3.2(c) while the pair-wise energy density comparison

tells that no possible phase separation can happen for q > 0. The ground state will be

selected depending on the chemical potential µ. As we are only focussing on the phase

separation scenario, we are keeping a constant µ for the three unrestricted stationary

states. We find (0, 0, 1) to be energetically lowest for p > 0 and q > 0 (in the region-I,

VIII) which can also be seen in Fig.3.2(a)). This situation will change when the constant µ

condition is relaxed in order to find the only existing phase without any phase separation.

One can look for the ground state in these regions given that the particle numbers present

in the condensate are fixed. This reveals that the F1 state or (1,0,0) state becomes the

ground state in region-I, VI and the polar state becomes the ground state in region-VII,

VIII, which is shown in the shaded region of Fig.3.1(b). The present analysis captures all

the possibilities of phase separation under the T-F approximation.

If we compare the results obtained in this confined case with the phase diagram of the

uniform BEC, we can notice that Fig.2.1(b) indicates there can be no phase-coexistence

of the two opposite ferromagnetic phases (at nonzero p). In contrast, the confined picture

reveals the opposite. Thus, one should probe the phase separation scenario under actual

confinement following the method shown in this section, rather than extrapolate the

results based on the density of the homogeneous case to that under confinement.

3.2.2 Anti-ferromagnetic type of spin interaction

In the previous section, we discussed how the T-F approximated energy density com-

parison of all possible stationary states reveals domain-forming possibilities when the

spin interaction is absent. Here, we will compare the stationary states for the anti-
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ferromagnetic type of spin interaction, i.e., c1 > 0. In section 3.1, we have looked into

all possible stationary states under confinement using the T-F approximation and also

found out the number density and energy density for each stationary state. As we are

going to compare the energy densities, the results of section 3.1 are summarized in Table

3.2 for convenience. Note that, the energetic comparison can be done for a range of p

States Variation of density Energy density Restriction

(1,0,0)
F1

(c0 + c1)n(r) = µ + p ≠
q ≠ U(r)

[U(r)≠p+q][µ+p≠q≠U(r)]
(c0+c1) + [µ+p≠q≠U(r)]2

2(c0+c1) none

(0,1,0)
P

c0n(r) = µ ≠ U(r) U(r)[µ≠U(r)]
c0

+ [µ≠U(r)]2
2c0

none

(0,0,1)
F2

(c0 + c1)n(r) = µ ≠ p ≠
q ≠ U(r)

[U(r)+p+q][µ≠p≠q≠U(r)]
(c0+c1) + [µ≠p≠q≠U(r)]2

2(c0+c1) none

(1,1,0)
MF1

(c0+c1)n(r) = µ≠U(r)+
(p ≠ q)

U(r)[µ+p≠q≠U(r)]
(c0+c1) + c0[µ+p≠q≠U(r)]2

2(c0+c1)2 +
c1
2 n

2
1

n0 = p≠q
c1

(1,0,1)
AF

c0n(r) = µ≠q≠U(r) and
(n1 ≠ n≠1) © Fz = p

c1

[U(r)+q][µ≠q≠U(r)]
c0

+ [µ≠q≠U(r)]2
2c0

≠ p2

2c1
none

(0,1,1)
MF2

(c0+c1)n(r) = µ≠U(r)≠
(p + q)

U(r)[µ≠p≠q≠U(r)]
(c0+c1) + c0[µ≠p≠q≠U(r)]2

2(c0+c1)2 +
c1
2 n

2
≠1

n0 = ≠p≠q
c1

(1,1,1)
(A)PM

(c0 + c1)n(r) = k1 ≠ U(r)
where, k1 = µ + (p2≠q2)

2q

U(r)[k1≠U(r)]
c0+c1

+ c1
2

Ë
k1≠U(r)

c0+c1
≠ p2≠q2

2qc1

È2
+

c0
2

Ë
k1≠U(r)

c0+c1

È2
PM (|p| < |q|)
APM (|p| > |q|)

Table 3.2: T-F approximated number density and energy density expressions for di�erent
stationary states at for a generic trapping potential, are shown here. As the n0 component
is strictly positive, the mixed-ferromagnetic states, MF1, and MF2 are restricted in a
(q, p) parameter space (depending on the sign of c1). The APM and the PM state are
identical in their number density and energy density expressions. The APM state is only
valid when |p| > |q| whereas, the PM state exists when |q| > |p| is satisfied. [121, 122]
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and q values along with the trapping potential U(r) keeping in mind that, for the mixed

states, the sub-component densities must be positive. This puts restrictions over p and

q for all the mixed states. For example, the T-F approximated number density of the

anti-ferromagnetic state (Eq.3.19a-3.19b),

n±1(r) = µ ≠ q ≠ U(r)
2c0

± p

2c1
, (3.58)

restricts the AF state inside the allowed values of p and q so that, both the sub-component

densities are positive, i.e.,

c1
c0

(µ ≠ q ≠ U(r)) > p > ≠c1
c0

(µ ≠ q ≠ U(r)) . (3.59)

This condition is similar to the restriction over p, which is ≠c1n < p < c1n, for the

untrapped (homogeneous number density) case [83] which we have briefly discussed in

section 2.4.

We will take the realistic example of 23
Na, for which the spin interaction is of anti-

ferromagnetic type. The numerical value of c1 is 2.415 ◊ 10≠19
Hz m

3, where the energy

is in units of Hz, which is obtained by dividing the S.I value by h, i.e, Planck’s constant.

The parameter c0 is 149.89 ◊ 10≠19
Hzm

3 for this element [83, 119, 123]. Now, the energy

density of all possible states can be compared to look for phase-separated structures at a

constant chemical potential (µ) ensuring chemical stability. We fix the µ roughly at 400

nK, which is roughly 7084 Hz. We vary the parameter p and q within a range of ≠150Hz

to 150Hz. External potential U(r) is varied from 0 to 170Hz. As we are relying on the

T-F approximation, we have restricted the search for domain structure to a region near

the center of the trap, where the density is higher and the T-F approximation, in general,

is valid. Note that, one can expect a significant deviation from the T-F approximated

number density profile near the T-F radius, where according to the T-F approximation,

the density sharply goes to zero. For example, the T-F radius is at around U(r) of the

order of 6000 Hz for the ferromagnetic states with the specified range of p and q.

For the purpose of better representation, we fix either p or q and tune the other with

U(r). For a fixed value of q = ≠40 Hz, domain structures between the ferromagnetic

states are obtained. If the linear Zeeman term is negative, a bilayer domain with the F2
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state at the core and F1 state in the outer region is observed (Fig.3.3(a)). The situation

is just the opposite for positive values of p, where the F1 state energetically favored near

the high-density central region and the F2 state staying in the low-density region form a

phase-separating structure in Fig.3.3(b).
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Figure 3.3: Domain formation possibilities for the anti-ferromagnetic type of spin-spin
interaction (c1 > 0) involving two coexisting stationary states. Phase separation between
the two ferromagnetic states when the quadratic term is fixed at q = ≠40 Hz, (a) with
the F2 state occupying the central region for negative values of p, and (b) the F1 state
energetically favored in the high-density region with positive p. In both cases, the domain
boundary is una�ected by the change in the magnitude of p. (c) For fixed value of p, the
same domain boundary gets a�ected by the change in the magnitude of q as, U(r) = ≠q.

Fig.3.3(a) and Fig.3.3(b) show that for a fixed negative value of the quadratic Zeeman

term q, the domain boundary is insensitive to the change of p. Whereas, if the linear term

is fixed at p = 100 Hz, for negative q values, one can see in Fig.3.3(c), that the F1 state

which occupies the central region pushes the domain boundary outward as q is further
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decreased.
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Figure 3.4: Domain formation possibilities for the anti-ferromagnetic type of spin-spin
interaction (c1 > 0) involving three coexisting stationary states. (a) For small values
of positive p and negative q, the F1 state occupies the center, with the F2 state in the
middle followed by the PM state in the outer region of the trap. (b) With the change in
sign of p, a similar tri-layer domain structure with the interchange of the position of the
ferromagnetic states is observed.

Another interesting possibility is to have a tri-layer domain formation where three

stationary states coexist side by side. Such a situation is obtained for very small values

of linear and quadratic terms. In Fig.3.4(a), the linear term is fixed at a small positive

value, where we get a tri-layer domain between the F1 state at the central region followed

by the F2 state in the middle and the PM state (as, |q| > |p|) at the low-density region

of the trap. For fixed negative values of q and varying negative p a similar structure is

obtained with the F2 state now occupying the central region and F1 in the middle, while

the PM state occupying the low-density region (see Fig.3.4(b)).

Note that, all domain structures are obtained for negative values of q. Although spin-

spin interaction is positive (i.e., c1 > 0), the anti-ferromagnetic state does not win ener-

getically to show phase-coexistence. Moreover, the mixed-ferromagnetic states and the

APM state also do not partake in any domain structures. There is no underlying reason

for not getting domain structures, where these stationary states are involved, and there is

a possibility of getting such domain structures if we go beyond the specified range of U(r)

or even p, q values. This fact indicates to some limitations of the T-F approximation.

The phase-coexisting structures discussed till now, are for a generic trapping potential



46 CHAPTER 3. DOMAIN FORMATION IN A TRAPPED SPIN-1 BEC

U(r) under the T-F approximation. Now, to get to the radial variation of (sub-component)

densities of the domain forming stationary states, one can use the analytical expressions

of number densities summarized in Table 3.2. We assume a 3D harmonic confinement

with the trapping frequency, Ê = 2fi ◊ 100 Hz.
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Figure 3.5: The radial density plot corresponding to the domain formation possibility
shown in Fig. 3.3(c), inside an isotropic 3D harmonic confinement.

We can fix the linear and quadratic terms at p = 100 Hz and q = ≠10 Hz that

corresponds to the domain structure shown in Fig.3.3(c). The F1 state occupies the central

region of the trap which corresponds to the n1 component that decreases with radial

distance from the trap center as ≠r
2. This is followed by the F2 state (n≠1 component)

that appears roughly at a distance of 0.94 µm from the center of the trap (Fig.3.5). Note

that, the di�erence in the T-F approximated density of the ferromagnetic states near the

domain boundary is not very large, which increases the chance for mechanical stability.

3.2.3 Ferromagnetic type of spin interaction

In this section, we search for domain-forming possibilities when c1 < 0, i.e., for the ferro-

magnetic type of spin interaction. We take the parameter values corresponding to spin-1
87

Rb BEC, for which c1 comes out to be ≠0.275 ◊ 10≠19
Hz m

3. The spin-independent

interaction coe�cient c0 is 78.02 ◊ 10≠19
Hz m

3 for this element [83, 124]. To probe for

domain structure we vary the controllable parameters p, q, and the trapping potential

U(r) within the same range specified in the previous section. The chemical potential µ is

also fixed at the same value of 7084 Hz.

When q is fixed at a small negative value, the anti-ferromagnetic state (1,0,1), dominates
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Figure 3.6: Phase-coexistence possibilities for ferromagnetic type spin interaction. Fixing
the quadratic term, q at the specified values, and for small p, possible phase separations
between the anti-ferromagnetic and polar states are observed with the sign of q being (a)
negative favors the AF state, and (b) positive favors the polar state in the high-density
region. (c) Similar domain structure is also present for small positive p and large negative
values of q.

near the center of the trap, for very small values of p, while the polar state (0,1,0) forms

a domain structure staying in the low-density region (see Fig.3.6(a)). With the increment

of the magnitude of p, the domain boundary moves towards the trap center and for

su�ciently large p, this domain structure is lost. A contrasting situation is obtained if q

is fixed at a small but positive value. For small values of p, except near p = 0, the polar

state energetically winning near the center of the trap coexist with the AF state. An

increment in the magnitude of p only broadens the central domain occupied by the polar

state (in Fig.3.6(b)). The AF-polar domain structure is also observed for large values of

q, when p is fixed at a small positive value (see Fig.3.6(c)).



48 CHAPTER 3. DOMAIN FORMATION IN A TRAPPED SPIN-1 BEC

One of the common features of the domain structures in Fig.3.6(a) and Fig.3.6(b) is

that a slight increase of |p| would prefer the polar phase to expand its domain in both

cases. Also, after a limiting value of |p| the structure is lost. Interesting to note that, as

p appears in the energy expression of the AF state (for details see Table 3.2), an increase

in p
2 would increase its energy density (as c1 < 0). Whereas, the energy density of the

polar state does not depend on p. As a result, depletion of the domain of the AF state

with the increment in the magnitude of p is quite reasonable to occur. The energy density

of the polar state does not depend on q but the AF state gets a�ected approximately as

qn(r), where n(r) is the total density. Therefore, for negative q in Fig.3.6(a) the AF state

is energetically favored in the high-density region. Whereas, in Fig.3.6(b)), for positive q,

the AF state gets pushed away to the low-density region.

We found that there is no dominance of the ferromagnetic phases in the domain for-

mation scenario. Also, the mixed-ferromagnetic states as well as PM and APM states

do not participate in any phase-coexisting scenario. We have restricted the search to a

very small region of the parameter space for the reason specified earlier. Tuning p and q

beyond ±150 Hz, the ferromagnetic state dominates in the domain formation scenario.

Also, the other states may appear for U(r) beyond 170 Hz which we have not included

in Fig.3.6.
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Figure 3.7: In an isotropic 3D harmonic confinement, the number density variation with
the radial distance from the center of the trap is shown corresponding to the domain
formation possibility in Fig.3.6(c). The n1(r) and n≠1(r) component of the AF state
which occupies the central region decreases with the distance r, while after a distance,
which specifies the domain boundary, the polar state (n0(r) shown in solid line) appears.

We have reasoned earlier about the importance of the sub-component density plot.
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We take the example of Fig.3.6(c), where we fix the linear and quadratic Zeeman term

at 5 Hz and ≠133.94 Hz respectively. Under the same 3D harmonic confinement with

trapping frequency Ê = 2fi◊100 Hz we plot the radial variation of sub-component number

densities in Fig.3.7. The AF state staying at the central region of the trap vanishes at an

approximate distance of 0.95 µm. One can check from Table 3.2 that for the AF state,

the n≠1(r) component is greater than the n1(r) even for p > 0 as c1 < 0. The polar phase

with only one sub-component n0(r) occupies the outer region at approximately r & 0.95

µm. The total number density of the AF and the polar state at the interface, in this case

also, is not very large, which is important for mechanical stability.

3.3 Discussion

In this chapter, we have considered a trapped spin-1 BEC, and from the GP equation, we

find out the allowed stationary state structures. Under the Thomas-Fermi approximation,

we got to necessary details of the stationary states in terms of the sub-component and

energy density, which in turn, produces the total energy as well. A comparison of the

energy densities for di�erent stationary states can be done on an equal footing, which

gives an idea about the stationary state that is favored locally inside the confinement.

This allows for the study of possible domain-forming structures, under a single essential

constraint of the same chemical potential (µ) for the chemical stability of the neighboring

domains. This procedure is quite general and is applicable to any trapping geometry.

The method presented in this chapter can capture all possible domain-forming scenarios

in a unified way, whereas the phase separation studies are previously done mostly on a

case-by-case basis.

We started with the simple possible case, that is in the absence of the spin-interaction

(c1 = 0), which is the Manakov limit in the soliton studies [71]. Not only this case has

theoretical importance, but also it is experimentally possible to tune the spin interaction

parameter close to zero by applying optical and magnetic Feshbach resonance [115, 125–

127]. In this situation, we demonstrate that a pair-wise comparison of energy density is

enough to predict the phase separation scenario, as the multi-component states, in this

case, are severely restricted in (q, p) parameter space, reducing significant e�ort.

We have also presented a detailed study of the phase-coexistence of stationary states for
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both the ferromagnetic and the anti-ferromagnetic type of spin interaction. The procedure

presented in this section is indeed very general and captures all possible multi-component

states equally, irrespective of the confining potential, as long as the T-F approximation is

valid. Although, for demonstration purposes, we have made use of 3D isotropic harmonic

confinement, the same analysis can be used to include any potential and can be extended

to e�ectively 2-dimensional or 1-dimensional systems. GP dynamics for e�ective 2- and

1-dimensional systems are obtained by integrating out the dimensions which are confined

below the healing length [115] that yields the same structure of GP model with the

renormalized couplings, i.e., the length scales of the confined dimensions would feature in

the interaction parameters c0 and c1.

Note that, while the T-F approximation is excellent near the center of the trap, one

can expect a significant deviation from the T-F approximated results near the low-density

region of the trap, i.e., near the T-F radius (where the T-F approximated density sharply

goes to zero, which is also not physical at all). As the linear and quadratic Zeeman terms

also a�ect the T-F radius, we have restricted our search for domain structures to a narrow

range of p, q values. Also, we have only considered the trapping potential from 0 to 170

Hz, which is in very narrow proximity to the center of the trap. Note that, near the T-F

radius of the ferromagnetic states the U(r) is of the order of 6000 Hz. We have found

a remarkable result that when interactions are ferromagnetic, the anti-ferromagnetic and

polar phases dominate the domain formation scenario and for the anti-ferromagnetic type

of spin interaction the situation is just the opposite. It should be noted that the Zeeman

terms may be varied to even higher values [128] and the scheme shown here using energy

density comparison should su�ce to reveal any domain structure even in that regime as

long as one can rely on the T-F approximation.

The domain boundaries obtained from the T-F approximation serve as the first step for

the study of dynamics under various conditions. Near the phase boundaries, the derivative

of the order parameter becomes significant and cannot be neglected, however, under the

T-F approximation that is not the case. So, it is essential that the stability analysis

around each and every phase boundary of phase domains be done which would provide a

deeper understanding of the domain formation scenario. The constant chemical potential

constraint which is essential for the chemical stability of coexisting phases may also be a

heavy requirement for many cases under various conditions. The failure of maintaining
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this constraint may also rule out some otherwise allowed structures. However, that can

only be understood once we look into the requirement of fulfilling this constraint explicitly.

But, the analysis and the predictions presented in this chapter would serve as a starting

point for all these prospects essentially in a broader sense.
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Chapter 4

Variational method: Ground state

properties in the absence of the

magnetic field

In the previous chapter, we derived the number density and energy density expressions

corresponding to each stationary state of a trapped spin-1 BEC under the T-F approxima-

tion. These T-F approximated energy densities were compared locally, under an essential

constraint of the same chemical potential that revealed all possible domain structures.

Note that, the T-F approximation is widely used to study trapped condensates for its

analytical ease, but it is only valid as long as the density is large enough to neglect the

kinetic energy contribution. There exist many situations, where even if this condition is

met, the application of the T-F approximation could give rise to other issues. For large

condensates, where the density is high enough, situations may arise when the competing

stationary states have comparable total energy under the T-F approximation. In such

cases, the kinetic energy may become a distinguishing factor, and should not be neglected.

In this chapter, we present a case study related to the ground state of a harmonically

trapped spin-1 BEC under the influence of spin interaction when the external magnetic

fields are negligible. We will start with the T-F approximated results, which would reveal

that the total energy of the competing stationary states which are ground state candidates

are so close that one cannot ignore the kinetic energy contribution. To give an alternative

53



54
CHAPTER 4. VARIATIONAL METHOD: GROUND STATE PROPERTIES IN THE

ABSENCE OF THE MAGNETIC FIELD

and better method that takes account of the kinetic energy of the system, which is ne-

glected in the T-F approximation, we introduce a multi-modal variational method. This

variational method works exceptionally well to provide a detailed and rigorous insight into

the problem at hand, which is beyond the scope of the T-F approximation. This method

is general enough to be applied to other situations where the T-F approximated results

are inconclusive. Additionally, this multi-modal variational method produces accurate

results even for small condensates with particle numbers as low as 500, where the density

is not high enough to trust the T-F approximated results.

The spinor BEC attracted a lot of attention due to its complexity and rich ground state

structures [49, 83, 95, 114, 129]. Many theoretical and computational studies have been

done to understand the role of spin-spin interactions on the ground state structure. This

often requires a negligible presence (or absence) of the external field. As a result, there

have been a lot of analyses on the ground state when the quadratic and linear Zeeman

terms are practically zero [115, 116].

In [54], the ground state structure in a harmonic confinement was studied by T.-L.

Ho, where it was shown that the ferromagnetic state becomes the ground state when the

spin interaction is of the ferromagnetic type, and for the anti-ferromagnetic interaction

the polar state is energetically favored to become the ground state. It was also argued

that, due to spin rotational symmetry, there exist degenerate states that are equally

likely to be the ground state. It is obvious that the anti-phase-matched (APM) state,

the polar state, and the anti-ferromagnetic (AF) state are the stationary states that fall

into this degenerate class. In another notable theoretical work [130], the single-mode

approximation (SMA) was employed for the three-component states. Note that, in SMA,

it is assumed that all the sub-components share the same spatial profile. The ground

state structure is investigated with these three-component states to check the validity

of SMA. Due to the fixing of magnetization (M ”= 1), the phase-matched (PM) state

becomes the ground state that follows SMA (for the ferromagnetic type of interaction).

In contrast, the APM state, which does not follow SMA, becomes the ground state when

spin-interaction is of anti-ferromagnetic type. One can also start with non-equilibrium

populations in di�erent spin components and with time evolution get to the ground state

with the equilibrium densities [131]. The ground state structure with fixed magnetization

[115, 129], or in zero magnetic force [116] have also been explored. One can also get to the
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phase diagram of ground states by tracking modulational instability for anti-ferromagnetic

condensate [100]. The ground state phase diagram gets substantially modified if the finite

temperature e�ects [132–134] and interparticle correlations [135] are included.

The variational approach that we develop and present in this chapter was partly de-

veloped in [136] by Pendse and Bhattacharyay for non-spinor BEC. This multi-modal

approach takes into account the individual Zeeman components. Not only this method

provides a smooth density profile of the Zeeman components but also ensures a smooth

energy-density profile where, unlike the T-F approximation, the kinetic energy is not

neglected.

4.1 T-F approximated total energy in the absence of

the magnetic field

Before we go into the details of the variational method, we will discuss the T-F approxi-

mated results briefly. It should be noted that at zero magnetic fields, the system becomes

degenerate even at non-zero temperature [128]. In the absence of the magnetic field, the

linear and quadratic Zeeman term is obviously not present, i.e., p = 0 and q = 0 and it

is interesting to look at the e�ect of the spin-dependent interaction [54, 115, 131]. Note

that, the T-F approximated energy density corresponding to the (A)PM state shown in

Table 3.2 is ill-defined at q = 0. To get rid of this issue, one can rewrite the GP equation

with p, q = 0 in the first place and solve the phase equations to get the details of the PM

state. In Chapter 3, we have already discussed the k(r) ©
Ò

n1(r)/n≠1(r) = 1 case for the

APM phase, which corresponds to the situation p = 0 and q = 0. We can use the energy

density of the APM state (shown in Eq.3.54) as obtained under the T-F approximation

in this limit.

For the purpose of completeness, we will have a very brief discussion about the sta-

tionary states at p = 0 and q = 0 as obtained from the T-F approximation. To get to

the ground state, we will consider a fixed number of condensate particles, for which the

chemical potential would be di�erent for di�erent stationary states. In the subsequent

analysis, we will explicitly assume the three-dimensional isotropic harmonic confinement,

and compare the total energy of the di�erent stationary states which reveals the ground
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state under the T-F approximation. We will also consider a one-dimensional harmonic

trapping geometry and quantitatively discuss the T-F approximated results in that case.

Note that, the numerical solution of the GP equation is easier to obtain in one-dimensional

case.

4.1.1 Stationary states at p=0 and q=0

Putting p = 0 and q = 0 in the GP equation leads to the phase equations,

~◊̇0 = 1
Ò

n0(r)

Q

a ≠ ~2Ò2

2M
+U(r)+ c0n≠µ

R

b
Ò

n0(r)+ c1
1
n1 +n≠1 +2Ô

n≠1n1 cos ◊r

2
, (4.1)

~◊̇±1 = 1
Ò

n±1(r)

Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ

R

b
Ò

n±1(r) ± c1
1
n1 ≠ n≠1

2

+ c1n0

Q

a1 +
ı̂ıÙnû1(r)

n±1(r) cos ◊r

R

b.

(4.2)

Under stationarity conditions, and in the T-F approximation, the solution corresponding

to the single-component states i.e., the ferromagnetic states and the polar state can be

easily obtained, which is similar to that shown in Table 3.2 with p = 0 and q = 0. The

same goes for the anti-ferromagnetic state. These results are summarized in Table 4.1.

Note that, mixed-ferromagnetic states (MF1 and MF2) are not allowed in this limit as the

n0 component becomes zero (see Table 3.2). We will focus on the other multi-component

states in this limit, of which only the (A)PM state requires attention in this limit, as the

energy density shown in Table 3.2 corresponding to these states is ill-defined when p = 0

and q = 0.

Phase-matched state (PM)

The stationary state corresponding to the relative phase ◊r = 0 with all three sub-

components populated is known as the phase-matched (PM) state. Under T-F approxi-

mation, Eq.4.1-4.2 can be simplified for this stationary state,

U(r) + c0n ≠ µ + c1
1
n1 + n≠1 + 2Ô

n≠1n1
2

= 0, (4.3)
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U(r) + c0n ≠ µ + c1
1
n1 ≠ n≠1

2
+ c1n0

Q

a1 +
ı̂ıÙn≠1(r)

n1(r)

R

b = 0, (4.4)

U(r) + c0n ≠ µ ≠ c1
1
n1 ≠ n≠1

2
+ c1n0

Q

a1 +
ı̂ıÙ n1(r)

n≠1(r)

R

b = 0, (4.5)

where cos ◊r = 1 as ◊r = 0. Now the addition of the last two equations leads to,

U(r) + c0n(r) ≠ µ + c1n0
2Ô

n1n≠1
(n1 + n≠1 + 2Ô

n1n≠1) = 0. (4.6)

If we compare this with the phase equation corresponding to ◊̇0 = 0, i.e., Eq.4.3, we get

a relation between the n0 and the other two sub-components,

n0 = 2Ô
n1n≠1, (4.7)

which is valid as long as all the sub-components are populated, which as we have discussed

earlier, is a necessary condition for the (A)PM state. One can also subtract the Eq.4.5

from the Eq.4.4, which does not give any new condition but rather confirms the same

relation.

One can use the relation Eq.4.7 in Eq.4.3, that leads to

U(r) + c0n ≠ µ + c1
1
n1 + n≠1 + n0

2
= 0, (4.8)

which can be rearranged to get to the total number density,

n(r) = µ ≠ U(r)
c0 + c1

, (4.9)

where the total number density is obviously the sum of all the sub-component densities,

i.e., n(r) = n1(r) + n0(r) + n≠1(r). Now depending on the magnetization density m̃ ©

n1(r) ≠ n≠1(r), one can write the sub-component densities as

n1(r) =

Ë
n(r) + m̃(r)

È2

4n(r) , (4.10a)

n0(r) = n
2(r) ≠ m̃

2(r)
2n(r) , (4.10b)
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n≠1(r) =

Ë
n(r) ≠ m̃(r)

È2

4n(r) . (4.10c)

These expressions can be used in the T-F approximated energy density expression [83,

137],

e(r) = U(r)n(r) + c0
2 n

2(r) + c1
2 (n1 ≠ n≠1)2 + c1n0 [n1 + n≠1 + 2Ô

n1n≠1cos◊r] , (4.11)

which leads to the energy density for this state in this limit,

eP M(r) = U(r)n(r) +
3

c0
2 + c1

2

4
n

2(r). (4.12)

Note that, though the magnetization density m̃(r) is required to get the sub-component

density expressions, it does not appear in the energy density. As a result, this parameter

can be used as a free parameter in the analysis.

Anti-phase-matched state (APM)

If all the sub-components are populated with the relative phase, ◊r = fi, the stationary

state is known as the anti-phase-matched (APM) state. In the previous chapter, we have

already discussed the condition of k(r) = 1 case which corresponds to the p = 0 and q = 0.

For completeness, we will discuss this again in this context, starting with Eq.4.1-4.2.

Under the T-F approximation, the phase stationary equations lead to,

U(r) + c0n(r) ≠ µ + c1 (n1 + n≠1 ≠ 2Ô
n1n≠1) = 0, (4.13)

U(r) + c0n(r) ≠ µ + c1(n1 ≠ n≠1) + c1n0

Q

a1 ≠
ı̂ıÙn≠1(r)

n1(r)

R

b = 0, (4.14)

U(r) + c0n(r) ≠ µ ≠ c1(n1 ≠ n≠1) + c1n0

Q

a1 ≠
ı̂ıÙ n1(r)

n≠1(r)

R

b = 0, (4.15)

where cos ◊r = ≠1 corresponding to ◊r = fi is used. In a similar manner as done for the
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PM state, the addition of the last two equations would provide,

U(r) + c0n(r) ≠ µ ≠ c1n0
2Ô

n1n≠1

1
n1 + n≠1 ≠ 2Ô

n1n≠1
2

= 0, (4.16)

which when compared to Eq.4.13, tells that n0 = ≠2Ô
n1n≠1 must be satisfied, which is a

clear violation of the assumption Eq.3.1 taken to get to the phase equations. According

to the assumption Eq.3.1, Ô
nm for m = ±1, 0 are strictly positive for this state. If there

is a negative sign in the wave function that is absorbed in the phase factor exp
1

≠ i◊m

2
.

So the only possible way in which both Eq.4.13 and Eq.4.16 can be correct is when

n1 + n≠1 ≠ 2Ô
n1n≠1 = 0, (4.17)

is satisfied, which means, Ô
n1 = Ô

n≠1. This is exactly the condition k(r) = 1 we saw in

the last chapter. This also tells that the APM state with non-zero magnetization is not

a possibility allowed in the absence of the magnetic field.

From Eq.4.13, using the relation we obtained, one can write the total number density,

c0n(r) = µ ≠ U(r). (4.18)

Note that, the sub-component number densities do not come out from the phase equations.

All the phase equations, under the relation we obtained in Eq.4.17, only lead to the total

number density expression. Not even from the minimization of energy density, the sub-

component population can be obtained. So, in the absence of the magnetic fields, the APM

state is a one-parameter family of stationary states, with zero magnetization density. The

energy density for this state is

eAP M(r) = U(r)(µ ≠ U(r))
c0

+ (µ ≠ U(r))2

2c0
, (4.19)

which we had already obtained in Eq.3.54.

Except for the (A)PM states, results corresponding to other stationary states can be

straightforwardly obtained by putting p = 0 and q = 0 in Table 3.2. For convenience, the

T-F approximated number density profiles and the energy density for all the stationary

states, in the absence of the magnetic field, are summarized in Table 4.1.
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States Variation of density Energy density

(1,0,0)
F1

(c0 + c1)n(r) = µ ≠ U(r) U(r)

1
µ ≠ U(r)

2

(c0 + c1)
+

1
µ ≠ U(r)

22

2(c0 + c1)

(0,1,0)
P

c0n(r) = µ ≠ U(r) U(r)(µ ≠ U(r))
c0

+ (µ ≠ U(r))2

2c0

(0,0,1)
F2

(c0 + c1)n(r) = µ ≠ U(r) U(r)

1
µ ≠ U(r)

2

(c0 + c1)
+

1
µ ≠ U(r)

22

2(c0 + c1)

(1,0,1)
AF

c0n(r) = µ ≠ U(r) and n1(r) = n≠1(r) U(r)(µ ≠ U(r))
c0

+ (µ ≠ U(r))2

2c0

(1,1,1)
PM

(c0 + c1)n(r) = µ ≠ U(r) U(r)

1
µ ≠ U(r)

2

(c0 + c1)
+

1
µ ≠ U(r)

22

2(c0 + c1)

(1,1,1)
APM

c0n(r) = µ ≠ U(r) and n1(r) = n≠1(r) U(r)(µ ≠ U(r))
c0

+ (µ ≠ U(r))2

2c0

Table 4.1: The T-F approximated number density and energy density expressions for
di�erent stationary states in the absence of the magnetic fields are summarized. The
states, MF1, and MF2 are not allowed for p = 0 and q = 0. The ferromagnetic states
F1, F2, and the PM state are energetically degenerate, while on the other hand, the polar,
AF, and APM states are energetically degenerate too.

4.1.2 The T-F approximated total energy for three-dimensional

isotropic harmonic confinement

Let us assume that the condensate is inside a three-dimensional isotropic harmonic con-

finement with the trapping frequency, Ê. So the trapping potential would be U(r) =
1
2MÊ

2
r

2, where M is the mass of a condensate particle. We fix the total number of con-

densate particles, say, N . If we integrate the total density for a stationary state, one gets
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the total number of condensate particles, i.e.,

⁄ R

0
n(r)dr = N, (4.20)

where R is the T-F radius.

Let us first focus on the ferromagnetic or the PM state, for which both number density

and energy density expressions are identical (see Table 4.1). For these degenerate states,

N =
⁄ R1

0
4fir

2 µ1 ≠ MÊ
2
r

2
/2

(c0 + c1)
dr = 4fiMÊ

2
R

5
1

15(c0 + c1)
, (4.21)

where R1 is the T-F radius for these states, and this is related to the chemical potential

as, µ1 = MÊ
2
R

2
1/2 [138]. Using this relation in the Eq.4.21, one can write the chemical

potential for these degenerate states as

µ1 = MÊ
2

2

C
15(c0 + c1)N

4fiMÊ2

D2
5

. (4.22)

Following the same steps one can also get to the chemical potential for the other three

degenerate states (polar/ AF/ APM),

µ2 = MÊ
2

2

5 15c0N

4fiMÊ2

62
5

. (4.23)

So, for a fixed number of particles, the chemical potential, in general, would be di�erent

for di�erent stationary states, as long as the T-F approximated total number density

expressions are not identical. Using the chemical potential, now one can integrate the

energy density to get the total energy for a stationary state, which can be compared to

get the ground state.

The total energy for the PM or the ferromagnetic states can be obtained by integrating
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the energy density given in Eq.4.12,

EP M/F 1/F 2 =
⁄

dr eP M(r)

=
⁄ R1

0
4fir

2
dr

S

U1
2MÊ

2
r

2

1
µ1 ≠ 1

2MÊ
2
r

2
2

(c0 + c1)
+

1
µ1 ≠ 1

2MÊ
2
r

2
22

2(c0 + c1)

T

V.

(4.24)

After using the relation between µ1 and R1 and the chemical potential as obtained in

Eq.4.22 the total energy can be written in a simplified form,

EP M/F 1/F 2 = 2fiM
2
Ê

4

21

5 15N

4fiMÊ2

67/5
(c0 + c1)2/5

. (4.25)

Similarly, one can get to the total energy of the other three degenerate states,

EAP M/AF/P = 2fiM
2
Ê

4

21

5 15N

4fiMÊ2

67/5
(c0)2/5

. (4.26)

Ferromagnetic type spin interaction: When the spin-dependent interaction term, c1 <

0, it is evident that, the total energy of the PM and the ferromagnetic states (Eq.4.25)

would be lesser than that of the APM, AF or polar states (Eq.4.26). So, in this case, the

PM state or the ferromagnetic states are equally likely to be the ground state.

Anti-ferromagnetic type of spin interaction: As c1 > 0, the APM or AF or the polar

states are energetically favored over the ferromagnetic or the PM state. Now, quanti-

tatively speaking, one can take the realistic example of the 23
Na condensate for which

the spin interaction is of anti-ferromagnetic type. One can assume that the trapping

frequency corresponding to the three-dimensional isotropic harmonic confinement is, Ê =

2fi ◊100 Hz. The interaction parameters for this case are, c1 = 2.415◊10≠19
Hz m

3
, and

c0 = 149.89◊10≠19
Hz m

3, where similar to the previous chapter, we have written energy

in units of Hz, which is obtained by dividing the S.I value with h, i.e, Planck’s constant.

The chemical potential of the APM, polar, and AF state comes out to be µ2 = 1033.15

Hz, which roughly is 50 nK. While the chemical potential is µ1 = 1039.04 Hz for the PM

and ferromagnetic states. Using these values we find the total energy of the PM state,

EP M/ferro ƒ 7.42 ◊ 107
Hz, while the same for the APM state is, EAP M ƒ 7.38 ◊ 107

Hz

for a total number of condensate particle assumed to be N = 105, for which the T-F

approximation is expected to produce accurate results.
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Qualitatively, we have understood that under the T-F approximation, not only the

APM state but also the polar and the anti-ferromagnetic states are equally likely to be

the ground state for the anti-ferromagnetic type of spin interaction. But quantitatively,

the energy di�erence between the ferromagnetic/PM states and the APM state is just 0.5%

of that of the PM state. This is an extremely small relative energy di�erence. In the T-F

approximation, the kinetic energy is completely neglected, but even for large condensates,

if we do not consider the kinetic energy it can have significant consequences. Needless

to say, for a system of a smaller number of particles, where the T-F approximation is

known not to be a good one, the kinetic energy contribution will be more pronounced.

This warrants a closer look at the situation beyond the T-F approximation.

But before going into that, let us discuss the total energy comparison in one-dimensional

harmonic confinement, which we will require for the comparison of the T-F approximated

results with the results obtained from the numerical and the variational method, which

we will introduce later.

4.1.3 The T-F approximated total energy comparison in quasi-

one-dimensional harmonic confinement

We assume the system to be in a quasi-one-dimensional harmonic trap elongated along the

x-axis with a trapping frequency Êx. The trapping frequency in the transverse direction

Êy and Êz are much greater than that along the x-axis, i.e., Êyz > Êx, where Êyz © Ô
ÊyÊz.

Quantitatively, we assume the oscillator length scale along the x-axis, lx =
Ò
~/mÊx is

around 2.965 µm, which is greater than the oscillator length of the transverse direction

lyz =
Ò
~/mÊyz, that is around 0.59 µm.

Now to get to the total energy of the APM, polar or AF state, one can integrate the

energy density,

EAP M/P/AF =
⁄

dr eAP M(r)

=
⁄ R2

≠R2
fil

2
yzdx

S

U1
2MÊ

2
xx

2

1
µ1 ≠ 1

2MÊ
2
xx

2
2

c0
+

1
µ1 ≠ 1

2MÊ
2
xrx

2
22

2c0

T

V,

(4.27)
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which leads to

E
1D
AP M/P/AF =

fil
2
yz

5 M
2
Ê

4
x

C
3N

2fil2
yzMÊ2

x

D5/3

(c0)2/3
. (4.28)

Using the energy density for the ferromagnetic or the PM state, the total energy of these

states in the 1-D trapping can be written as

E
1D
P M/F 1/F 2 =

fil
2
yz

5 M
2
Ê

4
x

C
3N

2fil2
yzMÊ2

x

D5/3

(c0 + c1)2/3
. (4.29)

Ferromagnetic type spin interaction: Comparing the total energy of the stationary states,

it is easy to see that, for c1 < 0, the PM or the ferromagnetic states are energetically

favored over the APM state.

Anti-ferromagnetic type of spin interaction: Qualitatively the APM, polar, or the AF

state are energetically favored over the other states to become the ground state for con-

densates with the anti-ferromagnetic type of spin-dependent interaction. But taking the

realistic example of 23
Na, as done in the case of the 3-D trapping geometry earlier, we

find that the total energy comes out to be, E
1D
AP M/P/AF ƒ 8.648 ◊ 108

Hz, while for the

PM and ferromagnetic states, it is E
1D
P M/F 1/F 2 ƒ 8.74 ◊ 108

Hz,, for N = 105 number of

condensate particles. It shows that even if the APM state or the other two degenerate

states win in this situation, the relative energy di�erence with the PM state is only 1%.

This is very small and independent of the total number N . So, it is only natural to suspect

that consideration of the full profile of the condensate along with the kinetic energy might

a�ect this conclusion of the T-F approximation. Also, for small condensates, where the

T-F approximation is not at all accurate, we need to go beyond the T-F approximation

to see whether the conclusion about the condensate ground state remains una�ected.

4.2 Variational Method

In this section, we develop a multi-modal variational method that will let us go beyond

the capability of the T-F approximation. We will focus on the scenario already discussed

in the previous section, where we saw that under 3-D or quasi-1-D harmonic confinement,

for the condensate with an anti-ferromagnetic type spin interaction, the polar, AF and the

APM states are favored to be the ground state with a very small relative energy di�erence

with the other three degenerate states (F1/ F2/ PM) in the absence of magnetic field.
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The variational method will let us get a full profile of the condensate in contrast to the

T-F profile, which might tell a di�erent story.

We will start with the 3-D case, and discuss the method in a very detailed manner.

Later we will come to the quasi-1-D case which will be helpful in comparing all the results

with the numerical simulation.

4.2.1 3-D isotropic harmonic confinement: Variational approach

First, we start with the phase equations, under stationarity condition in the absence of

the magnetic field,

Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ + c1

1
n1 + n≠1 + 2Ô

n≠1n1 cos ◊r

2
R

b
Ò

n0(r) = 0, (4.30)

Q

a≠ ~2Ò2

2M
+U(r)+c0n≠µ±c1

1
n1 ≠n≠1

2
R

b
Ò

n0(r)+c1n0

Q

a
Ò

n±1(r)+
Ò

nû1(r) cos ◊r

R

b = 0.

(4.31)

To write these equations in a dimensionless form, we rescale the interaction parameter

and the number densities as,

c0 = (4/3)fil
3
0⁄0~Ê, c1 = (4/3)fil

3
0⁄1~Ê, (4.32)

um = (4/3)fil
3
0⁄0nm, r = l0÷; (4.33)

where, l0 =
Ò
~/(mÊ) is the oscillator length scale [139] and naturally ~Ê becomes the

energy scale. After these transformations, ⁄0, and ⁄1 correspond to the spin-independent

and spin-dependent interaction coe�cients respectively. Whereas, ÷ is the radial distance

from the trap center and um is the sub-component density in dimensionless form.

Now, the phase equations for the 3-D isotropic harmonic confinement can be written

in a dimensionless form as

I

≠ 1
2

1
÷2

d

d÷
(÷2 d

d÷
) + 1

2÷
2 + u ≠ µ

Õ + ⁄
Õ
1 (u1 + u≠1 + 2Ô

u≠1u1 cos ◊r)
J

Ô
u0 = 0, (4.34)
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I

≠ 1
2

1
÷2

d

d÷
(÷2 d

d÷
) + 1

2÷
2 + u ≠ µ

Õ ± ⁄
Õ
1 (u1 ≠ u≠1)

J
Ô

u±1 + ⁄
Õ
1u0 (Ôu±1 + Ô

uû1 cos ◊r) = 0,

(4.35)

where, ⁄
Õ
1 is the ratio of the spin-dependent and spin-independent interaction coe�cients,

i.e., ⁄
Õ
1 = ⁄1/⁄0, and µ

Õ is also rescaled as, µ
Õ = µ/(~Ê). In these equations, u is the total

number density, which is the sum of the sub-component densities, i.e., u = u1 + u0 + u≠1.

In the high-density region, close to the trap center, the kinetic energy contribution is

very small compared to the interaction energy (non-linear terms), and we can neglect

the kinetic energy contribution. So, close to the trap center, one neglects the Laplacian

terms in Eq.4.34-4.35, and corresponding sub-component densities can be found out for

a stationary state as a function of the parameter µ
Õ and the radial distance ÷. Now at

the low-density region of the trap, far from the trap center, the kinetic energy will have a

significant contribution and we assume a Gaussian tail of number density in this region,

in analogy with the first few lowest energy states under harmonic potential.

We impose the condition that the wave function (by this we mean the square root of

the sub-component number density um) in the high-density and in the low-density region

match smoothly at ÷ = ÷0 i.e.,

u
in(÷) = f(µÕ

, ÷) for ÷ < ÷0,

u
out(÷) = (a + c÷ + d÷

2) exp
3

≠ ÷
2

b

4
for ÷ Ø ÷0.

(4.36)

We additionally impose that not only the wave function, but also its first, second, and

third derivatives on both sides should be equal at ÷ = ÷0.

Now, the exact functional form f(µÕ
, ÷), which describes the number density in the

high-density region of the trap is di�erent for di�erent stationary states. The solution of

the Eq.4.34-4.35 after neglecting the Laplacian term provides the f(µÕ
, ÷) which we would

see later when we discuss the variational method for the PM state or the polar state.

Following the smooth-matching-condition, a, b, c, and d can be written in terms of µ
Õ and

the matching point, ÷0. If we integrate the sub-component densities and sum it up this

should provide the total number of condensate particles, N . This can be used to write

the parameter µ
Õ as a function of N and the matching point ÷0. As a result, for a given

number of condensate particles, the total energy can be calculated easily, which becomes
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a function of ÷0. Now, from the minimization of the total energy, the free parameter

÷0 is fixed. Then, by backtracking, all the sub-component densities can be expressed

analytically.

Note that, it is essential to impose smoothness up to the third derivative, which ensures

that the kinetic energy on both sides of ÷0 matches smoothly as well. This, as a result,

allows for a smooth energy density profile. The procedure we discussed so far, takes into

account all the sub-component densities, and in general, the coe�cients a, b, c, and d

are not always identical for di�erent sub-components. Hence, this variational approach is

truly multi-modal and one can expect this to be applicable even if the sub-components

do not follow a single spatial distribution.

We will apply this method to get to the total energy of the polar state and the PM

state. This method does not break the degeneracy between the PM and the ferromagnetic

state. Similarly, the inherent degeneracy between the polar, AF, and APM states is also

not lifted by this method. So, we choose only the polar and the PM state out of the two

sets of degenerate states and apply the variational method for these stationary states in

the following.

Polar state

For this state, only the sub-component corresponding to m = 0 is populated and the other

two are empty. So, in this state, u = u0 and u±1 = 0. Now in the high-density region,

one can neglect the Laplacian term of Eq.4.34, which leads to

u
in
pol(÷) = µ

Õ ≠ ÷
2
/2. (4.37)

Note that, for the polar state, this is the expression corresponding to the function f(µÕ
, ÷)

in Eq.4.36. Using this expression in the matching condition of the number density at the

matching point ÷0, i.e.,
Ò

u
in
pol(÷0) =

Ò
u

out
pol (÷0), one can write the unknown coe�cient a in

Eq.4.36 as a function of the other unknowns, b, c, d and ÷0,

a =
1
µ

Õ ≠ ÷
2
0/2

2
exp

A
÷

2
0
b

B

≠ c÷0 ≠ d÷
2
0. (4.38)
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Similarly from the matching condition for the slope of
Ò

upol(÷) in outer and inner region

at ÷0 gives,

d = exp

A
÷

2
0
b

B A
µ

Õ ≠ ÷
2
0/2

b
≠ 1

2

B

≠ c

2÷0
. (4.39)

The second derivative matching condition gives c in terms of b and ÷0,

c =
2exp

A
÷

2
0
b

B

÷
3
0(2b ≠ 2µ

Õ + ÷
2
0)

b2 . (4.40)

The matching conditions have reduced the number of unknown coe�cients. The remaining

parameter b is obtained by matching the third derivative,

b = 1
12

3
6µ

Õ ≠ 9÷
2
0 +

Ò
36µ2 ≠ 12µÕ÷2

0 + 33÷
4
0

4
, (4.41)

where, the parameter b is written only in terms of the parameter µ
Õ and ÷0. Now using

the expression of b, the parameter c (in Eq.4.40) can also be expressed in terms of the

parameters µ
Õ and ÷0 only. The same holds true for the parameters a and d as well.

Therefore, after the matching conditions are imposed, the number density in the outer

region becomes a function of the parameters µ
Õ and ÷0 only. To determine µ

Õ, one can

use,
⁄ ÷0

0
u

in
pol÷

2
d÷ +

⁄ Œ

÷0
u

out
pol ÷

2
d÷ = ⁄0N/3, (4.42)

which is the same as
s Œ

0 npol(r)4fir
2
dr = N , written in the dimensionless form. Following

the integration and further simplification one gets to,

1
192k5/2

S

U12
Ô

k÷0

A

168kµ
Õ3 + 4µ

Õ2(≠113k + 336µ
Õ)÷2

0 + 18(23k ≠ 176µ
Õ)µÕ

÷
4
0 + 216÷

8
0

+ (53k + 816µ
Õ)÷6

0

B

+ 6 exp
Q

a12÷
2
0

k

R

b
Ô

3fi

A

336kµ
Õ4 + 128µ

Õ3(≠10k + 21µ
Õ)÷2

0

+ 8(269k ≠ 1168µ
Õ)µÕ2

÷
4
0 + 16µ

Õ(≠115k + 872µ
Õ)÷6

0 + (473k ≠ 7904µ
Õ)÷8

0 + 1464÷
10
0

B

+ exp
Q

a12÷
2
0

k

R

bk

Ô
3fi

A

≠ 168kµ
Õ3 + 4(125k ≠ 336µ

Õ)µÕ2
÷

2
0 + 2µ

Õ(≠311k + 1776µ
Õ)÷4

0

+ 3(61k ≠ 784µ
Õ)÷6

0 + 456÷
8
0

B

Erf

32
Ô

3÷0Ô
k
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(4.43)



CHAPTER 4. VARIATIONAL METHOD: GROUND STATE PROPERTIES IN THE
ABSENCE OF THE MAGNETIC FIELD 69

where, k = 6µ
Õ ≠ 9÷

2
0 +

Ò
36µ2 ≠ 12µÕ÷2

0 + 33÷
4
0 and Erf

32
Ô

3÷0Ô
k

4
is the error function.

Note that, the spin-independent interaction coe�cient ⁄0, and the total number of con-

densate particles, N are fixed depending upon the type of condensate we are interested

in. Thus, using Eq.4.43, the µ
Õ can be numerically estimated for di�erent values of ÷0.

For a particular condensate with a given N , the total energy of the polar state can be

calculated for di�erent values of ÷0 by using the corresponding estimation of µ
Õ(÷0) from

Eq.4.43. The energy density can be written as,

epol(u(÷)) = 3~Ê

2⁄0

5
≠

Ò
u(÷) 1

÷2
d

d÷
(÷2 d

d÷

Ò
u(÷)) + ÷

2
u(÷) + u

2(÷)
6
, (4.44)

which assumes this form in the dimensionless version. Now, by integrating the energy

density, i.e.,

Epol(÷0) =
⁄ ÷0

0
d÷÷

2
epol(uin(÷)) +

⁄ Œ

÷0
d÷÷

2
epol(uout(÷)), (4.45)

the total energy is obtained that can be calculated for varying values of the matching

point.
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Figure 4.1: Total energy of the polar state with varying ÷0 (the matching point) shows
the existence of minima, which fixes ÷0 corresponding to the energy minimum. (a) The
total number of condensate particles is 1,000 and the energy minimum determines the
matching point at ÷0 ƒ 0.713 while the T-F radius is approximately 1.81. (b) For 10,000
condensate particles, the total energy is minimum at ÷0 ƒ 2.135 which has shifted more
towards the T-F radius, which in this case is ƒ2.868. To get the actual energy values, one
has to multiply 3~Ê/(2⁄0) with the energy values shown in this figure. For the purpose
of visualization, this scaling factor is used in all subsequent figures (of the 3-D case).

By minimizing the total energy with respect to this matching point, i.e., dEpol(÷0)
d÷0

= 0,
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one fixes of ÷0 as well as the minimum possible total energy for the polar state.

Phase-matched state

The PM state is a multi-component state, so the variational method would be done on the

sub-components, following a similar approach shown for the polar state. Firstly, to get the

sub-component densities for the PM state in the high-density region, the kinetic energy

contribution in Eq.4.34-4.35 can be neglected in comparison to the interactions. Note

that, in the previous section, we discussed the PM state under the T-F approximation,

where we saw that the magnetization density becomes a degeneracy parameter for the

PM state, as it does not come in the energy expression. Similarly, in the variational

method, the magnetization density does not a�ect the total energy of the PM state. So

for simplicity, we will stick to m̃ = 0. Following the same procedure, the sub-component

densities are obtained from Eq.4.34-4.35 in terms of the total number density in the

high-density region,

u
in
±1 = u

in
/4, u

in
0 = u

in
/2, (4.46)

where u
in
m for m = 1, 0, ≠1 represents the sub-component densities close to the trap center.

The total density u
in, in this region is,

u
in = µ

Õ ≠ ÷
2
/2

(1 + ⁄
Õ
1)

for ÷ Ø ÷0. (4.47)

According to the assumption we have taken, the sub-component densities in the outer

region where the kinetic energy contribution is significant are,

u
out
m (÷) = (am + cm÷ + dm÷

2) exp (≠÷
2
/bm) for ÷ Ø ÷0. (4.48)

Employing the smooth matching condition of the wave function and its first three

derivatives of the high-density and low-density expressions, the coe�cients am, bm, cm

and dm can be obtained for the PM state, following the same procedure as done for the

polar state. The coe�cients for the sub-components follow,

b0 = b±1 = b, (4.49a)
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c±1 = c0
2 = c

4(1 + ⁄
Õ
1)

, (4.49b)

d±1 = d0
2 = d

4(1 + ⁄
Õ
1)

, (4.49c)

a±1 = a0
2 = a

4(1 + ⁄
Õ
1)

, (4.49d)

where the parameters a, b, c, d are found out to be of similar expression as with Eq.4.38-

4.41, where µ
Õ is di�erent from that of the polar state. The parameter µ

Õ for the PM state

can be obtained from the equation giving the total number of particles,

⁄ ÷0

0
u

in
P M÷

2
d÷ +

⁄ Œ

÷0
u

out
P M÷

2
d÷ = ⁄0N/3, (4.50)

where, u
out
P M = u

out
1 (÷) + u

out
0 (÷) + u

out
≠1 (÷) is the total number density at ÷ Ø ÷0. Following

the integration one arrives at,
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1)⁄0N/3,

(4.51)

where, k = 6µ
Õ ≠ 9÷

2
0 +

Ò
36µ2 ≠ 12µÕ÷2

0 + 33÷
4
0. This equation is similar to Eq.4.43 except

for the coe�cient (1 + ⁄
Õ
1) on the right side of this equation. The parameter µ

Õ for the

PM state can be estimated for di�erent values of N and ÷0 using this equation.

The energy density for the PM state for the 3-D harmonic confinement is

eP M = 3~Êx

2⁄0

5
≠

Ò
u(÷) 1

÷2
d

d÷
(÷2 d

d÷

Ò
u(÷)) + ÷

2
u(÷) + (1 + ⁄

Õ
1)u2(÷)

6
. (4.52)

Thus, one can calculate the total energy for the PM state by simply integrating the



72
CHAPTER 4. VARIATIONAL METHOD: GROUND STATE PROPERTIES IN THE

ABSENCE OF THE MAGNETIC FIELD

energy density,

EP M(÷0) =
⁄ ÷0

0
d÷ ÷

2
eP M(u(÷)) +

⁄ Œ

÷0
d÷ ÷

2
eP M(u(÷, ÷0)). (4.53)
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Figure 4.2: Total energy of the PM-state for di�erent values of ÷0. The minimization of
total energy fixes the free parameter ÷0, for example, (a) for 1,000 condensate particles,
corresponding to the minimum value of total energy (4.887), ÷0 is fixed at 0.724 (approx.)
while the T-F radius is approximately at 1.815. (b) Similarly, for 10,000 condensate
particles, we find at ÷0 ƒ 2.145, the total energy is minimized at an approximate value of
86.724, while the T-F radius, in this case, is 2.877 (approx.).

Now, the minimization of energy with respect to the matching point ÷0 gives the energy

of the PM state that fixes the value of ÷0 as well. This, in turn, gives µ
Õ. Subsequently, one

can write analytical expressions corresponding to the sub-component number densities.

4.2.2 3-D isotropic harmonic confinement: Results

For a condensate with an anti-ferromagnetic type of spin interaction in a 3-D isotropic

harmonic confinement, we saw that the T-F approximation estimates the relative energy

di�erence between the PM (or the ferromagnetic states) and the polar( or APM or AF)

state ((ET F
P M ≠ E

T F
pol )/E

T F
P M) is only about ƒ 0.5% with polar state winning energetically

in the absence of the magnetic field (at p = 0 and q = 0). This relative energy di�erence

does not change with the condensate size, i.e., the number of condensate particles N .

So our main purpose to employ the variational method (VM) is to see the e�ect of the

inclusion of kinetic energy on this small energy di�erence as well as to check whether it

depends on N . The relative energy di�erence as estimated from the T-F approximation
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is very small, and there is a possibility that the inclusion of the correction might favor

the PM state to win energetically.

Particle
Number

Polar/APM/AF PM state

N =
1000

E
T F = 3.0267, E

var = 4.8742 E
T F = 3.046, E

var = 4.8868

N =
5000

E
T F = 28.8084, E

var = 34.994 E
T F = 28.993, E

var = 35.1525

N =
10000

E
T F = 76.0257, E

var = 86.2813 E
T F = 76.513, E

var = 86.7235

N =
15000

E
T F = 134.1184, E

var = 147.8625 E
T F = 134.9779, E

var = 148.6607

Table 4.2: Total energy as obtained from the VM and the T-F approximation for both the
polar and the PM state are shown for the di�erent numbers of condensate particles. The
energy scale of 3~Ê/(2⁄0) is used, multiplying this scale with the energy values shown
here, will produce the actual total energy. Here, E

var denotes the total energy obtained
from VM and E

T F is the T-F approximated total energy. All the values given are mostly
rounded o� to the last decimal place.

For a wide range of condensate particles in an experimentally achievable regime (e.g.

N = 1000, 3000, 5000, 7000, 10000, 15000), we employ the VM. For the 3-D isotropic har-

monic confinement, where we stick to the same trapping frequency, Ê = 2fi ◊ 100 Hz,

as used in the T-F analysis. The interaction parameters are, ⁄0 = 3.88164 ◊ 10≠3 and

⁄
Õ
1 = 0.0161, which corresponds to the 23

Na condensate in the dimensionless form. Some

of the numerical values of the total energy corresponding to the PM and the polar state,

that we obtained from the T-F approximation (in this dimensionless form) and the VM

are summarized in Table 4.2. Both for the PM and the polar state, the correction intro-

duced by the variational method is relevant as the total energy estimated from the VM is

significantly di�erent from the T-F estimation. Specifically for smaller condensates with

particle numbers (we went as low as, N = 500), there is a drastic di�erence between the

VM and the T-F approximated total energies.
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Figure 4.3: (a) The ratio of the matching point, ÷0, and the T-F radius ÷T F for di�erent
condensate particles, gives important information about the accuracy of the T-F approx-
imated results. As the number of condensate particles is increased, the matching point
shifts towards the T-F radius for both polar and PM states. It shows the relevance of the
VM when the condensate particles are less than 10,000, given our choice of the parameter
values (Ê, ⁄0 and ⁄

Õ
1). (b) The ratio of µ

Õ obtained via the VM and the T-F approximation
increases with the number of condensate particles. The number density at the center of
the trap, which is the peak density, is proportional to µ

Õ with the same proportionality
constant for both the VM and the T-F approximation. This ratio approaches unity as
the condensate becomes larger, while for condensates with a smaller number of particles,
the µ

Õ obtained from the VM deviates significantly from that of the T-F approximation.

The matching point ÷0, where the Gaussian tail matches smoothly with the number

density of the high-density region, moves toward the T-F radius as the number of con-

densate particles is increased. This means, for large condensates, the T-F approximation

gives accurate results (Fig.4.3(a)). A very similar trend is also followed by the µ
Õ esti-

mated in the VM (Fig.4.3(b)). For small condensates, the VM estimated µ
Õ is lesser than

that of T-F estimation. This is due to a significant contribution of the Gaussian tail, as

the matching point ÷0 is closer to the trap center. The ratio of the parameter µ
Õ obtained

from the VM and the T-F approximation also signifies the ratio of the peak density, which

is number density (estimated by these two methods) at the center of the trap (Fig.4.3(b)).

We found that the VM estimates the matching point to be in extremely close proximity

to the trap center or might be equal to zero (÷0 ƒ 0) for condensates with N Æ 521. Note

that, this is due to the specific choice of the trapping geometry, and depending on that

the above-mentioned number can be large as well, if the trapping frequency is reduced.

For this situation, the VM estimates an analytical condensate profile. In Section 4.2.5, we

will compare this predicted profile with the computationally obtained condensate profile
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Figure 4.4: (a) The ratio of total energy estimated by the VM and the T-F approximation
for polar/ APM/ AF and PM/ ferromagnetic states. The e�ect of the VM on the total
energy is similar for both stationary states. For small condensates, the energy ratio is
almost twice. This depicts the significance of using the VM instead of the T-F approxi-
mation. (b) The ratio of relative energy di�erence of PM state and polar state (defined
as �E = (EP M ≠ EP ol)/EP M) as obtained from the VM and the T-F approximation,
for di�erent condensate particles clearly depicts that consideration of the full number
density profile, and the inclusion of the kinetic energy do not change the fact that un-
der 3-D harmonic trapping, polar/ AF/ APM state still energetically favorable than the
ferromagnetic/ PM-state. The inclusion of the correction reduces the energy di�erence
between the polar and the PM state by a significant margin, which is more pronounced
for condensates with a smaller number of particles.

for N = 500.

Now coming to the total energy, the VM is really significant, especially for condensates

with smaller particle numbers, where we find that the total energy estimated for both

PM and polar/APM/AF state is almost twice (N = 500) of that estimated using the

T-F approximation (Fig.4.4(a)). Importantly, the relative energy di�erence between the

polar and the PM state (which was ƒ 0.5% in the T-F approximation) becomes almost

ƒ 0.16% for smaller condensates with N = 500 and ƒ 0.26% for N = 1000. For larger

condensates, the energy di�erence is reduced as well, in comparison to the T-F estimation.

Still, the polar state, the APM state, or the AF state is equally likely to be the ground

state (Fig.4.4(b)).

4.2.3 Quasi-1-D harmonic confinement: Variational approach

The variational method also applies in quasi-one-dimensional geometry. In this section,

for completeness, we will briefly discuss the procedure, which is similar to that of three-
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dimensional confinement. To write the phase equations in a dimensionless form, for a

quasi-one-dimensional condensate, the interaction parameter and the number densities

are scaled as,

c0 = 2fil
2
yzlx⁄

1D
0 ~Êx, c1 = 2fil

2
yzlx⁄

1D
1 ~Êx, (4.54)

um = 2fil
2
yzlx⁄

1D
0 nm, r = lx’; (4.55)

where Êx is the trapping frequency in the direction of elongation and Êyz = Ô
ÊyÊz is the

geometric mean of the trapping frequencies in the transverse direction. The corresponding

oscillator length scales are defined as, l
2
x = ~/(mÊx) and l

2
yz = ~/(mÊyz), and N is the

total number of particles in the condensate. As a result, the parameters ⁄
1D
0 , ⁄

1D
1 , ’

and um become all dimensionless. Note that, we are considering the condensate to be

elongated in x direction as the harmonic trapping is far lesser than the geometric mean

of the trapping frequencies along the other two directions i.e. Êx << Êyz.

Thus, the phase-stationary GP equation reads,

I

≠ 1
2

d
2

d’2 + 1
2’

2 + u ≠ µ
Õ + ⁄

ÕÕ
1 (u1 + u≠1 + 2Ô

u≠1u1 cos ◊r)
J

Ô
u0 = 0, (4.56)

I

≠ 1
2

d
2

d’2 + 1
2’

2 + u ≠ µ
Õ ± ⁄

ÕÕ
1 (u1 ≠ u≠1)

J
Ô

u±1 + ⁄
ÕÕ
1u0 (Ôu±1 + Ô

uû1 cos ◊r) = 0, (4.57)

in the dimensionless form where, ⁄
ÕÕ
1 = ⁄

1D
1 /⁄

1D
0 . The parameter µ is resclaed as, µ

Õ =

µ/(~Êx). Note that, the equations are exactly similar to those for 3-D except for the

Laplacian term. Due to rescaling, the interaction parameters would be di�erent in 1-D

according to the specific choice we have taken in Eq.4.54.

Following a similar approach we had taken in case of 3-D condensate, we assume the

number densities as,

u
in(’) = f(µÕ

, ’) for |’| < |’0|,

u
out(’) = (a + c |’| + d ’

2) exp(≠’
2

b
) for |’| Ø |’0|.

(4.58)

The square root of the number density and its derivatives on both sides should be equal

at ’ = ’0. The functional form f(µÕ
, ’) is di�erent for di�erent stationary states and can

be found from the solution of the Eq.4.56-4.57 after neglecting the kinetic energy term.

This is due to the fact that the kinetic energy contribution is assumed to be lesser in
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comparison to the interaction terms at the trap center. The parameter ’ is the position

coordinate in the dimensionless form while the center of the trap is at ’ = 0. As it is

a 1-D trapping geometry, ’ can be positive and negative. Considering the symmetry of

the problem, only the positive values for ’ and ’0 are taken in the subsequent analysis to

simplify notations.

Polar state:

Similar to the 3-D condensate, the number density for the high-density region is found

out,

u
in
pol(’) = µ

Õ ≠ ’
2
/2 for |’| < |’0|. (4.59)

Using the smooth matching condition, ’ = ’0 we find all the coe�cients a, b, c, d,

d = exp
312’

2
0

k

4(k ≠ 12µ
Õ)µÕ ≠ (k ≠ 20µ

Õ)’2
0 ≠ 13’

4
0

2’
2
0 (≠2µÕ + ’

2
0 ) , (4.60a)

b = k

12 (4.60b)

c = 48’
3
0 exp

312’
2
0

k

4
k ≠ 12(µÕ ≠ ’

2
0 /2)

k2 , (4.60c)

a = exp
312’

2
0

k

442’
4
0 ≠ 4(k ≠ 14µ

Õ + 22’
2
0 )µÕ + 3k’

2
0

4(2µÕ ≠ ’
2
0 ) , (4.60d)

where, k = 6µ
Õ ≠ 9’

2
0 +

Ò
36µÕ2 ≠ 12µÕ’2

0 + 33’
4
0 . Now if we integrate the sub-component

densities it should produce the total number of particles, which in this non-dimensional

version can be written as

⁄ ’0

0
u

in
pold’ +

⁄ Œ

’0
u

out
pol d’ = ⁄

1D
0 N. (4.61)
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This equation helps to provide the estimation of µ
Õ for a particular value of the matching

point ’0 and N . Following the integration and simplifying further,

1
16

Ô
3k2

S

U4
Ô

3’0

A

12kµ
Õ2 + 4µ

Õ(≠5k + 24µ
Õ)’2

0 ≠ 216’
6
0 + (≠53k + 384µ

Õ)’4
0

B

≠ exp
Q

a12÷
2
0

k1

R

b
Ô

kfi

A

≠ 60kµ
Õ2 + 20(7k ≠ 24µ

Õ)µÕ
’

2
0 + (29k ≠ 576µ

Õ)’4
0

+ 408’
6
0

B

Erfc

32
Ô

3’0Ô
k

4T

V + µ
Õ
’0 ≠ ’

3
0 /6 = ⁄

1D
0 N,

(4.62)

where, Erfc((2
Ô

3’0)/
Ô

k) is the complementary error function and k is defined earlier.

Here ⁄
1D
0 is di�erent from the 3-D condensate due to the scaling factor in Eq.4.54. From

the above relation, µ
Õ can be estimated for di�erent values of ’0 and N . Though the

procedure is similar, the equation for determining µ
Õ is di�erent from the 3-D condensate.

The polar-state energy density,

epol(u(’)) = ~Êx

2⁄
1D
0

3
≠

Ò
u(’) d

2

d’2

Ò
u(’) + ’

2
u(’) + u

2(’)
4

, (4.63)

can be integrated to get to the total energy,

Epol(’0) =
⁄ ’0

0
d’epol(uin(’)) +

⁄ Œ

’0
d’epol(uout(’)). (4.64)

The minimum of the total energy with respect to ’0 fixes the total energy corresponding

to the stationary state as well as the corresponding µ
Õ.

We have discussed the variational procedure for a quasi-one-dimensional harmonically

trapped BEC, taking the example of the polar state. The same procedure is straightfor-

wardly applied for the PM state as well.

4.2.4 Quasi-1-D harmonic confinement: Results

We assume that the geometric mean of the trapping frequencies in the transverse direction

is, Êyz = 2fi ◊ 1261 Hz, which is much greater than the trapping frequency along the

direction of elongation, Êx = 2fi ◊ 50 Hz. Corresponding interaction parameters are,

⁄
1D
0 = 46.157075 ◊ 10≠3 and ⁄

ÕÕ
1 = 0.0161. The energy estimation from the VM, in this
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Figure 4.5: (a) Ratio of total energy estimated by VM and T-F approximation varies with
the total number of condensate particles. The energy estimated by the VM is greater
than the energy estimated by the T-F approximation. (b) The ratio of energy di�erence
((E1D

P M ≠ E
1D
pol )/E

1D
P M) between the PM and polar/APM/AF states in VM and T-F is

plotted with the number of condensate particles. The inclusion of the kinetic energy and
consideration of the full profile of the condensate does not change the relative energy
di�erence that much for the 1-D harmonic confinement, given the trapping frequencies
we have chosen.

case, also varies with the number of condensate particles in a similar fashion as in the 3-D

isotropic trapping, where the VM has a more pronounced e�ect for smaller condensates.

But in comparison with the 3-D case (Fig.4.4(a)), for this choice of trapping frequencies,

the energy estimated by the VM does not deviate that significantly (Fig.4.5(a)) from the

T-F approximated energy for both the stationary states. As a result, the energy di�erence

between the stationary states (which is ƒ 1% in T-F limit for 1-D condensate) almost

remains the same even for the smaller condensates after considering the full profile of

the condensate and including the kinetic energy term. Note that, for di�erent choices of

trapping frequencies, a more noticeable energy di�erence could be seen.

4.2.5 Comparison of the variational method with numerically

obtained condensate profile

Till now, we have seen that for the anti-ferromagnetic type of spin-interaction, the vari-

ational method indicates that the APM-like degenerate states (polar/ AF/ APM) are

favored to be the ground state in the absence of the magnetic field. But in the variational

method, we made a reasonable assumption to model the tail part of the condensate (the

number density at the low-density region) with the first few lowest-energy states under
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harmonic oscillator potential. It is only natural to ask about the validity of this assump-

tion. So, we start with the GP equation for the polar state and numerically simulate the

condensate profile for this state and compare it with the analytical profile to check the

accuracy of the variational method.

For condensates in 3-D isotropic harmonic trapping, we substitute the number density

with another function, u(÷) æ |„(÷)|2/÷
2. This would allow us to tackle the Laplacian

term e�ciently [140]. Here, we use the imaginary-time split-step Fourier method to

simulate the ground state condensate profile.

0 1 2 3
0.0
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0.8

 

 

   analytical
   numerical
  T-F profile

|φ
(η
)|2

η

Figure 4.6: The condensate profile, for 3-D isotropic harmonic confinement, represented
in terms of |„(÷)|2 with the radial distance ÷ from the trap center for N=500, where
|„(÷)|2 is related to the number density of the polar state as, |„(÷)|2 = ÷

2 ◊u(÷). The VM
estimated analytical profile matches quite well with the numerically simulated condensate
profile while the T-F approximated profile shown in the dashed line deviates significantly
from the simulated profile.

Note that, we have previously discussed that for small condensates with 500 particles,

the variational method predicted ÷0 ƒ 0. The analytical number density profile obtained

from the VM, in this case, is u = (µÕ + ÷
2
/2)exp(≠÷

2
/µ

Õ)) corresponding to, µ
Õ = 0.93.

In Fig.4.6 the 3-D condensate profile is represented in terms of |„(÷)|2 where, the VM

estimated analytical profile is |„Anal.(÷)|2 = ÷
2(µÕ + ÷

2
/2)exp(≠÷

2
/µ

Õ)). This analytical

profile predicted by the variational method aptly represents the numerically simulated

profile with reasonable accuracy. In contrast, the T-F profile, |„T ≠F (÷)|2 = ÷
2(µÕ T ≠F ≠

÷
2
/2) with the T-F approximated chemical potential, µ

Õ T ≠F = 1.241, fails as expected.

This emphasizes the need to go beyond the T-F approximation and use the variational

method for much more accurate analytical estimation, especially for the 3-D condensate,

where numerical simulation is, in general, computationally expensive.
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Figure 4.7: Numerically obtained number density profile is compared with the analytical
profiles. (a) For small condensate with particle number as low as N= 500, the VM
estimated analytical profile with µ

Õ ƒ 8.378 and the matching point at (’0 ƒ) ±3.48
agrees quite well with the numerically obtained profile. In the high-density region, the
T-F profile (dashed line) matches the numerical profile but it deviates significantly for
|’| > |’0| (see the inset plot). (b) For the large condensate (N = 15000) we find µ

Õ ƒ
81.372 and ’0 ƒ 12.368. The T-F approximation is good for large condensates. The VM
verifies that the matching point is not very far from the T-F radius. Near ’0 ƒ 12.368
significant di�erence between numerically obtained density and T-F density can be seen
in the inset, while the VM profile matches quite accurately with the numerical density.

For the quasi-1-D harmonic trapping, the T-F approximated and the VM number den-

sity of the polar state are compared with the numerically obtained density profile for

both small (Fig.4.7(a)) and large (Fig.4.7(b)) condensates. We find that the numerically

obtained profile is in excellent agreement with the analytical profile in both cases. In this

case also, the VM aptly describes the low-density region of the condensate profile (see the

insets of Fig.4.7)

Note that the matching point (÷0) depends on ⁄0N . The parameter ⁄0 can be modulated

via Feshbach resonance (via changing c0) or by changing the trapping frequency (hence

the oscillator length), both of which are experimentally achievable. Thus, in the case of

3-D confinement, if the parameter ⁄0 is halved, the matching point (÷0) is found to be

close to zero or almost zero (÷0 ƒ 0) even for larger condensate with N = 1000. This

shows that even for larger condensates, the VM would find its significance in providing

a fairly accurate condensate profile. The VM also produces a fair idea about the safe

applicability of the T-F approximation.
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(b) initial condition: u0 is negligibly small, other
two sub-components are equally occupied.
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(c) initial condition: all the sub-components oc-
cupied with zero magnetization.

Figure 4.8: Numerically obtained sub-component number densities of the condensate with
an anti-ferromagnetic type of spin interaction in an e�ective 1-D trap, where the initial
wave function is Gaussian where for (a) only u0, (b) u1 and u≠1 and (c) all the sub-
components are populated. After su�cient imaginary time evolution, it confirms that all
three degenerate states (i.e., (a) polar, (b) AF and (c) APM) are equally likely to become
the ground states in this parameter regime.

We have seen that not only the polar state but also the APM and the AF states are

equally likely to be the ground state. We numerically simulate the spin-1 Gross-Pitaevskii

equation in the absence of the magnetic field with zero magnetization via imaginary time

propagation to get to the ground state for N=1000 following the approach given in [141].

We use the Gaussian wave function as the initial condition. If we start with an initial

condition, where u0 is populated only, while the other two sub-components are negligibly

populated, the solution after su�cient steps converges to the polar state (Fig.4.8(a)).

Similarly, if we initialize Ô
u1 and Ô

u≠1 with the Gaussian wave function along with
Ô

u0 being negligibly populated, the solution converges to the AF state (Fig.4.8(b)) after
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a su�cient time propagation. Whereas, if all the sub-components are initialized with

the Gaussian wave function, we find APM state as the ground state (Fig.4.8(c)). Note

that, this is characteristic of degenerate solutions, whereas, in [141, 142] only AF state

is reported to be the ground state at zero magnetic field and zero magnetization for

anti-ferromagnetic condensate.

4.2.6 Energy Density of the ground state

In the previous chapter, we saw that a comparison of the T-F approximated energy

densities led to a lot of domain formation possibilities. In this chapter, we have discussed

the need to go beyond the T-F approximation and the viability of the VM in providing

a more accurate picture. In cases where the T-F approximation is not at all accurate, or

when we need a more accurate energy density expression to compare the energy densities

locally, it is only natural to ask if the VM can provide a good enough estimation of the

energy density expression. To compare, the energy density of the polar state obtained

from the VM, the T-F approximation, and the numerical simulation are plotted against

the radial distance from the trap center for the 1-D harmonic trapping in Fig.4.9. We

have shown only the positive half, it is symmetric in the negative half.
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Figure 4.9: The energy density for polar state, for N=1000 is plotted against the distance
(’), where ’ = 0 is the 1-D trap center. Here the energy density profile obtained from the
T-F approximation (dashed line) and the VM (solid line) is compared with the numerically
obtained profile. Near the center of the trap, both the T-F and VM profile is quite good in
comparison to the numerical profile. Near the T-F radius, the T-F approximated energy
density deviates from the numerical one, while the VM estimation is very accurate in this
low-density regime.

We observe that the VM and the T-F energy density profiles match quite well with the
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numerical profile near the trap center, however, the marked di�erence can be seen near

the T-F radius where the VM profile agrees with the numerical one with great accuracy.

Thus, the smooth analytical energy density profile would find its importance in predicting

the phase separation or domain formation phenomena wherever a detailed energy density

comparison is required.

4.3 Discussion

In this chapter, we have introduced a multi-modal variational method that estimates

the number density profile of a harmonically trapped spin-1 condensate with much more

accuracy compared to the most widely used analytical method which is the T-F approxi-

mation. To showcase the importance of the method, we choose a simple possible setting,

which is the absence of the magnetic field. We started with the T-F approximated results,

which predict that, for anti-ferromagnetic spin interaction, the three degenerate states,

namely the polar, anti-phase-matched, and anti-ferromagnetic states are equally likely to

be the ground state. Quantitatively, the closely competing stationary states namely the

PM state or the ferromagnetic states have a very small energy di�erence with the T-F ap-

proximated ground state. This quantity is independent of the number of particles present

in the condensate. This small relative energy di�erence is of the order of the kinetic

energy contribution. So, even for large condensates, the T-F approximated results, which

are obtained disregarding the kinetic energy contribution, are inconclusive. Such a situa-

tion requires a closer inspection. We introduce the variational method that incorporates

the kinetic energy contribution and produces more refined ground state estimations.

The variational method not only produces a smooth number- and energy density profile

of the condensate in large particle number limit where the T-F approximation is generally

applicable but also it works excellent in comparison to the numerical simulation even for

as low as a few hundred particles, where the T-F approximated profile is far from accu-

rate. The VM estimates the condensate profile for the 3-D trapping geometry with great

accuracy, whereas numerical simulation for the 3-D case is, in general, computationally

expensive. In the context of the ground state, the VM still indicates that the polar or the

other two degenerate states are favored. In contrast to the T-F approximated results, the

relative energy di�erence according to the VM depends on the number of particles in the
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condensate. For condensates with low particle numbers, this energy di�erence becomes

almost one-fourth of that estimated by the T-F approximation.

Note that, for 87
Rb, the spin-spin interaction is of ferromagnetic type and the |c1|/c0

ratio for this case is much lower than that of 23
Na. The relative energy di�erence between

the T-F approximated ground state (PM or the ferromagnetic states) and the other three

degenerate states would be even lower than the relative energy di�erence of the 23
Na

system (which is 0.5% under T-F approximation). The variational method developed in

this chapter can be easily applied to get an accurate picture of the 87
Rb system as well.



86
CHAPTER 4. VARIATIONAL METHOD: GROUND STATE PROPERTIES IN THE

ABSENCE OF THE MAGNETIC FIELD



Chapter 5

Multi-component stationary states

in the presence of the magnetic field

In the last chapter, we have introduced a variational method and focused on a case study,

which is finding out the ground state of the harmonically trapped spin-1 condensate in

the absence of the magnetic field. The T-F approximation was inconclusive due to the

competing energies of the ground state candidates and there was a requirement to go

beyond the T-F approximation. The variational method in the absence of the magnetic

field not only provided important corrections to the T-F approximated results but also

demonstrated its essential applicability for condensates with fewer particles where the

T-F approximation cannot be applied.

In this chapter, we will look at the multi-component stationary states, which become

the ground states both for the anti-ferromagnetic and ferromagnetic types of spin interac-

tion, in the presence of the magnetic field. We will see, even when the number of particles

present in the condensate is large, the T-F approximation could produce wrong physical

interpretation of domain structure in the ground state. We will demonstrate that the gen-

eralized multi-modal variational method in the presence of the magnetic field is essential

in giving a proper analytical description of multi-component states.

Accurately known density profiles of the multi-component ground state are crucial

in dealing with a lot of interesting phenomena like complex soliton structures [71–74],

domain formation [121] that can occur in spinor BEC. There have been a lot of studies on

87
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multi-component ground states [54, 115, 129, 130]. But, most of those analytical studies

are based on Thomas-Fermi (T-F) approximation and single-mode approximation (SMA)

for the sake of simplicity. In the previous chapter, we have shown a variational method

that is multi-modal in nature. Note that, in the absence of the magnetic field, the sub-

components of the multi-component states follow a single spatial mode. In this chapter,

we will see that in the presence of the magnetic field, the multi-component states, that

are the essence of spinor-BEC do not, in general, follow a single spatial mode. In this

case, neither SMA nor the T-F approximation can provide an accurate description. The

T-F approximation even leads to a wrong physical interpretation of domain structure in

the ground state. No matter how large the condensate is (in the so-called "T-F limit"),

for the multi-component states, if at least one of the sub-components tends to vanish at

a smaller distance away from the trap center than the other components, then the T-F

approximation will indicate a domain structure in the ground state. Whereas, numerical

simulation does not indicate any domain structure in the ground state. Thus, in general,

the T-F approximation cannot be trusted for the ground state prediction of a trapped

spin-1 BEC in the presence of the magnetic field, no matter how large the condensate may

be. On top of that, the SMA also becomes inaccurate in estimating the sub-component

density distributions. The variational method, on the other hand, is reliable for the ground

state prediction as well as for getting the condensate profiles in such situations.

The multi-modal variational method provides accurate density profiles which can be

used for the estimation of the total energy of the multi-component states. The total energy

of di�erent stationary states can be compared to get to the phase transition boundaries

over (q, p) parameter space. We will estimate the phase transition boundary between

the PM (multi-component state) and the polar state (that happens for c1 < 0) for a 3-D

isotropic harmonic confinement and draw a detailed comparison of the trapped situation

with that of the homogeneous case (in the absence of trapping as shown in Fig.2.1(c)).

5.1 GP equation in the non-dimensional form: Recap

For a particular stationary state the sub-component phase equations

~◊̇0 = 1
Ò

n0(r)

Q

a ≠ ~2Ò2

2M
+U(r)+ c0n≠µ

R

b
Ò

n0(r)+ c1
1
n1 +n≠1 +2Ô

n≠1n1 cos ◊r

2
, (5.1)
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~◊̇±1 = 1
Ò

n±1(r)

Q

a ≠ ~2Ò2

2M
+ U(r) + c0n ≠ µ

R

b
Ò

n±1(r) ± c1
1
n1 ≠ n≠1

2
+ q û p

+ c1n0

Q

a1 +
ı̂ıÙnû1(r)

n±1(r) cos ◊r

R

b,

(5.2)

can be solved that yields the sub-component number densities and hence the total energy

corresponding to the stationary state.

Here, we will consider a quasi-one-dimensional geometry. The condensate is assumed

to be trapped in harmonic confinement with elongation along the x-axis. The trapping

frequency along the direction of elongation is much less than the geometric mean of the

trapping frequency along the other two directions i.e., Êx << Êyz, where Êyz = Ô
ÊyÊz.

We will rewrite the number density and the interaction parameters in a slightly di�erent

scaling from that we used in Eq.4.54-4.55,

c0 = 2fil
2
yzlx⁄0~Êx, c1 = 2fil

2
yzlx⁄1~Êx, (5.3)

um = 2fil
2
yzlxnm, r = lx’. (5.4)

Imposing the stationarity condition, for the quasi-one-dimensional harmonic trapping,

the phase equations can now be written by using Eq.5.3-5.4,

I

≠ 1
2

d
2

d’2 + 1
2’

2 + ⁄0u ≠ µ
Õ + ⁄1 (u1 + u≠1 + 2Ô

u≠1u1 cos ◊r)
J

Ô
u0 = 0, (5.5)

I

≠ 1
2

d
2

d’2 + 1
2’

2 +⁄0u≠µ
Õ ±⁄1 (u1 ≠ u≠1)ûp

Õ +q
Õ
J

Ô
u±1 +⁄1u0 (Ôu±1 + Ô

uû1 cos ◊r) = 0,

(5.6)

where p
Õ, q

Õ, and µ
Õ correspond to the dimensionless forms of the linear and quadratic

Zeeman terms and the chemical potential respectively. The scaling is done by dividing

the parameters with the factor ~Êx. The total density u is obviously the sum of the

sub-component densities, i.e., u = u1 + u0 + u≠1.

To solve these equations one can use that T-F approximation, and we have discussed

all the details of it in Chapter 3. We have summarized the T-F approximated number

densities and the energy densities in this scaling, for di�erent stationary states of our

present interest, in Table 5.1.
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States Variation of density Energy density Restriction

(1,0,0)
F1

(⁄0 + ⁄1)u(’) = µ
Õ + p

Õ ≠
q

Õ ≠ ’
2
/2

[’2/2≠pÕ+qÕ][µÕ+pÕ≠qÕ≠’2/2]
(⁄0+⁄1) +

[µÕ+pÕ≠qÕ≠’2/2]2

2(⁄0+⁄1)

none

(0,1,0)
P

⁄0u(’) = µ
Õ ≠ ’

2
/2 ’2/2[µÕ≠’2/2]

⁄0
+ [µÕ≠’2/2]2

2⁄0
none

(0,0,1)
F2

(⁄0 + ⁄1)u(’) = µ
Õ ≠ p

Õ ≠
q

Õ ≠ ’
2
/2

[’2/2+pÕ+qÕ][µÕ≠pÕ≠qÕ≠’2/2)]
(⁄0+⁄1) +

[µÕ≠pÕ≠qÕ≠’2/2]2

2(⁄0+⁄1)

none

(1,0,1)
AF

⁄0u(’) = µ
Õ ≠ q

Õ ≠ ’
2
/2

and (u1 ≠ u≠1) © Fz =
pÕ

⁄1

[’2/2+qÕ][µÕ≠qÕ≠’2/2]
⁄0

+ [µÕ≠qÕ≠’2/2]2

2⁄0
≠ pÕ2

2⁄1
none

(1,1,1)
(A)PM

(⁄0 +⁄1)u(’) = k1 ≠’
2
/2

where, k1 = µ
Õ + (pÕ2≠qÕ2)

2qÕ

’2/2[k1≠’2/2)]
⁄0+⁄1

+
⁄1
2

Ë
k1≠’2/2
⁄0+⁄1

≠ pÕ2≠qÕ2

2qÕ⁄1

È2
+ ⁄0

2

Ë
k1≠’2/2
⁄0+⁄1

È2
PM(|pÕ| <

|qÕ|)
APM(|pÕ| >

|qÕ|)

Table 5.1: The density and the energy density expressions corresponding to di�erent
stationary states at ⁄1 ”= 0 obtained via T-F approximation are shown here [121, 122]. All
the parameters in this table are in dimensionless form. One can use Eq.5.3-5.4 to convert
expressions into dimensional forms. The energy expressions and the density expressions
for PM and APM states are identical. However, PM and APM states are restricted in
space where the APM state exists if the absolute value of the linear Zeeman term is higher
than that of the quadratic Zeeman term and PM state exists otherwise.

5.2 Multi-component stationary states:

In what follows, we will do a qualitative as well as quantitative analysis. For that, we have

considered a quasi-one-dimensional cigar-shaped harmonic confinement. The trapping

frequency along the elongated direction is Êx = 2fi ◊ 50 Hz and the geometric mean of

the trapping frequencies along the transverse direction is Êyz = 2fi ◊ 1261 Hz. In the

last chapter, we saw that for 1-D trapping geometry with the same trapping frequency,

the T-F approximation gives reasonably good results in estimating the number density
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for the single-component stationary states with N Ø 500, in the absence of the magnetic

field (see Fig.4.7(a)). So, it is logical to believe that the T-F approximation might lead

to fairly accurate results for multi-component stationary states in the presence of a small

magnetic field if N Ø 500.

For quantitative analysis, we fix the number of condensate particles at N = 5000, for

which one can expect that the T-F approximation would produce even better results. The

multi-component states that become the ground state are our focus in this chapter. We

will discuss the details of the PM state that appears as a ground state for a range of linear

and quadratic Zeeman terms (pÕ and q
Õ values), in condensates with the ferromagnetic

spin-spin interaction e.g., 87
Rb. We will also focus on the anti-ferromagnetic state which

is the ground state for 23
Na that possess the anti-ferromagnetic type of spin interaction

[83]. For quantitative analysis, we have chosen specific values of p
Õ and q

Õ and also taken

the quasi-one-dimensional confinement for convenience in numerical simulation. However,

the analytic formalism developed and validated is general and can be extended to higher

dimensional cases where numerical analysis could be problematic. Similarly, the results do

not depend on the specific choices of p
Õ and q

Õ as well. In the following, we will start with

the T-F analysis for these two cases, to exemplify the problem with the T-F approximation

when applied to spin-1 condensate. This will also help us to draw a detailed comparison

with the beyond T-F approximated results later.

5.2.1 PM state: T-F study

For 87
Rb condensate that possesses the ferromagnetic type of spin interaction, the oscil-

lator length along the direction of elongation is lx = 1.53 µm, while along the transverse

direction lyz = 0.30 µm, corresponding to the above-specified trap geometry. The spin-

independent and the spin-dependent interaction parameters assume the numerical values,

⁄0 = 17.66 ◊ 10≠2 and ⁄1 = ≠6.22 ◊ 10≠4.

In this section, we will compare the T-F approximated results with the numerical profile

to discuss the issue with the T-F approximation when applied to the multi-component

states. As a case study, we fix the linear and quadratic Zeeman terms at p
Õ = 0.01 and

q
Õ = 0.3. The stationary state that is energetically favorable to be the ground state at

these parameter values is the PM state. The conclusions will remain valid for a range of
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p
Õ and q

Õ values for which the PM state is favorable as the ground state.

In Chapter 3, we have shown the derivation of the PM sub-component densities for

arbitrary p and q values under the T-F approximation. Given the scaling we have used in

Eq.5.3-5.4, the T-F approximated sub-component number densities of the PM state are,

u
T F
1 = (pÕ + q

Õ)2

4qÕ2

S

WWWWU

µ
Õ + (pÕ2 ≠ q

Õ2)
2qÕ ≠ 1

2’
2

⁄0 + ⁄1
+ q

Õ2 ≠ p
Õ2

2⁄1qÕ

T

XXXXV
, (5.7)

u
T F
≠1 = (pÕ ≠ q

Õ)2

4qÕ2

S

WWWWU

µ
Õ + (pÕ2 ≠ q

Õ2)
2qÕ ≠ 1

2’
2

⁄0 + ⁄1
+ q

Õ2 ≠ p
Õ2

2⁄1qÕ

T

XXXXV
, (5.8)

u
T F
0 = (qÕ2 ≠ p

Õ2)
2qÕ2

S

WWWWU

µ
Õ + (pÕ2 ≠ q

Õ2)
2qÕ ≠ 1

2’
2

⁄0 + ⁄1
≠ q

Õ2 + p
Õ2

2⁄1qÕ

T

XXXXV
. (5.9)

We compare these expressions that we obtained in the T-F approximation with the numer-

ically simulated profiles (we use the imaginary time propagation in the split-step Fourier

method [141]), where the profiles as estimated by the T-F approximation are used as the

initial wave function.

The T-F approximated sub-component densities u1 and u≠1 agree well with the nu-

merical ones except near the T-F radius of these components (see Fig.5.1(a)). Whereas,

the T-F profile of the u0 component also agrees with the numerical one in the high-

density region of the trap but starts to deviate when the other components u1 and u≠1

vanish, which for this parameter values is at around ’
T F
±1 = ±10.3. Note that, ’

T F
±1 is

the T-F radius of the u±1 components. Naturally, one might expect that, beyond the

point, ’
T F
±1 , the summation of the T-F approximated sub-component number densities

(i.e., utot = u1 +u0 +u≠1) will not agree with the numerical profile as there is a significant

mismatch in the u0 component.

Note that, in Chapter 3, we have discussed in detail that the necessary condition for

the validity of the PM state in the T-F approximation is that all the sub-components

are populated. So, the PM state is only valid for |’| < |’T F
±1 | i.e., as long as all the

sub-components are populated and beyond the T-F radius of u±1, the PM state ceases
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(b) T-F predicted domain-like structure and nu-
merically obtained profile of u0 component

Figure 5.1: (a): The T-F approximated sub-component number densities (u1, u0 and u≠1
components shown in red dash, green dash-dot, and blue solid lines respectively) for the
PM state are compared with the numerical densities (markers) for the parameter value
p

Õ = 0.01 and q
Õ = 0.3. The T-F approximated u0 expression corresponding to the PM

state (shown in the green dash-dot line) starts to deviate from that of the numerical
simulation beyond |’| > 10.3, which is the T-F radius of the u±1 component. (b): The
T-F prediction of the domain-like situation is plotted where, the u0 component (solid line)
follows the T-F expression of the PM state when all the sub-components are populated
(|’| < 10.3 for this case) near the center of the trap, followed by a polar state-like behavior.
Note that a discontinuity appears in the u0 (inset) for this domain-like construct, while
the numerical result is smooth (bubble markers).

to exist. In this region, only the u0 component is present, which indicates that it is the

polar state (see Table 5.1) that occupies the low-density region of the trap. So, the T-F

approximation indicates there is a domain structure with the PM state near the center of

the harmonic trap, and the polar state staying in the low-density region.

The sub-component number densities for such a domain-like construct can be given as,

u
T F
1 = (pÕ + q

Õ)2

4qÕ2

S

WWWWU

µ
Õ + (pÕ2 ≠ q

Õ2)
2qÕ ≠ 1

2’
2

⁄0 + ⁄1
+ q

Õ2 ≠ p
Õ2

2⁄1qÕ

T

XXXXV
, (5.10)

u
T F
≠1 = (pÕ ≠ q

Õ)2

4qÕ2

S

WWWWU

µ
Õ + (pÕ2 ≠ q

Õ2)
2qÕ ≠ 1

2’
2

⁄0 + ⁄1
+ q

Õ2 ≠ p
Õ2

2⁄1qÕ

T

XXXXV
, (5.11)
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u
T F
0 =

Y
_________]

_________[

(qÕ2 ≠ p
Õ2)

2qÕ2

S

U
µ

Õ + (pÕ2 ≠ q
Õ2)

2qÕ ≠ 1
2’

2

⁄0 + ⁄1
≠ q

Õ2 + p
Õ2

2⁄1qÕ

T

V, if |’| Æ ’
T F
±1

µ
Õ
polar ≠ 1

2’
2

⁄0
, otherwise,

(5.12)

where, ’
T F
±1 is the Thomas-Fermi radius of the u±1 component for this 1-D geometry.

Obviously, if this domain-like construct has to be stable we have to impose the condition

that the chemical potential µ
Õ for the PM and the polar state (µÕ

polar) has to be the same.

It might seem that (in Fig.5.1(b)), this domain-like explanation works as we compare

the sub-component density with the numerical u0. But upon closer inspection, one can

check that there is a discontinuity at |’| = ’
T F
±1 . The slope of analytical u0 also changes

drastically around this point resulting in a lot of kinetic energy cost.

The discontinuity in the u0 component and hence the limitations of the domain-like con-

struct as indicated by the T-F approximation can be further strengthened if we compare

numerical simulation and the T-F prediction for a di�erent spin interaction. We increase

the spin interaction five times of that of the natural value, c1 ≠æ 5c
Rb
1 while keeping all

other parameter values the same. From an experimental point of view, this is amenable

via Feshbach resonance [143].
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Figure 5.2: The T-F approximated sub-component number density u0 of the domain-
like structure between the PM state and polar state, for the same the parameter values
p

Õ = 0.01 and q
Õ = 0.3 and ⁄0 with a spin interaction coe�cient c1 (or ⁄1 in this context),

which is 5 times of that of the normal value of 87
Rb. Increasing the spin interaction shows

a similar discontinuity present in u0 at |’T F
±1 | = 13.13 (dashed lines are placed) for the

PM-polar domains (see inset).

As the ⁄1 becomes five times the previous value, the domain-like structure predicted
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by the T-F approximation shows similar discontinuity (see inset of Fig.5.2) for the sub-

component u0 at |’T F
±1 | = 13.13. The total density for this domain-like structure will also

have that same discontinuity.

To explain this, one has to remember that in the T-F approximation, the u±1 com-

ponents sharply go to zero at |’| = ’
T F
±1 . But in reality, that cannot be the case. We

need to include the kinetic energy term in the analysis. As a result, near this point, the

Laplacian terms in Eq.5.6 cannot be neglected. However, one can ignore the Laplacian

term in Eq.5.5, as the u0 component is still in the high-density region near this point.

Note that, the GP equations are coupled, as a result, one has to solve the Eq.5.5-5.6

by keeping the Laplacian terms corresponding to u±1 components. This shows that the

T-F approximation is bound to produce an inaccurate description of multi-component

stationary states even in the so-called "T-F regime", no matter how large the condensate

may be. This warrants an accurate analytical description of the multi-component states

appearing for the spin-1 BEC.

5.2.2 PM state: The variational method

In Chapter 4, we proposed a multi-modal variational method that incorporates the ki-

netic energy contribution and produces the sub-component number density profiles of a

stationary state with great accuracy. The variational method (VM) was developed for

a spin-1 BEC in the absence of a magnetic field which works with great accuracy even

for condensates with a few hundred particles, where the T-F approximation was shown

to be no longer valid. The PM state was also analyzed using the multi-modal VM, but

for p = 0 and q = 0, the sub-components of the PM state follow the same spatial mode,

which reduces the complexity significantly. In the presence of the magnetic field, we will

see that the sub-components no longer follow a single-spatial mode. We extend the same

procedure here in the presence of a magnetic field. When the sub-components do not

follow the same spatial variation, the situation is much more complex but the extended

multi-modal VM tackles it case with ease.

For the variational method to work, we need to estimate the sub-component densities

in the high-density region from the phase equations i.e., Eq.5.5-5.6 by neglecting the

kinetic energy contribution. This is due to the fact that the density is high in this region,
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and so does the interaction terms, and with respect to it, the kinetic energy term can

be neglected. This is followed by an assumption of the Gaussian tail in the low-density

region. So according to this assumption, the sub-component densities can be written as,

u
in
±1,0 = g±1,0(µÕ

, ’), for |’| Æ ’
mat
±1,0 (5.13)

u
out
±1,0 = (a±1,0 + c±1,0|’| + d±1,0’

2)exp

A

≠ ’
2

b±1,0

B

for |’| Ø ’
mat
±1,0; (5.14)

where g±1,0(µÕ
, ’) is the functional form of the sub-component density of u±1,0 near the

center of the trap. In the low-density region, we assume the number density (or the

wave function) taking into account the first few lowest harmonic oscillator states. Now

we impose the condition that for each sub-component the low-density
Ò

u
out
±1,0 and the

high-density
Ò

u
in
±1,0 expressions match at a point ’

mat. Not only do they match but their

first three derivatives also match. These four constraints provide the four unknowns a, b,

c, and d for each sub-components in terms of the matching points and the parameter µ
Õ.

Note that, imposing the matching condition up to three derivatives also gives a smooth

profile of the corresponding kinetic energy.

Following the procedure, once we determine all the coe�cients in Eq.5.14, the sub-

component density profile then will only depend on the parameter µ
Õ and the matching

points. By integrating the sub-component densities and adding them, one gets to the

total number of condensate particles N, i.e.,

1ÿ

m=≠1

S

U
⁄ ’mat

m

0
u

in
m(µÕ

, ’)d’ +
⁄ Œ

’mat
m

u
out
m (µÕ

, ’, ’
mat
m )d’

T

V = N, (5.15)

This equation can be used to determine µ
Õ as a function of the matching points. Note

that, one might expect that the right side should be N/2 as the integration is running

in only one direction from the center of the trap, but it is N on the right side due to

Eq.5.3-5.4 that we used to write the GP equation in non-dimensional form.

Thus the sub-component number densities and, hence, the total energy of a stationary

state become the function of the matching points only. From the minimization of the total

energy in the parameter space of the matching points, one can determine the matching

points as well as the total energy.
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For the specific case we are interested in, the PM state, all the sub-components are

populated followed by the phase matching condition, i.e., the relative phase being ◊r = 0.

One can solve the phase stationary equations (Eq.5.5-5.6) by ignoring the kinetic part to

get the sub-component densities in the high-density region. The sub-component densities

can be written as,

u
in
m = km

S

Uµ
Õ
m ≠ ’

2
/2

⁄0 + ⁄1

T

V, (5.16)

where,

k1 = (pÕ + q
Õ)2

4qÕ2 , k0 = q
Õ2 ≠ p

Õ2

2qÕ2 , k≠1 = (pÕ ≠ q
Õ)2

4qÕ2 (5.17)

and,

µ
Õ
±1 = µ

Õ
eff + (⁄0 + ⁄1)

q
Õ2 ≠ p

Õ2

2⁄1qÕ , (5.18a)

µ
Õ
0 = µ

Õ
eff ≠ (⁄0 + ⁄1)

q
Õ2 + p

Õ2

2⁄1qÕ , (5.18b)

µ
Õ
eff = µ

Õ + p
Õ2 ≠ q

Õ2

2qÕ . (5.18c)

Applying the four matching conditions mentioned earlier, the unknown coe�cients in the

low-density expression for each sub-component can be obtained as,

am = 1
≠8µÕ

m + 4’2
m

Q

aµ
Õ
m

3
≠ 56µ

Õ
m+70’

2
m + 4Ÿm

4

≠ 3’
2
m

3
14’

2
m + Ÿm ≠ 6µ

Õ
m

4R

bexp

Q

a12’
2
m

Ÿm

R

b,

(5.19a)

bm = Ÿm

12 , (5.19b)

cm =
48’

3
m

3
≠ 12µ

Õ
m + 6’

2
m + Ÿm

4

Ÿ2
m

exp

Q

a12’
2
m

Ÿm

R

b, (5.19c)

dm = 1

2’2
m

3
≠ 2µÕ

m + ’2
m

4

Q

a ≠ 6(µÕ
m)2 ≠ ’

2
m

3
Ÿm + 13’

2
m ≠ 6µ

Õ
m

4

+ µ
Õ
m

3
14’

2
m + Ÿm ≠ 6µ

Õ
m

4R

bexp

Q

a12’
2
m

Ÿm

R

b,

(5.19d)
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where, ’m is an abbreviation for the matching point ’
mat
m , and

Ÿm = 6µ
Õ
m ≠ 9’

2
m +

Ò
36µ2

m ≠ 12µm’2
m + 33’4

m, (5.20)

given the sub-component densities in the low-density region are represented as,

u
out
m = km

⁄0 + ⁄1

3
am + cm|’| + dm’

2
4

exp

Q

a ≠ ’
2

bm

R

b. (5.21)

Now, applying Eq.5.15 one can find the parameter µ
Õ (see µ

Õ
eff expression in Eq.5.18c) for

di�erent values of ’m. Thus, the total energy for the PM state becomes only a function

of the matching points. Note that, as µ
Õ
1 = µ

Õ
≠1 (see Eq.5.18a) the matching points are

the same for these two components, i.e., ’
mat
1 = ’

mat
≠1 .

Note that, the total density of the T-F approximation of the PM state is,

u
P M
tot =

µ
Õ + (p2 ≠ q

2)
2q

≠ 1
2’

2

⁄0 + ⁄1
, (5.22)

which is analogous to Eq.3.39. This in principle should hold as long as all the sub-

components are populated, which is a necessary condition for the validity of the PM

state. As the number density cannot be negative, at |’| > |’T F
±1 | where the u

T F
±1 goes to

zero, the above expression is not valid. Also, the PM state does not exist beyond this

point.

In Fig.5.3, we notice that the total number density obtained from the numerical simula-

tion can be aptly described by the analytical expression Eq.5.22. The element of surprise

is that even beyond |’T F
±1 |, where according to the T-F approximation the PM state ceases

to exist, the numerical profile of total number density agrees with Eq.5.22.

We will use this observation coming from the numerical evidence of total density follow-

ing Eq.5.22 to shift our focus to the total number density utot instead of the u0 component

while implementing the variational method. So, instead of using the high-density expres-

sion u
in
0 we will use the total density expression,

u
in
tot = ktot

S

Uµ
Õ
eff ≠ ’

2
/2

⁄0 + ⁄1

T

V, (5.23)
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Figure 5.3: The total density obtained from numerical simulation matches quite well with
the expression Eq.5.22, which is the T-F expression corresponding to the total density
of the PM state. This expression of total number density is only valid as long as all the
sub-components are populated. Beyond |’T F

±1 |, according to T-F approximation, Eq.5.22
cannot describe the total density of the PM state, because if it does, then it has to
incorporate the negative density contribution from u±1 components. (inset) The same
expression matches with the numerical total density even beyond the T-F radius |’T F

±1 |
which is roughly at |’| ƒ 10.3.

written in the same fashion as Eq.5.16, where ktot = 1. Now, one can use Eq.5.19a-5.19d

which would also provide total density expression in the low-density region, written in

the same fashion as Eq.5.21. The u0 expression can be later found out by subtracting

the sum of variational profiles of u±1 from the total number density profile, i.e., u
V M
0 =

u
V M
tot ≠ u

V M
1 ≠ u

V M
≠1 . So, instead of the u0 component, we will focus on total number

density which will also provide a matching point ’
mat
tot . Note that, for the PM state, the

spatial mode for the u1 and u≠1 are equivalent, so the matching point for those two sub-

components will be the same i.e., ’
mat
1 = ’

mat
≠1 . Thus, the minimization of the total energy

in the two-dimensional parameter space of ’
mat
1 and ’

mat
tot will determine the energy itself,

as well as approximate values of these parameters. Once the matching points are found,

the analytical density expressions are also obtained.

Note that, for implementing the variational method, we need the estimate of the num-

ber density in the high-density region. In this context, the variational method cannot be

implemented using the high-density T-F-like expression corresponding to the u0 compo-

nent, i.e., Eq.5.9. This is because the expressions given in Eq.5.7-5.8 runs to negative

values beyond the T-F radius of the u±1 components. In this region, the u0 expression

(Eq.5.9), which is still in the high-density region, is an over-count that o�sets the negative
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contribution Eq.5.7-5.8 to conserve the number of particles. The numerically estimated

total density matching the Eq.5.22 (which is the sum of Eq.5.7-5.9) further verifies this

fact. So, it is essential to shift the focus to the total number density instead of the u0

component (in fact, it would not work if one takes the T-F-like u0 expression to implement

the variational method).
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(a) The VM approximated sub-component num-
ber densities and the numerical profile
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(b) The VM approximated and numerically ob-
tained total number density

Figure 5.4: (a): The sub-component number density of the PM state obtained from the
variational method (u1, u0 and u≠1 components shown in red dash, green dash-dot, and
blue solid lines respectively) and numerical simulation (markers) are plotted against the
distance ’ from the center of the trap. The VM estimated analytical profile describes
the numerical data quite well near the center of the trap as well as near the tail part of
the condensate. The VM rules out any domain-like possibility and analytically estimates
the u0 component (shown in the dash-dot line) that is quite accurate even near the ’

T F
±1

in comparison to the numerical (circles) profile (see inset). (b): The analytical profile of
the total number density estimated by the VM matches the numerical result even in the
low-density region, where it gives an analytic estimate of the condensate density which
asymptotically goes to zero with the increase of the distance ’.

For this specific choices of p
Õ and q

Õ, we find, ’
mat
±1 = 8.5 and ’

mat
tot = 13.43 from the

minimization of the total energy. These matching points also determine the parameter

µ
Õ = 95.6 from the number conservation equation, Eq.5.15. Thus, the sub-component

number densities can be written in an analytical form as,

u
var
1 =

Y
______]

______[

1.5173(53.1007 ≠ 0.5’
2), if |’| Æ 8.5

1.5173(114177.278 ≠ 31226.158|’| + 2184.067’
2)exp(≠0.0824’

2),

otherwise,

(5.24)



CHAPTER 5. MULTI-COMPONENT STATIONARY STATES IN THE PRESENCE
OF THE MAGNETIC FIELD 101

u
var
≠1 =

Y
______]

______[

1.3278(53.1007 ≠ 0.5’
2), if |’| Æ 8.5

1.3278(114177.278 ≠ 31226.158|’| + 2184.067’
2)exp(≠0.0824’

2),

otherwise,

(5.25)

u
var
tot =

Y
______]

______[

5.6839(95.4599 ≠ 0.5’
2), if |’| Æ 13.425

5.6839(4.8883 ◊ 1025 ≠ 7.4283 ◊ 1024|’| + 2.8227 ◊ 1023
’

2)exp(≠0.2779’
2),

otherwise,

(5.26)

where the numbers are rounded up to four decimal places. The analytical expressions

of the sub-component densities obtained from the VM is in excellent agreement with

the numerical profiles (see Fig.5.4(a)). Note that, in Eq.5.26 the coe�cients of the total

number density might look very large. Still, for |’| Ø 13.43 where the expression is

valid, the contribution coming from the exponential part is so small that the combined

contribution asymptotically goes to zero at large distances. Subtracting the variationally

estimated u1 and u≠1 components from this total density expression leads to the VM

estimated profile of the u0 component that matches accurately with the numerical profile

(see the inset of Fig.5.4(b))

From a physical perspective, the high-density expressions of u0 and u±1 (Eq.5.7-5.9)

were found by getting rid of the kinetic terms in the Eq.5.5-5.6. So, the high-density

expressions given in Eq.5.7-5.9 are true as long as all the sub-components are in the high-

density region. The low-density behavior of the u±1 component near the T-F radius also,

in turn, a�ects the u0 component in this region. As the variational method can estimate

u±1 in the low-density region, it successfully provides the full analytical profile.

We have made a case study of the PM state which is a multi-component stationary

state that becomes the ground state for a range of linear and quadratic Zeeman strengths.

For the purpose of comparison with numerical simulation, we have chosen 1-D harmonic

trapping and particular values of p
Õ, q

Õ, and the number of condensate particles N .

Note that, the VM is an approximation scheme that works really well in estimating

the sub-component number densities (also the mean fields) and produces a very good

estimation of the vector order parameter of the spin-1 system, even when the interaction

coe�cients c1 and c0 are tuned to have comparable strengths. Like other approximate
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methods, it has some limitations as well. For example, at a large distance from the center

of the trap (very large ’), where the total density u
V M
tot and u

V M
±1 are very close to zero

and can be considered negligible, we find that the total density is slightly lesser than the

combined contribution of the ±1 sub-components hence, making u
V M
0 slightly negative

which is not physical. For this reason, we have taken the contribution up to a large ’ after

which we assume that u0 goes to zero. Thus, the kinetic energy contribution is included

and considered up to a large distance without discontinuity.

Comparison with single-mode approximation (SMA)

To emphasize the requirement of the variational method, we will use the single-mode ap-

proximation, which is a widely adopted method for the study of spin-oscillation dynamics

in spinor condensates. As the name suggests, all the sub-components are assumed to

follow the same spatial variation under SMA [83],

Âm(r, t) =
Ô

N›m(t)ÂSMA(r)exp

3
≠ iµt

~

4
, (5.27)

where, ÂSMA(r) is the spatial mode and ›m(t) is, in general, a complex quantity that

obeys, qm=1
m=≠1 |›m(t)|2 = 1. For 1D harmonic confinement, we will use the same scaling

as done in Eq.5.3-5.4 where,

ÂSMA(’) =
Ò

2fil2
yzlxÂSMA(r). (5.28)

The solution of

C

≠ 1
2

d
2

d’2 + 1
2’

2 + ⁄0N |ÂSMA(’)|2
D

ÂSMA(’) = µ
Õ
ÂSMA(’), (5.29)

subjected to the constraint
⁄ Œ

0
d’|ÂSMA(’)|2 = 1, (5.30)

determines the mode function ÂSMA(’). The dynamics of the normalized spinor ›m(t) is

dictated by,

i
d›±1
d·

= (ûp
Õ + q

Õ)›±1 + ⁄̃1

5
(fl±1 + fl0 ≠ flû1)›±1 + ›

2
0›

ú
û1

6
, (5.31)
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i
d›0
d·

= ⁄̃1

5
(fl1 + fl1)›0 + 2›1›≠1›

ú
0

6
, (5.32)

where flm © |›m(t)|2 and · is related to time t as, · = Êxt. The e�ective volume of the

system, V
eff © 4filxl

2
yx

3 s Œ
≠Œ d’|ÂSMA(’)|4

4≠1
determines the parameter ⁄̃1 [83] as

⁄̃1 © c1N

~ÊxV eff
= ⁄1N

2

⁄ Œ

≠Œ
d’|ÂSMA(’)|4, (5.33)

which appears in Eq.5.31-5.32. The normalized spinor is a complex quantity that can be

represented in terms of the fractional population flm with a phase part,

›m = Ô
flm exp

3
≠ i◊m

4
exp

3
ip

Õ
m·

4
. (5.34)

This simplifies Eq.5.31-5.32 further,

dfl0
d·

= ≠2⁄̃1fl0
Ò

(1 ≠ fl0)2 ≠ f 2
z sin ◊r, (5.35)

d◊r

d·
= ≠2⁄̃1

(1 ≠ 2fl0)(1 ≠ fl0) ≠ f
2
zÒ

(1 ≠ fl0)2 ≠ f 2
z

cos ◊r + 2q
Õ ≠ 2⁄̃1(1 ≠ 2fl0), (5.36)

where, fz = |›1|2 ≠ |›≠1|2, and ◊r is the relative phase. From fl0, one can get to the

population fraction in the other two components, i.e., fl±1 = (1 ≠ fl0 ± fz)/2 [83].

We select an experimentally relevant case of p = 0 and q = 0.3, which also corresponds

to the PM state in the ground state, to compare the SMA with the numerical results.

Note that, the reason to take p = 0 is to draw a parallel with the standard procedure

used for the application of SMA, where the contribution coming from the linear Zeeman

term is bypassed by moving to a rotating frame which e�ectively sets p = 0 [144].

To estimate the mode function, which is the same for all the spin components under

SMA, one has to numerically solve Eq.5.29. Following that, the stationarity condition can

be employed in Eq.5.35-5.36 to find the population fraction for di�erent sub-components.

When fz = 0, for PM state (◊r = 0), we find ⁄̃1 ƒ ≠0.2703, fl0 ƒ 0.777 and fl±1 ƒ

0.111. From these population fractions, one can determine the sub-component densities

as, u
SMA
m = Nflm|ÂSMA(’)|2.

We observed that the total density profile obtained from SMA (N |ÂSMA(’)|2) is in
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(b) The VM approximated and numerically ob-
tained sub-component number densities

Figure 5.5: (a): The sub-component density profiles obtained from the SMA (u1, u0 and
u≠1 components shown in red dash, green dash-dot, and blue solid lines respectively) are
compared with the numerical profile (u1, u0 and u≠1 components shown in red, green and
blue markers). Though the SMA total number density profile agrees with the numerical
total number density distribution (not shown here), the SMA overestimates u0 and under-
estimates both u±1 near the center of the trap. (b): The VM estimated sub-component
profiles for the case of p = 0 and q = 0.3 is in excellent agreement with the multi-modal
distribution obtained from the numerical estimation near the center of the trap as well as
in the low-density region.

good agreement with the numerically obtained total number density. This is important

for an accurate determination of ⁄̃1 (Eq.5.33). Still, the sub-component density profiles

as obtained from SMA do not agree at all with the numerically obtained profiles (see

Fig.5.5(a)). In comparison to the numerical profile, the SMA overestimates the u0 com-

ponent and underestimates the u±1 near the center of the trap. While the numerical

profile suggests that the u±1 components approach zero much earlier than the u0 com-

ponent, it is obvious that according to SMA, they will vanish at an equal distance from

the trap center. Note that, it is well-known that SMA is not exact even in the ground

state for the PM state, which is also known as the broken-axisymmetry phase [83]. The

inaccuracy of SMA further emphasizes the fact that the sub-components do not follow

a single spatial mode for the PM state. Thus, a multi-modal analysis is required. Note

that, the accurate determination of the sub-component densities is important to estimate

the total energy as well. In Fig.5.5(b) we demonstrate that the sub-component density

distributions as obtained from the multi-modal VM are in excellent agreement with the

numerical simulation for this experimentally relevant case.
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5.2.3 Anti-ferromagnetic state

In this section, we will present a brief study on the anti-ferromagnetic state, which is the

other possible multi-component stationary state that becomes the ground state for 23
Na,

which possesses an anti-ferromagnetic type of spin interaction. For the 23
Na-condensate,

we set the same trapping frequencies corresponding to 1-D confinement as mentioned

earlier for the ferromagnetic type condensate. The oscillator length in the elongated

direction is lx = 2.97 µm and the same in the transverse direction is lyz = 0.59 µm. Note

that, although we consider the same trapping geometry, the oscillator length scale for
23

Na and 87
Rb condensates are di�erent due to the di�erent masses of the species. The

spin-independent and spin-dependent interaction parameters are ⁄0 = 46.16 ◊ 10≠3 and

⁄1 = 7.43 ◊ 10≠4, corresponding to the values given in [83]. For a range of linear and

quadratic Zeeman terms, the anti-ferromagnetic (AF) state is found to be favorable as

the ground state. For the purpose of numerical study, we will specifically focus on the

particular case where p
Õ = 0.2 and q

Õ = ≠0.5. Though the conclusions are independent of

these particular choices.

As long as the u1 and u≠1 sub-components are non-zero, the T-F approximation gives

an estimation of the total as well as sub-component number densities (see Table 5.1),

u
T F
1 = µ

Õ ≠ q
Õ ≠ ’

2
/2

2⁄0
+ p

Õ

2⁄1
, (5.37)

u
T F
≠1 = µ

Õ ≠ q
Õ ≠ ’

2
/2

2⁄0
≠ p

Õ

2⁄1
. (5.38)

As we have chosen a positive value of p
Õ, and for this case, ⁄1 > 0, the u≠1 component

goes to zero much faster than the other one. So, beyond the T-F radius of the u≠1

component, the AF state ceases to exist but the sole presence of the u1 component signifies

the ferromagnetic state. Thus, according to T-F approximation, the situation is domain-

like with the AF state at the center of the trap followed by the ferromagnetic state, F1,

(see Table 5.1) that appears in a region with |’| > ’
T F
≠1 . Just like the PM state that we

have discussed in detail earlier, the numerical simulation does not indicate any domain-

like situation. Rather the AF state is found to be present for all values of ’. We follow

the same procedure for the variational method as discussed in the context of the PM

state. When both the sub-components are in the high-density regions, one can write the
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densities by neglecting the derivative terms in the phase equations that lead to,

u
in
±1 = k±1

S

Uµ
Õ
±1 ≠ ’

2
/2

⁄0

T

V, (5.39)

where, k±1 = 1/2 and, µ
Õ
±1 = µ

Õ ≠ q
Õ ± ⁄0

⁄1
p

Õ. By definition, the sub-component density u0

is zero for the AF state.

Note that, the high-density expressions are valid as long as both the sub-component

density is high enough so that the derivative terms can be safely ignored. But for p
Õ = 0.2

and q
Õ = ≠0.5, the u≠1 component has a lesser T-F radius than the other component. As

a result, near the T-F radius of the u≠1 component, the high-density expression of the

u1 component would be invalid, for the reasons stated earlier. In the high-density region,

the total density follows,

u
in
tot = ktot

S

Uµ
Õ
tot ≠ ’

2
/2

⁄0

T

V, (5.40)

where ktot = 1. Following the same procedure as described for the PM state, one can

apply the VM for the total density and the sub-component density u≠1. Now, if one

writes the low-density expressions of the u≠1 and utot as

u
out
m = km

⁄0

3
am + cm|’| + dm’

2
4

exp

Q

a ≠ ’
2

bm

R

b, (5.41)

the coe�cients will have the same expressions as given in Eq.5.19a-5.19d. Following the

same method as explained earlier, one can minimize the total energy corresponding to this

stationary state in the parameter space of the matching points ’tot and ’≠1 which provides

the analytical form of the full profile of the condensate in terms of the total density and

the u≠1 component. By subtracting the u≠1 component from the total density profile one

can get to the u1 component. For the previously mentioned p
Õ and q

Õ values, the total

energy is minimized for ’
mat
tot = 8.36 and ’

mat
≠1 = 6.08. These also produce the analytical

formulae of the total density and the u≠1 components. The density expression for u1

component can be obtained by subtracting the other sub-component density from the

total density.

The VM shows that the T-F approximated domain-like situation is incorrect and justi-

fies the fact that the kinetic energy terms cannot be neglected near the T-F radius for the
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Figure 5.6: Sub-component density expressions obtained via the VM (u1, u0 and u≠1
components shown in the red dash, green dash-dot, and blue solid lines respectively)
and the numerical density profiles (u1, u0 and u≠1 components shown in red, green and
blue markers) for the anti-ferromagnetic state are plotted with distance ’ from the trap
center when the Zeeman terms are fixed at p

Õ = 0.2 and q
Õ = ≠0.5. The VM profile and

the numerical profiles agree for both the sub-components and rule out any possibility of
having a domain-like situation.

sub-component which is of smaller density, in this case, the u≠1 component. The VM also

produces a low-density expression of the u≠1 component which has a small but non-zero

presence beyond u
T F
≠1 . Thus, it is only the AF state that is present for all regions of space.

Moreover, the analytic number density expressions obtained from the VM corresponding

to each sub-component are in fair agreement with the numerically obtained profiles (see

Fig.5.6).

5.3 Phase transition between PM and polar states

under confinement

In the previous section, we considered the case of spin-1 condensate under 1-D harmonic

confinement. We have shown that the T-F approximation and the SMA produce inaccu-

rate results for the multi-component ground states. The variational method, on the other

hand, analytically obtains the correct profile of the ground states.

In this section, we employ the variational method for estimating the phase transitions

between di�erent ground states of a trapped spin-1 BEC, especially when the multi-

component states are involved. We will focus on the phase transition between the PM

and polar state. This phase transition is of importance in the context of the Kibble-Zurek
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mechanism and related spin-vortex generation [83, 145–147]. We consider a spin-1 BEC

with the ferromagnetic type of spin-spin interaction inside a 3-dimensional (3-D) isotropic

harmonic confinement. To apprehend the contrast and similarity of this phase transition in

a trapped condensate with that of the homogeneous (in the absence of trapping) situation,

we will briefly recapitulate the homogeneous results shown in Chapter 2 (Fig.2.1).
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1|n
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q/(|c1|n)
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p2 = q2- 2|c1|nq

(1,0,0)

(0,0,1)

(1,1,1)

(0,1,0)

Figure 5.7: The phase diagram of the spin-1 condensate with a ferromagnetic type of
spin-spin interaction (c1 < 0) in the absence of any confinement. The ferromagnetic, PM,
and polar states are favorable to become the ground states depending on the linear and
quadratic Zeeman terms, p and q. The number density n, being a constant over space in
the absence of any confinement, can be used to scale the p and q axes. In this scaling,
the phase diagram becomes universal in the sense that this diagram does not vary if the
number density changes.

The phase transition between the PM and the polar state happens for the ferromagnetic

type of spin-spin interaction (c1 < 0). In the absence of confinement, the number density

becomes a constant i.e., there is no spatial dependence. For c1 < 0, the phase diagram

of the homogeneous condensate, Fig.5.7 (same as Fig. 2.1(c)), shows di�erent stationary

states that are favorable as the ground state in certain regions of the (q, p) parameter

space. For the negative quadratic Zeeman term (q < 0), the ferromagnetic states are

the ground states, where one of them is favorable depending on the sign of the linear

Zeeman term. For q > 0, if the quadratic Zeeman term is greater than the absolute

value of the linear term (i.e., q Ø |p|) then the PM state becomes the ground state as

long as p
2 Ø q

2 ≠ 2|c1|nq is satisfied. The polar state occupies the remaining part (i.e.,

p
2 Æ q

2 ≠ 2|c1|nq) of the (q, p) parameter space. For the homogeneous condensate, the

PM-polar phase transition occurs at p
2 = q

2 ≠2|c1|nq, where the energies of the two states

become equal and for a higher value of q for the same p, the PM state is non-existent.
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For an isotropic 3-D confinement of trapping frequency Ê, we scale the number density

and the interaction parameters as,

c0 = 4fi

3 l
3
osc⁄0~Ê, c1 = 4fi

3 l
3
osc⁄1~Ê, (5.42)

um = 4fi

3 l
3
oscnm, r = losc÷ (5.43)

where, l
2
osc = ~/(mÊ) is the oscillator length and ÷ is the radial distance from the trap

center. For this choice of scaling, the phase equations,

I

≠ 1
2

1
÷2

d

d÷
(÷2 d

d÷
) + 1

2÷
2 + ⁄0u ≠ µ

Õ + ⁄1 (u1 + u≠1 + 2Ô
u≠1u1 cos ◊r)

J
Ô

u0 = 0, (5.44)

I

≠ 1
2

1
÷2

d

d÷
(÷2 d

d÷
) + 1

2÷
2 + ⁄0u ≠ µ

Õ ± ⁄1 (u1 ≠ u≠1) û p
Õ + q

Õ
J

Ô
u±1

+ ⁄1u0 (Ôu±1 + Ô
uû1 cos ◊r) = 0,

(5.45)

assumes a similar structure as Eq.5.5-5.6, where, due to isotropy, we have only considered

the radial part of the Laplacian in the spherical polar coordinate. To implement the VM,

we follow the same procedure discussed for the 1-D harmonic confinement in the previous

section. For the PM state, the unknown coe�cients in the number density expression

of the low-density region (Eq.5.21 with radial distance ÷ in place of ’) follow the same

expressions Eq.5.19a-Eq.5.19d under 3-D harmonic confinement.

Integrating the sub-component densities would provide the total number of condensate

particles, which in the non-dimensional form can be written as (following the scaling

Eq.5.42-5.43)

1ÿ

m=≠1

S

U
⁄ ÷mat

m

0
u

in
m(µÕ

, ÷)÷2
d÷ +

⁄ Œ

÷mat
m

u
out
m (µÕ

, ÷, ÷
mat
m )÷2

d÷

T

V = N

3 . (5.46)

From this equation, one can estimate the parameter µ
Õ for the matching points ÷

mat
m for

a condensate with N particles. Following the same procedure of minimizing the total

energy, the matching points are obtained.

For the polar state, the implementation of the variational method is straightforward.

Only the u0 component is populated for the polar state, hence Eq.5.45 becomes trivial.

The number density expression in the high-density region for this state can be obtained
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by neglecting the Laplacian term in Eq.5.44,

u
in
0

----
polar

=
µ

Õ ≠ 1
2÷

2

⁄0
. (5.47)

In the low-density region we assume,

u
out
0

----
polar

= 1
⁄0

3
a0 + c0÷ + d0÷

2
4

exp

Q

a ≠ ÷
2

b0

R

b, (5.48)

where the coe�cients a0, b0, c0, and d0 follows the same expressions as Eq.5.19a-Eq.5.19d.

Following the same method discussed earlier, the total energy is minimized in the one-

dimensional parameter space of ÷
mat
0 . Note that, the total energy of the polar state does

not depend on the linear and quadratic Zeeman terms.

We consider a 3-D isotropic harmonic confinement of trapping frequency Ê = 2fi ◊

100 Hz. The oscillator length scale corresponding to this choice of trapping frequency

is losc = 1.07µm for For 87
Rb. The interaction parameters defined in Eq.5.42-5.43 are

⁄0 = 1.484 ◊ 10≠2 and ⁄1 = ≠5.249 ◊ 10≠5.

The VM estimates the total energy of the polar state and the PM state for di�erent p
Õ

and q
Õ, a comparison of which would reveal the phase boundary for the trapped condensate.

For homogeneous condensate, the energy di�erence between these two states at p = 0

(Fig.5.8(a)) indicates that the energy of the PM state is lower than the polar state for

small positive values of q. As the strength of the quadratic Zeeman term is increased,

the energy di�erence reduces, and at the transition point qt = 2|c1|n, it vanishes. At this

point, the number density of the m = ±1 projection,

n
P M
±1

----
hom.

= (q ± p)2

4q2

Q

a≠p
2 + q

2 + 2c1nq

2c1nq

R

bn (5.49)

also vanishes [83], hence the PM state ceases to exist.

For the trapped condensate at p = 0, one can estimate the q0, where the peak density

(number density at the center of the harmonic trap) of the u±1 vanishes and the PM state

ceases to exist for q > q0. The VM estimated energy di�erence between the PM and the

polar state for N = 5000, shown in Fig.5.8(b) indicates that the phase transition happens
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Figure 5.8: Subfig-(a): For condensates with the ferromagnetic type of spin-spin inter-
action (c1 < 0), the energy di�erence of the PM and the polar state scaled with the
constant number density is plotted against the variation of q at p = 0 for condensates in
the absence of any trapping. At q ¥ 0, the energy corresponding to the PM state is lower
than that of the polar state, making the PM state favorable to become the ground state.
As q increases, the energy di�erence reduces, and at the transition point (q = 2|c1|n at
p = 0), the PM state energy becomes equal to that of the polar state. At this point, the
sub-component density n±1 vanishes. Hence beyond this point, the PM state does not
exist. Subfig-(b): The VM estimated energy di�erence between the PM and polar state
under the 3-D harmonic trapping for 5000 condensate particles with varying q

Õ at p
Õ = 0.

The total energy of the PM state is lower than that of the polar state for small values
of the quadratic Zeeman term. The energy di�erence in the trapped situation indicates
that the phase transition happens at q

Õ ƒ 0.0027, which is much lower than q
Õ ƒ 0.0377,

beyond which the PM state ceases to exist.

at q
Õ
t = 0.0027, which is an order of magnitude lower than q

Õ
0 ƒ 0.0377 beyond which the

PM state ceases to exist under trapped conditions.

As is evident from Fig.5.7, for the homogeneous condensate, the constant number den-

sity is used in the scaling of p and q. As a result, the whole phase diagram is universal

with respect to number density variation for any homogeneous spin-1 condensate with

the ferromagnetic type of spin-spin interaction. In contrast, in the presence of confining

potential, the number density varies over space and even the peak density (number den-

sity at the center of the trap) is di�erent for di�erent stationary states. In this case not

the number density but the number of condensate particles are of importance.

For a choice of p
Õ, the VM is employed to estimate the q

Õ value for which the energy

di�erence of the PM and the polar state vanishes. Following the same procedure for
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Figure 5.9: Subfig-(a): PM-polar phase transition boundary in (q, p) parameter space
under harmonic confinement for 5000, 10000, and 20000 condensate particles (in the red
circle, blue triangle, and wine box markers). All the phase boundaries asymptotically
follow |pÕ| = q

Õ line for large values of p
Õ and q

Õ, similar to the homogeneous condensate,
while if we increase the number of particles, the range of q

Õ at p
Õ = 0, for which the PM

state becomes the ground state increases. Subfig-(b): The phase boundaries are plotted by
scaling the quadratic and linear Zeeman terms with qt, where qt is the quadratic Zeeman
strength for which the PM-polar transition happens at p

Õ = 0 for a particular N. In these
scaled coordinates, all the phase boundaries approximately follow the equation, (qÕ

/qt)2 ≠
(pÕ

/qt)2 = 1, the equation of a hyperbola, similar to the homogeneous condensates.

di�erent choices of p
Õ, one can get the phase boundaries (Fig.5.9(a)) in the q

Õ, p
Õ parameter

space for a range of condensate particles.

These phase transition boundaries for di�erent condensate particles asymptotically ap-

proach the |pÕ| = q
Õ line for large values of q

Õ. At the same value of the linear Zeeman

term p
Õ, with an increase in the number of particles, the phase transition happens at a

higher value of q
Õ. For example, at p

Õ = 0, the phase transition happens at qt = 0.0027

for 5000 particles, which gets shifted to qt = 0.005 for N=10000 and to a higher value of

qt = 0.0083 for 20000 particles.

A natural query, therefore, would be whether there exists a scaling factor for trapped

condensate which brings these phase boundaries for di�erent numbers of condensate par-

ticles (Fig.5.9(a)) to the same plot. The asymptote of unit slope indicates, if we scale

the p
Õ and q

Õ with qt(N), which is the q value at p = 0, where the transition happens

for a particular N, then all these phase boundaries merge (Fig.5.9(b)) and approximately

follow (qÕ
/qt)2 ≠ (pÕ

/qt)2 = 1, the equation of a hyperbola, similar to the homogeneous
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condensate.
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Figure 5.10: Figure shows the scaling qt to vary with the number of particles as a power
function qt Ã N

m. Using a linear fit, the slope of log qt vs log N , which corresponds
to the power m is obtained, i.e., m ¥ 0.75. This shows that the scaling factor qt varies
approximately as qt Ã N

3/4, for 3-D isotropic harmonic trapping.

To determine the dependence of the scaling factor qt on the number of condensate par-

ticles, we additionally estimated qt for N=7000, 15000, 30000, 40000, and 50000 particles.

Assuming a power-law dependence, from the log qt vs log N plot, we find that the scaling

factor depends on the number of particles roughly as qt ≥ N
3/4 (Fig.5.10).

Note that, in the absence of trapping, the PM-polar phase transition happens at a

quadratic Zeeman term, qt = 2|c1|n at p = 0. In that case, the number density is

a constant. If we map the T-F approximated trapped condensate to the homogeneous

counterpart by replacing the constant density with the T-F approximated average density,

one can get to an estimation of the q
T F
t .

The total number present in the condensate can be obtained by integrating the number

density, which in the T-F approximation,

⁄ R

0
4fi’

2
5
µ

Õ
T F ≠ 1

2’
2
6
d’ ≥ N, (5.50)

gives a relation between the T-F radius R and the number of particles N. As µ
Õ
T F = R

2
/2,

the T-F radius varies with N as, R ≥ N
1/5, which leads to the volume V ≥ R

3 ≥ N
3/5.

So, the average density in the T-F approximation depends on N as, navrg = N/V ≥ N
2/5.

If we replace the constant density with the T-F approximated average density, one
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can estimate q
T F
t ≥ N

2/5. In contrast, the multi-modal VM indicates that this scaling

factor is qt ≥ N
3/4 for the isotropic 3-D harmonic confinement. This result exposes the

limitation of the T-F approximation in comparison with more accurate results even in

large condensates.

5.4 Discussion

In this chapter, we looked into the multi-component states that become the ground state

of a harmonically confined spin-1 BEC in the presence of the magnetic field. Even in

the so-called "T-F regime", where the overall density of the condensate is high enough to

supposedly neglect the kinetic energy contribution, the T-F approximation indicates to

a wrong physical conclusion about domain formation in the ground state. Moreover, the

T-F approximated profile for the domain structure has a discontinuity (for example, the

u0 component for PM state has a discontinuity, shown in Fig.5.2). Whereas, the numerical

evidence suggests that the multi-component states are solely present in the ground state.

Although, for multi-component states like the PM state, the widely used SMA indicates

that there is no domain structure in the ground state, we demonstrate that the SMA over-

estimates one of the sub-components while underestimating the others. The condensate

profile obtained from the SMA also suggests that all the components tend to vanish at a

similar distance from the trap center, which is also in stark contrast with the numerical

profile. This inaccuracy in estimating the sub-component density profiles would come

costly, as an accurate estimation of the same is required to compute the total energy of

the PM state, which is the ground state in this case. This requires a general multi-modal

treatment taking into consideration the kinetic energy term, which the VM provides. The

VM captures the multi-component states because it can accurately estimate trapped den-

sity profiles even in the low-density region, where the kinetic energy contribution is the

most significant and cannot be neglected. While the T-F approximated condensate profile

has a discontinuity, the VM analytically estimates smooth number density profiles that

agree with accurate numerical simulation.

The VM can be implemented in higher dimensions where numerical simulation is

costlier. For 3-D isotropic harmonic trapping, the VM estimates the phase transition

between the PM and the polar state for the ferromagnetic type of spin-spin interaction,
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which indicates that the phase transition in a trapped situation is significantly di�erent

than the homogeneous condensate. The VM estimation of the phase transition bound-

aries for di�erent particle numbers shows a universal behavior under a specific scaling of

the p
Õ and q

Õ coordinates. This scaling factor arose out of the VM calculation. A similar

analysis can be employed for phase transitions involving other states that would produce

a complete phase diagram of a spin-1 condensate under harmonic confinement.
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Chapter 6

Conclusion and future prospects

6.1 Major findings

In the following, the major findings of this thesis are summarized.

• We have developed a general method to analytically explore the domain formation

possibilities for a trapped spin-1 condensate under the Thomas-Fermi approxima-

tion. Applying the Thomas-Fermi approximation, the energy densities of all the

stationary states can be calculated for a generic trapping potential. Under a single

essential constraint of the same chemical potential for the domain-forming struc-

tures, the Thomas-Fermi approximated energy densities are compared locally for

various magnetic fields (linear and quadratic Zeeman terms). The whole procedure

is valid for any generic potential as discussed in detail in Chapter 3. This procedure

can be easily extended to higher spin (f > 1) systems. This is a general method and

allows one to explore the domain structures in a unified way, rather than searching

on a case-by-case basis.

• The Thomas-Fermi approximation neglects the kinetic energy contribution com-

pletely. This is assumed to be true for large condensates. When the density is high

enough, the interaction energies become large and in comparison, the kinetic energy

contribution becomes less significant. But even for large condensates, situations

may arise when competing ground state candidates di�er in energy, which is of the

order of the kinetic energy contribution. In such situations, the Thomas-Fermi ap-

117



118 CHAPTER 6. CONCLUSION AND FUTURE PROSPECTS

proximation will break down in predicting the correct ground state as the kinetic

energy contribution, which the Thomas-Fermi approximation disregards, can alter

the prediction. In Chapter 4 we discussed such a situation and proposed a multi-

modal variational method that takes the kinetic energy contribution into account

and analytically produces more refined estimations of the ground state structures

and related quantities.

• When the density is not high enough (for example, in the low-density region, which

is away from the trap center of a harmonically trapped condensate), one cannot

neglect the kinetic energy completely. Even for large condensates, the e�ect of the

kinetic energy is taken into account in the multi-modal variational method. That is

why this method can produce the condensate profile in the low-density region with

great accuracy, which is beyond the capability of the Thomas-Fermi approximation.

On top of that, this method can produce the analytical number density profile even

for condensates with particle numbers as low as 500, where needless to say, the

Thomas-Fermi approximation is not at all accurate.

• In the presence of the magnetic field, the multi-component states are not bound to

follow a single spatial mode, and in situations like this, the Thomas-Fermi approxi-

mation wrongly indicates the phenomenon of domain formation in the ground state

(in Chapter 5). Away from the trap center, if one of the sub-components tends

to vanish faster than the other components, the Thomas-Fermi approximation is

bound to predict a domain structure in the ground state. This happens irrespec-

tive of the higher number of condensate particles (in the so-called Thomas-Fermi

regime). On the other hand, the well-known method of single-mode approximation

is also inaccurate in estimating the sub-component profiles.

• In the absence of a trustworthy analytical procedure, the multi-modal variational

method produces an accurate description of the multi-component ground states of a

trapped condensate in the presence of the magnetic field. The variational method,

being a multi-modal method, treats each sub-components separately and can ac-

count for the low-density or tail part of the sub-component profiles. The accurate

determination of this tail part of the condensate especially, for the sub-component(s)

that tends to vanish earlier than the other components gives the idea of why there
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is no domain-formation in the ground state involving the multi-component states.

This further emphasizes that the general intuition that the kinetic energy, as well

as the tail part, can be neglected for large condensates (in the so-called T-F limit)

might produce an inaccurate physical picture when dealing with multi-component

BEC, no matter how large the condensate may be. In higher dimensional space,

where the simulations are computationally expensive, the variational method can

be readily used to get the ground state. This method can also be generalized to

higher spin systems as well.

• The multi-modal variational method is crucial to analytically obtain the phase di-

agram of a trapped condensate. Inside a 3-D isotropic harmonic confinement, the

variational method estimates the PM-polar phase transition in the q, p parameter

space for di�erent condensate particles. These phase boundaries can be compared

with that of the homogeneous case. On top of that, the trapped phase boundaries

for di�erent numbers of particles show a universal behavior under the scaling of

the q, p axes. Similar analysis can be done for other possible phase transitions,

that would reveal a complete and phase diagram of the spin-1 condensate under

harmonic confinement.

6.2 Future directions

• An interesting direction can be in the studies of instabilities. Generally, the insta-

bility analysis is either done numerically or analytically only in the absence of the

trapping potential. As the variational method provides accurate analytical expres-

sions of the ground state profiles, this opens up the possibility of analytical studies

in the presence of trapping.

• The multi-modal variational method can be extended for a more accurate deter-

mination of domain formation. This could rule out some of the domain formation

possibilities under the T-F approximation. Under the T-F approximation, one is

restricted to search for domain structures only near the center of the trap, but the

variational method could relax this restriction. Moreover, if the variational method

is extended to the domain forming scenario, it could determine the sub-component

profiles of the condensate near the domain boundary thus, estimating the domain
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layer energy.

• Having known the ground state one can also investigate the transition to an excited

state for example, large-scale oscillations under periodic forcing, vortex structures,

and other situations like macroscopic tunneling phenomena.
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