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Abstract

This thesis studies some geometric properties of knots in real projective 3-space. These

ideas are borrowed from classical knot theory. Since knots in RP 3 are classified into three

disjoint classes: affine, class-0 non-affine, and class-1 knots, it is natural to wonder in which

class a given knot belongs. We attempt to answer this question. We provide a structure

theorem for these knots which helps in describing their behaviour near the projective plane

at infinity. We propose a procedure called space bending surgery, on affine knots to produce

several examples of knots. Later it is shown that this operation can be altered as a class

changing surgery on an arbitrary knot in RP 3. We then study the notion of companionship

of knots in RP 3 and provide a geometric criterion for a knot to be affine. We also define

an invariant called “genus” for knots in RP 3 and show that this genus detects knottedness

and gives a criterion for a knot to be affine and of class-1. Using the properties of genus we

prove a “non-cancellation” theorem for both the surgery operations mentioned above. We

introduce a notion of cable knot and show that cable knots with a class 1 companion knot

completely characterize genus 1 knots.

In the later part of the thesis, we develop a method for constructing links in RP 3 as plat

closures of spherical braids. This method is a generalization of the concept of “plats” in S3

defined by Joan Birman [Bir]. We prove that any link in RP 3 can be constructed in this

manner. We introduce a new kind of permutation (called residual permutation) associated

with a spherical braid in RP 3 and prove that the number of disjoint cycles in the residual

permutation of a spherical braid is equal to the number of components of the plat closure link

of this braid. This braid representation provides another criterion for detecting affineness.

We develop a set of moves on spherical braids in the same spirit as the classical Markov

moves on braids. Braids related by a finite sequence of these moves will produce isotopic

plat closure links. We conjecture that the converse of this is also true, so we hope to have

an analogue of Markov theorem for links in RP 3.
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Chapter 1

Introduction

Three-manifolds may seem harder to understand at first. But as actors and movers in a

three-dimensional world, we can learn to imagine them as alternate universes.

-William Thurston, [Thu], 1997

The theory of knots is believed to have started when Lord Kelvin [Th] proposed a theory

of atoms, where he described the structure of atoms as knots in the fibers of “aether”. P.G.

Tait made the first table of knots and thereby started the mathematical study of knots[Tai].

Classically a knot is described as an embedding of S1 into S3 or R3, which is considered up

to ambient isotopy[Kaw; ABDPR]. This definition has two obvious generalizations. One

is that we could look at embeddings of S1 inside any three-manifold. Or we could consider

embeddings of a higher dimensional sphere Sn inside Sn+2.

In this thesis, we are interested in the first generalization. We study knot theory in the

real projective 3-space, RP 3. So a knot here is a smooth embedding of S1 in RP 3 and a

link is a smooth embedding of disjoint union of copies of S1 in RP 3. We will mention knots

but it would mean knots and links both. As usual, we will identify the embedding by its

image. Two knots K1 and K2 are said to be ambiently isotopic if there exists an orientation

preserving diffeomorphism ϕ : RP 3 → RP 3 such that ϕ(K1) = K2. Thus the central problem

will remain the same: classify knots in RP 3 on the basis of ambient isotopy.

Of late there has been a lot of interest in studying knots in RP 3. This was mainly
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initiated by Yulia V. Drobotukhina ([Drob]). The main idea initially was to generalize tools

from classical knot theory which also work for distinguishing knots in RP 3. For example,

in [Drob] an analogue of the Jones polynomial for links in RP 3 and in [Huy] Twisted

Alexander polynomial have been developed. In [Man] M. Enrico studies the knots in RP 3

by their lifts in S3. In this thesis, we focus more on geometric properties associated with

these knots and define some invariants for knots and links in RP 3. Note that in the case

of classical knots, most invariants are defined by representing a knot either by a “diagram”

or by a “ braid closure”. We have tried considering both approaches in the set-up of knots

inside RP 3.

Before we talk about how knots or links behave in RP 3, it is important to understand

the topological properties of the ambient space RP 3. Since RP 3 is a quotient space of S3 by

antipodal points being identified, using S3 as a quotient of a 3 ball B3, we can represent RP 3

as a quotient of B3 with its antipodal points identified. This is referred to as the ball model

to understand RP 3. Also using the mapping cylinder C of the covering map, h : S2 → RP 2

we can think of obtaining RP 3 as gluing C with a 3-ball along with their boundary sphere.

This representation is referred to as the mapping cylinder model. We will see a detailed

exposition of both these models in Chapter 2 of this thesis.

The canonical 2 sheeted cover h : S3 → RP 3 is an essential tool for developing many

ideas towards knot theory in RP 3. We will denote this map by h throughout this thesis.

The antipodal map a : S3 → S3 is the only non-trivial automorphism of this covering map.

As the fundamental group of RP 3 is Z
2Z , a knot in RP 3 can represent either 0̄ or 1̄ in the

fundamental group. The knots in RP 3 are referred to as of class-0 or of class-1 accordingly.

We have an unknot in both the classes known as the affine unknot and the projective unknot

respectively. All class-0 knots lift to a link, with two components, in S3. The two components

are antipodes of each other. All class-1 knots lift to two paths which together form a knot

in S3. This knot is the antipode of itself. Also R3 is contained in RP 3 so some knots may

lie completely in R3, they are known as affine knots. Affine knots are always of class 0. We

will witness that there are non-affine class 0 knots. Thus there are three disjoint families

of knots in RP 3 namely affine, non-affine class 0, and class 1. Thus, this itself becomes an

important question to investigate - in which family a given knot belongs to? This thesis is

mainly addressing this question.

In order to develop a diagram theory we need to know the space where the diagrams
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are drawn. Since the knots in R3 are drawn on a plane and in RP 3 it will correspond to

a projective plane and hence a link diagram for links in RP 3 will be drawn on a projective

plane. Yulia V. Drobotukhina in [Drob] provides a complete exposition of this, including a

set of Riedemister Moves for these knots. As in classical knot theory, in this situation also a

choice of a diagram is not unique. In fact, certain special diagrams are preferred in defining

a specific invariant. For instance, some invariants are defined using a representation of knots

by an arc presentation [Crom] or as a Morse diagram [KAt]. In this thesis, we introduce a

new type of tangles known as residual tangles and using them show the existence of a specific

presentation of link diagrams in RP 3. In classical knot theory, one could generate knots using

connected sum [Rolf] operation. We realize that this operation is not well defined in the

case of knots in RP 3. We define a surgery procedure performed on affine knots to generate

any knot in RP 3. We call it a space bending surgery. Later, we extend this operation on any

knot and obtain a new knot whose class is different from the original knot. We call it a class

changing surgery. We introduce a notion of companionship of knots in RP 3 and develop

some geometric characterization for a knot to be affine.

In the case of classical knot theory, all knots are homologically trivial so they bound a

surface called a Seifert surface [Seif] of the knot. The minimal genus of all Seifert surfaces

of a knot is called the ‘genus’ of that knot. Unfortunately, all knots in RP 3 cannot bound a

surface so we cannot talk of a Seifert surface but we can obtain surfaces containing a knot.

We introduce a notion of a good surface of a knot k that contains k inside RP 3 and whose

lift under the 2 sheeted cover is a connected, orientable surface inside S3 containing the lift

of k. We use this good surface to define a “genus” for a knot in RP 3. We show that it is

an invariant for links in RP 3. We have studied several properties of this genus in this thesis

that provide characterization for detecting a given knot to be affine or not.

We have seen that in the case of the classical knot theory a braid representation of

knots is a key component to introduce a plethora of quantum invariants and in particular

polynomial invariants. One would like to find a similar connection of knots and links in RP 3

with braids. Joan Birman introduced the notion of the braid group of an arbitrary manifold

in [Bir]. The n-string braid group of any manifold is described as the group of “motions” of

n special points in it. The standard Artin’s braid group [Bir] will appear as the braid group

of the plane in this definition. The braid group of the 2-sphere is of particular importance

for our purposes. We will refer to the elements of this group as “spherical braids” and the

elements of Artin’s braid group as “classical braids”. Birman introduced the concept of plats
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in S3 [Bir]. It provides a different “closure” of braids than the standard closure in [Alex].

Then it is proven that every classical link is isotopic to a plat. Using the representation

of RP 3 as in the mapping cylinder model, we use spherical braids with even strands, place

them on the mapping cylinder and define a closure operation that we call plat closure (

Chapter 5, Section 5.1), to obtain links in RP 3. We prove that every link in RP 3 is ambient

isotopic to the plat closure of some spherical braid. A beautiful feature of a classical braid

is the permutation that it defines. The number of disjoint cycles in the permutation of the

classical braid is equal to the number of components in the closure link. We introduce a new

permutation called residual permutation associated to an even strand spherical braid in RP 3

(Section 5.2) and show that the number of disjoint cycles in this permutation counts the

number of components in the plat closure link. We also introduce some moves on spherical

braids in such a way that under these moves the plat closures are ambient isotopic. We hope

to prove that these moves are complete to capture the ambient isotopy of plat closure links

in RP 3. Thus we hope to prove a Markov Theorem. Once this is established, using the

representations of braid groups of S2 we may be able to obtain many invariants for knots

and links in RP 3.

This thesis is organized as follows: It contains six chapters including the Introduction as

Chapter 1. Chapter 2 contains all the material and known results that are used in proving

the main results. We have divided this chapter into three sections. In Section 2.1 we discuss

the topology and geometry of RP 3. We include all the basic definitions required to introduce

knots and links in RP 3. Section 2.2 discusses braids in any manifold and spherical braids in

particular. We split this into two subsections. In Section 2.2.1 we present spherical braids

in RP 3 while Section 2.2.2 discusses the braid groups of S2 in detail including a convenient

presentation that is used in our main results in Chapter 5. In Section 2.3 we provide a quick

account of Reidemeister type moves on diagrams in RP 3 which were introduced in [Drob].

Chapter 3 has two main sections. Section 3.1 discusses three surgery operations, introduced

by us, that can be performed on knots in RP 3 . In Section 3.1.1 we define what we mean

by a projectivization of an affine knot. This helps in converting an affine knot into a class-1

knot. We define residual tangles in Section 3.1.2. In Section 3.1.3, we develop a surgery

operation, which we call as “space bending surgery” which is performed on an affine link to

produce a link in RP 3. Since an affine link in RP 3 corresponds to a classical link in R3, we

may regard this as a surgery being done on a classical link. Associated to this procedure, we

get a complete classification for links in RP 3. This results in the following theorem which

we call a “Structure theorem” for knots in RP 3.
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Theorem (3.1.1. (The structure theorem)). Any knot in RP 3 can be obtained from an affine

knot by a space bending surgery.

In Section 3.1.4 we provide a more general procedure called the “class changing surgery”.

It can be performed on an arbitrary link in RP 3. This procedure can be repeated arbitrarily

many times. Each time we perform it, the homology class of the knot strictly changes.

In Section 3.2 we generalize the notion of companionship of knots from classical knot

theory to knots in RP 3. It is known that the classical unknot is a companion of every knot

in S3. As a parallel to this, we have the following theorem.

Theorem (3.2.1.). The projective unknot is a companion to every knot in RP 3.

Then we define a property called “projective inessentiality”, (see Definition 3.2.3). Using

this we provide a geometric characterization for a knot to be affine through the following

theorem.

Theorem (3.2.2.). A knot is affine if and only if it is projectively inessential.

In Chapter 4, we study the association of a class of surfaces to a given link in RP 3, which

we call as “good surfaces”. We prove that

Theorem (4.0.1). Every link in RP 3 has a good surface.

Refer to Definition 4.0.1 and Definition 4.0.2 where we define the genus of a knot in R3.

The philosophy we adopt here is that “the complexity of a knot should also reflect in the

complexity of the surfaces on which it can be embedded”. We analyze many of the properties

of this genus. For instance, we have the following.

Corollary (4.0.3.). The genus of every knot in RP 3 is less than or equal to 3.

Recall that the genus defined for classical knots using Seifert surfaces detects knottedness

in S3, see [Rolf]. Similarly, we prove that the genus defined using good surfaces detects

knottedness in RP 3.

Theorem (4.0.4). A link in RP 3 is an unlink if and only if it has genus 0.
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As a corollary to this, we get a “non-cancellation theorem” for space bending surgery

and class changing surgery.

Corollary (4.0.5.). A Space bending surgery or a class changing surgery performed on a

non-trivial link will always yield a non-trivial link.

Recall that the classical genus provides a non-cancellation for the connected sum of clas-

sical knots [Rolf]. The corollary above may be compared with this, in the sense that, both

space bending surgery and class changing surgery are operations of adding links together

and thus are similar to a connected sum operation.

Genus provides a complete criteria for a knot to be class-1 or affine, as in the following

theorems.

Theorem (4.0.6). All non-trivial class-1 knots in RP 3 have genus 1.

An interesting question arising from this is whether there are other types of knots than

class-1 knots with genus 1. We introduce the notion of Cable knots and prove the following

Theorem (4.0.7). Suppose K is a non-trivial knot in RP 3. Then K has genus 1 if and only

if it is isotopic to a cable knot with companion J such that J is a class-1 knot.

Using this theorem one can show the following.

Theorem (4.0.9). The genus of any non-trivial affine knot in RP 3 is 2.

As another application of Theorem 4.0.7, we have the following.

Theorem (4.0.11). There are infinitely many class-0 non-affine knots with genus 1.

Thus we can construct several examples of class-0 non-affine knots of genus 1 by the

recipe shown in Figure 4.3. But we do not completely understand how the genus of all

class-0 non-affine knots behave. For example, we have the following.
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Conjecture (4.0.12.). There exist class-0 non-affine knots with genus not equal to 1.

To support this we provide an example of a knot in Figure 4.5, which we strongly suspect

to have genus 3. Hence genus detects affine knots and class-1 knots. But the genus of class-0

non-affine knots is only partially understood. Thereby it reveals that the set of class-0 non-

affine knots is a tough family of knots.

In Chapter 5 we introduce a braid theory for knots and links in RP 3. This chapter has four

sections. In Section 5.1 we explain the notion of plats in RP 3 and following Joan Birman,

we define a similar closure for spherical braids in RP 3. We refer to it as “projective plat

closure” and we prove that it is a complete scheme of representing links in RP 3, via the

following result.

Theorem (5.1.2). Every link in RP 3 is isotopic to the projective plat closure of some spher-

ical braid.

In Section 5.2 we define a permutation which we call “residual permutation”, associated

to a spherical braid in RP 3 and prove the following.

Theorem (5.2.1). The number of components in the plat closure link of a braid β is equal

to the number of disjoint cycles in its residual permutation.

As a remarkable application of this braid theory, we also get another method of detecting

when a knot is affine. This is given by the following theorem.

Theorem (5.1.3). Let L be link in RP 3. Then L is affine if and only if L is isotopic to

the plat closure of a k(k = 2n) braid β = σi1σi2 · · ·σil such that for some even integer j,

j, j + n /∈ {i1, i2, . . . , il}.

In Section 5.3, we discuss some moves on spherical braids, in the spirit of classical Markov

moves. These moves generate an equivalence relation of spherical braids which we call M -

equivalence. Then we have the following result.

Proposition (5.3.1). If β and β′ are M-equivalent spherical braids then they have isotopic

projective plat closures.
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Thus belonging to the same equivalence class is a sufficient condition for two braids to

have isotopic plat closure links. We also conjecture that the converse is also true.

Conjecture (5.3.2). The projective plat closures of two braids are isotopic only if they are

M-equivalent.

Chapter 6 consists of some concluding remarks. In this chapter, we discuss our thoughts

on some of the open questions in this subject. A select bibliography is included after Chapter

6. As this thesis has many new constructions and ideas, it can be well appreciated with the

help of examples. We have included many interesting examples and pictures of plat closures

in Appendix 1. Some examples of residual permutations of spherical braids are provided in

Appendix 2.
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Chapter 2

Preliminaries

In this chapter, we discuss some of the basic tools which are used in various parts of the

thesis. For the work in this thesis we confine ourselves to the smooth category. That is,

every manifold and every function that we are talking about is assumed to be smooth unless

stated otherwise.

Definition 2.0.1. An isotopy [Hir] of a submanifold V of a manifold M is a homotopy,

F : V × I →M,

such that, every Ft := F
∣∣
V×{t} is an embedding and F0 is the inclusion of V inside M . Notice

that each V × {t} may be identified as V in a natural way, so that we may think of each Ft

as an embedding of the manifold V inside the manifold M .

Definition 2.0.2. An isotopy as above where V = M and each Ft is a diffeomorphism will

be called an ambient isotopy. The “ambient isotopy class” of a submanifold V ⊂M is

the set of all U such that there exists an ambient isotopy G such that U = G1(V ).

Definition 2.0.3. A knot in a manifold M is the ambient isotopy class of the image of an

embedding,

f : S1 →M.

Similarly the ambient isotopy class of the image of an embedding,

f : S1 ⊔ S1 ⊔ ... ⊔ S1 →M, (2.1)
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will be called a link in M with n components if n is the number of circles being embedded.

As usual, we would not distinguish between the embedding, the image of the embedding,

and the isotopy class of the image, when it is clear from the context.

In this thesis, we are interested in knots in RP 3. To be able to include the necessary

material required in this work, we divide this chapter in three sections. Section 2.1 focuses

on giving an account of the geometric properties of RP 3. Through these properties, we

provide a vivid picture of the theory of diagrams for knots in RP 3 proposed in [Drob].

After discussing the theory of diagrams, we describe the two different unknots and the three

distinct families of links in RP 3. We also give certain simple tests for detecting whether a

given link is affine. In Sections 2.2 and 2.3, we introduce the notion of spherical braids and

the braid group of S2 respectively. This is discussed in much more generality by Joan Birman

in [Bir]. We give a self-contained description which would be sufficient for our purposes.

2.1 The geometry and topology of RP 3

The topology of RP 3 can be understood in many ways. In this thesis, we use the following

two topological models frequently to represent RP 3 .

Mapping cylinder model. We may think of RP 3 as a compactification of R3 by adding a

projective plane at infinity. Adding an RP 2 at infinity may be understood in the following

way. The complement of an open 3-ball in R3 is homeomorphic to S2 × [0, 1). Choose a

3-ball B ⊂ R3. Choose a tubular neighbourhood [Hir] of ∂B and remove it from R3. We

may identify the remaining two components with B and S2 × [0, 1). First we compactify

this S2 × [0, 1) to S2 × [0, 1] by adding a 2-sphere (at infinity) as S2 × {1}. Then we form

a quotient of the S2 × [0, 1] by identifying each point of the form (p, 1) to the point (−p, 1).
Let C be the space thus obtained. Notice that the quotient map takes the sphere S2 × {1}
in S2 × [0, 1] and projects it onto a projective plane in C. The boundary of C is a S2

which is the image of S2 × {0} under the quotient map. Now by gluing the boundaries of

B and C, we obtain a copy of RP 3. Notice that the complement of any open 3-ball in RP 3

is homeomorphic to C. By construction, it must be clear that C is homeomorphic to the

mapping cylinder [Hat1] of the two sheeted covering S2 → RP 2. Thus RP 3 can also be
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thought of as, joining a closed 3-ball to this mapping cylinder along their boundary sphere.

This description of RP 3 is referred as the mapping cylinder model.

Ball model. R3 is homeomorphic to an open ball. The process we described above, can

alternatively be described as follows. Start with a closed 3-ball and identify the diagonally

opposite points in its boundary sphere. Thus we obtain RP 3 as a quotient of the 3-ball. A

description of RP 3 as the quotient of a 3-ball will be called as a “ball model” for RP 3.

Knots and links in RP 3 are ambient isotopy class of embeddings f : S1 → RP 3 and

f : S1 ⊔ S1 ⊔ ... ⊔ S1 → RP 3 respectively as in Definition 2.03 and Definition 2.04.

Notice that,

• Fundamental group of RP 3 is Z
2Z , so a knot here may represent 0̄ or 1̄ . We call a knot

to be of class 0 or of class 1 accordingly.

• The class of a knot is determined by the mod 2 intersection number of the knot with

any projective plane [Vir].

All lines and planes in R3 get compactified as projective lines and projective planes re-

spectively in RP 3. The complement of any projective plane in RP 3 is diffeomorphic to R3.

The rich geometry admitted by RP 3, similar to the Euclidean space, can be exploited to

understand the knots in it. For example, the theory of diagrams for knots in S3 (see [Cr-F])

can be generalized to knots in RP 3 as in [Vir]. Since this notion of diagrams will be used

throughout the article, we wish to give a quick exposition of this at this point.

Recall how knot diagrams are defined for R3. Corresponding to any line L in R3, we can

construct a family of lines consisting of all parallel lines to L. Every point in R3 belongs to

exactly one line in this family. Now corresponding to any such family there exists a plane Z

passing through the origin, such that, Z intersects each line parallel to L at a unique point.

Thus, we can define a projection, d : R3 → Z, sending a point of R3 lying on a line L′ parallel

to L to the unique point in L′∩Z. Notice that there is a unique line in the family that passes

through the origin. We may regard L itself as this line, without loss of generality. Now L

and Z are also vector subspaces of the vector space R3. Thus we get a splitting R3 ≈ L⊕Z.
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It is easy to see that the map d defined above is the same as the projection of the vector

space R3 onto its direct summand Z in the previous splitting. By using this projection map

one can have a diagram for a knot K in R3 on the plane Z. Note that by using different

choices of L and Z we have several such projections.

Notice that any family of parallel lines in R3 meet at a unique point in RP 3 at infinity.

Different points in the projective plane at infinity correspond to different families of parallel

lines. Consider the ball model of RP 3 presented as a quotient of the closed unit 3-ball

D3 ⊂ R3. Choose two diametrically opposite points N and N ′. Choose a great circle γ on

∂D3 disjoint from N and N ′. Let D2 ⊂ D3, be a closed 2-disk, whose boundary is γ. Notice

that since N and N ′ are diametrically opposite, they lie on distinct hemispheres in ∂D3 \ γ.
Consider a point p ∈ D3 \ {N,N ′}. It follows from elementary Euclidean geometry that,

either there exists a unique circle in R3 passing through N,N ′ and p or they are collinear

points. If N , N ′ and p are collinear, let Lp be the unique diametrical line segment from N to

N ′. It passes through p. Suppose N , N ′, and p are not collinear. Then as said above, there

is a circle, αp, passing through N,N ′, and p. It is easy to see that αp \ {N,N ′} is just two
open arcs out of which exactly one contains p. Then let Lp be the arc of αp which contains

p with N and N ′ added as boundary points. Every circle passing through N and N ′ has to

meet D2 at least at one point. But notice that for all p ∈ D3 \ {N,N ′} we know that Lp

intersects D2 at a unique point. Also if q lies in Lp then Lq is the same as Lp. Then we have

a projection δ : D3 \ {N,N ′} → D2, defined by sending every point p to the unique point

of Lp ∩D2. It is obvious that it is a continuous projection, with the inverse image of every

point p ∈ D2 as Lp \ {N,N ′}. Refer to Figure 2.1.

Under the quotient map π : D3 → RP 3, N and N ′ maps to the same point N in RP 3.

And D2 maps to a projective plane P . Each of the arcs Lp maps to a projective line,

containing N . Thus δ defines a map from RP 3 \ {N} → P . We shall refer to this map also

as δ. From the context, the reader can deduce which of the projections are being specified.

It is easy to see that the points p ∈ D3 \ ∂D3, the open ball, under δ maps to D2 \ ∂D2 the

interior of D2. We may identify the open ball to R3, in such a way that the interior of D2

gets identified to plane Z from the previous example. It is easy to see that there is such an

identification where the family of open arcs Lp \ {N,N ′} for all p’s in the open ball, maps to

a family of parallel lines as before. Hence the projection δ can be thought of as an extension

of the projection, d : R3 → Z, defined above.
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Any link which is disjoint from N can be projected to P . It is obvious that one can always

assume that any link is disjoint from N since if otherwise, there is an isotopy that can be

used to remove it from meeting N . This image of the projection in P can be “drawn” on D2

by taking its inverse image in D2 under the quotient map π. Clearly, it will be a collection

of arcs in D2 with boundary points in ∂D2 forming a set closed under the antipodal map of

∂D2. As in the classical case, one can always assume the link is in “regular position” and

the image in D2 has only double points as singularities.

Definition 2.1.1. The image of a link in RP 3, in regular position, under δ, with the “over-

under” crossing information provided at each double point, is said to be a diagram of the

link.

Figure 2.2 is an example of a knot diagram. Note that if a knot diagram has 2n intersec-

tions with the boundary then n mod 2 determines the class of the knot. The knot in Figure

2.2 is a class 0 knot.

Just like the 3-ball, the diametrically opposite points of the closed disk D2 should be

regarded as being identified. In a diagram of a link in RP 3 on a closed 2-disk D2, any di-

ameter of D2 is a projective line in the quotient RP 2. Notice that the inverse image of such

a line under δ, in D3 together with N and N ′ added is a closed 2-disk, say D′, transversally

intersecting D2. Refer to Figure 2.3. And in the quotient RP 3, D′ becomes a projective

plane. Thus diameters of D2 in a diagram represent projective planes in RP 3.

Proposition 2.1.1. The complement of any embedded projective plane is diffeomorphic to

an open 3-ball.

Proof: Notice that under the covering map h, any embedded projective plane, P , in RP 3

is covered in S3 by an embedded 2-sphere S. Then S3 \ S consists of two open 3-balls, say,

U1 and U2 such that h|U1
: U1 → RP 3 \ P is a diffeomorphism.

Definition 2.1.2. A knot is called an unknot if it is isotopic to a knot that has a diagram

with no crossings. Similarly, a link is said to be an unlink if it is isotopic to a link that has

a diagram with no crossings.
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Figure 2.1: The projection map used for making diagrams of knots.

Figure 2.2: An example of a knot diagram in RP 3.
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Figure 2.3: Diameters of the target D2 are images of perpendicular disks

Figure 2.4: Unknots in RP 3

One of the first differences between classical knot theory and projective knot theory is,

there are two different candidates which deserve to be regarded as “unknots” in RP 3. We

call them the “affine” and “projective” unknots. Refer to Figure 2.4. Notice that any unlink

can only have at most one projective unknot as a component.

Definition 2.1.3. A linkK is said to be affine, if it is disjoint from some embedded projective

plane in RP 3.

Remark 2.1.1. Thus, affine links in RP 3 are contained in an open set homeomorphic to

R3, by Proposition 2.1.1. Hence by the Heine-Borel theorem [Bor; Sim] we can assume it

is contained in a closed 3-ball which is disjoint from a projective plane. Notice that any link

in R3 is compact and hence contained in a closed 3-ball, by Heine-Borel theorem. Now by

adding a projective plane at infinity as in the mapping cylinder model, we may obtain an

affine link in RP 3. Thus any link K in R3 can be associated with an affine link P(K) in
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RP 3.

Remark 2.1.2. Since every knot in R3 is contractible, the affine knots in RP 3 are of class-0.

Thus every class-1 knot is non-affine.

Proposition 2.1.2. Let K be a class-0 knot. If h−1(K) is a link in S3 with a non-zero

linking number between its components, then K is a non-affine knot.

Proof: Suppose on the contrary that K is affine. Then by definition there exists an em-

bedded projective plane P disjoint from K. The inverse image of any embedded projective

plane in RP 3 is a 2-sphere in S3 whose complement is homeomorphic to two disjoint open

3-balls (refer to Proposition 2.1). Then the two components of h−1(K) lie in the two dis-

tinct open balls in S3 separated by the 2-sphere covering P . Hence, the linking number

between the components of h−1(K) must be zero. Which is a contradiction. Hence K must

be non-affine.

The knot shown in Figure 2.2 is an example where the inverse image has a non-zero

linking number. Thus we have three distinct families of knots to study in RP 3, affine, class

-0 non-affine, and class -1 knots. One simple criterion for detecting affineness from a

diagram is the following.

Remark 2.1.3. If K has a diagram on a closed 2-disk which has a diameter disjoint from

the diagram, then K is an affine knot. This is because the inverse image under δ, of any

diameter of the disk is a projective plane, say P , with a point missing, and hence K is

contained in RP 3 \ P . Refer to Figure 2.3.

2.2 Braids

Space and time are commonly regarded as forms of existence of the real world, matter as its

substance. It is in the composite idea of “motion” that these three fundamental conceptions

enter into intimate relationship.

-Hermann Weyl, [Wey], 1922
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Figure 2.5: Diameter disjoint from the diagram

Albert Einstein introduced the idea of “spacetime” manifolds, through his landmark work

[Ein] on the theory of relativity. Any manifold with a positive dimension n could be thought

of as a (n− 1) + 1 spacetime, where we have n− 1 dimensions of space and one-dimensional

time. Thus, all three manifolds may be interpreted as 2+1-spacetimes. Imagine an abstract

universe, which has a two-dimensional space, represented by a surface, say Σ. Suppose the

only “matter” in this space is n-particles. We may think of these n particles of this space

as n special points on Σ. By providing a concept of time, we may now start making these

particles “move”. Thus we have a spacetime, Σ× R, where the “worldline” of each particle

is an arc. If the particles are not allowed to move back in time, each of the worldlines will

always intersect the spacelike sections Σ×{t} transversely at one point. Thus if the particles

perform a “cosmic dance” in space for a finite time interval [0, 1], their worldlines together

will form a braid in the spacetime, Σ× [0, 1]. Thus, philosophically speaking, each n-string

braid can be thought of as an abstract cosmic dance performed by n-particles in some space,

represented by a manifold. Joan Birman describes this in a precise mathematical form in

[Bir]. Thus we could define n-string braid group of any manifold M as a group formed by

“motions” of n special points of M . The classical Artin braids appear as braids of the plane

R2. We will be interested more in braids of the 2-sphere S2, which we call spherical braids.

2.2.1 Spherical braids in RP 3.

Let Σ be a manifold of arbitrary dimension and let n be a positive integer. Consider a set

of n distinct points X := {p1, p2, ..., pn} ⊂ Σ. These are thought of as special n points in
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space. Consider an isotopy,

F : Σ× [0, 1]→ Σ,

such that, F0 = IdΣ and F1 is a diffeomorphism of Σ mapping X to itself. Then we may

represent the isotopy in the space Σ× I by considering the map,

F : Σ× I → Σ× I,

(q, t) 7→ (Ft(q), t)

defined by it. Notice that the image of the set X × I under F is a collection of paths each

one starting at some (pi, 0) and ending at some (pj, 1).

Definition 2.2.1. The topological pair (Σ× I, F (X × I)) is refered to, as an n braid of Σ.

Consider the case when Σ = S2. Each n-braid of S2 is represented by a set of n paths in

S2× I such that each path starts at a point of S2×{0} and ends at S2×{1} and intersects

each of the sections S2 × {i} at a unique point transversally. We may interpret the strip

S2 × I as a 2+1 dimensional spacetime where the I direction represents the flow of time. If

we do not allow points of S2 to move back in time their world lines intersect each “spacelike”

sphere in the strip, i.e., spheres of the form S2×{t} at a unique point, just like the strings of

braids. Or in other words, the projection map f : S2 × I → I, is monotonic when restricted

to each of the strings. Let α and β be two such motions of points in a set X ⊂ S2. Then

clearly we can define a new motion by composing them, that is performing β after α, which

we will call αβ. As a braid, it is defined as the braid obtained by gluing the S2×{1} of the
strip containing α to the S2 × {0} of the strip containing β matching the indices properly

and then rescaling the newly formed strip. This defines a multiplication of braids. The set

of isotopy classes of braids forms a group under this operation. We describe this group in

detail in Section 2.2.2.

Let B be the 3-ball. We know that, ∂(S2× I) ≈ S2⨿S2. Notice that S3 can be obtained
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by gluing boundaries of B⨿B and S2× I. Classically the plats in S3 were constructed [Bir]

by considering a spherical braid in this strip and certain simple tangles (which we discuss

in the next section) in both balls. We wish to discuss a generalization of this construction.

Let M denote the mapping cylinder of the canonical two-sheeted covering map S2 → RP 2.

Notice that, ∂M ≈ S2. By gluing the boundaries of M ⨿ B and S2 × I we can obtain a

copy of RP 3. We choose the convention that S2 × {0} is identified with ∂M and S2 × {1}
is identified with ∂B. When we say “braids in RP 3”, we mean the braids in S2 × I region

in some splitting of RP 3 of this type.

Remark 2.2.1. Every braid in RP 3 may be represented by a diagram drawn on an annulus

using the projection defined in Section 2.1.

Proof of the remark: In the ball model of RP 3 presented as the quotient of 3-ball D,

let π represent the quotient map. We can consider B as a 3-ball with the same center as

D. The 3-ball obtained by gluing B and S2 × I, say B1 is a larger ball containing B with

the same center as D. The complement of the interior of B1 maps under the quotient map

to the mapping cylinder M . Let C be an equator of ∂B ≈ S2. Let D1 be the unique flat

2-disk containing C in D. ∂D1 is an equator to ∂D and let N and N ′ be the corresponding

north and south poles. Without loss of generality, we may assume that the special points

are lying on an equatorial circle, C of S2. Then clearly we can project any braid into the

annulus, C × I, in a projective plane π(D1) in RP 3.

Thus we can represent spherical braids by a diagram drawn on some annulus. See Figure

2.6. for an example. The diagram of a composition αβ will appear as keeping the diagram

of β “inside” the diagram of α.

2.2.2 The braid group of S2

It is easy to see that the composition of motions as defined in Section 2.2.1, defines a product

of braids of the 2-sphere. There is always an “identity braid”, which corresponds to all points

being at rest. For every motion, there is a “inverse” motion which is obtained by reversing
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Figure 2.6: Example of a diagram of a spherical braid

the direction of time. Now if we consider the set of all motions of a fixed finite set, say of n

points, there is an equivalence relation induced by ambient isotopy relative to the boundary

of the strip. The set of isotopy classes clearly forms a group, which is called the braid group

of the sphere. The classical Artin braid group may be described similarly, as the braid group

of the plane. Refer to [Bir].

The braid group of S2 is very similar [Bir], to the Artin braid group, which is the braid

group of R2. Here for the sake of simplicity of notation, we will denote the n−string braid

group of S2 as Bn. It should not be confused with the Artin braid group. Since for the work

in this thesis, the only braids we use are from the braid group of S2, there is no chance of

confusion.

Let C be an equator for S2 as before. We may assume that the boundary points of each

string lie on the boundary circles of C×I. That is we are thinking of every braid as a motion

of finitely many special points on C. If p1, p2, ..., pn are these special points on C, we number

both the points (pi, 0) and (pi, 1) by i. We choose to index them in clockwise order. Also, it

is helpful to think of the indices as elements of Z
nZ . For keeping the notation simple, we will

denote the class of a number say i+ nZ, also as just i. Refer to the Figure 2.7.

We can describe the generators of Bn as follows. Consider the braid formed by a crossing

between the ith string and the i+ 1st string and connecting every other special point to the

other point with the same index in a trivial way. Refer to Figure 2.8. Clearly, there are two
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Figure 2.7: Diagram of a braid with indices.

such braids as shown in the diagram and they are inverses of each other in Bn. We denote

them as σi and σ−1
i . Notice that because of the geometry of the sphere we have a generator

σn in the n-string braid group connecting the nth point and first point. Thus in Bn, we have

a generator σn. Clearly, we have the following presentation of Bn.

Bn ≈ <σ1, σ2, ..., σn

σiσj = σjσi, i− j > 2,

σiσi+1σi = σi+1σiσi+1,

σ1σ2...σn−2σ
2
n−1σn−2...σ2σ1 = 1,

σn = σ−1
1 σ−1

2 ...σ−1
n−2 = σ−1

n−1σ
−1
n−2...σ

−1
2 . >

In the above presentation, the first two relations are the “far commutativity” and “Yang-

Baxter equation” respectively, similar to Artin’s braid group. The third relation,

σ1σ2...σn−2σ
2
n−1σn−2...σ2σ1 = 1

appearing in the presentation of Bn is purely arising from the geometry of the sphere. Refer

to Figure 2.9.

The fourth relation,

σn = σ−1
1 σ−1

2 ...σ−1
n−2 = σ−1

n−1σ
−1
n−2...σ

−1
2
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Figure 2.8: Generating braids of Bn

Figure 2.9: σ1σ2...σn−2σ
2
n−1σn−2...σ2σ1 = 1
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Figure 2.10: σn = σ−1
1 σ−1

2 ...σ−1
n−2 = σ−1

n−1σ
−1
n−2...σ

−1
2

says that we can express this generator as a product of the other generators. Refer to Figure

2.10.

2.3 Reidemeister type moves in RP 3

Several invariants of classical knots were developed using the theory of diagrams. These in-

variants were easy to compute because of their combinatorial character. The main ingredient

in the construction of such invariants are Reidemeister moves [Rei]. Refer to Figure 2.11.

These are a set of transformations defined on diagrams so that, two links can be isotopic if

and only if their diagrams can be transformed to each other using these moves. See [Kauf].

It is natural to ask whether such a set of moves can be defined for knot diagrams in RP 3.
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Figure 2.11: Reidemeister Moves

Figure 2.12: Two slide moves

In [Drob], Drobotukhina answered this question.

For diagrams of links in RP 3, we need two additional moves and the classical Reidemeister

moves in order to capture the whole possibilities of isotopy of links. See Figure 2.12. In

[Drob], Drobotukhina also constructed a generalized Kauffman bracket polynomial for links

in RP 3 using these moves and classical theory of Kauffman states [K-L].
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Chapter 3

A structure theorem for knots in RP 3

To study knot theory in any space, one crucial aspect is to have several examples of knots. In

this chapter, we introduce three important surgery procedures which can be used to produce

many links in RP 3. These are named as: Projectivization, Space bending surgery, and Class

changing surgery. They are defined in Section 3.1.1, 3.1.3, and 3.1.4 respectively. The first

two surgeries are performed on affine links and the last one can be performed on an arbitrary

link in RP 3. Projectivization can be seen as a special case of both Space bending surgery

and Class changing surgery. In Section 3.1.3, we provide the structure theorem, which gives

a complete characterization of links in RP 3 using Space bending surgery. In Section 3.2, we

introduce companionship of knots is RP 3 and give a different characterization of affineness

of a knot using companionship.

3.1 Three surgeries on links in RP 3

3.1.1 Projectivization of affine knots

Consider a smooth 2-sphere S which bounds a ball in RP 3. Removing a tubular neighbour-

hood of S produces two connected components, a 3 − ball B and a mapping cylinder, C,

of the two sheeted covering map from S2 to RP 2. Since the boundaries of B and C are

naturally identified to S, for the sake of simplicity, most of the time we will refer to both ∂B
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and ∂C by S. As mentioned above, if we join two knots in RP 3 by removing an unknotted

arc contained in a ball and identifying the boundary points as in the classical case, then the

resulting knot is in M := RP 3#RP 3. Similarly, the connected sum of n knots in RP 3 will

be a knot in RP 3#RP 3#...#RP 3 (n-times). Thus each time we add a knot, we change the

ambient manifold.

The above-mentioned process seems to be the only technique to define a connected sum

“operation” for all knots in RP 3. And it comes with the hassle of dealing with knots in an

arbitrary 3 manifold M and RP 3 at the same time. But for certain special families of knots

in RP 3 we can have some operation very similar to the connected sum. Below is a procedure,

that may be regarded as a connected sum of an affine knot with the projective unknot.

Consider an affine knot, K, in RP 3 which is embedded inside a ball, B with a boundary

sphere, S. Then we can push a small arc of K out of B in such a way that K now intersects S

at exactly two points and the complement C of B intersects K at an unknotted arc disjoint

from a projective plane in C. Then clearly this arc is a trivial cycle in H1(C, S). Now

consider a standardly embedded projective unknot, J , in another copy of RP 3. Removing

a small ball, B′, with a boundary S ′, containing an unknotted arc of J , produces a copy of

the mapping cylinder, C ′. And J ∩ C ′ represents a non-trivial cycle in H1(C
′, S ′). Refer to

Figure 3.3. Now by gluing B and C ′ along their boundary spheres in such a way that K ∩S
gets identified with J ∩ S ′ produces a knot in RP 3. Refer to Figure 3.1. Notice that the

initial knot K is of class− 0 while the new one is a class− 1 knot. Thus this is a process of

producing a class− 1 knot from a class− 0 knot, which we will call a “ projectivization”.

A knot in RP 3 which intersects a projective plane exactly at one point can be thought of as

produced from an affine knot via the above surgery. Hence we wish to make the following

definition.

Definition 3.1.1. A knot, K in RP 3 is called a projectivized affine knot, if there is a

separating sphere S intersecting K at exactly two points such that the corresponding C ∩K
is isotopic to a standardly embedded non-trivial cycle in H1(C, S).

Note that an affine knot can be projectivized in many ways. Projectivization is not

unique and hence we say a projectivization of an affine knot.
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Figure 3.1: Projectivization of an affine trefoil

Figure 3.2: A tangle in the mapping cylinder

3.1.2 Tangles in the mapping cylinder

Any knot in RP 3 can intersect the mapping cylinders in a collection of curves. If a knot, K,

is not entirely contained in a mapping cylinder C, then K ∩C is a tangle consisting of only

intervals meeting the boundary sphere at exactly two points. They also can be linked within

C. Refer to Figure 3.2. Thus the problem we are dealing with is the theory of tangles in the

mapping cylinder. This tangle is in no way unique to the knot or to the separating sphere.

In what follows we wish to study the tangles created by a knot in the mapping cylinders in

RP 3. If needed one can indeed push out a small arc from the knot outside the ball and add

an extra component for the tangle. Hence it is in no way unique to the knot.

Notice that C is a 3-manifold with a boundary sphere and an embedded projective plane.

Tangles, induced by knots, are composed of intervals with their boundary points on the

sphere and interiors embedded in the interior of C. The arcs may or may not intersect the

projective plane. The patterns of their intersections are interesting to study. Such studies

can give topological information on the knot. For example, the mod− 2 intersection number
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Figure 3.3: Diagram of a class-1 arc in the mapping cylinder

of the tangle and the projective plane is the homology class of the knot in the integral

homology of RP 3. Thus the mod− 2 intersection number of the tangle induced by K in C

with the projective plane is independent of the tangle and depends only on the knot.

Thus the projectivized affine knots, defined above, are knots with a simple tangle that

consists of just one arc intersecting the projective plane at exactly one point.

Since the affine knots are homologically trivial, one can see that the process of “pro-

jectivization” also changes a class-0 knot into a class-1 knot. And indeed this is a way of

defining connected sums of a knot with the projective unknot which has a clear variant of

connected sum with the affine unknot. But the procedure described above is limited to affine

knots. We would, here, like to define a general version of this process. And thereby obtain

a classifying theme for all knots in RP 3.

3.1.3 Space bending surgery

Let Ln represent the projective closure of n disjoint non-parallel lines in R3.

Definition 3.1.2. The tangle defined by Ln in the complement mapping cylinder of some

open ball centred at the origin intersecting all lines in Ln will be called the nth residual

tangle denoted by T n.

Notice that T n is composed only of class− 1 arcs in a mapping cylinder C ′ intersecting

a projective plane at exactly one point. Each arc has two boundary points on S ′ := ∂C.

Hence the boundary of T n is a collection of 2n points on S ′. It is easy to see that for every
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Figure 3.4: Residual tangles

n there is a unique such T n whose boundary has 2n points.

Consider an affine knot K in RP 3 with a non-empty intersection with a 3-ball B. Now the

boundary of B is a separating sphere, S, and the complement of B in RP 3 is a mapping

cylinder C. Notice that C ∩K is a finite collection of intervals with boundary points on S.

Thus B ∩K is a tangle with some even number, say 2m, boundary points on S.

Let f : S → S ′ be a diffeomorphism sending the boundary of K ∩ B to ∂Tm.

Now gluing B and C ′ along f produces a copy of RP 3, with a new knot which is

formed by gluing K ∩ B and Tm along their boundary. We wish to denote the

knot obtained by the above surgery as Σ(K,S, f). This procedure will be referred

to as space bending surgery.

Remark 3.1.1. The philosophy behind the name is that an affine knot is basically a classical

knot in R3 with a new identity once we add a projective plane at infinity. Thus, through

this surgery, we are connecting this knot with the projective plane at infinity, and we are

making it “aware” of the change in the ambient space.

If K is an affine knot and S intersects K at exactly two points then any Σ(K,S, f) is a

projectivization of K as defined above. Thus we can clearly see that projectivization for a

given affine knot is not unique. It depends on the choice of the intersection of K with S and

the diffeomorphism f . The following theorem says that every knot in RP 3 is isotopic to a

knot of the form Σ(K,S, f).

Theorem 3.1.1. (The structure theorem): Any knot in RP 3 can be obtained from an affine

knot by a space bending surgery.

Geometric Proof: Let J be a knot in RP 3. Choose an embedded projective plane, P ,
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Figure 3.5: An arbitrary diagram with a separating circle.

such that J intersects P at m points transversely. Let C be a closed tubular neighbourhood

for P . Then C is a mapping cylinder, which is an I-bundle over P . Taking C sufficiently

thin, we may assume that J ∩C is a collection of m fibres of the I-bundle. Replace the arcs

in J ∩ C with m boundary parallel arcs in C to obtain an affine link, say K, such that J is

isotopic to Σ(K, ∂C, f) for some f .

Diagramatic Proof: Let J be a knot in RP 3. Consider a diagram of J on some 2-disk

D2 as in Figure 3.5. Each smoothly embedded circle in the interior of D2 will separate the

diagram into a smaller disk and an annulus. One of the boundary circles of the annulus is

the boundary of the initial D2. Since J is assumed to be in regular position, the set of double

points in the diagram will be finite. For each such diagram, we can choose a separating circle

σ in D2 such that all the crossings (double points) are contained only in the disk bounded

by σ. And the corresponding annulus contains only a finite set of non-intersecting intervals.

There are three kinds of intervals according to the way their boundaries are placed in the

annulus.

Case 1: Suppose all the intervals have their one boundary point on σ and the other on ∂D2.

Then the number of intervals is even and corresponding to an interval with one boundary

point p ∈ ∂D2 there is an interval with one boundary point at the antipodal point to p.

Case 2: Suppose both boundary points of an interval in the annulus are on σ. Since there

are no double points on the annulus, we can “push” this curve inside the disk (Figure 3.6)

bounded by σ and thereby remove it from the annulus.

Case 3: Suppose both the boundary points of an interval τ in the annulus is on ∂D2. Since

there are no double points on the annulus, one can enlarge τ without creating any new

double point, in order to meet σ transversally at exactly two points. Refer to Figure 3.7.
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Figure 3.6: Removing a class-0 arc from the annulus.

Figure 3.7: Removing a class-0 arc, by creating two class-1 arcs

This removes τ from the annulus and adds two more intervals in the annulus both sharing

one of their boundary points with τ and another boundary point on σ and one interval

in the disk bounded by σ connecting the boundary points of the new intervals lying on σ.

Clearly corresponding to σ there is a unique standardly embedded 2-sphere S in D3 whose

intersection with the chosen D2 is σ. By the methods suggested in Case 2 and Case 3,

one can see that we can always isotopically move J in D3 so that the diagram we obtain is

always in Case 1. In the splitting induced by S, the mapping cylinder C contains a residual

tangle isotopic to T n where n is half of the number of points in the intersection of J with

S. In this residual tangle, each class− 1 arc is represented in the diagram by two intervals

with a pair of antipodally opposite points in their boundary as described in Case 1. Let the

corresponding ball in the separation be denoted by B. Then J ∩ B is a tangle consisting

of only intervals whose endpoints lie on ∂B. By connecting the endpoints by class− 0 arcs
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Figure 3.8: Surgery on affine unknot producing affine unknot

Figure 3.9: Surgery on affine unknot producing a non-affine knot

in C in such a way that the union of the new arcs with the tangle in B is connected, we

can obtain an affine knot K. Cutting RP 3 along a small enough tubular neighbourhood

of S produces B′ ≈ B and C ′ ≈ C both whose boundaries are naturally identified by a

diffeomorphism f : ∂B′ → ∂C ′ sending K ∩ ∂B′ onto J ∩ ∂C ′. Then it is obvious that J is

isotopic to Σ(K, ∂B′, f).

The following diagram shows an example that demonstrates the dependence on the f in the

surgery.

The knots on the left are both obtained from the affine unknot by space bending surgery.

The separating spheres are both the same. But by using two different f ’s we can obtain two

distinct knots. The one above is again an affine unknot and the one below is a non-affine

class-0 knot.
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Figure 3.10: Class changing surgery on a projective trefoil producing an affine trefoil

Corollary 3.1.2. For every knot in RP 3, there exists a separating sphere such that in the

corresponding separation, the tangle in the mapping cylinder is a residual tangle.

Definition 3.1.3. Let K be a knot in RP 3. A separating sphere that induces a splitting

such that the part of K in the mapping cylinder is a residual tangle is said to be a “residual

sphere” for K.

3.1.4 Class changing surgery

Space bending surgeries are reversible, and can be altered to produce many knots from a

given knot. For example, let S be a residual sphere for a knot K. Then in the induced

splitting, RP 3 := B ∪ C, the tangle in C is a residual tangle. Now by pushing an arc of K

from B to C, such that the boundary points are diametrically opposite in S. Now remove

this class-0 arc in C and replace it with a class-1 arc in C. Thus we obtain a new knot

(Figure 3.10). This can be repeated an arbitrary number of times. This procedure is just

a small variation to the space bending surgery. Each time it is performed, it changes the

homology class of the knot. Thus we would refer to this procedure as “class changing

surgery”. The following picture demonstrates such a surgery on a non-affine knot.

Notice that the class-1 knot in the example above is a projectivized affine trefoil. We may

refer to it as a projective trefoil. It is easy to see that the structure theorem facilitates the

surgery to be performed on arbitrary knots, rather than on just affine knots. This is because,
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when we are pushing out arcs of K out of a ball B, if the boundary of B is a residual sphere,

then it can be done in such a way that the arc of K or the class-1 arc which is replacing it,

would not be interlinked with the tangle outside.

3.2 Projective inessentiality

The following is a definition of companionship for knots in RP 3 directly generalized from

that of S3. A subset of a solid torus is said to be geometrically essential if every meridinal

disk intersects it.

Definition 3.2.1. A knot K1 in RP 3 is called a companion for a knot K2 if there exists a

tubular neighbourhood, V of K1 containing K2 such that K2 is geometrically essential in V .

Theorem 3.2.1. The projective unknot is a companion of every knot K, in RP 3.

Proof: Choose a ball model of RP 3 presented as quotient of a 3-ball D3. Consider a

diagram of K on a closed disk D2, as in Section 3.1.3. Choose a circle σ which separates the

diagram into the diagram of a residual tangle in a closed annulus A and the diagram of the

complementary tangle in the closed disk D \ (A \ σ).
Case 1: Suppose K is a non-affine knot. Then it has a non-empty residual tangle in A.

Now, as shown in Figure 3.11, choose a pair of closed half disks intersecting the boundary

circle of D2. The two closed half disks represent a closed 2-disk, say B in the quotient

projective plane, P := π(D2). Let N ∈ RP 3 be the point on which δ is not defined, as in

Section 2.1. Then V := π−1(B) ∪ N , is diffeomorphic to a solid torus pinched at a point.

Refer to Figure 3.12. We may choose a small enough open ball neighbourhood, say U of

N such that U ∪ V is homeomorphic to a solid torus. It can be smoothed out to be a

solid torus, V2, in RP 3 disjoint from K. Notice that, if x is the center of the disk B, then

L1 := δ−1(x) ∪ N is a projective unknot and V2 is a tubular neighbourhood for L1. Thus

V2 induces a Heegaard splitting of RP 3. The complement, V1 := RP 3 \ V2, is an open solid

torus containing K. Then, RP 3 = V1

⋃
V2 is a Dehn surgery description of RP 3 as obtained

from S3 by a (2, 1) surgery on the unknot. Notice that the core circle of V1, say L is a pro-

jective unknot in RP 3 and V1 is a tubular neighbourhood of L. Now since two 1-dimensional

submanifolds in V1 cannot intersect transversely, we may assume that L is disjoint from K.

Now any meridinal disk in V1 shares its boundary with a Möbius strip in V2 and together
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Figure 3.11: The shaded region is a 2-disk in the quotient RP 2

Figure 3.12: The pullback of a disk under the projection representing a solid torus pinched
at a point
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they form an embedded projective plane. Thus if K was disjoint from a meridinal disk of V1

then it affine, which is a contradiction to the initial assumption. Thus L is a companion ofK.

Case 2: Suppose K is an affine knot. Consider a diagram of K on a closed 2-disk

D2 ⊂ D3 with a separating circle σ as in the previous case. Let A and B be the correspond-

ing half open annulus and open 2-disk in splitting induced by σ, that is, D2 \ σ = A ⊔ B.

Since K is affine, we may assume the diagram is contained entirely inside B. There is a

unique open 3-ball B3 ⊂ D3 such that B3 ∩D2 = B. The quotient map π is injective on B3

and π(B3) ≈ B3. We will refer to π(B3) also as B3. Then U := D3 \B3 ≈ S2 × (0, 1) is the

unique (0, 1)-bundle over S2 such that, U ∩D2 = A. Notice that δ(B3) = B and hence we

may assume K ⊂ B3. Let C := π(U) which is a mapping cylinder containing the embedded

projective plane P := π(∂D3). Now by pulling out a boundary parallel arc of K out of B3

into C and moving it through P back into B3 we may create a non-empty residual tangle,

T for K with two arcs in C. Then the new diagram on D2, δ(T ) is a collection of four arcs

in A and A \ δ(T ) is four disjoint regions. By isotopically moving K if required, we may

assume that there is a diameter γ of D2 disjoint from the diagram of K. Then γ intersects

exactly two of these regions which are diametrically opposite. Choose an open 2-disk E in

the Möbius strip M := π(A) such that the two half disks in π−1(E) are contained in the two

regions in A \ δ(T ) which are disjoint from γ. Now choose an open solid torus V containing

δ−1(E) as in the previous case. Then V is clearly disjoint from K. Let x be the central point

of E. The core of V , δ−1(x)∪{N} is a projective unknot. Then V ′ := RP 3\V is an open solid

torus and RP 3 = V ∪ V ′ is a Heegaard splitting. V ′ contains K and the projective unknot

π(γ). Without loss of generality, we can assume that V ′ is a tubular neighbourhood for π(γ).

Now we will show that K is geometrically essential in V ′. Let F be a meridinal disk

of V ′ and let α := δ(F ). Note that α is a proper arc with its boundary points in ∂E and

it intersects γ transversally at one point. Suppose K is disjoint from F . Notice that F is

contained in an embedded projective plane Q disjoint from K. Let P ′ := δ−1(γ) ∪ {N}, be
another embedded projective plane disjoint from K. We may assume that Q and P ′ intersect

transversally at a projective line. Then, X := RP 3 \ (P ′ ∪ Q) is a disconnected space with

exactly two components. Also notice that, Y := V ′ ∩X and δ(Y ) = π(D2) \ (E ∪ π(γ) ∪ α)

both have two components. Since the diagram of K intersects both components of δ(Y ) non-

trivially, K should intersect both components of Y non-trivially. But since K is connected
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Figure 3.13: The shaded region is π−1(E)

and is disjoint from both P ′ and Q, it should lie in exactly one connected component of

X. Which is a contradiction. Thus, K intersects every meridinal disk of V ′. Thus K is

geometrically essential in V ′ and π(γ) is a companion for K.

Definition 3.2.2. A Möbius strip, M , neatly embedded in a solid torus V , such that ∂M

represents the (2, 1) class in H1(∂V,Z) will be called an untwisted Möbius strip.

Notice that RP 3 is diffeomorphic with L(2, 1), a lens space. A tubular neighbourhood

of a projective unknot is a solid torus whose complement is also a solid torus. Thus the

boundary of a tubular neighbourhood of a projective unknot induces a Heegaard splitting

for RP 3. The meridian of a Heegaard torus is glued to a (2, 1) curve on the boundary of the

other one in order to construct L(2, 1). The Heegaard surface for this splitting is a torus.

The characteristic curve on the Heegaard surface bounds a 2-disk in one solid torus and a

Möbius strip on the other. They together glue to form an RP 2 in L(2, 1).

Definition 3.2.3. Let K be a knot in RP 3. K will be called “projectively inessential”

if it is contained in a solid torus V from a Heegaard splitting such that there exists an

untwisted Möbius strip in V disjoint to K.

Theorem 3.2.2. A knot in RP 3 is affine if and only if it is projectively inessential.

Proof: (If) Let K be a projectively inessential knot. By definition, there exists a solid torus

V containing K whose complement U := RP 3 \ V \ ∂V is also a solid torus. RP 3 = V ∪ U
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is a Heegaard splitting. And there is an untwisted Möbius strip M in V disjoint from K.

The circle ∂M is a characteristic curve for the splitting and hence is a meridian for U which

bounds a disk D in U . Then D ∪M is a projective plane and it is disjoint from K. Thus K

is an affine knot.

(Only if) Suppose K is an affine knot in RP 3. Choose a projective plane P disjoint from K.

There exists a ball model for RP 3 where P is the closure of an equatorial disk, D. Choose a

disk D′ perpendicular to D and consider a diagram of K on the closure projective plane, P ′

of D′. The image of P under the projection is a projective line L, disjoint from the image

of K. Choose a residual sphere for K which will intersect P ′ on a circle. Choose a 2-disk

on P ′ disjoint from the diagram of K and L. Refer to Figure 3.13. Then the inverse image

of this disk can be modified into a solid torus V , whose complement solid torus U contains

both K and L. Clearly, V can be chosen in a way that it is disjoint from K and ∂V is a

transversal to P . Clearly, V ∩P is a 2-disk, hence U ∩P is an untwisted Möbius strip. Thus

K is projectively inessential.

This theorem provides a purely geometric criterion for a knot to be affine. We also wish

here to mention a theorem announced by J.Viro and O. Viro in [Vir]

Theorem 3.2.3 (J.Viro-O.Viro). A link L ⊂ RP 3 is contractible if and only if π1(RP 3 \L)
contains a non-trivial element of order 2.

The notion of a “contractible link” they use exactly the same as the notion of affine links

discussed above. This is a purely algebraic criterion for a knot to be affine. Thus we have

many techniques to detect whether a given knot is affine.

42



Chapter 4

Genus for knots in RP 3

How would one talk about the “complexity” of a knot in a given space? For classical knots,

Seifert introduced [Seif] the notion of a genus defined using the concept of surfaces bounded

by knots. These surfaces are now called “Seifert surface”. It is easy to see that a knot

that is the boundary of some orientable surface would be null-homologous in RP 3. Since

H1(RP 3,Z) ≈ Z
2Z , we cannot Seifert surfaces for all knots in RP 3. In this chapter, we intro-

duce the notion of a “good surface” for a knot. The philosophy we adopt here is that the

complexity of a knot should also reflect in the complexity of the surfaces on which it can be

embedded. By drawing an analogy from classical knot theory, we define a “genus” for knots

in RP 3 using good surfaces. It will be a numerical invariant for knots and links in RP 3. We

analyze many of the properties of this genus. It will turn out that, this genus behaves very

similarly to the classical genus.

In what follows, a knot that is not an unknot will be called a “non-trivial” knot. Similarly,

a link that is not an unlink will be called a non-trivial link. Let S be a closed connected

surface in RP 3 containing a knot K. Notice that by choosing a tubular neighbourhood

of the knot and pushing it to the boundary isotopically, we can always construct a closed

connected surface containing the knot. Recall that we have a canonical two-sheeted cover

h : S3 → RP 3. Then S̃ := h−1(S) is a closed surface in S3 containing the link, h−1(K) = K̃.

By removing any point in the complement of S̃, we can obtain an embedding of S̃ in R3. As

every closed surface embedded in R3 is orientable, S̃ is orientable. If S is contained in some
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Figure 4.1: A good surface containing projective trefoil

open 3-ball in RP 3, that is, it is contained in the affine part of RP 3, then S̃ is disconnected.

Definition 4.0.1. A closed surface S containing K in RP 3 is said to be a “good surface for

K” if the inverse image S̃ := h−1(S) is connected.

Notice that, if S is a good surface for K, it may or may not be orientable. As an

example, consider the affine unknot, K0. Clearly, an embedded projective plane P and a

torus T intersecting P at only K0, are both good surfaces for K0. But T is orientable, while

P is non-orientable.

Theorem 4.0.1. Every link in RP 3 has a good surface.

Proof: Let L be a link in RP 3. Consider a diagram of L on some embedded projective

plane P . If L is an unlink this diagram can be assumed to have no crossings. The inverse

image of P is a great 2-sphere in S3 and thus P itself is a good surface for L. If L is not an

unlink, then for each crossing we may attach a handle on P containing the crossing as shown

in Figure 4.1. Thus, we will obtain a surface, S containing L. Since h−1(P ) is connected,

h−1(S) is also connected. Thus S is a good surface for L.

Definition 4.0.2. The minimum genus of an inverse image surface varied over all the good

surfaces for K will be called the “genus of K”.
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Remark 4.0.1. It is easy to see that, if K and K ′ are isotopic links, then the isotopy will

throw any good surface for K to a good surface for K ′. Thus genus is an invariant of

links under ambient isotopy.

Theorem 4.0.2. Every knot in RP 3 has an orientable good surface F such that h−1(F ) has

a genus less than or equal to 3.

Proof: Let K be a knot in RP 3. Let N be a closed tubular neighbourhood of K and let

T = ∂N . Note N is a solid torus and T is a torus. Let K ′ be a longitude of N , which is

a knot on T homologous to K in N . Since K and K ′ are isotopic in RP 3, it is sufficient to

show that there is an orientable good surface F for K ′ such that the inverse image h−1(F )

has genus less than or equal to 3.

If K is of class-1, then let F be the torus T . Note that K ′ is on T . Since h−1(T ) is a torus

in S3 it has genus 1. Thus F is an orientable good surface for K ′.

If K is of class-0, then let J be a projective unknot which is disjoint from N . Let N(J) be

a closed tubular neighbourhood of J such that N(J) is disjoint from N . Let F be a closed

orientable surface of genus 2 in RP 3 obtained from T ∪ ∂N(J) by attaching a pipe. Then

K ′ is on F and the inverse image h−1(F ) has genus 3.

Corollary 4.0.3. The genus of any knot is less than or equal to 3.

Proof: It follows from proof of Theorem 4.0.2.

Theorem 4.0.4. A link in RP 3 is an unlink if and only if it has genus 0.

Proof: Let K be an unlink. Without loss of generality, we may assume that there exists a

diagram of K with no crossings. This may be regarded as its embedding in the projective

plane on which it is being projected. Since any embedded projective plane is covered by a

2-sphere in S3, the projective plane is a good surface for K and hence K has genus 0.

Conversely, suppose a link K has genus 0. Then it has a good surface which is covered by a

2-sphere in S3. This implies the good surface is an embedded projective plane, say G. We

may consider a ball model where RP 3 is presented as the quotient of a 3-ball D, such that

G is represented by a flat 2-disk in D. Now by choosing any point N in ∂D disjoint from

G, we can define a projection, δ : RP 3 \ {N} → G as in Section 2.1. Notice that δ maps

every point of G to itself and therefore K is its own image. Thus K has an image with no

crossings and hence is an unlink.

45



As a simple consequence of the theorem above, we derive the following “non-cancellation

property” for both the surgery procedures we discussed in the previous chapter.

Corollary 4.0.5. A space bending surgery or a class changing surgery performed on a non-

trivial link will always yield a non-trivial link.

Proof: Let K ′ be a link obtained by performing a space bending surgery on a non-trivial

link K. Let B and C be the 3-ball and the mapping cylinder used in the surgery. If

K ′ is an unlink, then by theorem 4.0.4, it follows that it has a good surface Σ which is an

embedded projective plane. This implies, B∩K = B∩K ′ is a tangle embedded in the region,

X := B ∩Σ. We may assume that this B intersects Σ transversally. Since B is a 3-ball and

hence X should be a finite collection of closed 2-disks contained in Σ. Thus all arcs in X are

unknotted. This implies that all arcs in the tangle B ∩ K also were unknotted. We know

that K∩C is a collection of boundary parallel arcs which are all unknotted. Hence K should

be an unlink which contradicts the initial hypothesis. Thus, K ′ is a non-trivial link. The

proof in the case of class changing surgery readily follows from similar considerations.

Theorem 4.0.6. All non-trivial class-1 knots in RP 3 have genus 1.

Proof: Let K be a class-1 knot in RP 3. Let U be a tubular neighbourhood of K. Notice

that T := ∂U is a torus. By choosing an arbitrary non-vanishing normal vector field, X on

K we can push K into T along X. Thus we can obtain a parallel of K inside T . We will

refer to this knot which is clearly isotopic to K also as K. Let K̃ be the knot in S3 covering

K. Now h−1(U) is a solid torus in S3 and its boundary is a torus covering T . Thus T is a

good surface for K. And since K is non-trivial, the genus of K is 1 by Theorem 4.0.4.

At this point, it is natural to ask the question, of whether the converse of this theorem

is true. That is, do all genus-1 knots belong to class-1? Theorem 4.0.11 below, proves that

it is not the case.

Definition 4.0.3. Suppose a knot K1 is a companion to a knot K2. If K1 has a tubular

neighbourhood N , which is a solid torus such that K2 is contained in ∂N and is not null

homologous in N . Then, we say K2 is a “cable knot with companion K1”.

Theorem 4.0.7. Suppose K is a non-trivial knot in RP 3. Then K has genus 1 if and only

if it is isotopic to a cable knot with companion J such that J is a class-1 knot.
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Proof: We first show the if part. We may assume K is lying on the boundary, T , of a closed

tubular neighbourhood N of a class-1 knot J . Notice that both T and h−1(T ) are tori since

J . Thus T is a good surface for K and thus the genus of K can be at most 1. Since K is

not an unknot K has genus 1 by Theorem 4.0.4.

Now we prove the only if part. Suppose K had genus 1. This means a torus in S3 under h

is a two-sheeted cover of a minimal good surface of K. Thus the good surface should be a

torus or a Klein bottle. Since the Klein bottle does not embed into RP 3, see [Bre], it should

be a torus. Then we may choose a torus T containing K in RP 3 such that T ′ := h−1(T ) in

S3 is also a torus. Clearly, T ′ bounds a solid torus N ′ in S3. Then N := h(N ′) is a solid

torus whose boundary is T . Let J be the core of N which is covered by the core of N ′ under

h. Then clearly J is of class-1. Suppose K was null homologous in N . Then, it bounds a

2-disk in N which contradicts that K is not an unknot. Thus K is not null homologous in

N . Clearly K is a cable knot with companion J .

Now we will study the properties of genus for affine knots. Notice that any affine knot

has two lifts in S3 which are unlinked. Consider a closed orientable surface, S, contained

in an affine region of RP 3. Let P be an embedded projective plane disjoint from it. By

removing an open 2-disk from both S and P , and connecting them by a tube, we can always

obtain a surface in RP 3 which is homeomorphic to the connected sum, P#S. The inverse

image of this surface would be a great sphere (the inverse image of P ) attached with two

copies of S with tubes, one “inside” and one “outside”. This is a connected surface. Thus

for any knot K contained in a surface S in an affine region, the connected sum of S with a

projective plane is always a good surface for K.

Lemma 4.0.8. Every non-trivial affine knot has a genus strictly greater than 1.

Proof: Let K be a non-trivial affine knot. Then K cannot have genus 0 by Theorem 4.0.4.

Now suppose K had genus 1. Then by Theorem 4.0.7, there exists a class-1 knot J such

that K is a cable knot with companion J . Let U be a tubular neighbourhood of J such

that K is embedded in ∂U and K is not null homologous in U . Now since K is affine, there

exists an embedded projective plane, P disjoint from K. But, since J is class-1, J has to

intersect P transversally at least at one point, say x. We may assume that U ∩P has at least

one meridinal disk of the solid torus U containing x, say D. Notice that since K is disjoint

from P , K does not intersect D. This implies K will be null homologous in U since it is
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Figure 4.2: A minimal good surface for affine trefoil

contractible in U . This contradicts the assumption that K is a cable knot with companion

J . Hence, K cannot have genus 1. Thus the genus of K has to be strictly greater than 1.

Theorem 4.0.9. The genus of any non-trivial affine knot in RP 3 is 2.

Proof: Let K be an affine knot, contained in the affine part of RP 3. Consider a torus

(possibly knotted) containing it in the affine part. This may be obtained by choosing a

tubular neighbourhood for K and pushing K to its boundary torus. We can connect this

torus with a projective plane by a pipe. See Figure 4.2. Thus we can get a good surface, say

G for K in RP 3. G is covered in S3 by a genus 2 surface. This implies that the genus of any

affine knot is less than or equal to 2. Then by Lemma 4.0.8, the genus of K is exactly 2.

Corollary 4.0.10. All knots of genus 1 are non-affine.

Remark 4.0.2. Thus, genus detects affineness of knots.

Definition 4.0.4. We will call a torus T 2 in RP 3 to be class-1 if it is the boundary of

a tubular neighbourhood of a class-1 knot. In particular, the boundary of the tubular

neighbourhood of a projective unknot will be called a standard class-1 torus.
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Figure 4.3: A class-0 non-affine knot of genus 1 on a class-1 torus

A class-1 torus will be covered by a single torus in S3. Thus for a knot embedded in a

class-1 torus, it is a good surface. Since every knot of genus 0 is an unknot, a non-trivial

knot embedded on a class-1 torus has genus 1.

Theorem 4.0.11. There are infinitely many class-0 non-affine knots with genus 1.

Proof: The first homology of the torus, H1(T
2,Z) ≈ Z⊕ Z. Every knot on a torus T 2 will

represent a homology class of the form (p, q) where p and q are coprime. Choose a ball model

of RP 3 as the quotient of a 3-ball D3. Consider the knot shown in Figure 4.3 as a diagram

drawn on a closed 2-disk D2. Let d be a diameter of D2, then π(d) is a projective unknot.

Choose a tubular neighbourhood U of π(d). Without loss of generality, we may assume,

the image of U under δ is a region in D2 which is bounded by two parallel chords of the

circle ∂D2. See the shaded region in Figure 4.3. Clearly T := ∂U is a standard class-1 torus

intersecting the embedded projective plane P := π(∂D3) at exactly one meridinal circle, say

m, of the solid torus U . Let K be a (p, q) knot in T which is the quotient of a torus braid

embedded in the cylinder π−1(T ) (Figure 4.3 gives an example of a braid whose quotient is

the (2, 5) knot in T ). All points in K ∩ P are contained in m. We can choose K in such a

way that there are exactly p points in K ∩ P . Thus K is class-0 whenever p is even. Notice

that K represent the class p in H1(U,Z) ≈ Z. Hence if p ̸= 0, then it is a cable knot with the

projective unknot as the companion. Hence by Theorem 4.0.7, it has genus 1 and Corollary

4.0.10 implies that it should be non-affine. By changing different values of p and q we can

construct infinitely many such knots. Hence there exist infinitely many class-0 non-affine

knots.
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Figure 4.4: A class-1 knot (right) and one of its class-0 cable knots (left)

Figure 4.5: A non-affine knot on a good surface
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Thus the family of knots with genus 1 contains all class-1 knots and several class-0

non-affine knots. The family of knots with genus 2 has all the affine knots. It is not clear

whether there can be a class-0 non-affine knot in this family. Any knot with genus 3 is a class-

0 non-affine knot. But it is not known to the authors whether there exist knots with genus 3.

The knot shown on the right of Figure 4.4 is of class-1. It is obvious that the one on the

left of Figure 4.4 is of class-0 and is a cable knot with the one on the right as its companion.

Thus by Theorem 4.0.7, the one on the left has genus 1. Then by Corollary 4.0.10, it is a

class-0 non-affine knot.

Conjecture 4.0.12. There exist class-0 non-affine knots, with genus not equal to 1.

As a support for the conjecture, in Figure 4.5, we present a diagram of a knot, which

we suspect to be of genus 3. The surface on which the knot is lying is good and its inverse

image is a genus-3 surface in S3.
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Chapter 5

A braid theory for links in RP 3

In this chapter, we use the concept of spherical braids to define a braid theory for links

in RP 3. In Section 5.1 we introduce the concept of the projective plat closure of an even

stranded spherical braid in RP 3 and prove the main theorem (Theorem 5.1.2), which states

that every link in RP 3 can be constructed by closing a spherical braid in this way. In

Theorem 5.1.3, we state a criterion for affineness of a knot using this braid representation.

In Section 5.2 we introduce the notion of “residual permutation” and prove the equivalence

of the number of cycles in the permutation of the braid and the number of components in

the plat closure. We also provide a few examples. In Section 5.3, we propose a set of moves

on spherical braids, which we hope will work to provide an analogue of the Markov theorem

for projective plat closures.

5.1 Projective plat closure of spherical braids in RP 3.

Joan Birman introduce the concept of plat closures in R3, (see [Bir]). This is a different way

to close a braid into a link, than the classical closure defined by J.W. Alexander, in [Alex].

Birman proved that every classical link is isotopic to the plat closure of an Artin braid. We

introduce the idea of plat closures in RP 3 and prove that every link in RP 3 is isotopic to the

plat closure of a spherical braid (Theorem 5.1.2). A key ingredient in this is the structure

theorem from Chapter 3 (Theorem 3.1.1). For this purpose, we need to discuss some more

geometric concepts related to RP 3 as follows.
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Figure 5.1: Residual tangles

Let B be the 3-ball. We know that, ∂(S2× I) ≈ S2⨿S2. Notice that S3 can be obtained

by gluing boundaries of B ⨿ B and S2 × I. Classically the plats in S3 were constructed

[Bir] by considering a spherical braid in this strip and certain simple tangles in both the

balls. The tangles used there coincide with “internal tangles” that we define below. We

wish to discuss a generalization of this construction. Let M denote the mapping cylinder of

the canonical two-sheeted covering map S2 → RP 2. Notice that, ∂M ≈ S2. By gluing the

boundaries of M ⨿ B and S2 × I we can obtain a copy of RP 3. We choose the convention

that S2×{0} is identified with ∂M and S2×{1} is identified with ∂B. When we say “braids

in RP 3”, we mean the braids in S2 × I region in some splitting of RP 3 of this type. Now

by considering a braid in S2 × I and gluing its boundary with some tangles in B and M we

can form a collection of linked knotted curves in RP 3.

Now for this purpose, we need some natural choices for tangles in B and M . Already

we studied a family of natural tangles in M , which are called residual tangles. Refer to

Section 3.1.3. for the definition. Recall that the residual tangle with exactly n components

is denoted by T n. See Figure 5.1 for some examples. Choose an equator C for ∂B and let

D be the flat disk in B with boundary C. Let An represent the tangle in B formed by n

unknotted unlinked arcs neatly embedded in D. We will call them “internal tangles”. See

Figure 5.2. for some examples.

Notice that boundaries of both T n and An are composed of 2n points. Now consider

gluing the boundaries of M with a residual n-tangle and B with an internal n−tangle, using
a diffeomorphism, f : ∂M → ∂B, which sends 2n points on the boundary of T n to the 2n

points on the boundary of An. By identifying ∂M and ∂B with S2, we can find an isotopy

H : S2 × I → S2, of f to the identity map of S2. By representing the image of ∂T n under
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Figure 5.2: Internal tangles

Figure 5.3: Example of closing a typical braid

each of the maps, ht(x) := H(x, t) on the sphere S2 × {t} in S2 × I, we can obtain a braid

in S2 × I. Arcs in the internal tangle and residual tangle will join the boundary points of

the braid. Thus we get a link in RP 3. We will refer to this “closure” of braids as projec-

tive plat closure. For simplicity we will refer it by just plat closure. See Figure 5.3 for a

demonstration.

Many examples of projective plat closures of standard braids such as identity braids,

generating braids, torus braids, and weaving braids are provided in the Appendix.

Remark 5.1.1. Notice that plat closures can be defined only for braids with an even number

of strings.
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Remark 5.1.2. Let 1, 2, ..., 2n represent the indices of points on the boundary of a spherical

braid as defined above. We choose the convention that the internal tangles connect the

points 1 to 2, 3 to 4,...and 2n− 1 to 2n.

The following lemma will be used to prove the main theorem of this chapter.

Lemma 5.1.1. Given any link K in RP 3, there exists a separating sphere, which will split

RP 3 into two pieces a ball B and a mapping cylinder M such that K∩M is a residual tangle.

Proof: From the structure theorem (Theorem 3.1.1) we know that K is isotopic to some

Σ(J, S ′, f). Where J is an affine knot and S ′ is a 2-sphere which separates RP 3 into a ball

B′ and a mapping cylinder M ′. Then, Σ(J, S, f)∩M ′ is a residual tangle. Now the ambient

isotopy which turns Σ(J, S ′, f) into K will also turn S ′ into a 2-sphere S. Then it is obvious

that in the splitting induced by S, the intersection of the mapping cylinder M and K is a

residual tangle.

Theorem 5.1.2. Every link in RP 3 is isotopic to the projective plat closure of some spherical

braid.

Proof of the theorem: Let K be a link in RP 3. Let S ⊂ RP 3 be the separating sphere

provided by Lemma 5.1.1. Let B and M denote the ball and the mapping cylinder in the

corresponding splitting respectively. The part of K inside M is already a residual tangle,

say T n. Let B′ ⊂ B be a smaller closed ball with the same center. Refer to Figure 5.4.

Notice that the region outside B′ in B homeomorphic to S2× I with S2× 0 mapped to ∂B′

and S2 × 1 mapped to ∂B. We will refer to this region as “strip” in what follows.

We can move the link isotopically so that all the crossings appear in the projection of the

strip in the diagram.

Now the tangle inside B′ is just a collection of untwisted unlinked arcs all of whose bound-

aries are on ∂B′. The tangle inside the strip now has many arcs all of whose boundaries lie

on ∂B and ∂B′. The arcs may also be knotted. Refer to Figure 5.5. There are three types of

arcs in the strip based on where their boundary points are placed. Both the boundary points

of an arc may be on ∂B′. We will call them “type 1” arcs. The arcs with both boundary

points on ∂B will be called “type 2” arcs. The arcs with one boundary point on ∂B and

another on ∂B′ will be called “type 3” arcs.

The projection,

f : S2 × I → I
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Figure 5.4: A residual tangle in M and a generic tangle inside B

Figure 5.5: After pushing all the crossings to the strip.
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Figure 5.6: Transfering the extremum points to B′.

on the strip can be restricted to the arcs. We will call this restriction, the “height function”

on the tangle. We shall denote this function also by f . Note that if f has any point of

inflection on an arc, the arc can be isotopically moved in order to remove the inflection point

and make f monotonic locally. Hence, in what follows we will always assume that f has no

points of inflection on the tangle and extrema will mean either maxima or minima. Clearly,

on a type 1 arc, there exists at least one maximum point for f . Similarly, type 2 arcs have

to have at least one minimum point. If any of these arcs are knotted, they will contain more

extrema points of f . Type 3 arcs that are not knotted may be isotopically moved so that

f is monotonic on the modified arc. Now all the extrema points may be removed from the

strip by moving them inside B′. Refer to Figure 5.6. It is easy to see that these operations

can be done by ambient isotopies of RP 3. Once all the extremum points are removed, f will

be monotonic on all the arcs in the strip.

Let γ be an equator for ∂B′. It is easy to see that, we can isotopically move the link so that

the tangle in B′ is an internal tangle with all the boundary points on γ. That is, all the

boundary points on γ are connected to their immediate neighbour. Refer to Figure 5.7.

Now it is easy to see that the tangle inside the strip is a braid. The residual tangle in M

and the internal tangle in B′ are “closing” this braid into a projective plat closure.
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Figure 5.7: A plat closure diagram from an arbitrary diagram.

Figure 5.8: The braid appearing in the proof of Theorem 5.1.2.
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Figure 5.9: The braid in B8 is σ1σ
−1
2 σ−2

6

The word does not contain σ4 and σ8.
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Given a braid, a natural question one would like to ask is about the nature of the link

formed by closing the braid. Like its homological properties, affineness, and so on. It is

obvious that if the projective plat closure of a 2n string braid is a knot, then it will be in

homology class n (mod 2) in H1(RP 3). The following theorem studies the conditions for the

link to be affine.

Theorem 5.1.3. Let L be link in RP 3. Then L is affine if and only if L is isotopic to

the plat closure of a k (k = 2n) braid β = σi1σi2 · · ·σil such that for some even integer j,

j, j + n /∈ {i1, i2, . . . , il}.

Proof: Suppose j is such an even class. Then in a diagram of the closure link, drawn

on a disk, we may draw a diametrical line on the diagram which passes through the region

of the strip between the points j and j+1. The line does not intersect the link. And hence,

by pulling it back under the projection, we can construct a projective plane disjoint from

the link. Thus the link is affine, by Remark 2.1.3.

Now we will prove the converse. If L is affine, choose a projection, with a disjoint di-

ameter d for the disk. There are four points in d ∩ C × {0, 1}, two on each of the circles.

Notice that the techniques used in the proof of Theorem 5.1.2, can be performed by moving

the diagrams without intersecting d and we may obtain a diagram of a braid β in the strip.

In the strip, we can choose indexing for the boundary points of β so that, when we move

clockwise from an intersection point on C × {0}, the first boundary point of β we reach is

indexed as 1. Notice that the choice of this intersection point is arbitrary, but any of the two

points in d∩C × {0} will work. Then, the boundary point we see first in the anti-clockwise

direction on C × {0} is indexed as 2n, an even class. This indexing induces an indexing on

C × {1}. Then choose, j = 2n, then it will satisfy the condition above.

5.2 Residual permutations

There are certain natural questions one would like to ask about the plat representations of

links in projective space. For example, by looking at the braid, can we predict the number

of components of the closure link? We try to answer this question here.
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The indexing on the boundary points of a braid, β ∈ Bk, gives a bijection,

fβ :
Z
kZ
→ Z

kZ
,

which we choose to be the one sending the indices of points on C × {0} to the indices of

points on C × {1}. This is also the projective analogue of the permutation assosiated to a

classical braid. We also consider another permutaion,

g :
Z
kZ
→ Z

kZ

defined as follows,

g(i) = i+ 1, if i is an odd class,

= i− 1, if i is an even class.

Since k = 2n is even, this is a well defined permutation of Z
kZ . Let G denote the group Z

kZ .

Notice that n is an order 2 element in G and let H denote the subgroup generated by n.

Then we have,
G

H
≈ Z

nZ
.

For brevity of notation, we will denote the point pi on both C ×{0} and C ×{1} by simply

i. We may assume that, the points on both C×{0} and C×{1} are arranged symmetrically

like numbers on a clock. Then the points i and i+ n are diametrically opposite. Thus they

belong to the same coset in G
H
. We will denote by [i] the coset where the element i belongs.

Consider the permutation f−1
β gfβ. Notice that this induces a permutation,

hβ :
G

H
→ G

H
.

We call this the residual permutation of β.

Theorem 5.2.1. The number of components in the plat closure link of a braid β is equal to

the number of disjoint cycles in its residual permutation.

Proof: Notice that, the point f−1
β gfβ(i) is connected to the point i by the arc formed by the

string of β connecting i to fβ(i) followed by the string in the internal tangle connecting fβ(i)

to g(fβ(i)) and then by the string of β connecting g(fβ(i)) to f−1
β (g(fβ(i))). Also notice that

each coset in G
H

has two points on C ×{0} which are connected by one string in the residual
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Figure 5.10: A three-component link and its residual permutation: (1)(2 7 6 3)(4 5)

tangle.

Now suppose ([i1] [i2] ... [il]) is a disjoint cycle in the cycle decomposition of hβ. Choose

any element j1 in the coset [i1]. Then j1 and j2 := f−1
β (g(fβ(j1))) are connected by an arc

as described above. Note that j2 is an element of [i2] by definition of hβ. We can follow this

arc from j2 through the string of residual tangle to the point j′2 := j2+n ∈ [i2]. If [i2] = [i1],

in which case hβ fixes the [i1], then this j′2 = j1 and we have a closed loop. Thus the cycle

above was ([i1]). Otherwise, we may start again from the point by the above method to the

point j3 := f−1
β (g(fβ(j

′
2))). By following the string of the residual tangle, we can reach the

point j′3 := j3 + n. Then, if j′3 = j1, we have a closed loop and the cycle was a transposition

([i1] [i2]). Similarly by following this procedure we can see that when we start from the point

j1 and reach the end of the cycle at the point j′l, we obtain a knot in the closure link. It is

easy to see that if we had chosen to begin at the other element j1 + n ∈ [i1] then we would

be moving through the same knot, but in the opposite direction. Also if we had represented

the cycle with a different ordering of points, then we will again be on the same knot, but

starting and ending at a different point.

Thus every cycle appearing in the cycle decomposition of hβ corresponds to a knot in the

plat closure of β. That is, disjoint cycles in the residual permutation of β and the knots in

the plat closure of β are in one to one correspondence.

Some more examples can be found in Appendix 2.
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Figure 5.11: Reidemeister type moves on projective diagrams

5.3 Moves on braids

As usual in the classical case, the same link may be represented by plat closures of multiple

braids. We will now explore the equivalence relation between the braids which have isotopic

closures.

The diagrammatic moves in RP 3, as described in [Drob] are shown in Figure 5.11.

Remark 5.3.1 (Drobotukhina, Yulia V., [Drob]). Two links in RP 3 are isotopic if and only

if their diagrams can be transformed from one to the other by a finite sequence of the moves

Ω1,Ω2,Ω3,Ω4 and Ω5.
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That is, as sets, the set of equivalence classes of diagrams induced by the above-described

moves is in one-to-one correspondence with the set of isotopy classes of links.

Suppose β := σi1σi2 ...σik is a braid. Notice that the move Ω2 applied on β is equivalent

to deleting a pair of the form σilσ
−1
il

from the word representing β. And performing a Ω3

move on β is equivalent replacing a sub-word of the form σiσi+1σi with a word σi+1σiσi+1

for an arbitrary i. Now we know this is already a relation in the braid group Bk. Clearly

the inverse of both these processes can also be described in a similar manner. That is, the

moves Ω2 and Ω3 are already incorporated in the group structure of the braid group.

Consider the following moves on braids. Suppose k = 2n is even. Let β = σi1σi2 ...σim be

a braid in Bk. Then there will be exactly n odd classes, i.e, (2l + 1) + kZ in Z
kZ .

Let M i
0 be a move as follows,

M i
0 : βσi−1σi ←→ βσ−1

i−1σ
−1
i , if i is odd.

M i
0 : βσ

−1
i−1σ

−1
i ←→ βσi−1σi, if i is even.

Refer to Figure 5.12. It is easy to see that the plat closures of two braids which are related

by a move of this type are equivalent by two Ω2-moves.

For an odd i, let M i
1 be the move,

M i
1 : β ←→ βσi,

M i
1 : β ←→ βσ−1

i .

Notice that the internal tangle for a plat has strings connecting every odd class i with

i+1. Then the diagrams of plat closures of two braids which are related by an M i
1 move are

related by an Ω1 move. Thus the braids have isotopic plat closures. Refer to Figure 5.13.

Now suppose β = σlβ
′ is a braid in Bk where k = 2n as above. Then we have the
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Figure 5.12: M i
0 moves

Figure 5.13: A typical M1-move
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Figure 5.14: M2-moves

following move on the Bk.

M2 : σlβ
′ ←→ β′σl+n

M2 : σ
−1
l β′ ←→ β′σ−1

l+n

Clearly, the plat closures of two braids related by an of M2 or an M2 moves, are isotopic

since their diagrams are equivalent through an Ω5 move. See Figure 5.14 for a demonstration

of M2 move.

Suppose we think of the braid groupBk+4 as the group of motion of the points p1, p2, ..., pn,

pn+1, pn+2,−p1,−p2, ...,−pn, −pn+1,−pn+2 on C where each pi is next to pi+1 for i < n+ 2.

Let γ be a braid formed by a motion where the points p1, p2,−p1,−p2 were still. Then each

of the strings formed by these four points in γ is not braided with any other string in γ. If

we remove these four strings from γ it would not disturb the motion of the other k points

which will form a k braid. Thus we may think of each of the k + 4 string braids formed
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Figure 5.15: A typical case of applying the map e : B8 ↪→ B12

by a motion where the points p1, p2,−p1,−p2 are still as obtained from a k string braid by

introducing four still points on C. Thus we have a natural map,

e : Bk ↪→ Bk+4

induced by introducing four points on the equator C of the type x, y, −x, −y such that no

points of Bk are lying between x and y. Refer to Figure 5.15. Suppose the braids in Bk were

described as the motion of q1, q2, ..., qn,−q1,−q2, ...,−qn. The image of each k-braid under e

is a k+4 braid with the four more strings {p1}× I, {p2}× I, {−p1}× I and {p1}× I in the

strip. We choose to rename the points in the strip in such a way that, x, y, −x, and −y will

be relabeled as p1, p2, −p1 and −p2. Then the rest of the points will be relabeled according

to the ordering. That is q1, q2, ..., qn will be labeled as p3, p4, ...pn+2 and −q1,−q2, ...,−qn as

−p3,−p4, ...,−pn+2 respectively.

For any 3 ≤ l ≤ k + 2, define

αl := σ2σ3σ4...σl−2σl−1σ
−1
l−2σ

−1
l−3...σ

−1
2 ,

αl := σ−1
2 σ−1

3 σ−1
4 ...σ−1

l−2σ
−1
l−1σl−2σl−3...σ2.

certain family of braids in Bk+4.
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Figure 5.16: M10
3 -move performed on a braid in B8 resulting in B12

Then we define,

M l
3 : β ←→ αle(β),

M3
l
: β ←→ αle(β).

Which is a move relating braids of Bk and Bk+4. Refer to Figure 5.16. Each instance of

performing the above move and obtaining a braid β′ from a β ∈ Bk, the diagram of their

plat closure of β change by an Ω4 move after an Ω1 move. Thus clearly, the plat closures of

braids that are related by these moves are isotopic.

There is another move that also changes the index of the braid. Suppose one string

in a braid is isotopically moved to form a pair of maxima and minima of the projection,

f : S2 × I → I. Notice that then it is no longer monotonic on this string. We may bring

the extrema points into the ball region by isotopically moving them. Refer to Figure 5.17

and 5.18 where it is demonstrated for the cases when half of the braid index is odd or even.

We refer to these M4 and M4 moves. When n is odd, the move is just an application of the

map, e : Bk → Bk+4 defined above. For an even n, M4 clealy defines a map from Bk to Bk+4.

But if β is a k-braid, the form of the braid M4(β) depends on the form of the braid β and

writing a closed expression may not be possible, just like the map e mentioned above.

Notice that all the moves described above with a name of the type Mi always come with
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Figure 5.17: When n is even

Figure 5.18: When n is odd
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a pair Mi. In each case, it is obvious to see that each one is just another version of the other.

In what follows we will drop the overlines and refer to the moves as just Mi since all that

we are saying applies to both with some obvious modifications. We would refer to the set of

all the operations as just, M -moves.

Definition 5.3.1. If a braid β can be turned into another braid β′ by a finite sequence of

M -moves, we will say β and β′ are M-equivalent.

Proposition 5.3.1. If β and β′ are M-equivalent spherical braids then they have isotopic

projective plat closures.

Proof: It is obvious from the definition of each M -move that the diagrams of the plat

closures before and after performing them are equivalent under Ω-moves. Hence if β and β′

are M -equivalent then clearly their projective plat closures are isotopic.

Conjecture 5.3.2. The projective plat closures of two braids are isotopic only if they are

M-equivalent.

Refer to Figure 5.19 for an example in support of this conjecture.
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Figure 5.19: An example of applying M-moves
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Chapter 6

Concluding remarks

This thesis is a study of several properties of knots and links in the projective 3-space. These

properties are mostly geometric in nature. Some of these are analogues of the properties of

classical links. But through this study, we understand that some of the properties of these

knots are unique and are arising from the geometry of RP 3.

Primarily, classical knot theory was developed by representing knots in two distinct ways.

Which are, knot diagrams and closure of braids. We have developed both these approaches

for knots is RP 3. We first discuss the procedure for constructing diagrams for knots in RP 3.

This was developed in [Drob]. Our exposition is about having a special presentation of a

knot diagram connecting a classical knot to a projective plane.

We initially introduce a surgery procedure and prove a structure theorem (Theorem 3.1.1)

for knots in RP 3 using it. This theorem can be proved with both, a diagrammatic and a

geometric approach See Section 3.1.3. In short, this theorem shows that all the “knotting”

of any knot in RP 3 can exist only in an affine region and each knot has a simple structure

near a projective plane at infinity.

Then in Chapter 4 we develop an invariant called genus for knots and links in RP 3 and

study several properties of this invariant. As observed in the analysis of genus, non-affine
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class-0 knots are a truly different type than affine and class-1 knots. It would be interesting

to work on Conjecture 4.0.12 about the existence of non-affine class-0 knots of genus other

than 1. Another interesting question to ask is about the existence of links with genus higher

than three.

Then we go on to describe a braid theory for links in RP 3 in Chapter 5. The braids

appearing here are spherical braids. An exciting application of this work is in trying to

construct invariants of knots and links in RP 3 arising from representations of braid groups.

Inspired by the classical case, the idea will be to first prove the Conjecture 5.3.2 and look for

a normalized “trace” of some appropriate representation [Jon] of the spherical braid group,

which is invariant under all M -moves.

The braid theory we developed here is arising naturally from the splitting of RP 3 as a

3-ball and a mapping cylinder. The mapping cylinders under consideration carry residual

tangles and the 3-balls carry internal tangles. See Section 5.1. Consider M1 and M2 to be

three-manifolds both with one connected boundary surface, Σ. Suppose we also had a set

of arcs embedded in both M1 and M2 such that the boundary points of each arc lies on

the respective boundaries. Now if we glue M1 and M2 along ∂M2 ≈ Σ ≈ ∂M1 using a self

diffeomorphism of f of Σ, we can obtain a link in the manifold M1 ⊔f M2. If f is isotopic to

1Σ, then we can plot this isotopy in a regular neighbourhood of Σ inside M1 ⊔f M2 which is

diffeomorphic to Σ× I. This is a braid. Any such diffeomorphism, thus produces braids in

M1 ⊔f M2.

Thus one can construct a braid theory for any three-manifold by considering an appro-

priate splitting and some standard family of tangles in the corresponding components. The

above construction would use the braid group of the surface Σ. Since every closed three-

manifold admits a Heegaard splitting, we have a corresponding braid theory with braid

groups of any oriented surface. It will be interesting to take this approach to study knots

and links in a general closed three-manifold. One may construct invariants from such the-

ories and ask questions about which properties of three-dimensional manifolds give rise to

them. For example, some of them may be coming from algebraic topology, like the Alexander

polynomial while some others may have their origins in topological quantum field theories,
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like the Jones polynomial.

An interesting variation of the definition of genus defined above could be considered. We

can restrict the class of good surfaces of a knot to a smaller family of some special ones. For

any knot in RP 3, there is a covering link in S3. Consider connected surfaces in S3 bounded

by the covering link of a knot in RP 3. Now if we consider the image of such a surface Σ

in RP 3, it gives a singular surface in RP 3. The singular points in this set are precisely the

images of points of Σ ∩ a(Σ), where a is the antipodal map.

Notice that the covering link itself is a subset of Σ∩a(Σ) and its image is the knot. This

part of the singular surface can be smoothened since locally they can be characterized as

two half-planes meeting at their boundary line. Hence these singularities are “removable”

by deforming Σ isotopically. But if there are other points in Σ ∩ a(Σ) than the points of

the covering links, they locally form double points, characterized by two planes meeting at a

line. These singularities may not be removable by deforming Σ. But for surfaces bounded by

the covering link such that, they have no intersection with their antipodes in their interior,

the images in RP 3 are always properly embedded closed surfaces.

It is easy to see that, these surfaces also contain the knot inside, and hence they are

good surfaces for the knot. See Chapter 4 for the definition of a good surface. Let’s call

these, “push down good surfaces”. Clearly, all good surfaces for a knot are not push-down.

Now we may look at the minimal genus in this restricted family as a “push-down genus” of

a knot. If such surfaces exist for all knots in RP 3, we can define this genus for all knots

and it would be a finer invariant than the genus defined by all good surfaces. Some of the

properties can be seen readily. For example, the unknots can be distinguished by this genus.

The projective unknot is covered above by a great circle of S3. This great circle is sitting on

a “great 2-sphere” as an equator, and the corresponding hemispheres are antipodes of each

other. The image of any of these hemispheres is a projective plane, containing the projective

unknot we started with. Thus, The projective unknot has push-down genus 0. Now suppose

the affine unknot has push-down genus 0. Then, its covering link in S3 is the boundary of

some connected surface Σ, such that S := Σ ∪ a(Σ) is a 2-sphere.
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Notice that the covering link consists of two unknots which are unlinked. Any circle on

S bounds a disk. Hence, both of the unknots in the covering link bounds disks. These disks

are antipodes of each other. Thus they are disjoint disks in S3. By definition, Σ will contain

at least one of these disks. But since the corresponding unknot is the boundary of Σ, the

disk has to be the whole of Σ. This is a contradiction since Σ ∪ a(Σ) = S is connected

and cannot be the union of two disjoint closed sets. Thus the affine unknot cannot have

push-down genus 0. It is easy to see that there is a torus in S3 which will cover a torus in

RP 3. Clearly, we can choose this torus in such a way that it contains an affine unknot such

that the above torus is cut into two cylinders by the covering unlink. Thus the push-down

genus of the affine unknot is 1. Hence the push-down genus distinguishes the two unknots,

already revealing that it is a powerful invariant. It would be exciting to work on the exis-

tence problem of push-down good surfaces for all knots in RP 3. Also, I would like to point

out that this genus can be defined for knots but does not have an obvious generalization for

links in RP 3.

Here we would also like to make a remark about a new relation between links arising

from the braid theory. Given a plat closure in RP 3, notice that the indexing involves an

arbitrary choice of which point is index 1. Refer to Section 2.2.2. The way we add internal

tangles is dependent on the indexing chosen. Now it must be clear that if we shift all indices

by adding 1 to them (which is possible because the indices are from a cyclic group), the

internal tangles will be changed. Let’s call this operation “shift”. Then in most cases, we

get a different link as the braid closure. Notice that if we again add 1 to the indices, we will

get back the initial link as the plat closure. Thus given on braid, by this procedure, we can

get at most two plat closure links. It is easy to see that if we perform an M -move on the

braid, and shift indices, we may obtain a different plat closure link. Clearly, there is a whole

family of links that one can generate from one braid by performing shifts and M -moves in

some arbitrary order. One question naturally arising from this is to characterize this family

of links given by one braid. Can one produce every link in this fashion? If not, what is the

equivalence that it generates?

There are many more invariants of classical knots which can be generalized to the knots

in RP 3. One of the obvious ones is the complement three manifold obtained by removing a

link from RP 3. Invariants of the complement are invariants of the knots in RP 3. Refer to
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[Vir] for a study of knot group in RP 3. Clearly, one could also analyze other invariants of

the complement such as hyperbolic volume, covering spaces of the complement, Reidemeister

torsion, and so on in this setting.
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Appendix 1
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Figure 6.1: Closure of identity braids
Each odd braid close to form a projective unknot,
Every even braid close to form an affine unknot.
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Figure 6.2: Closure of generating braids in each Bn

Odd braids close to projective lines
Even braids close to for unlinks except in B4, where it closes to a link of two projective
unknots.
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Figure 6.3: Closures of T (4, 1) := σ1σ2σ3 and T (4, 2) := (σ1σ2σ3)
2

Clearly the closure of any T (4, n) := (σ1σ2σ3)
n is isotopic to an affine unknot.

Figure 6.4: Closures of T (6, 1) := σ1σ2σ3σ4σ5 and T (6, 2) = (σ1σ2σ3σ4σ5)
2

Clearly the closure of any T (6, n) = (σ1σ2σ3σ4σ5)
n will be isotopic to a projective unknot.

Figure 6.5: Closures of W (4, 1) := σ1σ
−1
2 σ3 and W (4, 2) := (σ1σ

−1
2 σ3)

2

Clearly the closure of any W (4, n) := (σ1σ
−1
2 σ3)

n is a class-0 knot.
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Figure 6.6: Closures of W (6, 1) := σ1σ
−1
2 σ3σ

−1
4 σ5 and

W (6, 2) := (σ1σ
−1
2 σ3σ

−1
4 σ5)

2.
Clearly the closure of any W (6, n) = (σ1σ

−1
2 σ3σ

−1
4 σ5)

n is a class-1 knot.

Figure 6.7: Closures of W (8, 1) := σ1σ
−1
2 σ3σ

−1
4 σ5σ

−1
6 σ7 and

W (8, 2) := (σ1σ
−1
2 σ3σ

−1
4 σ5σ

−1
6 σ7)

2.
Clearly the closure of any W (8, n) = (σ1σ

−1
2 σ3σ

−1
4 σ5σ

−1
6 σ7)

n is a link with two components.
One component is the closure of W (4, n) and the other is an affine unknot.
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Appendix 2
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Figure 6.8: Borromean rings

Figure 6.9: A plat representation for Borromean rings.
Residual permutation: (1 2)(3 4)(5 6)
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Figure 6.10: Hopf link

Figure 6.11: A plat representation of Hopf link.The residual permutation is: (1 2)(3 4)
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Figure 6.12: A link of a twist knot and the projective unknot.

Figure 6.13: A plat representation of the above link.
The residual permutation is: (1 5 6 7 8 4 3 2)(9)
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Figure 6.14: Affine figure-8 knot.

Figure 6.15: A plat representation of the above.The residual permutation is: (1 6 5 4 3 2)
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