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Chapter 1

Overview

Synopsis

Proteins could be represented as local interacting regions also called as local environments. The
local environment includes the amino acid and its surrounding residues that interact through
hydrogen bonds, pi - pi stacking, cation - pi stacking, Van Der Waals ,electrostatics etc. In this
thesis, the surrounding residues are identified based on a distance cut-off from the amino acid of
interest. The distance cutoff usually ranges from 4A to 10A. Some of these local environments
can contribute to structural stability of a protein, and/or its functionality. When such local
environments are perturbed, it could cause loss of structure and/or function, or it could have no
effect on the structure and function of protein. Hence it is necessary to study these local
environments and how they affect proteins. The information will assist in the design of proteins
with desirable properties. It will also aid in detecting/diagnosing disease conditions, etc.

In this thesis, we studied the local environments using three different examples. In the first one,
we used an example of G - protein coupled receptors (GPCRs) to study how perturbation of the
local environment caused by ligand binding (agonist) leads to activation of the receptor. GPCRs
are signal transmitting molecules that are embedded in the lipid bilayer. Structurally, they consist
of seven transmembrane helices. An activating stimuli leads to activation of a GPCR, triggering
an intracellular signaling cascade in response to the stimuli. The receptor activation occurs
through a series of conformational changes, eventually leading to a movement of the
transmembrane helix 6. We wanted to study if the molecular rearrangements that lead to the
receptor activation are conserved across different types of GPCRs. If not, in how many distinct
ways can they be activated? To address this question, we analyzed 48 Class A GPCR structures in
the inactive and 15 structures in the active state separately, to find conserved 3D structural motifs,
also called as cliques. Based on the conservation of chemical and geometrical properties of the
cliques, we predicted 18 cliques that are important for GPCRs. By comparing the conservations

from the inactive state and the active states with each other, we attempted to segregate the
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conserved regions that are important for structure and those important for function. We found that
in 10 cliques at least 1 and a maximum of 5 r-groups maintain their position during activation,
indicating their importance in structural stability. The r-group representation is a novel way of
representing similarities in substructures of the amino acids. They are geometric centers of a
cluster of covalently connected atoms that form parts of amino acids. 20 amino acids are
represented as 16 r-groups. Different types of amino acids can share one r-group. We also found
that 15 cliques are either partially or completely disrupted during the activation process,
indicating their role in the transition of the receptor from the inactive to the active state. Next, We
validated our findings using already reported experimental data. In cases where experimental data
were unavailable, we performed molecular dynamics simulations to validate our findings. The
results also suggest that GPCRs could be modular in nature. Meaning, that the region responsible
for activation can be coupled with any other domain that binds to a ligand of our interest. The
modularity could be used as a principle to design novel GPCRs. This information can also be
used to design desired mutations while allowing the GPCR to be still functional.

The second example that we studied is where the local environment is perturbed because of the
mutations. We tried to predict the effect that a mutation would have on the structure and function
of a protein. Towards this, we developed a tool, Packpred, that predicts if a missense mutation
would have a deleterious or neutral effect on the structure and function of a protein. To predict the
effect, Packpred uses both sequence and structure based features. The sequence based feature is
Shannon entropy that quantifies the evolutionarily conserved residues. This allows us to identify
structurally and functionally important residues. The structure based features are the packpred
statistical potential and FADHM substitution matrices. The statistical potential calculates a log
odds ratio of a local environment being observed in the PDB database to that of it occurring
merely by chance. It evaluates the likelihood of occurrence of a local environment at a particular
depth level. The final feature that Packpred uses is the FADHM substitution matrix. This
substitution matrix indicates the probability of substitution of amino acids at different depths. We
used a linear combination of the three feature scores by training Packpred on a saturation
lysozyme dataset of ~2000 mutations. We tested Packpred on the CcdB saturation mutagenesis
dataset containing ~1500 mutations and the Missense3D dataset containing ~4000 mutations. We
compared Packpred with 6 other state-of-the-art methods and showed that Packpred outperformed
all the other methods in the Missense3D dataset. We also found that although Packpred is good at

classifying the effect of the mutation as neutral or deleterious, it is unable to correctly rank order
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the mutations based on the severity of the mutation on the phenotype.

In the third example, we tried to predict small molecules that bind to a given local environment
(binding pockets). Specifically, we tried to predict the small molecules that can bind to the
various binding pockets of 5 proteins (Glycoprotein, Nucleoprotein, Phosphoprotein, Fusion
protein, and Matrix protein) from the Nipah virus proteome. We predicted the binding pockets
and their druggability using various tools. We then used these predicted binding pockets to dock
the small molecule ligands. We selected a 70% non-redundant set of 22,685 clean drug like
molecules from the ZINC database. We then performed a virtual screening of these small
molecules with the predicted binding pockets of Nipah proteins using docking softwares,
Autodock4 and DOCKG6.8. We selected 150 best scoring docked complexes for each binding
pocket from both Autodock4 and DOCK6.8 and shortlisted the ligands that are common to both
runs. Further, to increase the confidence of the predictions, we also calculated the RMSD of the
shortlisted small molecule ligands between the autodock and dock complexes. We used the top 5
poses from each run to calculate the RMSD. The final list of selected molecules had a RMSD
better than 1.5A. We then performed MD simulations to assess the stability of the small molecule
protein complexes using AMBER99SB-ILDN force field and in some cases CHARMM?27 force
field. We also calculated the binding energies of the protein-ligand complexes using MM/PBSA
software.

To summarize, we studied local environments in proteins and the different effects that a perturbed
local environment can have on structure and function of proteins. This study can act as a starting

point for other studies that require protein design in different biological contexts.
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Thesis organization

The thesis is organized in six chapters that allows for an easy read as follows.

Chapter 1: Overview

This chapter explains the need of studying protein structures as local environments. We use
various examples like GPCRs that undergo conformational changes to perform its functions. We
also use examples of T4 lysozyme and CcdB to study the effect of the perturbed local

environment on the structure and function of proteins.

Chapter 2: Introduction to techniques

This chapter introduces and summarizes various techniques/software that we have used

throughout this thesis.

Chapter 3: Molecular mechanism of Class A GPCR activation

In this chapter we attempted to address if all the Class A GPCRs undergo activation by a
universal mechanism, and if not, then in how many ways does it happen? Towards this, we
identified local environments that are conserved across different structures, indicating their
importance. We further segregated these conserved regions as important either for structure or
function or both. We validated this data using either literature or by running Molecular dynamics

simulations.

Chapter 4: Packpred: Predicting the functional effect of missense
mutations

In this chapter, we designed a tool, Packpred, that predicts the effect of mutations on the structure
and function of a protein. We trained Packpred on ~2000 mutations of T4 lysozyme saturation
mutagenesis dataset and tested on ~6000 mutations belonging to the CcdB saturation mutagenesis
dataset and the Missense3D dataset. We compared our performance with 6 other state-of-the-art

methods and showed that Packpred outperforms others in the Missense3D dataset.
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Chapter 5: Predicting and Designing therapeutics against the Nipah
Virus

In this chapter, we predicted and designed putative small molecules and peptides that would bind
to and inhibit different Nipah proteins. Particularly, for predicting small molecules, we predicted
binding pockets using the DEPTH web server and performed docking using Autodock4 and
DOCK®6.8. We then shortlist ligands by having a consensus of top 50 best scoring ligand-protein
complexes from the 2 docking software that also have similarities in the poses of the docked

ligand. We also performed MD simulations to assess the stability of the ligand-protein complexes.

Chapter 6: Conclusion and future prospects

This chapter summarizes the findings of this thesis and also discusses the new ideas that could be

implemented for refining the existing algorithms.

Chapter 7: Appendix

This chapter summarizes the progression of algorithms described in chapter 3 and 4.
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Chapter 2

Introduction to computational techniques

2.1 Cliques

Proteins are made of amino acids that are connected by peptide bonds. The sequence of amino
acids that forms a protein is called its primary structure. Hydrogen bonds between the backbone
of the amino-acids often lead to formation of secondary structure. The protein eventually folds
into a three-dimensional(3D) structure called its tertiary structure. The primary structure
determines the tertiary structure of a protein[1]. Proteins that have similar sequences of amino
acids fold into similar tertiary structures[2]. The 3D structures of proteins can be represented as
clusters of amino acids that interact with each other, known as clique. Cliques are local regions of
proteins that can be used to study and characterize the local interactions. Thus, a protein contains
many such cliques. Characterization of cliques can assist in the design of novel proteins,
thermostable proteins, proteins that have desired characteristics, etc. Previously, cliques have
been used to perform structure based alignments[3, 4], derive statistical potentials for evaluating
models of proteins[5], etc. Although the definition of clique might vary depending on the
necessity of the study, the basic idea of studying the local environment remains constant. Some of
the ways a clique can be defined are:

1.1.  All the residues that lie within a distance cutoff of a central residue (Figure 1A)

1.2.  All the residues whose pairwise distances are less than a distance cutoff (Figure 1B)

1.3.  Nearest N residues from the central one - where N is a pre decided constant (Figure 1C)

B C

¢\ °

All neighbors that have distances less  All pairwise distances less

han deutoff with the central residue than dcutoff Three nearest neigbhors

Figure 1: Different ways of defining cliques. The central residue/atom is represented as a pink

circle. All neighbors are represented as teal coloured circles.
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2.2 3D least squares fit for geometric comparison of protein structures

The 3D least squares fit is used to compare the geometry of structures/sets of 3D points. It has
been used in various software that perform structure based alignments of biomolecules.
Specifically, it helps evaluate if the points in both the sets are arranged in a similar fashion. It
does so by minimizing the distances between two sets of points. 3D least squares fit needs
equivalences between the points as input. Based on the equivalences, it transforms the coordinates
to get the least root mean square deviation (RMSD)[6]. The transformed coordinates provide the
superimposition of the set of points/structures (Figure 2). The similarity between the two sets of
points can be quantified and evaluated using the RMSD of superimposition and/or the number of
superimposed points (that are close to each other as identified by a predetermined distance
cut-off). A lower RMSD and a higher number of superimposed points indicate similarity between
the sets. Superimposition of identical sets will have an RMSD of 0.00 with all the points matched.
Algorithms by Diamond[7], Kearsley[8], Kabasch[9] and many others can be used to perform the
structural superimposition. In this study, we have used a 3D least squares fit algorithm by

Kearsleys to find geometric similarities between two sets of points.

3D least squares fit

Reference clique X Test clique X i,ILinj:r;posed reference clique X with test
Figure 2: Reference clique X and test clique X are two sets of poinqts in 3D space. Each of them
consists of 5 points indicated by smaller circles. The colors of smaller circles indicate their
equivalences. For instance, the purple circle (r2) in reference clique X is equivalent to the purple
circle (r2) in test clique X and so on. Based on these equivalences, 3D least squares fit performs

superimposition by minimizing the distances between the equivalences giving the least root mean

square deviation.

2.3 Classification assessment measures

A classification scheme classifies data points into different categories. A binary classifier
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classifies data points into two categories. The performance of the binary classifier can be assessed

using different metrics. Following are some of the widely used assessment metrics.

1.4.

L.5.

1.6.

1.7.

1.8.

1.9.

Confusion matrix: Confusion matrix categorizes the binary classification predictions into
four categories:
1.4.1.  True positive (TP): The data points that have a positive label and are predicted as
positive
1.4.2.  True negative(TN): The data points that have a negative label and are predicted
as negative
1.4.3.  False positive(FP): The data points that have a negative label but are predicted as
positive
1.4.4.  False negative(FN): The data points that have a positive label but are predicted as
negative
Matthews correlation coefficient (MCC): MCC takes into account TP, TN, FP and FN to
evaluate the performance of the classifier. It is a balanced measure that is unaffected by
different proportions of positively and negatively labeled data points. It is given by,
(TP + TN) — (FP + FN)
V(TP + FP)(TP + FN)(TN + FP)(TN + EN)

MCC =

Sensitivity (Recall): It is a measure of how many positively labeled data points were

correctly predicted by the classifier. It is given by,

TP
TP + FN

Specificity: It is a measure of how many negatively labeled data points were correctly

Sensitivity =

predicted by the classifier. It is given by,

TN
TN + FP

Precision: Precision indicates the number of correctly predicted positives out of all the

Specificity =

positively predicted data points. It is given by,

TP
TP + FP

F1 score: F1 is a harmonic mean of precision and recall. It is given by,
18
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Precision * Recall

f1:2>(-

Precision + Recall

1.10.  Accuracy: Accuracy indicates the total number of correctly predicted data points by a

classifier. It is given by,

TP + TN

Accuracy =
Y TN + TP + FP + FN

2.4 Small molecule binding pocket prediction and molecular docking

The region on the protein where a ligand binds is called a ligand binding pocket (Figure 3).
Predicting binding pockets on the surface of a protein is the first step in designing a small
molecule ligand that binds to it. Predicting binding pockets is complicated because of lack of
knowledge of its partner ligand, induced fit changes that occur upon binding, etc. Hence, various
binding pocket prediction tools exploit different sequence and structure based properties of the
proteins. For example, methods like LIGSITE[10], SURFNET[11] make use of geometry of the
protein while Consurf[12], FINDSITE[13], 3DLigandSite[14] make use of evolutionary
information and templates available in the PDB. Other methods make use of accessible solvent
area as well. Once the binding pockets are predicted, we can model its interaction with a ligand
through a method called molecular docking. All the docking methods usually consist of two broad
steps. The first step samples various poses of the ligand. The sampling is followed by a second
step of scoring each pose based on the contacts it makes with the protein[15]. Various docking
softwares sample the ligand poses differently. Some of the algorithms used are geometry based,
fragment based and stochastic searches. The scoring schemes are used to identify the correct
binding pose by ranking it better than the incorrect poses. They make use of physics based
methods, empirical methods or knowledge based methods to score the complexes[15].

The predicted binding pockets can also be used to computationally screen a library of small
molecule ligands to predict those that can potentially bind to the pocket[16, 17]. This process is
called virtual screening. Thousands of small molecule ligands can be computationally screened
against a binding pocket. These processes are fast and computationally inexpensive. The
screening can be performed using molecular docking software like AutoDock[18], DOCK][19],
SwissDock[20], and many others[21].

In some cases, the ligand that binds to a protein of interest is known but its binding pose is
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unknown. Docking can be used to predict the correct binding pose of the ligand in the binding
pocket. In the absence of known binding pockets, docking could also be performed on the entire
surface of the protein. This is known as blind docking. Instead of limiting the sampling search to
a binding pocket, blind docking uses the entire surface of the protein for sampling, making it
slower than local docking (where a binding pocket is specified)[22, 23]. Another feature that the
docking softwares offer is the use of rigid or flexible docking. In rigid docking, the entire protein
is considered as a non-flexible entity that does not undergo any movement. However, in reality,
proteins undergo events like induced fit upon binding to its partner. In such cases, flexible
docking can be performed, where movement of a set of user specified residues is allowed and

accounted for during the docking exercise[22, 23].

A

Figure 3: A) Ligand represented in blue surface bound to a GPCR represented as light gray
ribbon, indicating ligand binding pocket (PDB: 2RH1). B) Top view of the ligand bound region

2.5 MD simulations

Proteins are flexible biomolecules that undergo molecular motions in solvent. These movements
also assist in forming complexes with other molecules through the induced fit mechanism. These
movements in proteins can be studied via computer simulations using Molecular dynamics (MD)
simulations[24]. Given a 3D structure of a molecule, the simulations calculate the subsequent
movements of the atoms as a function of time using Newton's laws of motion. The position and

velocity of each atom in the molecule is updated, giving a trajectory of movement of atoms over
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time. In nature, forces like electrostatics, Van Der Waals etc. govern the movements of the atoms.
In the MD simulations, these forces/interactions are accounted for in the form of a force field. A
force field is an approximation that quantifies all such interactions using data from various
experiments/data sources. Some examples of force fields are CHARMM, AMBER, and the
OPLS. A generalized formula for force field is given by,

U(r) =Y k(b—b)*+ > ke(6—6)" +

bonds angles
Z ky (1 +cos(nxy —90)) +
dihedrals
Roingj \ Roingj \° iqj
Y e <_J> _2<_w> Py d
Tij Tij 47T€07°ij

vdW ji#j elec,i#j

Where, U is interatomic potential energy that is represented as a forcefield,

kb, kO and ky are force constants for bonds lengths, bond angles and dihedral angles,
b( and 6y are equilibrium values for the bond length and valence angle between atoms,

n is the dihedral multiplicity,
o is the dihedral angle phase,
vdW are the van der Waals forces,

elec are the electrostatic interactions [25]

MD simulations have been used to study conformational changes that occur in proteins, refine 3D
structure models of biomolecules, study interactions between biomolecules etc. Simulations of
different types of biological systems such as a single protein in an aqueous solvent, protein
embedded in the membrane, small molecule-protein complexes, protein-protein complexes,
protein-DNA complexes can be simulated using software like GROMACS|[26], NAMDI[27],
AMBER][28] and many others. Additionally, the simulations can also be performed at varied
levels of resolution like all atoms, or clubbing several atoms together by coarse graining, or a
hybrid of molecular and quantum mechanics. The MD simulations require high computational
power[29]. With the advances in computational hardware like GPUs and supercomputers,

performing simulations has become fast and less expensive.
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2.6 Statistical potentials
Protein structure prediction methods have immensely aided in getting insights into the structure of
a protein and also its putative function. These methods can be broadly classified into 3 classes,
namely, homology based methods, threading and de novo predictions[30]. The quality of the
models predicted by these methods depends on the data used to generate them. It is hence
essential to quantify their correctness. Statistical potentials, also known as knowledge based
potentials, are a category of scoring functions that can be used to gauge the correctness of the
models[29]. The potentials are derived from a database, such as Protein Data Bank (PDB), hence
called knowledge based potentials. They often capture some features of proteins based on the
chemistry and physics of the interactions from the database[31]. The features are quantified as
ratio of observed by expected frequencies/probabilities as formulated by Sippl[32]. The observed
data is extracted from known protein structures and the expected value is formulated such that it
indicates the occurrence of a feature by chance. Some of the widely used statistical potentials
include DOPE[5], GOAP[33], ROTAS[34], and ProSA[32]. These statistical potentials differ
from one another in the terms of protein representation and the spatial feature that is used. Protein
can be represented in various ways, some of them are as an all-atom system or by its C*atom or
by side chain centroid. Some spatial features that these potentials capture are distances, torsion
angles or angles etc. The protein representation and the spatial feature in combination with the

reference state affect the performance/accuracy of the statistical potentials.

2.7 Sequence alignments and Shannon entropy
Pairwise sequence alignments attempt to identify the similarities, and conserved regions between
two sequences. The alignments could be performed on protein, DNA and RNA sequences.
Alignments can be of two types, the global alignment, where the sequences are compared to each
other end-to-end[35]. In local alignment, local regions of similarities in the provided sequences
are identified. Local alignments are typically performed using tools such as BLAST[36],
PSI-BLAST[37], a slightly different version of BLAST, allows searching of the local regions of
similarities with an entire database, allowing identification of distant homologs. The alignment of
multiple sequences is called multiple sequence alignment. These alignments are an invaluable
tool to identify evolutionary relationships. The evolutionarily conserved positions in the sequence
show higher conservation and less variation in the multiple sequence alignment. The variation can

be quantified by Shannon entropy[38], given by,
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H(X) = ), P(X;) logoP(X;)

i=1
Where, H(X) is Shannon entropy at position X. P(X)) is the probability of occurrence of a
particular character (i) at position X, n is the number of unique characters that can occur.
In the case of amino acid sequences, n = 20 representing 20 amino acids. The Shannon entropy

for amino acids is represented as,

20
HX) = ), P(X;) log;P(X)

i=1
The Shannon entropy ranges from 0 to 4.32 for the 20 standard amino acids, with 0 being the

most conserved position and 4.32 being the least conserved/ highly variable position[39].

2.8 r - groups

Typically, proteins are represented as a sequence of amino acids. Depending on the necessity of
the study, the amino acids are represented in different ways such as heavy atoms, C* atoms, etc. In
this study, we have represented the 20 amino acids as r-groups (Figure 3). The r-groups are
created by dividing the amino acids into smaller sections that have distinct properties. We used
r-groups as the protein family of our interest, GPCRs, are known to have as low as 35% sequence
identity amongst themselves. Thus, we wanted to check if only smaller regions of amino acids are
participating and responsible for the structure and function of GPCRs. The idea for this
representation is that in some cases only subregions of the amino acids may be necessary for the
interaction/stability of the clique. We defined 16 such r-groups by clubbing various covalently
linked heavy atoms. The r-groups are represented as a centroid of the 3D coordinates of its
constituent atoms. This allowed us to represent one r-group as one point in 3D space, and are
named as rl, 12, ..., r16 in this study (Figure 3).

The backbone of all amino acids, except proline, is represented as rl. Since proline is the only
amino acid whose side chain forms a closed ring with the backbone atoms, it is categorized as the
rl1 group. Glycine does not have a heavy atom in its sidechain and is represented as rl. Similarly,
we defined three r-groups, rl14, r15 and r16 for the side chains of the aromatic residues, PHE,
TRP and TYR respectively. While r14 is aromatic, the OH of the r16 group gives it a polar nature
and hence is categorized as a different group. The r15 group is the indole ring of TRP where the

lone pair of N also participates in the aromatic ring, giving it different properties than the PHE
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and TYR. We have defined all the 16 r-groups in a similar manner, considering the properties of
the clubbed atoms. One thing to note is that these groups are created heuristically and could be

defined in various ways.
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Figure 3: The definition of 16 r-groups used to represent 20 amino acids (Image adapted from
Master s thesis of Akash Bahai http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/570 )

2.9 Depth and residue depth

In an aqueous solution, a protein folds into its tertiary structure such that the hydrophilic amino
24
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acids are exposed to the solvent while the hydrophobic amino acids are buried inside the core of
the protein. The burial of the hydrophobic residues occludes their unfavorable interactions with
the aqueous solvent. Thus, amino acids within a protein are placed at different distances from the
solvent.

Traditionally, the extent to which the protein is buried/accessible to solvent is quantified using a
metric called as accessible surface area[40]. A more stratified quantification of the burial of the
residues is given by the definition of residue depth[41, 42]. For aqueous proteins, depth is defined
as the distance between the protein atom and its nearest water molecule in the bulk solvent. The
bulk solvent excludes water molecules that are trapped inside the protein cavities. A bulk solvent
has at least 4 (or user specified value of water molecules) other neighboring water molecules
within its hydration sphere of 1.5 layers. Non-bulk solvent molecules have less than 4
neighboring waters in its hydration shell. Residue depth is calculated as an average of depths of

all the atoms of amino acids.
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Chapter 3

Molecular mechanism of Class A GPCR activation

e Creation of a dataset of Class A GPCR structures
e Representation of the structures as r-groups
e Identification of structurally conserved 3D motifs
e Prediction of functionally important structural 3D motifs
e Validation
o Data from the literature

o MD simulations
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3.1 Introduction

G protein-coupled receptors (GPCRs) are a class of signal transducing proteins found in the
membranes of cells[43]. These receptors are activated by a variety of stimuli, including binding
of various extracellular ligands, such as hormones, neurotransmitters, sensory stimuli, and many
others. The activation triggers and initiates intracellular signaling pathways that result in the
production of various second messenger molecules, such as cyclic adenosine monophosphate
(cAMP)[44], which can then transmit the signal further into the cell. Because of this function,
GPCRs are involved in a wide range of physiological processes, including the immune
response[45, 46], sensory perception[47, 48], and regulation of various metabolic pathways[49].
This also makes them attractive targets for the development of drugs to treat a wide range of
diseases, including cardiovascular diseases, neurological disorders, and metabolic disorders. 103
from a total of 403 GPCRs are targeted by ~40% marketed drugs, leaving a large number of them
yet to be targeted[50].

Extracellular side

ECL1 ECL2 ECL3

N-terminal
Lipid bilayer T™M1 TM2| | TM3 TM4| | TM5| | TM6| | TM7
ICL1 ICL2 ICL3

Intracellular side C-terminal

Figure 1: A schematic of GPCR architecture consisting of seven transmembrane helices (TM1 -
7) that are connected on the extracellular side by 3 extracellular loops (ECLI - 3) and on the
intracellular side by 3 intracellular loops (ICLI - 3). The N-terminal of the receptor is exposed

outside the cell while the C-terminal lies inside the cell.

Structurally, GPCRs are made of seven transmembrane(TM) helices that traverse through the

lipid bilayer (Figure 1). These helices are connected by three loops on the intracellular and
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extracellular sides. The N-terminal lies outside the cell while C-terminal lies inside the cell. The
activating ligand usually binds on the extracellular side of the GPCR, at a site known as the
orthogonal ligand binding site. The binding stabilizes the receptor in a state that can interact with
other molecules like the G-proteins or the arrestins on the intracellular side, known as the active
state. In addition to this conserved architecture, GPCRs also have conserved motifs like NPxxY,
DRY, PIF, CWxP, and Na" pocket[51-53]. All these motifs are functionally important. The
NPxxY and DRY motifs are located on the TM 7 and TM3 respectively, near the cytoplasmic side
and are known to be important for activation of receptors like rhodopsin, B2AR, oxytocin and
A2AR[54-57]. The PIF is a structural motif formed by three hydrophobic residues contributed by
TMS, TM5 and TM6. This triad of residues is observed near the bottom of the ligand binding
pocket. Repacking of these triad residues is observed in many active state GPCRs. The ‘W’ of the
CWxP motif on TM6 is particularly important for activation of GPCRs. It is called a toggle
residue as it changes its rotameric state upon receptor activation[58]. Na* ion in the Na" pocket is
coordinated by TM2, TM3, and TM7 in inactive conformations of most GPCRs. The ion is

displaced from its pocket and is not seen in the active state conformations[52].

Based on the sequence identity of the transmembrane region[59], GPCRs are classified into 6
classes, A to F[60]. Class A, also called the Rhodopsin-like family, is the largest family of
GPCRs. The family includes receptors that are activated by small molecules such as hormones,
neurotransmitters, and sensory stimuli. Class B GPCRs, also known as secretin and adhesion
family, include receptors that are activated by peptides. Examples of Class B receptors include the
corticotropin-releasing hormone receptor and the glucagon receptors[61]. Class C GPCRs are
activated by the neurotransmitter glutamate. Some examples of Class C receptors are the
y-aminobutyric acidy receptors (GABAj receptors) and the Ca®*-sensing receptors[62]. Class D
GPCRs are pheromone receptors that are exclusively found in fungi[63]. Class E GPCRs include
receptors that are activated by cAMP. Class F GPCRs include the frizzled receptors. Of the six

classes, classes A, B, C and F occur in vertebrates.

There are two main conformations that GPCRs can adopt: the inactive state and the active
state[43, 64]. In the inactive state, the receptor does not transmit any signals and does not alter the
activity of any signaling pathways. GPCRs are stabilized in another conformation, the active
state, by an activating stimuli or an agonist. The activation causes TM6 of GPCRs (Class A) to

move outward by ~14A, creating a pocket for interacting with various intracellular proteins,
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initiating intracellular signaling pathways. There are 6 Class A GPCRs that have X-ray structures
in the inactive as well as the active state, enabling the detailed study of their activation. These 6
receptors are bovine rhodopsin (bRho)[65, 66], [,-adrenergic receptor (B,AR)[67, 68], M2
muscarinic receptor (M2R)[69, 70], p-opioid receptor (LOR)[71, 72], adenosine A,, receptor
(A,4R)[73, 74] and x-opioid receptor (k-OR)[75]. However the information is limited as the
activation process of a vast majority of GPCRs is still unknown. In this study, we investigated if
the GPCR activation process including the conformational changes responsible for transitioning
the receptor from inactive to active state are similar across different GPCRs, and if not, how
many different ways GPCRs are activated. To address this question, we computationally analyzed
Class A GPCR structures to find conserved 3D local regions (3D motifs) of geometric and
chemical similarities. The conserved 3D motifs, when put together, form a continuous pathway
running from the bottom of the ligand binding pocket to the intracellular/cytoplasmic region of
the receptor. We validated our findings using data from literature and by performing molecular

dynamics simulations.

3.2 Materials and Methods

3.2.1 Library of GPCR structures

We retrieved 789 experimentally resolved GPCR structures from the GPCRdAb[76] on
22/08/2022(Table 1). From this dataset, we selected one X-ray structure with the best resolution
per gene of Class A GPCR (as per Uniprot) to remove redundancy, leading to 50 structures of the
inactive state and 15 structures of the active state (Table 1). 2 of the 50 inactive state structures
(PDBID: 7B6W and 6YVR) were left out of the analysis as they were not available in the PDB
file format. The final library consisted of 48 inactive and 15 active state structures. All the

selected structures had a resolution better than 3A.
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Table 1: (1) List of all inactive state Class A GPCR structures used in this study. (2) List of all

active state Class A GPCR structures used in this study. (3) List of all GPCR PDB structures
retrieved from the GPCRdb.

Sr Dataset PDB ID
no
1 Inactive state structures | 4IAR, 7WC9, 6BQH, 5SNM4, 6ZFZ, 5ZKC, 4U15, 5DSG, 60L9, 7B6W, 6KUX,
(Class A proteins only) 6KUW, 4BVN, 6PS2, 4ZUD, 5VBL, 619K, 6CI1R, 7F8Y, 6GPX, SUIW, 6QZH,
SLWE, 5009, 5ZTY, 30DU, 6CM4, 3PBL, 5WIU, 6IGK, 7F83, 7BR3, 6LI0,
4736, 7K15, 6ME2, 6ME6, 6HLP, 5ZBQ, 7DDZ, 6YVR, 4N6H, 4DJH, 4DKL,
SDHH, 1U19, 6TOS, SWQC, TM8W
2 Active state structures 5TUD, 6BQG, 5SWF5, 6H7N, 4LDE, 60S2, SUNF, 5XRA, 6LW5, 4XES, 6PT2,
(Class A proteins only) 5C1M, 5DYS, 6MIT, 4XT1
3 789 structures retrieved | 7U2L, 7TWU2, 7TWU4, 7TWUS, 7WU3, 7SF8, 7TWUI, 7SF7, TWQ3, 7WQ4, 7SBF,

from GPCRdb (across all
classes of GPCRs)

7SCG, 7EZC, 7EJA, 7EJO, 7EJK, 7EJ8, TWVU, TWVW, TWVX, TWVY,
TWVYV, 7RBT, 7RA3, 7RGP, 7RGY, 7TUZ, 7TUY, 7EJX, 7VBH, 7T6B, 7TY],
TTYN, 7TYX, 7T6T, 7T6S, 7T6V, 7T6U, 7TTYW, 7TYH, 7TZF, 7TYL, 7TYF,
7TYO, 7TYY, 7VLS8, 7VL9, 7VLA, 7TWI8, 7TWIH, 7WI6, 7VKT, 7RYC, 7T10,
7T11, 7PYR, 7PX4, 7F1Y, 7VAB, 7FIM, 7VBI, 7V35, 7VGZ, 7VGY, 7VHO,
7FIN, 7VGX, 7INI, 7TD0, 7TD2, 7TD1, 7TD3, 7TD4, TWC7, TWC6, TWCS,
TWC9, TWC4, TWCS8, 7RKM, 7RKF, 7RKN, 7SIN, 7SIL, 7SIM, 7W2Z, 7F83,
7B6W, TLLY, 7LLL, 7S31, 7S1M, 7TWF7, 7EO2, 7TEO4, 7F8X, 7VUH, 7VUI,
7VUlJ, 7VUG, 7VOD, 7VOE, 7NAS, 7TNA7, 7P00, 7P02, TEWL, 7SHF, TEWP,
7EWR, 7SHE, 7VDM, 7VV3, 7VDL, 7VUZ, 7VUY, 7VV4, 7VV6, 7VDH,
7VVO0, 7VVS, 7V3Z, 7TP1V, 7PIU, 7S8M, 7S80, 7S8L, 7S8N, 7S8P, 7F55, 7F53,
7F54, TF58, 7RMH, 7RMG, 7RMI, 7VOM, 7EIB, 7F20, 7F8U, 7F8Y, 7F8YV,
TF8W, 6ZFZ, 62G9, 62G4, 7TRTB, 7FIG, 7FIH, 7FI1l, 7F1J, TEW7, TEVZ, TEVY,
TEWO0, 7TEW2, TEW3, 7TEW4, 7TEW1, 7E6T, 7E6U, 7DGD, 7DGE, 7LD4, 7LD3,
7RMS, 7FD9, 7FDS8, 7P2L, 7F4l, 7F4F, 7F4D, 7F4H, 7TEZK, TEZH, TEZM,
TM8W, TF9Z, TF9Y, 7DB6, 7F16, 7DUR, 7TEVM, 7EXD, 7DHS, 7TEVW, 7DTY,
7K10, 7KI1, 7DW9, 7F1T, 7F1S, 7FIR, 7F1Q, 7DUQ, 7E14, TMTS, 7TMTQ,
TMTR, TMTA, TMTS8, TMTB, 7TMT9, 7JHJ, TM3F, TM3E, 7TM3G, 7M3J, 707F,
7EPA, 7E9G, 7EPE, 7EPB, 7EPF, 7EPD, 7E9H, 7EPC, 7DD6, 7DD7, 7DDS5,
7C4S, 7BB6, 7BB7, TMBX, TMBY, 7KHO0, 7EB2, 7CX3, 7CX2, 7CX4, 7AUE,
7E32, 7TE2Y, TE2X, 7E2Z, 7E33, 7JOZ, 7ARO, 7DFL, 7DTT, 7DTU, 7DTV,
7DTW, 7CMU, 7CMV, 7CKX, 7LJC, 7CKY, 7LID, 7CKZ, 7CKW, 7CRH,
7KNT, 7KNU, 7JV5, 7TJVP, 71JVQ, 7JVR, 7K15, 6YVR, 6Z4V, 6ZIN, 6Z4S,
6ZA8, 6266, 624Q, 6Z8N, 7L1U, 7L1V, 7D76, 7D77, TDDZ, 7LCK, 7LCI,
7LCJ, 7LOR, 7LOP, 7L0OQ, 7LOS, 7DFP, 7DHR, 7DHI, 7D68, 7AD3, 7BVQ,
7BTS, 7BU6, 7BU7, 6LPK, 6LPL, 6LPJ, 6WQA, 7CZ5, 6XOX, 7D7M, 7CAS,
7CA3, 7CUM, 7D3S, 7BR3, 6XBM, 6XBJ, 6XBK, 6XBL, 6WH4, 6WGT,
6WHA, 6ZDV, 6ZDR, 6710, 6X18, 6X1A, 6X19, 7CFN, 7CFM, 7JJO, 6LFL,
6LFM, 6LFO, 7BWO0, 6VN7, 7C2E, 6WW2, 6KOS5, 6WPW, 6WZG, 6WI9,
7BZ2, 6TPK, 7C61, 7C6A, 6VCB, 650Q, 6S0L, 6VIS, 6WIC, 6W2Y, 6W2X,
7C7Q, 6WIV, 7C7S, 6PGS, 6PH7, 6WWZ, 6PEL, 6TKO, 6VMS, 6U09, 6UOS,
6VIM, 6UOA, 6WHC, 6W25, 6K42, 6K41, 6UUS, 6UVA, 6LMK, 6LML,
60BA, 6UUN, 6LWS5, 6LN2, 6VI4, 6KP6, 6M1H, 6M1I, 6LPB, 6LUQ, 6UIN,
60MM, 6LI0, 6LI1, 6LI3, 6LI2, 6UP7, 60S2, 60S0, 60S1, 6KPG, 6KPC,
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6KPF, 6PT0, 6PB0, 6PB1, 6LRY, 6NWE, 6P9X, 6P9Y, 6KNM, 6JOD, 6TOT,
6TOS, 60RV, 6TP3, 6TQ9, 6TP4, 6TQ7, 6TOD, 6TQ4, 6TO7, 6TP6, 6TQ6,
6TPJ, 6TPN, 6TPG, 60L9, 6RZ8, 6RZ9, 6RZ6, 6RZ7, 6PT2, 6PT3, 6KUY,
6KUX, 6KUW, 6IQL, 6PWC, 6NI3, 6PS7, 6PS0, 6PS4, 6PS1, 6PS5, 6PRZ,
6PS3, 6PS2, 6PS6, 6KJV, 6KK1, 6KK7, 6PS8, 6JZH, 6RZ5, 6RZ4, 6KQI,
6QZH, 60FJ, 6IBB, 6RNK, 60YA, 60Y9, 6K1Q, 60SA, 6089, 6QNO, 619K,
603C, 6GT3, 6N48, 60T0, 6E67, 601J, 601K, 6MHS, 6ME2, 6ME3, 6MES5,
6ME4, 6ME7, 6ME9, 6ME6, 6MES, 6NBH, 6NBF, 6NBI, 6J21, 6J20, 6A94,
6A93, 6DO1, 6N4B, 5ZTY, 6NIY, 6N51, 6N52, 6HLO, 6HLL, 6HLP, 6IBL,
6GPS, 6GPX, 61U, 611V, 6MEO, 6MET, 6E59, 6M9T, 6AK3, SYHL, 5YWY,
5ZHP, 5ZK3, 5ZKC, 5ZK8, 5YCS, SZKB, 6IGK, 6IGL, 6FJ3, 6MXT, 6AKX,
6AKY, 6H7L, 6H7J, 6H70, 6H7M, 6H7N, 6FUF, 6D27, 6D26, 6E3Y, 6DRZ,
6DRY, 6DS0, 6DRX, 6BD4, 5XIM, 6G79, 6D9H, 6CMO, 5ZKQ, SZKP, 6DDE,
6DDF, SWB1, SWB2, 6CIR, 6C1Q, 6D35, 6D32, 6GDG, SKW2, 5ZBH, 5ZBQ,
6FKS, 6FKC, 6FK9, 6FKD, 6FK6, 6FKA, 6FK7, 6FKB, 6CM4, 6FFH, 6FFI,
SWF6, SWF5, 6B3J, 6BQG, 6BQH, 5V54, 5OLV, SOLO, 50M4, SOLG, 50LZ,
SOLH, 50MI, 5YQZ, 6B73, 6AQF, 509H, 5X33, SVRA, SWKT, 5WS3,
SWQC, SWIV, SWIU, SNM2, 5SNM4, SNLX, 5X7D, SXPR, 5X93, 5XSZ, SWOP,
STUD, 5N2S, 5SMZJ, SMZP, 5N2R, 5XRS, 5XRA, SUIW, 5NX2, 5STZR, 5TZY,
5JTB, 5VBL, 5UVI, 5VAI, 5VEW, 5XF1, 5XEZ, 5V56, 5V57, SVEX, 5UZ7,
5NDZ, 5NJ6, SNDD, 5UNF, SUNG, SUNH, 5TE3, 5TES, SUEN, 5UIG, 5TVN,
5T04, ST1A, SLWE, 5U09, 5TGZ, 5K2C, 5K2A, 5K2B, 5K2D, 5GLI, 5GLH,
5D6L, SDYS, SENO, 5G53, 5L71, 5L7D, 5JQH, SIUA, 5TU7, 5TUS, 5TU4, S5TUB,
479G, 5EE7, 5DGY, 5DSG, 5CXV, 4ZJ8, 4ZJC, 5D5B, 5D5A, 5F8U, 4X1H,
SDHH, 5DHG, 4ZUD, 5AS8E, 5CGD, 5CGC, 5CIM, 4XES, 4XEE, 4ZWJ,
4WWS3, 4736, 4735, 4734, 4YAY, 4UG2, 4UHR, 4XNV, 4XNW, 4XT1, 4XT3,
4RWS, 4RWA, 4RWD, 4S0V, 4U16, 4U15, 4U14, 4PXF, 4QKX, 4QIN, 4QIM,
4PHU, 4009, 4PY0, 4PXZ, 4BVN, 4NTJ, 40R2, 409R, 4BWB, 4BV0, 4BUO,
3ZEV, 4N4W, 4N6H, 4NC3, 4MQS, 4MQT, 4J4Q, 4LDE, 4LDO, 4LDL, 4MBS,
4L6R, 4KSY, 4BEY, 4BEZ, 4JKV, 3ZPQ, 3ZPR, 4IAR, 4I1AQ, 4IB4, 4GPO,
3VW7, 4GBR, 4GRV, 4EIY, 4AMI, 4AMJ, 4EJ4, 4EA3, 3UZC, 3UZA, 4DJH,
4DKL, 4DAJ, 3V2Y, 3V2W, 3VG9, 3VGA, 3UON, 4A4M, 3PWH, 3REY,
3RFM, 3AYM, 3AYN, 3SN6, 3RZE, 2YCY, 2YCX, 2YCZ, 2YCW, 2YDO,
2YDV, 2Y01, 2X72, 3QAK, 3PXO, 3PQR, 3P0G, 30AX, 2Y00, 2Y02, 2Y03,
2Y04, 3PDS, 3PBL, 30DU, 30E0, 30E6, 30ES, 30E9, 3NYS, 3NY9, 3NYA,
3KJ6, 3EML, 3DQB, 3C9L, 3COM, 2VT4, 3CAP, 3D4S, 2773, 2ZIY, 2R4R,
2R4S, 2RHI1, 2PED, 2J4Y, 2135, 2136, 2137, 2G87, 2HPY, 1U19, 1GZM, 1L9H,
1HZX, 1F88

3.2.2 Algorithm to identify conserved cliques

We attempted to identify the 3D motifs/cliques that are essential for the structure and function of
Class A GPCRs. Towards this, we designed an algorithm that identifies the chemical and
geometrical similarities between various Class A receptors. Our method then identifies the cliques

that are chemically and geometrically conserved in different receptors by taking a consensus. To
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identify the consensus of the conserved cliques, we designed an algorithm consisting of 9 steps.

These steps are described below.

a. Completion of the structure by filling in missing atoms: For each PDB structure, we
selected and completed the receptor chain for any missing atoms using the complete pdb
module of modeller v9.25[77, 78].

b. Global superimposition and residue equivalences: We obtained the residue equivalences
by superimposing all the 48 inactive structures from our library with an inactive state
reference structure using TMalign[79]. The reference is a randomly selected Class A
GPCR structure from the GPCRdb dataset (leaving out the structures from our library),
with which the library structures are superimposed. Similarly, we obtained residue
equivalences for active state by superimposing active structures with an active state
reference.

c. Defining local environments as cliques: The residue for which we are constructing a
clique is called a central residue. All the residues that are within a distance of 7A from
the C* atom of the central residue are called its neighbors. We further apply the following
criteria to filter in only those residues whose side chains are pointing towards the central

residue, indicating that they are interacting with each other.

d(chen: Caneb) > d(cﬁcem CBneb) (1)

Where, C., is the C* atom of the central residue, C¢.is the C*atom of the neighboring
residue, CP,is the CPatom of the central residue, CP,, is the C”atom of the neighboring
residue and d is the distance between the specified atoms.

A clique consists of at least 3 such residues that satisfy equation 1 (Figure 2). This

criterion allowed us to include only the residues that are interacting with each other. We

constructed such cliques for all the residues of the reference structure.
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Figure 2: (A) Schematic of clique definition: Residues 85, 112 and 116 form a clique of central
residue 81. Residue number 80 and 84 are eliminated from the clique as its C* distance with the
central residue is greater than their C° distances (B) PDB 2RHI rendered as beige ribbon.
Residues 85, 112 and 116 form a clique of central residue 81. Residue number 77, 78, 80, 84 and
86 are eliminated from the clique as its C* distance with the central residue is greater than their

C* distances

d. Constructing library cliques: We constructed the cliques for the structures from the library
using cliques from step ¢ and residue equivalences from step b.
e. Representing residues as r-groups: We represented the 20 amino-acids as 16 r-groups

(Figure 3). Please refer to section 8 of Chapter 2 for details of the r-groups.
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Figure 3: The definition of 16 r-groups used to represent 20 amino acids (Image adapted from
Master s thesis of Akash Bahai hitp:/dr.iiserpune.ac.in:8080/xmlui/handle/123456789/570 )

f. Local superimposition: Local superimpositions allow us to identify geometrical
similarities of the r-group arrangements between two cliques. In this study, we wanted to
identify similarities between the reference clique and the library cliques. Hence, we
performed 2 rounds of local superimpositions for each reference clique with the library
cliques. The first round of the superimposition was performed using the rl and rll

(backbone groups). This was followed by another round, round 2 of local
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superimpositions which aimed at refining or fine tuning the superimpositions from
roundl. The details of the two rounds of superimpositions are as follows.

i.  Round 1 of local superimposition and local equivalences: For each residue clique
in the reference structure, we superimposed its corresponding library clique using
3D least squares fit. Equivalences from step b (backbone rl and proline r11) were
used as input for the 3D least squares fit. Using this superimposition, we found
the closest r-group of the library clique to each r-group from the reference clique,
giving us local equivalences of round 1. We calculated equivalences for all
r-groups except rl and r11 (the rl and r11 equivalences established in step b are

retained). The closest r-group cannot be farther away than 1.5 A (Figure 4)

3D least squares fit

Reference clique X PDB1 clique X Superimposed reference clique X with PDB1
clique X

Figure 4: An example of local superimposition using 3D least squares fit. The reference clique
has 3 rl groups (cyan circles), one r2 group (dark pink circle) and one r14 group (purple circle).
PDBI clique too has three rl, one r2 and one r14. These two cliques are superimposed using 3D
least squares fit. The superimposed image shows that three vl groups and one r2 group found a
match in PDB1 with three rl and one r2 group. The r14 group from the reference does not match

with r14 from PDBI as the distance between them afier superimposition is greater than 1.5 A.

ii.  Round 2 of local superimposition and local equivalences: Using the equivalences
from step b and round 1, we performed another round of local superimpositions.
Similar to round 1, we found the closest r-group pairs from the reference clique
and the library clique (round 2 equivalences), indicating geometrical similarities.
We performed all the further analysis using the equivalences from round 2.
g. Finding conserved r-groups and conserved cliques: Conserved r-groups are those that
have less variation of r-groups at the same geometric location (as identified by round 2

local superimpositions) in various GPCR structures. We imposed 2 criteria to find such
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r-groups (Figure 5)
i.  The r-group found an equivalent match in at least 60% of the structures from the
library
ii.  The Shannon entropy[38] (H(X), Equation 1) of the superimposed r-groups was
less than 1.00:
For instance, the last row in Figure 5 indicates the number of matched PDBs for reference
r-group r15 contributed by a TRP of residue number 286. It has a match frequency of 41,
which is the sum of the row. Its Shannon Entropy is 0.8. Since both, match frequency and
Shannon Entropy fulfill the set criteria, the r15 from TRP286 is considered as a

conserved r-group.

16
H(X) = Y, P(X;) log,P(X;) Eq (1)

i=1

7:THR:281 1 0 0 0

r8:THR:281 0 2 0 0 0
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Figure 5: An example of match frequency of all r-groups of clique of residue number 318.
This clique has 7 r-groups represented on the Y-axis. All the r-groups that are observed in
the library cliques are indicated on the X-axis. The numbers of heatmap indicate the

frequency of a r-group on Y-axis matching with an r-group from the library cliques.

A clique that has 3 such conserved r-groups contributed by at least 2 amino acids are called

conserved cliques.
h. Since we were comparing all the structures to one reference structure, the conservation
results may change when a different reference structure is used. We repeated steps b-g

with 2 additional reference structures selected randomly from the GPCRdb to eliminate
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the dependency on one reference structure. We then took a consensus of the conserved
r-groups from 3 reference structures. The r-groups that are conserved in the analysis of at
least 2 reference structures are called consensus conserved r-groups and the cliques that
are formed from these r-groups are called consensus conserved cliques. The consensus
conserved r-groups and consensus conserved cliques are also referred to as conservations

in this study.

i.  We repeated steps b-h for inactive state structures and active state structures separately.
This gave us the consensus r-groups that are important for inactive state and active state.
In addition, we also looked at the consensus r-groups that are conserved in inactive state
but not in active state indicating that they moved during the process of activation and are
hence essential for receptor activation. Further, we also found the consensus r-groups that
are conserved in active state but not in inactive state indicating their importance in

achieving/maintaining the active state conformation.

3.2.3 Testing the predictions using molecular dynamics simulations

We performed Molecular dynamics simulations (MDs) using version 2021.3 of the
GROMACS[80][25] package to test the residues that did not have any mutation data in the
literature. We performed triplicates of 200ns CHARMM?36[81] all atom simulations of f2AR
receptor along with its ligand (PDBID: 2RH1). We inserted P2AR in a POPC bilayer having 76
molecules in the upper leaf and 75 molecules in the lower leaf, to maintain the XY dimension
ratio as 1 (to have identical system size along the X and Y). The orientation of B2AR in the
bilayer was determined using the PPM2.0 server. The POPC bilayer embedded receptor was
solvated using a TIP3P rectangular water box of thickness 22.5cm. We neutralized the system by
adding 0.15mM KCL. The approximate system size was 80x80x128, containing ~760,00 atoms.
We saved energy after every 2ps. We performed a neighbor search using the Verlet cutoff scheme,
where the short range Van Der Waals cutoff was set to 1.2nm. We treated electrostatics using the
particle-mesh Ewald method[82] and constrained the hydrogen bond lengths using the LINCS[ 78]
method. We then minimized the system for 5000 steps or till the maximum force was less than
1000 kJ/mol/nm. This was followed by heating of the system to 303.15K in an NVT ensemble for
250 ps using a Berendsen thermostat[83]. We stabilized the pressure in an NPT ensemble

simulation for 500 ps using a Berendsen barostat. During the equilibration, positional and
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dihedral restraint potentials were applied, and their force constants were gradually reduced. We
then simulated the systems (NPT) for a maximum of 200 ns where pressure was regulated using
the semi -isotropic Parrinello-Rahman barostat[84]. We stored the structures after every 5ns and
monitored the temperature, potential energy and kinetic energy during the simulation to check for

anomalies.

3.3 Results

3.3.1 Designing algorithm for detecting structurally and functionally important

local environments

We designed an algorithm that identifies 3D structural motifs that are essential for structure
and/or function of a protein based on conserved geometrical and chemical properties. To do this,
our algorithm represents a PDB structure as r-groups, which are then represented as cliques. We
compare these cliques to a reference structure to find geometric and chemical similarities. We
perform 3D least squares fit to find geometric similarity between the cliques. Based on the
geometric match, we consider each r-group in the reference clique and its matched partner from
the 3D least squares fit as a position of a multiple sequence alignment. We then calculate
Shannon's Entropy to quantify variation of r-groups at a particular geometric location, enabling us
to find chemical similarities. Shannon entropy allows us to capture variations, including events
like swapping of r-groups within a clique. We further apply various heuristic cutoffs such as
Shannon entropy (has to be less than 1.00) and the match frequency (greater than 60%) to identify
the conserved cliques/r-groups. We repeat this process using 3 distinct reference structures (Table
2) to get higher confidence. We selected these reference structures such that they have different
resolution and respond to different types of ligand to eliminate bias created because of it. The
cliques and their constituent r-groups that are conserved in at least 2 reference structures analyses

are considered to be conserved.
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Table 2: Details of reference structures used for the active and the inactive state analysis

Reference PDB ID Resolution(A) Type State
4X1H 2.3 Rhodopsin Active
7BU6 2.7 Adrenoceptor Active
4XEE 2.9 Neurotensin Active
2RH1 2.4 Adrenoceptor Inactive
4736 2.9 Lysophospholipid Inactive
57ZBH 3 NeuropeptideY Inactive

We applied this algorithm to both inactive and active state structures of GPCRs. Conservation in
each of the states indicates the functional or structural importance of these cliques to a particular
state. The transition from the inactive state to the active state is associated with loss of some
contacts and formation of some new contacts. To identify the contacts that are lost during
activation, we compared the conservation from the inactive state to that of the active state. The
r-groups that are conserved in the inactive state but not in the active state are the ones that are lost
during activation. These contacts may be crucial for receptor activation. We then compared active
state conservation with the inactive state to identify new contacts that allow the receptor to
transition to the active state. These contacts could have a role in stabilizing the active state.
Conservations that are common to both active and inactive states can mean that they are
necessary for structural stability.

The conserved 3D motifs from our analysis span over the membrane embedded region of GPCR
and some intracellular region. The conservations connect the well known motifs such as NPxxY,
DRY, CWxP and the Na+ pocket, creating an activation pathway. We do not get any conservation
in the extracellular domain that is involved in the binding of the ligand. Our activation pathway
starts a little lower to the ligand binding domain and spans through the membrane embedded
region to the intracellular region. We believe that the trigger to the activation is different for
different GPCRs, but eventually the trigger associated conformational changes converge into a

common pathway that activates GPCRs.

3.3.2 Inactive state analysis

We analyzed 48 inactive state structures(Table 1) using three inactive state reference
structures(Table 2) to find consensus conserved cliques. The reference structures were selected
such that they had different resolutions and responded to a different type of ligand. We found 23,

22 and 16 conserved cliques for 3 reference structure analysis respectively(Table 3). 18 cliques
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are common to at least 2 reference structures and 10 cliques are common to all 3 reference
structures (Table 3). Further, we looked at the r-group conservation and found that 61 are
conserved in at least 2 reference structure analysis (consensus conserved r-groups) and 30 are
conserved in all the 3 reference structure analysis (Figure 6A). The consensus conserved r-groups
are contributed by 27 amino-acid residues. The Ballesteros-Weinstein (BW) numbering[85] of the
27 amino-acids that contribute to the consensus conserved r-groups is '1x50', '1x52', '1x53', '2x42',
"2x45', '2x46', 2x47', '2x49', 2x50', "2x51', '3x43', '3x46', '3x50', '4x49', '4x50', '4x52', '4x53',
'5%60', '5x61', '6x39', '6x40', '6x44', '6x48', '7x45', "7x49', '7x52', and '7x53'. Of these, the most
conserved residues from helix 1, 2, 3 and 4 (as represented by Helix number x50) are also
conserved according to our analysis. The conserved r-group of all 4 helices are contributed by a
single type of amino-acid, except for the one from helix number 2, that is contributed by 3 distinct
types of amino-acids. The most conserved residue of helix 5, 6 and 7 is a proline, which our
analysis treats as an equivalent to a backbone group and hence, is not found to be conserved. 18

of these cliques contain r-groups other than r2, r8 and r12.
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Table 3: Consensus cliques conserved from the inactive state in reference structurel, reference structure2, reference structure 3 along with
the frequency of consensus conserved cliques from the inactive state in the 3 reference structures. The star no column indicates the central

residue of the clique. ‘Conserved in inactive referencel’ column indicates conserved residue number and the conserved r-group

separated by ‘. All the residue numbers follow the numbering of PDB 2RHI1.

How_many in
conserved in_inactive refe active referen
star n |conserved in_inactive referenc |rence2 equivalent to refer [conserved in inactive referen |ces it is cons
0 el encel ce3 equivalent to referencel |erved
51 ['76 _18',"79 r6','80 r8'] ['76 18','79 r6','80 r8'1 |['76 18','79 r6','322 12'] 3
['72 8, 76 18,  '326 r2'[['76 18, '326 12",
54 '326 r16'] '326 r16'] ['76 _r8','322 12','326 12'] 3
64 ['S8 r8','61 r2','69 r2','69 19'] [NA NA 1
['127 r12, 127 12",
71 ['127 r12','127 18','154 18" [130_r6'] NA 2
['S1.r2',  '51.r9, '54 rl12, ['S1 r2', 'S1 19, '54 rl2,
76 '54 18] ['51 r2','51 19','54 181 |54 r8'] 3
['S1 r2',  '51.r9, '322 r2'(['51 r2', '51 r9', '322 r2'|['51 r2', 'S51 r9', '120 17,
79 '322 19'] '322 19"] '322 r2'] 3
['78 r8', 157 r8', '158 r2',[['78 18, '"158 r2'|['74 7', '78 18, '157 r8§',
119 158 rl15','161 17" '158 rl15','161 17'] '158 r2','158 rl15','161 7' |3
[208 r2', '208 rl14', '282 r2,
121 282 rl14'] NA NA 1
122 |['157 _r8','160 r2','161 r7"] NA ['157 r8','160_r2','161 r7'] |2
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[71 12, '7512, 75 124|771 r2, 74 ¢7, ‘75 f2L|[71 12, 74 1T, 75 12
123 [75181 75 112','75 18','78 18] |75 12!, '157 18]
['75 18, "278 rl2', '278 18\ |['75 12", '75 18, 278 rl2',
124|282 12','282 rl41] 278 18,282 12'] ['279 r8','282 12',"282 rl4']
132 |[221 2,222 r12','222 18] |NA ['221 r2','222 112',"222 18']
208 [['121 r8','286 2", 286 r15']  [NA NA
211 (121 r12,'121 18,'122. 12']  [NA NA
['129 r8, '132 12, '132 rl6,
218 [214 181 NA NA
[131 12, '132.r2, '132 rl6,
222 [135 181 NA ['131 r2','135 121
['124 12", '124 r12', '124 18 |['124 18!, 322 12,
278 322 12','322 19", '325 r8'] 322 19','325 18'] NA
['124 12", '124 18",
['120 7', '124 12, '124 rl2'[286 12!, 286 115,
282 124 18,318 121 318 19'] NA
[282 12!, 282 rl4,
286 [['208 r2','318 2, '318 191  [290 r2','318 19'] NA
['281 r8', "282 12, '282 rl4'|['282 12!, 282 rl14',|['79 16, 282 12, '282 rl4',
318 [286 r2','286 r15'] 286 12!, 286 _r15'] 286 12','286 rl15']
[S1 12, 'S119, '54 18,
[75 12, '75 7112, '7518.|[75 12, '75 18, '79 r6.[75 12,  '76 18,  '79 16,
322 |79 16,278 r12', 278 18] 278 r12','278_18'] 278 18]
['51 12, '51 19", '53 12, '53 18" [['51 r2', '51 19, '53 r2.[['51 12", '51.r9,  'S3 12,
323 |54 r12','54 181 '54 112!, '54 18] '54 112','54 18','76 18]
325 27718, 278 r12, '278 18.|['277 r8', 278 r12',|NA
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281 18] 278 18]
['124 12, '124 18",

75 [NA 322 12,322 19'] NA 1
[71 12, 278 112!,

127 [NA 278 r8'] NA 1
['131 12, 32 12",

223 [NA '132 116, '135_18'] NA 1
['131 12, "135 18",

272 [NA 223 112,223 r8'] NA 1
[127 rl2, 127 18,

275 |NA 31 12'] NA 1
[314 12, 314 18,

285  [NA 318 19','321 18] NA 1
[273 12!, 277 18",

328 [NA 325 18] NA 1

['127 r12, '127 18, '130 r6',

68  [NA NA "31 2] 1

215 [NA NA ['124 12,'124 18,279 18] |1

319 [NA NA ['51 12,'51 19','79 16'] 1
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We also found that all the consensus conserved r-groups occur in at least 70% of our
dataset(Figure 7A).

A majority (~90%) of the consensus conserved r-groups lie within the membrane embedded
region of GPCRs. We also get some conservation in the intracellular region. We do not get any
conservation in the extracellular region (Figure 8). We also found that the conserved r-groups are
contributed by a maximum of 10 and a minimum of 1 amino-acid, highlighting that the r-groups
are not just contributed by a highly conserved amino-acid across GPCRs, but are from different

amino-acids.

A B
Referencel Reference?2 Reference2
Referencel
7
35 20 P 32 67
30 37
12 13
10 1
23 39
Reference3 Reference3

Figure 6: Overlap between conserved r-groups from three reference structures for the inactive

state(A) and the active state(B)
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Figure 8: Top right corner shows A representative GPCR in gray ribbon with the planes of small
orange spheres indicating membrane boundaries as predicted by the PPM server[82]. The
spheres indicate the consensus conserved r groups from the inactive state analysis. The inset
shows that the consensus conserved r groups are located primarily in the membrane embedded
region. The magnified inset is shown as the large circleC that shows contacts between the
residues of consensus conserved r-group from the inactive state analysis. Numbers are residue
numbers of 2RHI1 PDB. The six transmembrane helices labeled as TM 1 to 7 are represented as 6
different colors. The residues are coloured according to the ™ helix they belong to. Numbers in
bold indicate the central residue of the clique. Dotted lines indicate that the residues are
conserved in each other's clique. For instance, residue number 124 from TM3 is a part of clique
of residue number 282 from TM6 and vice versa. Solid black line indicates member of the clique.

For instance, residue 75 from TM2 is a part of clique of residue number 124 from TM3
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3.3.3 Active state analysis

Similar to the inactive state analysis, we analyzed 15 active state structures(Table 1) using three
active state reference structures(Table 2) to identify regions of geometric and chemical
similarities. Similar to the inactive state reference structures, the active state reference structures
also were selected such that they had different resolutions and responded to a different type of
ligand. We found that 22, 31 and 25 cliques were conserved for all 3 reference structure analysis
respectively(Table 4). 19 cliques are common to at least 2 reference structures and 10 cliques are
common to all 3 reference structures (Table 4). We found that 69 r-groups (Figure 6B) are
conserved in at least 2 reference structure analysis and 37 are conserved in all the 3 reference
structure analysis (Figure 9 - B). The 69 consensus conserved r-groups are contributed by 28
amino acids. The BW numbering of the 28 amino-acids that contribute to the consensus
conserved r-groups is '1x50', '1x53', '1x54', 2x42', '2x45', '2x46', 2x47', '2x49', '2x50', "2x51",
'3x39', '3x48', '3x49', '3x50', '3x51', '3x54', '4x50', '4x53', '5x47', '5x53', '5x58', '5x60', '5x61',
'6x40', '6x48', "7x45', '"7x49', and '8x50'.
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Table 4: Consensus cliques conserved from the active state in reference structurel, reference structure2, reference structure3. The last
column represents the frequency of consensus conserved cliques from the active state in the 3 reference structures. The star no column

indicates the central residue of the clique. ‘Conserved in_active reference structurel’ column indicates the conserved residue number and

the conserved r-group separated by ¢ . All the residue numbers follow the numbering of PDB 2RHI1.

How_many ac
conserved in_inactive refere [tive reference
star n [conserved in inactive re |conserved in inactive referenc [nce3 equivalent to referenc |s it is conser
0 ferencel e2 equivalent to gridl el ved
['80 r8', '83 r6', '84 r2','84 r8',|['80 _r8', '83 r6', '84 r2',
55 ['80 r8','84 r2','84 r8'] (299 r7'] '84 18'] 3
73 ['70 r7','76 r12','76 r8'] [NA NA 1
['55 r2', '55 r9', '58 r8', 'S5 r2', '5519, '58 r8,
80 '59 18] ['S5 r2','55 1r9','58 r8','59 r8'1('59 r12','59 r8'"] 3
'S5 r2',  '55 19, '124 r7,(['55 2", '55. 19, '124 7,
83 ['SS r2','55 19','124 17'] [302 r2'] 299 17','302 r2'] 3
87 ['S5 r2','55 19','299 r7'] [NA NA 1
['82 r8', '161 r2', '161 rl5/,
123 [['78 r7','82 r8','164 r7'|['82 r8','161 r2','161 rl5"] 164 17" 3
['83 r6!, '302 r2',
124 1302 19'] NA NA 1
['75 r2', '78 7', 79 r2',[['75 _r2', 78 17", 79 2|78 7', '79 r2', '79 rl2',
127 79 _r12','79 r8','82 r8'1 |79 r12','79 18','82 r8'] "79 18','82 r8'] 3
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[218 rl2, 218 18",
219 112!, 219 18" [[218 r12,, 218 12, 218 18,
132 [223 127 219 113", '223 12'] NA
['139 r12, 139 18,
135 [139 12,226 18] NA NA
136 |['225 12',226 18] NA [225 12',"226 18]
139 [['135 12!, 226 181 NA NA
['136 12!, 25 12",
140 [226 187 NA ['136 12!, '136 116,225 12']
['122 12, 126 12",
164 168 17 NA NA
['103 12, '103_rl5',
187 [110 107 NA NA
['133 rl2, '"133_r8",
135 12", 136 124, [['133 r12', '133 18, '136 r2,|['132 18" '133 rl2", '133 18",
222|136 r16'] '136_116'] '"136_12','136_r16']
['135 12, 136 12",
36 116, '139 rl2,
139 18", 139 12", ['135 12!, '136 12!, '136_rl6),
226|254 18] NA 139 18','254 r8']
[212 12, 212 114|212 12, 212 rl4', 213 r2',
269 265 12',265 r15'] 265 12'] [212 12,212 114", '265 12']
['79 12!, '79 r12','79 18!,
'83 16','124 17,'306 12,79 r2',  '79 r12',  '79 18.|['79 12, '79 rl2, '79 18,
302 [306 r16'] '83_ 16, '306_12','306_r16'] '83 16, '306_12','306_r16']
['55 12!, '55 19", 'S8 8. [['55 r2',  '55.19,  '58 rl2'|['55 12, 5519, '58 18,
303 ['80 r8','83 r6'] '58 18", '80 18] '80 18", '83_16']
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['76 12!, 79 12",
79 r12','79 18','302 12, |76 r2',  '79 r2',  '79 r12'|['76 r12, '79 12, '79 rl2',
306 [302 191 79 18, '302_12','302_19'] 79 18", 257 18,302 12']
['58 12!, '58 18",
307 |76 112, '313 121 ['58 18','76 12','313 12'] NA
59 [NA ['80 r8','84 12','84 r8'] NA
[62 r12',  '62. 18, '62 12,
68 [NA 313 _12'] NA
72 [NA ['134 16','135 121 ['76_12','134 16','135 12']
[128 r8', '131 18, '302 12,
79  [NA 302 19','306 12','306 r167  [['302 r2','306 r2','306 rl6']
84 [NA ['55 12','55 19,59 18] NA
8  [NA [91 18','124 17",'296 12'] NA
['103 r2', '103 rl5, '105 12!,
110 [NA '187 r10'] NA
125 [NA [212 12','212 r14',265 2]  |NA
129 [NA [218 rl12,"218 8,219 18] [NA
[75 12, '76 112, 76 18,
131 [NA 306 _12', 306 r16'] NA
[137 12, '137.18, '152 12,
148 |NA '153 18'] NA
153 |NA ['71 18','74 12','75 12'] NA
[125 18, 216 12, '216 rl2',
212 [NA 265 12', 265 rl5'] NA
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215 |NA ['125 18','126 12','128 r8']  [NA
[212 12, '212 rl4, '298 r2,|[212 12", 212 r14", 261 12",
265 |NA 298 19'] 298 12']
[261 12, 261 rl4', 264 rl0),
298  [NA 265 12', 265 rl5'] NA
[55 12, '55.19, '83 16,
299  |NA "124 r7'] NA
[257 r12, 257 18,
305 [NA ['256 18','257 18] 301 r12']
317 |NA ['57 12','57 18','313 12'] NA
['132 18!, 257 12!, 257 18,
219 [NA NA 261 12','261 r14']
['132 18!, 254 12', 257 112!,
223 |NA NA 257 18','258_r12']
230 |NA NA ['139 r12','139 18", '226 r8']
254 [NA NA [223 12',226 18]
[219 r12', '219 18!, 265 12!,
261 |NA NA 265 115
264 [NA NA [294 12',294 18" '298 r2']
267 [NA NA ['290 12',294 12','294 r8']
[263 rl12', 263 18!, '263 r2',
294  |NA NA 264 110, '268_12']
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Of these 28 residues, 18 residues, ‘1x50', '1x53', '2x42', '2x45', '2x46', 2x47', 2x49', "2x50',
"2x51", '3x50', '4x50', '4x53', '5x60', '5x61', '6x40', '6x48', '7x45', and '7x49' are common with the
consensus conserved from the inactive state. Although the residues are common, the contacts that
they make with other residues may not be identical in both the states. For instance '1x50' is a part
of the star of residue '2x47' in both active and inactive states. But in the active state an additional
contact with ‘1x54” is observed in this clique (Please refer to Results section 3.3.4, 3.3.5 and 3.3.6
for more discussion).

We also found that all of the consensus conserved r-groups occur in at least 70% of our
dataset(Figure 7B)

Similar to the inactive state conservation, ~90% of the consensus conserved r-groups for the
active state lie within the membrane embedded region of GPCRs, with some conservation in the
intracellular region, and no conservation in the extracellular region, similar to the observations
from the inactive state (Figure 9). The extracellular domains include 3 extracellular loops that
connect the transmembrane helices 2 with 3, 4 with 5 and 6 with 7. The extracellular loops are
flexible in nature. One of the important functions of the extracellular domains of GPCRs is to
bind/respond to various stimuli. The types of stimuli include photons, small molecules, proteins,
peptides, lipids, mechanical stress. To sense such a wide variety of stimuli, the extracellular
domains of GPCRs have also evolved to be structurally and chemically diverse. Additionally,
when stimulated by ligand binding, the ligand binding site (which is often located in the
extracellular domain) may or may not undergo conformational changes during the event of
binding or during the process of activation. Thus, we were not expecting any conservation in the

extracellular region.
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Figure 9: Top right corner shows A representative GPCR in gray ribbon with the planes of small
orange spheres indicating membrane boundaries as predicted by the PPM server[82]. The
spheres indicate the consensus conserved r groups from the inactive state analysis. The inset
shows that the consensus conserved r groups are located primarily in the membrane embedded
region. The magnified inset is shown as the large circle that shows contacts between the residues
of consensus conserved r-group from the inactive state analysis. Numbers are residue numbers of
2RHI PDB. The six transmembrane helices labeled as TM 1 to 7 are represented as 6 different
colors. The residues are coloured according to the ™ helix they belong to. Numbers in bold
indicate the central residue of the clique. Dotted lines indicate that the residues are conserved in
each other's clique. For instance, residue number 222 from TMS5 is a part of clique of residue
number 132 from TM3 and vice versa. Solid black line indicates member of the clique. For
instance, residue 131 from TM3 is a part of clique of residue number 222 from TMS.
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3.3.4 The r-groups that undergo conformational changes during activation

The cliques that are conserved in the inactive state but not in the active state are the ones that
have undergone conformational changes during receptor activation. Such cliques can be
considered important for activation. Out of the 18 cliques conserved in the inactive state analysis,
15 cliques are disrupted, either partially or completely(Table 5). These 15 cliques are centered at
residues 1x53, 2x42, 2x50, 3x38, 3x41, 3x43, 3x51, 6x40, 6x44, 7x49, and 7x52. For each of
these cliques, at least one consensus conserved r-group changed its location during activation. An
example of a completely disrupted clique is a clique of residue 1x53 has 3 r-groups ('76 r8',
'326 r2','326 rl16") conserved in the inactive state analysis. In the active state analysis, this clique
is not conserved, which indicates that this clique was completely disrupted during activation,
where '76_r8' relocated itself to a clique of 7x50, while 326 12 and 326 rl6 are not a part of any
conserved clique in the active state. '"2x47' clique is an example of a partially disrupted clique. In
the inactive state, it contains 4 conserved r-groups (‘51 r2', '51 19", '54 r12', '54 r8'), of which
only 1 r-group ('54 r12") changed its location during activation, while the other 3 r-groups
maintained their geometric positions. Finally, the 3 cliques that remain completely intact during
activation have their stars at 1x50, 3x42, 5x61, indicating a possibility of their role in structural

stability (Figure 10).

Extracellular side

Intracellular side

Figure 10: A representative GPCR is represented in gray ribbon. The purple coloured spheres indicate the
r-groups that are consensus conserved in the inactive state but not in the active state. The green colored
spheres indicate the consensus conserved r-groups from the active state analysis but not in the inactive
state. The pink coloured spheres represent the consensus conserved r-groups that are conserved in both

the inactive state and the active state analysis.

53



Table 5: Cliques that undergo conformational changes during activation. ‘Star no‘ column

indicates the central residue number, ‘inactive only’ indicates consensus conserved r-groups from

the inactive analysis, ‘conserved in iia not in aaa’ indicates the r-groups that are consensus

conserved in the inactive state but not in the active state, ‘conserved aaa not_in_iia’ indicates the

r-groups that are consensus conserved in the active state but not in the inactive state,

‘conserved in aaa’ indicates the r-groups that are consensus conserved in the active state,

‘conserved in iia and in aaa’ indicates the r-groups that are consensus conserved in both, the

active state and the inactive state, ‘gpcr bw’ column indicates the BW numbering of the

‘star_no’. All the residue numbers follow the numbering of PDB 2RH1.

conserved in iia n | conserved aaa not conserved in iia and | gpcr

star no | inactive only ot in aaa in iia conserved in aaa in aaa bw
['76 18", '79 16/, ['76 r8', '80 r2', | ['76 r8', 79 16",

51 '80 18'] NA ['80 12'] '80 18','79 16'] '80 r8'] 1x50
['76 r8', '326 r2', [ ['76 r8', '326 r2,

54 '326 rl16'] '326 1r16'] NA NA NA 1x53

68 NA NA ['130 r6','131 r2'] [ ['130 r6','131 2'] [ NA 2x39

71 ['127 r12" ['127 r12'] NA NA NA 2x42

75 NA NA ['322 12'] ['322 12" NA 2x46
['51 r2', '51 19, ['51 r2', '51.19,|['51 12, '51 19,

76 '54 r12','54 18'] ['54 r12'] ['55 18'] '54 r8','55 18'] '54 18] 2x47
['51 r2', '51 19, ['51 r2',  'S1.19,|['51 r2, '51_ 19,

79 '322 12','322 19'] |['322 19'] ['120 r7'] '120 r7','322 12'] [ '322 r2'] 2x50
['78 r8', '157 r8',
'"158 r2', ['78 r8', '161 7',
'158 rl5', "158 r2', ['78 8, "158 r2',

119 '161 r7'] ['157 r8'] NA '158 r15'] '158 r15','161 r7'] 3x38
['157 r8','160 r2', | ['157 r8', '160 r2',

122 '161 17'] '161 r7'] NA NA NA 3x41
['71 r2', '75 12, ['71 r2', 74 17, | ['71 12, 75 12!,
'75 r12', 75 18, 75 12", 75 r12', | 75 rl2), '75 18,

123 '74 17"] NA ['78 18'] '75 r8','78 18'] '74 17'] 3x42
['75 r8','278 r12', | ['75 r8', 278 rl12',
'278 r8', 282 r2',|'278 r8', '282 r2',

124 '282 rl14"] '282 rl14'] NA NA NA 3x43

['214 rl12', [214 r12',

128 NA NA 214 r8',"219 12'] |'214 18','219 r2'] | NA 3x47
[221 r2',

132 '222 rl2/, ['222 r12'] NA ['221 r2','222 18' [ ['221 r2',"222 18'] 3x51
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222 18]

136 NA NA [132 12','221 r2'] | ['132 r2','221 127 [ NA 3x55
['129 12!, ['129 rl2
129 18", '132 12, | '129 18", '132 r2',
218 NA NA 132 r16] 132 r16'] NA 5x57
['132 12/, ['131 12, '132 12,
'"132 116, '"132 116,
222 [131 12] NA '35 r8'] '35 r8'] ['131 12 5x61
['124 18','322 12", | ['124 18, '322 12/,
278 322 19','325 18] | '322 19','325 18] |NA NA NA 6x40
['124 12!,
282 '124 18'] ['124 12,'124 18] |NA NA NA 6x44
[208 12/, [208 12/,
208 14, 08 14,
286 ['318 19'] ['318 9] 318 121 318 121 NA 6x48
[208 12!, [208 12!,
208 rl4', 208 rl4',
290 NA NA 286 12'] 286 12'] NA 6x52
[282 12/,
82 rl4", [282 12!,
286 12", 282 rl4', '286 12,
318 286 rl5'] 286 r15'] NA NA NA 7x45
[75 12, '75 18,
79 16', '278 r12', | [278 112!, ['75 12, '75 12\, | ['75 12", 75 18,
322 278 r8'] 278 18'] ['75 1121 75 18,79 161 | '79 16'] 7x49
[51 12, '51 19, [51 r2', 'S 19,
'53 12", '54 rl2), '54 18", '76 18", | ['S1 12, '51 19",
323 '54 18'] ['53 12,'54 r12] |['76 18.'79 16 | '79 161 '54 18'] 7x50
[277 18!,
278 12, ['277 18",
325 278 18] 278 112'] NA ['278 18] [278 18] 7x52
326 NA NA ['54 r8','332 12'] | ['54 r8,'332 r2'] | NA 7x53

3.3.5 Newly formed contacts for stabilizing the active state

To check if new contacts are formed that assist stabilization of the receptors in their active state,

we identified the consensus conserved cliques from the active state that are not conserved in the

inactive state(Table 5). The active state has 18 cliques that are consensus conserved. These
cliques are centered around 1x50, 2x39, 2x46, 2x47, 2x50, 3x38, 3x42, 3x47, 3x51, 3x55, 5x57,
5x61, 6x48, 6x52, 7x49, 7x50, 7x52, and 7x53 residues. Of these, seven cliques of residues 2x39,
2x46, 3x47, 3x55, 5x57, 6x52, and 7x53 are newly formed in the active state. 3x38, 3x51, and

7x52 are the cliques that do not form new contacts, instead they lose contacts during activation.
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The remaining cliques gain contacts/neighbors during the process of activation(Figure 10). To

summarize, contacts of 30 r-groups are newly formed in the active state(Table 5).

3.3.6 Cliques important for structural stability

The r-groups that are conserved in both the states, inactive and the active state, as a part of the
same clique, indicate that they have not undergone structural changes during activation. We
consider such r-groups to be important for maintaining the structural stability of the receptors. We
found that 10 cliques maintain at least 1 and a maximum of 5 such r-groups that do not change
their position(Table 5, Figure 11). These cliques are centered at residues with BW numbering as
"1x50', 2x47', '2x50', '3x38', '3x42', '3x51", '5x61', '7x49', '7x50', and '7x52' (Figure 10). All these
stars of the conserved cliques belong to transmembrane helix 1, 2, 3, 5 and 7. Interestingly, no
clique from TM6 is seen to be conserved in both active and the inactive state, which is known to
undergo conformational changes during activation. [86] have also reported TM6 to be
conformationally flexible. This finding adds confidence to the results that we have obtained. Each
of these cliques have at least 1 and a maximum of 5 r-groups that are conserved in both the states.
Cliques that are centered around 7x52, and 5x61 have only 1 r-group that is conserved in both the
states, indicating that the rest of the clique has undergone conformation changes. Further detailed
analysis of such cliques is necessary to confirm their role in structural stability. If we only
consider cliques that have at least 2 r-groups conserved, we notice that these r-groups belong to
helices other than TM3 and TM6. Since, it has been previously shown that the contacts between
TM3 and TM6 are lost during activation, these findings strengthen the results that we have
obtained about the cliques important for structural stability and also increase confidence in the

robustness of the algorithm that we have designed to obtain the conserved cliques.
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Figure 11: A) C* of the residues that are important for structural stability are represented as small
spheres rendered in navy blue color. The inset is magnified in (B). C) Bottom view indicating

location of the structurally important residues.

3.3.7 Validation using data from literature

We used data from Zhou et al,2019[87] that performed 35 mutations on 17 residues of the
Adenosine A2A receptor (A2AR). In this study, wildtype like ligand potency is considered as
non-deleterious while a change in ligand potency of higher than 10 fold (increase or decrease) is
considered as deleterious. The predicted phenotype for our study is based on the presence or the
absence of the consensus conserved r-group in the mutated amino acid. For instance, if r7 is a
consensus conserved r-group, its neutral mutation would be serine or threonine as these amino

acids contain r7. Mutations to all other amino acids (except serine and threonine) would be
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predicted as deleterious as they do not contain r7. We found that 11 of the 17 residues overlapped
with the conserved residues in the inactive state from our study. These 11 residues contribute to
26 mutations. Of these 26, 16 mutations agreed with our predicted phenotype, while 10 did
not(Table 6). The 10 mutations that did not agree with our predictions are contributed by 4
residues. Of these 4 residues, residue (3x50) R of the ‘DRY’ motif contributes to 3 incorrect
predictions, residue 6x40 contributes to 4, 6x44 contributes to 2 incorrect predictions and 7x45
contributes to 1 incorrect prediction. Interestingly, these four residues are buried in the membrane
and are near to the cytoplasmic side of the receptor. Similarly, we found an overlap of 5 residues
from the active state with that of the 17 residues mutated in the Zhou et al,2019[85]. These 5
residues contribute to 7 mutations. Of these 7 mutations, 3 mutations agreed with our predicted
phenotype. Of the 4 mutations that do not agree, 3 are contributed by residue (3x50) R of the
‘DRY’ motif (similar to the observation from the inactive state analysis) which is a conserved
sequence motif on the intracellular side of the receptor (Table 6-B).

It may be possible that in these cases the ligand potency might be unaffected, but the effect of the
ligand binding on initiating a response (efficacy) could be affected. Thus a more appropriate
measure of assessing our algorithm and its prediction would be to use ligand efficacy instead of

the ligand potency.
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Table 6: Agreement between our predictions (A) from the inactive state, (B) active state and the 26 mutations that are experimentally
validated. ‘Position’ column indicates the BW numbering of the mutated residue. ‘Mutation’ column specifies details of the mutation.
‘Experiment result’ describes the phenotype of the mutation as observed in the experiments. ‘Mutated aa rgrp composition_definition’
column indicates the r-group composition of the mutated amino acid, ‘original aa rgrp composition_definition’ indicates the r-group
composition of the wildtype amino acid. ‘tkmsm_conserved rgrps’ indicates the r-group conserved as found in this study.
‘Conserved rgrp present in mutated aminoacid’ indicates if the conserved r-group is present in the mutated amino acid, [] means that
the conserved r-group is not present in mutated amino acid. ‘Predicted outcome’ column indicates our prediction of activity of the

receptor upon mutation.

A)
mutated aa r tkmsm_
grp_composit | original aa rgrp | conserv
ion_definitio | composition d |ed rgrp | conserved rgrp present in mu
Position | Mutation | Experiment result n efinition S tated aminoacid predicted outcome
['r12', 'r2', '8,
3x46 198N Low expression ['r2', '19'] 'r8'] ['r12"] [ Deleterious
CIM, >20-fold ['r12', 'r2', 'r8,
3x46 198E decrease in EC50 ['r2', 'r6'] 'r8'] ['r12'] [ Deleterious
3x50 R102H | Close to WT ['rd'] ['r2', 'r2', 'r3'] ['r2'] [ Deleterious
['r12', 'r2', '8, | ['r8,
6x40 12380 Close to WT ['r2', 12", 't9"] | 't8'] 'r12'] [ Deleterious
['r12', 'r2', '8, | ['18,
6x40 1238E Close to WT ['r2', '16'] 'r8'] 'r12'] [ Deleterious

59




['r12', 'r2', '8, | ['r8,

6x40 1238A Close to WT ['r8'] 'r8'] 'r12'] ['r8'] Deleterious

7x45 N280S Close to WT ['r7'] ['r2', 'r9'"] ['r9'] [ Deleterious

3x50 R102A Close to WT ['r8'] ['r2', 't2', 'r3'] ['r2'] [1 Deleterious
['r12', 'r2', '8, [ ['18',

6x40 1238M Close to WT ['r2', 'r13"] 'r8'] 'r12'] [1 Deleterious
['r2',

6x44 F242T Close to WT ['r7', '18'] ['r2', 'r14'] 'r14'] [ Deleterious
['r2', 'r12', ['r2',

6x44 F242L Close to WT 'r8', 'r8'] ['r2', 'r14"] 'r14"] ['r2'] Deleterious
['r2',

6x44 F242A 7.5-fold increase ['r8'] ['r2', 'r14"] 'r14'] [1 Deleterious
['r2', 'T12', 't8', | ['18,

3x43 L95SA Constitutively active | ['r8'] 'r8'] 'r2'] ['r8'] Deleterious
['r2', 'r12', '8, | ['18',

3x43 L95R Constitutively active | ['r2', 'r2', 't3'] | 't8'] 'r2'] ['r2'] Deleterious
['r12', 'r2', '8, [ ['18',

6x40 1238Y Constitutively active | ['12', '116'] 'r8'] 'r12'] [1 Deleterious

Completely

2x50 D52A abolished ['r8'] ['r6'] ['r6'] [1 Deleterious
['r2',

6x44 F242R 373.6-fold decrease ['t2'.'12'". 'r3'] | ['r2', 'r14"] 'r14"] ['r2'] Deleterious
['r2',

6x48 W246A | 219.9-fold decrease | ['r8'] ['r2', 'r15'] 'rl5'] [ Deleterious

Completely
7x45 N280R | abolished ['r2','r2','r3'] | ['r2', 't9'] ['r9'] [ Deleterious
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['r8',
Completely ['r2', 'r12', 't8', [ 'r2',
2x46 L48R abolished ['r2', 12", 'r3'] | '18'] 'r12'] ['r2'] Deleterious
['r2', 'r12', '8, [ ['r8,
3x43 L95F 7.8-fold decrease ['r2', 'r14"] 'r8'] 'r2'] ['r2'] Deleterious
Completely ['r2',
7x49 N284A | abolished ['r8'] ['r2', '19"] '9'] [ Deleterious
Completely ['r2', 'r2', 'r2', ['r2',
7x49 N284K abolished 'r5'] ['r2', '19'] 'r9'] ['r2'] Deleterious
['r12', 'r2', 't8&,
3x46 198A 23.2-fold decrease ['r8'] 'r8'] ['r12'"] [ Deleterious
['12',
7x53 Y288A 16.1-fold decrease ['r8'] ['r2', 'r16'] 'r16'] [ Deleterious
['r2', 'rl2,
3x50 R102L 10.1-fold decrease 'r8', 'r8'] ['r2', '12', 'r3'] ['r2'] ['r2'] Non-deleterious
B)
mutated aa r | original aa rgr | tkmsm )
o ) . . 7 conserved rgrp present in_mu .
Position | Mutation | Experiment result grp_compositl | p_composition_ | conserv o predicted outcome
o o tated aminoacid
on_definition | definition ed_rgrps
['r2),
Completely ['r2', 'r12', '8, )
2x46 L48R ) ['r2', 'r2', 'r3'"] 'rl2', ['r2'] Deleterious
abolished 'r8']
Vr8|]
2x50 D52A Completely ['r8'] ['r6'] ['r6'] [1 Deleterious
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abolished

3x50 R102H Close to WT ['r4d'] ['r2', 'r2', 'r3'] ['r2'] [] Deleterious
3x50 R102A Close to WT ['r8'] ['r2', 'r2', '13"] ['r2'] [1 Deleterious
['r2','r12', '8, .
3x50 R102L 10.1-fold decrease 81 ['r2', 'r2', 'r3'] ['r2'] ['r2'] Non-deleterious
T
['r16', i
3x51 Y103E Close to WT ['r2', 't6'] ['r2', 'r16'] 217 ['r2'] Deleterious
T
6x48 W246A | 219.9-fold decrease | ['18'] ['r2', 'r15'] ['r2'] [1 Deleterious

Increased ligand potency

Decreased ligand potency

Did not agree with our predictions

Not validated due to low expression

levels
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Apart from the analysis of 35 mutations, we also validated our results using another set of 435
disease associated mutations that were collected from the literature and were collated by Zhou et
al, 2019[87]. These 435 mutations are reported for mutations in various Class A receptors. We
found that 94(~22%) of these 435 (of which 88 are not embedded in the transmembrane region)
disease associated mutations overlap with the residues that are found important in our analysis.
We further identified which of these 94 mutations are contributed by the inactive state and which
of them are contributed by the residues conserved in the active state. We found that 79(~20% of
the total 435 mutations) are contributed by the residues conserved in the inactive state, of which
15 predictions were incorrect. In 11 of these 15 incorrect predictions the r2 and/or 8 r-group was
found to be conserved. Next, we found that 43 of the 94 overlapping mutations(~20% of the total
435 mutations) are contributed by the residues conserved from the active state. We found that this
set had 9 incorrect predictions, of which the 12 r-group was found to be conserved in 6 of them.
(Please refer

https://docs.google.com/spreadsheets/d/ 1 Hwsy 1 DmIEIa6g8f9BSK Za5i15bSaHdMRUSRi18 X 0hnx3

Y/edit?usp=sharing to access this dataset). 28 mutations are common for the inactive and the

active state conservations.

Similar to the 35 mutations set, we find incorrect predictions for residue 3x50 in the set of 435
disease associated mutations collected from the literature. There are 12 mutations reported for this
position, of which we predict only 4 incorrectly. However, we do not have a single incorrect
prediction for the other 3 positions (6x40, 6x44, and 7x45) that were incorrectly predicted in the
set of 35 mutations.

One reason for the incorrect predictions could be the r-group definition used in this study. The
definition currently implemented might not account for some of the interactions, resulting in loss
of meaningful interactions. One could take consensus of multiple such definitions of r-groups and
then check if the prediction accuracy improves.

To summarize, we have successfully attempted to validate the residues predicted as important for

the structure and function of GPCR using the data from the literature.
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3.3.8 Testing using Molecular dynamics simulations

We predicted residues in the GPCRs are important for their activation. To test these residues, we designed
two types of mutations, disrupting and non disrupting for 4 such residues (Table 7). The disrupting
mutation causes a GPCR to be either constitutively active or constitutively inactive, leading to a
disruption of its wild type activity. The second type is where the mutation does not cause significant
change in the activity of the GPCR (activity is similar to the wildtype) and is termed as non-disruptive

type of mutation.

As a control mutation, we selected another residue, F282 that was previously reported to show a
disrupting and non-disrupting type of phenotype when mutated to R and A respectively[45]. F282R
shows a ~300 fold decrease in the potency. F282A shows 8 fold increase, and hence we considered it as
wild type activity. We selected 4 other residues that are identified as important from our study and
designed disrupting and non-disrupting mutations for them (Table7). For each of these designed
mutations, we performed MD simulations. We intend to design mutations and run MD simulations for
other residues that are not validated using the data from the literature as well.

We ran 200ns all atom simulations on GROMACS and took snapshots every 5ns. Since we wanted to
quantify the effect of the mutation on its local environment, we used a novel metric called clique RMSD.
Clique RMSD is a measure of the fluctuations caused by the mutation on residues that are in its clique
(Refer section 3.2.2.c for definition of clique). The RMSD of a clique is calculated with respect to the
starting structure and is averaged over all snapshots for triplicates of each mutation. We then compared
the clique RMSDs of the mutants with that of the wildtype. The deleterious type of mutations are
expected to have clique RMSDs substantially different (could be higher or lower) from that of the
wildtype, while the non disrupting mutations are expected to have clique RMSDs similar to that of the
wildtype. We performed a paired t-test to test the significance of the differences in the clique RMSD of
the mutants and the wildtype. We think that using clique RMSD as an assessment metric is more
meaningful than the traditionally used metric of RMSD (global) for trajectory analysis. This is because
the starting structure of the receptor is stabilized by an antagonist (as per the crystal structure) and hence
the effect of the mutation globally on the receptor may not be evident in a trajectory of 200ns.
Additionally, we believe that the effect of the mutation on its immediate local environment would be more

pronounced than that seen globally.
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We observed that in the control type of simulation, the disrupting mutation has clique RMSD different
than the wildtype. The non-disrupting mutation too had clique RMSD different than the wildtype.
However, this non-disrupting mutation shows 8 fold increase in the activity of the receptor. The
differences were also statistically significant as assessed by paired t-test. Our first set of designed
mutations A76M(disrupting) and A76T(non disrupting) have clique RMSD less than the wildtype and)
mutation had clique RMSD similar to that of the wildtype as assessed by the paired t-test. In the second
set, the disrupting mutation F208D had a significantly different clique RMSD profile than that of the
wildtype, but the non-disrupting type of mutation for this residue F208V too had a clique RMSD profile
significantly different from its wildtype (Figure 12). In the third set, the disrupting mutation V54A had
lower clique RMSD than the wildtype while the non disrupting mutation V541 had clique RMSD higher.
Finally, the fourth set, the disrupting type S161G showed a clique RMSD less than that of the wildtype
while the non disrupting type S161T had higher clique RMSD than the wildtype.

Next, we calculated RMSF (root mean square fluctuation) of the mutated residue and compared it with the
RMSF values of the wildtype residue (Figure 13). RMSF quantifies the movement of a residue (group of
atoms) over a simulation trajectory. Higher RMSF values indicate higher fluctuations of the residue. In
our study, we compared the RMSFs of the mutated residues with those of the wildtype to gauge the
stability of the residue in its local environment. We hypothesized that residues that have RMSFs similar to
the wildtype are stabilizing. Similarly, if the mutation is not stable in a given local environment, it will
show RMSFs that are different from the wildtype. In our control mutation F282R/A, the disrupting
mutation F282R showed higher RMSFs than the wildtype receptor, indicating that this mutation is not
stable in its local environment. Its non-disrupting mutation, F282A, shows RMSF slightly less (0.02 units
less) than the wildtype. In our first set of designed mutations, A76M/T, the disrupting and non-disrupting
mutations both show similar RMSFs that are higher than the wildtype. This observation is consistent with
its clique RMSD profile as well (Figure 12). This may indicate that the non-disrupting mutation is
actually destabilizing the receptor. One of the reasons for this could be that the non-disrupting mutation
A76T has an r7 group in addition to the conserved r8 r-group. This additional r7 group may be
destabilizing the local environment. The second set of mutations, F208D/V, shows the RMSFs of
disrupting mutations F208D higher than that of the wildtype. Its non-disrupting mutation, F208V shows
RMSFs similar to the wildtype indicating that it is not adversely affecting the local environments. The
third set of mutations, V54A/I, shows similar RMSF values for the wildtype and non-disrupting type of
mutations. Its disrupting mutation, V54A, shows lower RMSF than the wild type, indicating that the local

environment is not similar to that of the wildtype. In the final and fourth set of mutations that we
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designed, S161G/T, the disrupting mutation S161G show higher RMSFs than the wildtype, and the
non-disrupting mutation S161T shows RMSFs similar to that of the wildtype, indicating that the designed
mutations are having the desired effect on the receptor.

To summarize, none of the designed mutations showed expected trends when we used clique RMSD
metric to analyze the trajectory. When we used residue RMSF values, 3 of the 4 sets of designed

mutations showed the desired trends, increasing confidence in our data. We believe that using multiple

such assessment/analysis metrics could be useful in further validating our data.

Table 7: Mutations designed for testing the predictions validation using MD simulations

Sr. No | Residue Wildtype (B2AR) | Disrupting Non disrupting mutation
Number mutation
1 76 ALA (18) MET (12, r13) THR (18)
2 208 PHE (12, r14) ASP (16) VAL (r12, 18)
observed in a wild type receptor
3 54 VAL (r12) ALA (18) ILE (r12)
4 161 SER (17) GLY (rl) THR (17)
5 282 PHE (12/18, r14) ARG (13) ALA (18) - 8 fold increase
(Control) observed in a wild type receptor
25
2
<
a 15
%)
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o 1 I M Disrupting
o :[ Non-Disrupting
0.5 I
0
F282R/A AT6M/T F208D/L V54A/1 S161G/T
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Figure 12: Clique RMSD values calculated using the MD simulation trajectories. The X axis indicates
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mutation details in the format wildtype residue followed by disrupting mutation and
non-disrupting mutation. For instance, F282R/A means F282 wildtype residue was mutated to R

as a disrupting mutation and to A as a non-disrupting mutation.
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Figure 13: Residue RMSF values calculated using the MD simulation trajectories. The X axis
indicates mutation details in the format wildtype residue followed by disrupting mutation and
non-disrupting mutation. For instance, F282R/A means F282 wildtype residue was mutated to R

as a disrupting mutation and to A as a non-disrupting mutation.

3.4 Discussion

In this study, we designed an algorithm to identify conserved regions that have similar geometric
and chemical properties in a set of proteins represented as r-groups. The algorithm identifies
geometric similarities by local superimposition. The chemical similarities are gauged using
Shannon entropy. The use of r-group definition and Shannon entropy allowed us to find
similarities in a protein family that has highly diverged sequences. We applied this algorithm to a
class of proteins, GPCRs. We analyzed GPCR class A structures to address if all the GPCRs
undergo activation in a universal way and if not, in how many different ways the activation
happens. Using the algorithm, we identified regions of conserved geometric and chemical
properties, in both the inactive and the active state structures. We compared the conserved regions
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from the inactive and the active state and predicted the r-groups that are necessary for either
structure, or function or both. We then validated these findings using data from literature. We
designed mutations and performed MD simulations for the residues that were not validated
through literature.

The conserved cliques that are identified in this study is presumably the entire activation pathway.
Even though the GPCRs are highly diverse, we believe that these cliques are conserved in most
GPCRs, if not all. Each of the GPCR might have its own switch that connects the ligand binding
region to the activation pathway, but the pathway itself is conserved. Because of which we think
that GPCRs follow a modular architecture. Using this information, we can design a GPCR that
responds to a ligand of our interest. The design will involve 2 essential steps: the first one is to
design a ligand binding pocket that binds to a ligand of our interest, and the second part is
combining this pocket with the activation pathway that we identified in our study. This designing
principle could open tremendous opportunities in the field of drug design.

Our findings could be influenced by the availability of a limited number of structures and also the
resolution of the membrane embedded region of the protein. Small changes in the location of the
amino acid side chains could lead to different results. Along with this, the definition and size of
the clique can also affect the results. For instance, cliques can be defined in multiple ways using
different cutoff distances, fixed number of neighbors etc. Similarly, r-groups can also be defined
in various ways. In this study, we treated the r11 of proline as a backbone group and hence our list
of conserved residues did not include proline residues. Newer definitions of r-groups could
probably address this. In addition to this, we have used heuristic cut offs for Shannon entropy,
match frequency to find conserved cliques. We tried to overcome this limitation by taking a
consensus of analysis using 3 distinct reference structures.

We validated our findings by showing overlap of our data with that of the data reported in
literature. We attempted to validate some of the important residues using MD simulations for the
residues that did not have data in the literature. We used clique RMSD as a metric of measuring
stability of the mutated clique. We analyzed 200 ns trajectories. The clique RMSD profiles did
not show expected trends for validation. We also analyzed the trajectories with another metric,
RMSF. With this metric, 3 of the 4 sets of designed mutations showed desired trends. We believe
that analyzing these trajectories with various such metrics could assist in better understanding our
findings. One such metric could be the distance between TM3 - TM6. This particular metric could

be helpful to observe if the receptor is undergoing activation (the distance increases during
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activation). We think that simulating the system for longer durations may also be helpful.
Additionally using various liganded, unliganded versions of the receptors as starting points for
MDs could also provide additional insights. Another additional thing would be to analyze the MD
simulation trajectories that are deposited in publicly available databases like the GPCRmd[88].
Previous MD studies have shown water molecules that are conserved in the membrane embedded
region of GPCRs to be important for establishing a network of polar contacts. These water
molecules are shown to be conserved across diverse GPCRs. In our study, we have not analyzed
conservation of water molecules, but it would be interesting to see if the waters interact with
conserved cliques and have any structural or functional implication [89].

In this study, we asked the question if the GPCR activation pathway is universal, and if not, in
how many different ways can GPCRs be activated. Initially, when we analyzed the GPCR
structures by representing them as amino acids, we did not find conserved cliques across different
GPCRs. The only conservations we got were from the already well known motifs (both sequence
and structural motifs). This indicates that the amino acid cliques are diverse in terms of their
composition. We then represented the GPCR structures as substructures of amino acids, the
r-groups, and found conserved cliques in ~70% of the GPCRs. This indicates that small regions of
amino acids and not the entire amino acid play a crucial role in their activation. Thus, we may
need to analyze the structures using various definitions/representations of r-groups to robustly
identify the non-conserved regions. It would be worthwhile to look at the non conserved regions /

GPCRs to get further insights into their functional evolution.

To identify the activation pathway, we analyzed the cliques that are unique to the inactive state
and those that are newly formed in the active state. Another interesting category of cliques could
be the ones that change during the activation/transition and relax to their original conformation
once the activation is complete. With our algorithm, in its current state, it could be challenging to
track such cliques, since we have considered the system to be in 2 states - inactive and active.
Thus, if the inactive state and active state of clique is identical, we consider the clique to be not
changing its geometry/composition, even though it has temporarily undergone changes during the
process of activation. It is possible to track/identify such cliques if we consider the system to be
in 3 states - inactive, intermediate and active. The PDB does have representation for the
intermediate state of some of the receptors and test cases using such structures could be
attempted. However, the intermediate stage at which the structure was captured might play an

important role in such analysis. To overcome this limitation, analyzing MD simulation trajectories
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could be useful. However, the MD simulations that we have performed in this study, do not show
state transitions to track such cliques. In general, observing state transitions for bulky systems like
GPCRs require running simulations at scale of microseconds and hence may pose a challenge.

While this study was carried out using Class A receptors, the study could be extended for other
classes of GPCRs. Our study was limited to Class A structures as the other classes had low
representation in the PDB. With the recent developments in the field, models predicted by
methods like AlphaFold2[90], RosettaFold[91] etc. could be either used to derive or validate the
activation pathway. This algorithm can also be applied to a variety of other problems that require

finding conserved regions in proteins.
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Chapter 4

Packpred: Predicting the functional effect of missense

mutations

e Binary classification of missense mutations as neutral or deleterious
e Trained on T4 lysozyme saturation mutagenesis dataset
e Tested on CcdB saturation mutagenesis dataset and the Missense3D dataset

o Performs better than 6 other state-of-the-art methods

The statistical potential and the design of this study was performed by Kuan Pern Tan and is a

part of his thesis also.

Published - Tan KP*, Kanitkar TR*, Kwoh CK, M.S.Madhusudhan. Packpred: Predicting the
Functional Effect of Missense Mutations. Front Mol Biosci. 2021 Aug 20;8:646288. doi:
10.3389/fmolb.2021.646288. PMID: 34490344; PMCID: PMC8417552.

[* equal contributions]
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4.1 Introduction

Amino acid substitutions could affect protein stability, alter/impair its function and possibly lead
to disease conditions[92]. Several such single amino acid substitutions in proteins, also called
missense mutations, are implicated in diseases such as cystic fibrosis, diabetes, cancer etc.[93,
94]. Data from clinical studies as well as from large-scale projects such as the Human Genome
Project[95], HapMap Project[96], Exome Sequencing Project and the 1000 Genomes Project[97]
unearth such single amino acid mutations. It would be instrumental to have a fast and automated

computational method to accurately predict the functional effect of these mutations.

Several computational methods predict the effect of missense mutations. The methods utilize
sequence or structure information or a combination of the two. The sequence based methods rely
on previously known protein sequences and their characterizations deposited in databases. For
example, in the SIFT method[98], mutational effect prediction is made based on a customized
position specific substitution matrix (PSSM), constructed with PSI-BLAST[37] and MOTIF
finder[99] to identify conserved local sequence regions. A majority of structure-based methods
are based on machine learning algorithms that exploit different features. For instance,
[-mutant2.0[100] is a support vector machine based method trained on features such as pH,
temperature and mutation type. AUTO-MUTE 2.0[101] constructs a statistical contact potential
with Delaunay tessellation and trained their models with additional attributes such as ordered
identities of amino acids, pH and temperature. PoOPMuSiC-2.0[102] uses a linear combination of
26 different statistical energy functions in an artificial neural network architecture. MCSM[103]
utilizes a graph metric to summarize physicochemical interactions within a cut-off distance as
pattern signatures and trained them with Gaussian process regression model. SDM [104, 105],
which does not rely on machine learning, constructs an environment-specific amino acid
substitution matrix based on observed substitutions in evolutionary time. DUET[106] is a
meta-algorithm that consolidates the methods of mCSM and SDM. Missense3D[107] is another
structure based method that uses seventeen structural properties to predict the effect of the
mutation. Dynamut2.0[108] uses normal mode analysis and graph-based signatures. In addition to
the sequence and structure based methods, methods that use both information(hybrid methods)
also exist. One such hybrid method is Polyphen[109]. It uses a modified PSSM, data from the
Pfam database and structural features such as accessible surface area and amino acid volume to

make a prediction. All these methods are able to capture some aspects (but not all) of how the
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mutation affects the protein structure and/or function, as indicated by their predictive accuracy.
One common problem for all these methods is the prediction of a high number of false negatives,
which affects their overall predictive accuracy. Hence, despite these various efforts and

algorithms, the functional fate of point mutations remains a challenging problem.

A missense mutation could lead to functional instability by either disrupting its structure or by
affecting its interaction interface and/or active sites without necessarily impacting its structure. A
mutational effect predictor should hence take into account both the effect of mutation on overall
structural stability and on its functional relevance. In this study, we describe Packpred, a
method/algorithm that addresses both these aspects. For structural features, Packpred uses an
environment-dependent multi-body statistical potential and a depth dependent substitution matrix,
FADHM. We had previously established that FADHM scores are useful in predicting the effects
of point mutations[110].However, similar to other methods, FADHM also suffers from
overpredicting false negatives. The multi-body statistical potential considers the
observed/expected ratio of cliques of residues. The greater the value of the ratio, the more
energetically stable is the packing of amino acids in the residue clique. We further categorized
these residue cliques based on their residue depths. Residue depth[41, 42] measures the degree of
burial and hence the solvation effect on amino acids. Depth has been shown to correlate well with
structural stability and free energy change of cavity-creating mutations in globular proteins[39,
40]. Our depth based statistical potential hence assesses the effect of mutation on local packing
stability. To capture the functional relevance of amino acids, we used residue position Shannon
entropy from a multiple sequence alignment of homologs of the query sequence. By this, we
exploit evolutionary information to quantify the degree of observed variation at the position of

mutation. Usually, the lesser the variation the greater the functional importance of the residue.

4.2. Materials and methods

4.2.1. Data sets

4.2.1.1 Statistical potential data set

A set of 3753 protein structures with resolution better than 2.5 A obtained from the Protein data
bank (PDB)[111] was used to construct the clique statistical potential. The structures in this set

are non-redundant at 30% sequence identity. To account for atomic position fluctuations (protein
73



dynamics) while considering amino acid cliques, 10 homology models were built using
Modeller9.11[78] with the native protein serving as both target and template in a self-alignment.
The ‘refine very slow’ option was used to relax the structures with maximum atomic flexibility.
The ‘refine very slow’ option indicates the degree of refinement of a protein model through MD
annealing. The very slow option allows for better refinement/modeling flexibility as compared to
other options ‘very fast, fast and slow’. Selecting this option allowed us to better sample the
alternate locations of atoms in the existing structure dataset for building a robust statistical
potential. These homology models along with the native structure (i.e. 11 structures for each

protein) were then used to build the statistical potential.

4.2.1.2 Saturation mutagenesis data sets

Saturation mutagenesis data sets of two proteins, T4-lysozyme[112] and Controller of cell
division or death B (CcdB)[113] were used in this study. T4 Lysozyme is a 164 amino acid
residue protein with our reference structure being PDB: 2LZM that was solved at a resolution of
1.7 A[114]. Each position except the first was mutated to 13 other amino acids (A, C, E, F, G, H,
K, L, P, Q, R, S, and T). After excluding key catalytic site residues (D10, E11, R145, R148P) the
data set consists of 1966 mutations. CcdB contains 101 amino acids and acts as a cytotoxin. Its
structure was solved at 1.4 A resolution (PDB: 3VUBJ[115]). Each position in CcdB mutated to all
other 19 amino acids. A final set of 1534 mutations was obtained after removal of active site

residues (124, 125, N95, F98, W99, G100, 1101),

4.2.1.3 Missense3D data set

The Missense3D data set consists of 4099 mutations from 606 proteins extracted from
Humsavar[116], ClinVar[117], and ExAC[107, 118]. Humsavar lists all the annotated missense
variants from humans reported in UniProt and SwissProtKB. ClinVar catalogs variations in
humans and their associated phenotype. EXAC is an exome aggregation consortium that describes
the aggregation and analysis of human exome. The analysis includes quantification of the
pathogenicity of variants. The data set of 4099 mutations consists of 1965 disease-associated
variants and 2134 neutral variants (not associated with any known disease, yet). Packpred
parameters were trained on the T4-lysozyme data set and tested on the CcdB and Missense3D

data sets.
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4.2.2 Structural and Sequential features

4.2.2.1 Residue depth

Depth is defined as the distance of a protein atom to the nearest bulk water molecule[41]. The
quantity measures the degree of burial of the atom. Depth has been shown capable of concisely
describing the protein environment, as substantiated by its utilities in protein design and function
predictions[42, 110, 119]. Atom depth values were computed using default parameters. The depth

of a residue clique is defined as the average depths of its constituent atoms.

4.2.2.2 Cliques of amino acid residues

A clique is defined as a sub-graph in which all possible pairs of vertices are linked. We define a
(N, do) “residue clique” to be a clique of N amino acids within a linkage distance of d . We
consider two amino acids as linked when at least four, or more than half of side chain
non-hydrogen atoms (whichever smaller) are within 4., from atoms of another amino acid
(Figure 1). For Glycine, the C® atom is used in lieu of the side chain. Residue cliques defined with
different combinations of N and d, (N ranges from 2 to 4, d., ranges from 7.0 A to 10.5 A in
step of 0.5 A) have been computed and investigated in this study.

Figure 1: Residue clique of amino acids. (A). A 5-residue clique (P11, W30, H91, 098, L100) of
cut-off 7.54 shown in ball and stick representation and enveloped with a meshed molecular
surface from human recombinant MTCP-1 protein (PDB: 141X).
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4.2.2.3 Statistical potential and residue clique score

A residue clique statistical potential is constructed by adopting the formulation of Sippl’s

potential of mean force[120],

c !P”b+a1f ’
E" =— kTlog|——=

(PC +apP’ )
exp exp.

(1

Where E¢ is the pseudo potential energy and c is a residue clique of type {r,, 7, ...}, where the
r/’s are the amino acid types; P¢,is the observed number of residue clique c; P%,, is its expected
number in a hypothetical reference state without energetic interactions; o is the ratio of
pseudo-count introduced to account for sparse statistics, and is taken as 0.00 in our study. -k7 is a

constant and is assumed as 1 in this study.

For each (N, d.,) clique, the statistical potential is built at 5 different levels of depth (2.80 A —
525A,425A-625A,525A-725A,625A-825A,7.25A - o). To calculate the score of
a residue clique (S), the mean x and standard deviation ¢ of its depth is first computed. A
Gaussian probability density function N(x | i, o) is then accordingly built. The clique score is

computed as the weighted sum of the integrand at every depth level as,

x=df

c 1 c
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i

2
Where d is one depth level, d; and d;is the lower and upper bound of the level.

Most residue cliques in a protein are overlapping with one another, and an amino acid residue can
participate in multiple cliques. The score of a residue is taken as the average of all such cliques.

The score of a protein is further taken as the average of all its residue scores.

4.2.2.4 Shannon Entropy

Shannon entropy (H) is a measure of variation observed at a given position. It is calculated from a
multiple sequence alignment obtained by a PSI-BLAST search against the uniref50 database[37].

H for a given position is then calculated as,
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Where Pi is the fraction of amino acid (i) observed at a given position.

4.2.2.5 FADHM scores

FADHM scores are depth dependent pairwise amino acid substitution likelihood scores extracted
from the FADHM matrices. The FADHM matrices quantify the substitution frequencies at 3
depth regions obtained by performing protein-protein structural alignments. The three depth
regions are defined according to their residue depth values. The regions are called exposed,
intermediate and buried. The exposed region has residues that have residue depth of less than 5,
the intermediate region is characterized by depth value between 5 to 8 while the buried region has
depth values higher than 8. The idea of creating such matrices is that the relative abundance of
amino acids is different at different depths. This also implies that the substitution rates would also
be different at different depths. The FADHM matrices were benchmarked using the saturation
mutagenesis datasets of T4 lysozyme and CcdB. A detailed account of the FADHM score can be
found elsewhere[110].

4.2.2.6 The Packpred score for mutations

The Packpred score is given as,
PS =1.5(S) + 1.75(H) + 0.5(FADHM) 4

Where PS is Packpred score, S (section 4.2.2.3) is the residue clique score obtained from the
statistical potential, H is Shannon entropy (section 4.2.2.4) and FADHM (section 4.2.2.5) is the
depth based amino acid substitution likelihood score. The weights were obtained by training on
the T4 saturation mutagenesis data set. The coefficients for S, H and FADHM (weights) were
systematically sampled in the range O to 3 with a step size of 0.25. The cut off score threshold that
best discriminates neutral mutations from destabilizing ones was 1.6 in the training data. Mutation
with a score greater than 1.6 is neutral and is destabilizing otherwise. To score a mutant, we
modify the clique composition without explicitly modeling the mutant protein structure, with the

mutant amino acid inheriting all the properties of the wild type residue.

77



Packpred is implemented as a web server at http://cospi.iiserpune.ac.in/packpred/. A standalone

version is also available for download.

4.3 Results

4.3.1 Training and testing Packpred score

Packpred uses a linear combination of sequence position Shannon entropy, a residue clique
statistical potential and a depth dependent substitution matrix (FADHM) to predict the functional
effect of missense mutations. The Shannon entropy part of the score estimates the structural and
functional importance of residues based on evolutionary information. The clique statistical
potential and the substitution matrix gauge the effect of the mutation on the local
environment/structure. The statistical potential computes the observed and expected probabilities
to calculate a score for a clique. The FADHM scores are taken from substitution matrices that are
derived from structural alignments of proteins. The substitution likelihood scores are calculated
by categorizing a protein into three regions based on residue depths (exposed intermediate and
buried). The substitution scores indicate the likelihood of a residue getting replaced by another at

a given depth.

We performed a grid search in the range of 0 to 3 with a step size of 0.25 for S, H and FADHM to
optimize the coefficients (weights) of each component of the linear combination Packpred score.
The optimization was to maximize the Matthews correlation coefficient (MCC) (see section 2.3)
T4 lysozyme saturation mutagenesis data training set. The weights that gave the highest MCC on
the training set were 1.5, 1.75, and 0.5 for the clique statistical potential, Shannon entropy and
FADHM respectively. We also obtained a cut-off threshold that distinguishes the destabilizing
from the neutral ones from this training exercise. The cut off was sampled in the range 0 to 2 with
a step size of 0.1. Mutations with scores greater than 1.6 are classified as neutral and scores below
1.6 are classified as destabilizing. The T4-lysozyme training set consists of 1362 (~69%) neutral
and 604 (31%) destabilizing mutations of which Packpred correctly identifies 1049(~77%)
neutral mutations and 406(~67%) destabilizing mutations . In the T4 training exercise, we
observe similar MCC values for different combinations of weights of the grid search. Although

the MCC:s are similar, the underlying predictions and the linear combination scores are different.

The weights and threshold obtained from the training set were applied to two testing sets, CcdB
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saturation mutagenesis data and Missense3D data set. CcdB data set has 1258 (~80%) neutral
mutations and 276 (~20%) destabilizing while the Missense3D data set has 2134(~52%) neutral
and 1965(~48%) disease mutations respectively. We used the PDB structures, 2LZM and 3VUB
to obtain Packpred scores of T4-lysozyme and CcdB respectively. The biological unit of CcdB is
a dimer and we did all the calculations using this dimeric state structure for CcdB. Packpred
correctly predicts 864/1258(~68%) neutral and 253/276(~92%) destabilizing mutations from
CcdB testing set and 1670/2134 (~78%) neutral, 1123/1965 (~57%) disease causing mutations

from the missense3D data set.

We compared Packpred’s binary classification with several popular methods such as
i-mutant2[100], mCSM[103], SDM[105], dynamut2[108], FADHM[110], and Missense3D[107]
(Table 1). All the predictions were made using default parameters. Packpred was the best
performing method on the T4-lysozyme training set and the Missense3D testing set with MCC
values of 0.42 and 0.36 respectively. The next best method is Missense3D with MCC values of
0.40 and 0.33 for the T4 and Missense3D data sets respectively. The MCC of Packpred on the
CcdB data set is 0.47 and is marginally outperformed by the best performing method, FADHM,
which has an MCC of 0.48 (Table 1).

Table 1: Performance of some methods on T4, CcdB saturation mutagenesis and missense3D data

sets. *: Values taken from FADHM paper.

Method MCC for T4 lysozyme | MCC for CcdB saturation | MCC for Missense
saturation  mutagenesis | mutagenesis data set 3D data set
data set

i-mutant 2.0 0.30 0.36° 0.06

mCSM 0.22" 0.39" 0.05

SDM?2 0.24" 0.33" 0.14

Dynamut2 0.09 0.15 0.06

Missense3D 0.40 0.39 0.33

FADHM 0.38" 0.48" 0.27

Packpred 0.42 0.47 0.36

The clique potential and FADHM were earlier trained on 3754 and 2384 PDB entries
respectively. 89 of these PDBs are common to the 606 PDB entries that comprise the Missense3D
testing set. These 89 overlapping entries include not just those that are identical but also those that
are homologs (with sequence identities of 30% or greater). The overlapping PDBs account for

463 of 4099 mutations in the Missense3D dataset. Omitting these 463 mutations and using the
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other 3636 mutations resulted in an MCC of ~0.37, comparable to the value of 0.36 obtained over

the entire Missense3D data set of 4099 mutations.

4.3.2 Analysis of the predictions on the Missense3D data set

The missense3D data set has a balanced representation of ~48% disease-associated mutations and
~52% neutral mutations. The data set however is skewed in terms of amino-acid abundance when
compared to natural abundance . For instance, Arginine has the highest representation and
accounts for ~16% (664/4099) of the missense3D data set while its natural abundance is ~5%.
The next most abundant amino-acid in the Missense3D data set is glycine that accounts for ~9% (
372/4099) of the data (natural abundance is ~7%). The most frequent mutant is also Arginine
(347/4099) followed by serine (343/4099). There are 2233 mutations in the exposed environment
(depth less than 5 A), 1258 in the intermediate environment (depth between 5 and 8 A) and 608 in

the buried environment (depth greater than 8 A).

We assessed the performance of various methods on the Missense3D data set using metrics
including sensitivity, specificity, precision, accuracy and f1 (Table 2). Packpred outperforms all
other methods in MCC, precision and accuracy. Missense3D has the highest sensitivity and fl.
Packpred has less sensitivity than FADHM and Missense3D indicating a scope of improvement.
Packpred has a specificity of 0.57, indicating a higher number of false positive predictions.
mCSM and i-mutant outperform all other methods in specificity. However, mCSM, i-mutant,
SDM and dynamute predict a large number of false negatives (Table 3) that affects their MCC.
Hence, we compare Packpred with FADHM and Missense3D in the next sections unless
otherwise stated. Packpred has less number of false positives among FADHM, Missense3D and
has the highest number of false negatives. The high false positive rate contributes to its lower

specificity.
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Table 2: The prediction performance of seven methods on the Missense3D data set. The best

score in each assessment metric is shown in bold font.

Metric Packpred FADHM Missense3 | Dynamut2.0 mCSM i-mutant SDM
D
MCC 0.36 0.27 0.33 0.06 0.05 0.06 0.14
Sensitivity 0.57 0.39 0.40 0.84 0.92 0.92 0.80
(Class 0)
Specificity 0.78 0.85 0.89 0.20 0.10 0.12 0.34
(Class 0)
Precision 0.71 0.71 0.76 0.49 0.49 0.49 0.52
(Class 0)
F1(Class 0) 0.63 0.50 0.53 0.62 0.64 0.64 0.63
Sensitivity 0.78 0.85 0.89 0.20 0.10 0.12 0.34
(Class 1)
Specificity 0.57 0.39 0.40 0.84 0.92 0.92 0.80
(Class 1)
Precision 0.66 0.60 0.62 0.59 0.59 0.60 0.63
(Class 1)
F1 (Class 1) 0.72 0.70 0.73 0.31 0.18 0.20 0.44
Accuracy 0.68 0.62 0.65 0.51 0.50 0.50 0.55

We analyzed the results structure-wise. Packpred correctly predicted all mutations from 264 (out
of 606) structures and at least 50% mutations correctly from 507 structures. It could not correctly
predict any mutation from 56 structures. In these 56 PDBs, the maximum mutations in any one
protein were 4 while the average number of mutations per PDB is ~6. These 56 structures did not

follow any particular discernible pattern or trait.

Packpred has limitations in several areas. One of which is its high number of false positive
predictions which also affects its specificity. Other methods have a higher specificity but
underperform in their sensitivity by overpredicting True Negatives. Packpred has fewer true
positives as compared to FADHM and Missense3D, indicating another potential area for
improvement. With more true positives, it is likely that Packpred’s f1 value would also improve,

which is currently bested by Missense3D. Packpred scored higher than 0.65 in all other metrics
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(accuracy, precision, sensitivity and fl) indicating its overall balanced performance. We also
calculated MCC for each native amino-acid type from the Missense3D dataset. We found that of
all the 20 types of amino-acids, Packpred has the highest MCC of 0.40 for I, L and V amino-acids
and lowest MCC for C with MCC of 0.17. Similar to Packpred, FADHM also has the lowest
MCC of 0.04 for C amongst all the amino-acid types. FADHM has a best MCC of 0.47 for I,
which also happens to be the single best MCC for an amino acid among other methods.
Missense3D, in contrast to Packpred and FADHM, has the best prediction for C with MCC of
0.43 and has lowest MCC of 0.02 for W among other amino-acid types. These results show us

amino acid wise prediction performance and thus giving scope for improvement

Table 3: Confusion matrix values for the different prediction methods. The values in bold font
show the best in each category. TP, FP, TN and FN stand for True Positive, False Positive, True

Negative and False Negative respectively.

Metric Packpred FADHM Missense 3D | Dynamut2.0 mCSM i-mutant SDM
TP 1670 1816 1890 440 229 251 713
FP 842 1203 1177 312 158 164 420
TN 1123 762 788 1650 1804 1798 1542
FN 464 318 244 1685 1896 1874 1412

We stratified the missense3D data to particular depth zones (residues with depth values less than
5 are exposed, between 5 to 8 are intermediate and greater than 8 are buried) to assess the
performance of these methods at particular depths. Packpred has 597/2233 (~72%) correct
predictions from the exposed environment, 796/1258 (~63%) from the intermediate and 400/608
(~66%) from the buried environment. Packpred is the least accurate in predicting the effect of
mutations in the intermediate environment. Interestingly, Missense3D is also the least accurate in

this intermediate zone (Figure 2).
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Figure 2: Histograms of the prediction accuracy of Packpred, FADHM and Missense3D at
different depth levels (exposed to the solvent, intermediate and buried).

4.3.3 Meta predictions

Of the 4099 mutants, at least one of the seven methods we tested made an accurate prediction in
4036 cases. This motivated us to make two different meta predictions by combining the different

methods.

The first meta prediction makes use of the method that performs the best for particular amino
acids. We studied the wild type(native) amino acid-wise trends of all seven methods. For instance,
native amino-acids N, K, Q, R and T are best predicted by Missense3D and FADHM outperforms
other methods in the prediction of I and M amino acids and Packpred is best at predicting A, D,
E, G, L, P, V, and Y. All seven methods feature as the best method for at least one amino acid.
Interestingly, we found that Packpred has the highest average percentage (68%) of correct
predictions of the 20 native amino acids with the lowest standard deviation (4%). In contrast,
FADHM and Missense3D have averages of 62% and 64% with standard deviations of 7 and 10
respectively. The other methods all have averages less than 60% with standard deviations
between 11-14. Packpred shows consistency in prediction across native amino acid types. We
then used these prediction strengths of each of the methods to get a hypothetical hybrid/meta
prediction scheme that combines predictions from all of the methods and has an MCC of 0.40

over the Missense3D data set), easily outperforming all the individual methods.
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The second hypothetical meta prediction only involves Packpred, FADHM and Missense3D as
these were the methods that did consistently well over all different data sets and amino acids.
Here we considered the method that best predicted wild type-mutant pairs. Further, we segregated
these amino acid pairs into different depth categories - exposed to solvent (depth < 5 A),
intermediate (depth between 5 to 8 A) and buried (depth > 8 A). Our meta prediction then chose
the best performing method for a particular pair at a particular depth level. For instance, the wild
type-mutant pair A—D, Packpred has the best predictions in an exposed environment, FADHM in
the intermediate environment and Missense3D in the buried environment (Figure 3). In case of a
tie between methods, the one with the better MCC was chosen. By thus combining the strengths
of the three methods the MCC of the predictions rises to 0.51 for the Missense3D data set. An
analysis to rationalize/explain why certain methods are best for certain pairs/environments did not
yield any illuminating results. It is clear however that there is some degree of complementarity in
these different methods and perhaps a more rigorous treatment of the results from the individual

methods could further improve prediction accuracy.
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Figure 3: Best performing methods for each wild type-mutant amino acid pair at different depth

levels.

We would like to emphasize here that the purpose of exploring these meta predictions was to
simply test the extent to which we could possibly improve results with such an approach. In a
more rigorous implementation of this method we would have to train and test the meta-predictor

separately, something that is beyond the scope of this study. Choosing the best results from our
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testing set, as we have done here, merely represents the possible limit to which we could improve

on predictions.

4.3.4 Rank ordering the degree of phenotypic change by mutations

We wanted to investigate if the Packpred scores are indicative of the degree of change/disruption
caused by a mutation. The degree of change is measured experimentally by the mutational
sensitivity score, which categorizes each mutation into one of 4 and 8 levels in T4-lysozyme and
CcdB data sets respectively. We chose to use Spearman’s rank correlation coefficient (SCC) to
measure the performance of rank-ordering, as it makes no assumption on linear relationship

between the scores and the phenotypical change. SCC is calculated as

B 6> d’

=1 =
P nin"-1|

(6)

where d is the difference between the actual and the predicted ranks of a mutation, and # is the
number of levels. The SCC for T4 and CcdB data sets is -0.48 and -0.54 respectively. At best, this

correlation is weak and indicates that these scores could be further improved.

4.3.5 Assessing robustness of Packpred

Lastly, we assessed the robustness of Packpred. For this, we changed the training set to include
only 149 point mutations that result for a single nucleotide change in codons. The Missense3D
dataset is made of only these 149 different mutations. We created three additional training sets
that all contain instances of only these 149 mutations. The first contains mutations from only the
T4 lysozyme dataset, the second set contains from T4 in a 50:50 ratio of neutral:deleterious
mutations, and the third set has mutations from the T4 and CcdB datasets in the ratio 50:50 of
neutral:deleterious. The ratio was chosen based on the neutral:deleterious ratio of the Missense3D
test set. For every combination of the training set, we obtained different optimal weights for the
features of the linear combination . Interestingly, the accuracy of the method as gauged by the

MCC value over the Missense 3D dataset was consistently between 0.34 — 0.35.
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4 .4 Discussions

In this study, we have developed a method to predict the effect of missense mutations on the
structure and function of a protein. We believe that such predictions could be tested by assaying
the protein for its function. Our method, Packpred, is constructed in a way that it is sensitive to
structural changes effected by the mutation as well as any functional changes it may effect
without perturbing the structures. To assess the impact of the mutation on the structure (and hence
the function) of the protein, we devised a multi-body clique statistical potential. This statistical
potential evaluates the strength of the interaction in a local neighborhood (amino acid clique). To
assess the impact of mutation, we consider the same residue neighborhood environment while
replacing the wild type amino acid with the mutant. The score of the clique with the wild type
residue and with the mutant is computed. An inferior score for the mutant in comparison to the
wild type would be indicative of a destabilizing mutation. The structural stability of introducing
the mutant residue is also gauged by a depth dependent substitution matrix, FADHM, whose
efficacy at detecting the fate of mutations we had previously benchmarked and tested. To account
for functional changes caused by the mutation, we invoke evolutionary information from a
multiple sequence alignment using Shannon entropy. The more conserved the position, the more
likely it is going to affect function. These different scores are taken together in a linear
combination, whose coefficients were optimized using the T4-lysozyme saturation mutagenesis
data set of ~2,000 mutation.Packpred was tested on two different data sets, another saturation
mutagenesis data set (CcdB) and the Missense3D data set. Its performance on these datasets was
also compared to six other methods including FADHM, Missense3D, Dynamut2.0, mCSM,
i-mutant2.0 and SDM. With an exception of the CcdB data set where it marginally underperforms
FADHM, Packpred clearly outperformed all other methods on all data sets. Among the methods,
Packpred balances well between predicting true positives and true negatives (neutral and disease
causing mutations) and hence has the best MCC values. Packpred has the best accuracy and is
close to the best specificity, precision and F1. It loses out to the best methods in these measures as
well as on sensitivity as methods such as mCSM predict a disproportionately large number of
negatives. When the performance of the different methods is compared on a (wild type) amino
acid by amino acid basis, Packpred performs consistently well, with prediction accuracies never
falling below 60% while maintaining an average of 68%, which is easily the best among the

methods tested. Qualitatively, a similar picture also emerges when the results are broken down
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into wild type-mutant amino acid pairs.

We also investigated whether Packpred (and other methods) preferred certain types of structures
over others. No clear deduction could be made from these analyses. However, there was one trend
that could be considered for further improvements — Packpred, similar to Missense3D and
FADHM performed the worst in the intermediate amino acid depth environment. Mutational
effects in exposed and buried (according to residue depth) environments were better predicted.
Perhaps, the intermediate depth levels need to be further stratified, which in the case of Packpred
would be reflected in the FADHM matrix values as well as in the clique statistical potential.
There is scope of improvements for cases where Packpred was unable to accurately predict the
fate of 72 mutants that were all accurately called by the other six methods. We could also dissect
the 23 correct predictions that Packpred made that were missed by all other methods to determine

the relative strength of Packpred in comparison to the other methods.

Packpred relies on the sequence and structure of a given protein to predict the effect of a
mutation. These predictions could likely be impacted by the accuracy/resolution of the protein
structure. The two structural features that Packpred extracts from structures are amino acid depth
and structural neighbors. To whatever extent these two features get affected by the
quality/accuracy/resolution of the structure would predicate the impact it would have on the final
predictions. For the structures in the Missense3D dataset, they all have resolutions of 2 A or
better. For this set there appears to be no correlation between the accuracy of prediction and
resolution of the structure (Figure4). In an independent study we are exploring the use of
homology models along with low resolution structures from the PDB to quantify the impact of
structural accuracy on Packpred predictions. We are also planning to run short MD simulations to
extract snapshots of different conformations and use these snapshots for predictions. Such an
exercise would help in better predictions for proteins that are highly flexible, such as the p53

protein.
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Packpred

Packpred has limitations in several areas, one of which is its high number of false positive
predictions which also affects its specificity. Other methods have higher specificity but
underperform in the sensitivity by over predicting true negatives. Packpred also has less true
positives as compared to FADHM and Missense3D data set indicating potential for improvement.
Apart from MCC and sensitivity, Packpred has scores higher than 0.65 in all other metrics
indicating its overall balanced performance. To assess which native amino acids predictions could
be improved, we calculated MCC based on the prediction of native amino acids. We also further
assessed and identified Packpred prediction accuracy for native-mutant pairs across different
depths. Another area of improvement is the clique statistical potential that has many tunable
parameters such as the number of amino acids in the clique, cut off distance and definitions of
what constitutes a ‘contact’ between residues, etc. Packpred could improve by investigating these
aspects too and this would form an independent study in itself. Similarly, further tweaks to the
FADHM matrix, as briefly discussed above, could also possibly improve overall prediction
accuracy. Shannon entropy accounts for the degree of variation at a given site/position, and does
not change depending on the type of mutation. In our method, we use Shannon entropy in
conjunction with the clique potential and FADHM to get a wholesome picture of sequence and
structure conservation. However, it is likely that a more nuanced version of the entropy measure
and/or other scores for conservation may help get more accurate predictions. In its current
implementation, Packpred categorizes mutations as being neutral or destabilizing. When we tried
to correlate the score with a discretized value of the function, the correlations were around -0.5.

Perhaps, with some of the improvements discussed above this correlation would also improve.
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One important observation from our findings is that of the 4099 mutations, 4036 were correctly
called by at least one of the methods. There exists great complementarity between the methods
tested here. We were tempted to then use two simple meta prediction methods. We designated the
predictions involving a particular wild type amino acid or a wild type-mutant amino acid pair to
the method that best predicted this type. Such a simple minded approach gave us MCCs of 0.40
and 0.51 for the amino acid and the amino acid pair type predictions respectively, where the best
predicting method, Packpred, had an MCC of 0.36 (Missense3D data set). It is conceivable that a
different method of combining the results from these different methods could vastly increase the

accuracy of predicting the functional fate of single amino acid changes.

We assessed the robustness of Packpred by training it on the T4 set and a combination of the T4
and CcdB saturation mutagenesis data sets. Somewhat surprisingly, each of the training sets gave
us different optimal values of feature weights. These different weights did not however affect the
overall performance of the method on the Missense3D testing set. In earlier results too, we had
observed that different weight combinations gave rise to similar performances on the training set.
We believe that one of the primary reasons for the different optimal weights is the fact the three
features in Packpred do not all affect predictions at the same level of granularity. The statistical
potential and the substitution matrices (FADHM) give a score for particular mutations. Whereas,
the Shannon entropy score gives a single value for a position, regardless of the type of mutation.
Given the myriad of different environments and levels of conservation in different positions of the
protein, the contribution due to each of these features is not uniformly the same across a protein.
The positive aspect of these predictions is that, despite the lack in consensus of optimal values of
the different features, the overall prediction accuracy does not appear to suffer. This is probably
indicative of the fact that the features of the algorithm are important and perhaps a different way

of combining these features may yield consistently better results.

In this chapter, we have presented our work on predicting the effects of mutation using a linear
equation based approach. Specifically, we have used only 3 features in the linear equation. We
took this simplistic approach to be better able to reason about the effect of mutations. However, it
is possible that methods that use higher order equations may perform better. Including more
features and then using machine learning based methods could be one of the things tried in the
future. In addition to increasing the features, the training dataset can also be increased. However,

currently we have only limited data for training the machine learning / deep learning models.
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Chapter 5

Designing putative inhibitory small molecules against the

Nipah virus proteins

e Selection of small drug-like molecules for docking

e Selection of target proteins from the Nipah virus

e Virtual screening using two distinct software

e Jury system for higher confidence in the putative binding small molecules

e MD simulations and binding free energy calculations to support the findings

The docking studies were done by Tejashree R. Kanitkar. The analysis, MD simulations and
binding free energy calculations for the small molecule inhibitors were done in collaboration with

Neeladri Sen and are a part of his thesis also.
Published - Sen N*, Kanitkar TR*, Roy AA*, Soni N, Amritkar K, Supekar S, Nair S, Singh G,
Madhusudhan MS. Predicting and designing therapeutics against the Nipah virus. PLoS Negl

Trop Dis. 2019 Dec 12;13(12):e0007419. doi: 10.1371/journal.pntd.0007419. PMID: 31830030;

PMCID: PMC6907750.

[* equal contributions]
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5.1 Introduction

Nipah virus(NiV) is a RNA virus belonging to the genus Henipavirus of the Paramyxoviridae
family[121]. The RNA is non-segmented and encodes nine proteins. Six of the nine proteins are
structural proteins, namely, glycoprotein (G), fusion protein (F), phosphoprotein (P),
nucleoprotein (N), matrix protein (M), and the RNA polymerase (L). The remaining three, C, V,
and W are functional proteins. The virus attaches itself to the ephrine receptors of the host cell
through its G protein and the fusion is mediated by the F protein. The F protein changes its
conformation from the pre-fusion state to the post fusion state that results into the fusion of the
virus with the host cells[122]. The N protein and P protein form the NP complex that binds with
the viral RNA to form nucleocapsid that is used for transcription and replication of the virus. The
M protein plays an important role in the assembly of newly generated proteins into viral particles.
The M protein migrates towards the host cell membrane marking the location of budding and
recruiting other necessary components to this site[123]. The three non structural proteins, V, W
and C are all derived from the gene of P protein either by editing the RNA or by using an
alternate open reading frame. All of these proteins are known to participate and inhibit the
interferon signaling[124].

The initial outbreaks of the Nipah Virus(NiV) were reported in Malaysia and Singapore in 1999.
The outbreak was observed in pigs and humans. Later, outbreaks were also reported in
Bangladesh and India[125]. The most recent outbreak was seen in 2018, in an Indian state of
Kerala[121], where the virus claimed the lives of 21 infected people. NiV has a high mortality
rate of more than 70%, making it essential for designing therapeutics that would inhibit the viral
proteins and the virus.

Small molecules that bind to the target proteins are computationally predicted using docking
softwares that allows sampling of thousands of small molecules within a small amount of time,
through a process called as virtual screening. Such virtual screens play a crucial role in the
process of drug development. Broadly, docking softwares performs two steps to predict the
putative binding molecules, first, sampling various conformations or poses of the small molecule
and second, scoring the generated pose with respect to the target protein. The sampling step of
these docking softwares use a variety of approaches like MD simulations, Monte Carlo methods,
genetic algorithms, fragment based methods and many others[22]. The docking methods have
shown tremendous success and potential for their application to other biomolecules[126].

In this study, we attempted to predict drug-like small molecules that could potentially bind and
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inhibit the activity of the NiV proteins. We performed virtual screening of a library of drug-like
small molecules on five of the NiV proteins for which X-ray crystal structures or good quality
models were available. We used 2 different software for the virtual screens, giving us higher
confidence in our results. Additionally, we performed MD simulations of the top scoring small

molecules and calculated the binding free energy to support our findings.

5.2 Methods

5.2.1 Prediction of putative small molecules that can bind to N1V proteins:

Docking was used to identify putative small molecules that can potentially bind and inhibit the
activities of the NiV proteins. In this exercise, NiV proteins (G, N, F, P and M proteins) that had
crystal structures or models built from templates with high identity (>*90%) and high coverage (>
80%) were used as targets for ligand screening. The screening library consisted of a 70%
non-redundant set of 22,685 ligands constructed from ~13 million clean drug like molecules of
the ZINC database The screening library consisted of 22685 ligands that were the 70%
non-redundant set of ~13 million clean drug like molecules of the ZINC database[127, 128]. The
70% library was chosen as a practical measure to ensure wide coverage. Further, we envisage that
during experimental trials all structurally similar small molecules to our predicted hits would be
tested. The binding pockets for docking on the targets were predicted using the DEPTH
server[42, 119]. The parameters of DEPTH included a minimum number of neighborhood waters
set to 4 and the probability threshold for binding site of 0.8. Evolutionary information was also
included by the server in binding site prediction. The druggability of the binding pocket was
predicted using PockDrug[129] and CavityPlus[130], but no consensus prediction could be
obtained (Table 1). Hence the druggability of the pocket was not taken into consideration during
docking. Docking was performed using Autodock4[18], and DOCK®6.8[19]. The target proteins
were prepared for docking by Autodock4, by adding missing polar hydrogen atoms and Gasteiger
charges. The ligand docking site, marked by affinity grids, was generated using the Autogrid
module of Autodock. The center of the grid, number of grid points in X, Y, and Z directions and
separation of grid points were chosen based on the predicted binding pockets using the ADT
viewer from MGL tools[18]. The number of Genetic Algorithm runs was set to 20. The final
energies reported by Autodock4 were used for evaluation and selection of the putative leads. The

target proteins were prepared for docking by DOCK®6.8 using Dock Prep tool [19] from
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Chimera[131]. Missing hydrogen atoms were added to the target proteins using Chimera. Charges
on atoms of the protein were determined using AMBER. Molecular surface of the target was
generated using the DMS tool from Chimera. The sphgen program from DOCK®6.8 was used to
generate spheres from the molecular surface. The cluster of spheres were selected according to
the binding sites predicted by DEPTH. The grid box and grid were created by showbox and grid
programs respectively. Flexible ligand docking was performed using DOCK®6.8. The final

energies reported by DOCK6.8 were used for evaluation and selection of the putative leads.

5.2.2. Accessing the stability of small molecules against the NiV proteins:

The 13 small molecules were predicted with high confidence to bind different NiV proteins.
Details of the procedures for modeling/predicting small molecule inhibitors are stated in the
results section. MD simulations were carried out in triplicates for all four predicted
protein-peptide inhibitor complexes. The simulations were carried out using GROMACS[26, 80]
with the Amber99SB-ILDN force field[132]. Parameters for the small molecules were generated
using Antechamber[133]. The Amber99SB-ILDN force field has been used for the MD
simulations of protein-peptide and protein-ligand complexes extensively[134-136]. In an earlier
study, we used the same force field to study various protein-ligand interactions and validated one
such purported complex experimentally[137]. In the cases where the small molecule ligand
dissociated from the binding site, we re-simulated the system using the CHARMM?27 force field,
another popularly used molecular mechanics package. We did the second simulation to ascertain
that binding was indeed weak. Parameters for the small molecules in the CHARMM27
simulations were generated using SwissParam[138].

A water box whose sides were at a minimum distance of 1.2 nm from any protein atom was used
for solvating each of the systems. Sodium or chloride counter ions were added to achieve charge
neutrality. Electrostatic interactions were treated using the particle mesh Ewald sum method[82]
and LINCS[139] was used to constrain hydrogen bond lengths. A time step of 2 fs was used for
the integration. The whole system was minimized for 5000 steps or till the maximum force was
less than 1000 kJ/mol/nm. The system was then heated to 300K in an NVT ensemble simulation
for 100 ps using a Berendsen thermostat[83]. The pressure was stabilized in an NPT ensemble
simulation for 100 ps using a Berendsen barostat. The systems were simulated (NPT) for a

maximum of for 50 ns where pressure was regulated using the Parrinello-Rahman barostat[84].
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Structures were stored after every 10ps. The temperature, potential energy and kinetic energy
were monitored during the simulation to check for anomalies.

Free energy of binding of the putative small molecules provides an important quantitative
description of its efficacy. In this study, the extensive MD simulations of protein-inhibitor
complexes were post-processed to obtain binding free energy estimates using the molecular
mechanics Poisson-Boltzmann surface area (MM/PBSA) approach[140, 141]. The MM/PBSA
method employs an implicit solvation model to estimate the free energy of binding by evaluating
ensemble averaged classical interaction energies (MM) and continuum solvation free energies
(PBSA) of the protein-ligand complex conformations from the MD trajectories. The MM/PBSA
calculations of the protein-small molecule inhibitors were calculated based on the last 40 ns
trajectory with snapshots obtained after every 1000 ps, totalling to 40 snapshots. The MD
snapshots were energy minimized for 2000 steps before evaluation of interaction and solvation
free energies. The protein and solvent were modeled with dielectric constants of € =2 and & =80,
respectively. APBS suite[142] and GMXPBSA[143] were used for implicit solvent calculations.
In this study, we attempted to calculate the entropic estimate of binding using the interaction
entropy formalism[144]. However, converged entropic values with reasonable error estimates for
the trajectories could not be obtained, which is often the case when evaluating entropic
contributions from molecular simulations. We, therefore, neglected entropic contributions to the
binding free energies, as estimated entropy change upon binding is often negligible and can be
ignored for relative binding free energies calculations[141]. The enthalpies of binding obtained

from MM/PBSA calculations are reported as binding energies for the complexes.

5.3 Results

5.3.1 Prediction of putative small molecules that can bind to N1V proteins:

The crystal structures of the G, N, P and F proteins were used in docking studies to find plausible
small molecule inhibitors. A homology model of the M protein was also included in the docking
exercise as it was based on a template with high (94%) sequence identity and coverage (88%). We
were conservative with the docking approach and did not use our models of the structures of the

W and V proteins in this exercise. Even though V and W proteins share a large portion of their
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sequence with P, there was no crystal structure of P corresponding to the identical regions of V
and W proteins (except residue no 1-38, which is too small a stretch for binding site prediction).
The V and W protein models cover ~60% of the whole protein length (297 and 266 residues of a
total length of 456 and 450 for V and W respectively) in discontiguous fragments, sometimes
with target-template sequence identities of ~30%.) (http://cospi.iiserpune.ac.in/Nipah/)

First, we predicted the plausible binding pockets on each of the proteins using the DEPTH server
that we had earlier benchmarked for binding site prediction accuracy. A total of 12 binding
pockets were predicted in G (2), N (4), P (2), F (1) and M (3) proteins (Table 1). Two of the
predicted binding pockets, one on the M protein and another on the G protein, are on the dimer
interface and host protein (ephrin receptor) binding interface respectively. As mentioned in
Methods section previously (Section 5.2), these sites are important drug targets. All 12 binding
sites were used to screen 22685 drug like molecules from the 70% nonredundant ZINC database
of clean drug like molecules using two different docking tools, DOCK6.8 and Autodock4. The
docking tools provide a docking energy score that was used to select possible high affinity
binders. In the absence of an objective measure or threshold to determine strong binders, we
chose the top 150 best scoring ligands for each of the pockets from both the docking tools. We
then compared the two lists for common molecules. 146 molecules were identified by both
Dock6.8 and Autodock4 for G (9), N (56), P (45), F (10) and M (46) proteins (Table 2). The grid
scores for the predicted complexes range between -71 to -32 units for DOCK®6.8. The
corresponding Autodock4 binding free energies range between -14 kcal/mol to -6 kcal/mol (Table

2).

Table 1: List of pocket lining residues for each pocket of NiV Proteins. The residue name is

followed by the residue number. The chain id has been depicted after the dot.

NiV protein Pocket | Pocket lining residue numbers PockDrug | CavityPlus

Glycoprotein | PGl F458.A, W504.A, Q559.A, D219.A, Y280.A, | 0.43 Druggable

L305.A, Q490.A

PG2 P500.A, G489.A, R435.A, W479.A, S432.A, | 0.47 Less druggable
E430.A, R344.A, K376.A, F375.A, N378.A,
S398.A, P383.A
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Nucleoprotein | PN1 S67.A, A65.A, V58.A, I131.A, LI128.A, [0.99 Less druggable
E124.A, R36.A, F38.A, K34.A

PN2 K69.A, N219.A, Q223.A, S224.A, L225.A, | 0.99 Undruggable
K229.A, F230.A, I35.A

PN4 R218.A, N219.A, S222.A, R228.A, Q319.A, | 0.99 Undruggable
E316.A,1176.A, K178.A

PN5S R307.A, Y310.A, V232.A, L314.A, E315.A, |1 0.99 Undruggable
S226.A, D94.A, E233.A, L225.A

Phosphoprotei | PP1 T562.B, K559.B, V556.B, N561.C, T562.C, | 0.43 Less druggable
n T566.C, E568.C, 1567.C
PP2 L517.C, E514.C, V516.C, N522.C, D482.B Pocket not | Undruggable
identified
Fusion protein | PF2 V39.B, Y30.B, H29.B, Y432.B, L433.B, | 0.88 Undruggable
N380.B, K40.B
Matrix protein | PM1 E195.A, H238.A, P332.A, Q328.A, L207.A, | 0.33 Druggable

M236.A, D304.A, M188.A

PM2 F151.A, K143.A, WI141.A, Y62.A, L181.A, | 0.96 Druggable
Y187.A, M188.A, L274.A, D304.A

PM3 L312.A, W314.A, L309.A, F235.A, D213.A, | 0.96 Less druggable
M236.A, F266.A

To corroborate our predictions, we measured the RMSD between the same ligand (in the common
list) as docked by the two different tools (top 5 poses predicted by Autodock4 were compared to
the top pose predicted by DOCKS6.8), after superimposing the proteins. This measure is referred
to as RMSD lig. 15 unique drug-like molecules had an RMSD _lig of less than 0.15 nm between
their docked poses.

96




Table 2: List of the ranks and energy values of the small drug like molecules that were predicted
in the top 150 scoring models by both DOCK6.8 and Autodock4. RMSD 1 —RMSD 5 are the
RMSDs of the 5 best Autodock4 poses with the best scoring Dock6.8 pose. The least RMSD is
depicted in bold. Pocket number indicates pockets from Autodock4. Some of the Autodock4
pockets have been subdivided by DOCK6.8, which indicates the subsections in each pocket
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name 1D er ules ZINC ID DOCK Autodock4 DOCK®6.8 Autodock RMSD_1 (nm) | RMSD_2(nm) RMSD_3(nm) RMSD_4(nm) RMSD_5(nm)

Glycoprot

ein 3D11 PG1 4 ZINC63411510 10 60 -58.1569 -8.73 0.8 0.797 0.809 0.807 0.797
PG1 ZINC93305816 145 129 -48.6263 -8.55 0.799 0.8 0.803 0.876 0.861
PG1 ZINC63857604 108 56 -49.4608 -8.76 0.695 0.698 0.697 0.695 0.697
PG1 ZINC72264974 124 120 -49.0663 -8.57 1.033 0.986 0.986 1 1.005
PG2 5 ZINC04580552 132 7 -42.6248 -8.97 2.26 2.259 2.293 2.312 2.293
PG2 ZINC23214639 124 40 -42.7004 -8.43 2.395 2.373 2.393 2.349 2.348
PG2 ZINC65407076 128 23 -42.6745 -8.64 2.209 2.211 2.232 2.225 2.246
PG2 ZINC93655460 75 128 -43.7118 -8.09 2.271 2.267 2.263 2.271 2.265
PG2 ZINC94217163 60 150 -44.5727 -8.04 2.295 2.293 2.287 2.3 2.306

Nucleopr

otein 4C06 | PN1 1 ZINC34083937 138 74 -35.9687 -8.27 1.262 1.26 1.252 1.254 1.239
PN1 10 ZINC42750806 48 50 -36.7541 -8.41 0.432 0.397 0.648 0.263 0.251
PN1 ZINC02511792 62 62 -36.4557 -8.33 0.333 0.336 0.332 0.32 0.334
PN1 ZINC34083937 52 73 -36.6097 -8.27 0.64 0.637 0.64 0.601 0.623
PN1 ZINC05382414 68 147 -36.3915 -8.09 0.231 0.247 0.205 0.179 0.193
PN1 ZINC16545537 107 5 -35.6182 -9.08 0.147 0.145 0.147 0.16 0.158
PN1 ZINC16954338 141 15 -35.1782 -8.81 0.625 0.482 0.602 0.125 0.124
PN1 ZINC63959595 25 139 -37.5303 -8.1 0.149 0.142 0.222 0.17 0.199
PN1 ZINC92484162 140 86 -35.1959 -8.23 0.605 0.608 0.602 0.6 0.606
PN1 ZINC92722391 142 40 -35.1454 -8.46 0.647 0.621 0.654 0.642 0.667
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PN1 ZINC92722539 125 20 -35.3924 -8.7 0.575 0.574 0.584 0.268 0.271
PN2 15 ZINC94258465 24 96 -36.1295 -7.08 0.702 0.693 0.707 0.706 0.705
PN2 ZINC94258558 33 79 -35.8008 -7.17 0.081 0.074 0.074 0.096 0.076
PN2 ZINC86657759 64 54 -34.8881 -7.31 0.505 0.509 0.518 0.506 0.508
PN2 ZINC73641145 6 28 -37.4871 -7.6 0.145 0.148 0.261 0.149 0.142
PN2 ZINC95022396 98 42 -34.3319 -7.43 0.672 0.674 0.688 0.68 0.661
PN2 ZINC77262630 4 50 -38.614 -7.35 0.275 0.187 0.232 0.221 0.255
PN2 ZINC72264974 91 47 -34.3793 -7.36 1.115 1.094 1.085 1.103 1.171
PN2 ZINC04580552 10 19 -36.8562 -7.79 0.375 0.376 0.286 0.272 0.442
PN2 ZINC72107957 106 8 -34.1858 -8.16 0.508 0.45 0.455 0.761 0.722
PN2 ZINC85191592 1 115 -36.8475 -7.02 0.685 0.691 0.71 0.747 0.458
PN2 ZINC91932783 133 61 -34.0056 -7.26 0.173 0.173 0.072 0.167 0.503
PN2 ZINC92349362 22 125 -36.1803 -6.99 0.323 0.353 0.362 0.308 0.334
PN2 ZINC94927184 2 148 -39.6966 -6.92 0.647 0.657 0.656 0.553 0.659
PN2 ZINC94937158 128 60 -34.0391 -7.28 0.675 0.699 0.733 0.7 0.72

PN2 ZINC95355539 129 94 -34.0157 -7.1 0.778 0.77 0.785 0.765 0.678
PN2 8 ZINC16755504 113 137 -36.6964 -6.96 1.962 1.949 2.367 2.359 2.368
PN2 ZINC72129411 122 44 -36.5315 -7.41 1.504 1.516 1.531 1.625 1.51

PN2 ZINC72133204 52 141 -37.8067 -6.94 1.843 1.833 1.843 1.836 1.844
PN2 ZINC72388943 144 35 -36.2274 -7.52 1.889 1.89 1.895 1.888 1.896
PN2 ZINC91932783 136 62 -36.285 -7.26 2.603 2.602 2.631 2.66 2.95

PN2 ZINC94217163 147 87 -36.2132 -7.15 1.59 1.587 1.589 1.57 1.301
PN2 ZINC94927184 2 150 -43.1395 -6.92 1.91 1.947 1.869 1.87 2.021
PN2 ZINC95022396 132 42 -36.3742 -7.43 2.006 2.014 2.014 2.012 2.016
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PN2 1 ZINC14060343 38 128 -37.0963 -6.99 1.446 1.427 1.443 1.435 1.471
PN2 ZINC35935889 135 2 -35.5389 -8.47 2.698 2.714 2.406 2.483 1.551
PN2 ZINC72148214 115 55 -35.7789 -7.29 1.65 1.686 1.697 1.621 1.498
PN2 ZINC72264974 114 46 -35.7853 -7.36 1.545 1.501 1.502 1.545 1.645
PN2 ZINC94629031 103 112 -35.8935 -7.03 2.716 1.894 1.885 1.875 1.887
PN2 ZINC94927184 29 150 -37.4455 -6.92 1.542 1.596 1.543 1.618 1.73

PN2 ZINC73641145 61 28 -36.677 -7.6 1.368 1.373 1.351 1.356 1.369
PN2 ZINC72129411 32 44 -37.2583 -7.41 1.68 1.693 1.696 1.686 1.682
PN2 ZINC72107957 87 8 -36.2157 -8.16 1.322 1.401 1.418 1.5638 1.529
PN2 ZINC77262630 9 49 -38.7278 -7.35 1.378 1.431 1.442 1.432 1.418
PN2 ZINC94937158 90 60 -36.0595 -7.28 1.436 1.409 1.393 1.404 1.401
PN4 21 ZINC16932105 14 32 -40.6128 -9.07 0.917 0.917 0.92 0.533 0.524
PN4 ZINC12362922 10 25 -41.366 -9.15 0.785 0.769 0.139 0.147 0.142
PN4 ZINC92722391 45 82 -38.7467 -8.61 0.408 0.394 0.411 0.497 0.407
PN4 ZINC00149964 57 29 -38.0889 -9.1 0.6 0.595 0.584 0.605 0.577
PN4 ZINC06361369 81 24 -37.5147 -9.18 0.837 0.724 0.781 0.718 0.842
PN4 ZINC02819777 65 5 -37.9025 -9.73 0.685 0.701 0.65 0.679 0.664
PN4 ZINC04829362 21 97 -40.3007 -8.53 0.085 0.121 0.119 0.119 0.115
PN4 ZINC04085190 39 33 -38.9491 -9.01 0.467 0.492 0.48 0.476 0.481
PN4 ZINC00814199 8 64 -41.434 -8.77 0.553 0.51 0.514 0.508 0.526
PN4 ZINC92179996 24 2 -39.9639 -9.82 0.637 0.64 0.638 0.613 0.599
PN4 ZINC05378687 86 142 -37.3851 -8.36 0.291 0.338 0.327 0.299 0.243
PN4 ZINC05603964 104 14 -36.9289 -9.38 0.772 0.745 0.746 0.732 0.752
PN4 ZINC08913821 27 121 -39.8119 -8.42 0.773 0.777 0.702 0.855 0.354
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PN4 ZINC26481080 106 9 -36.9002 -9.49 0.488 0.47 0.491 0.486 0.487
PN4 ZINC59209390 5 122 -43.6131 -8.42 0.368 0.36 0.334 0.336 0.378
PN4 ZINC67489659 108 108 -36.8403 -8.45 0.26 0.245 0.235 0.26 0.274
PN4 ZINC72165678 87 148 -37.3739 -8.34 0.187 0.184 0.201 0.205 0.195
PN4 ZINC87440345 139 102 -36.3448 -8.5 0.748 0.737 0.724 0.734 0.375
PN4 ZINC92722404 22 116 -40.2784 -8.42 0.312 0.319 0.293 0.285 0.382
PN4 ZINC92722539 114 131 -36.7189 -8.4 0.762 0.507 0.491 0.531 0.603
PN4 ZINC94725877 115 50 -36.7033 -8.86 0.261 0.274 0.275 0.266 0.258
PN5 7 ZINC49587767 57 81 -36.7268 -6.59 0.655 0.592 0.631 0.67 0.62
PN5 ZINC04334885 21 35 -37.8931 -6.83 0.744 0.742 0.736 0.762 0.732
PN5 ZINC72107957 87 6 -36.2157 -7.65 0.664 0.66 0.588 0.506 0.524
PN5 ZINC73641145 61 52 -36.677 -6.73 1.32 1.444 1.372 0.804 0.741
PN5 ZINC35935889 135 2 -35.5389 -8.22 0.618 0.597 0.579 0.592 0.575
PN5 ZINC72148214 115 67 -35.7789 -6.66 0.67 0.682 0.676 0.615 0.733
PN5 ZINC95388070 106 145 -35.8458 -6.4 0.955 0.974 1.244 1.245 1.2

Phospho

protein 4N5B | PP1 16 ZINC85650631 79 34 -34.2603 -6.71 0.168 0.164 0.233 0.232 0.167
PP1 ZINC94927184 19 85 -35.8097 -6.55 0.176 0.19 0.177 0.395 0.385
PP1 ZINC95384460 83 49 -34.1442 -6.65 0.327 0.333 0.33 0.321 0.326
PP1 ZINC72462705 1 90 -39.3896 -6.54 0.195 0.167 0.13 0.178 0.121
PP1 ZINC86098248 93 65 -34.0772 -6.6 0.105 0.108 0.109 0.108 0.107
PP1 ZINC67884980 36 23 -34.97 -6.79 0.204 0.195 0.197 0.228 0.227
PP1 ZINC77285117 38 41 -34.8839 -6.69 0.144 0.174 0.172 0.169 0.148
PP1 ZINC95022396 52 89 -34.6239 -6.54 0.261 0.264 0.256 0.261 0.266
PP1 ZINC13016500 105 144 -33.9586 -6.4 0.22 0.217 0.225 0.215 0.222
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PP1 ZINC24759441 128 149 -33.6575 -6.38 0.134 0.133 0.134 0.133 0.133
PP1 ZINC32565459 97 138 -34.0351 -6.41 0.348 0.35 0.339 0.339 0.338
PP1 ZINC65370580 70 147 -34.3435 -6.39 0.692 0.694 0.687 0.692 0.689
PP1 ZINC65425676 65 139 -34.3686 -6.41 0.389 0.393 0.403 0.379 0.365
PP1 ZINC77379208 125 16 -33.666 -6.87 0.58 0.582 0.588 0.586 0.575
PP1 ZINC89195159 44 125 -34.7283 -6.44 0.33 0.343 0.328 0.343 0.325
PP1 ZINC89201433 104 127 -33.9733 -6.44 0.21 0.207 0.201 0.189 0.209
PP1 11 ZINC20534353 37 75 -34.0514 -6.57 0.31 0.305 0.301 0.303 0.282
PP1 ZINC77379208 66 16 -33.3778 -6.87 0.191 0.215 0.214 0.2 0.197
PP1 ZINC94927184 20 83 -35.1329 -6.55 0.589 0.564 0.588 0.594 0.537
PP1 ZINC65405061 40 55 -33.9598 -6.62 0.236 0.239 0.239 0.24 0.242
PP1 ZINC72462705 9 89 -36.1022 -6.54 0.14 0.227 0.2 0.229 0.198
PP1 ZINC77285117 12 39 -35.8396 -6.69 0.177 0.136 0.152 0.13 0.18

PP1 ZINC24759441 82 150 -33.1239 -6.38 0.144 0.144 0.144 0.144 0.143
PP1 ZINC32565459 35 138 -34.2068 -6.41 0.318 0.33 0.32 0.32 0.319
PP1 ZINC72133204 133 26 -32.4142 -6.75 0.231 0.233 0.234 0.231 0.231
PP1 ZINC86098246 114 72 -32.6182 -6.58 0.234 0.185 0.208 0.226 0.21

PP1 ZINC95448845 88 149 -33.0482 -6.38 0.53 0.572 0.452 0.509 0.547
PP1 4 ZINC72462705 10 89 -62.9671 -6.54 7.624 7.591 7.638 7.599 7.632
PP1 ZINC94927184 7 84 -64.3531 -6.55 7.708 7.709 7.716 7.587 7.584
PP1 ZINC31394118 90 111 -56.0937 -6.48 7.653 7.661 7.661 7.649 7.649
PP1 ZINC72438392 104 71 -55.1363 -6.59 7.514 7.522 7.517 7.522 7.512
PP2 24 ZINC04722076 5 30 -68.4787 -9.91 0.515 0.515 0.515 0.515 0.515
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PP2 ZINC71260677 70 34 -56.161 -9.77 0.218 0.217 0.213 0.208 0.209
PP2 ZINC94927184 7 49 -64.2946 -9.54 2.032 2.055 2414 2.317 2423
PP2 ZINC67895025 62 92 -56.8376 -9.25 0.66 0.672 0.664 0.66 0.66
PP2 ZINC19362297 74 67 -55.845 -9.41 0.301 0.299 0.299 0.314 0.299
PP2 ZINC01584645 10 35 -62.4865 -9.76 0.943 1.031 1.027 1.014 1.073
PP2 ZINC86094832 29 73 -59.68 -9.38 0.507 0.346 0.369 0.658 0.523
PP2 ZINC86095599 34 97 -59.0738 -9.21 0.118 0.165 0.155 0.133 0.133
PP2 ZINC92209154 35 29 -59.0716 -9.92 0.632 0.638 0.62 0.748 0.787
PP2 ZINC95221243 47 33 -57.9412 -9.77 0.949 0.955 0.961 0.978 0.957
PP2 ZINC91252717 2 1 -71.4697 -14.3 0.437 0.438 0.427 0.43 0.431
PP2 ZINC35605802 38 15 -58.9016 -10.29 0.114 0.115 0.111 0.116 0.116
PP2 ZINC72143751 91 27 -55.1678 -10.11 2.07 2.07 2.072 2.075 2.071
PP2 ZINC72462705 14 24 -61.4933 -10.16 0.955 0.96 0.866 0.887 0.89
PP2 ZINC19320365 132 16 -53.0723 -10.25 0.304 0.304 0.303 0.303 0.305
PP2 ZINC19328716 59 105 -56.9384 -9.16 0.241 0.233 0.257 0.246 0.212
PP2 ZINC36108799 122 109 -53.5489 -9.14 0.249 0.249 0.259 0.259 0.249
PP2 ZINC39417829 48 113 -57.897 -9.13 0.422 0.368 0.496 0.501 0.498
PP2 ZINC41206867 54 129 -57.1939 -9.03 0.611 0.69 0.65 0.679 0.685
PP2 ZINC86094658 21 103 -60.3732 -9.19 0.458 0.444 0.421 0.543 0.216
PP2 ZINC86662794 111 111 -53.9779 -9.14 0.239 0.2 0.202 0.234 0.236
PP2 ZINC86680029 112 91 -53.9641 -9.25 0.503 0.502 0.502 0.502 0.513
PP2 ZINC86730664 18 102 -60.9041 -9.19 0.954 0.956 0.946 0.913 0.913
PP2 ZINC87254662 81 135 -55.7055 -8.99 0.594 0.593 0.592 0.599 0.606

Fusion 5EV

protein M PF1 ZINC19558876 118 141 -42.6413 -8.03 5.815 5.791 5.835 5.841 5.828
PF1 ZINC44831966 140 23 -42.3345 -8.68 5.651 5.665 5.639 5.62 5.624
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PF1 ZINC63411510 15 34 -46.6526 -8.54 59.52 59.61 59 58.96 59.01
PF2 7 ZINC94725877 91 43 -38.3918 -8.82 0.397 0.405 0.4 0.374 0.311
PF2 ZINC72131030 74 4 -38.7232 -9.52 0.45 0.452 0.473 0.471 0.457
PF2 ZINC93518195 68 92 -38.8302 -8.5 0.582 0.582 0.582 0.585 0.578
PF2 ZINC65418720 7 94 -42.7932 -8.49 0.541 0.566 0.579 0.567 0.578
PF2 ZINC34083754 65 35 -38.9075 -8.9 0.362 0.369 0.385 0.357 0.343
PF2 ZINC00467624 52 127 -39.1657 -8.4 0.34 0.313 0.313 0.332 0.322
PF2 ZINC04337208 141 11 -37.7391 -9.2 0.434 0.434 0.434 0.43 0.425

Mono

mer

of

mode

Matrix led
protein dimer | PM1 1 ZINC02511792 41 87 -39.7644 -7.45 0.543 0.503 0.599 0.504 0.48

PM1 3 ZINC02819777 26 22 -36.5827 -7.85 1.689 1.668 1.664 1.674 1.683
PM1 ZINC00344036 84 120 -32.7182 -7.34 0.709 0.708 0.71 0.71 0.71
PM1 ZINC05603964 23 129 -37.1505 -7.3 1.941 1.953 1.955 1.924 1.919
PM2 23 ZINC26481080 53 25 -45.3372 -8.55 0.415 0.394 0.414 0.389 0.388
PM2 ZINC12362922 78 29 -44.4204 -8.51 0.183 0.186 0.185 0.183 0.183
PM2 ZINC00814199 14 7 -49.4513 -8.97 0.624 0.621 0.622 0.619 0.624
PM2 ZINC31165406 34 20 -46.4279 -8.61 0.4 0.392 0.236 0.381 0.47
PM2 ZINC00149964 31 16 -47.1346 -8.67 0.624 0.621 0.622 0.619 0.624
PM2 ZINC01725633 20 15 -48.5007 -8.68 0.409 0.42 0.204 0.399 0.147
PM2 ZINC16932105 37 34 -46.151 -8.48 0.315 0.314 0.315 0.315 0.314
PM2 ZINC71789643 73 30 -44.5767 -8.51 0.364 0.352 0.366 0.341 0.362

104




PM2 ZINC93518353 97 100 -43.7746 -8.02 0.41 0.411 0.397 0.464 0.492
PM2 ZINC91497887 87 67 -44.0017 -8.21 0.192 0.187 0.19 0.185 0.2
PM2 ZINC02819777 90 28 -44.0287 -8.51 0.475 0.469 0.471 0.414 0.482
PM2 ZINC19735365 86 93 -44.1054 -8.04 0.529 0.529 0.532 0.531 0.532
PM2 ZINC04085190 40 113 -45.9788 -7.97 0.352 0.354 0.352 0.354 0.354
PM2 ZINC04829362 79 107 -44.3996 -7.99 0.315 0.313 0.316 0.312 0.313
PM2 ZINC05331903 144 22 -42.7511 -8.58 0.463 0.474 0.469 0.47 0.496
PM2 ZINC05372521 48 139 -45.6329 -7.88 0.291 0.291 0.332 0.331 0.286
PM2 ZINC05382414 29 103 -47.3167 -8.01 0.539 0.526 0.438 0.443 0.447
PM2 ZINC20154773 113 36 -43.4471 -8.44 0.171 0.165 0.165 0.164 0.174
PM2 ZINC22130393 139 30 -42.8524 -8.51 0.162 0.156 0.161 0.162 0.159
PM2 ZINC45070221 52 130 -45.3486 -7.91 0.164 0.184 0.142 0.166 0.161
PM2 ZINC63781317 115 23 -43.4275 -8.57 0.601 0.212 0.215 0.212 0.123
PM2 ZINC72131030 147 45 -42.6896 -8.39 0.361 0.304 0.523 0.428 0.295
PM2 ZINC92722404 74 143 -44.5125 -7.87 0.507 0.539 0.57 0.523 0.584
PM2 26 ZINC26481080 20 24 -45.2565 -8.55 0.352 0.355 0.364 0.293 0.293
PM2 ZINC93518353 36 98 -43.0793 -8.02 0.389 0.387 0.385 0.447 0.35
PM2 ZINC00814199 27 7 -44.3983 -8.97 0.655 0.645 0.653 0.652 0.682
PM2 ZINC00149964 12 16 -46.6062 -8.67 0.452 0.454 0.459 0.457 0.457
PM2 ZINC02819777 92 29 -40.6191 -8.51 0.315 0.316 0.337 0.384 0.302
PM2 ZINC31165406 22 20 -45.006 -8.61 0.424 0.42 0.297 0.398 0.446
PM2 ZINC02511792 68 67 -41.305 -8.21 0.165 0.187 0.185 0.173 0.166
PM2 ZINC91497887 89 66 -40.668 -8.21 0.247 0.247 0.254 0.253 0.252
PM2 ZINC00129345 66 95 -41.371 -8.04 0.423 0.454 0.41 0.441 0.42
PM2 ZINC01725633 58 15 -41.7507 -8.68 0.423 0.418 0.415 0.418 0.447
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PM2 ZINC04020772 23 46 -44.958 -8.37 0.457 0.461 0.452 0.449 0.461
PM2 ZINC04085190 42 113 -42.8898 -7.97 0.494 0.496 0.495 0.495 0.49

PM2 ZINC04829362 64 108 -41.4436 -7.99 0.218 0.226 0.216 0.214 0.227
PM2 ZINC04962728 142 43 -39.4863 -8.4 0.55 0.552 0.55 0.551 0.549
PM2 ZINC05382414 8 103 -48.0795 -8.01 0.537 0.518 0.416 0.41 0.404
PM2 ZINC12362922 148 29 -39.3891 -8.51 0.387 0.388 0.387 0.385 0.386
PM2 ZINC20154773 133 36 -39.7094 -8.44 1.956 1.95 1.946 1.945 1.964
PM2 ZINC45070221 59 131 -41.6704 -7.91 0.389 0.383 0.4 0.39 0.393
PM2 ZINC45796058 94 121 -40.5724 -7.95 0.734 0.734 0.739 0.738 0.728
PM2 ZINC65407126 131 18 -39.7992 -8.62 1.666 1.666 1.635 1.642 1.644
PM2 ZINC83236053 112 118 -40.1324 -7.96 0.629 0.581 0.318 0.322 0.317
PM2 ZINC87017834 130 115 -39.816 -7.97 0.288 0.312 0.307 0.285 0.288
PM2 ZINC92711149 119 77 -40.0153 -8.13 0.376 0.377 0.375 0.376 0.375
PM2 ZINC92722404 33 144 -43.8065 -7.87 0.469 0.484 0.514 0.462 0.544
PM2 ZINC94936845 32 106 -43.9738 -7.99 0.42 0.412 0.403 0.332 0.306
PM2 ZINC95359457 103 109 -40.3436 -7.99 1.756 1.744 1.745 1.777 1.749
PM3 10 ZINC49453727 86 70 -38.7917 -6.56 1.949 1.94 1.946 1.969 1.992
PM3 ZINC83328368 25 33 -40.687 -6.82 1.775 1.781 1.775 1.74 1.743
PM3 ZINC72131030 72 19 -38.9782 -6.9 1.892 1.89 1.914 1.893 1.905
PM3 ZINC20390482 60 94 -39.1807 -6.48 1.821 1.821 1.821 1.819 1.82

PM3 ZINC63781317 51 53 -39.3671 -6.66 1.839 1.829 1.829 1.746 1.796
PM3 ZINC20163996 12 72 -42.2337 -6.56 1.896 1.896 1.894 1.893 1.893
PM3 ZINC00189011 112 142 -38.2955 -6.38 1.644 1.648 1.649 1.65 1.653
PM3 ZINC86864968 134 10 -38.0403 -7.23 1.744 1.705 1.68 1.723 1.78

PM3 ZINC89949696 55 128 -39.2591 -6.4 1.941 1.944 1.944 1.494 1.479
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PM3 ZINC95008629 93 122 -38.6525 -6.41 1.973 1.977 1.972 1.978 1.975
PM3 ZINC20163996 70 69 -33.027 -6.56 2.471 2.47 2.466 2.464 2.463
PM3 ZINC05603964 23 27 -37.1505 -6.85 3.517 3.53 3.526 3.524 3.515
PM3 ZINC72131030 48 19 -34.1461 -6.9 1.832 1.837 1.793 1.827 1.803
PM3 ZINC91497887 9 43 -39.8472 -6.73 3.406 3.389 3.426 3.384 3.425
PM3 ZINC73736970 88 24 -32.4629 -6.86 3.397 3.339 3.412 3.433 3.427
PM3 ZINC02819777 26 15 -36.5827 -7.1 3.317 3.338 3.303 3.342 3.356
PM3 ZINC01418749 113 133 -31.9688 -6.39 1.652 1.644 1.641 1.654 1.649
PM3 ZINC33295102 21 121 -37.3533 -6.41 3.37 3.367 3.365 3.384 3.384
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In addition to conformational similarity, we also assessed the similarities in ligand-protein

interactions, primarily hydrogen bonding (Table 3). Further, the hydrogen bonding interactions

were ~50 % conserved in 9 of these complexes (with RMSD _lig < 0.15 nm). In a few instances,

though the hydrogen bonding was not precisely the same, visual inspection of the complexes

suggests that these bonds could be formed with small conformational changes.

Table 3: Number of hydrogen bonds that are formed between the selected pose for DOCK6.8 and

Autodock4 with the protein. Number of common hydrogen bonds indicates the number of

hydrogen bonds that are common between the predicted poses of the ligand from Autodock4 and
DOCK®6.8. ** The RMSD between DOCK and Autodock is 0.427 nm (greater than the cutoff).
This entry is included as the rank for this ligand DOCK is 2 and Autodock is 1, indicating higher

confidence in the prediction

Srno | Protein Name Pocket ZINC ID Number of | Number of | Number of
Number Hydrogen Hydrogen bonds | common

bonds for | for Autodock4 Hydrogen
DOCK®6.8 bonds

1 Nucleoprotein PN21 ZINC94258558 |4 3 3

2 Nucleoprotein PN21 ZINC73641145 7 7 4

3 Nucleoprotein PN4 ZINC12362922 5 7 2

4 Phosphoprotein | PP11 ZINC72462705 1 2 1

5 Phosphoprotein | PP11 ZINC86098248 1 1 0

6 Phosphoprotein | PP11 ZINC77285117 1 2 1

7 Phosphoprotein | PP12 ZINC72462705 1 2 0

8 Phosphoprotein | PP12 ZINC77285117 0 1 0

9 Phosphoprotein | PP2 ZINC86095599 1 1 0

10** | Phosphoprotein | PP2 ZINC91252717 3 2 0

11 Phosphoprotein | PP2 ZINC35605802 (2 4 2

12 Nucleoprotein P12 ZINC16545537 (2 4 2

13 Nucleoprotein P12 ZINC63959595 |4 4 3
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14 Nucleoprotein PN21 ZINC91932783 3 5 3
15 Nucleoprotein PN4 ZINC12362922 |5 7 2
16 Nucleoprotein PN4 ZINC04829362 |5 6 5
17 Phosphoprotein | PP11 ZINC24759441 0 1 0
18 Phosphoprotein | PP11 ZINC77285117 0 2 0
19 Phosphoprotein | PP12 ZINC24759441 0 1 0
20 Phosphoprotein | PP21 ZINC86095599 |1 1 0
22 Matrix protein | PM21 ZINC45070221 |3 3 2
23 Matrix protein PM21 ZINCO01725633 |4 5 2

10 drug-like molecules in N (4), P (5) and M (1) had an RMSD lig of less than 0.15 nm between
their docked poses and were in the top 100 scoring models as predicted by both the docking tools.
We did not get molecules that had a RMSD lig of less than 0.15nm for the G and F proteins. The
molecule with the best RMSD lig (0.074 nm) from our screening, ZINC94258558 (Figure 1-A),
binds the N protein (Table 2). Molecules ZINC73641145, ZINC12362922, and ZINC04829362
also have RMSD _lig less than 0.15 and are predicted to bind to the N protein. ZINC73641145 has
a DOCK®6.8 rank of 6 and AutoDock rank of 28, indicating their better binding pose in
comparison to the other sampled poses and small molecule ligands. Small molecules
ZINC72462705, ZINC86098248, ZINC77285117, ZINC86095599 and ZINC35605802 are
predicted binders to P that have RMSD lig of less than 0.15nm. Particularly, ZINC72462705 is
the best scoring and top ranking molecule from the DOCK6.8 run while it scores rank 90 from the
AutoDock run. Such examples need further investigation of how well the ligand really binds to a
given protein pocket. For the M protein, ZINC01725633 was shortlisted (Table 2). There are
however 3 molecules (Table 2) that are of interest despite their relatively large RMSD _lig values.
The molecule ZINC91252717 is predicted as the best binder to the P protein by Autodock4
(binding energy of -14 kcal/mol) and the second best binder by DOCK®6.8 (grid score of -71)
(Figure 1-B). These scores were among the best achieved during this docking exercise. We
selected ZINCO00814199 that was docked onto the M protein and was similar to ZINC01725633,
which in turn formed 14 and 8 hydrogen bonds with Autodock4 and Dock6.8 respectively.
ZINC00814199 was within the top 14 ranked compounds by both methods. Lastly, the
hydrophobic molecule ZINC63411510 is predicted to bind the G protein on its ephrin-B2 binding
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interface. Though both docking methods identified this site, the docking poses were different
(RMSD _lig of 0.8 nm). We hypothesize that the hydrophobic nature of the binding pocket and its
size could contribute to the difference in docked poses. Note that in our list there are 3 ligands
(ZINC12362922, ZINC00814199 and ZINC73641145) that (Table 4) bind different pockets on
the same protein or pockets on different proteins. The ligand binding pockets (PN4 and PM2) that
bind ZINC12362922 and ZINCO00814199 have a similar amino acid composition containing
Lys/Arg residues, Tyr residue and Leu/Val residues. The two ligands have terminal oxygens that
interact with positively charged residues of the binding pocket. Another ligand ZINC73641145
binds to two different pockets on N protein (PN5 and PN4), these pockets are spatially close to
one another and the ligand occupies the region between the two pockets in a similar orientation.
Interestingly, a known drug (ZINC04829362), an antiasthmatic and antipsoriatic among other
uses, binds to a pocket of the N protein with RMSD lig of 0.085 nm. Another drug
(ZINC12362922) used in the treatment of depression and Parkinson’s disease also binds the N
protein with RMSD lig < 0.15 nm.

(A) (B)

Figure 1: The docked poses of ZINC94258558 bound to N protein (A) and ZINC91252717 bound
to P protein (B) as predicted by Autodock4 (green sticks with surface mesh) and Dock6.8 (lilac
sticks with surface mesh). The protein is represented in white ribbons with the residues
interacting with ligand shown in stick representation. Hydrogen bonds (only displayed in A) are

shown as dashed lines.
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Table 4: Same drug like molecule predicted to bind different pockets of the same or different

protein. The binding pocket has been mentioned in parenthesis.

Sr. No. ZINC ID Pocket Number

1 ZINC72148214 PN23,PN5

2 ZINC05603964 PN4,PM12.PM32

3 ZINC93518353 PM21,PM22

4 ZINC04829362 PN4,PM21,PM22

5 ZINC77285117 PP11,PP11,PP12

6 ZINC92722404 PN4,PM21,PM22

7 ZINC16932105 PN4,PM21

8 ZINC34083937 PN11,PN12

9 ZINC12362922 PN4,PM21,PM22
10 ZINC00814199 PN4,PM21,PM22
11 ZINC72462705 PP11,PP12,PP13.PP2
12 ZINC95022396 PN21,PN22,PP11
13 ZINC94927184 PN21,PN22,PN23.PP11,PP12,PP13,PP2
14 ZINC72131030 PF2,PM21,PM31,PM32
15 ZINC20163996 PM31,PM32

16 ZINC32565459 PP11,PP12

17 ZINC02511792 PN12,PM11,PM22
18 ZINC94725877 PN4,PF2

19 ZINC63781317 PM21,PM31

20 ZINC94217163 PG2,PN22

21 ZINC24759441 PP11,PP12

22 ZINC91932783 PN21,PN22

23 ZINC20154773 PM21,PM22

24 ZINC91497887 PM21,PM22,PM32
25 ZINC77262630 PN21,PN22

26 ZINC45070221 PM21,PM22

27 ZINC31165406 PM21,PM22

28 ZINC26481080 PN4,PM21,PM22
29 ZINC04580552 PG2,PN21

30 ZINC72264974 PG1,PN21,PN23
31 ZINC63411510 PGI1,PFI
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32 ZINCO05382414 PN12,PM21,PM22
33 ZINC02819777 PN4,PM12,PM21,PM22,PM32
34 ZINC72133204 PN22,PP12

35 ZINC72129411 PN22,PN22

36 ZINC35935889 PN23,PN5

37 ZINC72107957 PN21,PN22,PN5
38 ZINC77379208 PP11,PP12

39 ZINC92722391 PN12,PN4

40 ZINC94937158 PN21,PN22

41 ZINC92722539 PN12,PN4

42 ZINC73641145 PN21,PN22,PN5
43 ZINC04085190 PN4,PM21,PM22
44 ZINC00149964 PN4,PM21,PM22
45 ZINC01725633 PM21,PM22

5.3.2 Computational prediction of the stability of the protein-inhibitor complexes:

To assess the stability of the 13 protein-small molecule ligand complexes, we carried out three
independent MD simulations of 50 ns each, using the AMBER99SB-ILDN force field.
Simulations were carried out for 10 of the 13 ligands that had RMSD _lig less than 0.15nm(Table
2) starting with the DOCK®6.8 predicted pose. For each of the trajectories, the distance of the
centre of the small molecule ligand to the centre of the binding pocket (based on the starting
structure after NPT equilibration) was monitored (Figure 2). The triplicate MD simulations were
terminated if this distance in 2 of the 3 trajectories exceeded 1 nm from its starting value. This
happened in 5 cases, 2 inhibitors from N and P each and 1 from the M protein . These complexes
were then re-simulated using the CHARMM?27 force field. To summarize, we found that 2
inhibitors of N and 4 inhibitors of P showed stable binding in either AMBER99SB-ILDN or
CHARMM?27 MDs. For the 3 ligands with RMSD lig > 0.15 nm simulations were carried out
starting with both the DOCK®6.8 and Autodock4 predicted poses. Of these 3 ligands, the one that
bound to G, showed stable association with it as quantified by the distance less than 0.6nm in all
the triplicates of the CHARMMZ27 run. Similarly, the inhibitors of P and M (that had RMSD lig >

0.15nm) also showed stable associations.

To further our confidence in the predicted inhibitory molecules, we computed binding energies
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for the protein-ligand complexes using MM/PBSA. 9 of the binding energies were computed to
be negative in at least one of the replicates (3 for N protein, 4 for P protein, 1 for G protein and 1
for M protein). In one case (P protein-ZINC7262705 ligand), the binding energy with the
CHARMM force field (after the AMBER simulation was terminated) was computed to have
positive binding free energy (Table 5 and 6). In 3 cases (1 for N, P and M protein each) the ligand
did not remain bound to the protein in either CHARMM or/and AMBER simulations.

The two known drugs, ZINC04829362 and ZINC12362922 remained bound to the N protein in
all 3 replicates with negative binding energies in at least 2 of the trajectories. For the important
druggable site on the G protein, the ligand remained bound in all 3 replicates when starting with

the Autodock4 bound pose with negative binding energies

Table 5: Binding free energy as predicted using MM/PBSA calculations from molecular dynamics
simulations carried out using AMBER and CHARMM force fields for 10 ligands predicted
against N, P and M proteins. The binding free energies were not calculated (depicted by -) when
the ligand left the binding site in at least 2 out of 3 replicates. CHARMM was only used to run

molecular dynamics simulations when the ligand left the binding pocket in AMBER simulations.

ZINC ID Protein Replicate Binding free energy as predicted during
AMBER CHARMM
simulation simulation(kJ/mol)
(kJ/mol)

ZINC94258558 N 1 - -114+/-10

2 - -86+/-4

3 - -
ZINC73641145 N 1 - -

2 - -

3 - -

ZINC12362922 N 1 -96+/-8
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2 -100+/-10
3 -69+/-6
ZINC04829362 1 -37+/-7
2 86+/-7
3 -101+/-8
ZINC72462705 1 - 106+/-4
2 - 86+/-4
3 - 98+/-5
ZINC86098248 1 39+/-5
2 -65+/-7
3 37+/-3
ZINC77285117 1 - -
2 - -
3 - -
ZINC86095599 1 -196+/-7
2 -149+/-10
3 -153+/-14
ZINC35605802 1 -14+/-0.5
2 1+/-1
3 -98+/-8
ZINC01725633 1 - -
2 - -
3 - -
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Table 6: Binding free energy as predicted using MM/PBSA calculations from molecular dynamics
simulations carried out using AMBER force fields for 3 ligands predicted against G, M and P
proteins for both the predicted DOCK6.8 and Autodock4 poses. The binding free energies were
not calculated (depicted by -) when the ligand left the binding site in at least 2 out of 3 replicates.

ZINC ID Protein Replicate Binding free energy as predicted from
(kJ/mol)
DOCK pose | Autodock  pose
(kJ/mol) (kJ/mol)
ZINC00814199 M 1 -153+/-6 -119+/-8
2 - -184+/-3
3 -203+/-6 -
ZINC63411510 G 1 - -44+/-4
2 - -79+/-4
3 - -59+/-4
ZINC91252717 P 1 -158+/-9 -187+/-8
2 -256+/-10 -196+/-8
3 -251+/-7 -
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Figure 2: Distance of the center of the ligand from the center of the binding site (calculated based
on the residues within 54 of the first snapshot after NPT equilibration) during the simulation. The
identity of the ligand, force field and docking strategy used and the target protein has been



5.4 Discussions

Nipah is a deadly virus with a mortality rate higher than 70%. Despite this, there are no approved
drugs against NiV. In this study, we attempted to predict putative small drug-like molecules that
could bind to various NiV proteins and inhibit their activity. Towards this, we virtually screened
~22000 molecules from the ZINC library against 5 NiV proteins. The screening was carried out
using 2 softwares, Autodock4 and DOCKG6.8. We then selected only those small molecules that
were common in the top 150 best scoring poses from both the screenings. Additionally, we
imposed a cutoff for geometrical similarity in the pose of the small molecule for increased
confidence. Further, we subjected these shortlisted protein-small molecule complexes to MD
simulations to assess their stability. The binding free energies were also calculated for these
complexes. This hierarchical process of criteria based filtering the best complexes and the
assessment of their stability enabled us to have higher confidence in them. To the best of our
knowledge, this is novel filtering criteria that can be applied to any virtual screening exercise to
get increased confidence.

We predicted 10 such small molecules that fitted into the above mentioned criteria. Additionally,
we selected 3 small molecules, one of which binds to the G protein on its ephrin binding
interface, the second one binds at the interface of the M protein dimer and third one which binds
to the P protein. The 13 ligand bound protein complexes were subjected to triplicate MD
simulations (50 ns each) to gauge the stability of the association. In 9 of the complexes, at least
one of the trajectories was evaluated to have favorable (negative) binding energy. While the
simulations and the energy calculations that follow are not to be construed as indicators of
binding strength, they do provide the same general trends and give pointers and/or boost our
confidence in the binding efficacy of the ligand-protein complex. Only 3 of the 13 ligands
consistently moved away from the original predicted binding pocket even when the simulations
were repeated using a different force field. In one other case, though the protein-ligand complex
remained conformationally stable throughout the course of the triplicate trajectories, our energy
estimates of this interaction were unfavorable (positive energy). In the absence of experimental
validation, which we seek to do next, these MD simulations serve as indicators of the viability of
the ligands to bind the viral proteins

In all our computational predictions, an independent scoring scheme(s) was used to evaluate
results. MD simulations were always carried out in triplicate and sometimes using different force

fields. In short, we have taken care to ensure cross validation of our computations to whatever
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extent is practically possible. We cannot overemphasize the importance of these computational

predictions, especially for swift acting potent viruses such as NiV where mortality rates are high.

An important aspect of the ZINC library is that it consists of already known drugs. In this study,
we predicted some of these drugs as inhibitors of the NiV proteins. The advantage of such
repurposing is the ease of testing. For instance, we identified Cyclopent-1-ene-1,2-dicarboxylic
acid (ZINC04829362) as an inhibitor of the NiV N protein. This compound is a known drug
prescribed for antiasthmatic and antipsoriatic among other disorders. In addition to this, we also
tried to find overlap between the shortlisted ZINC molecules and those that occur naturally in
plants. We did not find any overlap between the two sets of molecules. In future studies, one
could include the naturally occurring ones in the virtual screening exercise. If these molecules are
shortlisted as putative binders, it would be easy and cheap to test and use them. Similarly, using a
combination of small-molecule libraries with different properties or different sources of origin

(plant-based, synthetic, extracted from fungi etc) could be included in the screening.
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Chapter 6

Conclusions and future prospects

This chapter summarizes, concludes and discusses the future prospects of this thesis. The

summary and future prospects are arranged into 3 sections, one each for GPCR activation

mechanism, Packpred and design of therapeutics against the Nipah virus. This followed by the

final section of concluding remarks.

6.1 GPCR

6.1.1 GPCR summary

We studied if the activation of G-protein coupled receptors (GPCRs) is a universal
process. When the local environment of GPCRs is perturbed by events like ligand
binding, they undergo conformational changes leading to their activation. These
conformational changes are well studied for only six GPCRs including the 3,-adrenergic
receptor and the adenosine A,, receptor. For a vast majority of the GPCRs, the
conformational changes associated with the activation are unknown. In this example, we
studied if all the GPCRs undergo activation in a similar fashion, and if not, in how many
distinct ways does it happen. To address this, we analyzed 48 and 15 inactive and active
state structures of Class A GPCRs respectively, to detect conserved 3D local
environments. We represented all these structures as 16 r-groups. r-groups are subsections
of 20 standard amino acids grouped by chemical properties. We then define local
environments as cliques. To identify similarities in the local environments, we
geometrically and chemically compare cliques across all structures. The cliques that have
r-groups identically located (in terms of geometry) in at least 70% structures and those
that show less variation are considered to be conserved. The variation is quantified using
Shannon entropy, with the conserved groups having Shannon entropy less than 1. To gain
higher confidence in our results, we performed this analysis in triplicates for both the
inactive and the active state structures separately. We identified 18 conserved cliques in

both the inactive and the active states, indicating their importance in maintaining the
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structure in that particular state. These conserved cliques could also be important for state
transition. To identify the cliques that are responsible for the inactive to active state
transition, we compared the inactive state conserved regions with the active state. The
cliques that are conserved in the inactive state but not in the active state are ones that
changed their conformation during activation, and hence are crucial in the state transition.
We found 15 out of 18 cliques were either partially or completely disrupted in the active
state. The 3 cliques that did not undergo any conformational change, could be important
for stabilizing the structure. Furthermore, to identify the cliques that are newly formed in
the active state, we compared the active state conserved cliques with the inactive state
ones. We found that seven new cliques are formed in the active state. 8 of the 11 cliques
that are common to both the states gain new contacts during the activation process, while
3 remain unchanged. We then validated these residues using data from the literature. We
could validate ~22% of the 435 reported mutations using our results. Next, we tested the
residues that were not validated by the literature data using MD simulations. To
summarize, we predicted the residues that are a part of the activation pathway of Class A

GPCRs.

6.1.2 Suggestions and future directions

In this study, we have exclusively used Class A structures; structures from other classes
of GPCRs can also be included in the analysis to check for conserved activation pathway.
The number of structures for other classes are limited but their models generated by
recent methods like AlphaFold2[90], RosettaFold[91] could be used for the analysis.
These structures can either be used to derive the activation pathway or can be used as
another dataset that is used to validate the predicted pathway.

The binding site of G-proteins / arrestins on the activated GPCRs is co-localized. Some
receptors preferentially bind to G-proteins while some to arrestins. In addition, there are
several different types of G-proteins. An algorithm similar to the one designed in this
study can be implemented to identify the determinants of association of types of
G-proteins or arrestins with various GPCRs.

In this study, we represented the amino acids as r-groups. R-group representation helps to
identify the small sections of the amino acids that are necessary for the structure or

function of GPCRs. Using multiple definitions of r-groups and then taking a consensus of
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the important ones could prove to be a crucial step in gaining higher confidence in the
predicted activation pathway. Using multiple definitions may allow us to capture different
sets / overlapping sets of important r-groups.

Another promising area for future studies is to modulate the activity of GPCRs by use of
cryptic sites. Cryptic sites are short peptides that are embedded in the extracellular
membrane and are inactive/dormant. In cases where the constitutively active GPCR is the
cause of a disease, we can design such cryptic sites that will partially block the receptor.
Similarly, diseases that are caused due to overactivation or underactivation of GPCRs
could also be modulated using the cryptic sites[145].

In the field of structural biology, the local environment is accounted for in various ways.
It is commonly used to check if a particular region has favorable interactions leading to
stability. Such information is often incorporated into a scoring function that allows for
assessment of stability of a structural model of a protein. For example, in the rosetta
scoring function, local interactions such as Van Der Waals attractive and repulsive forces,
backbone and side chain hydrogen bonds, electrostatic interactions, solvation energies
and several other terms are included. A weighted sum of these physics based entities
forms the final score for a protein structure [146] . Similarly, there are other knowledge
based scoring methods that extract various features from the existing protein structures.
For instance, another method GOAP [33] uses the data about the angle between planes of
heavy atoms that are within a distance cutoff of each other. The distance cutoff ensures
that the local interactions are captured in the method. Similarly, multiple such definitions
of local environments could be implemented and then a consensus of their results can be
considered. Following such workflows will increase the robustness of our method.
GPCRs are known to interact with various lipids like cholesterol. The cliques that are
involved in such interactions could be identified using the algorithm that we have
developed. This study could be extended to all the membrane embedded proteins as well.
Additionally, some of these proteins form oligomeric structures. We could also apply this
algorithm to identify the cliques that enable such oligomerization events [147][148].

The idea of modularity of GPCRs can be further explored as a design principle. For
instance, using the activation pathway identified from our study, we could design a GPCR
that responds to a ligand of our interest. Additionally, the residues that are not a part of

the activation pathway can be mutated without affecting the functionality of the receptor.
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These residues could be targeted to make GPCRs thermostable/improve their
conformational stability, assisting to solve their structures experimentally. Another area
where the design principle could be applied is the downstream effect of the GPCRs.
Some ligands activate the G-protein pathway while some activate the arresting pathways.
If we find the determinants of activation of a specific pathway, we could also alter the
pathway a particular ligand activates [149].

All the results in this part of the thesis are purely computational. Experimental validation
could be done to confirm the results achieved using this algorithm.

Finally, we think that the algorithm that we have developed is robust with respect to the
diversity in a class of proteins (such as GPCR). Hence, this algorithm could be applied to
other proteins to identify the determinants that are important for its structure or function,

irrespective of the degree of the sequence divergence of its members

6.2 Packpred

6.2.1 Packpred summary

We developed a tool, Packpred, that predicts if the perturbation in the local environments
would be neutral or deleterious for a given protein. Particularly, Packpred accounts for
perturbed local environments in the form of mutations. Any given mutation is classified
in either of the two prediction categories, neutral or deleterious. To predict the category,
Packpred uses a linear combination of three distinct scores, namely, the statistical
potential, FADHM substitution matrices and Shannon entropy. The statistical potential
calculates the observed by expected ratio of the clique. The rationale for calculating this
ratio is that the cliques that are stable are expected to occur more frequently than they
would occur by chance. Higher the value of the ratio, better is the stability of the clique.
The second score that Packpred uses is the FADHM substitution matrix, which divides a
protein into 3 regions (Exposed, intermediate and buried) based on their residue depths.
Residue depth is the distance between a residue and its closest bulk solvent molecule. For
each depth region, FADHM indicates the probability of substitution of one amino acid to
another. The probability is obtained using structure alignments of proteins from the PDB.
The third and the final score that Packpred used is the Shannon entropy, which quantifies

the evolutionary information from multiple sequence alignments. The linear combination
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of these three scores is obtained by training Packpred on a saturation mutagenesis dataset
of T4 lysozyme, consisting of ~2000 mutations. We tested Packpred on two different
datasets, the CcdB saturation mutagenesis dataset and the Missense3D dataset consisting
of ~1500 and ~4000 mutations respectively. The Missense3D dataset is a complex dataset
as it consists of mutations derived from ~600 proteins. We compared ourselves with 6
other state-of-the-art methods and showed that Packpred performs at par or better than all

these methods on the testing sets.

6.2.2 Suggestions and future directions

Although Packpred outperforms all other methods in the Missense3D dataset, its MCC is
0.36, indicating a scope for improvement. The performance can be improved by
increasing the training dataset. Although we tried to incorporate more saturation
mutagenesis dataset in our datasets, we got little improvement over the existing results
with only T4 as a training dataset. One of the reasons for this could be that the saturation
dataset is biased in terms of depth of the residues. For instance, proteins usually have
more exposed residues than the buried residues, consequently biasing the saturation
mutagenesis dataset. This creates bias towards better prediction of the exposed residues
than the buried residues. Similarly, a bias is also observed in the frequency of naturally
occurring amino acids, which may affect the predictions. Thus, creating training and
testing datasets that are well balanced in features including residue depths (as mentioned
above), ratio of neutral to deleterious mutations, normalization for frequency of
occurrence of amino acids etc. is necessary.

Packpred currently uses a linear combination of three scores for prediction. While with
the linear combination, Packpred outperforms most state-of-the-art methods, methods
other than linear combinations may result in better performance. One way of
implementing it would be to use machine learning based methods or to use higher order
equations. However, use of these methods may need a higher number of features that
cover other aspects of mutational stability determinants. Another improvement can be to
use r-group representation, similar to the GPCR work to derive the statistical potential.
The statistical potential of Packpred is derived from 3D structures of proteins as seen in

the PDB. It represents the proteins as amino acids. The proteins could be represented as
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6.3 Nipah

r-groups, similar to our GPCR work. The r-group representation may help us better
understand if interactions of small sections of the amino-acids are more meaningful than
the amino acids interactions. Additionally, machine learning methods like neural
networks could be trained to predict likelihood of a given clique/ local environment.

These modifications may assist in improving the performance of Packpred.

6.3.1 Nipah summary

We predicted putative small molecules that would bind to various Nipah proteins, that
would inhibit their activity. To do this, we docked a library of drug-like small molecules
from the ZINC database with all the predicted binding pockets of 5 Nipah proteins. We
performed docking using two software, DOCK6 and AutoDock4 for increased
confidence. We then selected top 150 docked complexes from both the docking exercises
and shortlisted the common small molecules. Further, we shortlisted only those small
molecules that had a similar docking pose in the two docking exercises. We then
validated these putative binding small molecules using MD simulations. These small
molecules could potentially bind and inhibit the activity of Nipah proteins by interfering

with their binding to their cognate partners.

6.3.2 Suggestions and future directions

In this study, we used a small molecule drug-like library from the ZINC database. Instead
of using one type of library, we could use a combination of libraries that exploit various
features. For example, we could include the small molecules that occur naturally in
plants, or use drugs that are already approved and are used in other diseases (drug
repurposing). Including such libraries will help in faster testing and delivery of the drugs
in the markets for use.

In addition to using two/multiple different software to perform the virtual screening, we
could also use various scoring schemes to score the poses generated by the docking

software. Then based on the scores of the various scoring schemes, employ a jury system
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to shortlist the molecules.

Methods like AlphaFold2, RosettaFold, etc, provide predicted models of proteins that did
not have experimentally solved structures / full length structures. These models could be
used to perform docking and MD simulations, thus allowing us to use the entire proteome
as drug targets.

To the best of our knowledge, the workflow that we have developed to get putative
binding small molecules is novel. Performing these steps has helped us gain more
confidence in our results. We believe that applying this workflow to other docking /
virtual screening exercises would assist in shortlisting candidates with better confidence.
We have attempted to validate the binding of a small molecule inhibitor to its target
protein by running 50ns MD simulations. In cases where the small molecule does not
leave the binding pocket, running simulations for a longer duration would be helpful to
better analyze stability. Additionally, in such cases, enhanced simulations such as
accelerated MDs may be performed that will allow the ligands to move out of the binding
pockets faster. Apart from this, running simulations with different starting conformations
(of both ligand and protein) can also be tried.

We have predicted small molecule binding pockets using a program called DEPTH [42].
DEPTH predicts the binding pockets based on how accessible the surface is to the bulk
solvent. DEPTH does not predict cryptic binding pockets. Cryptic binding pockets are the
sites that are not detectable on the unbound protein, but become obvious on binding of
some drug/biomolecule. Programs such as PocketMiner [150] could be used to predict
such sites that can subsequently be used for docking. Additionally, the newly developed
AI/ML based methods could also be used in the virtual screening exercises. For instance
ML based scoring schemes such as AKScore [151], DeepDTA [152] could be used to
score the protein ligand complexes to identify the best binders [153]

Finally, in this study, we have used MM/PBSA to calculate binding energies. The binding
energies are often calculated by ignoring the water molecules. Even the waters that
mediate the ligand - protein interactions or are in close vicinity of the interaction interface
are ignored. The effect of such water molecules could be calculated using other methods
such as Nwat-MMGBSA. Binding energies that are calculated by including the water

molecules are shown to better correlate with the experimentally determined values [154].
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6.4 Concluding remarks

In this thesis, we have attempted to study the role of local environments in the structure and
function of proteins. Towards this, we have developed a novel algorithm to identify/predict the
local environments that are important for structure and/or function of the proteins using GPCRs
as an example. This algorithm takes into account geometric and chemical similarities to identify
conserved local environments. Based on the findings, we also designed mutations (consequently
modified local environments) for validation. We believe that this algorithm could be applied to
any other protein family to identify the important local environments. The important local
environments could then be used to design proteins of our interest.

Further, we wanted to identify the contribution/importance of each local environment in proteins.
Towards this, we wanted to gauge the relative stability of local environments that occur in
proteins naturally. We studied the observed by expected ratio of all naturally occurring local
environments in proteins (as seen in the PDB database). The observed frequency was derived
from the PDB database while expected was calculated to indicate the local environment that
occurs purely by chance. We incorporated this information in the form of Packpred. Packpred
predicts the effect of mutation on a protein.

Finally, we performed docking and MD simulations to predict putative inhibitory small molecules
against the Nipah virus. In this study, we designed a new workflow to predict putative inhibitory
small molecules with higher confidence.

To summarize, this thesis shows new insights into how the local environments play a role in
structure and function of protein and shows promise in using these findings in the design of

proteins that have desired characteristics/properties.
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Chapter 7

Appendix

This chapter describes various steps/analyses that we performed to reach the final versions of
algorithms presented in chapter 3 and 4. The first section of this chapter describes the algorithmic
modifications for detecting conserved 3D motifs from the GPCR work(chapter 3). The second
section deals with the preliminary analysis that we performed on the T4 saturation lysozyme

dataset for Packpred(chapter 4).

7.1 Progression of algorithm development to detect 3D conserved local

environments in GPCRs

The algorithm that we have reported in this chapter is the version where we decided to report the
findings. Since the beginning of the project, this algorithm has been undergoing constant
modifications and refinements. This section will briefly talk about the versions of major changes

of the algorithm that we tested and will also discuss other ideas that were partially explored.

7.1.1 Versions of algorithm development and refinement

1.

We selected all Class A GPCR structures from the GPCRdb. We represented them as amino acids.
We defined the local environment as all the residues that lie within a distance cutoff. We defined
3 variants of local environment at distance cutoffs of 5 A, 6 A, and 7 A. Then we performed the
local structure superimposition using the software CLICK[3, 4] using Ca as representative atoms.
We selected a reference structure against which all structures would be superimposed and
compared. For each distance cutoff, we then identified the chemical similarities from the local
superimpositions based on the a) Sum of BLOSUMG62 scores of the aligned pairs b) Residues that
do not align with a partner are penalized with a score of -1. All the reference amino acids that
have a positive score and found a partner in the alignment with at least 70% of the dataset are

considered conserved.
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Findings from this version

1.1. Because we took the entire dataset of Class A GPCRs, the over represented GPCRs were
biasing our results.

1.2.  The use of a reference structure was also affecting the results as the BLOSUMG62 scoring
etc was with respect to it.

1.3.  The penalty score was a heuristic

1.4.  Smaller sections of the amino acids could contribute to the stability of the clique

We made 4 modifications to the algorithm, first by taking only the best resolution structure per

GPCR. The second modification was to use an external grid instead of a reference

structure(Figure 1) and then define local environments around grid points. The third modification

was to design a different scoring scheme for match and mismatch. The final modification was to

use r-group representation instead of amino acid.

'.‘“a:.'osusaso‘o‘u°
o 0 0o o 6 o o o o o © o o o ©

Figure 1: A grid (coloured in blue points) is generated around a GPCR. The grid points are used

to define local environments.

Findings from this version:
2.1 Use of external grid now generates dependencies on the density of the grid. As the density of
the grid changes, the results would change.

2.2 We had defined 3 different r-groups for aromatic residues. Even though they had comparable
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properties, these matches were scored unfavorably.

3. In this version we decided to not use the external grid and instead use a reference structure, the
approach we had used in versionl. Because of 2.2, we clubbed some r-groups together, for
instance rl4, r15 and r16 (all containing aromatic rings) would be treated as a single r-group. We
tried multiple such groupings to check if we get higher conservations.

Findings from this version:
3.1.  The r-group regroupings were made arbitrarily

4.  In this version, we decided to not regroup r-groups. Instead score the matched/aligned pairs based
on the identity of the r-groups from the reference structure. To eliminate the dependency on the
reference structure, we used 3 different reference structures and took their consensus.

Findings from this version

4.1.  CLICK was not able to correctly align the local environments. The local environments
had higher representation of groups like 12, 18, r12 and as a result, the alignments were
biased towards these groups.

5. In this version, we used Kersleys 3D least squares fit algorithm instead of CLICK to perform the
local alignments. We also noticed that performing a second round of alignments might lead to an
improvement in identifying similarities.

6.  So now, we perform two rounds of local alignments. But the problem of matching the r-group
identity to that of the reference group was still not resolved.

7. Finally we used Shannon Entropy to evaluate the chemical conservation.

7.2 Preliminary analysis that we performed on the data presented chapter

4 Packpred

1. We checked if individual scores, namely, statistical potential, FADHM and SE are able to tell
apart the deleterious from the neutral from the T4 lysozyme training set, when used independently
and not as a combination. We plotted histograms of the three scores for disease and neutral
mutations to check if there is a clear score cutoff that distinguishes the deleterious from the
neutral. We observed that both the categories of mutations had overlapping scores for all the three
scores and there was no clear separation between the scores of the two classes. We did not

observe any trend/cutoff in the scores that would clearly distinguish the two categories of effect
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of mutations (Figure2 - A, B, C).

Next, we wanted to check the impact of a parameter, residue depth, on the effect that a mutation
has on the structure and function of a protein. So we segregated the mutations based on their
residue depths into the three depth bins: exposed, intermediate and buried. Thus, we had a total of
9 categories, 3 depth levels for each of the 3 scores. In all the 9 categories, we observed that the
scores for both types of mutations can take up similar values and no clear distinction cutoff was
observed that separates the deleterious from the neutral mutations (Figure 3). Thus, we realized

that the effect of the mutated environment cannot be quantified by either of the three scores alone.

2A

350

300

250

200

150

100

50

132



2B

350

300

250 |-

200 -

150F

100k

50f.

2C

350

300

250

200

150

100F

50

Figure 2: Histograms for (A)PP(Statistical potential score), (B)FADHM and (C)SE. Frequency of
deleterious mutations is coloured in indigo while that of the neutral is coloured in green. All of
the plots show the presence of both types of mutations across different scores. There is no clear

demarcation between the neutral and deleterious.
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Figure 3: Histograms for PP(Statistical potential score), FADHM and SE across three depth bins,
namely, exposed, intermediate and buried. Frequency of deleterious mutations is coloured in
indigo while that of the neutral is coloured in green. All of the plots show the presence of both
types of mutations across different scores. There is no clear demarcation between the neutral and

deleterious types of mutations.

Next, we wanted to check the effect of mutation when the data is categorized according to the
type of amino acid that it is mutated to. We categorized the three scores independently as per the

mutated amino acid to observe the score profile(Figure 4, 5 and 6). Since the T4 lysozyme
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saturation mutagenesis dataset has all amino acids mutated to only 13 other types of amino acids,
we did not have data for 7 amino acids. Nevertheless, we analyzed the score distributions of the
remaining 13 amino acids. Similar to the observations in Figure 2 and 3, here also we observed
statistical potential scores for neutral and deleterious mutations taking up similar score values
(Figure 4). Interestingly, we noticed that when the residues were mutated to K, only deleterious
mutations occupied scores in the bins having a score less than -3.00. But we also observed
deleterious mutations that had a score higher than -3.00. For the remaining 12 amino acids, we

did not notice any clear differences between the scores of the neutral and deleterious mutations.

For the Shannon entropy, we observed that for amino acids I, L, H, and Q, the number of
deleterious mutations reduced as the score approached from 3 to 4 (Figure 5). Since the most
variable position gets a score ~4, these findings were indicative of Shannon entropy being a
meaningful score in our study. Additionally, for amino acids C, K, and P we observed a higher

number of deleterious mutations between scores 0 to 1, indicative of highly conserved residues.

Similarly, for FADHM scores, we observed that amino acids C, E, K, P had a majority of
deleterious mutations with low scores (the range varies with each amino acid) while residues Y, S,

R, and Q had only neutral mutations that scored in the positive range (Figure 6).
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Figure 4: Histogram of statistical potential score categorized according to the type of mutated
amino acid. Deleterious are coloured in orange, neutral in green and deleterious combined with

neutral is colored in blue. Blank plots indicate no wildtype residue was mutated to this particular

amino acid.
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Figure 5: Histogram of SE categorized according to the type of mutated amino acid. Deleterious
are coloured in orange, neutral in green and deleterious combined with neutral is colored in blue.

Blank plots indicate no wildtype residue was mutated to this particular amino acid.
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Figure 6: Histogram of FADHM score categorized according to the type of mutated amino acid.
Deleterious are coloured in orange, neutral in green and deleterious combined with neutral is
colored in blue. Blank plots indicate no wildtype residue was mutated to this particular amino

acid.

Next we checked if there is any such trend when we look at the data based on the wildtype amino
acid (ignoring what it is mutated to). We again checked this on the three scores independently
(Figure 7, 8 and 9). For the statistical potential, we observed that amino acids A, F, G, L, M, N, S,
T, V and W had only deleterious mutations on the left tail of the distribution. Residues like C, and
E had all neutral mutations towards the right side of the distribution (Figure 7). For Shannon
entropy score, residues like E, F and I showed only neutral mutations between scores of 3 to 4
(Figure 8). For FADHM, residues like C, F and W score a positive score when the mutations are

neutral (Figure 9).
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Figure 7: Histogram of statistical potential score categorized according to the type of wildtype

amino acid. Deleterious are coloured in orange, neutral in green and deleterious combined with

neutral is colored in blue.
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Figure 9: Histogram of FADHM score categorized according to the type of wildtype amino acid.
Deleterious are coloured in orange, neutral in green and deleterious combined with neutral is

colored in blue.

Since we observed trends when we categorized data based on various properties, we decided to
combine the three scores, along with associated properties like depth, amino acid mutation

details, etc (Refer to chapter 4 for more details).
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