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Abstract

Control over the quantum world is expected to open new horizons in this century. “Given

a quantum system, how best we can control its dynamics?” is the question at the heart of

quantum control technology. Several advancements in diverse fields such as spectroscopy,

quantum information science, communication science, chemical kinetics, imaging, and sen-

sors hinge upon establishing precise and robust control over the quantum dynamics. In this

thesis, we examine certain novel strategies for efficiently generating robust quantum controls.

First by using a suitable interaction frame, we separate the free evolution of the quantum

system from the external controls. Secondly, by coarse graining the external control param-

eters we evaluate any general control propagator in terms of a small set of precalculated

unitaries. These strategies alleviate the complexity issues posed by standard propagator

evaluation methods, which are based on iteratively exponentiating the full Hamiltonian. We

benchmark the efficiency of our algorithm with standard algorithms in terms of computa-

tional time. Further, we incorporate these strategies on a hybrid quantum control algorithm

which combines a global initial-optimization with a local final-optimization. We also describe

the importance of our quantum control algorithms in quantum information as well as spec-

troscopy. Finally, some applications in quantum information processing and spectroscopy

are demonstrated using nuclear spin-systems controlled by NMR techniques. Super-adiabatic

quantum state transfer in spin chains was demonstrated in a 3- qubit NMR system. Single

and multi-band selective inversion pulses were designed and used in the heat-bath algorithmic

cooling protocol to increase the polarisation of low natural abundance nuclear isotopes.
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Chapter 1

Introduction

1.1 What is control theory all about?

Weather, cyclones, earthquakes − such are things no one can control. Everything else can

be controlled and falls within the realms of control theory. Control theory deals with the

manipulation of dynamical systems which are influenced by numerous external parameters

and constraints. Thus, control theory finds applications wherever one encounters such a

dynamical system − ranging from the macroscopic aeroplanes and railway engines to the

microscopic atoms and molecules. Typically, the central problem of control theory is to

steer the evolution of a dynamical system to a desired output state. Often, there are many

solutions to this problem which are known as controls. However, one seeks to attain the

‘best’ solutions, which are referred to as optimal controls. One needs to specify what this

‘best’ means, i.e. the optimality criterion. For example, if the dynamical system has to

reach the target state as fast as possible, the optimality criterion is time and the controls

satisfying this criterion are said to be time optimal. In summary, optimal control theory

is all about finding the control variables which optimize a certain objective respecting the

imposed constraints.
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Figure 1.1: Applications of quantum control
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1.2 What is this thesis about?

In this thesis, we would be dealing with the coherent control of quantum systems. Coherent

control is the control of the dynamics of a quantum system usually by light or shaped elec-

tromagnetic pulses. In particular, our focus would be on controlling the quantum dynamics

of spin-1/2 nuclei via shaped radio-frequency (RF) pulses. The spin-1/2 nucleus placed in

a strong magnetic field acts as a qubit or a natural two level system − an ideal setting for

quantum information processing[1]. This thesis deals with the numerical algorithms used

to design and optimize the shaped RF pulses which will steer our spin-qubits to a desired

target state or implement a target operation as required by various quantum information

processing tasks.

1.3 Why do we need quantum control?

Information processing devices based on quantum mechanical systems, known as quantum

devices, have the potential to outperform their classical counterparts on the grounds of

computational complexity. Classical computers encode information in bits − 0 and 1 which

correspond to certain physical states of the transistor. This classical information possess the

inherent robustness of digital logic; that is, the classical bits remain in a particular state

until one wishes to change them. On the other hand, the information which is encoded by

quantum devices in quantum systems or qubits is fragile. Meaning, whatever we can do

to control the evolution of the quantum system, Nature can also do it in an unknown and

uncontrollable fashion thereby ruining the computation. Thus, a robust and efficient control

over the dynamics of the quantum system is indispensable for any ‘quantum device’ to prove

its potential computational usefulness.

Moreover, DiVincenzo has laid down the following criterion[2] for any physical implemen-

tation of quantum computation or a quantum information processing device:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the qubits to a simple known state.

3. Long decoherence time, much longer than gate operation time.
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4. A universal set of quantum gates.

5. A qubit specific measurement capability.

6. The ability to inter-convert stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified locations.

This thesis is mainly concerned with criterion 4, which is the ability to implement any

logic gates on our quantum system. Any computation or algorithm, be it classical or quan-

tum, consists of a network of logic gates acting on the input bits/qubits, which change the

state of input bits/qubits and lead to the desired output. All the classical logic gates can

be easily implemented via transistor-transistor logic (TTL). However, generating arbitrary

quantum gates is a non-trivial task, and thus, developing and applying methods for doing

this accurately and efficiently would be the central focus of the thesis.

1.4 What is optimal quantum control?

Any quantum system interacting with time dependent electromagnetic pulses can be de-

scribed by the following Hamiltonian:

H = H0 +
m∑
k=1

uk(t)Hk

Here, H0 refers to the internal Hamiltonian which is an intrinsic property of the quantum

system and is thus time independent. The set {Hk} consists of the control Hamiltonians

which are externally applied. The set {uk(t)} refers to the shaped electromagnetic pulses

which decide the strength of the external Hamiltonians {Hk} to be applied at each instant

of time. The time evolution of the quantum system under the Hamiltonian H is governed

by the Schrödinger equation:

d

dt
|ψ〉 = −iH |ψ〉

6
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Figure 1.2: Shown in the top trace is the two qubit C-NOT gate, the quantum equivalent
of an XOR gate. The lower trace is an indicative of how a C-NOT gate is experimentally
implemented using spin qubits in an NMR-spectrometer. The 1H and 13C nuclei of chloroform
form our 2 qubit system. {u1(t)} and {u2(t)} are the shaped RF-pulses which act on the 2
qubits and experimentally implement the C-NOT gate. Note that the shaped pulses {u1(t)}
and {u2(t)} are not unique.

Note that we are working with N -dimensional Hilbert spaces where N = 2n and n is the

number of interacting qubits or spin-1/2 particles. Thus, H is an N ×N matrix and |ψ〉 is

a N × 1 column vector. This amounts to solving N first-order linear differential equations,

or equivalently, computing the matrix exponential of an N ×N matrix.

The control problem is to arrive at a set of controls {uk(t)} so that the evolution of the

quantum system is guided to implement a desired quantum logic gate or reach a desired

target quantum state. We also need to define a fidelity function Φ(uk) which quantifies how

good the controls {uk(t)} are and how well have they managed to implement a desired gate

or reach a desired state. Thus, the optimal control algorithms aim to maximize this fidelity

function Φ(uk) with respect to certain constraints depending upon the physical system and

hardware involved.
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Figure 1.3: Numerical methods for quantum control such as GRAPE[3], CRAB[4],
Lyapunov[5], strongly modulated pulses[6], Krotov[7], Bang-Bang using genetic algorithm[8].
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1.5 Outline of the thesis

The rest of the thesis is organized as follows:

Chapter 2: We describe a common framework for optimal control algorithms based

on the smooth modulation of electromagnetic pulses. Within this framework, we fur-

ther describe two famous optimal control algorithms − GRAPE (Gradient Ascent Pulse

Engineering) and Krotov for synthesizing quantum gates and preparing desired quantum

states for NMR quantum information processing. Although these algorithms are general

and can be adopted for any architecture for quantum information processing, we shall focus

only on their adapted versions for spin qubits in NMR.

Chapter 3: Here, we propose the evaluation of quantum dynamics in the interac-

tion frame of quantum mechanics (Dirac picture) and incorporate it into optimal control

algorithms. We also combine coarse graining and matrix recycling to significantly speed

up matrix exponentiation, which is the bottle-neck of all quantum control algorithms. We

name this method of matrix exponentiation as REDO (Rapid Exponentiation by Discrete

Operators). Using these tools, we modify the existing optimal control algorithms and achieve

a speed-up of over 2-3 times over the standard methods.

Chapter 4: In this chapter, we apply the developed optimal control algorithms for ex-

perimental applications in NMR quantum information processing and spectroscopy. Firstly,

we perform selective inversions in a 3-qubit quantum register. We also prepare a pseudo-pure

state which mimics the state |000〉 in the same 3-qubit quantum register in order to initialize

it. Next, we implement super-adiabatic quantum state transfer in a 3-spin chain [9]. We

also perform multi-bandwidth selective inversions as an application in NMR spectroscopy

and algorithmic cooling[10].

9



10



Chapter 2

State of the art

In this chapter, we describe two widely used optimal control algorithms namely GRAPE

(Gradient Ascent Pulse Engineering)[3] and Krotov[7]. Although these algorithms are gen-

eral and can be adopted to any architectures for quantum computing, we describe only the

NMR adaptations of the algorithms. The objective of these algorithms is to arrive at a set

of control variables which implement the desired quantum gate or reach a target quantum

state. For smaller spin systems consisting of one or two qubits, it is trivial to construct the

quantum gates analytically. Moreover, in a heteronuclear NMR system, each qubit can be

addressed individually and hence single qubit rotations and two qubit gates can be imple-

mented using resonant RF pulses and natural couplings between each pair of qubits. The

main difficulty lies in implementing selective single qubit gates in homonuclear NMR sys-

tems where a single resonant RF control field affects all qubits of the same nuclear specie.

This makes it very difficult to analytically construct selective gates and bring about selective

excitations. Hence, it becomes necessary to resort to numerical methods for optimization

which can perform selective gates, especially in homonuclear NMR systems. Additionally,

while dealing with large number of qubits, i.e. large Hilbert spaces, it is advantageous to

use numerical optimization techniques rather than analytical methods.
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2.1 Framework for optimal quantum control algorithms

A quantum system interacting with time-dependent electromagnetic fields can be described

by the following Hamiltonian:

H = H0 +
m∑
k=1

uk(t)Hk (2.1)

where H0 is the time-independent internal Hamiltonian, {Hk}’s are the external control

Hamiltonians and {uk(t)} are the control fields which denote the strength of the external

Hamiltonians to be applied at each instant of time. In the NMR setting, the qubits are

formed by spin-1/2 nuclei of a molecular ensemble placed in a strong magnetic field B0ẑ.

Thus, in the rotating frame picture of an NMR spin system in an isotropic medium, the

internal Hamiltonian is as follows:

H0 = −
∑
i

ωiIiz + 2π
∑
i<j

JijIizIjz (2.2)

where, ωi, Jij, and Ii denote the resonance offset, indirect(scalar) coupling and collective

Pauli spin operator respectively. The time dependent Hamiltonian which we can control via

radio-frequency (RF) pulses is as follows:

Hc(t) =
m∑
k=1

uk(t)Hk (2.3)

where the index k runs over all nuclear species (e.g. 1H, 13C, 15N). In NMR, we can

modulate the amplitude and frequency of the RF field, or equivalently, the strength of RF

ukx(t) and uky(t) in X and Y quadratures respectively. The control Hamiltonian can thus

be expressed as:

Hc(t) =
m∑
k=1

(ukx(t)Ix + uky(t)Iy) (2.4)

12



where Ix and Iy are the collective spin operators for all the nuclear spins which are

sensitive to a particular control field. The evolution of the quantum system under the

Hamiltonian H = H0 +Hc(t) is governed by the Schrödinger equation:

d

dt
|ψ〉 = −iH |ψ〉 (2.5)

The evolution of the state vector in time is governed by

|ψ(t)〉 = U(t) |ψ(0)〉 (2.6)

where the propagator U(t) = exp (−iHt/~). In order to evaluate the propagator, one

needs to make use of the Dyson series which is computationally expensive. Hence, we

discretize the total evolution time T into N steps, each of duration ∆t = T/N . As a result,

we can consider the strength of the control pulse as a constant during every time step.

uk(j)

j

0 T∆t

uk

t

Figure 2.1: Schematic representation of the discretization of control amplitude uk(t) into N
segments, each of duration ∆t = T/N .

Due to the discretization of total control duration, we now have piece-wise constant

Hamiltonian. Thus, the propagator during the jth step is:

Uj = exp

[
−i∆t

(
H0 +

m∑
k=1

uk(j)Hk

)]
(2.7)

13



The time evolution during the entire control duration T can now be evaluated without

the use of Dyson series. The total propagator or unitary is:

U(T ) = UNUN−1UN−2 . . . U2U1 (2.8)

Our aim is to synthesize a target unitary UF . For synthesizing such a desired unitary, we

need to maximize the overlap between U(T ) and UF up to a global phase. That is, we need

to minimize ||UF − eiφU(T )||2. Equivalently, we need to maximize the fidelity function:

Φ = | 〈UF |U(T )〉 |2 (2.9)

Here, Φ can take values between 0 and 1. If our synthesized unitary U(T ) matches

perfectly with the desired unitary UF , then Φ = 1. Note that Φ = Φ(uk). Thus one needs

to optimize the controls {uk(t)} in order to maximize Φ. Following is a general scheme for

the numerical optimization algorithms for arriving at a set of {uk(t)} which maximize the

fidelity Φ.

This general scheme which would be followed for GRAPE and Krotov optimal control

algorithm reads as:

1. Start with a initial random guess for the shape of the pulse.

2. Calculate the fidelity functional for the pulse shape, which is the overlap between target

unitary and simulated unitary.

3. Make small changes to the shape of the pulse so that the fidelity functional improves.

4. Repeat step 2 and 3 until no more improvements to the fidelity functional are possible

or threshold fidelity has reached.

14



Start with initial 
randomized guess 

{uk(t)}

Evaluate the 
propagator

U(T)

Calculate fidelity ф

Update controls {uk(t)} 
according to certain 
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Until threshold 
fidelity is reached

Iteration loop

Relative time 
complexity

Figure 2.2: Schematic representation of numerical optimization algorithms for optimal quan-
tum control.

15



2.2 GRAPE algorithm

The GRAPE algorithm falls within the category of gradient ascent algorithms where in

each iteration, the control variables are modified in the direction of the steepest ascent to

maximize a fidelity functional. The direction of steepest ascent is determined by the gradient

of the fidelity functional w.r.t to the control variables. In the following, we provide a step

by step description of the GRAPE algorithm adapted for NMR.

Direction of gradient

Ф(uk)

uk(j)

Original value

Updated value

Figure 2.3: At every time step j, the controls are updated in the direction of gradient.
.

1. Initial randomized guess: Start with a randomized guess of RF controls {uk(t)}. If

there arem nuclear species, there would bem sets of RF controls {{u1(t)}, {u2(t)}, . . . {um(t)}}.
Each control {ui(t)} is a vector (ui(1), ui(2), . . . ui(N)) denoting the amplitude of RF

field of ith control during each segment of duration ∆t = T/N .

2. Calculating propagators: Calculate the propagator for each segment j = 1 to N

using:

Uj = exp

[
−i∆t

(
H0 +

m∑
k=1

uk(j)Hk

)]
(2.10)

3. Forward and backward propagators: Calculate and store each forward propagator

Xj = UjUj−1 . . . U2U1 for j = 1 to N . Similarly calculate and store each backward

propagator Pj = U †j+1U
†
j . . . U

†
NUF for j ≤ N with PN = UF .

4. Calculating the fidelity: Using XN = U(T ), the fidelity for the simulated unitary

is:

Φ = | 〈UF |U(T )〉 |2 (2.11)

16



5. Evaluating the gradient: Calculate the gradient of fidelity functional Φ(uk) with

respect to each uk(j). The fidelity functional Φ = | 〈UF |U(T )〉 |2 can be expressed as:

Φ = 〈UF |U(T )〉 〈U(T )|UF 〉 (2.12)

= 〈UF |UNUN−1 . . . U2U1〉 〈UNUN−1 . . . U2U1|UF 〉 (2.13)

= 〈Pj|Xj〉 〈Xj|Pj〉 (2.14)

Now we need to evaluate the gradient δΦ/δuk(j) to first order in ∆t. Note that uk(j)

appears only in the propagator Uj. Thus,

δΦ

δuk(j)
=

δ

δuk(j)
〈Pj|Xj〉 〈Xj|Pj〉 (2.15)

=
δ

δuk(j)
〈U †j+1 . . . U

†
NUF |Uj . . . U1〉 〈Uj . . . U1|U †j+1 . . . U

†
NUF 〉 (2.16)

= 〈U †j+1 . . . U
†
NUF |

δUj
δuk(j)

. . . U1〉 〈
δUj
δuk(j)

. . . U1|U †j+1 . . . U
†
NUF 〉 (2.17)

(2.18)

Substituting δUj/δuk(j) ≈ −i∆tHkUj and using the chain rule of differentiation, the

expression for gradient is:

δΦ

δuk(j)
= −2<{〈Pj|i∆tHkXj〉 〈Xj|Pj〉} (2.19)

6. Updating the RF controls: The RF control amplitude at every segment j can be

update using the following update rule:

uk(j) −→ uk(j) + ε
δΦ

δuk(j)
(2.20)

Here, ε is the user defined step size which tells us ‘how much to go in the direction

of the gradient’. However, always moving the pulse in the direction of the gradient in

constant step size ε may lead to loss of convergence, as the algorithm can get stuck in

local minima. Hence, one needs to use the method of conjugate gradients. Before using

conjugate gradients, the step size ε must be optimized at each step such that the pulse

17



is moved to the highest fidelity point in the direction of gradient. This can be done

by moving the pulse in steps of ε and 2ε in the direction of gradient and evaluating

the fidelity at these two point. Further, a quadratic function can be fit through these

fidelity points. The maxima of the quadratic, which is the maximum fidelity gives us

the optimum value of step size ε.

Ф(uk)

uk(j)ε
2ε

ε corresponding to
maximum fidelity

cb

a

Figure 2.4: Determining the optimum value of step size ε in the direction of gradient by
fitting a quadratic function through three points a, b and c corresponding to an update step
size of 0, ε and 2ε respectively.

7. Iterations: With the updated values of uk(j) go to step 2 and repeat until threshold

fidelity is reached.

18



If fidelity is 
less than 
threshold

End

Figure 2.5: Summary of the GRAPE algorithm.

2.3 Krotov algorithm

2.3.1 Basis of Krotov optimization

The Krotov optimal control algorithm is based on the method of Lagrangian multipliers

which are used to find the maxima or minima of a function w.r.t equality constraints. For

example, consider a function f(x, y) which is to be maximized w.r.t the constraint g(x, y) = 0.

Define a variable λ known as the Lagrangian multiplier. With this, the Lagrangian is defined

as:

L(x, y, λ) = f(x, y)− λ · g(x, y) (2.21)

The method says that if f(x0, y0) is a maximum of f(x, y) w.r.t the constraint g(x, y) = 0,

then there exist a λ0 such that (x0, y0, λ0) is a stationary point for L(x, y, λ). Stationary

19



Figure 2.6: Shown on the left is the plot of function f(x, y) which is to be maximized w.r.t
the constraint g(x, y) = c. Shown on the right is the contour plot of the same. The point
(x, y) where g(x, y) = c intersects the function f(x, y) is the maxima of the function w.r.t
the constraint. (Image taken from Wikipedia)

points are those points where the partial derivatives of L w.r.t (x, y, λ) are all zero. Thus

the necessary condition (but not sufficient) for stationary points is:

∇x,y,λL =

(
∂L
∂x

,
∂L
∂y
,
∂L
∂λ

)
= (0, 0, 0) (2.22)

Solving the above equation gives us the values of x and y which maximize f(x, y) w.r.t

g(x, y) = c.

2.3.2 Krotov optimal control algorithm

Here, we adopt the method of Lagrange multipliers as explained in the previous section to

derive the Krotov optimal control algorithm. Our aim is to design a target unitary UF . We

define a fidelity functional Φ = | 〈UF |U(T )〉 |2 which is to be maximized; where U(T ) is the

synthesized unitary evolution from time t = 0 to t = T . Along with maximizing the fidelity,

we also wish to minimize the consumption of RF power. Hence we incorporate an additional

term in the fidelity which acts as a penalty for total RF power consumed. Thus, our modified

20



fidelity functional is:

J = Φ− λ
∫ T

0

∑
k

u2
k(t)dt (2.23)

Here, λ is a user defined parameter for scaling the penalty and is not to be confused with

the Lagrange multiplier in the previous section. The functional J is analogous to the function

f(x, y) in the previous section. We now need to find the maximum of this functional J using

the method of Lagrange multipliers. Similar to the constraint g(x, y) in the previous section,

our constraint here is that the evolution of our quantum system follows the Schrödinger

equation. Thus, the constraint is:

〈B(t)| d
dt

+ iH|U(t)〉 (2.24)

where B(t) is analogous to the Lagrange multiplier λ we had in the previous section. When

the evolution U(t) follows Schrödinger equation, we have, dU(t)
dt

= −iHU(t) and the constraint

value becomes 0. The functional analogous to L(x, y, λ) has the form:

J̃ = Φ = | 〈UF |U(T )〉 |2 − λ
∫ T

0

∑
k

u2
k(t)dt−

∫ T

0

〈B(t)| d
dt

+ iH|U(t)〉 (2.25)

Now we can use calculus of variations to find out the gradient of J̃ w.r.t B(t), U(t), uk(t)

and set each of them to 0.

δJ̃

δB(t)
= 0;

δJ̃

δU(t)
= 0;

δJ̃

δuk(t)
= 0; (2.26)

The first relation δJ̃
δB(t)

= 0 above gives back the equation of motion or Schrödinger equation

for U(t), implying that the evolution must follow the Schrödinger equation:

dU(t)

dt
= −iHU(t) (2.27)

Solving the second relation δJ̃
δU(t)

= 0 gives us two conditions. The first condition implies that

B(t) which can also be interpreted as the backward propagator, must follow the Schrödinger
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equation:
dB(t)

dt
= −iHB(t) (2.28)

The second condition gives us a initial state condition for the above equation.

B(T ) =
∂Φ

∂U(T )
(2.29)

It is evident that as Φ is a function of U(T ), the initial condition B(T ) indeed depends on

the final state U(T ). Finally, the third relation δJ̃
δuk(t)

= 0 gives us the rule for update of RF

controls as follows:

uk(t) = = 〈B(t)|Hk|U(t)〉 (2.30)

Thus on solving δJ̃
δB(t)

= 0, δJ̃
δU(t)

= 0 and δJ̃
δuk(t)

= 0 we have the three conditions for a

stationary point or an extremum for the functional J̃ :

dB(t)

dt
= −iHB(t) (2.31)

B(T ) =
∂Φ

∂U(T )
(2.32)

uk(t) = = 〈B(t)|Hk|U(t)〉 (2.33)

Using these 3 conditions, we now describe the Krotov optimal control algorithm. Similar to

the GRAPE algorithm, we also discretize the control duration of time T into N segments of

duration ∆t = T/N each.
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Preliminary definitions: (Note that i stands for iteration number)

Forward propagator: Ui(t) = exp [−i∆t (H0 +
∑m

k=1 uk,i(j)Hk)]

Initial condition for forward propagator: Ui(0) = I

Forward update rule: uk,i(t) = (1− δ)ũk,i−1(t) + δ
λ
= 〈B†i−1(t)|Hk|Ui(t)〉

Backward propagator: Bi(t) = exp [−i∆t (H0 +
∑m

k=1 ũk,i(j)Hk)]

Initial condition for backward propagator: Bi(T ) = ∂Φ
∂U(T )

= UF 〈UF |Ui(T )〉

Backward update rule: ũk,i(t) = (1− η)uk,i(t) + η
λ
= 〈B†i (t)|Hk|Ui(t)〉

Using the above definitions, the algorithm is as follows:

1. Initial random guess: Start with a randomized guess of RF controls {uk,0(t)}. Set

uk,0(t) = ũk,0(t), where {ũk,0(t)} is the set of backward propagating controls. The ‘0’

in the subscript stands for the iteration number.

2. Forward and backward propagators: Evaluate the forward propagator U0(t) using

uk,0(t) to get U0(T ). Using U0(T ), evaluate the initial condition B0(T ) for backward

propagation. Now propagate B0(T ) backwards using the controls ũk,0(t).

3. Updating the forward control: Update the RF amplitude uk,1(0) using the forward

update rule.

4. Propagating forward: Propagate U1(0) to U1(δt) using the RF control uk,1(0).

5. Forward evolution: Repeat steps 3 and 4 to complete the forward evolution and

obtain U1(T ).

6. Calculating fidelity: Using the total propagator obtained above, calculate the fidelity

Φ.
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7. Initial condition for backward propagation: Calculate B1(T ) using U1(T ) ob-

tained above.

8. Updating the backward control: Update the RF amplitude ũk,1(T ) using the

backward update rule.

9. Propagating backward: Propagate B1(T ) to B1(T−δt) using the RF control ũk,1(T ).

10. Backward evolution: Repeat steps 8 and 9 to complete the backward evolution.

11. Iterations: Go back to step 3 and repeat the above procedure until threshold fidelity

is reached.

If fidelity is 
less than 
threshold

End

Figure 2.7: Summary of the Krotov optimal control algorithm.
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2.4 Discussions

1. GRAPE versus Krotov: GRAPE is a local optimization algorithms whereas Krotov

is a global optimization algorithm. The fundamental difference in GRAPE and Krotov

is in the way RF controls are updated.

0 T

uk

t

0 T

uk

t

0 T

uk

t

update all segments
and then propagate

update, propagate,
update, propagate…

0 T

uk

t

Concurrent update:
GRAPE 

Sequential update:
Krotov

Figure 2.8: Concurrent update in GRAPE and sequential update in Krotov

Update: In GRAPE, all the segments are updated at once and then the entire prop-

agator for control duration T is evaluated. Thus, the update of a particular segment

does not depend upon any other segment. This type of update is known as concurrent

update. On the contrary, in Krotov, a particular segment is updated and then propa-

gated. This is done until the propagator for entire control duration T is found. Thus,

the update of a particular segment depends upon the previously updated segments.

Convergence: In GRAPE, before updating we always need to adjust the step size

and move the pulse to highest fidelity point to maintain monotonic convergence. On

the other hand, the Krotov has the inbuilt property of monotonic convergence because

of the way the algorithm is constructed. In fact during update of every segment, Kro-

tov tries to maximize the fidelity functional. Since Krotov is a global optimization

algorithm, it makes coarse adjustments rapidly and reaches high fidelities within few

iterations. However, being a global optimization algorithm, the drawback is that it
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cannot make finer adjustments at higher fidelities and thus the convergence is very

slow at high fidelities. On the other hand, GRAPE is a local optimization algorithm.

It needs more iterations than Krotov to reach high fidelities, however, once a high fi-

delity has reached, GRAPE combined with the method of conjugate gradient provides

a faster convergence than Krotov. This suggest a hybrid algorithm, in which one uses

Krotov for initial iterations for coarse adjustments until a high fidelity is reached and

then switches to GRAPE for finer adjustments and higher fidelities.

Figure 2.9: Convergence in GRAPE and Krotov

2. RF inhomogeneities: During experiment, the NMR sample tube receives different

amount of RF irradiation in different parts. Say, the top 1/3rd part of the tube receives

only 90% of RF, the bottom 1/3rd part receives 110% of RF and only the middle part

receives the actual RF as synthesized by our optimal control algorithms. Thus, it is

necessary to make the RF pulse robust against these inhomogeneities. For this, we

design the pulse in such a way that the fidelity at 90% or RF irradiation as well as

110% of RF irradiation has the same high fidelity as 100% of RF irradiation.
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3. Use of functional spaces: The GRAPE algorithm studied here involved updating

each segment according to the update rule. However, one can also use a weighted set of

basis functions which define the control profiles. In this case, instead of updating each

segment we update the coefficient or weight corresponding to every basis function which

results a change in entire control profile. This method, known as GRAFS (Gradient

Ascent in Functional Space)[11] is used for generating bandwidth limited controls.
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Chapter 3

Speeding up optimal control

algorithms

In the previous chapter, we studied two famous optimal control algorithms − GRAPE and

Krotov. Although the two algorithms have different schemes for updating the RF controls,

the common process in each algorithm is evaluating the propagator Uj for every segment

j. Evaluation of the propagator involves matrix exponentiation and is a bottle-neck of the

algorithm; meaning it is the most time consuming routine of the algorithm. Moreover, the

propagator needs to be calculated for every segment at least once during each iteration. Ma-

trix exponentiation is responsible for severely slowing down the algorithms as the number of

segments N increases or the dimension of Hilbert space (size of quantum system/number of

qubits) increases. Thus any improvement in the matrix exponentiation routine can signifi-

cantly speed up the algorithms[12, 13].

Here, we present a method we name as REDO (Rapid Exponentiation by Discrete

Operators), to speed up the matrix exponentiation specifically in optimal control algorithms

using coarse graining and matrix recycling. For this, we first need to evaluate the quantum

dynamics in the interaction picture. We incorporate the REDO method of matrix expo-

nentiation in GRAPE and Krotov optimal control algorithms and name them iGRAPE and

iKrotov respectively.
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Standard Method Fast Method

Hamiltonian in 
Schrodinger frame

Hamiltonian in
Dirac frame

Evaluate propagator 
in interaction frame
(using pre-calculated

coarse grained 
matrices)

U1 U2 U3 … … … Uk … … … … … UN

Matrix 
Exponentiation

Find corresponding 
propagator in 

Schrodinger frame

Involves only 
matrix multiplications

Figure 3.1: General scheme of evaluating propagator using standard method and REDO
(fast)method.
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3.1 Quantum dynamics in the interaction picture

Quantum mechanics has three different representations - Schrödinger picture, Heisenberg

picture and the Dirac picture. These representations provide three different approaches to

calculate some physical quantity or the expectation value of an observable. Of course, the

answer to the physical quantity measured is independent of the representation used. In the

Schrödinger picture, the state vectors evolve with time while the operators are fixed. On the

other hand, in the Heisenberg picture, the operators evolve in time while the state vector

is fixed. The Dirac representation or the interaction picture is an intermediate between the

Schrödinger and Heisenberg picture. In the interaction picture, the state vector as well as

the operator have time dependence. The interaction picture is particularly useful when the

Hamiltonian can be separated into time independent and time dependent parts. The aim

of the interaction picture is to go in the frame of the time independent Hamiltonian so that

the dynamics of the quantum system can be purely described in terms of the external time

dependent Hamiltonian. Consider the following Hamiltonian:

H(t) = H0 + V (t) (3.1)

Our aim is to solve the Schrödinger equation:

d

dt
|ψ(t)〉 = −i (H0 + V (t)) |ψ(t)〉 (3.2)

where |ψ(t)〉 is the state vector in the Schrödinger picture. Let |ψI(t)〉 be the state vector in

interaction picture. The state vectors in the two pictures are related by:

|ψI(t)〉 = eiH0t |ψ(t)〉 (3.3)

The evolution of state vector in the Schrödinger picture is given by |ψ(t)〉 = U(t, t0) |ψ(t0)〉
where U(t, t0) is the propagator in the Schrödinger picture. Using this in the above equation,

we have,

|ψI(t)〉 = eiH0tU(t, t0) |ψ(t0)〉 (3.4)

Substituting |ψ(t0)〉 = e−iH0t0 |ψI(t0)〉 in the above equation, we have,

|ψI(t)〉 = eiH0tU(t, t0)e−iH0t0 |ψI(t0)〉 (3.5)
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Comparing the above equation with |ψI(t)〉 = UI(t, t0) |ψI(t0)〉, where UI(t, t0) is the prop-

agator in the interaction frame, we have the following relation between the propagators in

the two pictures:

UI(t, t0) = eiH0tU(t, t0)e−iH0t0 (3.6)

Equivalently,

U(t, t0) = e−iH0tUI(t, t0)eiH0t0 (3.7)

The propagator in the Schrödinger picture follows the differential equation:

d

dt
U(t, t0) = −i (H0 + V (t))U(t, t0) (3.8)

Substituting U(t, t0) = e−iH0tUI(t, t0)eiH0t0 in the above equation, we have,

d

dt
UI(t, t0) = −iVI(t)UI(t, t0) (3.9)

where VI(t) = eiH0tV (t)e−iH0t is the external time dependent Hamiltonian in the interaction

picture. The above equation suggests that the propagator in the interaction picture depends

only on the external time dependent Hamiltonian.

3.2 Optimal control in the interaction picture

Here, we apply the techniques from the previous section to optimal control algorithms. A

quantum system interacting with time-dependent electromagnetic fields can be described by

the following Hamiltonian:

H(t) = H0 +
m∑
k=1

uk(t)Hk (3.10)

In the optimal control algorithms, we have discretized the total control duration T into N

segments of duration ∆t = T/N each. Using the expression for evolution of operators in the

interaction frame, the operator Hk in the interaction frame in every segment is:

H̃j = eiH0∆tHke
−iH0∆t (3.11)
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The propagator in the Schrödinger picture during the jth segment is:

Uj = exp

[
−i∆t

(
H0 +

m∑
k=1

uk(j)Hk

)]
(3.12)

The above propagator in the interaction picture would be:

Ũj = exp

[
−i∆t

(
m∑
k=1

uk(j)H̃j

)]
(3.13)

where, H̃c(t) =
∑m

k=1 uk(j)H̃j. In NMR, we can either modulate the amplitude and phase

of the RF field or the strength of the field in X and Y quadratures independently. Thus,

H̃c(t) =
m∑
k=1

(
ukx(t)Ĩx + uky(t)Ĩy

)
(3.14)

where Ĩx = eiH0∆tIxe
−iH0∆t and Ĩy = eiH0∆tIye

−iH0∆t are the collective spin operators in

the interaction picture. Note that the spin operators have now gained a time dependence.

Equivalently, we can express the control Hamiltonian H̃c(t) in the amplitude-phase forms as

follows:

H̃c(t) =
m∑
k=1

Ωk(t)
(

cos(θk(t))Ĩx + sin(θk(t))Ĩy

)
(3.15)

Thus the propagator Ũj can now be written as:

Ũj = exp

[
−i∆t

(
m∑
k=1

Ωk(j)
(

cos(θk(j))Ĩx + sin(θk(j))Ĩy

))]
(3.16)

An expression of the form exp (−iΩ(Ix cos(θ) + Iy sin(θ))) can be interpreted as rotation

through an angle Ω about the axis x̂ cos(θ) + ŷ sin(θ) in the x− y plane subtending an angle

θ with the x−axis[14]. This rotation can equivalently be expressed as a composition of three

rotations − first through an angle θ about the z−axis, second through an angle Ω about the

x−axis and third through an angle −θ through the z−axis. Using this fact the propagator

Ũj can now be written as:

Ũj = e(−i
∑m

k=1 θk(j)Ĩz) exp

(
−i∆t

m∑
k=1

Ωk(j)Ĩx

)
e(i

∑m
k=1 θk(j)Ĩz) (3.17)
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where Ĩz = eiH0∆tIze
−iH0∆t is the collective spin operator in the interaction picture. Since

H0 = −
∑

i ωiIiz + 2π
∑

i<j JijIizIjz contains only z−terms, Ĩz commutes with H0 and hence

Ĩz = Iz. Thus, the propagator Ũj is:

Ũj = e(−i
∑m

k=1 θk(j)Iz) exp

(
−i∆t

m∑
k=1

Ωk(j)Ĩx

)
e(i

∑m
k=1 θk(j)Iz) (3.18)

Here, since Iz is a diagonal matrix, e(±i
∑m

k=1 θk(j)Iz) is just element by element exponential

and not a matrix exponential. The only matrix exponentiation in Ũj is the middle term. In

the next section, we will study coarse graining which when combined with matrix recycling

can help in getting rid of the matrix exponential in the evaluation of the propagator during

the runtime of the optimal control algorithms.

3.3 Coarse graining and matrix recycling

The calculation of the propagator Ũj involves the calculation of a single matrix exponential.

However this propagator needs to be calculated for all the N segments in one iteration

and typically one needs several iterations of the optimal control algorithm to attain high

fidelities (> 0.99). To overcome the calculation of repeated matrix exponentials, we can

store exp
(
−i∆t

∑m
k=1 Ωk(t)Ĩx

)
for all values of Ωk which lie in the range of admissible RF

control powers as per the hardware. We can just call the stored matrices during the runtime

of the algorithm and thus the evaluation of Ũj will involve only 3 matrix multiplications,

which is very fast compared to matrix exponentiation. However, the range of RF amplitude

Ωk for a typical NMR experiment lies approximately between 0 to 218 rad/s. It is impossible

to store matrices for all values of Ωk between 0 to 218. Hence, using coarse graining, we take

only the integer values between 0 to 218. Even if we take only the integer values between 0

to 218, it is still inefficient to store all the 218 matrices. All the more, if there are M different

nuclei, we have to store M×218 matrices. How does we store so many matrices?

In the decimal system, any integer ‘a1a2a3 . . . a
′
n where ai’s are the digits of the integer,

can be expressed as:

a1a2a3 . . . an = a1 × 10n−1 + a2 × 10n−2 + · · ·+ an−1 × 101 + an × 100 (3.19)
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Here, 0 ≤ ai ≤ 9 since we are using a base of 10 i.e the decimal system. Analogously, suppose

we use the base of 64, any integer ‘a1a2a3 . . . a
′
n can be expressed as:

a1a2a3 . . . an = a1 × 64n−1 + a2 × 64n−2 + · · ·+ an−1 × 641 + an × 640 (3.20)

where, 0 ≤ ai ≤ 63. Using just three digits a1a2a3 in such a base, the maximum value one

can obtain is 63× 642 + 63× 64 + 63 = 218− 1. Thus with the help of 64-base, we can cover

the entire RF range with just 3 digits. Now we just need to store the 63 + 63 + 63 = 189

matrices corresponding the different digits a1a2a3. Even if there are M different nuclei, we

have to store only M × 189 matrices which is very less than storing M×218 matrices; as

there can be at maximum 4 to 5 different NMR active nuclear species in a given molecule.

Using such a base of 64, any RF amplitude Ωk between 0 and 218 can be written as:

Ωk = a1 × 642 + a2 × 641 + a3 × 640 (3.21)

The matrix exponential (L.H.S) we wish to evaluate can now be split as:

exp

(
−i∆t

m∑
k=1

Ωk(t)Ĩx

)
= A1 ×A2 ×A3 (3.22)

where,

A1 = exp

(
−i∆t

m∑
k=1

(a1k(t)× 642)Ĩx

)
(3.23)

A2 = exp

(
−i∆t

m∑
k=1

(a2k(t)× 641)Ĩx

)
(3.24)

A3 = exp

(
−i∆t

m∑
k=1

(a3k(t)× 640)Ĩx

)
(3.25)
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Here, all the matrices {A1,A2,A3} are calculated only once at the beginning of the

algorithm and stored. Thus, we do not have to perform any matrix exponentiations in the

runtime of the algorithm. We only have to call the stored matrices (A1,A2,A3) corresponding

to the RF amplitude Ωk = ‘a1a2a
′
3 and perform 2 matrix multiplications − A1 × A2 ×

A3 for getting the required matrix exponential. Using the interaction picture of quantum

mechanics along with coarse graining and matrix recycling, we now present a method for

matrix exponentiation which can be incorporated in GRAPE and Krotov optimal control

algorithms.

3.4 Fast matrix exponentiation

The propagator we wish to evaluate is:

Uj = exp

[
−i∆t

(
H0 +

m∑
k=1

uk(j)Hk

)]
(3.26)

The above propagator is in the Schrödinger picture. In the interaction picture, the same

propagator is:

Ũj = e(−i
∑m

k=1 θk(j)Iz) exp

(
−i∆t

m∑
k=1

Ωk(j)Ĩx

)
e(i

∑m
k=1 θk(j)Iz) (3.27)

As the dynamics of our optimal control algorithms GRAPE and Krotov are in the Schrödinger,

the above propagator needs to be taken back in the Schrödinger frame, i.e. Uj = e−iH0∆tŨj.

In the following, we present a method to calculate the propagator:

Uj = e−iH0∆t

(
e(−i

∑m
k=1 θk(j)Iz) exp

(
−i∆t

m∑
k=1

Ωk(j)Ĩx

)
e(i

∑m
k=1 θk(j)Iz)

)
(3.28)

For simplicity, we assume that only one type of NMR active nuclei is present in the molecule

(homonuclear). This method can be easily extended to heteronuclear NMR systems.
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• Precalculating and storing

1. Calculate the internal Hamiltonian H0 and store the propagator:

U0 = exp (−iH0∆t) (3.29)

2. Transform the spin operator Ix from Schrödinger basis to interaction frame as follows:

Ĩx = U †0IxU0 (3.30)

3. For all a1, a2, a3 such that 0 ≤ a1 ≤ 63, 0 ≤ a2 ≤ 63 and 0 ≤ a3 ≤ 63 calculate and

store A1,A2,A3 such that:

A1 = exp
(
−i∆t(a1 × 642)Ĩx

)
(3.31)

A2 = exp
(
−i∆t(a2 × 641)Ĩx

)
(3.32)

A3 = exp
(
−i∆t(a3 × 640)Ĩx

)
(3.33)

• Runtime

For homonuclear systems, the propagator during the jth segment is:

Uj = e−iH0∆t
(
e(−iθ(j)Iz) exp

(
−i∆tΩ(j)Ĩx

)
e(iθ(j)Iz)

)
(3.34)

In order to evaluate this −

1. Find the decomposition of amplitude Ω(j) into digits (a1, a2, a3) such that

Ω(j) = a1 × 642 + a2 × 641 + a3 × 640 (3.35)

2. Choose the stored matrices (A1,A2,A3) corresponding to the digits (a1, a2, a3) found

out in previous step and hence evaluate the product

Aj = A1 ×A2 ×A3 (3.36)

3. Calculate the phase θ(j) = tan−1(uy(j)/ux(j)) and hence compute the rotation:

Zj = e(−iθ(j)Iz) (3.37)
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4. The required propagator is:

Uj = U0(ZjAjZ†j ) (3.38)

A1

A2

…

…

A16

…

…

A63

B1

B2

…

B8

…

…

…

B63

C1

C2

…

…

…

C37

…

A63

642 641 640

Pre-calculated and
stored

ꭥk = 66085Example

Standard Method

Hk = H0 + ꭥk (Ix cosф + Iy sinф)

Fast Method

Uk = Zф A16 B8 C37X X Z†
ф

Uk = expm(-i∆tHk)

U0

Figure 3.2: Example of evaluating propagator using standard method and REDO
(fast)method.
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Make basis 
propagators 

{Uk}

Fast evaluation of 
propagator

U(T)

Calculate fidelity ф

Update controls {uk(t)} 
according to certain 

update rules

Iteration loop

Relative time 
complexity

Generate 
initial guess 

{uk(t)}

Start with initial 
randomized guess 

{uk(t)}

Evaluate the 
propagator

U(T)

Calculate fidelity ф

Update controls {uk(t)} 
according to certain 

update rules

Iteration loop

Relative time 
complexity

STANDARD ALGORITHM FAST ALGORITHM

Figure 3.3: Shown on the left is a scheme for optimal control algorithms which rely on the
use of standard matrix exponentiation in the iteration loop. Shown on the right is an optimal
control scheme which uses the REDO (fast)method for matrix exponentiation. The basis
propagators which use standard matrix exponentiation are calculated only once outside the
iteration loop. Within the iteration loop, the fast optimal control algorithm utilizes the
pre-calculated and stored basis propagators to evaluate any general propagator by matrix
multiplication(which is computationally inexpensive compared to matrix exponentiation).
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3.5 Comparison and discussion

Here, we compare the usual method of matrix exponentiation used in MATLAB versus fast

matrix exponentiation (REDO). MATLAB makes the use of Pade approximation for the

calculation of matrix exponentiation. For comparison, the matrix exponential using the

expm function in MATLAB which we abbreviate MEPA(Matrix Exponentiation by Pade

Approximation) was used for evaluating Uj. The time required for 1000 such matrix expo-

nentials with random RF amplitudes was noted. Moreover, these 1000 matrix exponentials

were performed in serial as well as parallel (using parfor routine) in MATLAB. This is

analogous to finding the forward propagator in optimal control algorithms with N = 1000

segments. Also, each simulation was repeated 10 times; analogous to iterations in the op-

timal control algorithm. This procedure was done for a system of {1, 2, . . . 10} qubits − a

representative of dimension of Hilbert space or matrix dimension. A similar protocol was

followed for fast matrix exponentiation(REDO) − in serial as well as parallel. The result of

the comparison are shown in Fig3.4

We can see that, for smaller size of quantum systems (1−5) qubits, the fast matrix expo-

nentiation (REDO) is several times faster than the usual method of matrix exponentiation

(MEPA). Parallel fast matrix exponentiation (parallel REDO) is slower for small sizes of

quantum systems because the time required for sending the data to the parallel computing

workers is comparable to the actual time required for computing the fast matrix exponential.

However, as the size of the quantum system increases, parallel fast matrix exponentiation

(parallel REDO) takes over and is significantly faster (2 − 3 times) than the usual method

of matrix exponentiation(MEPA). Thus, we can use fast matrix exponentiation without the

parallel computing feature for small number of qubits (1− 5) and then switch to the paral-

lel computing feature for higher number of qubits (6 − 10). With this, our method of fast

matrix exponentiation(REDO) is about 3 times faster on an average than the usual method

for matrix exponentiation (MEPA).
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Qubits
MEPA (parallel) / 

REDO (serial)
MEPA (parallel) /

REDO (parallel)
MEPA (serial) / 
REDO (serial)

1 7.0467 0.5312 5.4084
2 7.5553 0.5235 7.7509
3 4.2572 0.5141 5.4473
4 2.491 0.5914 8.4507
5 1.5727 0.6854 9.7292
6 0.8236 1.0142 7.4952
7 0.9866 2.3105 7.3513
8 1.4323 3.1205 6.8971
9 1.5678 3.2413 5.997

10 1.5894 3.1179 4.1265

Figure 3.4: Comparison of MEPA and REDO methods in serial and parallel. The speed-up
for REDO method over the usual MEPA is shown in the table. The table suggests that
we must use the parallel REDO method for larger quantum systems with 6-10 qubits and
REDO serial method for smaller quantum systems with 1-5 qubits.
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Chapter 4

Experiments in NMR using quantum

control

4.1 Applications in quantum information processing

Here, we use the quantum control algorithms described previously to experimentally imple-

ment quantum gates on spin-1/2 qubits in the NMR setting. We will use 13C carbons of the

molecule Alanine in D2O as a 3-qubit quantum register. The structure and the Hamiltonian

of the molecule is shown below. All the experiments were carried out in a 600 MHz BRUKER

NMR spectrometer at an ambient temperature of 298K.

C1 C2 C3

12111.9 54 1.3 C1

-6805.6 35 C2

-11998.1 C3

C COOH

H

CH3

H2N
2 1

3

Figure 4.1: Shown on the left is the structure of Alanine. The 3-qubit quantum register if
formed by the three carbons labelled in red. Also shown on the left is the Hamiltonian of
the molecule in a 600 MHz NMR spectrometer. The diagonal elements denote the chemical
shifts whereas the off-diagonal elements are the J-couplings (in Hz.) between the 3-qubits.
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C1 C2 C3

Figure 4.2: The thermal equilibrium spectra of Alanine. Shown in the inset is the zoomed
in spectra of each of the 13C carbons.

44



4.1.1 Performing selective inversions

Here, we want to selectively invert one of the transitions of carbon in Alanine without

affecting the other transitions. This is equivalent to applying a Π pulse on one of the qubits

with I on other qubits. For this, we use the iGRAPE algorithm described in the previous

chapters for designing the shaped RF controls. A typical input file for running the iGRAPE

algorithm in MATLAB is as follows:

Figure 4.3: Input file for iGRAPE algorithm is shown on the left. The output of the GRAPE
algorithm is shown on the right. On the top right, shown is the time-modulated RF amplitude
profile and on the bottom right shown is the corresponding phase.
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Figure 4.4: Spectra obtained after selectively inverting each qubit in Alanine.
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Figure 4.5: Spectra obtained after selectively inverting a pair of qubits in Alanine.
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4.1.2 Initializing the quantum register

The thermal equilibrium state of the 3-qubit register is represented by the density matrix

ρeq = (I + εCIzC)/8, where εC ∼ 10−5 is called the purity factor and Iz is the collective spin

operator. This state is highly mixed. We need to create a pseudo-pure state (PPS) which

mimics a pure state |000〉 for initializing the quantum register to implement any algorithms.

The circuit for realizing PPS in 3-qubit homo-nuclear NMR spin systems[15] is as follows:

τ/2

τ/2τ/2 τ/2τ/4 τ/4

τ/2 τ/2

τ/2

τ/2 τ/2

τ = 1/2J13 τ = 1/2J12 τ = 1/2J23

[75.52]

[60]

[45]X [45]-Y

[45]X

[45]X

[45]Y

[45]-Y

C1

GZ

C2

C3

τ/2

τ/2τ/4 τ/4

τ/2 τ/4 τ/2 τ/4

τ/2τ/2

Figure 4.6: The quantum circuit for creating PPS.
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Impurity

C1 C2 C3

Figure 4.7: The spectra obtained after applying the PPS circuit. Note that there is only a
single peak corresponding to every qubit after obtaining the pseudo-pure state which mimics
the |000〉 state.
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4.1.3 Super-adiabatic quantum state transfer in spin chains

Here, we implement the super-adiabatic quantum state transfer protocol(SAQST) as de-

scribed in [9]. The SAQST protocol for an odd-numbered spin chains for 3 spins is described

below.

• Consider the Hamiltonian for the 3-spin chain with JL and JR as the couplings between

1st and 2nd spin and 2nd and 3rd spin respectively.

• The Hamiltonian for such a system is:

H(t) = J̃L

( ∑
i=x,y,z

σi1 ⊗ σi2

)
+ J̃R

( ∑
i=x,y,z

σi2 ⊗ σi3

)
(4.1)

where,

J̃L(t) =

(
JL sec θR, JL sec θR, JL +

1

2

∂θL
∂t

)
(4.2)

J̃R(t) =

(
JR sec θL, JR sec θL, JR +

1

2

∂θR
∂t

)
(4.3)

JL(t) = JM sin2

(
πt

2T

)
(4.4)

JR(t) = JM − JL(t) (4.5)

tan θL =
JM

∂JR
∂t

4(2JM − 2JL)(3J2
L + J2

M − 3JMJL)
(4.6)

tan θR =
−JM ∂JL

∂t

8JL(3J2
L + J2

M − 3JMJL)
(4.7)

(4.8)

Here, T is the total time of adiabatic evolution and ∆ = 2JM is the effective energy

gap between the ground state and excited state of the Hamiltonian.

• If we want to transport the state α |0〉 + β |1〉 from the 1st spin to the 3rd spin, we

encode α |G0〉 + β |G1〉 where |G0〉 and |G1〉 are the degenerate ground states of the

Hamiltonian H(t = 0).

• Now, we adiabatically evolve the Hamiltonian H(t = 0) to H(t = T ) by varying the

couplings J̃L(t) and J̃R(t) to transport any state α |0〉+ β |1〉 from the 1st spin to 3rd.
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The results for transporting the state α |0〉+ β |1〉 with α = 1/
√

2 and β = 1/
√

2 are shown

below. We have performed the adiabatic evolution in 5 steps.

1 2 3 
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1 2 3 
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Figure 4.8: Experimental realisation of SAQST on 3-spin chain. The bottom-most spectra is
recorded after encoding the state 1/

√
2 |0〉+1/

√
2 |1〉. Note that the first spin has maximum

polarisation whereas the other two are nearly zero. From bottom to top shown is the spectra
at each step of adiabatic evolution. In the top most spectra, we can see that the first spin has
negligible polarisation compared to the third spin, implying that the state 1/

√
2 |0〉+1/

√
2 |1〉

has been transferred to the 3rd spin.
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4.2 Applications in spectroscopy

Here, we design single and multi-band selective inversion pulses using GRAPE. Such pulses

are used to selectively invert (equivalently apply a Π pulse) peaks lying within a particular

bandwidth without affecting peaks at any other frequencies (equivalent of an I operation).

2.5 Hz

Figure 4.9: Top trace shows the inversion profile of the designed single band selective inver-
sion iGRAPE pulse. To illustrate its robustness w.r.t. RF inhomogeneity, three inversion
profiles with 0.8, 1.0, and 1.2 times the nominal RF amplitudes are displayed. The bottom
trace shows how a particular peak is affected by the iGRAPE pulse when it is applied at
various frequency offsets.
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2.5 Hz

Figure 4.10: Top trace shows the inversion profile of the designed multi-band selective in-
version iGRAPE pulse. To illustrate its robustness w.r.t. RF inhomogeneity, three inversion
profiles with 0.8, 1.0, and 1.2 times the nominal RF amplitudes are displayed. The bottom
trace shows how a particular peak is affected by the iGRAPE pulse when it is applied at
various frequency offsets.
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Such bandwidth limited selective inversion pulses have been recently applied for heat-

bath algorithmic cooling in large star-topology quantum registers[10]. Heat-bath algorithmic

cooling is used to enhance the polarisation of low natural abundance nuclear isotopes.

Spectra without
algorithmic cooling

Algorithmic cooling
without optimal control

Algorithmic cooling with
optimal control

Figure 4.11: Shown here is the 1H-decoupled 29Si spectra of tetrakis(trimethylsilyl)silane −
before algorithmic cooling (green), after algorithmic cooling (red and blue). The spectra
in blue was obtained using standard NMR techniques while one in red was obtained using
optimal control techniques. Clearly, the increase in magnetisation after algorithmic cooling
is much higher in experiments performed using optimal control techniques than standard
NMR techniques.
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Chapter 5

Summary and Conclusions

• In this thesis, we studied how to control the dynamics of a quantum system using am-

plitude modulated electromagnetic pulses. Our focus was on improving the efficiency

of the numerical optimization algorithms which are used to design these amplitude

modulated electromagnetic pulses.

• In particular, we applied these numerical optimization algorithms to design shaped

radio-frequency pulses which control the dynamics of spin-1/2 nuclei in NMR.

• We studied and implemented two well known numerical algorithms for quantum con-

trol, namely GRAPE (Gradient Ascent Pulse Engineering) and Krotov.

• GRAPE algorithm involves a concurrent update and is a local optimization algorithm.

On the other hand, Krotov involves sequential update and is a global optimization

algorithm.

• Krotov being a global optimization algorithm, it can rapidly make coarse adjustments

to the controls and reach high fidelities within a few iterations. On the contrary,

GRAPE is a local optimization algorithm and needs more iterations to reach higher

fidelities. However, once high fidelities are attained, GRAPE can apply finer adjust-

ments to the controls efficiently than Krotov.

• This contrasting nature of GRAPE and Krotov algorithms allows us to use a hybrid

algorithms wherein one utilizes Krotov for initial few iterations to attain a certain
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threshold fidelity and from there on switches to GRAPE to make finer adjustments to

controls and thereby reach higher fidelities.

• Repeated evaluation of propagators which involves matrix exponentiation is the com-

putational bottle-neck of these optimal control algorithms. We devised a novel method

named REDO (Rapid Exponentiation by Discrete Operators), to speed up the matrix

exponentiation specifically in optimal control algorithms making use of coarse graining,

matrix recycling and interaction picture of quantum mechanics.

• We benchmarked our REDO method against the standard method of matrix exponen-

tiation in MATLAB and observed a speed-up of nearly 2− 3 times in the computation

time.

• We incorporated the REDO method of matrix exponentiation in GRAPE and Krotov

optimal control algorithms(named iGRAPE and iKrotov respectively) and used these

algorithms for experimental applications in NMR quantum information processing and

spectroscopy.

• Alanine was used as a 3-qubit NMR quantum register. Firstly, we initialized the 3-qubit

quantum register to the |000〉 pseudo-pure state. Further, we demonstrated the first

experimental implementation of the super-adiabatic quantum state transfer protocol

wherein a known quantum state was super-adiabatically transferred from one end of

the spin chain to the other end.

• As an application in spectroscopy, we designed single and multi band-selective inver-

sion pulses to selectively invert or equivalently apply a Π pulse within a particular

range of frequencies without affecting any other frequencies. Such band-selective in-

version pulses were further used in heat-bath algorithmic cooling protocol to increase

the polarisation of low natural abundance nuclear isotopes.

• We observed that the controls designed using optimal control algorithms deliver a much

better performance than standard NMR techniques.
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