
Matching Under Preferences

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Deeksha Adil

20121071

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

May, 2017

Supervisor: Prof. Saket Saurabh

c� Deeksha Adil 2017

All rights reserved

Certificate

This is to certify that this dissertation entitled Matching Under Preferences towards

the partial fulfilment of the BS-MS dual degree programme at the Indian Institute

of Science Education and Research, Pune represents study/work carried out by

Deeksha Adil at The Institute of Mathematical Sciences, Chennai and The Institute

of Informatics, University of Bergen under the supervision of Prof. Saket Saurabh,

Professor, Institute of Mathematical Sciences, Chennai , during the academic year

2016-2017.

Prof. Saket Saurabh

Committee:

Prof. Saket Saurabh

Dr. Soumen Maity

Dedicated to Mount Fløyen

Declaration

I hereby declare that the matter embodied in the report entitled Matching Under

Preferences are the results of the work carried out by me at the Institute of

Mathematical Sciences, Chennai and The Department of Informatics,University of

Bergen under the supervision of Prof. Saket Saurabh and the same has not been

submitted elsewhere for any other degree.

20 March 2017 Deeksha Adil

Acknowledgements

I would like to express my sincere gratitude towards Prof. Saket Saurabh for all his

constant help and guidance. I am really grateful for all the opportunities and expo-

sure that I was provided with as a part of Prof. Saket’s group. I highly appreciate

the amount of time and resources devoted towards me during the project. I would

have to mention how thankful I am for having been given the opportunity to visit the

University of Bergen. The visit has had a huge impact on me academically and I am

glad to have gotten such an exposure.

I would next like to thank Dr. Sushmita Gupta for having spent so much time

and patiently discussing every bit starting from the basics with me. I was completely

new to the area but her constant energy, enthusiasm has been a huge encouragement

towards learning and understanding the field.

I thank Dr. Meirav Zehavi and Sanjukta Roy for their time and I would like to

admit that I did enjoy the discussions.

I thank Dr. Soumen Maity, for his constant interest and help.

I would like to specially thank Prof. Raghuram for his constant support in the

years I spent in IISER and even now. I am really grateful towards him for suggesting

IMSc as an option for my Master’s Thesis.

I thank the Department of Mathematics, IISER Pune and IISER Pune for pro-

viding me with such an opportunity to carry out such a project.

Lastly I would like to thank my parents and sister, all my friends from IMSc,

ix

x

Lawqueen, Roohani, Pratik, Sanjukta, Oorna and Aditi, my friends from IISER Pune

Prachi, Shipra, Anirban and my math classmates from IISER for all the emotional

and mental support throughout. It would not have been possible to complete this

project without this support.

Abstract
The Stable Marriage Problem is a classic problem of matching under preferences.

It involves two sets of agents, classically refered to as men and women each having a

preference list over the other set. A matching is a disjoint collection of man woman

pairs. We define a blocking edge with respect to a matching to be a (man,woman) pair,

say (m,w), such that both m and w prefer each other over their matched partners in

the matching. A Stable Matching is a matching with no blocking pairs. In the 1960s

Gale and Shapley gave an algorithm, now known as the Gale-Shapley algorithm, that

solves the stable marriage problem in polynomial time.

Various extentions of the Stable Marriage problem have been studied. The sim-

plest and most natural extension is to incomplete lists, called a the Stable Marriage

problem with incomplete lists, or SMI. As the name suggests an instance of this

problem would involve the preference lists to be incomplete. The GS algorithm can

be easily extended to this problem and again it has been shown that a stable match-

ing always exists and can be found in polynomial time. If indifference is introduced

in the problem instance, that is the preference lists may involve ties and are incom-

plete as well, the problem is referred to as The Stable Marriage problem with Ties

and Incomplete Lists or SMTI in short. With ties there are three different notions of

stablity - super stability, strong stability and weak stability. We are only interested in

weakly stable matchings. A matching in an SMTI instance is weakly stable if there is

no pair (m,w) such that m and w both strictly prefer each other over their respective

matched partners.

It has been shown that arbitrarily breaking the ties in an SMTI problem instance I
we get a corresponding SMI instance I � such that a stable matching in I � is a weakly

stable matching in I. Depending on how we break the ties the size of the stable

matching obtained may vary. The problem of finding a maximum sized or a minimum

sized weakly stable matching is shown to be NP-hard. When the underlying graph

is not a bipartite graph, the problem is commonly known as the Stable Roommates

problem. We can define versions of SMI and SMTI for the Stable Roommates setting

as well and we call them SRI and SRTI respectively. Ronn showed that in an SRTI

instance the problem of deciding whether a weakly stable matching exists or not is

NP-complete.

In this dissertation we study the problem of finding a maximum (minimum) sized

weakly stable matching in SMTI and SRTI instances in the realm of parameterized

xi

xii

complexity. We show that these problems are fixed parameter tractable by giving

polynomial kernels. Also when the underlying graph is planar we show that we can

improve the kernel further to a linear kernel thus giving us better algorithms.

Another extension of the Stable Marriage problem gives us the well known Hospi-

tal/Residents Problem (HR Problem). This problem is a many-one stable matching

problem. An instance of Hospital/Residents Problem is again a bipartite graph,

H ∪ R, where H is the set of hospitals and R the set of residents. Each hospital has

a strict preference over a subset of residents and each resident has a strict preference

over a subset of hospitals. With every hospital we have an associated number called

its upper quota. Our goal is to assign residents to hospitals such that for every hos-

pital not more than its upper quota residents are assigned to it, and the assignment

is ‘stable’. Again a stable assignment is an assignment with no blocking pairs, but

the definition of a blocking pair is slightly different than the one defined for a stable

marraige instance. The GS algorithm can be used in this setting as well to find a

stable matching and again a stable matching always exists.

When we associate a lower quota with every hospital and add an additional con-

straint to the problem of assigning at least lower capacity number of residents to each

hospital. Now we want to find such a feasible matching which is as stable as possible.

A stable matching found by GS may not be feasible and by the Rural Hospital The-

orem which states that all stable matchings match the same set of vertices, we are

assured that no stable matching would be feasible. So we look for a feasible matching

as ‘stable’ as possible. In other words we look for a matching with either fewest num-

ber of blocking edges or fewest number of blocking residents. Both these problems

of finding a feasible matching minimizing the number of blocking edges or blocking

residents are shown to be NP-hard. We study the Hospital/Residents problem with

lower quotas in the realm of parameterized complexity. We give an XP Algorithm

with parameter blocking residents. For other parameters sum of lower quotas and

colleges with positive lower quota we show that the problem is W[1] hard.

Contents

Abstract xi

1 Stable Matching 1
1.1 Formal Definitions and Properties . 1
1.2 Stable Marriage Problem with Incomplete Lists and/or Ties 5
1.3 Hospital/Residents Problem . 7
1.4 Stable Roommates Problem . 8

2 Parameterized Complexity 13
2.1 Defining a Parameterized Problem . 13
2.2 W-Hierarchy . 14
2.3 Kernelization . 16

3 Parameterized Algorithms for the SM Problem 17
3.1 Introduction . 17
3.2 Formulation and Problem Definition 18
3.3 Our Contribution . 19
3.4 Preliminaries . 20
3.5 Algorithms for SMTI . 21
3.6 Algorithms for SRTI . 27
3.7 SMTI and SRTI on planar graphs . 29

4 Parameterized Algorithms for the HR Problem 35
4.1 Introduction . 35
4.2 An XP-Algorithm . 37
4.3 W[1]-Hardness Results . 41

5 Results and Conclusions 45

xiii

xiv CONTENTS

Chapter 1

The Stable Marriage Problem

Gale and Shapley’s seminal paper in 1962 contained the first algorithm which solved

the classical Stable Marriage Problem. This problem along with its variants have been

extensively studied in mathematics, economics and computer science. The classical

stable marriage problem involves two sets of agents, referred to as men and women.

Each man ranks all the women in a certain strict order of preference. Similarly each

woman ranks every man in a strict order of preference. The task is to find a set of

man-woman pairs, which we can call a set of marriages such that they are stable i.e.,

there are no extra-marrital affairs. In other words, no man and woman together like

each other over their current assigned partners. Such a set of pairs is called a stable

matching.

In this chapter, we begin with formally defining the Stable Marriage Problem,

Gale-Shapley Algorithm and state some known results. In section 1.2 we give a

generalisation of the problem when the preference lists are not complete and/or may

include ties. In section 1.3 we will define the many to one matching extension of the

Stable Marriage problem called the Hospital/Residents Problem. Section 1.4 gives

certain known results for non-bipartite, general graphs.

1.1 Formal Definitions and Properties

The Stable Marriage Problem is a classic problem of matching under preferences. It

involves two sets of agents, classically refered to as men and women each having a

preference list over the other set. Formally, the preference list of a man m ∈ M is

1

2 CHAPTER 1. STABLE MATCHING

a total ordering of the set W and similarly the preference list of a woman is a total

ordering of the set M . This can be seen as a bipartite graph G = M ∪W with a set

of preference lists LM ,LW of men and women, respectively. A matching is a disjoint

collection of man-woman pairs. With respect to a matching µ we define a blocking

edge.

Definition 1. (Blocking edge) An edge e = (a, b) ∈ G blocks a matching µ in graph

G if vertex a prefers b over it’s matched partner µ(a) and vertex b prefers a over it’s

matched partner µ(b).

We can now formally define a stable matching.

Definition 2. (Stable Matching) Matching µ in G is a stable matching iff it has no

blocking pairs.

The Stable Marriage Problem can now be defined.

The Stable Marriage Problem

Input: A bipartite graph G with preference lists LM and LW .

Task: Find (if exists) a stable matching in (G,LM ,LW).

The Gale-Shapley Algorithm (GS algorithm) gives a stable matching in a stable

marriage instance in O(n2) time where n is the size of the instance. In the Man-

Optimal GS algorithm, every man proposes one by one to women and women accept

or decline the proposal. Initially all men and women are assigned a state free. We

start with a man m ∈ M who proposes to his most preferred woman w. The woman

w accepts the proposal and we call (m,w) to be engaged. Now we repeat this process

for the next man m� in M . Man m� proposes to its most preferred neighbor it has not

yet proposed to, say w�. If w� is engaged to a man it prefers more than m� it declines

the offer and m� proposes to its next most preferred neighbor. If w� is free or engaged

to a man it prefers less than m� it accepts the offer and breaks its engagement with

its previous partner setting that man to be free. The process of proposals continues

as long as there is a man who is free. The algorithm terminates when every man is

engaged or every man has proposed to all of his neighbors.

1.1. FORMAL DEFINITIONS AND PROPERTIES 3

Algorithm 1 Man optimal Gale-Shapley Algorithm

1: procedure GS(M ∪W,LM ,LW) Assign every m ∈ M and w ∈ W to be free

2: while ∃m ∈ M that is free do

3: w = m’s most preferred neighbour it has not yet proposed to

4: if w is free then

5: set m to be engaged to w

6: else

7: if w is engaged to m� such that w prefers m more than m� then

8: set w to be engaged to m and set m� to be free

9: else

10: m remains free

11: end if

12: end if

13: end while

14: return the engaged pairs

15: end procedure

We state the following theorem without proof which yields the correctness of the

GS Algorithm. The proof can be found in [2]

Theorem 1. [2] The Gale-Shapley algorithm always terminates and the matching

returned by it is stable.

Corollary 1. [2] An instance of the stable marriage problem always admits a stable

matching.

The above algorithm can also be used when the roles of men and women are

exchanged. When women propose and men dispose, we again get a stable matching,

referred to as the women optimal matching. Looking at this algorithm there might

seem to be certain non determinism about the order in which the men (or women)

propose. The following theorem proven in [2] resolves this.

Theorem 2. [2] All possible executions of the Gale-Shapley algorithm (with the men

as proposers) yield the same stable matching, and in this stable matching, each man

has the best partner that he can have in any stable matching.

The above theorem also says that in the men proposing Gale-Shapley M vertices

get the best partners they can in any stable matching. The following are some results

4 CHAPTER 1. STABLE MATCHING

which we state without proof about about stable matchings. The proofs can be found

in [2].

Theorem 3. [2]

1. In the M optimal stable matching each vertex in W gets the worst partner it

can get in any stable matching.

2. All stable matchings of a given instance, have the same size and match the same

set of agents.

Observe that in the Gale-Shapley algorithm, in any iteration if a man m proposes

to a woman w, then w cannot finally be matched to a partner it prefers less than m

in the stable matching returned. Also m cannot get a partner it prefers more than w.

This is because, when m proposes to w, m has been rejected by every agent ranked

higher than w in its list in some previous iteration of the algorithm. Similarly when

w receives a proposal from m it accepts it only if it was engaged to someone it ranks

lower than m. Otherwise it is already engaged to someone better. So once m proposes

to some w every agent in its list before w can be deleted and this will have no effect

on the output of the algorithm. Similarly every agent behind m in w’s list can be

deleted. This is basically deleting an edge from the original graph that we know is

not a part of the stable matching. This gives the following extended version of the

M optimal or man optimal Gale-Shapley Algorithm.

Algorithm 2 Extended M optimal Gale-Shapley

1: procedure GS(M ∪W,LM ,LW) Assign every m ∈ M and w ∈ W to be free

2: while ∃m ∈ M that is free do

3: w = m’s most prefered neighbour it has not yet proposed to

4: if w is engaged to m� then

5: set m to be engaged to w and set m� to be free

6: end if

7: ∀m� such that w prefers m more than m�,delete the pair (m�, w)

8: end while

9: return the engaged pairs

10: end procedure

Notice that unlike the GS algorithm here the woman w always accepts the pro-

posal. This is because if the man was not ranked higher than her current partner the

1.2. STABLEMARRIAGE PROBLEMWITH INCOMPLETE LISTS AND/OR TIES5

edge would have been deleted when her current partner had proposed. The cut short

lists at the end of the man proposing extended GS is called MGS-lists. Similarly

we define WGS-lists. The intersection of these two lists is defined as GS-list. This

idea of a GS list will be used to find stable matchings in general graphs and also

bipartite graphs which are not complete. The following theorem from [2] gives some

properties of GS-lists.

Theorem 4. [2] For a given instance of the stable marriage problem,

1. all stable matchings are contained in the GS-lists.

2. no matching contained in the GS-lists can be blocked by a pair that is not in the

GS-lists.

3. in the man-optimal(respectively woman-optimal) stable matching, each man is

partenered by the first(respectively last) woman on his GS-list, and each woman

by the last (respectively first) man on hers.

1.2 Stable Marriage Problem with Incomplete Lists

and/or Ties

The original Stable Marriage problem involves the preference lists to be complete

(men rank all women and women rank all men) as well as strictly ordered. Practical

applications do not always have complete preference lists. There can be some partners

that can be unacceptable. Also it is possible that some agent is indifferent towards

a set of agents. This motivates studying the stable marriage problem when the lists

are incomplete and/or have ties.

1.2.1 Stable Marriage Problem with Incomplete Lists

The preference lists now are not complete i.e., the underlying graph is not a complete

bipartite graph anymore. Such an instance is called an instance of Stable Marriage

Problem with Incomplete Lists (SMI). The notion of a blocking pair and stability still

remains the same for this problem as well. It can be shown that GS algorithm and

the extended GS Algorithm both can be used to give a stable matching in an instance

of SMI.

6 CHAPTER 1. STABLE MATCHING

1.2.2 Stable Marriage Problem with Ties

When we introduce ties in the preference lists, we have three notions of stability -

super stable, strongly stable and weakly stable.

Definition 3. (Super Stable Matching [2]) A matching µ is super stable if there does

not exist any pair (m,w) ∈ E(G) \ µ such that m and w prefer each other atleast as

much as their partners in µ.

Definition 4. (Stronly Stable Matching[2]) A matching µ is strongly stable if there

does not exist any pair (m,w) ∈ E(G) \ µ such that one of m and w strictly prefers

the other over his/her partner in µ and the other is atleast indifferent.

Definition 5. (Weakly Stable Matching [2]) A matching µ is weakly stable if there

does not exist any pair (m,w) ∈ E(G) \µ such that both m and w strictly prefer each

other over their matched partners in µ.

Strongly Stable and Super Stable matchings need not always exist in an instance

of SMT, but there are polynomial time algorithms that decide whether such match-

ings exist or not [6],[7]. On the other hand, weakly stable matchings always exist

in an instance of SMT. Arbitrarily breaking the ties a Stable Marriage instance is

created, a stable matching in which is a weakly stable matching in the original in-

stance. Depending on how the ties are broken we may get different matchings. In

this dissertation we are interested in weakly stable matchings.

1.2.3 Stable Marriage Problem with Incomplete Lists and

Ties

A Stable Marriage Problem with Incomplete Lists and Ties or SMTI instance, allows

unacceptable partners and also ties in the lists of agents. Since there are ties, we

again have the above defined notions of stability. We are mostly interested in weakly

stable matchings. As we have seen, a weakly stable matching always exists in an

SMT instance. Similarly, if we arbitrarily break ties in an instance of SMTI, we get

an instance of SMI. A stable matching in the so found SMI instance is a weakly stable

matching in our original SMTI instance. The difference from SMT, is that depending

on how we break the ties, we get stable matchings of different sizes. The problem of

finding a maximum sized weakly stable matching in an instance of SMTI is shown to

1.3. HOSPITAL/RESIDENTS PROBLEM 7

be NP-hard [5]. In our work we have studied the parameterized complexity of this

problem which is presented in chapter 3.

1.3 Hospital/Residents Problem

Consider the following practical problem of assigning Residents to Hospitals. There

are certain number of hospitals available in a particular town and all the residents of

that town have to be assigned to one hospital that will take care of them. Now prac-

tical constraints would bound the maximum number of residents each hospital can

accommodate (call this the upper quota of the hospital). This motivated a many-to-

one extension of the classical Stable Marriage problem which in literature is known as

the Hospital/Residents Problem(HR Problem). Formally in an HR problem instance,

we have a set H of hospitals, R of residents. With each hospital hi ∈ H we have

an associated upper quota ui. Each hospital and resident has a strict preference list

over the other (may or may not be complete). Our goal is to assign residents to

hospitals such that for each hospital hi not more than ui residents are assigned and

each resident is assigned to at most one hospital. A blocking pair for an assignment

µ is a pair (h, r), h ∈ H, r ∈ R such that h prefers r more than one of its assigned

residents or h has not filled its upper quota number of residents, and r is unassigned

or r prefers h over its current hospital. The GS algorithm can be used to get a stable

assignment in this setting (details in chapter 4) and a stable assignment always exists

[8].

Sometimes, it might happen that a certain hospital needs a minimum number of

assigned residents in order to function. Such a scenaio can be modelled by assigning

a number li, li ≤ ui with each hospital hi, called its lower quota. We now have an

additional constraint to satisfy i.e., every hospital must get at least its lower quota

number of residents. An assignment satisfying this lower quota bound is called a

feasible assignment. The stable assignment we get from GS may not be a feasible

assignment and by the Rural Hospital Theorem we know that the same set of hospitals

and residents will be assigned in every stable assignment. So no stable assignment is

feasible. In such cases we aim to find an assignment which is ‘as stable as possible’.

In other words we try to minimize the number of blocking edges or blocking residents

(the residents involved in a blocking edge). Both these problems of finding a feasible

8 CHAPTER 1. STABLE MATCHING

matching minimizing the number of blocking edges or blocking residents are shown

to be NP-hard [8]. We have studied the HR problem with lower quotas in the realm

of parameterized complexity. Details are presented in chapter 4.

1.4 Stable Roommates Problem

In the previous sections we have looked at variants of the classical Stable Marriage

problem on bipartite graphs. When the underlying graph is not bipartite, the original

stable marriage problem is called as the Stable Roommates Problem (SR Problem).

An instance I = (G,LV) of SR consists of a graph G = (V,E), V being the vertex

set and E the edge set and a set of preference lists LV . A preference list of a vertex

v ∈ V is an ordering of the vertices in V \ {v}. A matching is a set of disjoint vertex

pairs. The aim is to find a stable matching in this setting. A matching is stable if

there are no blocking pairs i.e., no two vertices prefer each other over their matched

partners. The name ‘Stable Roommates’ is associated to this problem as this can be

related to the problem of assigning rooms to students. The rooms should be assigned

in such a way that there are no conflicts between rooms.

Unlike the SM problem instance, an instance of SR might not always have a stable

matching. The following example from [9] can be checked to have no stable matching.

The instance consists of 6 people with preference lists as shown in table 1.1.

1 2 6 4 3 5

2 3 5 1 6 4

3 1 6 2 5 4

4 5 2 3 6 1

5 6 1 3 4 2

6 4 2 5 1 3

Table 1.1: Example of an SR instance with no stable matching

Irving has given an algorithm that in O(n2) time decides whether or not an SR

instance has a stable matching and finds one if exists. The algorithm has two phases,

phase one reduces the instance and phase two eliminates certain cycles from the

1.4. STABLE ROOMMATES PROBLEM 9

graph at the end of which we are left with a matching (if exists). We now give

Irving’s algorithm without proof.

Algorithm 3 Phase 1: Irving’s Algorithm for SR

1: procedure SR(G = (V,E),LV) Assign every v ∈ V to be free

2: while ∃v ∈ V that is free do

3: u = v’s most preferred neighbour that has not rejected v

4: if u is not holding anyone then

5: u holds v

6: u rejects all v� ∈ Nbr(u) such that u prefers v over v�.

7: Delete these edges (u, v�) from G.

8: else

9: u holds v and rejects all v� ∈ Nbr(u) such that u prefers v over v�.

10: Delete these edges (u, v�) from G.

11: end if

12: end while

13: return G,LV

14: end procedure

In Algorithm 3, a vertex being free means it has currently not proposed to anyone

who has held its proposal. While we have some free vertex, the algorithm goes on.

A free vertex proposes to its most preferred neighbour that has not rejected it. The

vertex receiving the proposal can either hold the proposal (if it is free or currently

holds someone it prefers less) or reject the proposal (if it is holding someone it prefers

more). Once a vertex receives some proposal, it rejects all neighbours it prefers less

than the proposing vertex. We delete these edges from the graph. In the end we are

left with a reduced graph and preference lists. In this new graph if there is a degree

0 vertex we can immediately say that the instance has no stable matching (proven

in [9]). Also if in the reduced graph G we have every vertex having degree one then

that is a stable matching.

Lemma 1. [9] If the first phase of the algorithm terminates with one person having

been rejected by all of the others, then no stable matching exists.

Lemma 2. [9] If in the reduced preference lists, every list contains just one person,

then the lists specify a stable matching.

10 CHAPTER 1. STABLE MATCHING

For phase 2 of the algorithm, we require the following definition of a preference

cycle.

Definition 6. (preference cycle)[9] A sequence of vertices a1, a2, a3...ar such that,

(i) for i = 1, ..., i − 1 the second person in ai’s reduced preference list is the first

person in ai+1’s list; we will denote this person by bi+1.

(ii) the second person in ar’s reduced presference list is the first in a1’s; we will

denote this person by b1.

Definition 7. (cycle elimination)[9] A cycle elimination is applied to a given set of

reduced preference lists and a preference cycle. This reduction forces every bi to reject

the proposal it currently holds from ai, forcing ai to propose to bi+1. As a result all

successors of ai in bi+is reduced list can be deleted, and bi+1 can be deleted from their

lists.

We can now give the phase 2 algorithm.

Algorithm 4 Phase 2: Irving’s Algorithm for SR

1: procedure GS(Reduced G = (V,E),LV)

2: while ∃ a preference cycle ρ do

3: apply cycle elimination to ρ.

4: if A preference list becomes empty then

5: return No Stable Matching

6: else

7: if Each preference list is of size 1 then

8: return The pairs corresponding to this graph

9: end if

10: end if

11: end while

12: end procedure

Algorithm 4 keeps eliminating preference cycles from the instance till it gets a

clear no instance or a solution. The further analysis in Chapter 4 of [9] shows the

correctness of the algorithm and running time bound. Lets see how this algorithm

shows that the example in Table 1.1 has no stable matching.

1.4. STABLE ROOMMATES PROBLEM 11

Phase 1 of the algorithm, proceeds as follows where the rightarrow between person

i and j shows that person i has proposed to j:

1 → 2, 2 holds 1, delete edges (2,6),(2,4)

2 → 3, 3 holds 2, delete edges (3,5),(3,4)

3 → 1, 1 holds 3, delete edges (1,5)

4 → 5, 5 holds 4, delete edges (5,2)

5 → 6, 6 holds 5, delete edges (6,1),(6,3)

6 → 4, 4 holds 6, delete edges (4,1)

Table 1.2: Execution of Phase 1 of the algorithm

The reduced table after phase 1 looks as follows:

1 2 3

2 3 1

3 1 2

4 5 6

5 6 4

6 4 5

Table 1.3: Reduced Table after phase 1

The above table has the following preference cycle : a1 = 1, a2 = 2, a3 = 3 and

b1 = 2, b2 = 3, b3 = 1. Eliminating this cycle, 2 rejects 1, 3 rejects 2 and 1 rejects 3

forcing the lists of 1, 2, 3 to be empty. Thus this instance has no stable matching.

In this section we saw the SR problem and Irving’s algorithm to find a stable

matching if exists. Similar to Stable Marriage instance, we can extend this problem

to have ties in the list as well as incomplete lists. We similarly define problems SRI,

SRT and SRTI. Ronn in [10] shows that in an SRTI instance merely deciding whether

a weakly stable matching exists is also NP-complete. Recall that in a SMTI instance

we had the guarantee that a weakly stable matching exists. This is because, when we

arbitrarily break the ties creating an SMI instance, we are guaranteed to find a stable

matching in the SMI instance. For the roommates setting, every SRI instance does

12 CHAPTER 1. STABLE MATCHING

not have a stable matching, thus, depending on how we break the ties we might end

up in an instance of SRI which has a stable matching or which does not have one.

So, as in the case of finding a maximum sized stable matching in an SMTI instance,

the main issue was with how to break the ties, in an SRTI instance even for deciding

the existence of such a matching we face the same problem of how to break the ties.

This results in the hardness.

The following chapters will contain a detailed analysis of the problems introduced

in this chapter. In chapter 2 we first define some tools from parameterized complexity

that we use further. In chapter 3 we give an analysis of the parameterized algorithms

for the Stable Marriage Problem with ties and incomplete lists. Chapter 4 contains

some results for the Hospital/Residents problem with lower quotas.

Chapter 2

Parameterized Complexity

In this chapter we look at some basics of parameterized complexity. We begin by

defining a parameterized problem.

2.1 Defining a Parameterized Problem

In classical complexity theory we classify problems based on their run time that de-

pends only on the input size. In practical problems we often have more information

about the input than the size, such as some structure of the input or solution size

required. In parameterized complexity we generally exploit these structures of the

input and try to capture the ‘hardness’ of the problem with this value. By this we

mean, we try and capture the non-polynomial part of the run time with this value so

that the run time dependence on the instance size is still polynomial. In a parame-

terized problem, the input is always the instance along with a natural number (which

we call our parameter). We aim to find algorithms that run in time polynomial in the

input size times some function of the parameter, which are called FPT Algorithms.

For detailed motivation on the study of parameterized complexity refer to [4]. We

now formally define a parameterized problem.

Definition 8. [3] (Parameterized problem) A parameterized problem is a language

L ⊆ Σ∗ ×N, where Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is

called the parameter.

As in classical complexity we always try to look for algorithms that are polynomial

time solvable in the input size, in parameterized complexity we try and look for

13

14 CHAPTER 2. PARAMETERIZED COMPLEXITY

algorithms that are fixed-parameter tractable.

Definition 9. [3](fixed-parameter tractable) A parameterized problem L ⊆ Σ∗ ×N is

called fixed-parameter tractable (FPT) if there exists an algorithm A (called a fixed-

parameter algorithm), a computable function f : N → N, and a constant c such

that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, k) ∈ L in

time bounded by f(k)|(x, k)|c . The complexity class containing all fixed-parameter

tractable problems is called FPT.

We now define another complexity class of problems XP.

Definition 10. [3](XP) A parameterized problem L ⊆ Σ∗ × N is called slice-wise

polynomial (XP) if there exists an algorithm A and two computable functions f, g :

N → N such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether

(x, k) ∈ L in time bounded by f(k)|(x, k)|g(k) . The complexity class containing all

slice-wise polynomial problems is called XP.

2.2 W-Hierarchy

Similar to the NP-completeness theory of polynomial time computation there is a

lower bound theory for parameterized problems. Such lower bounds are very impor-

tant in ruling out certain kinds of algorithms. Unlike classical complexity in parame-

terized complexity different levels of hardness are observed. Classes W[1],W[2],.. are

used to capture these problems. The details of the different levels observed can be

found in Chapter 13 of [3]. The main assumption here is FPT �= W [1] which is a

stronger assumption than P �= NP . The W-Hierarchy can be thought of as shown in

figure 2.1

To classify problems into such classes we need a notion of a reduction, that reduces

a parameterized problem A to a parameterized problem B such that if B has an

algorithm of a certain kind then so does A. For our purposes, we mainly try to rule

out the existence of FPT algorithms. It has been shown that CLIQUE parameterized

by solution size is W[1] complete. This means that the class of problems W[1] is

the set of all problems that can be obtained through a parameterized reduction from

CLIQUE parameterized by solution size. We now define the notion of a parameterized

reduction. If we can find a parameterized reduction from CLIQUE or some other W[1]

2.2. W-HIERARCHY 15

FPT W[1]

W[2]

W[k]

XP

Figure 2.1: Representation of the W-Hierarchy

hard problem to a problem X then we can say that X cannot have an FPT algorithm

unless FPT=W[1].

Definition 11. [3](Parameterized reduction)Let A,B ⊆ Σ∗×N be two parameterized

problems. A parameterized reduction from A to B is an algorithm that, given an

instance (x, k) of A, outputs an instance (x�, k�) of B such that

1. (x, k) is a Yes-instance of A if and only if (x�, k�) is a Yes-instance of B,

2. k ≤ g(k) for some computable function g, and

3. the running time is f(k)|x|O(1) for some computable function f .

The following results hold for a parameterized reduction. We state them without

proof which can be found in [3].

Theorem 5. [3] If there is a parameterized reduction from A to B and B is FPT,

then A is FPT as well.

Theorem 6. [3] If there are parameterized reductions from A to B and from B to

C, then there is a parameterized reduction from A to C.

16 CHAPTER 2. PARAMETERIZED COMPLEXITY

2.3 Kernelization

In this section we define one of the most used tools for finding FPT algorithms. Let

A ⊆ Σ∗ × N be a parameterized problem. If suppose we want to design an FPT

algorithm for A, one natural way of thinking could be, given an instance (x, k) of

A, find an equivalent instance (that preserves decision) that has a size bounded by a

function of the parameter. Doing so we can then use some brute force algorithm in

the new equivalent instance and decide the answer for (x, k). This is the main idea

of kernelization. An intereting relation between a kernelization algorithm and FPT

algorithm is that a paramterized problem Q is FPT if and only if it has a kernelization

algorithm [3].

Definition 12. [3](Reduction Rule) A data reduction rule, or simply, reduction rule,

for a parameterized problem Q is a function φ : Σ∗ × N → Σ∗ × N that maps an

instance (I, k) of Q to an equivalent instance (I �, k�) of Q such that φ is computable

in time polynomial in |I| and k.

In the above definition, equivalence means that (I, k) is a Yes-instance of Q if and

only if (I �, k�) is a Yes-instance of Q. This property is referred to as the safeness of

the reduction rule. The idea of a kernelization algorithm is to design a series of such

reduction rules that shrink the size of the instance with each application.

Definition 13. [3] (Kernelization, kernel) A kernelization algorithm, or simply a

kernel, for a parameterized problem Q is an algorithm A that, given an instance

(I, k) of Q, works in polynomial time and returns an equivalent instance (I �, k�) of Q.

Moreover, we require that sizeA(k) ≤ g(k) for some computable function g : N → N.

We abuse the term kernel to refer to the algorithm as well as the equivalent

instance returned by the algorithm. An example of a kernelization algorithm is pre-

sented in chapter 3, we show a kernelization algorithm to prove that the Stable

Marriage problem with incomplete lists and ties is FPT when parameterized by the

solution size. In chapter 4 we give an XP algorithm for the Hospital/Residents prob-

lem parameterized by the number of blocking residents, followed by a W[1] hardness

result that shows that we do not expect to find an FPT algorithm for this problem

as long as our assumption FPT �= W [1] holds.

Chapter 3

Parameterized Algorithms for the

Stable Matching Problem with

Ties and Incomplete Lists

3.1 Introduction

This chapter is based on the work done in [11]. The problem Stable Marriage with

Ties and Incomplete Lists (SMTI) has been introduced in section 1.2. The problem

of finding a maximum or a minimum sized weakly stable matching in an instance

of SMTI is known to be NP-Hard [5]. In this chapter we study the parameterized

complexity of the problems when the underlying graph is bipartite (SMTI instance),

non-bipartite (SRTI) and planar. The parameters considered are the solution size

for SMTI instance and the size of the maximum matching of the graph for an SRTI

instance.

Let us motivate our study in the context of the classical work Gale and Shapleys

work [1], namely the National Resident Medical Program, where medical residents

are matched to available positions in medical colleges. In particular, we would thus

argue that even when the objective is to maximize the size of the stable matching,

solution size is a realistic parameter. First, it is generally not practical that residents

(hospitals) should have to submit a ranking of all qualifying hospitals (resp. resi-

dents). Instead, a truncated list containing their top choices is desirable. Second, it

is also likely that the agents (residents or hospitals) would be tied on some of their

17

18 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

admitted choices, signifying that the choices are equally good. Assuming that the or-

dering on tied groups is transitive, we have the practical realization of the theoretical

model behind SMTI. Additionally, any given hospital is likely to have more than one

position to offer, and any resident can only accept at most one position, but the total

number of available positions is likely to be significantly smaller than the number

of residents who are applying. Therefore, the maximum size of a matching can be

significantly smaller than the size of the instance. To utilize the available resources,

it is imperative for the matching agency to assign as many available positions to as

many qualifying residents. These considerations lead us to believe that the size of the

largest stable matching is a realistic parameter for further analysis.

3.2 Formulation and Problem Definition

We formulate SMTI via bipartite graphs: given a bipartite graph G = (A∪B,E), the

men (women) are represented by the vertices in A (resp. B). Moreover, we have a

family of preference lists, LA : for each vertex a ∈ A, LA(a) ∈ LA is a (not necessarily

strict) ranking over a subset of B. Symmetrically, we have a family LB. Note that

we assume without loss of generality that b ∈ LA(a) if and only if a ∈ LB(b). We

now define the parameterized problems Max-SMTI and Min-SMTI.

Max-SMTI

Input: Graph G = A ∪ B,E, preference lists LA,LB, integer k.

Parameter: k

Question: Does there exist a weakly stable matching of size at least k?

Min-SMTI

Input: Graph G = A ∪ B,E, preference lists LA,LB, integer k.

Parameter: k

Question: Does there exist a weakly stable matching of size at most k?

When we extend this problem to the Stable Roommates setting, we have an arbi-

trary input graph G = (V,E) where each vertex v ∈ V has a preference ranking over

its neighbors N(v). This ranking need not be strict and can involve ties. Clearly,

the notion of stability is well defined also in this setting. Given an instance of SRTI,

3.3. OUR CONTRIBUTION 19

merely testing whether there exists a stable matching is NP-hard [10]. Thus, defining

the problem Max-SRTI similar to Max-SMTI, we can conclude that there does not

exist (unless P=NP) any algorithm for Max-SRTI which runs in time of the form

f(k)|V |O(1) (or even |V |f(k)) where f depends only on k. Indeed, by setting k = 1,

we could employ such an algorithm to test the existence of a stable matching in

polynomial time. Hence, we introduce an alternative parameterization. Note that

a stable matching, if one exists, is a maximal matching in the graph. Furthermore,

the size of any maximal matching is at least half the size of the maximum match-

ing of the graph. Let � denote the size of the maximum matching of the graph.

Thus, if a stable matching exists, then its size and the value of � differ by a factor of

at most 2. Clearly, this leads us to directly to the parameterization of Max-SRTI by �.

Max-SRTI

Input: Graph G = V,E, preference lists LV , integer k.

Parameter: �

Question: Does there exist a weakly stable matching of size at least k?

3.3 Our Contribution

We show that both Max-SMTI and Min-SMTI are FPT when parameterized by k,

the solution size, and that Max-SRTI is FPT when parameterized by the size of

a maximum matching. We employ the method of polynomial-time preprecessing,

kernelization. By devising a nontrivial marking scheme, we show that all the above

problems admit a polynomial kernel. For example, in the context of Max-SMTI (Min-

SMTI), given an instance (I, k) of Max-SMTI (Min-SMTI), we output (in polynomial

time) another instance (I �, k) of Max-SMTI (Min-SMTI) where |I �| = O(k2) and

(I, k) is a Yes-instance of Max-SMTI (Min-SMTI) if and only of (I �, k) is Yes-instance

of Max-SMTI (Min-SMTI). Our kernels also result in the design of FPT algorithms:

First obtain an equivalent instance by applying the kernelization algorithm, where

the output graph G� = (A�∪B�, E �) has O(k2) edges. If we solve Max-SMTI, then we

enumerate all subsets of edges of size q in G�, where k ≤ q ≤ 2k. Since
�2k

q=k

�|E�|
q

�
≤

|E �|O(k); so |E �| = O(k2) implies the running time is 2O(k log k). If we solve Min-SMTI,

then we enumerate all subsets of edges of size at most k in G�; again, the running time

20 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

is
�k

q=1

�|E�|
k

�
= 2O(k log k). In both cases, for each subset of edges, we test whether it

is a stable matching in polynomial time. Overall, we show that

Theorem 7. Max-SMTI admits a kernel of size O(k2), and an algorithm with running

time 2O(k log k) + nO(1).

Theorem 8. Min-SMTI admits a kernel of size O(k2), and an algorithm with running

time 2O(k log k) + nO(1).

For Max-SRTI, we derive the following theorem.

Theorem 9. Max-SRTI admits a kernel of size O(�2), and an algorithm with running

time 2O(� log �) + nO(1).

Finally, we restrict the input to planar graphs, which are extensively studied in

real-life applications. Intuitively speaking, a representation of 3D objects on a 2D

surface, such as construction plans and traffic maps, are planar. Many combinatorial

problems that are computationally hard in general, are known to be easier on planar

graphs. This begs us to question whether or not, planar graphs admit kernels smaller

than those shown in Theorems 7–9. Specifically, we obtain the following theorems.

(Max-SMTI, Min-SMTI and Max-SRTI are NP-Hard on planar graphs as well. In

[15], it is shown that Minimum Maximal Matching is NP-Hard on Planar graphs. As

a result the reduction to Max/Min-SMTI in [16] goes through.)

Theorem 10. Max-SMTI (Min-SMTI) on planar graphs admits a kernel of size O(k)

and an algorithm running in time 2O(
√
k log k) + nO(1).

Theorem 11. Max-SRTI on planar graphs admits a kernel of size O(�) and an

algorithm running in time 2O(
√
� log �)+nO(1).

3.4 Preliminaries

Graph Theory: For two disjoint subsets S, S� ⊆ V , we let E(S, S �) denote the set of

edges with one endpoint in S and the other endpoint in S�. Given a set S ⊆ V , we let

E(S) denote the set of edges with both endpoints in S. Given a vertex v ∈ V , we let

NG(v) denote the neighbor-set of v. In other words, NG(v) = {u ∈ V : (u, v) ∈ E}.
When G is clear from context, we will omit the subscript G. Given a set S ⊆ V ,

we denote NS(v) = N(v) ∩ S. Furthermore, we let degS(v) denote the number of

3.5. ALGORITHMS FOR SMTI 21

neighbors of v in S. In other words, degS(v) = |NS(v)|. Given a matching µ in G,

we let µ(v) denote the vertex which is matched to v in µ.

Preferences: Let G = (V,E) be a graph where vertices are associated with prefer-

ence lists. Given vertices v, v�, x ∈ V , we use the notation v >x v� to indicate that

x prefers v over v�. Moreover, we use the notation v ≥x v� to indicate that either

x prefers v over v� or v and v� are tied in x’s preference list. Now, we explain how

we view preference lists with ties. Given a vertex v ∈ V , the preference list of v can

be seen as a strict ordering of ties. For example, a strict preference list of a vertex

v ∈ V corresponds to an ordering of ties such that each tie is of length 1. In other

words, the ordering on ties is transitive. This ordering also defines the order in which

we process the preference list of any vertex such that the internal order in which we

process the vertices in each tie is arbitrary.

Operations that remove edges/vertices. Given a graph G = (V,E) where ver-

tices are associated with preference lists, the operations that delete edges and vertices

from G are defined as follows. To delete an edge (u, v) = e ∈ E, remove the edge e

from G, remove the vertex u from v’s preference list, and remove the vertex v from

u’s preference list. The order in which u and v rank their remaining neighbors is not

altered. Now, to delete a vertex v ∈ V , we first delete each of the edges incident to

it (in an arbitrary order), and then we remove the vertex v from G. For a graph G

and an edge uv ∈ G, we define the operation of contracting edge uv as follows: we

delete vertices u and v from G, and add a new vertex adjacent to all vertices that u

or v was adjacent to in G.

Definition 14. (Graph Minors) A graph H is a minor of graph G if H can be obtained

from G by a series of vertex deletions, edge deletions and edge contractions.

Theorem 12. (Wagner’s Theorem) A graph is planar if and only if it does not have

K5 and K3,3 as a minor. (Here K5 is the complete graph on 5 vertices and K3,3 is a

complete bipratite graph with 3 vertices in each bipartition.)

3.5 Algorithms for SMTI

In this section we design kernels for Max-SMTI and Min-SMTI.

22 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

3.5.1 Kernel for Max-SMTI

We start by giving a kernel for Max-SMTI with O(k2) vertices and O(k2) edges,

where k is the solution size.

Decomposition Lemma: First, given an instance I of SMTI, we arbitrarily break

all ties. Then, since there are no ties, we can compute a stable matching µ in the

new instance. Note that µ is a (weakly) stable matching in I. Indeed, if a pair (x, y)

is a block edge for µ in I, then (x, y) is also a blocking edge for µ in I �. Overall, we

conclude that if |µ| ≥ k, then it is safe to output a trivial Yes-instance. From now

onwards, we assume that |µ| < k. This leads us to the following observation.

Observation 1. µ is a maximal matching.

Proof. Suppose, by way of contradiction, that the claim is false. Then, there exists

an edge outside µ whose endpoints are unmatched. This edge is a blocking edge for

µ, a contradiction to the fact that µ is stable.

For any maximal matching, the set of vertices saturated by the matching edges

forms a vertex cover of the graph. We use X to denote the set of vertices saturated

by the stable matching µ. Thus, X is a vertex cover for the input graph, and it holds

that |X| < 2k. Furthermore, we know that the maximum matching in a graph is

at most twice the size of any maximal matching, and therefore k ≤ |X|. Hence, if

|X| < k, then we can output a trivial No-instance, and conclude our argument. From

now on, we assume that k ≤ |X| < 2k.

Overall, we partition V = A ∪ B into two sets: the vertex cover X and the

independent set I = V \ X. The maximum number of edges that can lie within

X, obtained when the graph induced on X is a complete bipartite graph, is O(k2).

However, to obtain a kernel for Max-SMTI, we also need to bound the number of

vertices in I and the number of edges in E(X, I). Let us first summarize the arguments

given so far in the following “decomposition lemma”.

Lemma 3. Given an instance of Max-SMTI, in polynomial time we can either con-

clude that the instance is a No-instance or a Yes-instance, or decompose the vertex-set

V into a vertex cover X and an independent set I = V \X such that k ≤ |X| < 2k.

Isolated Vertices: To bound |I| and |E(X, I)|, we first present the following simple

reduction rule.

3.5. ALGORITHMS FOR SMTI 23

Reduction Rule 1. If G contains an isolated vertex v, then delete v. The new

instance is I � = (V (I) \ {v}, k).

Recall that the operation that deletes a vertex was defined in Section 3.4. To see

that this reduction rule is safe, note that isolated vertices do not participate in any

matching or a blocking edge. An exhaustive application of Reduction Rule 1 takes

O(n) time, where n denotes the number of vertices in the instance. We are now ready

to present our base case.

Base Case: For any x ∈ X, consider E({x}, I), the subset of edges whose one

endpoint is x and the other endpoint is some vertex in I. Our base case assumes

that for every x ∈ X, it holds that |E({x}, I)| ≤ 2k + 1. Then, since there are no

isolated vertices (due to Reduction Rule 1), it holds that |I| ≤ 2k(2k + 1) = O(k2).

Furthermore, |E(X, I)| < 2k(2k + 1) = O(k2). Thus, the total number of vertices is

|X| + |I| ≤ 2k + |X|(2k + 1) = 4k(k + 1) = O(k2), and the total number of edges

is |E(X)| + |E(X, I)| ≤ |X|2 + |X|(2k + 1) = 8k2 + 2k = O(k2). Overall, the size

of the instance is bounded by O(k2). Hence, in our base case, it is safe to output

(I, k). From now on, we assume that there exists at least one vertex x ∈ X such that

|E({x}, I)| > 2k + 1.

Marking Edges: We proceed by marking some of the edges incident to the vertices

in X. For each x ∈ X, consider the edges in E({x}, I) that are currently unmarked.

If there are less than 2k + 1 such edges, then mark all of them. Otherwise, mark the

edges incident to the 2k + 1 most preferred neighbors of x in I (where we break ties

arbitrarily). The edges with both endpoints in X are considered marked. We say that

a vertex in V that is incident to at least one marked edge is a marked vertex. Note

that if a vertex in X has an unmarked neighbor, then it must have 2k + 1 marked

neighbors in I. Moreover, if a vertex in I is unmarked, then all the edges incident to

it are unmarked. Refer to figure 3.2.

We are now ready to present a reduction rule that utilizes our marking scheme.

Reduction Rule 2. If there exists x ∈ X with more than 2k+1 neighbors in I, then

delete all the unmarked edges in E({x}, I). (Note that no edge in E({x}, X \ {x}) is
deleted, figure 3.3.)

Lemma 4. Reduction Rule 2 is safe.

24 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

Proof. Given an instance (I, k) of Max-SMTI, let I � denote the instance obtained by

applying Reduction Rule 2 on I. We prove that (I, k) is a Yes-instance of Max-SMTI

if and only if (I �, k) is a Yes-instance of Max-SMTI.

(⇐) Let µ� denote a stable matching in I � such that |µ�| ≥ k. We will prove that

µ� is a stable matching in I.
For the sake of contradiction, let us assume that there is a blocking edge for µ� in I.

Clearly this must be an unmarked edge incident to x, since all other edges are present

in I �. We denote this edge by (x, y) where y ∈ I. Since x has an unmarked neighbor,

it must also have 2k + 1 marked neighbors. Recall from our earlier discussion that

the size of a maximum matching in I, and therefore also in I �, is at most |X|. Hence,
|µ�| ≤ |X|. Therefore, there exists at least one marked neighbor of x who is unmatched

in µ�, denoted by y�. By our marking scheme, we know that y� ≥x y >x µ�(x), so the

marked edge (x, y�) is a blocking edge for µ�. Therefore, µ� cannot be stable in I �, a

contradiction. Hence, we conclude that µ� is stable in I; thus, (⇐) is proved.

(⇒) Let µ denote a stable matching in I such that |µ| ≥ k. If every edge in µ is

also present in I �, then µ is a matching in I �. Since the graph G� in I � is a subgraph

of the graph G in I, we have that µ (if present in I �) must also be stable in I �. For

the sake of contradiction, we assume that at least one of the edges in µ does not

exist in I �. All missing edges from I � are unmarked edges incident to x. Therefore,

µ contains an unmarked edge incident to x, denoted by (x, y), for some y ∈ I. Since

|µ| ≤ |X| ≤ 2k, there exists at least one marked neighbor x, denoted by y�, which is

unmatched in µ. As before, we know that y� ≥x y, where y = µ(x). Without loss of

generality, we may assume that y� is the most preferred marked neighbor of x that is

unmatched in µ, i.e. a more preferred neighbor is matched to some other vertex in

µ. Since y� is a marked neighbor of x, we have that (y�, x) is present in I �.

We claim that µ� = µ \ {(x, y)} ∪ {(x, y�)} is a stable matching in I �. We prove

this by showing that µ� is stable in I, and it is a matching in I �. Together these

claims imply that µ� must be stable in I �. Recall that (y�, x) ∈ µ� is present in I �. All

other edges in µ� exist in I � (as they are not incident to x), and so µ� is a matching

in I �. Recall that µ is stable in I, and µ and µ� differ only in the edge incident on

x. Therefore, if µ� is not stable in I, then it must be blocked by an edge incident

to x. That is, there exists a marked edge (x, y��) such that y�� >x µ�(x) ≥x µ(x),

and x >y�� µ
�(y��). Since µ(y��) = µ�(y��), we have that (x, y��) must also block µ, a

contradiction. Therefore, µ� is stable in I. Since |µ�| = |µ| ≥ k, the direction (⇒) is

3.5. ALGORITHMS FOR SMTI 25

Vertex Cover X,
|X| ≤ 2k

Independent Set I
|I| = O(n)

Figure 3.1: Step 1-Decompose graph G into Vertex Cover and Independent Set

X

IMarked Vertices Unmarked Vertices

Figure 3.2: Step 2-After deleting Isolated vertices, mark edges and vertices. Red
denotes marked vertices and edges. The left partition of the independent set refers
to the top 2k+1 preferred vertices that are marked for every vertex in X. The right
partition contains the remaining vertices.

proved.

This completes the proof of Lemma 4.

Each application of Reduction Rule 2 takes O(n) time (since we have to scan the

neighborhood of a vertex in X). The rule can be applied at most |X| times, therefore

the total time taken is O(kn).

After applying Reduction Rule 2 exhaustively,(refer to figure 3.4) we obtain an

instance (I, k), in which every vertex in X has at most 2k + 1 neighbors in I, all of

which are marked. This instance is of the form handled by our Base Case. By the

discussion in the introduction, we conclude the correctness of Theorem 8.

26 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

X

IMarked Vertices Unmarked Vertices

Figure 3.3: Step3-Delete all marked edges

X

I

Figure 3.4: Step 4-Apply Reduction Rule 1 again and now delete all the isolated

vertices. This remaining graph is the kernel.

3.5.2 Kernel for Min-SMTI

Here, we give a kernel for Min-SMTI with O(k2) vertices and O(k2) edges, where k

is the solution size.

As in Section 3.5.1, we first obtain a (weakly) stable matching µ in I. However,

now we output a trivial Yes-instance if |µ| ≤ k rather than |µ| ≥ k.

Suppose that |µ| > k. By Observation 1, µ is a maximal matching. Recall that the

size of a maximum matching in G is at most twice the size of any maximal matching.

Thus, if I is a Yes-instance-instance—that is, there exists a stable matching (which

is maximal) of size at most k—then the size of any maximal matching in I cannot

exceed 2k. Hence, if |µ| > 2k, then we will output a trivial No-instance and conclude

3.6. ALGORITHMS FOR SRTI 27

our argument. From now onwards, we assume that k < |µ| ≤ 2k. As in Section 3.5.1,

we obtain a decomposition lemma.

Lemma 5. Given an instance of Min-SMTI, in polynomial time we can either con-

clude that the instance is a No-instance or a Yes-instance, or decompose the vertex-set

V into a vertex cover X and an independent set I = V \X such that 2k ≤ |X| < 4k.

Recall that in the analysis of Max-SMTI (in Section 3.5.1), we have used the

assumption that k < |X| ≤ 2k. However, the construction of the kernel for Min-

SMTI is very similar to the one presented for Max-SMTI; we will discuss the main

differences, but skip the details.

First, note that Reduction Rule 1 is applicable here, and it is evidently safe. Then,

in our Base Case, we assume that for every x ∈ X, it holds that |E({x}, I)| ≤ k+1. In

this case, we conclude that the total number of vertices is bounded by 4k(k+2), and

the total number of edges is bounded by 20k2 + 4k. Next, for every x ∈ X, we mark

the more preferred k + 1 neighbors of x in the independent set I. The proof of the

safeness of the reduction rule below follows from arguments almost identical to those

in the proof of Lemma 4—essentially, we replace occurrences of 2k by occurrences of

k.

Reduction Rule 3. If there exists x ∈ X with more than k+1 neighbors in I, then

delete all the unmarked edges in E({x}, I). (Note that no edge in E({x}, X \ {x}) is
deleted.)

After applying Reduction Rule 3 exhaustively, we obtain an instance of the form

handled by our Base Case. By the discussion in the introduction, we conclude the

correctness of Theorem 8.

3.6 Algorithms for SRTI

The analysis of Max-SRTI differs from that of Max-SMTI since a stable matching

may not exist in an instance of Max-SRTI. In this context, recall that we have argued

(in the introduction) that unless P=NP, we cannot obtain an FPT algorithm for

Max-SRTI when the parameter is the solution size. Here, we describe a polynomial

sized kernel for Max-SRTI, where the parameter � is the size of a maximum matching

in the graph G. Our kernel will consist of O(�2) vertices and O(�2) edges.

28 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

If k > �, then we can output a trivial No-instance: since � is the size of the max-

imum matching of the graph, we cannot obtain a stable matching, or any matching,

of size at least k. Thus, we next focus on the case where k ≤ �. Let µ denote any

maximal matching in the graph G = (V,E) in I. Let X denote the set of vertices

matched by µ, and let I denote the set of vertices outside X. As discussed in Section

3.5.1, X is a vertex cover for G such that |X| ≤ 2|µ| ≤ 2�, and I is an independent

set.

We begin our construction by removing isolated vertices. The safeness of this rule

is self-evident.

Reduction Rule 4. If G contains an isolated vertex v, then delete v.

We proceed by marking certain edges incident to vertices in X, after which we

discuss our base case. For each x ∈ X, consider the set of edges in E({x}, I). If

there are less than � + 1 such edges, then mark all of them. Otherwise, mark the

edges incident on the � + 1 most preferred neighbors of x in I (where we break ties

arbitrarily). The vertices in I that are incident to at least one marked edge are called

marked vertices, and the others are called unmarked.

Reduction Rule 5. If there exists x ∈ X with more than �+ 1 neighbors in I, then

delete all the unmarked edges in E({x}, I).
Lemma 6. Reduction Rule 5 is safe.

Proof. Note that k ≤ � ≤ |X| and any matching in I or I �, the instance obtained by

applying Reduction Rule 5, is of size at most �. Thus, the proof of this lemma is very

similar to the one presented for Lemma 4. We skip the details.

Each application of Reduction Rules 4 and 5 takes O(n) time (recall that n = |V |).
Each of these rules can be applied at most n times. Therefore, the total running time

is bounded by O(n2).

After applying Reduction Rule 5 exhaustively, we obtain an instance (I, k) where
every vertex in X has at most �+1 neighbors in I, all of which are marked. A vertex

in I that is not incident to any marked edge is in fact an isolated vertex. Therefore,

Reduction Rule 1 is applied to remove them from the instance. This final step yields

an instance (I �, k) in which there are |X| + |I| ≤ 2ell + (� + 1)2l = O(�2) vertices,

and |E(X)| + |E(X, I)| ≤ |X|2 + |X|(� + 1) = O(�2) edges. Therefore, at this point,

we output the instance (I �, k) and conclude our argument. With this we have proven

Theorem 9.

3.7. SMTI AND SRTI ON PLANAR GRAPHS 29

3.7 SMTI and SRTI on planar graphs

In Section 3.5, we designed polynomial kernels for Max-SMTI and Min-SMTI of

size O(k2), where k is the solution size. Furthermore, in Section 3.6 we designed

a polynomial kernel for Max-SRTI of size O(�2), where � is the size of a maximum

matching of the input graph G. In this section we improve all these kernels, as

well as design faster FPT algorithms, when the input is restricted to planar graphs.

The kernel and the faster FPT algorithm we obtain for Max-SMTI, Min-SMTI and

Max-SRTI in this section are very similar to each other. Thus, we focus only on

Max-SMTI.

Given an input instance (I, k) = (A,B,LA,LB, k) of Max-SMTI, we first apply

Lemma 3, and in polynomial time we either conclude that the instance is a No-

instanceor a Yes-instance, or decompose the vertex-set V into a vertex cover X and

an independent set I = V \X such that k ≤ |X| < 2k. Next, we design a kernel such

that |I| is bounded by O(k). In particular, this would overall give us a kernel where

|V | = O(k) and |E| = O(k)

Towards our goal, we partition the independent set I into three sets: Ideg=1, Ideg=2

and Ideg≥3. These sets are defined as follows:

Ideg=1 = {v ∈ I | degX(v) = 1}
Ideg=2 = {v ∈ I | degX(v) = 2}
Ideg≥3 = {v ∈ I | degX(v) ≥ 3}

Furthermore, we define

Y≤1 = {N(v) | v ∈ I and degX(v) ≤ 1}
Y=2 = {N(v) | v ∈ I and degX(v) = 2}
Y≥3 = {N(v) | v ∈ I and degX(v) ≥ 3}

Observe that since I is an independent set, all the neighbors of the vertices in I

are in X, and thus for any v ∈ I, we have that degV (v) = degX(v). To upper bound

|Ideg=1|, |Ideg=2| and |Ideg≥3|, we will use the following known result from [13]. Since

the proof is not provided in [13], we give a proof here.

Lemma 7 ([13, Lemma 1]). Let G be a planar graph and let X be a vertex cover in G.

Then, |{N(v) | v �∈ X}| ≤ 6|X|+ 1. In particular, |Y≤1| ≤ |X|+ 1, |Y=2| ≤ 3|X| and

30 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

|Y≥3| ≤ 2|X|.

Proof. We assume that the conditions stated in the lemma hold, and denote I = V \X
(which is an independent set). We count the number of “open neighborhoods” in three

steps. We first bound Y≤1, then Y=2 and finally Y≥3. Overall, the quantity we need

to bound is |Y≤1|+ |Y=2|+ |Y≥3|. Obviously, there are at most |X|+ 1 distinct open

neighborhoods of one vertex or less, so |Y≤1| ≤ |X|+ 1.

To bound |Y=2|, consider the graph G2 = (V2, E2) on the vertex-set V2 = X, with

an edge between u, v ∈ X if there is a vertex y ∈ Y=2 such that NG(y) = {u, v}.
The resulting graph is a minor of G (therefore, it is planar), and every neighborhood

in Y=2 corresponds to a unique edge in G2. By Euler’s formula, the number of edges

in a simple planar graph is at most three times the number of vertices, and we find

that |Y=2| = |E2| ≤ 3|X|.
Finally, to bound |Y≥3|, consider the bipartite graph G3 = (V3, E3) that is the

subgraph of G obtained by removing the edges in G[X] (the subgraph of G induced

by X), removing the vertices in I that have degree less than 3, and keeping exactly

one vertex in each twin class in the remainder of I (that is, if there are at least two

vertices with the same neighbourhood, then we delete all but one). The resulting

bipartite graph is planar, with one partite set corresponding to X, while the other

partite set has a vertex for every open neighborhood in Y≥3. The number of vertices

in G3 is therefore |X|+ |Y≥3|. Another application of Euler’s formula shows that the

number of edges in a simple bipartite planar graph on n vertices is at most 2n. Since

every vertex in Y≥3 has degree at least 3 in G3 we find |E3| ≥ 3|Y≥3|. Combining

this with the upper bound on the edge count we find 3|Y≥3| ≤ |E3| ≤ 2(|X|+ |Y≥3|),
which implies that |Y≥3| ≤ 2|X|.

Since |{N(v) | v �∈ X}| = |Y≤1|+ |Y=2|+ |Y≥3| the bound of 6|X|+ 1 follows.

To bound the sizes of Ideg=1 and Ideg=2, we need to apply new reduction rules. We

first give a rule that will enable us to bound the size of Ideg=1. Towards this end, we

will design a reduction rule that allows us to remove all but a small subset of vertices

in Ideg=1. For each x ∈ X, consider the set NI(x) ∩ Ideg=1, containing the degree-1

neighbors of x in I. For each x ∈ X, we remove all but the most preferred neighbor

from this set. The reduction rule is stated as follows.

Reduction Rule 6. Let x ∈ X, and let u denote x’s most preferred neighbor (break-

ing ties arbitrarily) in NI(x)∩Ideg=1. Then, delete all vertices in NI(x)∩Ideg=1 except

3.7. SMTI AND SRTI ON PLANAR GRAPHS 31

u.

Lemma 8. Reduction Rule 6 is safe.

Proof. We will prove that if (I, k) is a Yes-instance if and only if (I �, k) is also a

Yes-instance.

Let µ denote a stable matching in I such that |µ| ≥ k. If µ(x) /∈ Ideg=1, then

µ is a matching in I �. Also µ is stable in I �, since I � is a subgraph of I. Now, if

µ(x) = u, then also µ is a matching in I �, and so is stable. We are left with the case

that µ(x) �= u and µ(x) ∈ Ideg=1. In this case, u is unmatched in µ. If u >x µ(x),

then (u, x) blocks µ in I, a contradiction. Therefore, u and µ(x) must be in a tie

in x’s preference list. But then, the matching µ� = µ \ {(x, µ(x))} ∪ {(x, u)} is also

stable in I and µ� is a matching in I �. Hence µ� is also a stable matching in I �. This

proves the (⇒) direction.

Let µ� denote a stable matching in I � such that |µ�| ≥ k. We claim that µ� is

also stable in I. Suppose not, then there exists a blocking edge for µ� in I. Since

I � defines a subgraph in I and µ� is a stable matching in the former, it follows that

the blocking edge for µ� in I must be one of the edges that were removed during the

application of Reduction Rule 6. Let (x, w) denote the blocking edge in I, where
w ∈ NI(x) ∩ Ideg=1 \ {u} such that w >x µ�(x). By the definition of u, we know

u ≥x w >x µ�(x). Since the edge (x, u) exists in I �, this implies that (x, u) blocks µ�

in I �. Thus, we have arrived at a contradiction. We can conclude that µ� is a stable

matching in I, and (⇐) is proved.

Reduction Rule 6 is used to bound the size of Ideg=1. Now we give our final rule

that will enable us to bound the size of Ideg=2.

We define an equivalence relation ∼ on the set Ideg=2 as follows: for a pair of

vertices u, v ∈ Ideg=2, u∼v if and only if NG(u) = NG(v), that is they have the same

neighborhood. Let Ei denote the ith equivalence class defined by the relation ∼. Let

the total number of equivalence classes be N .

Reduction Rule 7. Let x ∈ X. For each equivalence class Ei (1 ≤ i ≤ N) that

contains exactly one neighbor of x, mark the singleton vertex in the class. For all

other classes that contain neighbors of x, mark the two most preferred neighbors,

breaking ties arbitrarily. Delete all edges between x and its unmarked neighbors.

Lemma 9. Reduction Rule 7 is safe.

32 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

Proof. Let µ denote a stable matching in I � of size at least k. Clearly µ is a matching

in I, since the graph in I � is a subgraph of I. Suppose that µ is not stable in I, then
the blocking edge(s) must be (one of) the deleted edge(s). Let (x, u) denote a blocking

edge for µ in I �, where u is an unmarked neighbor of x such that u >x µ(x). The

equivalence class containing u (say Ei) must have two marked neighbors (denoted by

ui1 and ui2) such that ui1 ≥x u > µ(x), and ui2 ≥x u > µ(x), i.e., both are preferred

by x at least as much as u. Thus, implies that µ(x) /∈ {ui1 , ui2}. Recall that these

vertices are in Ideg=2, so they have exactly two neighbors, one of which is x. Therefore,

at least one of the marked neighbors (say ui1) must be unmatched in µ. But then,

(x, ui1) is a blocking edge for µ in I �, a contradiction. Hence, (⇐) direction is proved.

For the other direction, let µ denote a stable matching in I of size at least k. If

µ is also a matching in I � then it is also stable in I �. Therefore, we assume that µ

contains an edge incident on x that was deleted during the application of Reduction

Rule 7. Let (x, u) denote the edge in µ that does not exist in I �. Let Ei denote the

equivalence class containing u. As argued in the earlier case, since u was deleted (it is

an unmarked neighbor of x in Ei), x has two marked neighbors in Ei whom x prefers

at least as much as u. Furthermore, at least one of the marked neighbors must be

unmatched in µ. Let ui1 denote the marked neighbor in Ei who is unmatched in µ.

Since µ is stable in I, so u and ui1 and must be in a tie in x’s preference list. This

allows us to claim that the matching µ� = µ \ {(x, u)} ∪ {(x, ui1)} is also stable in I.
Since µ� exists in I �, hence it is also stable in I �. This completes the proof of (⇒)

direction. Thus, Lemma 9 is proved.

For our kernelization algorithm, we apply Reduction Rules 1, 6, and 7 exhaustively.

Since each of the reduction rule either deletes an edge or a vertex, the number of

times we can apply these rules is bounded by O(n). Furthermore, since each of the

reduction rule can be applied in polynomial time, the kernelization algorithm runs in

polynomial time.

Bounding the size. Let (I, k) = (A,B,LA,LB, k) denote the reduced instance of

Max-SMTI. That is, an instance on which Reduction Rules 1, 6, and 7 are no longer

applicable. Since Reduction Rule 1 is not applicable there are no isolated vertices.

Thus, Reduction Rule 6, in conjunction with Lemma 7 yields the following relation.

Lemma 10. |Ideg=1| ≤ |Y≤1| ≤ |X|+ 1.

Recall, that each vertex in each equivalence class sees exactly two neighbours in

3.7. SMTI AND SRTI ON PLANAR GRAPHS 33

X. This implies that after application of Reduction Rule 7, each equivalence class

has at most four vertices. Since the number of equivalence classes is upper bounded

by |Y2| ≤ 3|X|, we get the following result.

Lemma 11. |Ideg=2| ≤ 4|Y2| ≤ 12|X|.

Now we bound the size of Ideg≥3. By Lemma 7 we know that |Y≥3| ≤ 2|X|. Note
that for any W ∈ Y≥3, there can be at most two vertices in I whose neighborhood is

W . Otherwise,K3,3 is a minor ofG, a contradiction to its planarity. As a consequence,

we obtain the following result.

Lemma 12. |Ideg≥3| ≤ 2|Y≥3| ≤ 4|X|.

Therefore, applications of Reduction Rules 1, 6 and 7 yields an instance in which

the independent set I has size |I| = |Ideg=1|+ |Ideg=2|+ |Ideg≥3| ≤ 17|X|+ 1, thereby

giving the following result.

Lemma 13. Max-SMTI parameterized by the solution size k admits O(k) sized kernel

on planar graphs.

Similar to the proof of Lemma 13, we can design an O(k) and O(�) sized kernels

for Min-SMTI and Max-SRTI, respectively, on planar graphs.

34 CHAPTER 3. PARAMETERIZED ALGORITHMS FOR THE SM PROBLEM

Chapter 4

Parameterized Algorithms for the

Hospital/Residents Problem with

Lower Quota

This chapter is based on the work done in [12].

4.1 Introduction

In section 1.3 we had defined the Hospital/Residents Problem. The Hospital/Residents

Problem with lower quota(HR-LQ, in short) involves a set H of hospitals and R .

Every hospital has a preference list over residents i.e., a total ordering of a subset

R� ⊆ R. Similarly every resident has a preference list over hospitals which is again

a total ordering of a subset H � ⊆ H. Each hospital h ∈ H has a lower quota and

upper quota associated to it such that the former does not exceed the latter. The

upper quota represents the maximum number of residents it can accommodate. A

matching is an assignment of residents to hospitals such that every resident is as-

signed to exactly one hospital and no hospital is assigned more than its upper quota

number of residents. A feasible matching is a matching that satisfies the additional

constraint that every hospital is assigned at least its lower quota number of residents.

An assignment/matching that is not feasible, is said to be an infeasible matching.

Let µ denote a matching in an instance of HR-LQ. We will abuse notations when

representing the matching partners of hospitals and resident in µ. For any resident

35

36 CHAPTER 4. PARAMETERIZED ALGORITHMS FOR THE HR PROBLEM

r ∈ R, we will use µ(r) to denote the hospital to which r is assigned in µ. But for a

hospital h ∈ H, we will use µ(h) to denote the subset of residents assigned to h in µ.

This relationship is symmetric in the sense that µ(r) = h if and only if r ∈ µ(h). A

blocking pair for a matching µ is a pair of resident and hospital (r, h) not matched

to each other in µ that satisfy one of the following conditions:

1. r is unmatched and h prefers r over one of its assigned residents, or r prefers h

over µ(r) and h prefers r over one of its assigned residents.

2. h has not satisfied its upper quota and r prefers h over µ(r) (we say µ(r) = r if

r is unmatched and r prefers being matched to any hospital than beng matched

to itself).

A matching/assignment that has no blocking pair is called a stable matching. For

any instance of HR where the lower quota of every hospital is zero, we can use the

Gale-Shapley algorithm to find a stable matching. Given an instance I create an

instance I � as follows. For every h ∈ H with upper quota uh, create uh copies of h

each having the same preference list as h. In the residents lists, expand each h into

uh copies and arbitrarily order them. Gale Shapley applied to this new instance I �

gives a matching that is stable in I [2]. Unless the lower quota for every hospital is

zero, the stable matching found need not be feasible. By the Rural Hospital Theorem

we know that every stable matching matches the same set of agents. So if one stable

matching is infeasible, then all stable matchings for the instance are infeasible.

If a stable matching is infeasible, then we want a matching that is “as close to a

stable matching as possible”. We quantify this closeness in two ways : (i) minimizing

the number of blocking pairs, (ii) minimizing the number of blocking residents (the

subset of residents who are part of a blocking pair). Each quantification leads to an

optimization problem, stated below. Both these optimization problems are known to

be NP-hard [8].

In each of the following problems, the input is an instance of HR-LQ, containing

a set of residents R, their preference lists LR, a set of hospitals H, their preference

lists LH , and their upper and lower quotas {(lh, uh)}h∈H .

HR with min blocking pairs (min-BP-HRLQ)

Input: An instance of HR-LQ, integer k

Question: Does there exist a feasible matching with at most k blocking edges?

4.2. AN XP-ALGORITHM 37

HR with min blocking residents (min-BR-HRLQ)

Input: An instance of HR-LQ, integer k

Question: Does there exist a feasible matching with at most k blocking residents.

In this chapter we look at the parameterized complexity of the above problems

for the following parameters. We will formally define the parameterized problems in

the respective sections containing the algorithm or W[1] hardness.

1. r, the number of blocking residents

2. b, the number of blocking edges

3.
�

i li, the sum of lower quotas over all hospitals

4. |H∗|, the number of hospitals with positive lower quota

4.2 An XP-Algorithm

In this section we give an XP-algorithm for the problem min-BR-HRLQ parameter-

ized by the number of blocking residents.

HR-LQ parameterized by blocking residents (p-HR-br)

Input: An instance of HR-LQ, and a positive integer k.

Parameter: k

Task: Find (if exists) a feasible matching with at most k blocking residents.

We start with an instance (I, k) of the problem and an integer k . The outline of

the algorithm is as follows:

We view the instance I of HR-LQ as a graph G = (H ∪ R,E), where H and

R denote the two disjoint set of vertices. For each r ∈ R, the “neighborhood” of r

contains all the hospitals that are in the preference list of r. So for every h ∈ δ(r),

the graph has the edge (r, h).

1. We guess a subset R� of residents R of size k, representing the blocking residents.

2. For every ri ∈ R�, we guess hi its matching partner.

38 CHAPTER 4. PARAMETERIZED ALGORITHMS FOR THE HR PROBLEM

3. Delete all edges between ri and δ(r) except the edge (ri, hi), modify the prefer-

ence lists accordingly. This gives the new instance I �.

4. Find a stable matching µ in I �.

5. If µ is a feasible matching in I, then we have found a output that I is a yes

instance of p-HR-br, else output that I is a no instance of p-HR-br.

Algorithm 5 gives the formal description.

Algorithm 5 XP-algorithm for p-HR-br

1: procedure OPT(Graph G = (R∪H,E), preference list for every vertex, quotas

{(lh, uh) |h ∈ H}, and positive integer k.)

2: if k ≥ �
i li then

3: if I has a feasible matching then

4: return Yes-instance

5: else

6: return No-instance

7: end if

8: end if

9: for subset R� = {r1, . . . , rk} ⊆ R do

10: for AR� = {(ri, hi) ∈ E | 1 ≤ i ≤ k} do

11: Let EAR� = E \ ∪k
i=1{(ri, h) ∈ E |h �= hi}

12: Let I � be the restriction of I to (R ∪H,EAR�).

13: Let µ be a stable matching in I �.

14: if µ is a feasible matching in I � then

15: return Yes-instance

16: end if

17: return No-instance

18: end for

19: end for

20: end procedure

We will now prove the correctness of the algorithm. We begin by proving the

following two lemmas. For any matching µ, we use BR(µ) to denote the blocking

residents in µ.

4.2. AN XP-ALGORITHM 39

Lemma 14. If (I, k) is a Yes-instance of p-HR-br then there exists a feasible match-

ing in I in which the number of blocking residents is at most
�

i li.

Proof. Let I denote a Yes-instance of p-HR-br. We show that there exists a feasible

matching µ such that BR(µ) ≤ �
i li. Let µ0 denote a matching that matches every

hospital hi to li residents. Such a µ0 exists since (I, k) is a Yes-instance. Let us call

this subset of assigned residents R̂. For every r ∈ R̂ delete edges from r to all its

neighbours except the hospital µ0(h) it is assigned to by µ0. Let us call this new

instance I �. Now find a stable matching µ in I �.

Claim 1. The matching µ in I � is a feasible assignment.

Proof. We know that if µ matches every resident in R̂ then it is feasible (by construc-

tion). Every resident in R̂ has only one hospital as its neighbour in I �. Suppose a

hospital h ∈ H has not attained its lower quota l by the matching µ. Then at least

one of its neighbours r ∈ L must be left unmatched (r has only one neighbour). This

means that the matching µ is not maximal which is a contradiction since every stable

matching must be maximal.

Claim 2. The matching µ has at most
�

i li blocking residents in I.

Proof. The matching µ is stable in I � and hence has no blocking edges in I �. When

perceived as a matching in I, the only blocking edges can be the edges that are in

I but not in I �, i.e. the edges deleted from I. But we have only deleted the edges

incident on residents in R̂ and |R̂| = �
i li. So at most

�
i li residents can be involved

in blocking edges.

With this we have proven Lemma 14.

The algorithm involves guessing the matched partner hi of every ri ∈ R�. Let H �

denote the set of the guessed matching partners of ri ∈ R�. For every R� and H �,

define

I �
R�,H� = I \ {

�

ri∈R�

{
�

ĥ∈δ(ri),ĥ�=hi

(ri, ĥ)}}

Lemma 15. I is a Yes-instance if and only if there exist sets R� and H � such that a

stable matching in I �
R�,H� is feasible .

40 CHAPTER 4. PARAMETERIZED ALGORITHMS FOR THE HR PROBLEM

Proof. We have a set R� and the set of all matching partners of r ∈ R� i.e. set H �.

Now the instance I �
R�,H� contains only one edge incident on every resident in R�.

(⇒) I is a Yes-instance. So we have a subset R�� of residents of size k such that there

exists a feasible matching µ and all blocking edges of µ are incident on R�� only. Let

R� = R�� and H � = {∪ri∈R��µ(ri)}. let I �
R�,H� be defined as above.

Claim 3. the matching µ is stable in I �
R�,H�.

Proof. All blocking edges for µ in I are incident to residents in R� (by construction).

In I �
R�,H� we have deleted all neighbours of r� ∈ R� except its matched partner. For

every other resident r ∈ R \R� we know that there is no blocking edge incident on r.

Since we have deleted all blocking edges for µ while defining I �
R�,H� , the matching µ

is stable in I �.

We know that µ is a feasible matching in I and hence also a feasible matching

in I �
R�,H� . Claim 3 shows that µ is stable in I �

R�,H� . With this we have proven the

forward direction of lemma 15. For the reverse direction we show that if for some

subsets R�, H �, we can find a feasible solution for I �
R�,H� , then I is a Yes-instance.

(⇐) For some R� and H � (|R�| = k), Let µ denote a feasible stable matching in

I �
R�,H� . The matching µ has no blocking edges in I �

R�,H� . Let us look at the matching µ

in I. µ is clearly a feasible matching in I. Also, all blocking edges for µ are incident

on R� only since these are the only edges that are in I and not in I �
R�,H� . We know

that |R�| = k. So R� is the set of blocking students of size k and µ is the required

solution for I. This proves the reverse direction of lemma 15.

By lemma 14 we know that if there exists a feasible matching in I then there

always exists a feasible matching with fewer than
�

i li blocking residents. So if our

input integer k >
�

i li then we just check if there exists some feasible matching

in the instance. Lemma 15 implies that for a correct guess the instances I and I �

(created by the algorithm) are equivalent. Since we are guessing all possible subsets

and matching partners, if I is a Yes-instance, one of the guesses will correspond to

the correct guess. With this we can say the Algorithm 5 gives the correct output.

Let us now look at the time complexity of this algorithm. Let the input instance

have size n. Guessing k sized subsets R� of residents from n residents will take O(nk)

time. Next we guess the matching partner of each of these residents requires another

O(nk) time. After this we create the instance I � and apply Gale-Shapley on I � which

is polynomial in n. We next check for feasibility of the obtained matching which is

4.3. W[1]-HARDNESS RESULTS 41

again polynomial in n. So our algorithm has a running time of O(nk), which implies

algorithm 5 is in the class XP.

4.3 W[1]-Hardness Results

In this section we show that min-BP-HRLQ and min-BR-HRLQ are W[1] hard for

different parameters. Let us first define a few problems.

Stable Marriage with Capacity constraint (SMC)

Input: A stable marriage instance, a subset W ∗ of women and M∗ of men, an integer

k.

Question: Does there exist a matching that matches every vertex in W ∗ ∪M∗ and

has at most k blocking edges?

The above problem is known to be NP-Hard and its parameterized complexity

has been studied in [14]. The following parameterized problem has been shown to be

W[1] hard in Theorem 3 of [14].

p-BE-SMC

Input: A stable marriage instance, a subset W ∗ of women an integer k.

Parameter: k + |W ∗|
Question: Does there exist a matching that matches every vertex in W ∗ and has at

most k blocking edges?

From the reduction from Multi-colored clique to p-BE-SMC given in [14], we ob-

serve that the blocking edges are vertex disjoint in the SMC instance created in the

reduction. The construction of the gadget ensures that the number of blocking edges

and blocking men remains the same. We can show a similar reduction using the same

gadget and same properties of the construction and show the following problem is

also W[1] hard.

42 CHAPTER 4. PARAMETERIZED ALGORITHMS FOR THE HR PROBLEM

p-BM-SMC

Input: A stable marriage instance, a subset W ∗ of women an integer k.

Parameter: k + |W ∗|
Question: Does there exist a matching that matches every vertex in W ∗ and has

exactly k men involved in a blocking edge?

We now define the following parameterized versions of the HR-LQ problem.

p-BP-HRLQ

Input: An instance of HR-LQ, integer k.

Parameter: k +
�

i li + |H∗|
Question: Does there exist a feasible assignment with at most k blocking pairs?

p-BR-HRLQ

Input: An instance of HR-LQ, integer k.

Parameter: k +
�

i li + |H∗|
Question: Does there exist a feasible assignment with exactly k residents involved

in blocking pairs?

Theorem 13. The problem p-BP-HRLQ is W[1] hard.

Proof. We give a parameterized reduction from p-BE-SMC to p-BP-HRLQ. Let I =

M ∪ W be an instance of p-SMC. We create an instance I � of p-BP-HRLQ. The

instance I � has the same underlying graph as I where the set W of women correspond

to the set H of hospitals and the set M corresponds to the set R of residents. Let H∗

denote the hospitals in I � that correspond to the women W ∗ in I. For every hospital

h ∈ H set the upper quota uh = 1. The lower quota for hospitals h ∈ H \H∗ is 0 and

for h ∈ H∗ is 1. Observe that a feasible assignment µ in I when viewed in I � matches

the setH∗ and has the same number of blocking edges. Also a feasible assignment µ� in

I � when viewed in I matches the set W ∗ and has the same number of blocking edges.

This implies that (I, k) is a Yes-instance of p-BE-SMC if and only if (I �, k�) is a Yes-

instance of p-BP-HRLQ. Now the parameter k� = k+
�

i li+ |H∗| ≤ k+ |W ∗|+ |W ∗|

4.3. W[1]-HARDNESS RESULTS 43

(since the lower capacity is one only for the hospitals in H∗. This concludes the proof

of the theorem.

Theorem 14. The problem p-BR-HRLQ is W[1] hard.

Proof. We give a parameterized reduction from the problem p-BM-SMC. Let (I, k) be
an instance of p-BM-SMC. We create an instance (I �, k�) of p-BR-HRLQ as follows.

The instance I � has the same underlying graph as I where the set W of women

correspond to the set H of hospitals and the set M corresponds to the set R of

residents. Let H∗ denote the hospitals in I � that correspond to the women W ∗ in I.
For every hospital h ∈ H set the upper quota uh = 1. The lower quota for hospitals

h ∈ H \H∗ is 0 and for h ∈ H∗ is 1. Observe that a feasible assignment µ in I when

viewed in I � matches the set H∗ and has the same number of blocking residents.

Also a feasible assignment µ� in I � when viewed in I matches the set W ∗ and has

the same number of blocking residents. This implies that (I, k) is a Yes-instance of

p-BM-SMC if and only if (I �, k�) is a Yes-instance of p-BR-HRLQ. The parameter

k� = +
�

i li + |H∗| ≤ k + |W ∗| + |W ∗|. With this we conclude the proof of the

theorem.

In this chapter we have given an XP-Algorithm for HR-LQ parameterized by the

number of blocking residents. We have proven in theorem 14 that HR-LQ param-

eterized by the number of blocking residents is W[1] hard. We thus do not expect

an FPT algorithm for the problem (unless FPT=W[1]). Also we have shown some

hardness results in theorems 13 and 14.

44 CHAPTER 4. PARAMETERIZED ALGORITHMS FOR THE HR PROBLEM

Chapter 5

Results and Conclusions

This dissertation looks into two different NP-Hard variants of the classical Stable Mar-

riage Problem in the realm of parameterized complexity. In chapter 3 we designed

polynomial kernels and parameterized algorithms for Max-SMTI and Min-SMTI pa-

rameterized by the solution size; and for Max-SRTI parameterized by the size of a

maximum matching. We also studied these problems when the input is restricted to

planar graphs. All our algorithms on general graphs run in time 2O(klogk) + nO(1) .

For these problems, it would be interesting to either design an algorithm with run-

ning time 2o(k)nO(1) , or show an appropriate lower bound under complexity theoretic

assumptions.

In chapter 4, we gave an XP Algorithm for the Hospital/Residents Problem with

Lower quotas parameterized by the number of blocking residents. We also showed that

the parameterized problem of finding a feasible assignment with exactly k blocking

residents is W[1] hard and we thus do not expect an FPT algorithm for the same

(unless FPT=W[1]). It would be interesting to show that the problem of minimizing

blocking residents (not exact blocking residents) is W[1] hard. We also showed that

the Hospital/Residents Problem with lower quotas, when trying to minimize the

blocking edockingges is W[1] hard parameterized by b +
�

i li + |H∗|, where b is the

number of blocking edges,
�

i li is the sum of lower quotas over all hospitals and

|H∗| represents the number of hospitals with non zero lower quota. Also we have a

similar hardness result when we look at the second optimization version of the HR-LQ

problem where we minimize the number of blocking residents. It will be interesting

to see what happens when the parameter is the total number of Hospitals or try to

45

46 CHAPTER 5. RESULTS AND CONCLUSIONS

design an XP-Algorithm with parameter |H∗|. Some other parameters of interest

could be |H|� where � = maxili.

Bibliography

[1] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):915, 1962.

[2] D. Gusfield and R.W. Irving The Stable Marriage Problem: Structure and Al-
gorithms. MIT Press, 1989

[3] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dniel Marx,
Marcin Pilipczuk, Micha Pilipczuk, Saket Saurabh. Parameterized Algorithms.
Springer, ISBN 978-3-319-21274-6

[4] Rod Downey. A Basic Parameterized Complexity Primer.

[5] Kazuo Iwama, David Manlove, Shuichi Miyazaki and Yasufumi Morita. Stable
Marriage with Incomplete Lists and Ties. 36th ICALP, pp. 443452 (1999)

[6] Irving, R.W., Manlove, D.F. and Scott, S. (2003). Strong stability in the Hospi-
tals/Residents problem, in Proceedings of STACS 03: the 20th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Lecture Notes in Computer
Science, Vol. 2607 (Springer), pp. 439450.

[7] Irving, R.W., Manlove, D.F. and Scott, S. (2000). The Hospitals/Residents prob-
lem with Ties, in Proceedings of SWAT 00: the 7th Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Computer Science, Vol.1851 (Springer), pp.
259271.

[8] Koki Hamada,Kazuo Iwama,Shuichi Miyazaki. The Hospitals/Residents Problem
with Lower Quotas. Algorithmica (2016) 74:440465

[9] Robert W. Irving. An Efficient Algorithm for the Stable Roommates Problem.
JOURNAL OF ALGORITHMS 6, 577-595 (1985)

[10] Eytan Ronn. NP-Complete Stable Matching Problems. JOURNAL OF ALGO-
RITHMS 11,285-304 (1990)

[11] Deeksha Adil, Sushmita Gupta, Sanjukta Roy, Saket Saurabh, Meirav Zehavi.
Parameterized Algorithms for the Stable Matching Problem with Ties and In-
complete Lists.

47

48 BIBLIOGRAPHY

[12] Deeksha Adil, Sushmita Gupta, Saket Saurabh, Meirav Zehavi. Parameterized
Algorithms for the Hospitals/Residents Problem with Lower Quotas.

[13] Bart M. P. Jansen. Polynomial Kernels for Hard Problems on Disk Graphs.
Algorithm Theory - SWAT 2010, 12th Scandinavian Symposium and Workshops
on Algorithm Theory, Bergen, Norway, June 21-23, 2010. Proceedings. Pages
310–321, Lecture Notes in Computer Science, 6139, Springer 2010

[14] Matthias Mnich, Ildiko Schlotter. Stable Marriage with Covering Constraints: A
Complete Computational Trichotomy. arXiv 1602.08230v1

[15] J. D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM J. of Discrete
Mathematics, 6(3):375387, 1993.

[16] Robert W. Irving, David Manlove and Gregg OMalley. Stable marriage with ties
and bounded length preference lists. J. Discrete Algorithms, 7(2):213219, 2009.

[17] R. Irving, K. Iwama, D. F. Manlove, S. Miyazaki and Y. Morita. Hard variants
of stable marriage. Theoretical Computer Science, 276(1-2):261279, 2002.

[18] R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48(3):261 272, 1994.

[19] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathe-
matics. Springer, 2012.

