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Abstract 

 

In this project, we give a brief idea about atom interferometry, the setup of the device and the 
usage of direct digital synthesis (DDS) in atom interferometry, what exactly a DDS is, the 
working of a DDS in terms of it’s parts, along with the DDS used (AD9850 and AD9910), their 
working and operation with an emphasis on the two modes of operation used in AD9910- single 
tone mode and digital ramp mode. The sweeping of frequency for digital ramp mode is done 
from 80 MHz to 82.5 MHz in steps of 0.84 MHz followed by phase locking for both modes of 
operation of the DDS. Atom interferometry is crucial in various aspects of science such as 
measuring gravity and estimating physical constants such as gravitational constant and fine 
structure  constant. Doing the former is crucial for geophysical processes, geology, mineral 
exploration, and volcanology as monitoring local variations in gravity provides insights into 
tectonic deformations, tides, ocean and glacier dynamics, and Earth's structure. 
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Chapter 1 -  INTRODUCTION 

 

This thesis presents the use of Direct Digital Synthesis (DDS) in atom interferometry 
which finds immense applications in the field of science such as measuring gravity 
and various other fundamental constants, while in this chapter, the principle of atom 
interferometry and the role DDS plays in its implementation are described. Atom 
interferometry mainly focusses on the interaction of atoms with light, and works on the 
principle of diffraction. Atom interferometry is similar to optical interferometry except 
for the fact that the roles of light and matter are interchanged among each other – 
matter waves are used instead of electromagnetic waves. 

 

1.1 WHAT IS ATOM INTERFEROMETRY? 

Atom interferometry (AI) is one of the most precise techniques to carry out precision 
measurements in Physics. AI uses interference of matter waves – The wave nature of 
atoms. Unlike  light, atoms possess mass and magnetic moments that get affected by 
gravitational fields and other physical parameters like magnetic fields, electric fields 
(depending upon the choice and internal states of the atoms) and thus these 
parameters can be measured using AI very precisely. In atom interferometry, laser 
beams are used to generate various analogous optical elements (for e.g.- mirrors, 
beamsplitters) for atomic state/ trajectory manipulation. The common elements are the 
‘mirrors’, ‘beamsplitters’ and ‘gratings’. Two of these elements the ‘mirrors’ and 
‘Beamsplitters’ are used in atom interferometry. Analogous to a Mach Zehnder 
interferometer (see Figure 1.1), initially a beam splitter is used to split the atomic 
wavepacket in two different directions. The wavepackets are reflected with two mirrors 
and are finally merged using the second and the final beam splitter. The atomic 
populations in the two ports of the beam splitter depends on the path difference that 
the wavepackets gather during their flight in the two paths. Hence, any phase changes 
can be detected by monitoring the populations at the output ports of the beam splitter. 
[1] 

  

1.2 WORKING OF AN ATOM INTERFEROMETER 

The working of atom interferometer begins with a source that produces a cloud of cold 
atoms. The source of cold atoms is a magneto-optic trap that uses a combination of 
lasers and magnetic fields to cool atoms down to micro kelvin temperatures. The 
sample of cloud of cold atoms is then velocity selected to narrow down the velocity 
distribution before the implementation of the interferometer which then divides the 
atomic cloud into two spatially distinct halves, one made up of atoms in the original 
momentum state or ground state and the other one made up of atoms in a different 
momentum state or the excited state. A detection stage quantifies the results, and 
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measures the signal of interest by quantifying the relative numbers of atoms in the two 
states exiting the interferometer. The relative number of atoms is decided by transition 
probability which is a measurement of the required signal. [2] 

 

 

Figure 1.1- Concept and schematic of a cold atom interferometer, red solid lines 
represent atoms in ground state and blue solid lines represent atoms in excited state 

 

1.3 BASIC USES OF ATOM INTERFEROMETRY 

1] Atom interferometry can be used for the determination and measurements of 
rotations, fine structure constant, atomic polarizability, local gravitational fields and 
gravity gradients. For gravimeters that detect the local gravitational acceleration, the 
measurement of g in atom interferometric gravimeters is achieved by using frequency 
sweep of the moving optical lattice that diffracts atomic wavepackets in different 
momentum states. The frequency sweep of the optical lattice is needed to compensate 
for the changing Doppler shift of the accelerating atoms that are falling under gravity. 
The frequency sweep has to be precise and controllable down to a fraction of a Hz (in 
~15 KHz, the frequency difference caused by Doppler shift of the photons due to 
gravitational acceleration). In order to achieve this frequency sweep, a Direct Digital 
Synthesis (DDS) based waveform generator is of extreme utility. The laser frequency 
difference (depending on the atoms used in the atom interferometer) can be modified 
at each pulse by utilizing a precise and stable DDS/ function generator to switch 
between three particular frequencies, one per pulse. [3] 



13 
 

2] Due to the high sensitivity of the devices used for atom interferometry, they can also 
be used in gravity mapping, rotation sensing and magnetic field gradient which cannot 
be accessed by other interferometers. 

 

1.4 SETUP OF ATOM INTERFEROMETRY 

The optical system in case of Rb atoms is comprised of a pair of extended cavity laser 
diodes (ECDL), of wavelength 780.2 nm. As a frequency selective element, every 
cavity incorporates a laser diode chip, a collimating lens, and grating. The diodes emit 
a linearly polarised laser field. By responding on the cylindrical piezoelectric (PZT) 
actuators that hold the reflecting mirrors, a slow but extensive adjustment of laser 
frequencies is produced. [3] 

For this experiment, a Bose Einstein condensate (BEC) consisting of 87Rb atoms 
(around 50000 every 15 seconds) is created in an optical dipole trap, by evaporative 
cooling of the atoms. This evaporative cooling of atoms is done by exponentially 
decreasing the power of lasers used for cooling. The phase transition to a BEC 
happens at a temperature below ~100 nK. After this, the atoms are confined and the 
dipole trap is switched off. Then, a 2 ms time of flight is given to the cooled atoms to 
reduce the effect of mean field energy between the atoms in the condensate. The laser 
used in this experiment is then frequency offset  locked and the two laser beams that 
used to create the moving optical lattice are setting at two different frequencies with a 
frequency offset of (15.09 kHz) and are also phase locked to each other. The phase 
locking is achieved by phase locking the two DDS that generates the two lattice lasers. 
The  two laser beams moving in opposite directions and obtained from diffraction of 
first order via a pair of acousto-optic modulators, driven by two DDS or arbitrary 
function generators both of which have a frequency difference of 15.09 kHz and are 
phase locked. [4] 

To date, most precision atomic inertial sensors present in the atom interferometers 
use Raman transitions (which are coherent two-photon transitions between various 
hyperfine ground states of alkali atoms in atom interferometers) to create the optical 
mirrors and beamsplitters needed to build the device. This enables typical optical or 
microwave pumping methods to be used to measure the number of atoms at the 
interferometer output. A Bragg transition is same as a Raman transition by the fact 
that the two states of the interferometer are now distinct momentum classes of the 
similar atomic state. The mechanism is analogous to atomic state diffraction from the 
lattice potential created by an optical standing wave. [5] 

The light beam is split and sent via two acousto-optic modulators (AOMs) operated 
using DDS for providing a pair of phase locked optical frequencies needed for making 
transitions between different states for momentum possible. Each AOM’s first order 
diffraction is merged on a polarising beamsplitter and sent to the experiment along 
perpendicular axes of an optical fibre that maintains single mode polarization. The light 
is collimated with an output coupler of an optical fiber to achieve a waist size enough 
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to interrogate all the atoms in the cold cloud of falling atoms. There is a quarter-wave 
plate that rotates the polarisation of the light that returns, by 900, which allows for 
proper interference of each Bragg frequency at the position of the atoms with the other 
and not with itself, resulting in a pair of opposing optical lattices. From an electronics 
point of view, a DDS drives the two AOMs and controls frequency, amplitude, and 
phase of the two Bragg beams. The DDS also provides for updation in amplitude, 
frequency, and phase. [5] 

The Bragg diffraction for this experiment is performed in a BEC. The Bragg diffraction 
beams have to fulfil a certain condition for frequency difference. The condition for the 
frequency difference between the laser beams for an nth order Bragg diffraction by an 
optical wave is equivalent to a 2n photon driven Raman process where absorption of 
photons takes place in one beam and stimulated emission of photons take place in 
another. As per energy and momentum conservation, [6] 



2
= 2ℏ∆       1. 1 

Where Precoil= ℏk sin (θ/2) (the recoil momentum of the atom as a result of the Raman 
process), θ= Angle of incidence, k= 2π/ λ, λ= Wavelength of 87Rb laser = 780.2 nm, 
M= Atomic mass of 87Rb, Δf= Frequency difference of lasers [6]. On further calculation, 
we get the required frequency difference for 87Rb as 15.09 kHz. 

 

1.5 USAGE OF DIRECT DIGITAL SYNTHESIS IN ATOM 
INTERFEROMETER 

For the interferometer, a direct digital synthesizer (DDS) is programmed with an input 
signal and a reference signal that is phase locked to the former signal. It can be 
controlled by a field programmable gate array (FPGA), that provides adjustment of 
laser frequency during the set of experiments [3]. Firstly, the order of successive 
frequencies/ frequency sweeps delivered by the DDS in an experimental cycle is 
recorded in a computer file that handles the experiment. This file is then transferred 
from the computer to the soft core processor included on the microcontroller via a 
USB-UART connector. The data is written to the inbuilt memory by this CPU. After 
that, a microcontroller, takes data from the inbuilt memory and programmes the DDS 
using SPI protocol. The DDS is programmed by an external pulse given by the 
computer at the start of the cycle to ensure that the DDS functions are synchronised 
with the experimental order. In reality, the DDS switches between a fixed frequency 
and linear sweeping (for producing linear frequency ramps between two subsequent 
constant frequencies for short periods of time). [3] It is to be noted that whatever steps 
are mentioned above, are indirectly evident for this experiment in the thesis. 

The measurements for gravity on free falling atoms are performed using Raman 
interferometry in the most advanced atom interferometer that is realised via an order 
of three two photon driven Raman transitions (set apart by time T), which split, reroute, 
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and then merge the atomic wave packets that are then handled by the laser’s pulses, 
resulting in an fringe pattern that has a common minimum which doesn’t depend on 
time assuming systematic bias shifts are negligible. An optical PLL phase locks both 
lasers so as to get low phase noise. The lasers’ frequency difference is swept linearly 
to account for the Doppler shift resulting from free fall when properly tuned (2πα = 2πα0 

= kg), hence any uncertainty in sweep rate will result in an uncertainty in g. Thus we 
need a stable sweep rate to measure gravity precisely. For the gravimeter we are 
sweeping from 80 to 82.5 MHz [7] 

 

Extracting Phase Shift Due to Gravity 

The atomic interferometer for the gravimeter can be realised with ultra cold atoms 
using Bragg diffraction, resulting in a Bose-Einstein condensate. Here, a free falling 
atom with acceleration g relies on three light pulses of moving optical lattice of far off 
resonant light in a π/2– π – π/2 order, which is mentioned as follows 

1] π/2 pulse= Splits the condensate into states 

2] π pulse= Reflects the two states formed in the π/2 pulse. 

3] π/2 pulse= Combines the first two states above 

This effectively results in phase in the below equation 

Φ = n2 ∙  − 2 +          1. 2 

Here T is the interval between interferometer pulses and k= 2π/λ (λ= Wavelength), is 

the wave vector, α is the sweep rate. The interferometer phase shows a linear 
relationship with the Bragg order n. To compensate for Doppler shift, the laser pulses’ 
frequency is swept at a given rate (which is the frequency sweep rate of the DDS) for 
a particular element, and φL = φ1 - 2 φ2 + φ3 indicates phase of the three pulses with 
respect to a given reference point. By altering sweep rate / phase of the beamsplitter’s 
pulses / DDS, the phase can be chirped to create fringes. Under gravity, the Bragg 
transition gets modified due to time dependence in the Doppler shift and hence the 
phase becomes [5] 

Φ = n2 ∙  − 2  1. 3  

This results in the relationship between local gravity and sweep rate of the DDS α0, 

which precisely compensates the atoms' acceleration for all T, which is given below. 
[5] 

g= 
2πα0

2k
=
α0λ
2

 1. 4 

In the next chapter, a brief introduction to direct digital synthesis will be given. 
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Chapter 2 -  INTRODUCTION TO DDS 

 

In the previous chapter, the usage of direct digital synthesis in atom interferometry 
was explained. In this chapter a brief introduction to direct digital synthesis will be 
given along with it’s working in terms of it’s individual components. It describes, in 
general how DDS works 

Direct digital synthesis (DDS) is a technique to produce sine (commonly but not limited 
by sine) waves with much control and precision. In this technique, we generate a time 
dependent digital wave form and convert it to analogue waveform using digital-to-
analogue converter (DAC) [8] and low pass filters. DDS devices provide us with large 
bandwidth and are easy to synchronise with any reference clock for further phase-
noise reduction and keeping other frequency generators and timing sequences in the 
experiment in sync with DDS clock. The functions for a DDS are primarily digital, 
allowing it to provide rapid switching between output frequencies, precise frequency 
resolution, and functioning across a wide frequency spectrum [8]. DDS device is a 
single-chip IC device that is easy to build and program and is extremely good in phase-
continuous and phase-coherent frequency switching modes. 

This device also provides almost all the types of modulation like Gaussian or chirped 
pulses. DDS also provides the infinitely long output with different control (like phase 
and modulation) at different times so it’s very helpful in continuous running 
experiments. 

DDS device has huge applications in current quantum technology, e.g. in quantum 
control measurement and quantum sensor, quantum computing with neutral atoms 
and ions and quantum simulator. 

 

2.1 SOME TERMS RELATED TO DDS 

Some useful terms related to DDS can help explain the working of the DDS. They are 
explained below.  

 

2.1.1 Parts of a DDS 

Some parts of the DDS are explained below, which include microcontroller, sine 
lookup table, address counter, digital multiplier, registers, phase accumulator, DAC 
and low pass filter 

1] Microcontroller- A microcontroller is a device in an integrated circuit that performs 
a particular task and runs an application. It often includes memory, programmable 
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input/output peripherals, and a processor on one chip. Figure 2.1 shows a 
microcontroller- Arduino Mega 2560 

 

 

Figure 2.1- A Microcontroller [9] 

 

2] Sine Lookup Table- A sine look up table searches for the values of the natural 
sines of angles in steps of radians. For n bits total number of steps = 2n. The PROM 
(programmable read only memory- memory where data can be amended once 
following production) of a DDS acts as a sine look up table, which stores an integral 
number of sine wave cycles. [10] 

3] Address Counter- An address counter counts the number of phase values as input 
in the sine lookup table, while the sine values are being output. In general, the address 
counter assesses each and every memory location present in the sine look up table. 

4] Registers- For a DDS, registers for frequency or phase can be added which provide 
for pre-programming and content execution of frequency and phase words along a 
control pin, that also allows for frequency shift keying (FSK) modulation using the 
programmed one-pin input for suitable “mark” and “space” frequencies. The data in 
these registers is executed via a dedicated pin on the package, allowing the user to 
modify an operating parameter without having to go through the control interface 
instruction cycle. [10] 

5] Digital to Analog Converter- A Digital to Analog Converter (DAC) transforms a 
digital input signal that is represented with a binary code, into an analog signal as 
output. It consists of several binary inputs (usually a power of two) and a single output. 
For a DDS, the contents of the sine lookup table are sent to a high-speed DAC which 
gives as output an analog sine wave using the digital input words from the sine lookup 
table. [11] Figure 2.2 shows a schematic of a DAC. 
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Figure 2.2- A DAC [11]  

 

6] Digital multiplier- Digital multiplier is a device placed between the sine lookup table 
and the DAC, so that it becomes possible for amplitude modulation of the analog 
output. Length of word provided to this device gives us the output amplitude step size 
resolution. [10] 

7] Phase accumulator- Phase accumulator is a device that acts as a modulo N 
counter with 2N digital states that are increased every time a clock pulse is input. The 
increment size changes with the tuning word value given to the accumulator adder 
stage which then fixes the step size; hence this will determine output waveform 
frequency. Typically, the phase accumulator’s allowed bit range is from 24 to 48 bits. 
[12] 

One way of understanding the phase accumulator’s working is to compare it with that 
of a phase wheel, such that the phase states of the phase accumulator are periodic 
and may be represented as a set of points on a circle, that can be considered as 
corresponding to an analogous point on a sine wave revolution; so the projection to 
the RHS of the phase wheel is the corresponding analog output for every state (as 
shown in Figure 2.3). The fact that this is a discrete device, the analog output will be 
stalled in its present state till the clock moves the phase wheel to its next state. The 
output waveform is made up of one complete revolution of the sine wave that has been 
quantized [12]. This can be assumed as a vector rotating round a wheel, assuming 
that the corresponding analog output is generated. A revolution of the vector round the 
phase wheel is equal to a full revolution of the analog output. A phase accumulator is 
used to supply linear rotation of the vector round the phase wheel. The phase 
accumulator’s contents correspond to the projected points on the period of the output 
sinusoid. The resolution, N, of the phase accumulator determines the number of these 
projected phase points that must be unique and are contained in the "wheel”. By using 
phase accumulator function for digital signal chain, the DDS structure is like an 
oscillator operated numerically which is a highly versatile DDS core. [10] 
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Figure 2.3- The Phase Wheel [12] 

 

8] Low Pass filter- A low pass filter (LPF) is a device that passes the frequency 
component of a signal below a certain value and suppresses the frequencies above 
that certain value to almost zero. It is defined using a specific cut-off frequency. The 
simple circuit of an LPF consists of a resistor and a capacitor (see Figure 2.4). Its 
working is dependent on the impedance of the capacitor that changes with frequency 
of the signal (say f). The formula for impedance Z is (ωC)-1, with ω=2πf and C the 
capacitance of the capacitor so lower frequency implies more impedance. The cut-off 
frequency f0 for the LPF is given by this formula, with R being the resistance of the 
resistor. 

! =
1

2"#
 2. 1 
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Figure 2.4- A low pass filter [13] 

 

For a DDS, the clock signal that is provided is what's driving the change in output, 
hence a low pass filter will be designed for this frequency of the DDS (see Figure 2.5). 
For usual DDS applications, one uses LPF to remove from the output spectrum any 
image response effects present. To keep low-pass filter threshold requirements 
reasonable and filter design simple, an accepted guideline is to restrict the output 
frequency bandwidth to about 40% of reference clock frequency using a cheap low 
pass filter. 

 

 

Figure 2.5- A Fundamental DDS System [14] 

 

2.1.2 Most Significant Bit and Least Significant Bit 

For any number in binary form, the most significant bit (MSB) has the biggest place 
value while the least significant bit (LSB) has the smallest place value. Ex- For 1000, 
the MSB is 1 and the LSB is 0. The fact that these values are mainly used in 
computation, electronics and similar related areas, these concepts hold importance, 
especially when it comes to transmitting binary values. [15] 
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2.1.3  Frequency Tuning Word 

The DDS output frequency can be modified by changing the count of phase/ frequency 
bits that are scrutinized, through a parameter which is called a frequency tuning word 
(FTW). Each output frequency value for the DDS has a corresponding value of the 
frequency tuning word which is stored in the DDS registers. The frequency tuning word 
can be in binary or hexadecimal format. For any DDS the frequency tuning word is 
given by this formula 

$% =
&'()'( $*+,'+-.
/)'( $*+,'+-.

 × 21  2. 2  

Where n is the number of bits for the DDS. 

 

2.1.4 SPI 

Amongst the most demanding interfaces involving microcontrollers and various ICs 
(sensors, ADCs, DACs, registers, SRAM etc.), is serial peripheral interface (SPI). 
Here, synchronous data from master/ slave is synced using the rising/ falling edge of 
the clock pulses. This data can be sent together by the master & slave and in both 
directions, so it’s a full duplex interface as well. One can use either 3-wire/ 4-wire SPI 
interface, however for this project the latter is used, which uses 4 signals (see Figure 
2.6): the clock pulses (SCLK), Chip select (CS), master output slave input (MOSI) & 
master input slave output (MISO). [16] 

Here, master generates clock pulses. Data exchanged between master and slave is 
synced with the master's clock. SPI has just one master and multiple slaves. From 
master, the CS signal (an active low pulse and set to high to disable the slave from 
SPI bus) selects the slave. As several slaves are used, corresponding individual CS 
signals per slave are needed from the master. For sending data, MOSI & MISO are 
used with MOSI sending data from master to slave and MISO sending data from slave 
to master. [16] For this project the DDS is the slave while the microcontroller is the 
master. 

 

 

Figure 2.6- 4 wire SPI 
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2.1.4.1  Working of SPI 

For SPI communication to commence, master has to transmit the clock pulses and 
decide the slave as it activates the CS pulse. The CS is an active low pulse; so master 
has to send a logic 0 on this signal to decide the slave. Both master and slave transmit 
data together using the MOSI and MISO lines (since SPI is a full duplex interface). 
The serial clock edge synchronises shifting and reading/ writing of data depending on 
how the SPI provides for data reading/ writing and/or shifting using either the clock’s 
rising or falling edge. [16] 

 

2.1.4.2  Clock Polarity and Clock Phase for SPI 

In SPI, clock phase (CPHA) and polarity (CPOL) can be selected by master. In the idle 
state (i.e. the time period between the following-  from when CS is high and falling to 
low, to when CS is low and rising to high), CPOL bit decides polarity of the clock pulses 
while clock phase is decided by the CPHA bit. Data is sampled and/or shifted using 
the rising/ falling edge of clock pulses, based on CPHA bit. The master has to choose 
clock polarity and phase in accordance with the slave’s needs. There are 4 SPI modes 
based on the CPOL and CPHA bit setting which are as follows [16] 

 

 

Figure 2.7- SPI Mode 0 [16] 

  

 

Figure 2.8- SPI Mode 1 [16] 
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Figure 2.9- SPI Mode 2 [16] 

 

Figure 2.10- SPI Mode 3 [16] 

 

1] SPI Mode 0- When both the CPOL and CPHA are low, the clock polarity in the idle 
state is a logic low and this results in reading/ writing of data at the rising edge and 
shifting out of data at the falling edge of CLK as shown in Figure 2.7 [16] 

2] SPI Mode 1- When the CPOL is low and CPHA is high, the clock polarity in the idle 
state is a logic low and this results in reading/ writing of data at the falling edge and 
shifting out of data at the rising edge of CLK as shown in Figure 2.8. [16] 

 

 

Figure 2.11- Another interpretation of DDS [17] 
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3] SPI Mode 2- When the CPOL is high and CPHA is low, the clock polarity in the idle 
state is a logic high and this results in reading/ writing of data at the rising edge and 
shifting out of data at the falling edge of CLK as shown in Figure 2.9. [16] 

4] SPI Mode 3- When both the CPOL and CPHA is high, the clock polarity in the idle 
state is a logic high and this results in reading/ writing of data being at the falling edge 
and shifting out of data at the rising edge of CLK as shown in Figure 2.10. [16] 

 

2.1.5 Phase Locked Loop (PLL) 

For a DDS, a phase locked loop (PLL) is a circuit which uses a voltage controlled 
oscillator which always alters the frequency to make it equal to the input frequency of 
the DDS. In general, for the DDS, a PLL is a closed feedback loop, that is sensitive to 
changes in frequency as well as phase. PLL consists of both analog and digital circuit 
components connected in a negative feedback configuration in order to reduce noise 
or errors in phase between input/ output frequencies. When the phase difference 
between both input and output frequencies is zero, the system is said to be locked, 
hence the name phase locked loop. Apart from setting up input/ output frequencies, 
this device can also use the phase relationship for these frequencies to generate a 
suitable voltage for control. Here are the components for a PLL (see Figure 2.12). [18] 

 

 

Figure 2.12- A Phase Locked Loop [18]  

 

1] Phase Detector/ phase comparator/ mixer- This compares the phases of the 
input/ output frequencies and induces a potential difference using their phase 
difference and multiplies the reference input with the voltage controlled oscillator’s 
output. [18] 

2] Low Pass Filter (LPF)- For a PLL, this is a loop filter that rejects high frequency 
components to smoothen the signal and make the signal as close as possible to a DC 
signal. [18] 

3] Voltage controlled oscillator (VCO)- This generates a sine wave whose frequency 
matches the central frequency as given by the LPF. [18] 
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Chapter 3 -  COMMONLY USED DDS 

 

In this chapter, the commonly used DDS of this project will be discussed and explained 
about in detail along with their working. This chapter has a detailed description of many 
DDS chips 

 

3.1 AD 9850 

This module of DDS generates sine and square waves and is provided with a 125 MHz 
oscillator (usually made of quartz). The innovative high speed core of this particular 
DDS gives a frequency tuning word of 32 bits, resulting in a frequency resolution output 
of 29.1 mHz for a 125 MHz clock oscillator. [19] 

For AD9850, frequencies up to 62.5 MHz can be generated, although I was able to 
generate frequencies of up to 10 – 30 MHz). The square waves were not perfect 
square waves primarily due to the fact that the square wave is expressible a Fourier 
series, with the DDS unable to process an infinite summation. Assuming f(x) is the 
requisite function for the square wave. 
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Proof for the Fourier Series 

The original function for the square wave is sgn(sin ωt), where sgn(x) is called signum 
function, the ratio of the absolute value of x to the real value of x, it’s output is 1 for 
positive numbers, 0 for zero, and -1 for negative numbers. Then Fourier series is given 
by 
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Since cos(x) is an even function and sgn(sin(x)) is an odd function, an= 0, also a0 = 0 
as the value sgn(sin(x)) is 1 for (0, π) and -1 for (π, 2π). Now coming to bn 
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But f(t)= -f(t+ T/2), since signum function has opposite signs halfway in a full cycle. 
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If n is even, then 
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If n is odd then this becomes an equality, hence the odd terms are considered 

Another possible reason why the square waves are not perfect is an effect which is 
called the ringing effect. Ringing effects are faults in the signal that cause it to appear 
as spurious signals around sharp transitions in the signal. The major cause of ringing 
is a signal that is band limited (particularly, does not have high frequencies) or has 
been processed through a low pass filter, the latter being predominantly employed in 
DDS. The ripples in the analogue function, which is the impulse response, are the 
cause of this form of ringing in the time domain.  

 

3.1.1 Parts of AD9850 

These are the various parts of AD9850 in the form of pins, as shown in Figure 3.1. 

1] VCC- This connects the DDS to power source, hence it’s a voltage supply pin. [20] 

2] W_CLK- This generates the reference clock pulses. It is also used to supply the 
frequency / phase/ control words either serially or parallelly. [20] 

3] DATA- This generates or serially loads the data [20] 

4] FQ_UD- This functions as a chip selector, when it is on (or chip selector is set to 1) 
the clock pulses and data are not generated. From this pin, the DDS updates 
frequency (or phase) stored in the input data register using the rising edge of the clock 
pulses; then resets the DDS. [20] 

5] RESET- This pin is for resetting the DDS by cleaning all the registers. Also called 
master reset, when this is set to high, it clears all registers (other than the one for 
input) and the DAC’s output following an extra number of clock cycles. [20] 

6] GND- This connects the DDS to the ground 

7] SQ Wave out- Generates output (for 1st pin)/ complementary output (for 2nd pin) of 
the comparator. [20] 

8] Sine Wave out- Generates analog output (for 1st pin) and complementary analog 
output (for 2nd pin). [20] 
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Figure 3.1- AD9850 DDS [20] 

 

3.1.2 Working 

The AD9850 works on DDS technology like an oscillator operated numerically, such 
that when the AD9850 is referenced to a reliably accurate reference clock source, it 
results in spectrally pure, analog output as sine waves (that are programmable) which 
can be of use as a frequency source, or later transformed to a square wave for use as 
a precise clock generator. An on board 10-bit high speed D/A converter converts the 
digital sine wave to analogue form, and an on-board high speed comparator converts 
the analog output to a low jitter output square wave such that TTL/ CMOS is 
compatible. To generate square waves with low noise, a high speed comparator is 
present in the DDS that is potentially setup to allow the externally filtered output of the 
DAC, such that the device’s usage in precise clock generator applications is boosted. 
The tuning/ modulation words for phase / frequency/ control are loaded into this DDS 
using parallel/ serial loading format. [19] 

1] Parallel loading- The parallel load format uses 5 iterations of an 8 bit word (byte) 
for control. First 8 bits control phase modulation, triggering of off and formatting of 
load; while the next 32 bits include the frequency tuning word. The registers are 
addressed and set by W_CLK & FQ_UD signals. Setting up the data word for control 
of 40 bits to the DDS and resetting the address pointer is done by rising edge of 
FQ_UD while loading the data of 8 bits and shifting the pointer to the following register 
is done by the next W_CLK rising edges. After 5 loads, the W_CLK edges are not 
considered till reset or when the rising edge of FQ_UD resets the address pointer. 
Parallel loading transfers 8 data bits per I/O clock cycle, but at the cost of the fact that 
several pins are required on the devices. [19] 

2] Serial loading- This is achieved using only a single pin via a 40 bit serial data 
stream. Shifting of data of a bit via the 40 bits of programmed information is done by 
the upcoming rising edges of W_CLK, but after this is done, the output frequency (or 
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phase) is updated for which FQ_UD pulse is necessary. Serial loading offers the 
advantage of simplicity but at the disadvantage of low speed. [19] 

 

The AD9850’s output waveform when changed is continuous with regards to phase. 
The circuitry is essentially a digital frequency divider function with increasing divisions 
set by the W_CLK frequency divided by the 2N, N being the count of bits for the tuning 
word. The phase accumulator is an N-modulus counter that increases the value stored 
in it every time a clock pulse is received and when the counter is filled with data, it 
wraps around. Hence the resulting output is contiguous. [19] 

The tuning word value gives the frequency output of the DDS (Figure 3.3) and hence 
this output frequency increases with the increase in the tuning word’s value. The 
sampling rate and the duration between samples at the output are constant. The 
output frequency changes with the gain of the tuning word, so as the value of the tuning 
word grows, lesser are the steps in each output cycle, hence raising the frequency. 
One can increase the tuning word value as long as there are at least 2 samples per 
cycle, bringing the DDS output frequency to Nyquist frequency, or half the system 
clock rate. The DDS is designed to have an output frequency strictly below the Nyquist 
limit. The tuning word is calculated by this formula given n, the number of bits, which 
is also the length of the phase accumulator. [19] 

$*+,'+-. '7 %;*@ $% = $*+,'+-. ; %9F+ ×
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The analog output of this DDS is a sampled signal, so the output spectrum comprises 
of fundamental and aliased signals (pictures) that are present at multiples of reference 
clock frequency ± selected output frequency [19]. 

 

3.1.3 Uses of AD9850 

AD9850 functions as a clock generator. In this case the designated output frequency 
is restricted to within 33% of the reference clock frequency, so as to refrain from giving 
aliased signals that fall in proximity with, the output band of interest; thus, the 
sophistication and price of the external filter necessity for this application are reduced. 
This DDS is also a great technique of generating the read/ write clock to the ADC, 
particularly when the ADC read/ write frequency must be set by software and fixed to 
the system clock. [19] 
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3.2 AD9910 

The AD9910 is a DDS with a built in 14 bit DAC. It can handle sample rates up to 109 
samples per second. This employs innovative, patented DDS technology that helps to 
significantly minimize power usage without affecting performance. The DDS and 
DAC together can create controllable, high frequency sinusoidal output that can be 
changed, and it can generate frequencies of up to 400 MHz. The DDS parameters (i.e. 
frequency, phase, and amplitude) are available to the user while the 32 bit accumulator 
allows for rapid frequency hopping and frequency tuning resolution (that is of 230 mHz) 
with a sampling rate of 1 GSPS. The DDS also allows for rapid phase & amplitude 
switching. [21] 

To control its internal control registers, the AD9910 is programmed via a serial I/O 
interface. This DDS comprises of embedded RAM that uses flip flop like circuitry and 
provides a variety of modulations for frequency, phase, and/ or amplitude. This DDS 
may operate in a digitally controlled, user defined ramp mode wherein the frequency, 
phase or amplitude can be modified with time linearly. [21] 

A reference signal is generated by the direct digital synthesiser (DDS) block whose 
attributes (frequency, phase, amplitude etc.) are used by the DDS parameter’s 
(frequency, phase offset, amplitude etc.) control inputs. The frequency tuning word 
(FTW) determines it’s output frequency (fOUT). The relationship among fOUT, FTW (M), 
and fSCLK is [21] 

LM> =  ×
21

NOP
 3. 7 

where M, the frequency tuning word is a numerical value from 0 to 231  

 

3.2.1 Main Parts of AD9910 

The main parts of AD9910 are shown in Figure 3.2 but will only mention the parts used 
in the project 

1] SCLK (Serial Clock)- This transfers data back and forth to the AD9910 at once and 
powers the internal machines for state. [21] 

2] CS- CS is an active low input allowing for many devices share a serial line for 
communications. When this input is high, both SDO (serial data output) and SDIO 
(serial data input/ output) pins will have high impedance. If during a communications 
cycle, CS is changed to high, the cycle is halted until CS is reenabled to low. [21] 

3] SDIO- Through this pin, data is given to the AD9910, although it can be utilised as 
a two directional line for data. The default setting is cleared, which makes this pin two 
directional. [21] This pin acts as a MOSI for SPI when a microcontroller is used. 
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Figure 3.2- AD9910. Note- The pad exposed to be connected to ground & NC= Do 
not connect [21] 

 

4] SDO- This pin is for reading data for protocols which employ different lines for 
transmission and receival of data. Whenever the DDS functions in single two 
directional I/O mode, this pin has high impedance, hence it doesn’t output data. [21] 
This pin acts as a MISO for SPI when a microcontroller is used 

5] I/O RESET- The current communication cycle is terminated by an active high on 
this pin. Once this pin returns Logic 0 (or low), another communication cycle can 
commence, and the writing of the instruction byte to the DDS takes place. [21] 

6] I/O UPDATE- This pin starts the transmission of information given from I/O port 
buffer to active registers and works using the rising clock edge. This pin is for updating 
DDS parameters. It’s an input/ output pin, but that depends on how the active 
internal bit of this pin is programmed. [21] 

7] DRCTL- This pin decides the digital ramp generator’s (DRG) slope. A high on this 
pin indicates positive slope and a low on this pin indicates negative slope. [21] 

8] DRHOLD- This pin stops the operations of the digital ramp generator (DRG) in the 
current state. [21] 



31 
 

9] MASTER RESET- This resets the DDS by clearing elements that store data and 
setting registers to default values. [21] 

10] PLL LOCK- This is for phase locking the DDS. A high on this pin enables phase 
locking of the DDS (and the frequency multiplier); a low on this pin disables both of 
them. 

11] EXT_PWR_DOWN- A high on this pin externally powers down the DDS depending 
on how it is programmed 

12] P0, P1, P2- They are the frequency profile pins for single tone mode (see section 
2.2.2.1). Any changes in this pin causes contents (related to I/O) to be sent to the 
corresponding registers. 

13] SYNC_CLK- This runs at one fourth of the system clock frequency, it’s rising edge 
is used for I/O_UPDATE & profile changes. 

14] Tx_ENABLE- A high on this pin enables the continuous mode (or burst mode) 
which is used in the single tone mode. 

 

3.2.2 Working 

AD9910 DDS has four operational modes- single tone mode, digital ramp modulation 
mode, RAM modulation mode and parallel data modulation mode (only first two will be 
explained). There is also a output shift keying (OSK) functionality present separately. 
The DDS's amplitude parameter is the only one that is modified in the digital ramp 
mode when used by this functionality. OSK has more priority to drive the DDS 
amplitude parameter, As a result, when OSK is enabled, only OSK can drive the 
amplitude. [21] 

 

  

3.2.2.1  Single Tone Mode 

The DDS parameters are given straight from the registers that are programmed for 
this mode. This involves usage of profiles which are stand-alone registers that store 
control settings for the signal. There are 8 profile registries accessible each of which 
can be accessed independently. To pick the desired profile, one can use one or more 
of these 3 pins. At the following rising edge of SYNC_CLK, any alteration in the state 
of the profile pins causes an update in the DDS with parameters defined by the profile 
decided. [21]  

The output of single tone mode is a sine wave whose frequency is given by the formula 
in terms of the frequency tuning word. On a Fourier representation, this is represented 
by a peak of a Dirac delta function at that particular frequency (usually on oscilloscope 
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or spectrum analyser). Figure 3.5 gives the resulting output of single tone mode for a 
300 MHz signal, however for phase locking the output with a sinusoidal signal whose 
frequency found out to be 40 MHz, an 80 MHz signal in single tone mode is fired 
through the code (see section 3.2.5). A function generator was used to generate the 
sine wave of the required frequency to be phase locked with the 80 MHz signal. 

 

3.2.2.2  Digital Ramp Modulation Mode 

The DDS parameters are obtained straight from the digital ramp generator (DRG) for 
this mode (see Figure 3.3). The serial I/O port is utilised to control the ramp generation 
parameters, that allow for control of the ascending and descending ramp slopes. The 
higher & lower ramp boundaries, as well as the step size/ rate of the ascending/ 
descending ramp slopes, are all controllable. This ramp is generated digitally with a 
32-bit output resolution that can be configured to denote the DDS parameters 
(frequency/ phase/ amplitude). All 32 bits are used when representing frequency, but 
when representing phase or amplitude, only 16 or 14 MSBs are used. The DRCTL pin 
controls the ramp direction. (ascending or descending). Using an extra pin, one can 
temporarily halt the ramp generator in its current condition (DRHOLD). The DRG 
involves 9 control register bits, 3 external pins, two registers of 64 bits, and a register 
of 32 bits. The main control for the DRG is a bit to enable the device. [21] 

 

 

Figure 3.3- A schematic of the digital ramp generator. Note that the boxed areas of 
this device are primarily used in this project [21] 

 

The output of the digital ramp mode is a sine wave whose frequency is increasing/ 
decreasing linearly with time (usually we do the former) at a constant rate called the 
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chirp rate. The function for the digital ramp mode is given as follows assuming it is in 
the range of frequencies that one is sweeping across.  

R( = R! 678( ( +   3. 8   Tℎ+*+ 8( = 8! +  (  9@ 8! ≤ 8( ≤  85 3. 9  

R( = R! 67( +  8!( +   3. 10 

In equations (3.8), (3.9) and (3.10) above α= Chirp Rate of DDS, ω0= Initial Frequency, 
ω1= Final Frequency, t= Time, φ= Phase Difference (if any) 

On a Fourier representation this is represented by the shift in peak of a Dirac Delta 
Function towards the right (usually on an oscilloscope or a spectrum analyser), since 
the fast Fourier transform of a pure sine wave is a Dirac Delta function. In this project, 
the sweeping was carried out from 80 MHz to 82.5 MHz at a chirp rate of 25.1 MHz/s, 
this was phase locked in the same manner as single tone mode, with the same 
frequency used on the arbitrary function generator (i.e. 40 MHz). 

 

Experimental Data for Digital Ramp Mode  

Following were the ten observations noted for the time taken to sweep from 
79.99999998 to 82.50000015 MHz (accuracy taken to 8 decimal places). Each time 
interval noted has an uncertainty of 0.2 ms. 

 

Table 3.1- Experimental Data for Digital Ramp Mode 

Observation Number Time (ms) 
1 100 

2 100 

3 99.6 

4 99.6 

5 99.4 

6 99.8 

7 99.8 

8 99.8 

9 100 

10 99.8 

 

3.2.3 Serial Programming of AD9910 

The serial port for this DDS is versatile and synchronous for serial communications, 
such that it can interact with a wide range of industry-standard microcontrollers and 
microprocessors. Most synchronous transmission formats are supported by serial I/O. 
This interface allows us to read/ write to all of the registers. Furthermore, the port for 
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serial interface can be set as a one pin input/ output (SDIO) or as two one way pins 
for input/ output (SDIO/ SDO). With the AD9910, two alternative pins (I/O_RESET, 
CS) provide an ability to design the system freely. [21] 

A serial communications cycle consists of two stages, starting with the instruction 
phase, for which the writing of the instruction byte to the DDS takes place (see section 
3.2.3.1 for more). [21] 

In the next (i.e. 2nd) phase of a write cycle, data flow from serial port controller to serial 
port buffer takes place. Every register being read determines the number of bytes 
transmitted. Each bit of data is stored in the registers using rising edge of SCLK. The 
serial port controller should access every content in the registers; else, it will be not 
placed in sequence for the upcoming communication cycle. To stop and reset the 
communication cycle, one uses I/O_RESET. The instruction byte then comes after an 
I/O_RESET. Finally the serial port controller for this DDS expects the following eight 
rising SCLK edges to end a communication cycle and represent the instruction byte 
for the next cycle. [21] 

The inactive programmed data is saved in the serial port buffer after a write cycle. The 
I/O UPDATE can be issued at any moment during the communication cycle or after all 
serial operations have completed. Furthermore, any alteration in profile pins can result 
in an I/O upgrade. Phase 2 of a read cycle is identical to that of a write cycle, except 
for the following [21] 

1. Instead of the serial port buffer, data is read from the active registers. 

2. Data is sent out on the SCLK's falling edge. 

It should be remembered that any profile register must be read back using the three 
external profile pins. [21] 

 

3.2.3.1  Instruction Byte 

As given by Table 3.2, the instruction byte comprises of the following info. [21] 

1] Read / Write— 7th bit (i.e. D7) of this byte decides if a read/ write transfer of data 
takes place following writing of the byte. Logic 1 represents a read operation and 
cleared represents that a writing operation has taken place. [21] 

2] The instruction byte's bits X, X— D6 (6th bit), and D5 (5th Bit) are disregarded. [21] 

3] A4, A3, A2, A1, A0—D4, D3, D2, D1 & D0 for an instruction byte determine the 
register to be used when data is sent as a part of the communication cycle. [21] 
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Table 3.2- Instruction Byte [21] 

D7 D6 D5 D4 D3 D2 D1 D0 
Read / Write X X A4 A3 A2 A1 A0 

 
 

3.2.4 Register Descriptions for AD9910  

Following tables give the register descriptions of AD9910 for all registers used in the 
different modes of operation for this project (along with that of the control function 
registers used). 

 

Table 3.3- Single Tone Mode Register Descriptions (Address- 0x0E to 0x15) [21] 

Bits Parameter Register Description 
63 : 62 Open  
61 : 48 Amplitude Scaling Factor Controls output amplitude 
47 : 32 Phase Offset Word Controls output phase 
31 : 0 Frequency Tuning Word Controls output frequency 

 

Table 3.4– Digital Ramp Limit Register Descriptions (Address- 0x0B) [21] 

Bits Parameter Register Description 
63 : 32 Digital Ramp Upper Limit Gives the upper limit of the digital ramp 
31 : 0 Digital Ramp Lower Limit Gives the lower limit of the digital ramp 

 

Table 3.5- Digital Ramp Step Size Register Descriptions (Address- 0x0C) [21] 

Bits Parameter Register Description 
63:32 Digital ramp step size (increasing) Gives step size of an increasing ramp 
31:0 Digital ramp step size (decreasing) Gives step size of a decreasing ramp 

  

Table 3.6- Digital Ramp Rate Register Description (Address- 0x0D) [21] 

Bits Parameter Register Description 
31:16 Digital Ramp 

Negative Slope  
Gives the negative chirp rate of DDS using the time 
taken for a decreasing step size 

15:0 Digital Ramp 
Positive Slope  

Gives the positive chirp rate of DDS using the time 
taken for an increasing step size 

 

Table 3.7- Register Descriptions for Control Function Register 1 (Address- 0x00) [21] 

Bits Parameter Register Description 
31  Enable RAM 0= Disables RAM (default), 1= Enables RAM  
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Bits Parameter Register Description 
30:29 RAM playback 

destination 
Not applicable as RAM was not enabled 

28:24 Open  
23 OSK external 

control 
0= OSK (output shift keying) pin inactive 
1= OSK pin active 

22 Inverse sinc filter 0= Disabled (default), 1= Enabled 
21 Open  
20:17 Profile control Not applicable since RAM not enabled 
16 DDS sine output 0= Cosine output (default), 1= Sine output 
15 Ramp timer 

loading @ I/O 
UPDATE 

0 = default working, 1 = ramp timer loaded whenever 
DDS updates are given/ profile change occurs 

14 Auto clear DRG 
accumulator 

0= default working, 1= DRG accumulator is reset, then 
auto resumes default working whenever an update to 
DDS is given/ profile change occurs till this bit is unset. 

13 Auto clear phase 
accumulator 

0= default working, 1= Resets phase accumulator in sync 
with DDS updates/ profile change 

12 Clear DRG 
accumulator 

0= default working of DRG accumulator  
1= DRG accumulator stays reset until this bit is unset.  

11 Clear phase 
accumulator 

0= default working of DDS phase accumulator 
1= resets the DDS phase accumulator. 

10 ARR (amplitude 
ramp rate) load 
@ I/O UPDATE 

0= Default working, 1= OSK ARR timer reloaded when 
updates to DDS are given / profile change occurs. 

9 OSK  0= Inactive (default), 1= Active. 
8 Auto OSK 0= Manual operation (default), 1= automatic operation 
7 Digital power off 0= clock signals for digital core are on (default).  

1= clock signals for digital core are inactive. 
6 Power off DAC  0 = DAC is active (default). 1 = DAC is inactive. 
5 Power off 

REFCLK input  
0= REFCLK input on (default). 1= REFCLK input inactive 

4 Power off 
Auxiliary DAC  

0= auxiliary DAC on (default). 1= auxiliary DAC off 

3 Control external 
power down  

0 = Affects full power down (default). 1 = Affects quick 
recovery power down. 

2 Open  
1 SDIO input only 0= Two direction operation for SDIO (default). 1= Input 

only, for SDIO  
0 LSB first 0= MSB first (default), 1= LSB first 

 

Table 3.8- Register Descriptions for Control Function Register 2 (Address- 0x01) [21] 

Bits Parameter Register Description 
31:25  Open  
24 Amplitude scaler 

(for single tone 
mode profiles) 

0 = amplitude scaler is disabled and powered down 
(default). 1 = amplitude scaler scales amplitude using 
the scaling factor using the enabled profile. 
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Bits Parameter Register Description 
23 Enable Internal 

I/O UPDATE  
0= External trigger of I/O UPDATE (input) (default).  
1= Internal trigger of I/O UPDATE pin (output)  

22 SYNC_CLK 
enable 

0= disables SYNC_CLK, 1= enables SYNC_CLK pin 
gives a signal of frequency ¼ fSYSCLK (default). 

21:20 Inverse sinc filter 0= Disabled/ bypassed (default), 1= Enabled 
19 Digital Ramping  0= Disabled (default), 1= Enabled 
18 Digital ramp no 

dwell high 
0= Disabled (default), 1= Enabled 

17 Digital ramp no 
dwell low 

0= Disabled (default), 1= Enabled 

16 Read FTW 0= SDIO read operation of the FTW register notes its 
contents (default), 1= SDIO read operation of the FTW 
register notes the FTW 

15:14 I/O UPDATE rate 
control 

Sets prescale ratio of the divider, driving an auto I/O 
UPDATE timer as shown: 00= divides by 1 (default), 
01= divides by 2, 10= divides by 4, 11= divides by 8. 

13:12 Open  
11 PDCLK (parallel 

data clock) 
0= PDCLK off; sent to a Logic 0 state 
1= PDCLK signal shows at PDCLK (default) 

10 Invert PDCLK Not applicable since parallel data was not used. 
9 Invert TxEnable 0= Doesn’t take place, 1= Takes place. 
8 Open  
7 Enable Matched 

Latency  
0= concurrent use of DDS parameters for output in the 
sequence given (default). 1= concurrent use of DDS 
parameter updates reach the output at once. 

6 Hold last value of 
Data assembler  

Not applicable since parallel data was not used 
  

5 Disable Sync 
timing validation  

0= SYNC_SMP_ERR pin shows synced pulse sampling 
errors, 1= SYNC_SMP_ERR pin disabled  

4 Parallel data port 
modulation 

0 = disabled (default), 1 = enabled  

3:0 FM Gain FM gain of the signal, not applicable since parallel data 
was not used 

 

Table 3.9- Register Descriptions for Control Function Register 3 (Address- 0x02) [21] 

Bits Parameter Register Description 
31:30  Open  
29:28 DRV0 Controls REFCLK_OUT pin, default- 01b. 
27 Open   
26:24 VCO SEL Decides range of frequencies of PLL VCO, 

default-  111b. 
23:22 Open  
21:19 Charge pump current (ICP) Sets ICP in PLL, default- 111b. 
18:16 Open  
15 REFCLK input divider  0 = enabled (default), 1 = disabled 
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Bits Parameter Register Description 
14 Reset REFCLK input 

divider  
0 = input divider reset, 1 = input divider default 
operation 

13:11 Open  
10 Reset PFD (phase 

frequency detector)  
0= default operation, 1= phase detector 
disabled 

9 Open  
8 Enable PLL  0 = PLL disabled (default), 1= PLL used 
7:1 N Stores PLL feedback divider modulus; default- 

0000000b. 
0 Open  

 

3.2.5 Uses of AD9910 

AD9910 in the digital ramp mode is useful for gravimetry as a part of atom 
interferometry. The chirp rate provides insights for measuring the gravity at a given 
place. The detailed explanation of the usage of DDS in atom interferometry was given 
in the previous chapter.  

 

3.3 TRIGGERING THE DDS 

Triggering the DDS is to send a reference electronic signal (like a square pulse), which 
acts as a switch to begin the operations of the DDS. The output retains it’s value until 
there is a sufficient change in the input, hence the name ‘trigger’. DDS can be triggered 
using a hardware trigger or software trigger. 

 

3.3.1 Software Trigger 

Here the DDS is triggered directly using programming on it’s pins. No external voltage 
is required and instead trigger takes place via resetting or updating the DDS. For the 
AD9850, the software trigger was used to begin the writing of the byte and was done 
so by generating pulse from the FQ_UD pin (see Appendix A1]). 

 

3.3.2 Hardware Trigger 

Here the DDS is triggered using a microcontroller or other external hardware sources 
(such as function generators) that are pre-programmed resulting in an electronic pulse 
signal being applied to begin the operation of the DDS. This is due to the fact that 
external voltage from the hardware is being applied to the DDS to commence it’s 
operation or update the DDS. Hardware trigger takes place on MOSFETs present in 
the DDS, since they act as a switch. For the AD9910, the hardware trigger was used 
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to begin the writing of the byte, it was applied on the DRCTL pin to begin the required 
function/ operation of the DDS (in this case frequency sweeping as an upward digital 
ramp). See the appendix A2], Arduino Codes, code number 4 for the code of hardware 
trigger on AD9910 
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Chapter 4 -  RESULTS AND DISCUSSION 

 

In the previous chapter, a brief idea about the DDS used and the experiments 
performed with the DDS in the form of their operational modes were explained along 
with a mention of the experimental data. In this chapter, a brief mention about the 
procedure and results for the experiments done will be given along with a description 
some of the waveforms generated using the DDS chips mentioned in chapter 3. 

 

4.1 PROCEDURE 

4.1.1 AD9850 

For the AD9850, all the designated pins were connected to the microcontroller using 
jumper cables with the designated output pins (sine output, square wave output) 
connected to the oscilloscope using BNC cables and test clips. Then, the function of 
the individual pins was tested by connecting the microcontroller to the oscilloscope, a 
logic probe with the help of the code (see appendix A1) in order to get the designated 
function of chip select, reset of DDS and the frequency tuning word as the output on 
the oscilloscope. The same function was repeated by replacing the logic probe with 
the AD9850 DDS, using the same code, to get the required sinusoidal output/ square 
wave output. All steps are repeated by varying the frequency as defined in the code. 

 

4.1.2 AD9910 

For the AD9910, all the designated pins were connected to the microcontroller or 
enabled using jumper cables or connected directly to the DDS with the designated 
output pins, connected to the oscilloscope using BNC cables/ test clips. Then, the 
function of the individual pins was tested by connecting the microcontroller to the 
oscilloscope, a logic probe with the help of Arduino and Python codes (see Appendix 
A2) in order to get the designated function of chip select, reset of DDS and the 
frequency tuning word as the output on the oscilloscope. For single tone mode, the 
same was repeated by replacing the logic probe with the AD9910 DDS, using the 
single tone mode code (both Python and Arduino codes, see Appendix A2), ensuring 
that the mode bit was set to 0x00 to get the required sinusoidal output in single tone 
mode. For ramping mode, the codes for the ramping mode and it’s trigger (see 
Appendix A2) were executed (ensuring that the mode bit was set to 0x01 and the 
trigger is given every five seconds with the help of a microcontroller which is indirectly 
connected to DRCTL pin), and the frequencies (initial and final), ramping step size and 
the bits for the ramp mode in the code were varied so that the sweep rate of DDS is 
around 25.1 MHz (with the help of AD9910 Evaluation Software to get the exact bits 
for the registers). For phase locking, a function generator was connected to the 
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oscilloscope and to the DDS via the external oscillator pin. The frequency of the DDS/ 
function generator, the bits for the control function registers in the code were varied 
accordingly (with the help of AD9910 Evaluation Software to get the exact bits for the 
registers), until the output on the oscilloscope shows the function generator’s output 
sine wave which is stationary. To analyze the output of the AD9910 in both modes, 
the BNC cable may be connected to the spectrum analyzer instead of the oscilloscope, 
to get a stationary peak at that frequency for single tone mode and a moving peak in 
the range of frequencies in ramping mode. It must be noted that the AD9910 DDS has 
to be enclosed in a box. 

 

 

 

 

 

 

 

 

 

Figure 4.2- The representation of the frequency tuning word for the AD9850 for 1 
MHz. Here 0 is for the W_CLK (reference clock), 1 is for CS (chip select) or FQ_UD, 

2 is for DATA and 3 is for RESET. 

 
 

Figure 4.1- The square wave output for AD9850 of frequency 1 MHz 
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Figure 4.3- The 300 MHz output for single tone mode in AD9910 

 

4.2 RESULTS FOR THE INDIVIDUAL DDS 

For the AD9850 DDS, the maximum output frequency which could be generated is of 
the order of 10 MHz (for both sine and square waves) while for the AD9910, the 
maximum output frequency which could be generated is around 300 MHz in the form 
of sine waves, and as a Dirac Delta function on the spectrum analyzer. This is 
dependent not just on the sampling rate of not just the DDS but also of the oscilloscope 
on which the waves are being generated on. Both modes of operation of the AD9910 
DDS can be successfully carried out, with ramping mode possible, as long as a trigger 
is given. However, for the AD9850, the square wave output did have some 
imperfections, considering their representation as a Fourier series and the inability of 
the DDS to process this infinite summation (especially considering the presence of the 
low pass filter). Overall, this indicates that the AD9850 has a simple architecture while 
the AD9910 has a sophisticated architecture. Figures 4.1 to 4.3 show the resulting 
outputs of all the DDS used. 

 

4.3 EXPERIMENTAL RESULTS 

Based on the experimental data as given in Table 3.1, and on the formulas from the 
previous chapters, the following are the results for the sweeping rate of the DDS and 
the estimated value of acceleration due to gravity from the DDS sweeping rate, 
assuming the frequency range for the sweeping is from 80 MHz to 82.5 MHz in steps 
of 0.84 Hz as mentioned in the last chapter. 

1] Average Sweeping time of the DDS= 99.78 ± 0.2 ms 

2] Chirp Rate of the DDS= 25.06 ± 0.05  MHz/s  

3] Estimated value for the acceleration due to gravity (if gravimetry is performed)= 9.78 
± 0.02 m/s2  
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These results are valid within suitable limits of error from the actual values of the chirp 
rate for 87Rb and the acceleration due to gravity. Apart from the sweeping rate, the 
required frequency of a sine wave (as given from a function generator) to phase lock 
a sine wave of frequency 80 MHz generated by the DDS in single tone mode was 
found out to be 40 MHz, and this indicates that an output frequency of the DDS can 
be a multiple of frequency of the function generator to be phase locked with the 
function generator, depending on the code. 
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Chapter 5 -  SUMMARY AND OUTLOOK 

 

5.1 SUMMARY 

The DDS that were used could support up to frequencies of 62.5 MHz and 400 MHz 
for AD9850 and AD9910 respectively, although I was able to generate frequencies up 
to 10 MHz (for AD9850) and 300 MHz (for AD9910). Apart from the frequency ranges, 
the circuitry and pins of both DDS used indicate that the AD9850 is probably the 
simplest of all direct digital synthesizers to generate pulses and waves for simple 
applications, while AD9910 finds massive applications in the field of Physics 
considering it’s sophisticated architecture.  

In AD9910, for single tone mode, the analog output of this DDS was successfully 
generated and shown as a Dirac Delta Function with peak at the frequency of the 
output on a spectrum analyzer (which gives the Fourier representation of the output). 
The ramping of the DDS in steps of 0.84 Hz was successfully carried out from 80 MHz 
to 82.5 MHz, for an average time period of 99.78 ms, to get the desired chirp rate of 
25.06 (± 0.05) MHz/s. This was observed on a spectrum analyser as a Dirac Delta 
Function with the peak moving in the range of frequencies mentioned. The triggering 
of the ramp mode was successfully carried out on DRCTL pin (to control ramping), 
using an extra microcontroller to trigger the ramping every five seconds. For both 
single tone mode and ramp mode, the output was phase locked with an arbitrary 
function generator and the required frequency to make it happen was found out to be 
around 40 MHz. 

 

5.2 FUTURE OUTLOOK 

The results for the chirp rate obtained for frequency sweeping are compatible enough 
for atom interferometry with Rb having a wavelength of 780.2 nm, provided phase 
locking is present. However, to make the entire system user friendly and to have a 
good control over frequency, sweep rate in frequency and phase of the lattice beam, 
one must make the DDS operate like a function generator for driving the acousto-optic 
modulator. Hence, in doing so, the box to fit the DDS inside is cut in a configuration 
similar to that of a power supply and then appropriate changes to the code can be 
made to ensure that the DDS operates in that manner. Another change which can be 
incorporated is by using an identical pair of DDS, instead of a DDS and a function 
generator for the phase locking. 
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5.3 ADVANTAGES OF DDS 

1] DDS provides excellent output frequency tuning resolution (in the μHz scale) and 
is capable of tuning sub-degree phase, all of which are fully controlled digitally. [22] 

2] DDS offers incredibly quick sweeping rate in terms of establishing frequency/ 
phase outputs, phase continuous frequency sweeps free from overshoot or time 
delays for analog related loop settling and phase continuous frequency sweeps. [22] 

3] With analogue synthesiser systems, component aging and temperature drift need 
manual system tuning and tweaking, which is not the case for DDS digital design 
[22]. 

4] The interface for digital control of DDS architecture offers a scenario in which 
systems may be distantly controlled and painstakingly tweaked under processor 
control. [22] 

5] When utilised as a quadrature synthesiser, DDS gives unmatched similarity and 
output control for in phase and out of phase components, as quadratures. [22] 

 

5.4 DISADVANTAGES OF DDS 

1] Limit on maximum output frequency [23] 

2] Can generate spurious frequency content resulting in higher phase noise. Usually 
such signals are unnecessary ones and outside the given range of frequencies and 
they are caused by spurious changes in the phase of the synthesizer’s output. This 
results in energies at frequencies other than the desired one. In a sensitive receiver, 
phase noise will hide a weak signal that would otherwise be detected. [23] 

3] Cannot be used to convert signals from DC to AC at very high voltages (>5 V). 
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Appendix 

 

A1] Code to Generate Output for AD9850 

“ 
const int W_CLK=13; // pin 2 - Signal, the timer bus (W_CLK) 
const int FQ_UD=12; // Pin 3 - change the frequency (FQ) 
const int DATA=11; // Pin 4 - data Line of the serial interface (DATE) 
const int RESET=10; // Pin 5 - Reset module (RESET) 
bool 
ch[40]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0};  
#define pulseHigh(pin) {digitalWrite(pin, HIGH); delay(1); digitalWrite(pin, 
LOW);} // a function of the heartbeat is set at the time the high status 
void setup() { 
 // pin configuration Arduino 
 pinMode(FQ_UD, OUTPUT); 
 pinMode(W_CLK, OUTPUT); 
 pinMode(DATA, OUTPUT); 
 pinMode(RESET, OUTPUT); 
 pulseHigh(RESET); 
 pulseHigh(W_CLK); 
 pulseHigh(FQ_UD); // toggles serial interface 
 Serial.begin(9600); 
}  
// frequency is calculated according to the formula where frequency entered is 
in SI units and then tuning word computed and processed 
void sendFrequency(double frequency) { 
 int64_t freq = frequency * 4294967296/125000000; // frequency 125 MHz AD9850 
 int length=40,i; 
  bool op[length]; 
  i=0; 
  while(freq>=0,i<=length) 
  { 
    op[i]=freq%2; 
    i++; 
    freq=freq/2; 
  } 
  for (int j = 0; j< length; j++) 
  { 
        Serial.print(op[j]); 
  } 
  digitalWrite(W_CLK,LOW); 
  digitalWrite(DATA,LOW); 
  digitalWrite(FQ_UD,LOW); 
  delay(1); 
  for(int k=0;k<length;k++) 
  { 
    if(ch[k]==0) 
    { 
      digitalWrite(FQ_UD,LOW); 
      if(ch[k-1]==0 || ch[k-1]==1) 
      { 
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        if(op[k]==0) 
        { 
          pulseHigh(W_CLK); 
          digitalWrite(DATA,LOW); 
          delay(1); 
        } 
        else if(op[k]==1) 
        { 
          pulseHigh(W_CLK); 
          digitalWrite(DATA,HIGH); 
          delay(1); 
        } 
      } 
      else 
      { 
         digitalWrite(W_CLK,LOW); 
        digitalWrite(DATA,LOW); 
        delay(1); 
        digitalWrite(W_CLK,LOW); 
        digitalWrite(DATA,LOW); 
        delay(1); 
      } 
    } 
    else if(ch[k]==1) 
    { 
      digitalWrite(FQ_UD,HIGH); 
      digitalWrite(W_CLK,LOW); 
      digitalWrite(DATA,LOW); 
      delay(1); 
      digitalWrite(W_CLK,LOW); 
      digitalWrite(DATA,LOW); 
      delay(1); 
    } 
  } 
  digitalWrite(W_CLK,LOW); 
  digitalWrite(DATA,LOW); 
  pulseHigh(FQ_UD); 
  delay(1); 
} 
void loop() 
{ 
  sendFrequency(1000000); 
  while(1); 
} 
” 

 

A2] Codes to Generate Output for AD9910 

Arduino Codes 

1] To read incoming bytes and define the pins used for the DDS pins 

“ 
#include <SPI.h>  
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#define chipSelect  10 
#define P0  4 
#define P1  3 
#define P2  2 
#define MR  A3 
#define EPD  5 
#define IOU  6 
#define IOR  9 
#define DRCTL 7 
#define DRHOLD 8 
  
const int ByteCount = 21; 
int Bytes [ByteCount]; 
int WritePermit = 0; 
 
void setup() { 
   pinMode(MR, OUTPUT); 
   pinMode(EPD, OUTPUT); 
   pinMode(IOR, OUTPUT); 
   pinMode(P0, OUTPUT); 
   pinMode(P1, OUTPUT); 
   pinMode(P2, OUTPUT); 
   pinMode(chipSelect, OUTPUT); 
   pinMode(IOU, OUTPUT); 
   pinMode(DRCTL,OUTPUT); 
   pinMode(DRHOLD,OUTPUT); 
   digitalWrite(DRCTL, LOW); 
   SPI.begin(); 
   Serial.begin(115200); 
   SPI.setDataMode( SPI_MODE0);   
   SPI.setBitOrder(MSBFIRST); 
} 
 
//To read any incoming bytes 
void  loop(){ 
 ReadIncomingBytes(ByteCount, Bytes); 
 if (Bytes[0] == 0x00) 
 { 
   if (WritePermit == 1) 
   { 
     ExecuteSingleToneMode(); 
     WritePermit = 0; 
   } 
 } 
 if (Bytes[0] == 0x01) 
 { 
   if (WritePermit == 1) 
   { 
     ExecuteDigitalRampMode(); 
     WritePermit = 0; 
   } 
 } 
 while(1);  
} 
” 
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2] To demonstrate the functions and modes of operation of DDS by reading and 
writing the registers, with phase locking present (Note- for SPI, the registers address 
are written first followed by the four hexadecimal characters as shown in the register 
description tables above).  

“ 
//To give a pulse to pin 
void GivePulseToPin(int PinNum, int OffTime, int OnTime) 
{ 
  delay(OffTime); 
  digitalWrite(PinNum, HIGH); 
  delay(OnTime); 
  digitalWrite(PinNum, LOW); 
} 
 
//To reset DDS 
void ResetDDS() 
{ 
   digitalWrite(MR, HIGH); 
   delay(10); 
   digitalWrite(MR, LOW); 
   digitalWrite(EPD, LOW); 
   digitalWrite(IOR, LOW); 
   digitalWrite(P0, LOW);   
   digitalWrite(P1, LOW);    
   digitalWrite(P2, LOW);     
   digitalWrite(chipSelect, HIGH); 
   digitalWrite(IOU, LOW); 
   digitalWrite(DRCTL, LOW); // 
   digitalWrite(DRHOLD, LOW);  
} 
 
//To Update IO on IOUPDATE pin 
void UpdateIO() 
{ 
  GivePulseToPin(IOU, 100, 100); 
} 
 
//To Update DRCTL pin 
void UpdateDRCTL() 
{ 
  GivePulseToPin(DRCTL, 5, 8); 
} 
 
//To Read and Write the Registers 
void ReadWriteRegister(int RegAddress, int ByteAddressStart, int 
ByteAddressStop) 
{ 
    digitalWrite(chipSelect, LOW); 
    SPI.transfer(RegAddress);  
    for(int i=ByteAddressStart; i<=ByteAddressStop; i++) 
    { 
      SPI.transfer(Bytes[i]);   
    } 
    digitalWrite(chipSelect, HIGH);  
} 
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// To execute single tone mode  
void ExecuteSingleToneMode() 
{ 
    ResetDDS();      
    digitalWrite(chipSelect, LOW); 
 
    // Writing CFR2  
    SPI.transfer(0x01);  
    SPI.transfer(0x01); 
    SPI.transfer(0x40); 
    SPI.transfer(0x08); 
    SPI.transfer(0x20);  
    digitalWrite(chipSelect, HIGH);  
    UpdateIO(); 
    digitalWrite(chipSelect, LOW); 
 
    // Writing CFR3  
    SPI.transfer(0x02);      
    SPI.transfer(0x1D); 
    SPI.transfer(0x3F); 
    SPI.transfer(0x41); 
    SPI.transfer(0x3c);  
     
    digitalWrite(chipSelect, HIGH);  
    UpdateIO(); 
 
    // Writing the profile registers  
    Bytes[1]=0x08; 
    Bytes[2]=0xb5; 
    Bytes[3]=0x00; 
    Bytes[4]=0x00; 
    Bytes[5]=0x11; 
    Bytes[6]=0x11; 
    Bytes[7]=0x11; 
    Bytes[8]=0x11; 
    ReadWriteRegister(0x0e, 1, 8) 
    UpdateIO();     
} 
 
// To execute digital ramp mode 
void ExecuteDigitalRampMode() 
{ 
    ResetDDS(); 
    digitalWrite(chipSelect, LOW); 
    // Writing CFR1 
    SPI.transfer(0x00);  
    SPI.transfer(0x00); 
    SPI.transfer(0x00); 
    SPI.transfer(0xE0); 
    SPI.transfer(0x00); 
      
    digitalWrite(chipSelect, HIGH);  
    digitalWrite(chipSelect, LOW); 
    // Writing CFR2 
    SPI.transfer(0x01); 
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    SPI.transfer(0x00); 
    SPI.transfer(0x48); 
    SPI.transfer(0x08); 
    SPI.transfer(0x20);   
    digitalWrite(chipSelect, HIGH);  
    digitalWrite(chipSelect, LOW); 
 
    // Writing CFR3 
    SPI.transfer(0x02);  
    SPI.transfer(0x0d); 
    SPI.transfer(0x3F); 
    SPI.transfer(0x41); 
    SPI.transfer(0x3c); 
 
    digitalWrite(chipSelect, HIGH);  
    digitalWrite(chipSelect, LOW); 
 
    // Writing Auxillary DAC 
    SPI.transfer(0x03);  
    SPI.transfer(0x00); 
    SPI.transfer(0x00); 
    SPI.transfer(0x7f); 
    SPI.transfer(0x7f);  
    
    // Writing the registers 
    digitalWrite(chipSelect, HIGH); 
    Bytes[1]=0x11; 
    Bytes[2]=0x99; 
    Bytes[3]=0x99; 
    Bytes[4]=0x9A; 
    Bytes[5]=0x11; 
    Bytes[6]=0x11; 
    Bytes[7]=0x11; 
    Bytes[8]=0x11; 
    Bytes[9]=0x00; 
    Bytes[10]=0x00; 
    Bytes[11]=0x00; 
    Bytes[12]=0x03; 
    Bytes[13]=0x00; 
    Bytes[14]=0x00; 
    Bytes[15]=0x00; 
    Bytes[16]=0x03; 
    Bytes[17]=0x00; 
    Bytes[18]=0x0A; 
    Bytes[19]=0x00; 
    Bytes[20]=0x0A; 
    ReadWriteRegister(0x0b, 1, 8); 
    ReadWriteRegister(0x0c, 9, 16); 
    ReadWriteRegister(0x0d, 17, 20); 
    UpdateIO(); 
    //UpdateDRCTL();      
 } 
” 

3] To read any incoming bytes for communication 
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“ 
void ReadIncomingBytes(int TotBytes, int* List) 
{ 
 for (int i = 0; i < TotBytes; i++) 
 { 
    while (!Serial.available()); 
        List[i] = Serial.read(); 
 } 
 WritePermit = 1;  
} 
” 

4] To perform hardware trigger on the AD9910 

“ 
int CLK= 7; 
void setup() { 
  pinMode(CLK,OUTPUT); 
  Serial.begin(9600); 
} 
 
void loop() { 
  //code to trigger ramping every five seconds, when ramping must begin 
  digitalWrite(CLK,HIGH); 
  delay(100); 
  digitalWrite(CLK,LOW); 
  delay(4900); 
}  
” 

 

Python Code 

Aim- To demonstrate both modes of operation of AD9910 

“ 
import serial 
import time 

import struct 
import numpy as np 
import timeit 

# Frequency mapping  
 
F_OUT    = 80e6  # input frequency 
F_SYSCLK = 1200e6 

 
FTW = round((4294967295.0 *((F_OUT / F_SYSCLK)))); 

 
FTWHex = hex(FTW)[2:] 
for elems in range(8-len(FTWHex)): FTWHex = '0'+FTWHex 

 
FTWByteStr = [] 
FTWByte    = [] 
for elems in range(0,len(FTWHex),2): 
    FTWByteStr.append('0x'+FTWHex[elems]+FTWHex[elems+1]) 
for elems in FTWByteStr  : FTWByte.append(int(elems,16)) 
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# Amplitude mapping  
AmpOUT    = 1   # input amplitude (Range 0-1)  
if AmpOUT <= 1: ScaledAmp = int(AmpOUT * 16383) 
else: ScaledAmp = int(16383) 
AmpHex = hex(ScaledAmp)[2:] 
for elems in range(4-len(AmpHex)): AmpHex = '0'+AmpHex 

 
AmpByteStr = [] 

AmpByte    = [] 
 
for elems in range(0,len(AmpHex),2): 
    AmpByteStr.append('0x'+AmpHex[elems]+AmpHex[elems+1]) 
for elems in AmpByteStr  : AmpByte.append(int(elems,16)) 

 
# Digital ramp mode (Frequency) 
# Starting and Ending Frequency 
InitFreq  = 80e6 
FinalFreq = 82.5e6 

 
# Frequency increment and decrement 
FreqIncr  = 0.84 
FreqDecr  = 0.84 

 
InitFreq  = round((4294967295.0 *((InitFreq / F_SYSCLK)))); 
FinalFreq = round((4294967295.0 *((FinalFreq / F_SYSCLK)))); 
FreqIncr  = round((4294967295.0 *((FreqIncr / F_SYSCLK)))); 
FreqDecr  = round((4294967295.0 *((FreqDecr / F_SYSCLK)))); 

 
InitFreqHex = hex(InitFreq)[2:] 
for elems in range(8-len(InitFreqHex)): InitFreqHex = '0'+ InitFreqHex 

 
InitFreqByteStr = [] 
InitFreqByte    = [] 
 
for elems in range(0,len(InitFreqHex),2): 
    InitFreqByteStr.append('0x'+InitFreqHex[elems]+InitFreqHex[elems+1]) 
for elems in InitFreqByteStr  : InitFreqByte.append(int(elems,16)) 
FinalFreqHex = hex(FinalFreq)[2:] 
for elems in range(8-len(FinalFreqHex)): FinalFreqHex = '0'+ FinalFreqHex 

 
FinalFreqByteStr = [] 
FinalFreqByte    = [] 
 
for elems in range(0,len(FinalFreqHex),2): 
    FinalFreqByteStr.append('0x'+FinalFreqHex[elems]+FinalFreqHex[elems+1]) 
for elems in FinalFreqByteStr  : FinalFreqByte.append(int(elems,16)) 

 
FreqIncrHex = hex(FreqIncr)[2:] 
for elems in range(8-len(FreqIncrHex)): FreqIncrHex = '0'+ FreqIncrHex 

FreqIncrByteStr = [] 
FreqIncrByte    = [] 
 
for elems in range(0,len(FreqIncrHex),2): 
    FreqIncrByteStr.append('0x'+FreqIncrHex[elems]+FreqIncrHex[elems+1]) 
for elems in FreqIncrByteStr  : FreqIncrByte.append(int(elems,16)) 
FreqDecrHex = hex(FreqDecr)[2:] 
for elems in range(8-len(FreqDecrHex)): FreqDecrHex = '0'+ FreqDecrHex 

FreqDecrByteStr = [] 

FreqDecrByte    = [] 
for elems in range(0,len(FreqDecrHex),2): 
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    FreqDecrByteStr.append('0x'+FreqDecrHex[elems]+FreqDecrHex[elems+1]) 
for elems in FreqDecrByteStr  : FreqDecrByte.append(int(elems,16)) 

 
# Writing Data to Arduino 
Arduino = serial.Serial('COM5', 115200) 
time.sleep(1) 

Arduino.write(struct.pack("!B",Mode)) 
 
# Condition for Single Tone Mode 
if Mode == 0x00 : 
     for elems in AmpByte: Arduino.write(struct.pack("!B",elems)) 
     Arduino.write(struct.pack("!B",0x00)) 
     Arduino.write(struct.pack("!B",0x00)) 
     for elems in FTWByte: Arduino.write(struct.pack("!B",elems)) 

     for elems in range(12): Arduino.write(struct.pack("!B",0x00)) 

     
# Condition for Digital Ramp Mode 
if Mode == 0x01 : 
     for elems in FinalFreqByte: Arduino.write(struct.pack("!B",elems)) 
     for elems in InitFreqByte: Arduino.write(struct.pack("!B",elems)) 
     for elems in FreqIncrByte: Arduino.write(struct.pack("!B",elems)) 
     for elems in FreqDecrByte: Arduino.write(struct.pack("!B",elems)) 
     Arduino.write(struct.pack("!B",0xff)) 
     Arduino.write(struct.pack("!B",0xff)) 
     Arduino.write(struct.pack("!B",0xff)) 
     Arduino.write(struct.pack("!B",0xff)) 

” 

 

 


