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Abstract

Quantum measurement is analyzed from a conceptual point of view by comparing weak
and strong interaction regimes using von-Neumann’s measurement model and explicit
conditions for weakness have been derived for both weak value and expectation value.
The effect of a weak interaction up to strength of orders 1 and 2 without post-selection
on the system and pointer states is studied. This engenders a simple interpretation
of the imaginary part of the weak value. A general mathematical formalism of weak
measurement within which previous results fit is derived. Effect of multiple degrees of
freedom and correlations among these within the pointer states in the context of weak
measurement is reviewed. Weak measurement is studied as a tool to create entanglement
between previously uncorrelated quantum states. A mathematical formalism irrespective
of the pointer state used is derived under which one can obtain the joint weak value of
incompatible observables as well as second order of the weak values. Using a bipartite
correlated resource state, a protocol for determination of weak value corresponding to a
weak interaction done by one party by another spatially separated party is conceptualized
and mathematically demonstrated.
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Chapter 1

Prologue

While embarking on an investigative journey about any matter in science or otherwise, one
should first know – whether in the social1, subjective logical 2 or a need-based 3 context
– the necessity to understand it. This thesis is conceived owing to the superposition
of all the three contexts for weak quantum measurement in particular, and quantum
measurement, in general. All work in this thesis is original except for section 3.6 which
is a review and reproduction of an old result and the postulates of quantum mechanics
below.

Among the central features of quantum mechanics like entanglement [27], non-classical
correlations [18], unitary or non-unitary evolution of the wave-function or the density ma-
trix, non-locality [4], error-disturbance [20] or fundamental fluctuations [26] uncertainty
principles etc. perhaps quantum measurement is the most crucial. It is important not
just due to the technical intricacies of the procedure itself, but also (maybe, more so)
due to the features endowed to quantum mechanics due to it. A lack of understanding,
whether philosophical or operational, of quantum mechanical measurement will and most
likely does, resist us from any reasonable success in the unification of physics. Without
going further into the reasons of this due to a relative lack of maturity in my thoughts
about it, I will restrict this document to quantum measurement and within that, to weak
quantum measurement.

Quantum mechanics has seen an empirical development through the aggregation of
results of various different experiments. Therefore, almost all of the counter intuitive
features of quantum mechanics are in some way or another connected to quantum mea-
surement. All features of quantum non-locality like EPR paradox [9], entanglement, steer-
ing [33] are related to measurement. Definitions of other non-classical correlations like
quantum discord are centrally dependent on measurement [21]. Mixedness of quantum
states and therefore, the partial tracing operation, is related to measurement. According
to the Copenhagen interpretation of quantum mechanics, postulate 3 provides for the
measurement of quantum systems.

1.1 Postulates of the Quantum
In order to motivate the investigations in this thesis, it is pertinent to begin with the
postulates of quantum mechanics [19]:

1through other people’s work/interest
2due to a perceived lack of a sound framework in which all features of that matter fit
3due to fruitful technological applications



Postulate 1: Every isolated physical system is defined on a separable, complex
vector space on which an inner product is defined (a Hilbert space). The state
of the physical system is uniquely and completely represented by a state vector
of unit norm in this complex vector space.

The above postulate when extended to continuous variable quantum states provides for
the wave-function ψ(x, t) defined in position and time. This wave-function represents a
vector in an infinite dimensional Hilbert space. In the above, the unit norm provides
for the so called normalization of the quantum state. As an example, the quantum
information processing researcher is interested (mostly) in the finite dimensional quantum
state which can be defined as qubits (a two-level quantum system ), qutrits (a three-level
quantum system) and so on. On the other hand, a quantum chemist is interested in the
state which is defined continuously in space and time represented by the wave-function.
The second postulate provides for the evolution (change) of the above defined quantum
state with time.

Postulate 2: A closed quantum state evolves from time t to t′ according to a
unitary evolution U(t, t′) such that

|ψ′〉 = U(t, t′) |ψ〉 (1.1)

where |ψ′〉 is the state of the quantum system at time t′ and |ψ〉 is its state
at time t.

The above unitary U can be defined using the time dependent Schrödinger equation:

i~
d
dt |ψ〉 = H |ψ〉

where H is a Hamiltonian which completely determines the dynamics of the quantum
state with time. The third postulate provides for the trickiest and perhaps the most
important (because it is operational) aspect of quantum mechanics. After many ex-
perimental observations of measurements and their outcomes, quantum measurement is
defined by postulate 3:

Postulate 3: Quantum mechanical measurements are defined via the action
of the Hermitian operators (which correspond to physical observables) that
act on the Hilbert space on which the given quantum state is defined. The
outcome of these actions is termed an eigenvalue, which is a real number.

One can immediately see that the extent of correspondence between the notion of the
quantum state and the quantum observable is such that one may wonder which of the
two is more integral to the existing reality. The postulates of quantum mechanics do not
answer whether the state came first or its Hermitian operator (observable). Now, let me
define the essentials:
Quantum State: A vector in a finite or infinite dimensional complex vector space on
which an inner product is defined. By virtue of its construction, this quantum state can
be expanded in terms of its eigenfunctions which form the complete orthonormal basis
for the given Hilbert space. In principle, there exists an infinite number of possible com-
plete orthonormal basis sets that define a given Hilbert space. Operationally, in quantum
measurement, however, a natural basis arises which pertains to the outcomes of an ex-
periment.



Hermitian Operator : A Hermitian operator is the mathematical equivalent of the opera-
tional fact of projective measurement. Such an operator acts on the given quantum state
and renders a particular outcome which is one of its eigenvalues. This action reduces the
state to one of its eigenstates (which are part of the basis). Therefore, any subsequent
measurement using the same observable will keep giving the same outcome.

Note that nothing stated till this point actually provides for a way an observer will
know of the outcome of a measurement on a quantum system that he performed. Such
considerations require a model of measurement in which the state on which the observer
will record the outcome is called the pointer and the state on which the measurement
is performed is called the system. Such a model of measurement was first provided for
by Jon vonNeumann in his seminal volume [31]. Since any dynamics of a quantum state
with time are defined through unitary evolution (postulate 2), it is only logical for the
aforementioned model of measurement to follow the same procedure. Now, the unitary
used here is an interaction unitary. This unitary is composed of a Hamiltonian constructed
using the observables acting on the system and the pointer Hilbert spaces respectively.
Picking up from these postulates of quantum mechanics, I will go on to the next section
which expounds on the foundations of finite strength quantum measurement.



Chapter 2

Foundations of Finite Strength
Quantum Measurement and Weak
Value

2.1 Quantum Measurement Model
I consider von Neumann’s model of measurement [31] and provide a critical discussion
(which the current literature, including [1,8], lacks) of the ways expectation value and the
weak value (a term I define later) occur for a given strength of measurement interaction
and subsequent post-selection. This model of measurement is conceived from a combi-
nation of all the three basic postulates of quantum mechanics described above and is
therefore indispensable for any operational understanding of the quantum measurement
process. Note that the term ‘measurement interaction’ encompasses the term ‘weak in-
teraction’ when the strength of interaction is considered up to the first order expansion
of the joint unitary evolution (defined later on).

Defining detection Detection entails recording the outcome that can be seen from
each pointer. This can be visualized by thinking of pairwise interaction between multiple
identically prepared measuring devices (representing the pointer) and the systems (the
system that is desired to be measured). Detection would in this case mean that one
looks at and records the outcomes each of the devices would show via a deflection of their
pointers after their respective interactions with the systems. It is necessary to keep in
mind that this schematic is overly simplistic and is not by itself an accurate representation
of the procedure described above/below.

Measurement interaction or coupling Measurement interaction or coupling entails
the joint evolution of the system and pointer state under a unitary composed of the
interaction Hamiltonian between the system and the pointer states.

Post-Selection A strong measurement of some observable on the given quantum state
and selecting one of the outcomes of that measurement. This observable may or may not
be a projector with respect to the basis in which the given quantum state is defined.

The quantum state of the pointer on which the outcome of the measurement is
recorded, is a continuously distributed Gaussian function of momentum/position defined



on an infinite dimensional Hilbert space and the system state is a discrete variable pure
quantum state defined on an n-dimensional Hilbert space. The coupling that occurs be-
tween the system and the pointer results from their joint evolution under the following
unitary interaction.

U = e−i
∫
Ĥdt

Ĥ = −g(t)q̂⊗ Â, where the real eigenvalues ai of the system state are part of the spectral
decomposition of the Hermitian operator Â in its eigenbasis. The evolved state is

ei
∫
g(t)q̂⊗Âdte−q

2/4(∆q)2
n∑
i

αi |A = ai〉 =
n∑
i

αie
−(∆p)2(p−ai)2/ |A = ai〉

The Fourier transform assists us in deriving the above:

eiaiq̂e−(∆p)2p2 = eiaiq̂
∫
dqe−q

2/4(∆q)2
e−ipq (2.1)

=
∫
dqe−q

2/4(∆q)2
e−iq(p−ai) (2.2)

= e−(∆p)2(p−ai)2 (2.3)

As can be seen, the system and the pointer are in a joint entangled state 1. The pointer
momentum distribution is divided into Gaussians centered at the respective eigenvalues
ai. This fact is the origin of the correlation or entanglement between the system and the
pointer states after the interaction. The Gaussian pointer distributions that correspond
to each eigenvalue ai are now associated with the respective eigenstates |ai〉 of the system,
thus causing entanglement between the Gaussian pointer and the system states.

2.2 Strong Measurement - Expectation Value
In the above, if ∆p << minn |ai−aj| (where i, j ∈ {1, n}), it is ensured that the Gaussians
that are centered at (or, whose peaks lie at) different a′is are well separated from each
other. In other words, the different peaks centered at the respective eigenvalues are well-
resolved. A projective measurement on the system state will destroy its superposition
and reduce it to one of its eigenstates |A = ak〉, corresponding to the eigenvalue ak. Now,
due to the aforementioned correlation, the corresponding pointer state will be a Gaussian
peaked at ak. Hence, an observer looking at the pointer will see or detect the value ak.
In this case, the final pointer wave-function, for pointer detection of one of the particles
that corresponds to the system eigenstate (which occurs due to the projection), |A = ak〉
of the large ensemble is

φ(p) = e−(∆p)2(p−ak)2

The above state and therefore the eigenvalue ak will approximately occur |αk|2 times
when one goes on to build the complete measurement statistics by performing a large
number of measurements on an ensemble os quantum systems prepared in the given joint
state. This is because, according to the Copenhagen interpretation, |αk|2 represents the
probability of occurrence of the outcome |A = ak〉 with eigenvalue ak, where αk is the
probability amplitude. I use the standard way to calculate the expectation value of Â,

1For pure states, ‘non-separability’ of the wave-function is equivalent to ‘entanglement’ and these
terms will be used alternately depending on the context but carry the same meaning for pure quantum
states



〈ψi|A |ψi〉 by sandwiching the measurement interaction between initial and final system
states which are identical (and I have ignored the post-selected system state - which is
identical to the pre-selected one) and are written in the eigen-basis of Â, (this can always
be done for a complete orthonormal basis) that is:

〈
n∑
j=1

α∗jψ
†
j

∣∣∣∣∣∣ eiÂ⊗q̂
∣∣∣∣∣
n∑
i=1

αiψi

〉
e−q

2/4(∆q)2

=
〈

n∑
j=1

α∗jψ
†
j

∣∣∣∣∣∣ eiaiq̂

∣∣∣∣∣
n∑
i=1

αiψi

〉
e−q

2/4(∆q)2

=
n∑

j,i=1
α∗jαiδije

iaiq̂e−q
2/4(∆q)2

=
n∑
i=1
|αi|2eiaiq̂e−q

2/4(∆q)2

=
n∑
i=1
|αi|2e−(∆p)2(p−ai)2 (2.4)

In the above, the interaction strength g has been considered to be 1, such that,
∫
g(t)dt =

1, and the Fourier transform 2.1 has been used. Also, |A = ai〉 ≡ Ψi and |A = aj〉 ≡
Ψj. On doing a large number of measurements, one detects the eigenvalue ai with the
probability of |αi|2 and eventually gets the expectation value of 〈Â〉 = ∑n

i=1 |αi|2ai

2.3 Weak Measurement - Expectation Value
It is instructive to compare the above expression (2.4) with the one given below:

exp
{
ig

n∑
i=1
|αi|2aiq̂

}
e−q

2/4(∆q)2 (2.5)

Through this expression, one will be able to argue that the peak of final Gaussian pointer
wave-function can be approximated to lie at the expectation value. By using the Fourier
transform technique described earlier (2.1), the expectation value appears as the shift of
the peak of the Gaussian pointer in the momentum space:

e−(∆p)(p−g〈Â〉)2

In the above expression, note that the expectation value of Â = ∑n
i=1 |αi|2ai appears in the

exponential of the interaction. The above expression signifies that the post-interaction
pointer state (without projective measurement(post-selection) and detection) can be ap-
proximated by a Gaussian distribution in its momentum representation which is centered
around the expectation value of system observable, 〈Â〉w. To actually decipher (I have
avoided the use of the word ‘measure’ due to the risk of it being taken out of context) this
expectation value with desired accuracy, however, one will have to do measurements over
a large number of particles and build up the statistics as done before when the interaction
was strong. The main consequence of doing a weak interaction is that a single detection
of the pointer will not result in any discernible outcome. A single outcome will neither be
an expectation value (obviously), nor an eigenvalue. It will be a fuzzy value will a finite



uncertainty which can be owed to the weakness of the interaction prior to the detection.
In the case of strong interaction, however, each detection will yield a definite outcome
which will be one of the eigenvalues of the observable Â acting on the system state |ψ〉.
As explained in the section above, the result of ensemble measurement is the build up of
the measurement statistics that depend on the probability with which each eigen-state
of Â is present in the eigenstate decomposition of the system state.

2.4 Weakness and Strength
In order to justify the observations made in the section above, it is imperative that the
expressions 2.4 and 2.5 are equal to each other in the ‘weak limit’. This is subject to the
satisfaction of certain approximations. To get an understanding of these approximations,
it is necessary to Taylor expand the exponential (and ignore the pointer state distribution
for the moment) in both cases. Case 1 (2.4) :

n∑
i=1
|αi|2eigaiq̂

=
n∑
i=1
|αi|2(1 + igaiq̂ − g2a2

i q̂
2 − ig3a3

i q̂
3 + ...)

= (
n∑
i=1
|αi|2 + ig

n∑
i=1
|αi|2aiq̂ − g2

n∑
i=1
|αi|2a2

i q̂
2 − ig3

n∑
i=1
|αi|2a3

i q̂
3 + ...)

= (1 + ig〈Â〉q̂ − g2〈Â2〉q̂2 − ig3〈Â3〉q̂3 + ...)

Here, 〈Âk〉 are the higher orders of the expectation value of Â. Now, lets consider case 2
(2.5) by expanding the exponential (again ignoring the pointer state distribution):

exp
{
ig

n∑
i=1
|αi|2aiq̂

}

= 1 + ig
n∑
i=1
|αi|2aiq̂ − g2(

n∑
i=1
|αi|2aiq̂)2 − ig3(

n∑
i=1
|αi|2aiq̂)3 + ...

= 1 + ig〈Â〉q̂ − g2〈Â〉2q̂2 − ig3〈Â〉3q̂3 + ...

By looking at the similarities and differences between the final expressions for cases 1
and 2, one can derive the conditions under which these two expressions are equal. These
general conditions can be defined as conditions for weakness. For the two expressions
to be equal, it is necessary and sufficient that the terms of orders 2 and higher be small
enough (compared to the first two terms) to be ignored. For case 1 (2.4), we have:

gk〈Âk〉qk << max[1, g〈Â〉q] ∀ k ≥ 2

For case 2 (2.5), we have:

gk〈Â〉kqk << max[1, g〈Â〉q] ∀ k ≥ 2

If one considers the non − trivial assumption that 1 > g〈Â〉q̂ which is indeed valid in
many experimental scenarios (the interaction strength g is controllable), we have for case



1

gk〈Âk〉qk << g〈Â〉q ∀ k ≥ 2

=⇒ gk−1 〈Âk〉
〈Â〉

qk−1 << 1 ∀ k ≥ 2

and for case 2

gk〈Â〉kqk << g〈Â〉q ∀ k ≥ 2
=⇒ gk−1〈Â〉k−1qk−1 << 1 ∀ k ≥ 2

In both cases above, the q can be replaced by ∆q, the position spread of the initial pointer
state. This can always be done since ∆q > q ∀q . So, we have Case 1:

gk−1 〈Âk〉
〈Â〉

(∆q)k−1 << 1 ∀ k ≥ 2

and Case 2
gk−1〈Â〉k−1(∆q)k−1 << 1 ∀ k ≥ 2

The spread in the position distribution of the initial pointer state is inversely proportional
to the spread of its momentum distribution; ∆p = 1

2∆q . Again, we have, case 1

gk−1 〈Âk〉
〈Â〉

(
1

2∆p

)k−1

<< 1 ∀ k ≥ 2 (2.6)

=⇒ (g/2)k−1 〈Âk〉
〈Â〉

<< (∆p)k−1 ∀ k ≥ 2 (2.7)

=⇒ (g/2)
(
〈Âk〉
〈Â〉

)1/k−1

<< ∆p ∀ k ≥ 2 (2.8)

and case 2

gk−1〈Â〉k−1
(

1
2∆p

)k−1

<< 1 ∀ k ≥ 2 (2.9)

=⇒ (g/2)k−1〈Â〉k−1 << (∆p)k−1 ∀ k ≥ 2 (2.10)
=⇒ (g/2)〈Â〉 << ∆p ∀ k ≥ 2 (2.11)

The weakness condition – truncating both (cases 1 and 2) the expansions up to the first
order – holds only if the conditions 2.6 and 2.9 are satisfied together.

2.4.1 Results
After a careful observation of the above two approximations for cases 1 and 2, one can
see that three independent factors contribute to the ‘weakness’ of measurement:

1. The measurement interaction strength or coupling strength g between system and
pointer states.



2. The expectation value of system measurement observable 〈Â〉 and its higher orders
〈Âk〉.

3. The initial variance (spread) of the pointer wave-function in the position (momen-
tum) representation, ∆q (∆p).

As prescribed by the weakness conditions described above, lets consider ∆p >> maxn ai.
Recall that this is opposite to the condition considered in the strong measurement section
2.1.1 above. This time the resolution between the separated Gaussians is so bad that
one can only make out a single Gaussian that is peaked at the expectation value of Â,∑n
i |αi|2ai. This is the regime in which one defines weak measurement. However, a single

detection will not give any discernible result since ∆p >> 〈Â〉. Like in the strong case,
here also this expectation value can be deciphered/calculated only after detecting a large
number of particles in the ensemble. The uncertainty with which the expectation value
is obtained gradually goes down with the number of particles N one detects as 1√

N
.

Definition: Weak Value Before proceeding let us first define an entity called the
‘weak value’ through the spectral and eigenstate decomposition of the system interaction(Â)
and post-selection observables(B̂) and the initial system state.

〈Â〉w ≡
〈ψf | Â |ψi〉
〈ψf |ψi〉

=
∑n
i=1 β

∗
i aiαi∑n

i=1 β
∗
i αi

(2.12)

where |ψf〉 =
∣∣∣B̂ = b

〉
= ∑n

j=1 βj |A = aj〉, |ψi〉 = ∑n
i=1 αi |A = ai〉 and Â = ∑n

i=1 ai |ai〉 〈ai|
owing to the completeness property of a complete orthonormal basis. Also note that this
weak value is a complex quantity in general.

2.5 Post-selected Measurement - What Value?
An explicit treatment to the post-selection process is given here by doing the analysis
analogous to the above when the pre-selected system state |ψi〉 is post-selected on another
state |ψf〉 by doing a projective measurement using an observable B̂. Here, the interaction
is sandwiched between |ψf〉, the post-selected state and |ψi〉, the preselected state. One
might now expect to determine the value 2 〈ψf | Â |ψi〉 analogous to the expectation value
〈ψi| Â |ψi〉. Lets consider ψf =

∣∣∣B̂ = b
〉

= ∑n
j=1 βj |A = aj〉〈

n∑
j=1

β∗jψ
†
j

∣∣∣∣∣∣ eigÂ⊗q̂
∣∣∣∣∣
n∑
i=1

αiψi

〉
e−q

2/4(∆q)2 (2.13)

=
〈

n∑
j=1

β∗jψ
†
j

∣∣∣∣∣∣ eigaiq̂

∣∣∣∣∣
n∑
i=1

αiψi

〉
e−q

2/4(∆q)2 (2.14)

=
n∑

j,i=1
β∗jαiδije

igaiq̂e−q
2/4(∆q)2 (2.15)

=
n∑
i=1

β∗i αie
igaiq̂e−q

2/4(∆q)2 (2.16)

=
n∑
i=1

β∗i αie
−(∆p)2(p−gai)2 (2.17)

2which will later turn out to be the unnormalized weak value.



|ψi〉 and B̂ are written in the orthogonal basis of Â. Looking at the above expressions,
it is relevant to ask about the measurement statistics that would come out if one does
such a measurement on an ensemble. This question is not answered by the current
interpretation of quantum mechanics which defines only the modulus squared of the
complex coefficients (probabilities corresponding to the probability amplitudes) to be
discerned from the statistics of a measurement. This conundrum might also have led to
the claim made by Duck, Stevenson and Sudarshan [8] while trying explain the appearance
of the weak value at the peak of the single final Gaussian of the pointer state (will come
to this in the next sections). From the above analysis it can be seen that the appearance
of the weak value at the peak has got nothing to do with “complicated cancellations”
between Gaussians with complex coefficients. It is solely a consequence of the weakness
conditions analyzed in detail in the next section. To make this point clearer, we will also
proceed with the calculation of weakness conditions that are relevant for the definition
and justification of the appearance of the weak value.

One can immediately see the part of the weak value ∑n
i=1 β

∗
i αi is identical to the one

that is present in product with the exponentials in the final expression of 2.13. Also, note
that the weak value can lie far outside the range of eigenvalues of the observable Â and
can be complex in general. Thus, if one considers a procedure3 of statistical buildup of
results with ‘probabilities’ ∑n

i=1 β
∗
i αi corresponding to the outcome ai, one will achieve

the numerator of the weak value ∑n
i=1 β

∗
i aiαi. As explained above this makes no sense

because probabilities can only be normalized real numbers.

2.6 Post-Selected Weak Measurement - Weak Value
Now, as was done for the expectation value, it is necessary to compare the final expression
of 2.13 with the one given below:

(
n∑
i=1

β∗i αi) exp
{
ig

∑n
i=1 β

∗
i αiai∑n

i=1 β
∗
i αi

q̂

}
e−q

2/4(∆q)2 (2.18)

= 〈ψf |ψi〉 exp
{
ig〈Â〉wq̂

}
e−q

2/4(∆q)2 (2.19)

= 〈ψf |ψi〉 exp
{
−(∆p)2

[
p− g〈Â〉w

]2}
(2.20)

Where, I have used Fourier transform to the momentum representation 2.1 and the ex-
pression of the spectrally decomposed weak value (2.12). Expanding the above case 2
expression, 2.18 (and ignoring the position distribution of the pointer),

〈ψf |ψi〉 exp
{
ig〈Â〉wq̂

}
= 〈ψf |ψi〉 (1 + ig〈Â〉wq̂ − g2〈Â〉2wq̂2 − ig3〈Â〉3wq̂3 + ...) (2.21)

(2.22)

Since 〈ψf |ψi〉 = ∑n
i=1 β

∗
i αi, I can write,

〈ψf |ψi〉 exp
{
ig

n∑
i=1

β∗i αiaiq̂

}
=

n∑
i=1

β∗i αi(1 + ig
n∑
i=1

β∗i αiaiq̂ − g2(
n∑
i=1

β∗i αiai)2q̂2 − ig3(
n∑
i=1

β∗i αiai)3q̂3 + ...)

(2.23)

3identical to that of the expectation value



Now, let us expand the case 1 expression (ignoring the pointer distribution in position),
2.13,

n∑
i=1

β∗i αie
igaiq̂ =

n∑
i=1

β∗i αi(1 + igaiq̂ − g2a2
i q̂

2 − ig3a3
i q̂

3 + ...) (2.24)

= (
n∑
i=1

β∗i αi + ig
n∑
i=1

β∗i αiaiq̂ − g2
n∑
i=1

β∗i αia
2
i q̂

2 − ig3
n∑
i=1

β∗i αia
3
i q̂

3 + ...) (2.25)

= 〈ψf |ψi〉 (1 + ig〈Â〉wq̂ − g2〈Â2〉wq̂2 − ig3〈Â3〉wq̂3 + ...) (2.26)
(2.27)

where 〈ψf |ψi〉 = ∑n
i=1 β

∗
i αi.

We now proceed to derive the conditions under which the above expression (2.24) can
be approximated to the case 2 (2.23) expression. Analyzing for case 1 first (2.24):

gk〈Âk〉wqk << g〈Â〉wq ∀k ≥ 2

=⇒ gk−1 〈Âk〉w
〈Â〉w

qk−1 << 1 ∀k ≥ 2

=⇒ (g/2)k−1 〈Âk〉w
〈Â〉w

<< ∆pk−1 ∀k ≥ 2

=⇒ (g/2)
(
〈Âk〉w
〈Â〉w

)1/k−1

<< ∆p ∀k ≥ 2

Now, analyzing for case 2:

gk〈Â〉kwqk << g〈Â〉wq ∀k ≥ 2
=⇒ gk−1〈Â〉k−1

w qk−1 << 1 ∀k ≥ 2
=⇒ (g/2)k−1〈Â〉k−1

w qk−1 << ∆pk−1 ∀k ≥ 2
=⇒ (g/2)〈Â〉w << ∆p ∀k ≥ 2

AAV used the modulus of the quantities on the LHS to justify their approximations [1].

∆q << max
n

| 〈ψf |ψin〉 |
| 〈ψf | Ân |ψin〉 |1/n

AAV’s approximations which were later corrected (sic.) by DSS [8] are similar to the
ones I arrived at when I did the analogous treatment for the expectation value in (2.6
and 2.9). Assuming that g〈Â〉wq̂ < 1, DSS arrived at the following approximations:

∆q << 1
〈Â〉w

and

∆q << min
∣∣∣∣∣ 〈ψf | Â |ψin〉〈ψf | Ân |ψin〉

∣∣∣∣∣
1/k−1

These approximations and assumptions do not have a sound justification because we are
comparing complex quantities with a potentially non zero imaginary part on the RHS



with real quantities on the LHS 4. Therefore, in order to justify the truncation of the
expansion up to first order, we should consider separate approximations for the real and
the imaginary parts of the weak value.

Now, I consider the real and imaginary parts separately to justify the approximations:
Case 1:

1 + igRe〈Â〉wq − g Im〈Â〉wq − g2 Re〈Â〉2w − ig2 Im〈Â〉2wq2 − ig3 Re〈Â〉3wq3 + g3 Im〈Â〉3wq3+
(2.28)

g4 Re〈Â〉4wq4 + ig4 Im〈Â〉4wq4 + ig5 Re〈Â〉5wq5 − g5 Im〈Â〉5wq5 − g6 Re〈Â〉6wq6 − ig6 Im〈Â〉6wq6 + ...
(2.29)

Real Part:

1− g Im〈Â〉wq − g2 Re〈Â〉2wq2 + g3 Im〈Â〉3wq3 + g4 Re〈Â〉4wq4 − g5 Im〈Â〉5wq5 − g6 Re〈Â〉6wq6+
(2.30)

g7 Im〈Â〉7wq7 + g8 Re〈Â〉8wq8

(2.31)

Imaginary Part:

gRe〈Â〉wq − g2 Im〈Â〉2wq2 − g3 Re〈Â〉3wq3 + g4 Im〈Â〉4wq4 + g5 Re〈Â〉5wq5 − g6 Im〈Â〉6wq6−
(2.32)

g7 Re〈Â〉7wq7 + g8 Im〈Â〉8wq8 + ...
(2.33)

The expression will look similar, but there will be a major difference. 〈Â〉k will now be
replaced by 〈Âk〉. Thus, we have the case 2 expansion:

1 + igRe〈Â〉wq − g Im〈Â〉wq − g2 Re〈Â2〉w − ig2 Im〈Â2〉wq2 − ig3 Re〈Â3〉wq3 + g3 Im〈Â3〉wq3+
(2.34)

g4 Re〈Â4〉wq4 + ig4 Im〈Â4〉wq4 + ig5 Re〈Â5〉wq5 − g5 Im〈Â5〉wq5 − g6 Re〈Â6〉wq6 − ig6 Im〈Â6〉wq6 + ...
(2.35)

Real Part:

1− g Im〈Â〉wq − g2 Re〈Â2〉wq2 + g3 Im〈Â3〉wq3 + g4 Re〈Â4〉wq4 − g5 Im〈Â5〉wq5 − g6 Re〈Â6〉wq6+
(2.36)

g7 Im〈Â7〉wq7 + g8 Re〈Â8〉wq8

(2.37)

Imaginary Part:

gRe〈Â〉wq − g2 Im〈Â2〉wq2 − g3 Re〈Â3〉wq3 + g4 Im〈Â4〉wq4 + g5 Re〈Â5〉wq5 − g6 Im〈Â6〉wq6−
(2.38)

g7 Re〈Â7〉wq7 + g8 Im〈Â8〉wq8 + ...
(2.39)

4if the position/momentum distribution is considered real-valued



Assuming that g Im〈Â〉wq < 1 throughout, the following set of 8 approximations emerges:

(g/2) Im〈Â〉w << ∆p ∀k ∈ {3, 5, 7, 9, ...}

(g/2)(Re〈Â〉kw
Im〈Â〉w

)1/k−1 << ∆p ∀k ∈ {2, 4, 6, 8, ...}

(g/2)(Im〈Â〉kw
Re〈Â〉w

)1/k−1 << ∆p ∀k ∈ {2, 4, 6, 8, ...}

(g/2) Re〈Â〉w << ∆p ∀k ∈ {3, 5, 7, 9, ...}

(g/2)(Im〈Âk〉w
Im〈Â〉w

)1/k−1 << ∆p ∀k ∈ {3, 5, 7, 9, ...}

(g/2)(Re〈Âk〉w
Im〈Â〉w

)1/k−1 << ∆p ∀k ∈ {2, 4, 6, 8, ...}

(g/2)(Im〈Âk〉w
Re〈Â〉w

)1/k−1 << ∆p ∀k ∈ {2, 4, 6, 8, ...}

(g/2)(Re〈Âk〉w
Re〈Â〉w

)1/k−1 << ∆p ∀k ∈ {3, 5, 7, 9, ...}

Each condition in the above set of conditions is necessary. They become sufficient only
when the set treated as a whole. Observations similar to those made for the weakness
criterion while calculating the expectation value hold here.

1. The measurement interaction or coupling strength g between system and pointer.

2. The weak value of system measurement observable 〈Â〉w and its higher orders 〈Âk〉w.

3. The initial spread of the pointer wave-function in the position representation ∆q.

2.7 Conundrums From the Past
I will quote and briefly discuss the analyses of some eminent physicists concerning the
seminal paper [1] which introduced weak values. Let me begin with the inventors Yakir
Aharonov, David Z. Albert and Lev Vaidman:

We have found that the usual measuring procedure for preselected and post-
selected ensembles of quantum systems gives unusual results. Under some
natural conditions of weakness of the measurement, its result consistently de-
fines a new kind of value for a quantum variable, which we call the weak
value.

I. M. Duck, P. M. Stevenson and E. C. G. Sudarshan [8]:

The surprising effect pointed out by AAV has been shown to be a consequence
of constructive and destructive interference between two complex amplitudes.
Although surprising, the effect is in no way paradoxical, and involves nothing
outside ordinary quantum mechanics.



Asher Peres [22]

The experimental results, if correctly interpreted, obey the rules of elementary
quantum mechanics.

A. J. Leggett [14]

It is precisely the notion of ”standard measuring procedure” which is at issue
between us.

From the above comments it is clear that people had diametrically opposite viewpoints
about the proposed weak measurement procedure. Leggett had a problem with regarding
the weak measurement process to be a standard measuring procedure. Peres had an issue
with the processing of the outcomes of the weak measurement process. In particular,
he gave the following example of a pointer state after the weak interaction and post-
selection. He considered the measurement of the z-component of the spin of an electron
which corresponds to the pauli observable σ̂z:

〈ψf | exp
(
−iqσz − q2/4∆2

)
|ψi〉 = (1/2)(µ 〈ψf | (1 + σz) |ψi〉 e−iq

+ν 〈ψf | (1− σz) |ψi〉 eiq) exp
(
−q2/4∆2

)
(2.40)

Fourier transform of the above state is:

(1/2)(µ 〈ψf | (1 + σz) |ψi〉 exp
(
−∆2(p− 1)2

)
+ν 〈ψf | (1− σz) |ψi〉 exp

(
−∆2(p+ 1)2

)
) (2.41)

A look at the above expression might give the first-hand impression that there are two
peaks at ±1. However, Peres ignores the fact that the coefficient of both the exponents
are complex entities in general which have no place in the statistics of a measurement.
This example clearly illustrates the point I made through the derivation of the expression
2.13. Needless to say, in the weak limit the center of the Gaussian lies at the weak value.
Thus, it can be concluded that post-selection which gives rise to the above indeterminate
expression is the root cause of the confusion. Both AAV and DSS seem to regard this as
a normal measurement procedure which I agree with.

2.8 Illumination with a Poser
We began with the measurement of the expectation value of an observable with respect
to a given quantum state using vonNeumann’s model of measurement. For any prac-
tical/experimental measurement process this model and hence all its considerations are
imperative since it gives an operational interpretation to the quantum measurement pro-
cess. The model consists of two actions - (i) Weak interaction between system and pointer,
(ii) Projective post-selection of the system state. It should be emphatically pointed out
that a quantum measurement process cannot give any information about the interaction
or the observable involved in the interaction or the state of the system with which the
pointer interacts, unless, projective post-selection is performed.

We then demonstrated the method to measure the expectation value of an observable
with respect to a given system state using both strong interaction as well as weak inter-
action between system and pointer states followed by post-selection on the same state. A



strong(projective) measurement done on the system state after a weak interaction does
not result in collapse of the pointer state into one of Gaussians which leads to a fuzzi-
ness or an intrinsic error/uncertainty in the measured value. This intrinsic error can be
attributed to the quantum nature of the pointer. Irrespective of the weakness, the result
for both cases is the same provided one does the entire measurement process over a large
enough number of identically prepared system states.

Then, we moved to the case where post-selection does not result in a projection on the
same state5 due to the usage of a different observable from the one used in the interaction.
Here, when strong interaction between the initial system and pointer states is followed by
the post-selection on a different system state, the result does not have a justification or any
operational meaning within the Copenhagen interpretation of quantum mechanics, if one
follows the statistical buildup procedure analogous to the expectation value. However,
if the interaction between the system and the pointer is weak and is followed by the
projective post-selection, the resulting value has a real experimental existence. It is safe
to say that the weak value (or its higher orders - which will have a similar corresponding
set of weakness conditions to satisfy) can be defined only in the weak approximation
- the conditions for which have been explicitly derived - within the framework of the
measurement model. In summary,

1. The conundrum of the past concerning the weak measurement process have been
cleared by isolating the weakness of a measurement process as something that is
independent of whether one wants to measure the expectation value or the weak
value.

2. The surprising nature of the weak value arises due to a combination of the weakness
of measurement and the post-selection on the system state which is different from
the pre-selected one.

3. An interpretation to the value of the expression 2.13 is still awaited. This implies
that either there is an issue with the measurement model or there is an issue with
the Copenhagen interpretation of quantum mechanics.

5as that of the preselected one



Chapter 3

A general mathematical formulation
of WM with and without
post-selection

Weak measurement in the sense AAV proposed operationally consists of two actions. (1)
Weak interaction between two quantum system s(system and pointer) via a coupling
Hamiltonian Ĥ = Â⊗ p̂. Here, the observable Â corresponds to the measurement on the
system wave-function or density matrix and the observable p̂ corresponds to the measure-
ment on the pointer wave-function or density matrix. Such a Hamiltonian is implemented
using a unitary interaction of coupling strength g. (2) Projective measurement using an-
other observable B̂ that does not commute with Â and selecting some of the outcomes
of that projective measurement which amounts to post selection.

Û = e−ig(t)Â⊗p̂ (3.1)

3.1 Weak Interaction - First Order Strength
The function g(t) is a delta like function that peaks for a very small time interval during
which the weak interaction occurs. Therefore,

∫
g(t)dt = g. In all that follows, the value of

g is considered to be very less, i.e, g << 1. However, in general, g ∈ (0, 1), so that gn < g,
where n ∈ Z. The implication of this ‘weak coupling’ is to expand the unitary interaction
between the system state and the pointer state up to first order in its Taylor expansion.
A more detailed analysis of the meaning, causes and consequences of the weakness of
interaction strength were provided in previous section. Let the above interaction unitary
act on the separable bipartite initial system + pointer state |ψit〉 = |ψis〉 |φip〉:

Û |ψis〉 |φip〉 = e−ig(t)Â⊗p̂ |ψis〉 |φip〉
= (1− igÂ⊗ p̂) |ψis〉 |φip〉

= |ψis〉 |φip〉 − igÂ |ψis〉 ⊗ p̂ |φip〉

Here, |ψis〉 represents the initial system state and |φip〉 represents the initial pointer state.
Notice that, after the interaction, the joint state of the system and pointer is no longer
separable. The weak interaction has converted it to an entangled state |ψft〉. This feature
of entanglement creation between two quantum systems due to measurement interaction
between their respective quantum states is universally true and was first well-formulated



by von Neumann. Such an interaction resulting in entanglement is the simplest and the
most basic feature of non-classicality. Now, one will be naturally inclined to investigate
the effect of the aforementioned weak measurement interaction on the system and the
pointer states individually. We address this issue by considering the partial trace of
the joint post-interaction state first with respect to the Hilbert space pertaining to the
pointer and then with respect to the Hilbert space pertaining to the system. To follow
this prescription, we first construct the density matrix ρft corresponding to the joint
post-interaction state

ρft = |ψft〉 〈ψft| = (|ψis〉 |φip〉 − igÂ |ψis〉 ⊗ p̂ |φip〉)(〈φip| 〈ψis|+ ig 〈φip| p̂⊗ 〈ψis| Â)
= (|ψis〉 |φip〉) 〈φip| 〈ψis|+ ig(|ψis〉 |φip〉) 〈φip| p̂⊗ 〈ψis| Â− ig(Â |ψis〉 ⊗ p̂ |φip〉) 〈φip| 〈ψis|

= |ψis〉 〈ψis| ⊗ |φip〉 〈φip|+ ig |ψis〉 〈ψis| Â⊗ |φip〉 〈φip| p̂− igÂ |ψis〉 〈ψis| ⊗ p̂ |φip〉 〈φip|

In the calculations, I have used the Hermiticity of p̂ and Â, the norm of the initial
system and pointer wave-functions to be 1 and the norm of the final joint state is 1,
〈ψft|ψft〉 = 1. All operators that henceforth appear in this work correspond to physical
observables with real eigenvalues are therefore Hermitian operators. Taking the partial
trace of the above obtained joint state over the pointer Hilbert space, one gets the system
state ρfs = Trp(ρft)

ρfs = |ψis〉 〈ψis| 〈φip|φip〉+ ig |ψis〉 〈ψis| Â 〈φip| p̂ |φip〉 − igÂ |ψis〉 〈ψis| 〈φip| p̂ |φip〉 (3.2)
= |ψis〉 〈ψis|+ ig 〈φip| p̂ |φip〉 (|ψis〉 〈ψis| Â− Â |ψis〉 〈ψis|) (3.3)

= ρis + ig 〈φip| p̂ |φip〉 [ρis, Â] (3.4)

Here and at every further occurrence, [., .] represents the commutator between the two
arguments and {., .} represents the anti-commutator between the two arguments. Also
note that Tr

(
ρfsρ

†
fs

)
= 1. From the above expression it is clear that the non-disturbance

or disturbance caused to the system state evident from the change in its expression after
the weak interaction is subject to the vanishing or non-vanishing of the commutator
[ρis, Â]. This commutator is related to the expression of the imaginary part of the weak
value which I will come to in a later section. Like the system state, the pointer state
can also derived in a similar way by taking a partial trace over the system Hilbert space,
ρfp = Trs(ρft),

ρfp = 〈ψis|ψis〉 |φip〉 〈φip|+ ig 〈ψis| Â |ψis〉 |φip〉 〈φip| p̂− ig 〈ψis| Â |ψis〉 p̂ |φip〉 〈φip|
= ρip + ig 〈ψis| Â |ψis〉 [ρip, p̂]

Here, Tr
(
ρfpρ

†
fp

)
= 1. The above expression is analogous to the expression for the

reduced system state. The disturbance is accounted for by the commutator between
the density matrix of the initial pointer state and pointer measurement observable p̂. If
one interchanges the roles of the system and the pointer, the above disturbance is also
related to the imaginary part of the pointer weak value. Note that in both the cases, the
disturbance caused on the system(pointer) is also weighted by the expectation value of
the pointer(system) observable with respect to the initial pointer(system) state. This was
a non-operational treatment to the disturbance caused to the system or the pointer states
after the unitary weak interaction between them. However, in order to experimentally
ascertain the change that took place, it is necessary to determine the expectation value



of a pointer observable p̂′ using the final joint state |ψft〉.

〈ψft| p̂′ |ψft〉 = (〈φip| 〈ψis|+ ig 〈φip| p̂⊗ 〈ψis| Â , p̂′ , |ψis〉 |φip〉 − igÂ |ψis〉 ⊗ p̂ |φip〉)
= 〈φip| p̂′ |φip〉 〈ψis|ψis〉+ ig 〈φip| p̂p̂′ |φip〉 〈ψis| Â |ψis〉 − ig 〈φip| p̂′p̂ |φip〉 〈ψis| Â |ψis〉

= 〈φip| p̂′ |φip〉+ ig 〈ψis| Â |ψis〉 〈φip| p̂p̂′ − p̂′p̂ |φip〉
= 〈φip| p̂′ |φip〉+ ig 〈ψis| Â |ψis〉 〈[p̂, p̂′]〉ip

Now, one has the shift in the expectation value of an arbitrary pointer observable after
the weak interaction with respect to its expectation value before the weak interaction.

〈p̂′〉fp = 〈p̂′〉ip + ig〈Â〉is〈[p̂′, p̂]〉ip

Like the change in the expression for the state, the change in the expectation value of
an arbitrary pointer observable is also weighted by the expectation value of the system
observable with respect to the initial system state. Similar conclusion can be drawn for
an arbitrary system observable’s final expectation value.

〈Â′〉fs = 〈Â′〉is + ig〈p̂〉ip〈[Â′, Â]〉is

3.1.1 Results
In the weak limit of the interaction strength when the unitary expansion is restricted to
order one,

1. The system state is not disturbed if

[ρis, Â] = 0 or 〈φip| p̂ |φip〉 = 0

2. The pointer state is not disturbed if

[ρip, p̂] = 0 or 〈ψis| Â |ψis〉 = 0

3. the expectation value of an arbitrary system observable, Â′ does not change if

[Â, Â′] = 0 or 〈φip| p̂ |φip〉 = 0

4. the expectation value of an arbitrary pointer observable, p̂′ does not change if

[p̂, p̂′] = 0 or 〈ψis| Â |ψis〉 = 0

3.2 Measurement back-action and the Weak Value

3.2.1 A brief prelude
Interpretation of the meaning of the real and imaginary parts of the weak value is a topic
of much debate. I quote some physicists below:
J. Dressel and A. N. Jordan [7]:



Specifically, we provide an operational interpretation for the imaginary part
of the generalized weak value as the logarithmic directional derivative of the
postselection probability along the unitary flow generated by the action of the
observable operator.

In simple words, the imaginary part of the weak value determines how the disturbed
system state changes in the direction1 specified by the observable that acts on the system
state during the weak interaction.
Yakir Aharonov and Alonso Botero [2]:

The imaginary part of the complex weak value can be interpreted as a “bias
function” for the posterior sampling point.

In this paper, the status of the imaginary part of the weak value is analyzed with the
help of statistical techniques by considering the position and momentum Gaussian distri-
butions before the and after the weak measurement. The above interpretation is based
mainly on an equation similar to 3.8 which we arrive at later.
In his paper, Aephraim Steinberg [28,29] states:

The imaginary part constitutes a shift in the pointer momentum. This latter
effect is a reflection of the backaction of a measurement on the particle. It
does have physical significance, but, since it does not correspond to a spatial
translation of the pointer, should not be thought of as part of the measurement
outcome.

Solely because the imaginary part of the weak value represents a shift in the momentum
expectation value is not reason enough to state that it reflects measurement backac-
tion. Besides, the imaginary part of the weak value appears in the shift of the spatial
measurement as well which can be seen from Equation 3.9.

3.2.2 A Simple Answer
In addition to the individual observations made above, another attribute that summarily
applies to all of them is the consideration of a continuous Gaussian pointer. The inter-
pretation I come to valid for any pointer distribution in addition to being the simplest
one.

Expressions for the real and the imaginary parts have been explicitly derived in terms
of the pre and post-selected system states and the system measurement observable which
is part of the interaction unitary [6, 7]. The real part is:

Re〈A〉w =
Tr
(
Π̂f{Â, ρ̂is}

)
2 Tr

(
Π̂f ρ̂is

) (3.5)

The imaginary part is:

Im〈A〉w =
Tr
(
Π̂f (−i[Â, ρ̂is])

)
2 Tr

(
Π̂f ρ̂is

) (3.6)

where Πf is the projector used for the post-selection on the system state. In the above
expression, notice that the commutator [Â, ρ̂is] is identical to the one that determines

1of its state space



back-action on the system state 3.2 via a change in its expression. If this commutator is
zero, the imaginary part of the weak value is zero. Therefore, if there is no back-action
on the system state ([Â, ρ̂is] = 0) because of the weak interaction, the imaginary part of
the weak value is zero.

3.3 Weak Interaction - Second Order Strength
Now, we come to the second order treatment of the above weak interaction. While
the disturbance in the first order of the interaction strength was subject to the relevant
commutation relations, what pattern does the disturbance follow when one expands the
interaction upto order 2? The joint final system + pointer state when the interaction is
expanded up to order 2: ∣∣∣ψ(2)

ft

〉
= Û |ψis〉 |φip〉 = e−ig(t)Â⊗p̂ |ψis〉 |φip〉

= (1− igÂ⊗ p̂− g2Â2 ⊗ p̂2) |ψis〉 |φip〉
= |ψis〉 |φip〉 − igÂ |ψis〉 ⊗ p̂ |φip〉 − g2Â2 |ψis〉 ⊗ p̂2 |φip〉

Constructing the density matrix

ρ
(2)
ft = |ψft〉 〈ψft| = (|ψis〉 |φip〉−igÂ |ψis〉⊗p̂ |φip〉−g2Â2 |ψis〉⊗p̂2 |φip〉)(〈φip| 〈ψis|+ig 〈φip| p̂⊗〈ψis| Â−

g2 〈φip| p̂2 ⊗ 〈ψis| Â2)
= (|ψis〉 |φip〉) 〈φip| 〈ψis|+ ig(|ψis〉 |φip〉) 〈φip| p̂⊗〈ψis| Â− ig(Â |ψis〉⊗ p̂ |φip〉) 〈φip| 〈ψis| −

g2(Â2 |ψis〉 ⊗ p̂2 |φip〉) 〈φip| 〈ψis|+ g2(Â |ψis〉 ⊗ p̂ |φip〉) 〈φip| p̂⊗ 〈ψis| Â−
g2(|ψis〉 |φip〉) 〈φip| p̂2 ⊗ 〈ψis| Â2 =

|ψis〉 〈ψis| ⊗ |φip〉 〈φip|+ ig |ψis〉 〈ψis| Â⊗ |φip〉 〈φip| p̂− igÂ |ψis〉 〈ψis| ⊗ p̂ |φip〉 〈φip| −
g2Â2 |ψis〉 〈ψis| ⊗ p̂2 |φip〉 〈φip|+ g2Â |ψis〉 〈ψis| Â⊗ p̂ |φip〉 〈φip| p̂−

g2 |ψis〉 〈ψis| Â2 ⊗ |φip〉 〈φip| p̂2

On normalizing one has

ρ
(2)
ft

〈ψft|ψft〉
= ρ

(2)
ft + g2 〈ψis| Â2 |ψis〉 〈φip| p̂2 |φip〉 |ψis〉 〈ψis| ⊗ |φip〉 〈φip|

Taking the partial trace over the pointer Hilbert space, one gets the density matrix of
the normalized reduced system state ρ(2)

fs after the disturbance is considered up to the
second order

ρ
(2)
fs = |ψis〉 〈ψis|+ ig |ψis〉 〈ψis| Â 〈φip| p̂ |φip〉 − igÂ |ψis〉 〈ψis| 〈φip| p̂ |φip〉−

g2Â2 |ψis〉 〈ψis| 〈φip| p̂2 |φip〉+ g2Â |ψis〉 〈ψis| Â 〈φip| p̂2 |φip〉−
g2 |ψis〉 〈ψis| Â2 〈φip| p̂2 |φip〉+ g2 〈ψis| Â2 |ψis〉 〈φip| p̂2 |φip〉 |ψis〉 〈ψis|

= ρis+ ig 〈φip| p̂ |φip〉 [ρis, Â]− g2 〈φip| p̂2 |φip〉 ({ρis, Â2} − ÂρisÂ− 〈ψis| Â2 |ψis〉 ρis)

Similarly, by taking the partial trace over the system Hilbert space, one obtains the
normalized reduced pointer state ρ(2)

fp when the interaction strength is considered up to



the second order

ρ
(2)
fp = |φip〉 〈φip|+ ig 〈ψis| Â |ψis〉 |φip〉 〈φip| p̂− ig 〈ψis| Â |ψis〉 p̂ |φip〉 〈φip| −

g2 〈ψis| Â2 |ψis〉 p̂2 |φip〉 〈φip|+ g2 〈ψis| Â2 |ψis〉 p̂ |φip〉 〈φip| p̂−
g2 〈ψis| Â2 |ψis〉 |φip〉 〈φip| p̂2 + g2 〈ψis| Â2 |ψis〉 〈φip| p̂2 |φip〉 |φip〉 〈φip|

= ρ̂ip + ig 〈ψis| Â |ψis〉 [ρ̂ip, p̂]− g2 〈ψis| Â2 |ψis〉 ({ρ̂ip, p̂2} − p̂ρ̂ipp̂− 〈φip| p̂2 |φip〉 ρ̂ip)

If one expands the interaction unitary up to the second order, the disturbance caused
to the(reduced) pointer or the system state is subject to the same commutator that was
present in the disturbance caused to the first order. However, in the second order case
additional terms are present which cause disturbance even if the first order term compris-
ing the commutator vanishes. Therefore, it can concluded that even if the commutator
[ρis, Â] ([ρ̂ip, p̂]) vanishes, the system (pointer) state gets disturbed when the strength of
the weak interaction is considered up to the second order whereas the first order distur-
bance remains zero. It should be noted that this disturbance due to the second order
expansion would be small since only the term containing g2 survives. Note that all the
above expressions are symmetric with respect to the system and the pointer states. That
is, if one does not pre-distinguish between the system and the pointer before the weak
interaction, one will observe similar changes to the respective disturbed states and to the
expectation values of their respective observables. Similarly, one can determine the shift
in the expectation value of a pointer observable, 〈p̂′〉(2)

fp when the interaction strength is
considered up to the second order.〈

ψ
(2)
ft

∣∣∣ p̂′ ∣∣∣ψ(2)
ft

〉
= (〈φip| 〈ψis|+ ig 〈φip| p̂⊗ 〈ψis| Â− g2 〈φip| p̂2 ⊗ 〈ψis| Â2 , p̂′ ,

|ψis〉 |φip〉 − igÂ |ψis〉 ⊗ p̂ |φip〉 − g2Â2 |ψis〉 ⊗ p̂2 |φip〉)
= 〈φip| p̂′ |φip〉 〈ψis|ψis〉+ ig 〈φip| p̂p̂′ |φip〉 〈ψis| Â |ψis〉 − ig 〈φip| p̂′p̂ |φip〉 〈ψis| Â |ψis〉+

g2 〈φip| p̂p̂′p̂ |φip〉 〈ψis| Â2 |ψis〉−g2 〈φip| p̂2p̂′ |φip〉 〈ψis| Â2 |ψis〉−g2 〈φip| p̂′p̂2 |φip〉 〈ψis| Â2 |ψis〉
= 〈φip| p̂′ |φip〉+ig 〈ψis| Â |ψis〉 〈φip| p̂p̂′−p̂′p̂ |φip〉−g2 〈ψis| Â2 |ψis〉 〈φip| p̂2p̂′+p̂′p̂2−p̂p̂′p̂ |φip〉

= 〈φip| p̂′ |φip〉+ ig 〈ψis| Â |ψis〉 〈[p̂, p̂′]〉ip − g2 〈ψis| Â2 |ψis〉 (〈{p̂2, p̂′}〉ip − 〈p̂p̂′p̂〉ip)

On normalization, an extra term comes in〈
ψ

(2)
ft

∣∣∣ p̂′ ∣∣∣ψ(2)
ft

〉
〈
ψ

(2)
ft

∣∣∣ψ(2)
ft

〉 = 〈φip| p̂′ |φip〉+ig 〈ψis| Â |ψis〉 〈[p̂, p̂′]〉ip−g2 〈ψis| Â2 |ψis〉 (〈{p̂2, p̂′}〉ip−〈p̂p̂′p̂〉ip−〈p̂2〉ipρip)

The final expectation value can thus be presented as

〈p̂′〉(2)
fp = 〈p̂′〉ip + ig〈Â〉is〈[p̂, p̂′]〉ip − g2〈Â2〉is(〈{p̂2, p̂′}〉ip − 〈p̂p̂′p̂〉ip − 〈p̂2〉ipρip)

Observations that are similar to those made for the case of the disturbance to the system
or the pointer state via a change in their expressions when the interaction strength is
considered up to the second order also hold for the shift of the expectation value of an
arbitrary system or pointer observable. Note that here the commutator, [p̂, p̂′] as well
as the anti-commutator, {p̂2, p̂′}, in question are different. Analogous expression for the
post-weak interaction expectation value would hold for the system observable.

〈Â′〉(2)
fs = 〈Â′〉is + ig〈p̂〉ip〈[Â, Â′]〉is − g2〈p̂2〉ip(〈{Â2, Â′}〉is − 〈ÂÂ′Â〉is − 〈Â2〉isρis)



To the first and the second orders in interaction strength, the shift in the expectation
value of the arbitrary system(pointer) observable is weighted by expectation values of
the first and the second powers of system(pointer) interaction observable respectively.
Till now, we have treated only the weak interaction part of a variant of AAV’s weak
measurement formalism. Now, we come to the part of post-selection which is mainly
responsible for the counterintuitive effects of weak measurement.

3.3.1 Results
1. Even if the system (pointer) state is not disturbed when the expansion of the unitary

interaction is considered up to the first order, the system (pointer) state is disturbed
when the expansion is taken up to the second order.

2. Analogous result holds for the change or the shift in the expectation value of an
arbitrary system (pointer) observable.

3.4 After Post-Selection
The discussion in the three subsections above was symmetric with respect to the system
and pointer state. Now, we will move to post-selection where the system state will now
be projected due to a strong interaction resulting in the disentanglement of the system
and pointer states. Post selection entails strong von Neumann interaction using another
system observable B̂ which does not commute with Â. The non-commutation ensures
that the state on which the system is post-selected on is different from the state produced
as a result of the action of Â on the pre-selected system state. The expression for the
post-selected joint state, |φtPS〉 is

|ψtPS〉 = (e−i|ψfs〉〈ψfs|⊗Î)(e−ig(t)Â⊗p̂) |ψis〉 |φip〉

The first unitary corresponds to a strong von Neumann interaction implemented using a
projector on a subspace of the system Hilbert space and identity on the pointer Hilbert
space. Note that the g factor which characterizes the strength of the interaction is 1
here. The second unitary corresponds to the weak interaction which was at the center of
discussion in the last section. Proceeding with the computation, one has the final pointer
state in the wave-function formulation:

|ψtPS〉 = (|ψfs〉 〈ψfs| ⊗ Î)(1− igÂ⊗ p̂) |ψis〉 |φip〉
= |ψfs〉 ⊗ (〈ψfs|ψis〉 (|φip〉 − ig〈Â〉wp̂ |φip〉))

While the system state has been projected on |ψfs〉 (and will be ignored hereafter) , the
pointer state is

|φpPS〉 = 〈ψfs|ψis〉 (|φip〉 − ig〈Â〉wp̂ |φip〉)
In the above, the factor 〈ψfs|ψis〉 which depends on the overlap between the pre and post
selected system states indicates the probability of occurrence of this particular pointer
state. The factor that weights the shift of this pointer state is defined in literature as the
weak value [1].

〈Â〉w = 〈ψfs| Â |ψis〉
〈ψfs|ψis〉



The denominator in the above expression represents the probability of successful post-
selection on |ψfs〉 given |ψis〉 is the pre-selected state. Looking at the expression of the
pointer state after post-selection, one can immediately see that the disturbance caused
to the pointer state is now weighted by the weak value. This disturbance is inversely
proportional to the probability of post-selection. Lesser the overlap between the pre
(corresponding to the weak interaction) and the post-selected (strong von Neumann pro-
jected) system state, more is the disturbance caused to the pointer state after the entire
procedure. Since the treatment in the above section was done using the density matrix
formulation, lets compute the density matrix of the above pointer state.

ρpPS = |φpPS〉 〈φpPS|
〈φpPS|φpPS〉

= | 〈ψfs|ψis〉 |2(|φip〉 − ig〈Â〉wp̂ |φip〉)(〈φip|+ ig〈Â〉∗w 〈φip| p̂)
| 〈ψfs|ψis〉 |2(〈φip|+ ig〈Â〉∗w 〈φip| p̂)(|φip〉 − ig〈Â〉wp̂ |φip〉)

= (|φip〉 〈φip| − ig〈Â〉wp̂ |φip〉 〈φip|+ ig〈Â〉∗w |φip〉 〈φip| p̂)
(1 + ig〈Â〉∗w 〈φip| p̂ |φip〉 − ig〈Â〉w 〈φip| p̂ |φip〉)

= (|φip〉 〈φip| − ig〈Â〉wp̂ |φip〉 〈φip|+ ig〈Â〉∗w |φip〉 〈φip| p̂)(1− ig〈Â〉∗w 〈φip| p̂ |φip〉
+ig〈Â〉w 〈φip| p̂ |φip〉)

= (ρip − ig〈Â〉wp̂ρip + ig〈Â〉∗wρipp̂− ig〈Â〉∗w 〈φip| p̂ |φip〉 ρip + ig〈Â〉w 〈φip| p̂ |φip〉 ρip)
= ρip + igRe〈Â〉w[ρip, p̂]− g Im〈Â〉w{ρip, p̂} − 2g Im〈Â〉w 〈φip| p̂ |φip〉 (3.7)

From the above expression it can be inferred that even if the effect of the weak interaction
is not present on the post-interaction (without the post-selection) pointer state ( because
[ρip, p̂] = 0), the effect of that weak interaction is present in the post-selected pointer state
by virtue of the imaginary part of the relevant weak value. This is a purely non-classical
effect of strong measurement (post-selection) done on a part of the joint entangled system
+ pointer state (after the weak interaction).

Now, lets consider the case when neither system nor pointer state was affected after
the weak interaction. From the results of section 2.2.1, we know that this may imply
[ρip, p̂] = 0 and [ρis, Â] = 0. The second identity in turn implies that the imaginary
part of the weak value is zero (look at section 2.2.2). From these considerations, it can
be inferred that the pointer state after the weak interaction and post-selection remains
unaffected.

To demonstrate an operational effect, we will calculate the shift in the expectation
value of an arbitrary pointer observable, p̂′ with respect to the above pointer state

〈φpPS| p̂′ |φpPS〉
〈φpPS|φpPS〉

= (〈φip|+ ig〈Â〉∗w 〈φip| p̂ , p̂′, |φip〉 − ig〈Â〉wp̂ |φip〉)
(〈φip|+ ig〈Â〉∗w 〈φip| p̂, |φip〉 − ig〈Â〉wp̂ |φip〉)

= 〈p̂
′〉ip − ig〈Â〉w〈p̂′p̂〉ip + ig〈Â〉∗w〈p̂p̂′〉ip

1− ig〈Â〉w〈p̂〉ip + ig〈Â〉∗w〈p̂〉ip
= (〈p̂′〉ip − ig〈Â〉w〈p̂′p̂〉ip + ig〈Â〉∗w〈p̂p̂′〉ip)(1− 2g Im〈Â〉w〈p̂〉ip)

The general expression for the shift in the expectation value of an arbitrary pointer
observable, without making any assumptions on the nature of the system or the pointer
states and observables, can thus be expressed as

〈p̂′〉fp = 〈p̂〉ip − 2g Im〈Â〉w〈p̂′〉ip〈p̂〉ip − igRe〈Â〉w〈[p̂′, p̂]〉ip + g Im〈Â〉w〈{p̂′, p̂}〉



If neither the system nor the pointer state is affected after the weak interaction, the
effect of that interaction will be present in the expectation value of an arbitrary pointer
observable with respect to the pointer state after post-selection, provided [p̂′, p̂] 6= 0.

3.4.1 Results
1. If neither the system nor the pointer state is affected after the weak interaction,

the pointer state may remains unaffected after the post-selection as well.

2. Even if neither the system nor the pointer state is disturbed after the weak in-
teraction, the effect of the weak interaction that occurred is present via a change
in the expectation value of an arbitrary pointer observable with respect to the
post-selected pointer state.

3.5 Jozsa - Reloaded
In all the above sections, no restriction was placed with regard to dimensionality, nature
of the distribution etc. on the system and pointer states as well as the system and
pointer observables involved at any stage of the weak measurement process. Now, lets
consider the pointer to be in a continuous variable state which follows a complex valued
distribution in position, φ(x). For the first case, let the observable whose expectation
value we are interested in be the conjugate momentum, p̂x.

〈p̂x〉fp = 〈p̂x〉ip + 2g Im〈Â〉wvar(p̂x) (3.8)
Instead, if the observable is position, x̂, we have,
〈x̂〉fp = 〈x̂〉ip − 2g Im〈Â〉w〈x̂〉ip〈p̂x〉ip − igRe〈Â〉w〈[x̂, p̂x]〉+ g Im〈Â〉w〈{x̂, p̂x}〉

= 〈x̂〉ip + ~g Im〈Â〉w
d
dtvar(x) + g~Re〈Â〉w (3.9)

Here, var(x) = 〈x2〉 − 〈x〉2 and we use the Heisenberg equations of motion [12] which
prescribe the evolution of an operator under a given Hamiltonian (H = p2/2m+ V (x)):

i~
d
dt〈x〉 = 〈[x̂, H]〉 = i〈p̂x〉

and
i~

d
dt〈x

2〉 = 〈[x̂2, H]〉 = i〈x̂p̂x + p̂xx̂〉

The expressions for the shift in the expectation values of position as well as momentum
derived above match those derived by Jozsa [12].

3.5.1 Results
1. The imaginary part of the weak value appears in a product with the initial posi-

tion and momentum variance of the pointer wave-function in its position (3.9) and
momentum (3.8) shifts respectively.

2. Measuring the expectation value of momentum gives access to only the imaginary
part of the weak value while measuring the expectation value of position can po-
tentially give access to both real and imaginary parts of the weak value.

The above results encompass the more primitive results derived in [1, 3, 8, 17].



3.6 Complex Weak Value and the Pointer State Cor-
relations

An important of aspect of weak measurement is that the pointer observable involved in
the weak interaction, is, in general, different from the one involved in the post-selection
process. Thus, it is relevant to ask how the results obtained above would be modified in
the presence of multi-mode pointer states with correlations between the different modes
or degrees of freedom. Following [13], we review this problem by considering a two
mode correlated pointer state, with complex valued position/momentum distribution in
an infinite dimensional Hilbert state (continuous variable):

|φ(p1, p2)〉 =
∫
φ(p1, p2) |p1〉 |p2〉 dp1dp2

where φ(p1, p2) 6= φ(p1)φ(p2). Here, the weak interaction occurs between the first pointer
degree of freedom and the system state whereas the projective measurement interaction
occurs between the second degree of freedom and the system state. So, we have Ĥ1 =
e
∑

k
|a2k〉〈a2k|⊗q̂2 and Ĥ2 = eÂ1⊗q̂1 . The weak interaction is done using Ĥ1 followed by the

strong interaction using Ĥ2 and selecting one of the outcomes |a2f〉. Thus, we have the
final pointer state to be:

|φf〉 = 〈a2f |ψi〉 (1 + iλ1〈Â1〉wq̂1) |φi(p1, p2 − a2f )〉

where 〈Â1〉w = 〈a2f |Â|ψi〉

〈a2f |ψi〉 is the weak value. Calculating the expectation value of an

arbitrary pointer observable M̂

〈M̂〉 = 〈φf | M̂ |φf〉
〈φf |φf〉

Numerator:

〈φf | M̂ |φf〉 = | 〈a2f |ψi〉 |2 〈φi| (1− iλ1〈Â1〉∗wq̂1)M̂(1 + iλ1〈Â1〉wq̂1) |φi〉
= | 〈a2f |ψi〉 |2 〈φi| (1− iλ1〈Â1〉∗w)(M̂ + iλ1〈Â1〉wM̂ q̂1) |φi〉

= | 〈a2f |ψi〉 |2 〈φi| (M̂ + iλ1〈Â1〉wM̂ q̂1 − iλ1〈Â1〉∗wq̂1M̂) |φi〉
= | 〈a2f |ψi〉 |2(〈M̂〉i + iλ1a〈[M̂, q̂1]〉i − λ1b〈{q̂1, M̂}〉i)

Where 〈.〉i indicates the expectation value with respect to the initial pointer state. Com-
plex weak value is expanded such that 〈Â〉w = a+ ib, where a and b are the real and the
imaginary parts of the weak value. Calculating the denominator in 3.6:

〈φf |φf〉 = | 〈a2f |ψi〉 |2 〈φi| (1− iλ1〈Â1〉∗wq̂1)(1 + iλ1〈Â1〉wq̂1) |φi〉
= | 〈a2f |ψi〉 |2(1− 2λ1b〈q̂1〉i)

Going back to 3.6:

〈φf | M̂ |φf〉
〈φf |φf〉

= (〈M̂〉i + iλ1a〈[M̂, q̂1]〉i − λ1b〈{q̂1, M̂}〉i)(1− 2λ1b〈q̂1〉i)−1



The denominator can be brought to numerator and Taylor expanded up to the first order
in the weak limit:

〈M̂〉f = (〈M̂〉i + iλ1a〈[M̂, q̂1]〉i − λ1b〈{q̂1, M̂}〉i)(1 + 2λ1b〈q̂1〉i)

Now, let M̂ be q̂1. Thus, we have:

〈q̂1〉f = (〈q̂1〉i − 2λ1b〈q̂2
1〉i)(1 + 2λ1b〈q̂1〉i)

= 〈q̂1〉i − 2λ1b〈q̂2
1〉i + 2λ1b〈q̂1〉i〈q̂1〉i

= 〈q̂1〉i − 2λ1b(〈q̂2
1〉i + 〈q̂1〉i〈q̂1〉i)

= 〈q̂1〉i − 2λ1b δq̂1

where δq̂1 = 〈q̂2
1〉 − 〈q̂1〉〈q̂1〉. If one considers M̂ = p̂1, following a similar calculation and

using the canonical commutation relation [q̂, p̂] = i~, one has

〈p̂1〉f = (〈p̂1〉i − 2λ1b〈p̂2
1〉i)(1 + 2λ1b〈q̂1〉i)

= 〈p̂1〉+ 2λ1b〈p̂1〉〈q̂1〉+ λ1a~− λ1b〈q̂1p̂1 + p̂1q̂1〉

Now, using the Heisenberg equations of motion as done earlier under the Hamiltonian
H = (p2

1 + p2
2)/2m+ V (x1, x2):

i~
d
dt〈q̂1〉 = 〈[q̂1, H]〉

= i〈p̂1〉

i~
d
dt〈q̂

2
1〉 = 〈[q̂2

1, H]〉

= i〈q̂1p̂1 + p̂1q̂1〉 (3.10)

we have
〈p̂1〉f = 〈p̂1〉i − ~λa+ ~λb

∂ δ(q1)
∂t

The above results are almost identical to Jozsa’s except, perhaps, the trivial change of
a sign (because the way we expanded the weak interaction unitary). However, if one
considers M̂ = q̂2, one finds:

〈q̂2〉f = (〈q̂2〉i + iλ1a〈[q̂2, q̂1]〉i − λ1b〈{q̂1, q̂2}〉i)(1 + 2λ1b〈q̂1〉i)
= (〈q̂2〉i − λ1b〈q̂1q̂2 + q̂2q̂1〉i)(1 + 2λ1b〈q̂1〉i)

= 〈q̂2〉i + 2λ1b〈q̂2〉i〈q̂1〉i − 2λ1b〈q̂1q̂2〉i

Accounting for the correlation between the pointer degrees of freedom, using corr(q̂q̂2)i =
〈q̂1q̂2〉i − 〈q̂1〉i〈q̂2〉i we have

〈q̂2〉f = 〈q̂2〉i − 2λbcorr(q̂1q̂2)i

Going through similar calculations for M̂ = p̂2 and using 〈p̂2〉i = 〈p̂2〉i + a2l, one finds

〈p̂2〉f = 〈p̂2〉in + 2λbcorr(q1, p2)



3.6.1 Results
1. When the projective measurement for post-selection of the system state is done via

an interaction with the pointer degree of freedom that is different from the one
that is used in the preceding weak interaction, the effect of pointer state correla-
tions are manifested in the shift of the expectation value of the pointer observable
corresponding to the strong post-selective interaction.

In addition to the above results, further results similar in spirit with some extra terms
added can be found for the sequential weak interactions corresponding to two different
pointer degrees of freedom and post-selection corresponding to the third degree of freedom
[13].



Chapter 4

Applications of Finite Strength
Quantum Measurement and Weak
Value

After the conceptual and mathematical treatment of weak quantum measurement, we
come to some of its applications.

4.1 WM with Qubit Pointer - Creating Transitive
Entanglement

The weak measurement field has seen relatively less development when the pointer state
is a qubit or defined in a discrete variable state [34]. Steering clear of the foundational
issues of a qubit pointer state, especially those that concern the dimensionality of the
pointer and the measurement strength, we proceed with the following investigations.

Weak interaction between the system and the pointer states entangles them. Can
several such interactions create entanglement between previously uncorrelated states?
More precisely, can weak interaction between system and pointer 1 followed by weak
interaction between system and pointer 2 followed by post-selection on the system create
entanglement between pointer 1 and 2? We proceed with our first analysis by considering
a pure, randomly oriented single qubit system state and a pure, separable randomly
oriented, 2 qubit pointer state. Sequential weak interactions are performed, with the two
different pointer qubits. The initial pointer states are

|ψa1〉 = cos
(
θ1

2

)
|0〉+ eiφ sin

(
θ1

2

)
|1〉 (4.1)

for first pointer qubit and

|ψa2〉 = cos
(
θ2

2

)
|0〉+ eiφ sin

(
θ2

2

)
|2〉 (4.2)

for the second pointer qubit. Pointer observables in both the weak interactions are
measurements in the randomly oriented Pauli basis in different and arbitrary directions:

P̂1 = ~m.~σ (4.3)



where ~m.~σ = m̂1σ̂1 + m̂2σ̂2 + m̂3σ̂3 and

P̂2 = ~n.~σ (4.4)

where ~n.~σ = n̂1σ̂1 + n̂1σ̂2 + n̂3σ̂3 and σi are the 2 × 2 Pauli matrices. Owing to weak
coupling, the expansion of the interaction unitaries which couple the first and the second
pointer qubits respectively with the system state is considered up to first order: The
interaction unitary between the system state and pointer 1 is

Û1 = e−igÂ1⊗P̂1⊗I

where Â1 is the system measurement observable for the first weak interaction. The
interaction unitary between the system state and pointer 2 is

Û2 = e−igÂ2⊗I⊗P̂2

where Â2 is the system measurement observable for the second weak interaction. Thus,
the sequential weak interaction looks like:

|ψft〉 = Û2Û1 |ψis〉 |ψa1〉 |ψa2〉
= (1− igÂ2 ⊗ I⊗ P̂2)(1− igÂ1 ⊗ P̂1 ⊗ I) |ψis〉 |ψa1〉 |ψa2〉

= |ψis〉 |ψa1〉 |ψa2〉 − igÂ2 |ψis〉 ⊗ I |ψa1〉 ⊗ P̂2 |ψa2〉 − igÂ1 |ψis〉 ⊗ P̂1 |ψa1〉 ⊗ I |ψa2〉

Doing post-selection on the system state |ψfs〉, the pointer state becomes:

|ψfp〉 = 〈|ψfs〉||ψis〉〉 (|ψa1〉 |ψa2〉 − ig〈Â2〉wI |ψa1〉 ⊗ P̂2 |ψa2〉 − ig〈Â1〉wP̂1 |ψa1〉 ⊗ I |ψa2〉)

Plugging in the expressions for the pointer observables during the respective weak inter-
actions and initial pointer states, the joint final state is:

|ψft〉 = 〈ψfs|ψis〉 (|ψa1〉 |ψa2〉 − ig2(A2)w |ψa1〉
[

m3 m1 − im2
m1 + im2 −m3

]  cos
(
θ2
2

)
e(iφ2) sin

(
θ2
2

)−
ig1(A1)w

[
n3 n1 − in2

n1 + in2 −n3

]  cos
(
θ1
2

)
e(iφ1) sin

(
θ1
2

) |ψa2〉)

From the above state, one can immediately see that the pointer states which were separa-
ble before the sequential weak measurement procedure are now entangled (since they are
non-separable). It would be beneficial to quantify this correlation using some measure.
However, owing to a large number of parameters and limited computational resources,
we restrict this analysis to the above expression. Note that the system measurement
observables, pre and post selected states are kept flexible and further investigations can
be undertaken by considering various cases of these.

4.1.1 Two Qubit Werner State as Pointer
Here, we intend to investigate the change that occurs to the Werner state (which is used
as a pointer in this case) by following a sequential weak measurement procedure similar
to the one above. Will the amount of the correlations in the Werner state change? The



Werner state is particularly significant because it spans the regimes of separability for
z ∈ [0, 1/3], discord for z ∈ [0, 1], entanglement for z ∈ [1, 1/3] [32]:

ρw = (1− z
4 )Î + z

∣∣∣ψ−〉 〈ψ−∣∣∣ (4.5)

where |ψ−〉〈ψ−| is the pure, maximally entangled singlet state. Here also, randomly
oriented Pauli vectors identical to the ones used in the last section are used as pointer
measurement observables for both weak interactions. The final pointer state is given by

ρft = Trs[ρsfU2U1ρsiρwU†1U†2]

where U1 and U2 correspond to the sequential weak interactions of 1st and 2nd qubits of
the pointer respectively with the system qubit. The above state comes out to be:

ρft = Tr[ρsfρsi][ρw−ig1〈Â1s〉weak(P̂†a1⊗Îa2)ρw−ig2〈Â2s〉weak(Îa1⊗P̂a2)ρw+ig2〈Â†2s〉weakρw(Îa1⊗P̂†a2)
+ ig1〈Â†1s〉weakρw(Îa2 ⊗ P̂ †a2)]

After analyzing the above state using the positive partial transpose criterion [11, 23], no
change was observed in the PPT parameters1 before the weak measurement and after the
weak measurement when the coupling strength for the weak interaction g was considered
small.

4.2 Joint Weak Value
Joint expectation value comprises correlations between the two potentially non-local par-
ticles on which the two observables are measured. However, it is difficult to measure the
joint expectation value of incompatible or non-commuting observables in the laboratory.
The reason behind this is the difficulty to engineer a suitable Hamiltonian comprising the
observables in a quantum optics architecture [24, 25]. Joint weak value can serve tasks
similar to the joint expectation value. In previous works, the joint weak value was calcu-
lated for a weak measurement scheme using an engineered Hamiltonian which naturally
couples both the momentum dimensions, Px and Py of the particle with the incompatible
observables Â1 and Â2 respectively whose joint weak value we are interested in. In one of
these works [25] they successfully obtained the real as well as the imaginary part of the
joint weak value. The pointer state used here was a two mode separable Gaussian state.
In another work [24] in which the same Hamiltonian was used, in addition to obtaining
the joint weak value of incompatible observables, higher orders of the real and the imag-
inary part of the weak value of single observable was also obtained. The pointer state
used in this work was a two dimensional correlated Laguerre-Gauss mode state which is
prevalent widely in laser optics. There has been work indicating that the higher orders of
the weak value could be beneficial for the estimation of a small parameter (present in the
weak interaction) using weak value amplification. Here, we present similar results and
more using a Hamiltonian that is easier to implement experimentally because it uses two
separate weak interaction corresponding to different degrees of freedom of the pointer. At
the outset, in our formalism there is no restriction on the kind of pointer state used. We
achieve this by using sequential weak interactions between the system state and the two

1done in Mathematica – see supplemental materials



mode pointer state and expand the interaction strength up to the second order. Also, we
do this analysis in the Schrödinger picture which simplifies matters here instead of the
Heisenberg picture used in the above two papers. Note that in both papers cited above
as well, the joint weak value could be obtained only when the weak interaction strength
was considered up to the second order with the terms corresponding to the first order
dropping out.

4.2.1 General Treatment
We write the total state of the system + pointer and act on it with the sequential weak
interaction unitary:

|φft〉 = eiλ1Â1⊗q̂1eiλ2Â2⊗q̂2 |ψi〉 |φi(p1, p2)〉

where Â1 and Â2 are the observables acting on the system (|ψi〉) Hilbert space during
the first and the second weak interactions respectively and q̂1 and q̂2 are those acting on
the pointer Hilbert space. |φi(p1, p2)〉 is the two mode initial pointer state and λ1 and
λ2 are the interaction strengths corresponding to the first and second weak interactions
respectively. Expanding both the unitary interactions up to the second order, we have:

|φft〉 = (1 + iλ1Â1 ⊗ q̂1 − λ2
1Â

2
1 ⊗ q̂2

1)1 + iλ2Â2 ⊗ q̂2 − λ2
2Â

2
2 ⊗ q̂2

2 |ψi〉 |φi(p1, p2)〉

Doing the post-selection on a system state |al〉, we have the final pointer state:

|φf〉 = 〈al|ψi〉 (1 + iλ2〈Â2〉wq̂2−λ2
2〈Â2

2〉wq̂2
2 + iλ1〈Â1〉wq̂1−λ1λ2〈Â1Â2〉wq̂1q̂2−λ2

1〈Â2
1〉wq̂2

1)

To observe anything, one should calculate the expectation value of an observable with
respect to the final pointer state. Thus, we proceed with the calculation of the expectation
value of an arbitrary pointer observable M̂ :

〈M̂〉 =

〈
φfM̂

∣∣∣ |φf〉
〈φf |φf〉

Calculating the numerator first:

〈ψf | M̂ |ψf〉 = | 〈a3l|ψi〉 |2 〈φi| (1− iλ2〈Â2〉∗wq̂2 − λ2
2〈Â2

2〉∗wq̂2
2 − iλ1〈Â1〉∗wq̂1 − λ1λ2〈Â1Â2〉∗wq̂1q̂2−

λ1〈Â2
1〉∗wq̂2

1)M̂(1 + iλ2〈Â2〉wq̂2 − λ2
2〈Â2

2〉wq̂2
2 + iλ1〈Â1〉wq̂1 − λ1λ2〈Â1Â2〉wq̂1q̂2 − λ1〈Â2

1〉wq̂2
1)

= | 〈a3l|ψi〉 |2 〈φi| (M̂ − iλ2〈Â2〉∗wq̂2M̂ − λ2
2〈Â2

2〉∗wq̂2
2M̂ − iλ1〈Â1〉∗wq̂1M̂ − λ1λ2〈Â1Â2〉∗wq̂1q̂2M̂

−λ2
1〈Â2

1〉∗wq̂2
1M̂ + iλ2〈Â2〉wM̂ q̂2 + λ2

2|〈Â2〉w|2q̂2M̂ q̂2 + λ1λ2〈Â1〉∗w〈Â2〉wq̂1M̂ q̂2

−λ2
2〈Â2

2〉wM̂ q̂2
2 + iλ1〈Â1〉wM̂ q̂1 + λ1λ2〈Â2〉∗w〈Â1〉wq̂2M̂ q̂1+

λ2
1|〈Â1〉w|2q̂1M̂ q̂1 − λ1λ2〈Â1Â2〉wM̂ q̂1q̂2 − λ2

1〈Â2
1〉wM̂ q̂2

1) |φi〉

Computing the denominator:

〈φf |φf〉 = 〈φi| (1− iλ2〈Â2〉∗wq̂2 − λ2
2〈Â2

2〉∗wq̂2
2 − iλ1〈Â1〉∗wq̂1 − λ1λ2〈Â1Â2〉∗wq̂1q̂2 − λ2

1〈Â2
1〉∗wq̂2

1+
λ2

2|〈Â2〉w|2q̂2
2 + λ1λ2〈Â2〉∗w〈Â1〉wq̂2q̂1 + λ2

2〈Â2
2〉∗wq̂2

2 − iλ2〈Â2〉∗wq̂2−
iλ1〈Â1〉∗wq̂1 + λ1λ2〈Â1〉∗w〈Â2〉wq̂1q̂2 + λ2

1|〈Â1〉w|2q̂2
1 − λ1λ2〈Â1Â2〉∗wq̂1q̂2 − λ2

1〈Â2
1〉∗wq̂2

1) |φi〉

The denominator can be brought up and expanded to the second order in λ1 and λ2

〈M̂〉f = 〈φf | M̂ |φf〉 〈φf |φf〉−1



Thus, we have:

〈M̂〉f = (〈M̂〉i−λ2d〈{q̂2, M̂}〉i−iλ2c〈[q̂2, M̂ ]〉i−λ2
2c
′〈{q̂2

2, M̂}〉i+λ2
2d
′〈[q̂2

2, M̂ ]〉i−iλ1a〈[q̂1, M̂ ]〉i
−λ1b〈{q̂1, M̂}〉i−λ1λ2x〈{q̂1q̂2, M̂}〉i+iyλ1λ2〈[q̂1q̂2, M̂ ]〉i−λ2

1a
′〈{q̂2

1, M̂}〉i+ib′λ2
1d
′〈[q̂2

1, M̂ ]〉i+
λ2

2|〈Â2〉w|2〈q̂2M̂ q̂2〉i + λ2
1|〈Â1〉w|2〈q̂1M̂ q̂1〉i + λλ2(fV + f ∗V †))(1− 2iλ2d〈q̂2〉i + 2c′λ2

2〈q̂2
2〉i

+ 2bλ1〈q̂1〉i + 2xλ1λ
2
2〈q̂1q̂2〉i + 2aλ2

1〈q̂2
1〉i − λ1λ2 Re(〈Â2〉∗w〈Â1〉w)〈{q̂2, q̂1}〉i+

iλ1λ2 Im(〈Â2〉∗w〈Â1〉w)〈[q̂1, q̂2]〉i − λ2
2|〈Â2〉w|2〈q̂2

2〉 − λ2
1|〈Â1〉w|2〈q̂2

1〉−
4λ2

2d
2〈q̂2

2〉+ 4λ2
1b

2〈q̂2
1〉 − 4iλ1λ2bd〈{q̂1, q̂2}〉)

In the above expression the following replacements have been made by expanding the
respective weak values in their real and imaginary components:

〈Â1〉w = a+ bi

〈Â2〉w = c+ di

〈Â2
1〉w = a′ + b′i

〈Â2
2〉w = c′ + d′i

〈Â1Â2〉w = x+ yi

as well as f ≡ 〈Â1〉∗w〈Â2〉w and V ≡ q̂1M̂ q̂2.

4.2.2 Laguerre-Gauss Mode Pointer State
One need not be perturbed by looking at the above gargantuan expression. Instead, one
should think about the pointer states whose specific properties will make a lot of these
terms go away. We did this exercise for the Laguerre-Gauss mode pointer state [24]:

φLG = N [x+ isgn(l)y]|l| exp
(
−x

2 + y2

4σ2

)

The above state is a correlated Gaussian state centered at zero. The state is endowed
with orbital angular momentum which is characterized by l. We replace M̂ = p̂1p̂2 and
proceed with the calculation of the expectation value of all the relevant commutators and
anti-commutators in the above expression using Mathematica2. The final expression of
〈p̂1p̂2〉f for the Laguerre-Gauss mode pointer state described above when l = 1 is

〈p̂1p̂2〉f = iλ2c
′l − d′λ2

2l − iλ1λ2xl/2 + 2ilλ2
1a
′ + b′λ2

1l+
iλ2

2|〈Â2〉w|2l − iλ2
1|〈Â1〉w|2l − (3λ1λ2/4) Re〈Â1〉∗w〈Â2〉w

In the above expression, the real part x of the joint weak value 〈Â1Â2〉w is present, as
per our goal. We also see the terms c′ and d′ which give the full second order weak value
〈Â2

2〉w and the terms a′ and b′ give the full second order weak value 〈Â2
1〉w. For a choice of

M̂ = p̂1q̂2, we will find the imaginary part of the joint weak value, y, after going through
similar calculations.

2see supplemental materials



4.3 Remote Determination of the Weak Value
The effect of correlations between different degrees of freedom of a multidimensional
pointer state have been shown in the foundations section in the context of the complex
weak values. Now, we consider a novel scenario exploiting these correlations.

There exist some protocols for transferring the quantum state from one party to
another spatially separated party, the most prominent and simplest among which, is,
quantum teleportation [5]. However, all these protocols have a drawback. All of them
rely on the kind of resource state that is shared between the two parties. Inevitably,
the kind of states that can be transferred is also limited. Here, we give a protocol for
transferring the real as well as the imaginary parts of the weak value pertaining to a
weak interaction carried out by Alice to Bob, who is situated at a distance from Bob.
Using the real and the imaginary parts of the weak value the quantum state which was
the pre-selected system state in the weak interaction can be found using the methods
developed by [15,16,30].

4.3.1 Protocol
Alice and Bob share a bipartite correlated quantum state, ρab which could be pure or
mixed. The state is not separable, ρabneqρaρb and is therefore correlated [10]. Alice has an
ancilla state ρi1, unknown to her, whose information she intends to transfer to Bob, who
holds the B part of the correlated state. To do so, Alice first performs a weak interaction
between her part (A) of the state and the ancilla I1 using the unitary U1 = eigÎ1⊗Â⊗I. In
this unitary, the Hamiltonian is designed such that the interaction occurs only between A
and I1 while B remains untouched (identity operation). Thus, after the weak interaction,
the state is:

ρtw = U1ρi1 ⊗ ρabU †1
= eigÎ1⊗Â⊗Iρi1 ⊗ ρabe−igÎ1⊗Â⊗I

= (1 + igÎ1 ⊗ Â⊗ I)ρi1 ⊗ ρab(1− igÎ1 ⊗ Â⊗ I)

Where the coupling unitary interaction is expanded up to the first order in keeping
with the weak approximation (g <<). Alice then performs the post-selection on the kth
eigenstate of ρi1 and on the lth eigenstate of ρA using the respective projectors P k

i1 and
P l
a.

ρtf = P k
i1P

l
a(1 + igÎ1 ⊗ Â⊗ I)ρi1 ⊗ ρab(1− igÎ1 ⊗ Â⊗ I)

Bob’s final state is the traced out version of the above state over the parts I1 and A.

ρb = Tri1,a(ρtf )
= Tri1,a(P k

i1P
l
a(1 + igÎ1 ⊗ Â⊗ I)ρi1 ⊗ ρab(1− igÎ1 ⊗ Â⊗ I))

= Tri1,a(P k
i1P

l
a(ρi1 ⊗ ρab + igÎ1ρi1 ⊗ (Â⊗ I)ρab)(1− igÎ1 ⊗ Â⊗ I))

= Tri1,a((P k
i1 ⊗ P l

a ⊗ I)(ρi1 ⊗ ρab − igρi1Î1 ⊗ ρab(Â⊗ I) + igÎ1ρi1 ⊗ (Â⊗ I)ρab))
= Tri1,a((P k

i1ρi1 ⊗ (P l
a ⊗ I)ρab − igP k

i1ρi1Î1 ⊗ (P l
a ⊗ I)ρab(Â⊗ I)

+igP k
i1Î1ρi1 ⊗ (P l

a ⊗ I)(Â⊗ I)ρab))



Notice that I am using an identity operation on any Hilbert space where there is no action
of any operator. Now, I will take the partial trace operation over I1 and A inside the
parenthesis:

ρb = ((Tri1(P k
i1ρi1) Tra((P l

a ⊗ I)ρab)− igTri1(P k
i1ρi1Î1) Tra((P l

a ⊗ I)ρab(Â⊗ I))
+igTri1(P k

i1Î1ρi1) Tra((P l
a ⊗ I)(Â⊗ I)ρab)))

= Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρab)− igTri1(P k
i1ρi1Î1)⊗ Tra((P l

a ⊗ I)ρab(Â⊗ I))+
igTri1(P k

i1Î1ρi1)⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρab)))

= Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρab)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρab(Â⊗ I))+

ig〈Î1〉w ⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρab))) (4.6)

where we have defined the weak value corresponding to the weak interaction performed
by Alice between her part A of the shared state and her ancilla, Î1 whose state needs to
be transferred

〈Î1〉w ≡
Tri1(P k

i1Î1ρi1))
Tri1(P k

i1ρi1)
and its conjugate

〈Î1〉∗w ≡
Tri1(P k

i1ρi1Î1)
Tri1(P k

i1ρi1)
The above state (4.6) is not normalized. In order to normalize, I first calculate the
denominator by taking a complete trace over the state

Trρb = Tr(Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρab)− ig〈Î1〉∗wTra((P l
a ⊗ I)ρab(Â⊗ I))

+ig〈Î1〉wTr((P l
a ⊗ I)(Â⊗ I)ρab))))

= Tri1(P k
i1ρi1)((Tr((P l

a ⊗ I)ρab)− ig〈Î1〉∗wTr((P l
a ⊗ I)ρab(Â⊗ I))

+ig〈Î1〉wTr((P l
a ⊗ I)(Â⊗ I)ρab)))

= Tri1(P k
i1ρi1)Tr((P l

a ⊗ I)ρab)((1− ig〈Î1〉∗w〈Â〉∗w′

+ig〈Î1〉w〈Â〉w′)) (4.7)
where we have defined the quantity 〈Â〉w and call it the weak-partial-value. ‘Partial’
because while the quantum state(density matrix ρab) appearing in it is bipartite, the
system measurement observable Â and the post-selection projector P l

a both act only on
the part A of ρab, even though the trace operation is performed over the entire expression.

〈Â〉w =
Tr
(
(P l

a ⊗ I)(Â⊗ I)ρab
)

Tr((P l
a ⊗ I)ρab)

and its conjugate

〈Â〉∗w =
Tr
(
(P l

a ⊗ I)ρab(Â⊗ I)
)

Tr((P l
a ⊗ I)ρab)

Now, let us normalize the state Bob has

ρ
(N)
b = ρb

Tr ρb

= Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρab)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρab(Â⊗ I))

(Tri1(P k
i1ρi1) Tr((P l

a ⊗ I)ρab)((1− ig〈Î1〉∗w〈Â〉∗w′ + ig〈Î1〉w ⊗ 〈Â〉w′)))
+ig〈Î1〉w ⊗ Tra((P l

a ⊗ I)(Â⊗ I)ρab)
(Tri1(P k

i1ρi1) Tr((P l
a ⊗ I)ρab)((1− ig〈Î1〉∗w〈Â〉∗w′ + ig〈Î1〉w ⊗ 〈Â〉w′)))

(4.8)



Since g is very small, the denominator can be brought up (to the numerator) and Taylor
expanded up to the first order. Thus we have,

ρ
(N)
b = 1

Tr((P l
a ⊗ I)ρab)

(Tra((P l
a ⊗ I)ρab)− ig〈Î1〉∗w Tra((P l

a ⊗ I)ρab(Â⊗ I))

+ig〈Î1〉w ⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρab))(1 + ig〈Î1〉∗w〈Â〉∗w′ − ig〈Î1〉w ⊗ 〈Â〉w′)

= 1
Tr((P l

a ⊗ I)ρab)
(Tra((P l

a ⊗ I)ρab) + ig〈Î1〉∗w〈Â〉∗w′ Tra((P l
a ⊗ I)ρab)

−ig〈Î1〉w ⊗ 〈Â〉w′ Tra((P l
a ⊗ I)ρab)

−ig〈Î1〉∗w Tra((P l
a ⊗ I)ρab(Â⊗ I)) + ig〈Î1〉w ⊗ Tra((P l

a ⊗ I)(Â⊗ I)ρab)) (4.9)

Whenever Alice gives the signal that post–selection is successful, Bob will find the ex-
pectation value of some observable with respect to his state ρ(N)

b . Therefore, we have,

〈B̂〉f = Tr
(
B̂ρ

(N)
b

)
= 1

Tr((P l
a ⊗ I)ρab)

(Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

+ ig〈Î1〉∗w〈Â〉∗w′ Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

−ig〈Î1〉w ⊗ 〈Â〉w′ Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)
− ig〈Î1〉∗w Tr

(
(P l

a ⊗ I)(I⊗ B̂)ρab(Â⊗ I)
)

+ig〈Î1〉w ⊗ Tr
(
(P l

a ⊗ I)(I⊗ B̂)(Â⊗ I)ρab
)
)

Since the weak value corresponding to Alice’s weak interaction with the ancilla can be a
complex quantity in general, we decompose it into its real and imaginary parts:

〈Î1〉w = Re〈Î1〉w + i Im〈Î1〉w
Therefore, we have,

〈B̂〉f = Tr(B̂ρ(N)
b )

= 1
Tr((P l

a ⊗ I)ρab)
(Tr((P l

a ⊗ I)(I⊗ B̂)ρab)− igRe〈Î1〉w(〈Â〉w′Tr((P l
a ⊗ I)(I⊗ B̂)ρab)

−〈Â〉∗w′Tr((P l
a ⊗ I)(I⊗ B̂)ρab)− Tr((P l

a ⊗ I)(I⊗ B̂)(Â⊗ I)ρab
+Tr((P l

a ⊗ I)(I⊗ B̂)ρab(Â⊗ I)))) + gIm〈Î1〉w(〈Â〉w′Tr((P l
a ⊗ I)(I⊗ B̂)ρab)

+〈Â〉∗w′Tr((P l
a ⊗ I)(I⊗ B̂)ρab)− Tr((P l

a ⊗ I)(I⊗ B̂)(Â⊗ I)ρab
−Tr((P l

a ⊗ I)(I⊗ B̂)ρab(Â⊗ I)))))

The above expression can be further simplified if one considers the complex decomposition
of the weak-partial-value:

〈Â〉w′ = Re〈Â〉w′ + i Im〈Â〉w′

Hence, we have,

〈B̂〉f = 1
Tr((P l

a ⊗ I)ρab)
(Tr((P l

a ⊗ I)(I⊗ B̂)ρab)

−igRe〈Î1〉w(2i Im〈Â〉w′Tr((P l
a ⊗ I)(I⊗ B̂)ρab)

−Tr((P l
a ⊗ I)(I⊗ B̂)[(Â⊗ I), ρab]))

+g Im〈Î1〉w(2 Re〈Â〉w′Tr((P l
a ⊗ I)(I⊗ B̂)ρab)

+Tr((P l
a ⊗ I)(I⊗ B̂){(Â⊗ I), ρab}))) (4.10)

Observing the above expression, one can see two conditions emerging, one that corre-
sponds to the extraction of the real part of the weak value 〈Î1〉w; another, that corresponds
to the extraction of the imaginary part of the weak value 〈Î1〉w.



4.3.2 Conditions and Pre-conditions
The condition 1 for extracting the real part is:

{(Â⊗ I), ρab} = 0 and
[(Â⊗ I), ρab] 6= 0 =⇒

Re〈Â〉w′ = 0 and
Im〈Â〉w′ 6= 0 (4.11)

Note that here, we have used the expressions for the real and the imaginary parts of
the weak value introduced and used in section 2.2.2. The condition 2 for obtaining the
imaginary part is the exact reverse of the above condition, that is,

[(Â⊗ I), ρab] = 0 and
{(Â⊗ I), ρab} 6= 0 =⇒

Im〈Â〉w′ = 0 and
Re〈Â〉w′ 6= 0 (4.12)

If condition 1 is satisfied, the expression 4.10 reduces to
1

Tr((P l
a ⊗ I)ρab)

(Tr((P l
a ⊗ I)(I⊗ B̂)ρab)− igRe〈Î1〉w(2iIm〈Â〉w′Tr((P l

a ⊗ I)(I⊗ B̂)ρab)

−Tr((P l
a ⊗ I)(I⊗ B̂)[(Â⊗ I), ρab]))) (4.13)

thus rendering Bob the real part corresponding to Alice’s weak interaction. On the other
hand, if condition 2 is satisfied, the expression 4.10 reduces to

1
Tr((P l

a ⊗ I)ρab)
(Tr

(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

+ g Im〈Î1〉w(2 Re〈Â〉w′ Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

+ Tr
(
(P l

a ⊗ I)(I⊗ B̂){(Â⊗ I), ρab}
)
)) (4.14)

rendering Bob the imaginary part of the weak interaction performed by Alice. Due to
the separate conditions required, Alice and Bob will have to perform two different sets
of experiments to obtain the real and the imaginary parts of the weak value. In the first
run of experiments they will make their choice for the following entities:
1. The post-selection operators, P̂ k

i1 and P̂ l
a used by Alice.

2. The joint state ρab and the operator Â such that condition 1 is satisfied
3. {(Â⊗ I), ρab} = 0
The above arrangements ensure that Bob already knows the values of the entities Im〈Â〉w′ ,
Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

and Tr
(
(P l

a ⊗ I)(I⊗ B̂)[(Â⊗ I), ρab]
)

so that he can accordingly
rescale the expectation value of 〈B̂〉f to obtain the real part of the weak value, 〈Î1〉w:

Re〈Î1〉w =
i〈B̂〉f Tr

(
(P l

a ⊗ I)ρab
)
− iTr

(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

2ig Im〈Â〉w′ Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)
− gTr

(
(P l

a ⊗ I)(I⊗ B̂)[(Â⊗ I), ρab]
)

They will agree on similar pre-conditions before the run performed for obtaining the
imaginary part of the weak value. In this manner, Bob can obtain the imaginary part of
the weak value

Im〈Î1〉w =
i〈B̂〉f Tr

(
(P l

a ⊗ I)ρab
)
− iTr

(
(P l

a ⊗ I)(I⊗ B̂)ρab
)

gRe〈Â〉w′ Tr
(
(P l

a ⊗ I)(I⊗ B̂)ρab
)
− gTr

(
(P l

a ⊗ I)(I⊗ B̂){(Â⊗ I), ρab}
)



After obtaining the real and the imaginary parts of the weak value, Bob can reconstruct
the unknown quantum state (using the protocols mentioned above) that was encoded
on the ancilla Î1 which Alice had. Note that this protocol involves a statistical buildup
of the results from the measurement of B̂ performed by Bob. Thus, each experiment
will involve a large number of runs over an ensemble of states for the procedure to be
successful.

4.3.3 Classical information transfer
Like every quantum state teleportation protocol, here too classical communication is
required to aid the remote reconstruction of the quantum state that is to be transferred.
The classical communication occurs by way of Alice informing Bob about the successful
post-selection that occurred when she performed the weak measurement (involving the
weak interaction and the post-selection) between A and Î1. Whenever Bob receives the
‘yes’ signal from Alice, he will know that the post-selection was successful and he will
then measure the observable B̂ with him. Note that every message about successful
post-selection involves 1-bit information transfer. With many runs, he will accumulate
the statistics corresponding to the measurement of B̂ on his state. Averaging these
measurement statistics will give him the expectation value of 〈B̂〉f . From this expectation
value, he can successfully determine the real and the imaginary parts of the weak value
as shown above.

4.3.4 Role of the Correlations
It is relevant to ask where the significance of the correlations between A and B or the
non-separability of ρab is present in this protocol. One scan of the expression ρb in 4.8
and the subsequent normalization reveals that the significance of the non-separability lies
in our considerations in the expression 4.6 which led to the definition of the weak-partial-
value 〈Â〉w. To show this, lets consider that ρab is separable, that is, ρab = ρaρb and
consider the expressions in 4.6 where the partial trace is taken over part A:

Tra((P l
a ⊗ I)ρab) = Tra((P l

a ⊗ I)ρaρb) = Tr
(
(P l

a ⊗ I)ρa
)
ρb

Similar such expressions from 4.6 will end up like this and thus 4.6 will end up as (note
that I am replacing ρb in 4.6 with ρunb to avoid notational confusion with the separated
states ρa and ρb):

ρunb = Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρa)ρb − ig〈Î1〉∗w Tra((P l
a ⊗ I)ρa(Â⊗ I))ρb

+ig〈Î1〉w ⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρa)ρb))

= Tri1(P k
i1ρi1)ρb((Tra((P l

a ⊗ I)ρa)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρa(Â⊗ I))

+ig〈Î1〉w ⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρa))) (4.15)

Notice that the ρb can now be taken outside common. The trace of the above unnormal-
ized state is :

Tr ρunb = Tri1(P k
i1ρi1) Tr(ρb)((Tra((P l

a ⊗ I)ρa)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρa(Â⊗ I))

+ig〈Î1〉w ⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρa)))

= Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρa)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρa(Â⊗ I))

+ig〈Î1〉w ⊗ Tra((P l
a ⊗ I)(Â⊗ I)ρa)))



Here I have assumed that the initial state ρab and its parts ρa and ρb are normalized so
thats Tr ρb = 1. Now, normalizing the final Bob’s part of the state we have:

ρunb
Tr ρunb

= Tri1(P k
i1ρi1)ρb((Tra((P l

a ⊗ I)ρa)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρa(Â⊗ I)) + ...

Tri1(P k
i1ρi1)((Tra((P l

a ⊗ I)ρa)− ig〈Î1〉∗w Tra((P l
a ⊗ I)ρa(Â⊗ I)) + ...

= ρb

Everything in the numerator and the denominator cancels out and Bob is left with his
initial state ρb with no signature of the weak interaction performed by Alice. Thus, it is
proved by contradiction that the correlations between A and B or the non-separability
of ρab is a necessary condition for this protocol to work.



Chapter 5

The Perpetual Epilogue

Weak measurement has been studied from two perspectives. One, from a foundational.
Two, from an application-based. The foundational studies involved rigorously studying
how the weak value comes about in post-selected quantum measurements using von Neu-
mann’s quantum measurement model. We find that the result for the extraction of the
expectation value for weak as well as strong interactions between the pointer and the
system states is identical. However, the result for the weak value is not. In fact, the re-
sult for the weak value cannot be defined in quantum measurement when the interaction
preceding the post-selection is strong and the post-selected system state is different from
the pre-selected one. Thus, the weak value operationally emerges only in the weak limit.
The conditions that are needed to be satisfied for a weak measurement process in the
weak limit are derived explicitly in terms of the real and the imaginary parts of the weak
value. Even if one in the set of these eight conditons is violated, the weak limit breaks
down.

After the conceptual treatment to weak measurement, we move to a mathematical
generalization of weak measurement assuming that the condition corresponding to the
weak limit is satisfied. Here, we first investigate the earlier unexplored effect of the
weak interaction in first as well as second orders of measurement strength on system
and pointer states individually. It is found that if the system state is not affected after
the weak interaction, the imaginary part of the weak value is zero. This is the simplest
interpretation of the imaginary part of the weak value connecting it to measurement back-
action. We also calculated the expectation values of the system or pointer observables
with respect to the post-interaction system and pointer states. Observations analogous
to those made for the expectation value hold here as well. After post-selection is done on
the pointer state, the weak value effects a large shift in the expression of the pointer state
as well the expectation values of the pointer observables. This shift can be arbitrarily
large and is weighted by the real and/or imaginary parts of the weak value as well as
the correlations between the different pointer degrees of freedom in case of a multi-
mode pointer state. Several observations connecting the change in the expression of the
system or pointer states and the change in expectation values of observables at the post-
interaction and post-selection stage to the commutators [p̂′, p̂], [ρ̂is, Â] and [ρ̂ip, p̂] were
made. The deeper implications of these entities being zero or non-zero is worth further
studies.

Applications of weak measurement are studied where the pointer state is considered to
be a qubit. A two qubit separable pointer was successfully converted into a non-separable
one by performing sequential weak interactions of each pointer qubit separately with the



system qubit and post-selecting on the system qubit. It could be useful to quantify this
non-separability in the final pointer state using some measure of quantum correlations.
This analysis is also done when the pointer is a two qubit Werner state. The change in
the correlation of the Werner state was studied using the PPT criterion for separability
of density matrices. No change was observed when the interaction parameter g was
considered to be very small.

Obtaining the joint expectation value of incompatible observable is a necessary but
difficult task in general. In the light of this, there were schemes to extract joint weak
values (which are reported to serve some of the functions of joint expectation value)
of non-commuting observables using a specific Hamiltonian and pointer states. We do
our analysis using sequential weak interactions considered up to the second order in
interaction strength followed by post-selection. Although, the general result has some
additional terms in addition to the ones desired, the right choice of the pointer state and
the pointer observable whose expectation value is calculated can lead one to the desired
answer. We demonstrate this for the two dimensional Laguerre-Gauss mode state and
obtain the full second order of the weak value as well as the joint weak value of the system
observables involved in the weak interactions. A set of conditions can also be derived for
the vanishing or non-vanishing of the commutators and anti-commutators that occur in
the expression for the expectation value of an arbitrary observable M̂ which enable the
extraction of the joint weak value for particular classes of quantum states.

The concept of weak value aids the construction of a protocol for remote determination
of the quantum state by transferring the corresponding real and the imaginary parts of
the weak value by one party to another spatially separated party. The resource for the
protocol is the correlation between the non-separable shared state between Alice and Bob.
The state whose information is to be transferred is encoded on the ancilla state carried by
Alice. The weak value in its entirety is obtained by Bob through two different sets of the
experiments which render its real and imaginary parts separately. From this weak value,
Bob can reconstruct the quantum state which was present on Alice’s ancilla. As opposed
to other protocols, this one does not place any limits on the kind of the state whose
information is to be transferred, provided the pre-conditions are satisfied. Significantly,
in this protocol the resource state does not dictate the kind of quantum state that whose
information can be transferred.
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[14] AJ Leggett. Comment on ââhow the result of a measurement of a component of
the spin of a spin-(1/2 particle can turn out to be 100ââ. Physical review letters,
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Chapter 6

Supplemental Materials

PPT Criterion
The positive partial transpose criterion provides a necessary condition for the separability
of a density matrix. This criterion provides a necessary and sufficient condition for 2 × 2
and 3×3 density matrices but only a necessary condition for higher dimensional matrices.
If the given density matrix is separable then none of the eigenvalues of its partial transpose
are negative. The density matrix of our two qubit Werner state is:

ρw =


1−z

4 0 0 0
0 z+1

4 − z
2 0

0 − z
2

z+1
4 0

0 0 0 1−z
4


We are interested in checking the separability between its subsystems(qubits) which are
represented by 2 × 2 matrices. After transposing the first subsystem, we have:

ρ′w =


1−z

4 0 0 − z
2

0 z+1
4 0 0

0 0 z+1
4 0

− z
2 0 0 1−z

4


The eigenvalues of ρ′w are: {1

4(1− 3z), z + 1
4 ,

z + 1
4 ,

z + 1
4

}
In the expression ρft of the main text, several combinations1 of the directional Pauli
basis measurements (m1 = {0, 1}, m2 = {0, 1}, m3 = {0, 1}, n1 = {0, 1}, n2 = {0, 1} and
n3 = {0, 1}) were tried for interaction strengths g1 and g2 of the order of 10−3 to 10−6.
However, the eigenvalues of the partially transposed matrix did not show any change.

LG mode expectation values
For the Laguerre Gauss mode pointer state, we have replaced M̂ = p̂1p̂2 in the expression
of 〈M̂〉f of the main text, we get the following terms:

1interested reader may contact me for the Mathematica file



• 〈{q̂2, p̂1p̂2}〉i = 0

• 〈[q̂2, p̂1p̂2]〉i = 0

• 〈{q̂2
2, p̂1p̂2}〉i = −i

• 〈[q̂2
2, p̂1p̂2]〉i = i

• 〈[q̂1, p̂1p̂2]〉i = 0

• 〈{q̂1, p̂1p̂2}〉i = 0

• 〈{q̂1q̂2, p̂1p̂2}〉i = i/2

• 〈[q̂1q̂2, p̂1p̂2]〉i = 0

• 〈{q̂2
1, p̂1p̂2}〉i = −2i

• 〈[q̂2
1, p̂1p̂2]〉i = −i

• 〈p̂1q̂2p̂2q̂2〉i = i

• 〈p̂2q̂1p̂1q̂1〉i = −i

• 〈q̂1p̂1p̂2q̂2〉i = −3/4

• 〈q̂2p̂2p̂1q̂1〉i = −3/4

To simplify the above expressions before calculating the relevant entities in Mathe-
matica, I have used the following commutation/anti-commutation identities:

• {A,BC} = {A,B}C −B[A,C]

• {AB,C} = A{B,C} − [A,C]B

• [AB,C] = A{B,C} − {A,C}B

• [A,BC] = [A,B]C +B[A,C]

In Mathematica2 calculations, I have substituted p̂ = i ∂
∂q

and computed the respective
integrals from −∞ to +∞.

2Mathematica notebook available upon request
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