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Abstract

This project aims to write down the Plancherel formula for GL(2, F ) where F is a p-adic

field. The Plancherel formula for SL(2, F ) and PGL(2, F ) are known, and we also have a

general form of the formula for a real reductive semisimple lie group. Thus, in this project

we aim to do the same for GL(2, F ). We do not arrive at the final formula, instead we give

an approach to the proof of this formula. This project details all the requirements such as,

its irreducible representations and their characters, as well as other possible ways to get to

the problem. We hope to solve the problem soon.
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Introduction

The Plancherel Theorem states that

Theorem. For a locally compact abelian group G, the fourier transform that takes functions

from L1(G)
⋂
L2(G) to a subspace of L2(Ĝ) can be extended to the whole space, L2(G) as

an isometry.

This theorem is an important part of Fourier Analysis, as it is implicitly linked to the

fourier inversion theorem. The corresponding formula for the fourier inversion theorem,

by abuse of notation, is called the Plancherel formula. For example for the space of real

numbers, R, the fourier transform is

f̂(t) =

∞∫
−∞

f(x)e−ixtdx

where for a given t ∈ R, π(x) = e−ixt gives an irreducible representation of R, and the

Plancherel formula is

f(0) =
1

2π

∞∫
−∞

f̂(t)dt.

This is the inverse fourier transform evaluated at 0.

Although, the theorem is only about locally compact abelian groups, the result can be

shown for certain non-abelian groups such as GL(n, F ), SL(n, F ) and PGL(n, F ), where F

can be real or p-adic. In this project we look at the case of GL(2, F ), where F is a p-adic
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field. The Plancherel formula for such a group G can be written as ,

f(e) =

∫
Ĝ

Θπ(f)dπ. (1)

where, f ∈ C∞c (G), e is the identity of G, and Θπ is the character distribution of G, that is,

Trace of the operator π(f) =
∫
G

f(g)π(g)dg.

This is essentially the decomposition of the regular representation, whose character dis-

tribution is then evaluated at identity.

This project aims to get the Plancherel formula for GL(2, F ), where F is a p-adic field.

We try to get to this formula by decomposing its regular representation in terms of its

irreducible unitary representation. Thus, we study the representation theory for such a

group. The classification followed in this project is based on the work done by Bushnell and

Henniart in their book “The Local Langlands’ Conjecture for GL(2)”. We parametrize these

classifications exactly as given in the book.

Next we look at the character theory for such a group. The character distributions as

mentioned in (1), is also studied. The formalisation of these characters is described as given

in Jacquet and Langlands’ book, “Automorphic Forms on GL(2)”.

To prove this formula for GL(2), we study the proof of the formula for SL(2). This is read

from the paper by Sally and Shalika, “Plancerel Formula for SL(2) over a local field”. The

hope is to be able to emulate this proof for the case of GL(2). This is due to the similarities

in the classification of their representations. The parametrization of their classification is

similar to that seen for GL(2).

Although, there are many similarities between the two groups, they also have some

subtle differences which means that the proof for G = GL(2) might not be able to construct

similar situations as was possible for SL(2). Thus, we also look at the decomposition of

the regular representation of G, in terms of the regular representation of PGL(2, F ) and its

G-equivariant spaces. We can then look at the Plancherel formula for PGL(2, F ) as given

in Silberger’s book “PGL2 over the p-adics : its Representations, Spherical Functions, and

Fourier Analysis”, and try to write down the formula for G.

Thus, we hope to get to the Plancherel formula sometime soon.
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Chapter 1

Preliminaries

This chapter is meant to clarify all the basic concepts, terms and definitions which would

be repeatedly used in this project. We first have a section on p-adic fields, which briefly

discusses the construction, and some important properties of p-adic fields. This leads to a

discussion on quadratic extensions of p-adic fields. Finally, we have a section on the definition

of direct sum of Hilbert spaces.

1.1 p-adic Fields

Fix a prime number p. We first define a function on Z such that, vp(n) = a where, a + 1 is

the smallest integer such that n 6≡ 0(mod pa+1) whenever, n ∈ Z and n 6= 0. Also, define,

vp(0) = +∞. Observe that, for all m,n ∈ Z,

1. vp(m · n) = vp(m) + vp(n)

2. vp(m+ n) ≥ min{vp(m), vp(n)}.

Thus, vp is a valuation on the ring Z.

Now, consider an absolute value on Q, such that for every x ∈ Q, x = m
n

, m,n ∈ Z,

|x|p =
∣∣∣m
n

∣∣∣
p

= pvp(n)−vp(m).
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Due to the properties of vp, we can easily check that | · |p is an absolute value and therefore

defines a metric on Q. It can also be checked that | · |p is a non-archimedean absolute value.

This has some important consequences such as,

1. ∀x, y ∈ Q, |x+ y|p ≤ max{|x|p, |y|p}

2. ∀x ∈ Z, |x|p ≤ 1

The p-adic field, Qp is the metric completion of Q with respect to the absolute value | · |p.
The ring of integers of such a field is Zp = {x ∈ Qp | |x| ≤ 1}, the unit disk in Qp. The space

p = {x ∈ Qp | |x| < 1} is the unique prime ideal in the ring Zp. Here, p is a principal ideal,

p = 〈p〉. The field k = Zp/p ∼= Z/pZ, is called the residue field of Qp. The set of units in

the ring of integers is the unit circle, U = {x ∈ Zp | |x| = 1}.

A p-adic field F is a finite field extension of Qp. The ring of integers, of F is defined in

the same manner, O = {x ∈ F | |x| ≤ 1}. Similarly we have the prime ideal and the unit

ring in O, P = {x ∈ F | |x| < 1} and UF = {x ∈ F | |x| = 1}. Here, the prime ideal,

P = 〈$〉 is also a principal ideal, and the element $ is called the prime element of F . The

residue field, kF = O/P is also an extension of the residue field of Qp. If F is an extension

of degree n, then, kF = Fq where, q = pn. Here, we can define Un = 1 + Pn as the compact

open subgroups of UF , and we get the isomorphism, UF/Un ∼= O/Pn.

1.2 Quadratic Extensions of a p-adic field

Hensel’s Lemma states that given a p-adic field, F , where p 6= 2, and a polynomial whose

coefficients lie in the ring of integers O such that it has a root in the residue field kF and

the derivative of the polynomial satisfies certain conditions, then the polynomial has a root

in O.

Also, any element of x ∈ F× can be written as x = $n · y where, $ is the prime element

of F and y ∈ UF and n ranges over every integer. That is, F× ∼= Z× UF .

These two properties of F give us that unless p = 2, we can say that the order of

F×/(F×)2 is 4. We have that F×/(F×)2 = {ε,$, ε$, 1}, where ε is the representative of all
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square-free units, and $ is the prime element, as defined above. Thus, there can be only 4

quadratic extensions possible for the p-adic field, F .

1.3 Direct Integral of Hilbert Spaces

Let (S, µ) be a measure space such that,

1. S =
⋃
i=0

∞Si where Si are measurable subsets of S with µ(Si) <∞.

2. There exists a function d, such that for A, B, measurable subsets of S, d(A,B) =

µ(A4B), and d satisfies the triangle inequality.

3. ((S, µ), d) forms a seperable pseudo metric space.

Consider a family of Hilbert spaces such that for every s ∈ S, we assign a Hilbert space,

Hs to it. A section over such a family of Hilbert spaces is a map, that for each s takes a

value in Hs, v : s 7→ vs where vs ∈ Hs. The family of Hilbert spaces , {Hs}s∈S, is said to be

measurable if there exists a set of sections, F, such that,

1. the map s 7→ 〈x(s), y(s)〉Hs is measurable for all x, y ∈ F.

2. If for some section z, the map, s 7→ 〈z(s), x(s)〉Hs is measurable almost everywhere,

∀x ∈ F, then z ∈ F.

3. ∃{xn}n∈N, a sequence of sections such that, {xn(s) | n ∈ N} = Hs almost everywhere

in S.

Given a measurable family of Hilbert spaces, as above, x ∈ F is said to be square

integrable if, ∫
S

‖x(s)‖2
HS
dµ(s) <∞.

We identify two sections x and y if ‖x(s) − y(s)‖Hs = 0 almost everywhere on S. With

this identification, the set of all square - integrable sections in F, is called the direct integral

5



of the family of Hilbert spaces, {Hs}s∈S.

H =

∫
S

Hsdµ(s)

.

On this space we set, for x, y ∈ H,

〈x, y〉 =

∫
S

〈x(s), y(s)〉Hsdµ(s).

Under this inner product, H is a pre-Hilbert space.
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Chapter 2

Representations of GL(2) over a

p-adic field

Let G denote GL(2, F ) where F is a p-adic field. The Plancherel formula for G is given

by an integration over the unitary representations of G. Thus, in this chapter we give a

classification of all the irreducible representations of G as given in the works of Bushnell and

Henniart.

Definition. A smooth representation over this group would be, (π, V ) such that for any

vector v ∈ V , there exists a compact open subgroup, K in G, which stabilises v.

Every abstract representation (π, V ) ofG, has a subspace V ∞ such that π acts as a smooth

representation on it. A smooth representation is K-semisimple for every K, a compact open

subgroup of G. For G, these are the type of irreducible representations that we must look

at.

Consider, φ : G 7→ C×, a 1-dimensional smooth representation of G or equivalently,

a continuous homomorphism from G to C×. The commutator group of GL(2, F ) being

SL(2, F ), implies, a map such as φ must factor through the determinant map and therefore,

every character of G is of the form, φ = χ ◦ det, where χ is a character of F×. It can easily

be shown that the only possible finite dimensional representations of G are its characters.

To further classify the representations of G, we look at their Jacquet modules. Let, N
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be the set of all upper triangular unipotent matrices in G.

N =
{

[ 1 x
0 1 ] , x ∈ F×

}
For an irreducible representation (π, V ) of G, we define, V (N) as the subspace of V generated

by the vectors v − π(n)v for v ∈ V and n ∈ N . The Jacquet module of V is given by,

VN = V/V (N). All characters of G have a non-trivial Jacquet module.

An irreducible smooth representation (π, V ) of G is called cuspidal, if VN is zero. We

shall now look at the classification of representations of G as a cuspidal or a non-cuspidal

representation.

2.1 Non-cuspidal representations

Let B be the set of upper triangular matrices in G and T be the set of diagonal matrices in

G.

B =
{

[ a b0 d ] | a, d ∈ F×, b ∈ F
}

T =
{[

x 0
0 y

]
| x, y ∈ F×

}
For any b ∈ B, there exists t ∈ T and n ∈ N such that b = tn. Consider χ, a character of T .

Thus, χ = χ1 ⊗ χ2 where χ1 and χ2 are characters of F×. Such a character can be viewed

as a representation of B which is trivial on N .

As we discussed above, every character of G is non-cuspidal. To classify the rest, we

observe the following proposition.

Proposition 2.1.1. Let (π, V ) be an irreducible smooth representation of G such that, VN

is non-trivial then, π is isomorphic to a G-subspace of IndGBχ, where χ is a character of T .

Where, the induced representation is of the form,

IndGB(χ) = {f : G 7→ C | f(hg) = δ
−1/2
B (h)χ(h)f(g), h ∈ B and ∃ K a compact open

subgroup such that f(gx) = f(g) ∀ g ∈ G, ∀ x ∈ K}

where, δb ( a b0 d ) = |d|
|a| , is the modular character of B.
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Thus to classify the non-cuspidal representations, we must look at which characters of

T give us an irreducible smooth representation of G when induced. This gives the following

Irreducibilty Criterion :

Theorem 2.1.2. Let χ = χ1 ⊗ χ2 be a character of T , and (π, V ) = IndGBχ, then π is

reducible if and only if χ1χ
−1
2 is either of the characters x 7→ ‖x‖±1

These irreducible induced representations are called the principal series representations

of G.

The above theorem does not mention the uniqueness of these induced representations.

Therefore, we must look at the conditions under which they are distinct. Let χ and ξ be two

characters of T . By Frobenius Reciprocity, we can say that

HomG(IndGBχ, IndGBξ)
∼= HomT ((IndGBχ)N , ξ)

also,

0 −→ χw −→ (IndGBχ)N −→ χ −→ 0

and thus, IndGBχ and IndGBξ are distinct if and only if ξ 6= χ or χw, where w = [ 0 1
1 0 ] and χw

is defined as the character χw(g) = χ(wgw−1).

Thus we have a distinct classification for the principal series representations.

Following this, we must also look at the G-subspaces of the induced representations which

are reducible. Observe that δB as a character of B is trivial on N , therefore, we can also

look at it as a character of T . We find that

0 −→ 1G −→ IndGBδ
1/2
B −→ StG −→ 0

The irreducible G-quotient of IndGBδ
1/2
B is called the Steinberg representation . From the

above short exact sequence we can see that any IndGBφδ
1/2
B , where φ is a character of F×, has

an irreducible G-quotient, φ.StG. The Steinberg representation and its twists are called the

special representations.

From the definition of δB and the Irreducibility Criterion, we can see that the above

representations exhaust all the possible reducible representations of the form IndGBχ such

that χ is a character of T . Thus, we have classified all non-cuspidal representations of G.
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2.2 Cuspidal Representations

Consider the following rings in G.

Definition 2.2.1. A chain order U is a ring with an integer, eU, associated with it such that,

there exists g ∈ G for which

gUg−1 =

M = [O OO O ] and eU = 1

J = [O OP O ] and eU = 2

For such a U, we write its Jacobson radical as P = rad U. For every U, P = ΠU = UΠ,

for some Π, the prime element of U. For example,

rad M = $M, rad J = ( 0 1
$ 0 ) J

where, $ is a prime element of F . We define, Pn = ΠnU = UΠn for any n ≥ 0. The units

of the ring are defined as ,

U0
U = UU = U×

Un
U = 1 + Pn, n ≥ 1

For example, UM = GL(2,O) and UJ = I, where I is the Iwahori subgroup.

I = {[ a bc d ] such that a, d ∈ UF , c ∈ P and d ∈ O}

Fix a character, ψ ∈ F̂ , such that ψ 6= 1 and ψ|P = 1 but ψ|O 6= 1, that is ψ is of level

1. We can define ψA as a character of A = M(2, F ) such that, ψA(x) = ψ(trAx) where

trA denotes the trace map. Similarly, for any a ∈ A we can also define the character,

aψA(x) = ψA(ax) = ψ(trA(ax)). The map a 7→ aψA gives an isomorphism A ∼= Â.

With such a fixed character, we now have the following isomorphism.

Proposition 2.2.1. Let U be a chain order with radical P. Let n be any integer, then

P−n/P1−n −→ ̂(Un
U/U

n+1
U )

a+ P1−n 7→ ψA,a|UnU

10



is an isomorphism, where ψA,a(x) = ψA(a(x− 1)) and ̂(Un
U/U

n+1
U ) is the set of all characters

of Un
U which are trivial on Un+1

U .

This isomorphism leads to the definition of a stratum.

Definition 2.2.2. A stratum is a triple (U, n, a) such that U is a chain order with radical

P, n is an integer and a ∈ P−n.

This strata is equivalent to identifying a character, ψA,a of Un
U which is trivial on Un+1

U

corresponding to the coset a+ P1−n according to the isomorphism in the above proposition

(2.2.1). Thus, we say that two strata, (U, n, a1) and (U, n, a2) are equivalent if and only if

a1
∼= a2(mod P1−n).

Next we distinguish the fundamental strata.

Definition 2.2.3. Let (U, n, a) be a stratum and radical of U is P. It is called fundamental if

the coset a+P1−n contains no nilpotent elements of A. Equivalently, there exists an integer

r ≥ 1 such that ar ∈ P1−rn.

Let (π, V ) be an irreducible smooth representation of G. A stratum, (U, n, a) such that

n ≥ 1 is said to be contained in π, if π contains the corresponding character ψA,a of Un
U .

Distinguishing the fundamental strata was important as except for certain conditions on π, an

irreducible smooth representation will always contain a fundamental strata. The exceptions

lie at the point when π contains the trivial character of U1
M. In which case we can easily

classify the possible cuspidal representations as c-IndGZKΛ, where K = GL(2,O), Z is the

center of G, and Λ is a representation of ZK which contains λ, a representation of K inflated

from an irreducible cuspidal representation of GL(2, k), k being the residue field of F .

Next, we try to classify the fundamental strata and try to distinguish an irreducible

representation in terms of which type fundamental strata it contains.

Consider the strata (U, n, a) such that eU = 1. Then, a ∈ P−n and P−n = $−nU, since

eU = 1 and P is a G-conjugate of the radical of M. Therefore, there exists some, a0 ∈ U

such that a = $−na0. We define fa(t) as the characteristic polynomial of the image of a0

in U/P = M(2, k) where k is the residue field of F . This characteristic polynomial remains

the same for a1
∼= a2(mod P1−n).
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Using the above, we classify the fundamental strata into the following:

Definition 2.2.4. Let (U, n, a) be a fundamental strata,

1. if eU = 2 and n is odd, then the strata is ramified simple

2. if eU = 1 and fa(t) is irreducible in k[t], then the strata is unramified simple.

3. if eU = 1 and fa(t) has distinct roots in k, then the strata is split

4. if eU = 1 and fa(t) has a repeated root in k×, then the strata is essentially scalar.

It can be shown that an irreducible smooth cuspidal representation either contains only

a simple strata or is a twist of a representation that contains a simple strata. Whereas, the

principal series representations either contain only the fundamental split strata or are a twist

of one which does.

Thus, to classify the cuspidal representations we look at simple strata.

For both the unramified and ramified simple strata (U, n, a), E = F [a] is a quadratic

extension. Consider, Ja = E×U
[(n+1)/2]
U . This is a subgroup of G which is compact modulo Z

and is also the maximal subgroup that normalises ψA,a, the character of Un
U associated with

the given strata.

Theorem 2.2.2. For a given simple strata (U, n, a), let Λ be an irreducible representation

of Ja such that Λ|
U

[n/2]+1
U

contains ψA,a. Then, the representation,

πΛ = c-IndGJaΛ

is irreducible and cuspidal.

Here, the compact induction of Λ from Ja to G is defined as,

c-IndGJa(Λ) = {f : G 7→ C | f(hg) = Λ(h)f(g) h ∈ J and ∃ K a compact open subgroup

such that f(gx) = f(g) ∀ g ∈ G, ∀ x ∈ K and Suppf is compact in H\G}.

The above theorem, describes an irreducible cuspidal representation which can be iden-

tified by three parameters - a simple strata (U, n, a), its associated subgroup, Ja, and a

12



representation of Ja which contains the character associated with the given strata. Using

this, we define objects called cuspidal types in order to try and parametrize every irreducible

cuspidal representation of G.

Definition 2.2.5. A cuspidal type is a triple (U, J,Λ) where U is a chain order, J a subgroup

of G which is compact modulo Z and Λ is an irreducible representation of J such that one

of the following happens:

1. U ∼= M, J = ZK = ZUM and Λ|UM
is inflated from an irreducible cuspidal represen-

tation of the group GL(2, k)

2. (U, n, a) is a simple stratum, J = Ja as defined above and Λ is an irreducible represen-

tation of J such that Λ|[n/2]+1
UU

contains ψA,a

3. There exists (U, J,Λ0) such that it satisfies either of the above two conditions and

Λ ∼= Λ0 ⊗ χ ◦ det for some character χ of F×

Each cuspidal type, (U, n, a) gives an irreducible cuspidal representation, πΛ = c-ndGJ Λ.

Theorem 2.2.3. The map between the conjugacy classes of cuspidal types and the equiva-

lence classes of irreducible cuspidal representations of G.

(U, J,Λ) −→ c-IndGJ Λ

is a bijection.

Thus, all the cuspidal representations of G are classified by their cuspidal types. These

are also called the supercuspidal representations of G.
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Chapter 3

Characters of Irreducible

Representations of GL(2, F )

The Plancherel formula for G will be of the form (1). Here the integrand is called the

character distribution of an irreducible unitary representation (π, V ) of G. As we shall see

in this chapter, the character distribution can be determined by a function over G which is

dependent only on π. By abuse of notation, we call this function the character of π. We

study this integrand and the correspoding character in this chapter.

3.1 The Character as a Locally Integrable Function

Let (π, V ) be a smooth representation of G and K be some compact open subgroup of G.

The subspace V K = {v ∈ V | π(k)v = v ∀k ∈ K}, is the set of all K-fixed vectors in V .

Definition. A smooth representation (π, V ) of G is said to be admissible if for every compact

open subgroup K, the subspace V K is of finite dimension.

Using the classification of representations in the previous chapter, we can prove that

every irreducible representation of G is admissible. Given such an irreducible representation
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(π, V ) of G and a function f ∈ C∞c (G), consider the operator,

Qπ = π(f) =

∫
G

f(g)π(g)dg.

The representation π being admissible implies that π(f) is a finite rank operator. Therefore,

Tr(π(f)), the trace of π(f) exists and is a continuous functional on C∞c (G). There exists a

locally integrable function χπ(g) defined almost everywhere on G, such that,

Tr(π(f)) =

∫
G

f(g)χπ(g)dg.

This is a result of Godemont and Harishchandra for irreducible unitary representations of

semisimple Lie groups. For the purposes of this project, we shall prove this result for G, as

given in the works of Jacquet and Langlands, Automorphic Forms on GL(2). For both the

cuspidal and non-cuspidal representations, we shall prove that such a χπ exists by giving an

explicit form for the function.

3.2 Character of Non-cuspidal Representations

We have classified all the non-cuspidal representations of G into three different types - the

characters of G, the principle series representations and the special representations. The

principal series representations are the induced representations of characters of T , inflated to

B, which satisfy certain conditions. That is, the principal series can be written as IndGBµ1⊗µ2

where µ1 and µ2 are characters of F×. The special representations are twists of the Steinberg

representation, which is the G-quotient of IndGBδ
1/2
B ,

0 −→ 1G −→ IndGBδ
1/2
B −→ StG −→ 0.

Therefore the character of StG can be written as χStG = χ
IndGBδ

1/2
B
− 1.

Thus, by looking at characters of representations of the form IndGBµ1 ⊗ µ2 where µ1 and

µ2 are characters of F×, that is χIndGBµ1⊗µ2
= χµ1,µ2 , we can describe the characters of all

non-cuspidal representations.
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A regular element of the group G is any element with distinct eigenvalues. Let G̃ be the

set of all regular elements of G and let H be the set of all elements of G which have eigen

values that do not lie in F . These are the two subsets of G for which we shall define the

values of the characters. Both these subsets are open in G and G̃ is dense in G

A Cartan subgroup is the centralizer of a regular element in G. These subgroups are

either the subgroup T , the set of all diagonal elements in G, or an isomorphism of the

multiplicative group of a quadratic extension E over F . Observe that G̃ is the union of all

G-conjugates of every Cartan subgroup in G. Also, G̃−H is the set of all G-conjugates of

T .

Proposition 3.2.1. Let µ1, µ2 be characters of F×. We define, χµ1,µ2 to be the function

which is 0 on G̃
⋂
H, undefined on G− G̃ and equal to

{µ1(a)µ2(b) + µ1(b)µ2(a)}
∣∣∣∣ ab

(a− b)2

∣∣∣∣1/2
on an element which lies in some G-conjugate of T , that is on the space G̃−H, with eigen

values a and b. Then, χµ1,µ2 is continuous on G̃. If π = IndGBµ1 ⊗ µ2 then for every

f ∈ C∞c (G),

Tr(π(f)) =

∫
G

χµ1,µ2(g)f(g)dg.

Proof. Consider the integral, ∫
G

χµ1,µ2(g)f(g)dg. (3.1)

Since χµ1,µ2 is 0 outside T , we can show that this is the same as the integral,

1

2

∫
T

∣∣∣∣(a− b)2

ab

∣∣∣∣

∫
T\G

χµ1,µ2(g
−1αg)dg

 dα

where, the measure dg is the quotient of the measure on G by that on T . Observe that, χµ1,µ2

depends only on eigen values and therefore is a class function. Also, α = [ a 0
0 b ] is conjugate

to β = [ b 0
0 a ]. Thus, we can expand and simplify the above integral to say that (3.1) is equal
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to, ∫
T

µ1(a)µ2(b)

∣∣∣∣(a− b)2

ab

∣∣∣∣1/2

∫
T\G

f
(
g−1αg

)
dg

 dα.

The integral over T\G can be further written as an integral over GL(2,O)×N ,

∫
T

µ1(a)µ2(b)
∣∣∣a
b

∣∣∣1/2


∫
GL(2,O)×N

f(k−1αnk)dk dn

 dα. (3.2)

Observe that G = B · GL(2,O). A locally constant function φ in the vector space

IndGB(µ1⊗µ2), is determined by its values onK = GL(2,O), since φ(xg) = µ1(a)µ2(b)
∣∣a
b

∣∣1/2 φ(g)

for every g ∈ G and x = [ a k0 b ] ∈ B. Such a function, φ can also be regarded as a function

over the compact open subgroup K. Therefore, the following can be seen as an integral

operator with kernel F (k1, k2), on the space of functions over K.

π(f)φ(k1) =

∫
G

φ(k1g)f(g)dg =

∫
K

φ(k2)


∫

T×N

f(k−1
1 αnk2)µ1(a)µ2(b)

∣∣∣a
b

∣∣∣1/2 dα dn

 dk2

F (k1, k2) =

∫
T×N

f(k−1
1 αnk2)µ1(a)µ2(b)

∣∣∣a
b

∣∣∣1/2 dα dn

It is easy to check that the range of such an operator also lies in the space IndGBµ1 ⊗ µ2.

Thus, it is enough to calculate the trace of the integral operator to get T (rπ(f)). The trace

of the integral operator is given by, ∫
K

F (k, k)dk

which, when expanded, is the same as (3.2)

Thus, we have that for a principal series representation π = IndGBµ1 ⊗ µ2, the character
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is defined on G̃

χµ1,µ2(g) =

{µ1(a)µ2(b) + µ1(b)µ2(b)}
∣∣∣ ab

(a−b)2

∣∣∣1/2 when g ∈ G̃−H

0 when g ∈ G̃
⋂
H

Similarly for the Steinberg representation, χStG is defined on G̃ as follows,

χStG =


‖a‖+‖b‖
‖a−b‖ − 1 when g ∈ G̃−H

−1 when g ∈ G̃
⋂
H

All the characters of the special representations can be written as twists of the above char-

acter.

3.3 Characters of Cuspidal Representations

Let (π, V ) be a cuspidal representation. We can always define a Hermitian form on V .

Consider some v̌ ∈ V̌ , the smooth dual of V , such that v̌ 6= 0, then we can define the integral

(v1, v2) =

∫
G

〈π(g)v1, v̌〉〈v2, π̌(g)v̌〉dg.

This forms a Hermitian form on V . We shall use this to show the existence of χπ in the

following proposition.

Proposition 3.3.1. There exists a locally integrable function, χπ which is defined and con-

tinuous on G̃
⋃
H such that

Tr(π(f)) =

∫
G

χπ(g)f(g)dg.

Proof. Let ωπ be the central character of π. If |ωπ| 6= 1, then there exists some φ, a

character of F× such that π́ = φ ⊗ π has a central character |ωπ́| = 1, that is π́ is unitary.

Then, if both characters exist, χπ́(g) = φ(det(g))χπ. Therefore, we only need to look at
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unitary cuspidal representations. Let

Q = π(f) =

∫
G

f(h)π(h)dh.

Consider some orthonormal basis of V , {vi}. Then we can define,

Qij = (Qvi, vj).

π being an admissible representation, Q is a finite rank operator, therefore, only finitely

many of the Qij’s are non-zero.

Consider u ∈ V such that under the Hermitian form on V, (u, u) = 1, that is a unit

length vector in V . Now we look at the following equations

(π(g)−1Qπ(g)u, u) = (Qπ(g)u, π(g)u) (3.3)

(Qπ(g)u, π(g)u) =
∑
i

(Qπ(g)u, vi)(vi, π(g)u) =
∑
j

∑
i

(π(g)u, vi)Qji(vj, π(g)u)

Since there are only finitely many Qij’s which are non-zero, therefore, the above series is a

finite sum and we can look at the following integration,∫
Z\G

(π(g)−1Qπ(g)u, u)dg =
∑
i,j

Qji

∫
Z\G

(π(g)u, vj)(vi, π(g)u)dg.

π being unitary implies it is also square integrable, therefore the integral on the right con-

verges. We can also apply Schur’s Orthogonality relations to get,

1

d(π)

∑
i,j

Qij(vi, vj) =
1

d(π)

∑
i

Qii =
1

d(π)
Tr(π(f)).

where d(π) is the formal degree of π. Also, the expression on the right of (3.3) can be

expanded to, ∫
G

f(h)(π(g−1hg)u, u)dh.

Therefore, 1
d(π)

Tr(π(f)) =
∫

Z\G

{∫
G

f(h)(π(g−1hg)u, u)dh

}
dg. The integral over Z\G is the
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limit of integrals over compact subsets of Z\G. Any element x ∈ G can be written as

x = g1 ($
p 0

0 $q ) g2

where, g1 and g2 are elements of K = GL(2,O) and p ≤ q. We define, Tr as the set of all

elements of G such that q− p < r. This is the inverse image of a compact subset T ′rof Z\G.

The above integral is the limit of the integral

∫
T ′r


∫
G

f(h)(π(g−1hg)u, u)dh

 dg

as r approaches infinity. T ′r being compact implies that the above integral converges abso-

lutely. Therefore, ∫
G

f(h)


∫
T ′r

(π(g−1hg)u, u)dg

 dh.

Set, φr(h) =
∫
r′

(π(g−1hg)u, u)dg. The proposition now boils down to showing that the limit

χπ(h) = d(π) lim
r→∞

φr(h) exists.

Since π is an irreducible unitary representation, there exists a conjugate linear map

A : V −→ V̌ such that (v1, v2) = 〈v1, Av2〉. Therefore, the functions (π(g)u, u) are also

matrix coefficients. π being cuspidal implies that it is also γ-cuspidal, that is, every matrix

coefficient is compactly supported mod Z, and thus, so is (π(g)u, u).

Let C be the image of this compact support in Z\G. If D is a compact subset of H, we

can say that for every h ∈ D the set {g ∈ G | π(g−1hg)u, u) 6= 0} has a compact image C ′

in Z\G. Therefore, the integral,∫
Z\G

(π(g−1hg)u, u)dg =

∫
C′

(π(g−1hg)u, u)dg

is convergent for h ∈ D. If r is large enough then C ′ ⊂ T ′r and thus,

φr(h) =

∫
Z\G

(π(g−1hg)u, u)dg
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and the sequence {φr} converges on H to the limit (d(π))−1χπ(h).

On the rest of G̃ − H, which are all the G-conjugates of the diagonal matrices, we can

show that for a given compact subset in G̃ − H there exists a constant c and a bound M

determined by the compact subset such that, |φr(h)| ≤ cM for all r and for all such h in

that compact subset. This can be shown by using the fact that, any element of G can be

written as a product of an element from B and an element from K, and also h, a conjugate

of T , can be written as,

h = h−1
1

(
a 0

0 b

)(
1
(
1− b

a

)
x

0 1

)
h1

where h1 ∈ GL(2,O) = K. The point h belongs in a compact set if all the values x, a, b and(
1− b

a

)
are bounded above and below. Thus we look for the conditions on these bounds for

which the argument of the integral can be written as π(g−1hg)u, u) where g ∈ Tr and h ∈ T .

Under these conditions it is easy to show that the integral is bounded. Thus, φr(h)

converges over T and therefore over G̃
⋃
H.

The character of an irreducible cuspidal representation (π, V ) can be written as,

1

d(π)
χπ =

∫
Z\G

(π(g−1hg)u, u)dg

where, d(π) is the formal degree of π, u is a vector of unit length corresponding to the

Hermitian form on V .

Thus, we have shown that for any irreducible representation (π, V ) of G, there exists

a function defined almost everywhere on G, such that Tr(π(f)) =
∫
G

f(g)χπ(g)dg. This is

called the character of π.

22



Chapter 4

The Plancherel Formula

In this chapter we try to put down the possible approaches to writing down the Plancherel

formula for G. The form of the Plancherel formula that we see in (1) is clearly a decompo-

sition of the regular representation of G, which is then evaluated at the identity. We can

try to prove this decomposition by comparing it to the Plancherel formula for SL(2, F ). We

can also make such a comparison between the Plancherel formula for SL(2, F ) and that of

PGL(2, F ) as well. Therefore, we look at the decompostion of the regular representation of

G in terms of the regular representation of G/Z as well.

4.1 A Direct Integral Decompostion

The regular representation of G is the action of the group on L2(G), the space of all square-

integrable functions over G.

L2(G) =

f : G→ C |
∫
G

|f(g)|2dg <∞

 .

The Plancherel Formula is essentially a decomposition of L2(G) in terms of its irreducible

unitary representations. We can also try to obtain this decomposition by first decomposing

it in terms of the spaces L2(G/Z, ω). In this section we try to prove that the following map
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is an isomorphism :

L2(G/Z, ω) −→
∫
Ẑ

⊕
L2(G/Z, ω)dω

where we look at a direct sum of Hilbert spaces L2(G/Z, ω) over the measure space Ẑ, the

space of all unitary central characters of G.

L2(G/Z, ω) =

f : G→ C | f(gz) = f(g)ω(z) ∀g ∈ G, z ∈ Z and

∫
G/Z

|f(g)|2dg <∞


Consider for f ∈ C∞c (G), the map

Φ : f 7→

x : ω 7→

x(ω) : g 7→
∫
Z

f(gz)ω(z)−1dz



To show that such a map, when extended to L2(G), is an G-invariant isomorphism, we

must first check if its well-defined.

For any f ∈ C∞c (G) the map gives, x(ω)(gz′) =
∫
Z

f(gz′z)ω(z)−1dz. On substituting zz′

for y, we get x(ω)(gz′) = ω(z′)
∫
Z

f(gy)ω(y)−1dy, since Z is uni-modular.

Thus, x(ω)(gz) = ω(z)x(ω)(g).

For x(ω) to be an element of L2(G/Z, ω), we must also check for square integrability.

∫
G/Z

|x(ω)(g)|2dg =

∫
G/Z

|
∫
Z

f(gz)ω(z)−1dz|2dg ≤
∫
G/Z

∫
Z

|f(gz)ω(z)−1|dz

2

dg

Since, F ∈ C∞c (G), and thus compactly supported, therefore there are only finitely many

points on g ∈ G/Z such that f(gz) 6= 0 for some z ∈ Z. Also, ω is unitary, therefore,

∫
G/z

|x(ω)(g)|2dg ≤
∫
G/Z

∫
Z

|f(gz)|dz

2

dg <∞

Thus, x(ω) is an element of L2(G/Z, ω).
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For x to be a section of the direct integral over Ẑ,∫
Ẑ

‖x(ω)‖2dω <∞.

We first check this for when f is a characteristic function of some compact open subgroup

of G. Let K = GL(2,O) and Kn = 1 + [ P
n Pn
Pn Pn ]. Let χn be the characteristic function of Kn,

that is χn take values 1 over Kn and 0 elsewhere. This gives us xn = Φ(χn), for some g ∈ G
and some ω ∈ Ẑ

xn(ω)(g) =

∫
Z

χn(gz)ω(z)−1dz

We know that, Z being the set of all scalar matrices, Z ∼= F×. Now we consider, ω such that

ω|1+Pn 6= 1. Here, 1 + Pn = Un is a compact open subgroup of Z. Therefore we can write,

∫
Z

χn(gz)ω(z)−1dz =

∫
Z/Un

∫
Un

χn(gżu)ω(żu)−1du

 dż

Since, u ∈ 1 + Pn ∼= Un, we have gżu ∈ Kn ⇔ gż ∈ Kn and χn being a characteristic

function we get, χn(gżu) = χn(gż).

xn(ω)(g) =

∫
Z/Un

χn(gż)ω(ż)

∫
Un

ω(u)−1du

 dż = 0

Since,
∫
Un

ω(u)−1du = 0 when ω|Un 6= 1. Thus, xn is non-trivial only when ω|Un = 1.

Next, we look at the space S = {ω ∈ F× | ω|Un = 1}. We know that Z ∼= F× ∼= Z× UF .

Therefore, S = ̂{Z× (UF/Un)} ∼= S1 × ̂(UF/Un) ⊂ {Ẑ = F̂×}

Since, UF is compact and Un is open, thus ̂(UF/Un) is finite. Also, S1 is compact, therefore

the space S is a compact space in Ẑ. Thus, the section x is compactly supported over Ẑ and

the following integral is finite.∫
Ẑ

|x(ω)|2dω =

∫
Ẑ

∫
G/Z

|
∫
Z

f(gz)ω(z)−1dz|2dg dω <∞
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Therefore, we have shown that the map is well-defined for the characteristic functions

χn.

For any f ∈ C∞c (G) , one can write f in terms of the characteristic functions defined

above, χn. Since f is locally constant and compactly supported we can write it as a finite

sum, f =
∑
ciχUi where, Ui is a compact open subset of G and χUi its characteristic function.

Any compact open subset, Ui contains some G translation of Kmi for a sufficiently large mi,

therefore we can write, f =
∑
ciχgiKmi where, χgiKmi = giχKmi and χKmi = χmi , according

to our previous notation. Therefore, f =
∑
cigiχmi

Thus, any function in C∞c (G) can be written as a linear combination over G translations

of χn.

The map in question is clearly linear. All we need now is to check for G-invariance.

Suppose, Φ(f) = x. Consider the action of some h ∈ G on f , h.f(g) = f(gh). Then,∫
Z

f(ghz)ω(z)−1dz = x(ω)(gh) = h.x(ω)(g) = h.Φ(f)(ω)

Thus, it is also G-invariant. Therefore, the map is well-defined over C∞c (G) and since C∞c (G)

is dense in L2(G), we can extend the map continuously over the rest of the space.

To show that Φ is an isomorphism, we construct the inverse map. Consider a section

x ∈
∫
Ẑ

⊕L2(G/Z, ω)dω. Such an x is said to be compactly supported if there exists a compact

subset W of Ẑ such that ‖x(ω)‖ = 0 if ω /∈ W . Since
∫
Ẑ
‖x(ω)‖2dω < ∞, thus, we can say

that x is a square integrable map from Ẑ to C, that is, x ∈ L2(Ẑ). If we assume x to be

compactly supported , then x ∈ C∞c (Ẑ), which is dense in L2(Ẑ). Therefore, we can define

a map on C∞c (Ẑ) and continuously extend it to the rest of L2(Ẑ).

Consider, ϕ : x 7→ f such that f(g) =
∫
Ẑ
x(ω)(g)dω. This when extended to the rest of

Ẑ and then composed with Φ gives us that Φ ◦ ϕ = 1Ẑ and ϕ ◦ Φ = 1G.

Thus, we have that Φ is an isomorphism.
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4.2 The Plancherel formula for SL(2)

The unitary representations of SL(2, F ) have a similar classification to that of GL(2, F ).

The finite dimensional representations are all the characters. Then there are the principal

series representations which in the case of SL(2, F ) can be parametrized by one character

of F× instead of the pair of characters that we see in G = GL(2, F ). There are the special

representations which are the twists of the Steinberg representation, which is the same as in

G. Finally there are the cuspidal representations parametrized by three objects. A cuspidal

representation of SL(2, F ) can be written as (h, V, ψ), where V = F [
√
θ] is a quadratic

extension of F , ψ is a character of Cθ, the set of all units of V , and h (the conductor of ψ)

is the smallest integer such that ψ is trivial on C
(h)
θ = 1 + Phθ , where Pθ is the prime ideal

in V . These parameters are the same as those for the cuspidal representations of G.

The above similarities between the classification of representations of both the groups

indicate that the Plancherel formula would also take similar structures in both cases. There-

fore, we study the Plancherel formula for SL(2, F ) and the proof given for it as explained in

the works of Sally and Shalika in order to emulate it for G.

For the classification of the cuspidal representations of SL(2, F ), we characterize the

parameters mentioned above. Assuming F is a p-adic field where p 6= 2, there are only three

possible quadratic extensions of F , V = F [
√
θ] where θ = τ, ε, ετ . Here, τ is a prime element

of F and ε is a representative of the square free units of F . The quadratic extension V can

be seen as a multiplicative subgroup of G. All such possible inclusions that intersect with

SL(2, F ) are the Cθ’s for the corresponding quadratic extensions. These are the compact

Cartan subgroups of SL(2, F ). The character ψ of Cθ is trivial on Ch
θ . To accommodate the

role of h and to limit the possible spaces that Ch
θ can represent, we must modify its definition

for different θ’s. Here, Ch
ε = 1 + Phε and Ch

θ = 1 + P2h+1
θ , when θ = τ, ετ . The conductor of

ψ, h, ranges from 1 to ∞.

Remark 4.2.1. In the modification of the definition of Ch
θ , we observe that this is also

reflected in the classification of cuspidal representations of G. V = F [
√
ε] being an unramified

extension is associated with an unramified simple strata (P, n, a), which can have any value

for n. Whereas, V = F [
√
τ ] or V = F [

√
ετ ] are ramified extensions which are associated

with a ramified simple stratum where n is always odd.

As seen in the previous chapter, for any irreducible representation (π, V ) of SL(2, F ) and
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for some f ∈ C∞c (SL(2, F )), we can write,

Θπ(f) = Tr(π(f)) =

∫
G

f(g)θπ(g)dg.

For a cuspidal representation, (h, V, ψ) we define, Θπ(f) = Θψ(f). For the principal series

representation parameterized by a character µ ∈ F̂×, we write this as Θµ(f) and for the

Steinberg representation this is Θ0(f)

The Plancherel Formula for SL(2, F ) is given by the following.

Let f ∈ C∞c (SL(2, F )), then

2(q2 − 1)

q2
f(1) =

∑
θ=τ,ε,τε

∞∑
h=1

∑
ψ∈Ĉθ

cond ψ=h

µ(ψ)Θψ(f)

+ 2(q − 1)Θ0(f) +
q2 − 1

q2

∫
µ∈F̂×

1

|Γ(µ)|2
Θµ(f)dµ (4.1)

where Γ(µ) is a function over F̂× which along with dµ gives the Plancherel measure for

the principal series representations. Also, µ(ψ) is the Plancherel measure for the cuspidal

representations.

To prove this formula, we first construct the above summation. This summation can be

written as a limit of the following distribution,

Λd(f) =
∑

θ=τ,ε,τε

d∑
h=1

∑
ψ∈Ĉθ

cond ψ=h

µ(ψ)Θψ(f) + 2(q − 1)Θ0(f)

+
q2 − 1

q2

∫
µ∈F̂×

1

|Γ(µ)|2
Θµ(f)dµ (4.2)

Thus, what we must prove is that lim
d→∞

Λd(f) = 2(q2−1)
q2

f(1) for every f ∈ C∞c (SL(2, F )).

Consider Km as defined in the previous section. For this section we redefine Km as the
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subgroup of it that lies in SL(2, F ) and its characteristic function as χn. We can show that,

Lemma 4.2.1. Λd(χm) = 2(q2−1)
q2

whenever, d ≥ m.

Now consider f ∈ C∞c (SL(2, F )) and the distribution, Λ(f) = lim
d→∞

Λd(f). This distri-

bution is supported on the unipotent elements of SL(2, f), that is for any f with support

that does not intersect with the unipotent elements, Λ(f) = 0. Also, for any g ∈ G/Z,

g.Λ(f) = Λ(g−1.f) = Λ(f) where, g−1.f(x) = f(g.x) ∀x ∈ SL(2, F ). In other words, Λ is

invariant under the adjoint action of G/Z where G and Z are defined as in the previous

sections. These properties make the computations easier as, we have the following theorem.

Theorem 4.2.2. If T is a distribution on (SL(2, F )−{1}) satisfying the following properties

1. T is supported on the unipotent elements of SL(2, F )

2. T is invariant under the adjoint action of G/Z

then, T is unique up to scalar multiples.

Now we define a distribution K(f) with the same properties as given in the hypothesis of

theorem (4.2.2). To prove (4.1) , the construction of K(f) is such that we have the following

corollary.

Corollary 4.2.3. If T is a distribution on SL(2, F ) such that on SL(2, F )−{1}, T satisfies

the conditions given in theorem (4.2.2), then there exists c1 and c2 such that for every f ∈
C∞c (SL(2, F ))

T (f) = c1K(f) + c2f(1)

The construction of K is also such that K(χm − χm+1) 6= 0 whereas, Λ(χm − χm+1) = 0.

Therefore, from corollary (4.2.3) and lemma (4.2.1), we have that for Λ, c1 = 0 and c2 =
2(q2−1)
q2

. Therefore,

Λ(f) =
2(q2 − 1)

q2
f(1)

This proves the Plancherel formula for SL(2, F ).
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Chapter 5

Conclusion

We have seen the Plancherel Formula as well as its proof for SL(2, F ) in the previous chapter.

One of the main differences between G and SL(2, F ) is that the center of G is Z ∼= F× is

not compact and does not have finite measure, whereas, the center of SL(2, F ), given by

ZS = {[ x 0
0 x ] | x = ±1}, is finite. This difference implies that certain integrals taken over

SL(2, F ), may not converge over G. Similarly, the Cartan subgroups over SL(2, F ) are

compact whereas, for G, they are isomprphic to the whole quadratic extension V = F [
√
θ]

and therefore, do not have finite measure. Due to such subgroups, certain functions over

G cannot be constructed in the same way as that for SL(2, F ). This may be solved by

considering G/Z instead of G. Thus, we look at the direct integral decomposition of L2(G)

into L2(G/Z, ω), where ω ranges over all the unitary representations of Z.

Next, we must calculate the Plancherel measure for each of the representations classified

in the previous chapters. We must attempt to construct the Plancherel formula by con-

structing distributions similar to Λ and K. We must also check for if Theorem(4.2.2) is valid

on G. When all these conditions align, only then we can try to construct a proof for G.

If these conditions are not possible to satisfy then we could try to look at the Plancherel

formula for PGL(2, G) as given in Silberger’s book ”PGL2 over the p-adics : its Represen-

tations, Spherical Functions, and Fourier Analysis”. This is essentially the decomposition

of L2(G/Z, ω) when ω is trivial. We can try to obtain the Plancherel formula for G by the

direct integral decomposition of L2(G).

31



Thus, we can try to follow the strategies formulated in this project to obtain and prove

the Plancherel formula for G = GL(2, F ), where F is a p-adic field. We hope to get to the

formula sometime soon.
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