
Bargaining in Game Theory

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Venkataram Chebiyyam

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

December, 2023

Supervisor: Dr. Hanzhe Zhang

© Venkataram Chebiyyam 2023

All rights reserved





Certificate

This is to certify that this dissertation entitled Bargaining in Game Theory towards the

partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science

Education and Research, Pune represents study/work carried out by Venkataram

Chebiyyam at Indian Institute of Science Education and Research under the supervision of

Dr. Hanzhe Zhang, Associate Professor, Department of Economics, Michigan State

University , during the academic year 2022-2023.

Dr. Hanzhe Zhang

Committee:

Dr. Hanzhe Zhang

Dr. Anindya Goswami





Declaration

I hereby declare that the matter embodied in the report entitled Bargaining in Game

Theory are the results of the work carried out by me at the Department of Economics,

Michigan State University, under the supervision of Dr. Hanzhe Zhang and the same has

not been submitted elsewhere for any other degree.

Venkataram Chebiyyam





Acknowledgments

I would like to thank my supervisor Dr. Hanzhe Zhang for the guidance he has given

me throughout the project. I was able to turn a very small interest in game theory and

bargaining into a very well-founded one with great ease due to his support of the project. I

am also extremely grateful for the immense amount of kindness and patience he has shown

me throughout the course of this project. It is the biggest reason for this project being able

to reach a point of conclusion. Next, I would like to extend my gratitude to my expert Dr.

Anindya Goswami for being a part of my TAC and providing valuable and kind remarks

regarding the project.

I would also like to acknowledge all my friends and seniors at IISER Pune, whose constant

moral support and guidance helped me throughout.

Finally, I would like to thank my uncle, aunt, my father, and my mother, without whose

emotional and financial support none of this would have been possible.

vii



viii



Abstract

We explore the bargaining game beginning with cooperative games, following the Nash

Bargaining Solution and understanding the axiomatic approach, and its impact, followed by

the Kalai-Smorodinsky solution which also follows the static axiomatic approach. After this,

we move over to the realm of non-cooperative games to study the Rubinstein bargaining

model which follows a dynamic strategic approach. We see how the Nash and Rubinstein

solutions, though different approaches, are connected, and can be combined for applications

to problems in the process. Finally, we examine the results of Reputational Bargaining put

out by Dilip Abreu and Faruk Gul in the seminal paper on the field, studying the various

results and insights they provide to the continuous time incomplete information bargaining

model.
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Introduction

Bargaining refers to the phenomenon of argument over the division of a surplus amongst

two or more people or parties, where the goal is to come to a cooperative agreement over

the division of the same. The problem of bargaining has been studied for a long time by

economists, even before the use of game theory. The use of a game theoretical framework to

understand the problem of bargaining was an idea first introduced with the birth of game

theory itself in von Neumann and Morgenstern’s [8].

Before von Neumann and Morgenstern explored using game theory to understand bar-

gaining problems, the problem was deemed indeterminate. The first exploration into bar-

gaining using game theory that is considered to have given birth to the field of study is [7].

In this paper, John F. Nash uses an approach that has come to be known as the Axiomatic

Theory of Bargaining. From there, the study evolved to non-cooperative games and then

further dealt with games of incomplete information and combined elements with different

kinds of games.

Original Contribution

No claim is made to the originality of any result presented in this thesis and it is meant to be

solely a literature review. We present the summaries and proofs for the Nash and K-S models

mainly from the original papers themselves [7], [4]. For the Rubinstein Bargaining model,

most of the details of the extensive form game and the main result are presented from the

original paper [10] and relevant chapters from [9], from which the relation between Rubinstein

and Nash solutions is explored as well. Finally, Reputational Bargaining is explored mainly

from the original paper [1] and [3].
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Chapter 1

Axiomatic Bargaining and Nash’s

Solution

1.1 Introduction

In Nash 1950, a two-player bargaining problem is studied theoretically using game theory.

Specifically, Nash builds from the theory of utility and coalitional games introduced in [8] and

studies a two-player bargaining game. In this two-player bargaining problem, the players are

highly rational; both players have complete information about each other’s preferences and

have equal bargaining power. Thus, this is a highly ideal look at the problem of bargaining.

This theoretical study aims to find a ’solution’ to the bargaining problem presented. Here,

a solution is defined as the ideal amount the players would get from the distribution after

they finish bargaining.

We study the problem and define the structure and elements of the game and the utility

functions as follows. The set N = {1, 2} represents the set of players, with S ⊆ R2 being the

set of all feasible payoff profiles for the bargaining game. Thus, if u = (u1, u2) ∈ R2 is a pair of

utilities corresponding to a particular outcome of the game, then S = {u = (u1, u2)|u ∈ R2}.
We also define a disagreement point, a where a = (a1, a2) ∈ S represents the outcome where

the negotiations fall through and there is no cooperation.
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1.2 Nash Bargaining

Every bargaining game is represented as the pair (a, S), where the set of feasible payoff

profiles satisfies the following conditions:

1. S is convex.

2. S is compact.

3. There is at least one point x ∈ S such that xi > ai for i = 1, 2

4. a ≤ x,∀x ∈ S

These restrictions placed on the set S serve to make the problem more realistic, by

narrowing the possible set of solutions. Further, this narrowing of the feasible set means the

number of potential solutions also decreases, making it so that the solutions have significance.

1.3 The Axioms

In the axiomatic approach, certain axioms are laid regarding the properties of the solutions.

The possible solutions to the game (a, S) thus are those pairs (u1, u2) ∈ S such that they

satisfy these axioms. For the game (a, S), we represent the solutions by a function f : U → S,

where U represents the set of all pairs (a, S) satisfying the restrictions outlined in the previous

section. Thus, the solution(s) of the game (a, S) would be given by f(a, S). The following

axioms lay the foundations to find the game’s solution(s).

Note. For all the axioms, x = (x1, x2) ∈ S where x1 and x2 are the utilities of Player 1 and

Player 2 respectively

Axiom 1 (Pareto Optimality). There is no y ∈ S such that y > f(a, S) and y ̸= f(a, S)

Axiom 2 (Independence of Irrelevant Alternatives). Consider (a, S), (a, T ) ∈ U

such that S ⊂ T . If f(a, T ) ∈ S, then f(a, S) = f(a, T ).

Axiom 3 (Symmetry). If the set S has the property of symmetry, then f(a, S) lies on the

line x1 = x2.
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Axiom 4 (Invariance with Respect to Affine Transformations). If A = (A1, A2)

is an affine transformation, then f(A(a), A(S)) = A(f(A, S)).

1.4 The Solution

Definition 1.4.1. The Nash Bargaining Solution F : U → R2 is defined as follows:

F (a, S) = arg maxx1,x2∈S(x1 − a1) · (x2 − a2)

Theorem 1.4.1. (Nash [1950]) : A solution f : U → R2 satisfies the above four axioms if

and only if F=f

Proof. We begin by transforming the original problem set. We use affine transformations so

that the point where the product (x1 − a1).(x2 − a2) is maximized is transformed to (1, 1).

Let us denote this transformed space as S
′
with u

′
= (u

′
1, u

′
2) being a general point in this.

Axiom 4 allows this since applying the inverse transformation gives back the actual solution.

Now, for no point in this transformed set will the sum (x1 − a1) + (x2 − a2) or rather

u
′
1 + u

′
2 be greater than 2. This is because if there was a point such that u

′
1 + u

′
2 > 2 then

there would be a point on the line joining (1, 1) and (u
′
1, u

′
2) such that the product of the two

utilities would maximize the product. This however is a contradiction. Thus, every point of

this transformed set would be on or below the line u
′
1 + u

′
2 = 2.

Now we draw a square in the region u
′
1 + u

′
2 ≤ 2, on the plane of payoff profiles, such

that it is symmetric about the line u
′
1 = u

′
2 and encloses the entire set S

′
. Note that the line

u
′
1 = u

′
2 will also pass through the transformed disagreement point and the disagreement

point has essentially turned into the new origin.

Now consider the region enclosed by this square. This set of profiles is symmetric. Thus,

in order to satisfy Axiom 3, the solution for this set must lie on the line u
′
1 = u

′
2. Further,

we must satisfy the Pareto Optimality condition, i.e., Axiom 1. Thus we need a point on the

line u
′
1 = u

′
2 such that there is no point on or in this square that has payoffs greater than it.

Thus, we would search for the largest point in the intersection of the line and this square.

The point in question would be (1, 1). Thus the Nash Solution for this point would be the
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point (1, 1).

However, the point (1, 1) is also a part of the transformed set S
′
. Thus by using Axiom

2, since (1, 1) is the solution of the square, it is also the solution of S
′
and hence, the Nash

Solution of the game (a, S) is f(a, S) = argmaxx1,x2∈S(x1− a1).(x2− a2), after reversing the

affine transformation.

1.5 Impact and Extensions

Given that this was a seminal paper in the field, it is obvious that as time went on and

more applications were found, quite a few shortcomings to the model were found, forcing

economists to find better ways to tackle the bargaining problem. One such illustration is as

follows: Let us consider two different bargaining problems: (0, S1) and (0, S2). Where S1 is

the convex shell formed from the points {(0.75, 0.75), (1, 0), (0, 1)} and S2 from the points

{(1, 0.7), (1, 0), (0, 1)}. The NS for these problems is (0.75, 0, 75) and (1, 0.7), respectively.

The graph of the feasible utility regions is displayed below. The blue region represents S1

while the blue and yellow regions together represent S2 The amount that player 2 receives

in the NS for the second game is lower than what they receive in the first game. However,

from the yellow region in the figure, it is clear that for every utility level that player 1 can

demand, the maximum amount that player 2 could possibly ask for is higher in (0, S2) than

in (0, S1). Thus we can see that in (0, S2), a point can be made for player 2 to demand much

more than what they receive in the NS.
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Figure 1.1: A graph highlighting the feasible regions for the games (0, S1) and (0, S2). The

point (10/13, 10/13) represents the KC solution for (0, S2)

This issue stems from the axiom of independence of irrelevant alternatives which means

that we end up ignoring the interpersonal comparisons of utilities. However, there are cases

where including this comparison while attempting to find the game’s solution would lead to

a solution closer to what is realistically observed than the Nash Solution. It is important to

note that this does not mean that the Nash Solution is wrong, but rather that other solution

concepts may be more suitable under various different circumstances.

Thus in order to avoid such contradictions in similar situations, it makes sense that we

use a different axiom in place of IIA to describe the solution of the game. This is the thought

process demonstrated in [4].

1.6 Axiom of Monotonicity

For every game (a, S) we define b(S) = (b1(S), b2(S)) such that:

b1(S) = sup{x ∈ R : for some y ∈ R, (x, y) ∈ S}
b2(S) = sup{y ∈ R : for some x ∈ R, (x, y) ∈ S}
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We now use b(S) to further define a function gS(x) on all x ≤ b1(S) such that:

gS(x) =

y if (x, y) is the Pareto of (a, S)

b2(S) if there is no such y

To put it in words, the function gS(x) represents the maximum utility that player 2 can

get given that player 1 gets at least x amount of utility. Using this notation to describe the

example outlined in the criticism in the previous section, gS1(x) ≤ gS2(x).

We once again use the function f(a, S) = (f1(a, S), f2(a, S)) to denote the solution of the

problem.

Axiom: *[Axiom of Monotonicity] Consider two bargaining problems (a, S1) and (a, S2)

such that b1(S1) = b2(S2) and gS1 ≤ gS2 . Then, f2(a, S1) ≤ f2(a, S2).

1.7 The Kalai-Smorodinsky Solution

The K-S solution is given by the value of the function f(a, S) that satisfies the following four

axioms:

1. Pareto Optimality

2. Symmetry

3. Invariance with respect to affine transformations

4. Monotonicity.

Theorem 1.7.1. There is one and only one solution, µ, satisfying the axiom of monotonic-

ity. The function µ has to be the following simple representation: for a pair (a, S) ∈ U

consider the line joining a to b(S) - L(a, b(S)). The maximal element (using the partial

order of R2) of S on this line is µ(a, S).

We divide the proof into three parts. First, we show that the function µ itself is well-

defined. Once this is established, we show that µ is indeed a solution for the game and
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satisfies all the axioms. Finally, we prove the uniqueness of µ in terms of satisfying the

axiom of monotonicity.

Proof. Part 1: µ is well defined

Let (a, S) be a bargaining pair. The line L(a, b(S)) constructed as described would have

a positive slope. This would mean that the partial order of R2 induces a total order on

L(a, b(S)). This implies that if L(a, b(S)) intersects S, then there is a unique maximal

element of S on it, and µ(S) is well defined.

The existence of a point (b1(S), y) ∈ S such that y ⩾ a2; there is a point (x1, b2(S)) ∈ S

such that x ⩾ a1, a < b(S); and S is convex guarantees that L(a, b(S)) intersects S.

Part 2: µ satisfies the axioms

Since S, is convex and compact, we know that Pareto Optimality is satisfied. Let A be an

affine transformation. We know that A would preserve the partial ordering of the set R2.

Also, since A is an affine transformation, we know that upon applying it on a straight line,

the resulting mapping would be to a straight line as well. Finally, the result of transforming

b(S) would be b(A(S)). Now since, µ is defined as the maximal point according to the partial

order on R2 on the line as defined above, we see that the solution is invariant under affine

transformations.

The monotonicity follows from the following geometric observations. If Lα is a line of

slope α(0 ⩽ α ⩽ π/2) passing through a and if (σ1(α), σ2(α)) is the intersection point of the

Lα with the boundary of {x ∈ R2 : x ⩾ 0 and x ⩽ y for some y ∈ S}, then if β > α, σ2(β) ⩾

σ2(α) and if
(
σ
(2)
1 (α), σ

(2)
2 (α)

)
is the corresponding point for (a, S2), then σ

(2)
1 (α) ⩾ σ

(1)
1 (α).

Part 3: µ is unique

It is enough to prove this fact for normalized bargaining pairs. So let (0, S) be such a pair

and f any monotonic solution. Let S1 = {x ∈ R2 : x ⩾ 0 and x ⩽ y for some y ∈ S}.
Clearly (0, S1) is a normalized bargaining pair, S1 ⊃ S, and there is no point y ∈ S1

such that y ⩾ f (0, S1) and y ̸= f (0, S1). Therefore f (0, S1) = f(0, S). Also the points

(0, 1) and (1, 0) are in S1. Let S2 = convex hull {(0, 1), (1, 0), µ (0, S1)}. Then (0, S2) is a

normalized bargaining pair, it is symmetric for the two players, and S2 ⊂ S1. Therefore
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f (0, S2) = µ (0, S1). Also S1 contains no point y such that y ̸= f (0, S2) and y ⩾ f (0, S2).

Therefore f(0, S) = µ (0, S1) = µ(0, S), and this completes the proof.
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Chapter 2

Rubinstein Bargaining Solution

2.1 Introduction

The previous chapter used the axiomatic approach to tackle the bargaining problem. While

seeing many applications and extensions, the axiomatic approach does have many drawbacks.

As seen in the previous chapter, the K-S model addresses issues with how axioms cannot be

used for certain scenarios, as the desired result may not be obtained. From this, it is obvious

that it would be hard to argue rigorously for the need for some axioms without describing

the game’s very specific structures. Also, intrinsic to Nash’s model is the fact that it does

not factor in comparisons of interpersonal utilities, which can be a huge factor in studying

various Social Science and real-life scenarios. Modifications like the ones made in the K-C

model become increasingly necessary and larger in number, detracting from the validity and

significance of the solution set.

Another seminal paper in this field, [10] takes the strategic approach to solving the

bargaining game. It details thoroughly the structure of the negotiations of the game, unlike

the cooperative game in [7]. This allows for versatile applications of the model to real-life

scenarios as well as understanding the negotiation process much better and easier to make

extensions. Later on in [2], we also go on to see that in a specific limit of the Rubinstein

Solution, we arrive at the Nash solution, connecting these seemingly very opposite approaches

to each other and reinforcing the fact that the Nash solution gives us an ideal solution.
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The theory and outlines in this chapter are presented from [10], [9] with proofs adapted

from [11].

2.2 Structure of the Negotiations

Note. we maintain the same idea from the previous models that two players are bargaining

over an excess ’pie’ of size 1.

We start our description of the bargaining model by first mathematically defining what

an ’agreement’ made by the parties in the negotiation process is. An agreement is a tuple

(x1, x2) where xi refers to the share of the pie that Player i receives. Building upon this, we

also define the set of all possible agreements. This set is defined as:

X = {(x1, x2) ∈ R2 : x1 + x2 = 1 and x1, x2 ≥ 0}

To completely describe the bargaining process, we now need to define two more things: what

are the agreements that each player would like to reach and, consequently, like to avoid, and

once these preferences are established, how the players would go about with the bargaining

process.

This process is vital since, in the strategic approach, unlike the axiomatic approach where

we define the properties the solution must have explicitly, thus restricting it, we restrict the

game itself in its entirety. Thus, it is crucial that the restrictions placed are carefully chosen

since placing too many restrictions would mean the model would not be applicable in more

than a few scenarios. However, place too few restrictions, and the equilibrium (solution to

the game) becomes too broad and ends up providing little helpful information. So we would

ideally like to find a structure of the game where both parties still have a lot of freedom

regarding how they negotiate while still making the solution useful.

This is achieved by describing the bargaining process as follows:

1. The game is an infinite horizon game

2. At each timestep t ∈ {0, 1, 2, . . . }, a player (Player i) makes an offer of the form xt
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where xt ∈ X and the other player (Player j) chooses to either accept the offer (Y )

or refuse the offer (N). If the offer is accepted, the game ends at that time step. If

the offer is rejected, the game moves to the next time step where everything goes on

similarly except that Player j makes the offer this time, and Player i has the option

to accept or reject it. The game goes on until either player chooses to accept an offer.

3. If no outcome is reached, i.e., both players keep rejecting each other’s offers for infinitely

long, we denote the outcome using D standing for Disagreement.

4. When an offer is agreed to, we denote the outcome using the tuple (x, t) where x

represents the pie partition agreed upon, and t refers to the timestep in which the

agreement was reached/offer was accepted.

5. The game begins at time step t = 0 with Player 1 making an offer and Player 2 choosing

to accept or reject it.

2.3 Preferences

Since we do not impose too many restrictions on the structure of the game itself, the key

ideas that lead to exciting results arise from our assumptions about the players’ preferences.

As we described above, the game’s preferences and structure were the two things that had

to be rigorously defined. Since we have completed talking about the structure of the game,

we move on to talking about the players’ preferences over the game’s outcomes. We define

these preferences mathematically as a complete ordering ⪰i over the set {X × T} ∪D that

is also transitive and reflexive.

Thus, we formally define the game as follows:

Definition: A bargaining game of alternating offers is an extensive game with the structure

defined in Section, in which each player’s preference ordering ⪰i over {X×T}∪D is complete,

transitive, and reflexive.

Now that we have defined the game, we move on to placing assumptions on the preferences

to add restrictions. The assumptions are as follows:

13



Note. The statements in all of the following assumptions hold ∀x, y ∈ X, t, t1, t2 ∈ N and i ∈
{1, 2}

1. Pie is desirable. if xi > yi then (x, t) ≻i (y, t)

2. Time is valuable. if xi > 0 and t2 > t1 then (x, t1) ≻i (x, t2)

3. Continuity.

4. Stationarity. (x, t) ≻i (y, t+ 1) ⇐⇒ (x, 0) ≻i (y, 1)

2.4 Nash Equilibrium of the Game

More often than not, when we want the solution of a game, we turn to the notion of the Nash

Equilibrium. However, we do not use the Nash Equilibrium in this particular game. This is

because this game has no unique Nash Equilibrium. Every agreement (x, 0) ∈ X would be a

valid outcome that the Nash Equilibrium of a game generates. We will now proceed to show

this in the current section:

Consider the action profile where Player 1 always proposes the same amount and accepts

offers only if they receive more than what they receive in their offer. Let the same be the

case for Player 2. We can define this mathematically as follows:

σt(x0, . . . , xt−1) =


x if t is even, for all (x0, . . . , xt−1) ∈ X t

Y if t is odd and xt ≥ x̄1

N if t is odd and xt < x̄1

Player 2’s strategies, which we represent with τ̄ will be similar, with even and odd

switched around. From these definitions, once Player 1 makes the offer x̄ at t = 0, Player 2

immediately accepts this offer and the game ends at t = 0.

Now suppose Player 1 uses a different strategy. Perpetual disagreement is the worst

outcome, and Player 2 never makes an offer different from x or accepts an agreement x with

xj < x̄j. Thus the best outcome that Player 1 can obtain, given Player 2’s strategy, is (x, 0).

Thus, we turn to the Subgame Perfect Nash Equilibrium to find the solution to the game.
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2.5 Main Result

Theorem 2.5.1. Every bargaining game of alternating offers in which the players’ pref-

erences satisfy A1 through A6 has a unique subgame perfect equilibrium (σ∗, τ ∗). In this

equilibrium Player 1 proposes the agreement x∗ whenever it is their turn to make an offer,

and accepts an offer y of Player 2 iff y1 ≥ y∗1 ; Player 2 always proposes y∗ , and accepts

only those offers x with x2 ≥ x∗
2. The outcome is that Player 1 proposes x∗ in period 0, and

Player 2 immediately accepts this offer. (Here y∗1 = v1(x
∗
1, 1) and x∗

2 = v2(y
∗
2, 1)) where

vi : [0, 1]× T → [0, 1] for i = 1, 2 as follows:

vi(xi, t) =

yi if (y, 0) ∼i (x, t)

0 if (y, 0) ≻i (x, t) for all y ∈ X

From the definition, it is clear that if vi(xi, t) > 0, then Player i is indifferent between

receiving a share of vi(xi, t) at time 0 and xi at time t. Thus, it makes sense to refer to

vi(xi, t) as the present value of (x, t) for Player i.

Say both players have a discount factor, i.e., the utility received from the same amount

of pie decreases as time goes on. Let the discount of the players be δ1 and δ2 respectively.

Given that these are not constant discount factors, then we get x∗ =
(

1−δ2
1−δ1δ2

, δ2(1−δ1)
1−δ1δ2

)
and

y∗ =
(

δ1(1−δ2)
1−δ1δ2

, 1−δ1
1−δ1δ2

)
.

This literature will explore a specific realm rather than a general one as shown in the

above theorem. Though specific, the version of the problem discussed is the most used and

well-known. In the following section, we show that given δ1 and δ2, the above values of x∗

and y∗ are in fact the values for the unique SPNE of the game.

2.6 Proof for unique SPNE with Discount Factors δ1 and δ2

Proof. Part 1: The Equilibrium is Subgame Perfect

We first show that the above-outlined strategies represent those chosen in a subgame perfect

Nash equilibrium.
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Consider a time period where Player 1 makes the offer of x. This means that if Player 2

accepts, Player 1 receives a share of x1 and thus a utility of x1. There is no deviation that

Player 1 can make and achieve a utility greater than x1 since if they make an offer x
′
with

x
′
1 > x1, then Player 2 will not accept this offer and the offer that Player 2 then makes in

the following time period will at-most give a utility of δ1x1. The only other option is to then

reject this offer and make one more in the following time period, but then again, the most

Player 1 can offer while making sure Player 2 accepts will net them a utility of δ21x1, which

is even lesser.

Now, we move on to Player 2. In this scenario, if Player 2 accepts the initial offer, they

get a utility of x2 = 1− x1. If not they reject the offer and in the next period they make an

offer where the most they can get will be δ2x2. Hence, Player 2 has no profitable deviation

either.

Thus, by the one-step deviation principle, the strategies x∗ and y∗ give the Subgame

Perfect Nash Equilibrium for the Rubinstein Bargaining game and the offer made by Player

1 in the first time period is immediately accepted.

Part 2: Uniqueness

Now, we show that this SPNE is unique for this game.

Let ū1 be the maximum utility that Player 1 can get in any SPNE starting from a time

period where they make the offer. Similarly, let u1 be the minimum utility.

Consider a game state where Player 2 makes the offer.

Then, we know that Player 1 will:

1. Accept any offer that is ≥ δ1ū1

2. Reject any offer that is < δ1u1

Thus, player 2 can secure:

1. Atleast (1− δ1ū1)
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2. Atmost (1− δ1u1)

Similarly, consider a gamestate where Player 1 makes the offer.

Then, Player 2 will accept any offer which gives them utility that is atleast δ2(1− δ1ū1).

Thus, we get:

ū1 ≤ 1− δ2(1− δ1ū1)

Since Player 2 will also accept any offer that nets them more than δ2(1− δ1u1), we have:

u1 ≥ 1− δ2(1− δ1u1)

From eqn. 1 we have ū1 ≤ 1−δ2
1−δ1δ2

and from eqn. 2 we have u1 ≥ 1−δ2
1−δ1δ2

=⇒ ū1 ≤ 1−δ2
1−δ1δ2

≤ u1 =⇒ ū1 = u1

2.7 Nash Program for SPNE of Rubinstein Problem

In [6], the idea that there is a connection between strategic and axiomatic models and

they could be related was first introduced. Here, we see how the equilibrium discussed

in the previous section and the Nash solution from Chapter 1 are related. We begin this

exploration by first describing common underlying models and observing the equilibrium at

certain limits.

2.7.1 Bargaining with the risk of Breakdown

Consider a model similar to the one considered in Section 2.2, with the change being that

there is now an exogenous added probability of the negotiations breaking down. Let this

probability be α, and the payoffs at this breakdown point represented by B = (b1, b2). We

also consider that in this model, the players are indifferent about the time at which the

agreement is reached. We have now defined a strategic extensive form game. Given α, it
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follows that given disagreement at a given timestep, the game moves on to the next with

probability (1− α). Thus, if a strategy σt leads to an outcome (x, t) in the previous game,

here this strategy leads to (x, t) with probability (1− α)t. Otherwise, the outcome reached

is B.

We see that we can also model a game with the axiomatic approach to fit the above

scenario using the following axioms:

1. Axiom 1: Pie is Desirable

2. Axiom 2: B is the worst outcome

3. Axiom 3: Players are risk-averse

We further define

S =
{
(s1, s2) ∈ R2 : (s1, s2) = (u1 (x1) , u2 (x2)) for some x ∈ X

}
and b = (b1, b2) = (0, 0) as the disagreement point. Then, (b, S) is a bargaining game

similar to those described in Section 1.2, satisfying the axioms described above.

Following an analysis similar to that seen in Sections 2.5 and 2.6, it is obvious that the

equilibrium strategies for this game would be given by

x∗
1 =

(1− b2) + (1− α)b1
2− α

y∗2 =
(1− b1) + (1− α)b2

2− α

where Player 1 always makes the offer x∗ = (x∗
1, 1−x∗

1) and never accepts an offer y with

y1 < x∗
1 and similarly for Player 2. Thus, as described in Theorem 2.5.1, expanding on the

definition of vi(xi, t), we have
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u1(y
∗) = (1− α) · u1(x

∗) and u2(x
∗) = (1− α) · u2(y

∗)

Now consider the limit where the exogenous probability diminishes to zero. In this case,

we have

lim
α→0

[ui (x
∗)− ui (y

∗)] = 0

Therefore, we see that at this limit, x∗ converges to the maximizer of u1(x1) · u2(x2),

which in turn is the Nash Solution to (b, S).

19



20



Chapter 3

Reputational Bargaining

3.1 Introduction

As discussed earlier, the Rubinstein model explores the phenomenon of bargaining by ex-

ploring a non-cooperative game with an extensive form. Now, we move on to explore a game

where the information players have about each other are incomplete. In the reputational

bargaining model put out by Dilip Abreu and Faruk Gul in their paper [1], the bargaining

model takes place in continuous time as a slightly modified war of attrition. In this game,

while bargaining, the players gain more information about each other as time goes on. The

war-of-attrition model arises from a model where the players could be considered either to be

rational or irrational. An irrational player is one who ends up being committed to one offer

and never accepting another or is willing to deviate to a different one. Thus, it is easy to see

how the bargaining process could be interpreted as a standard war-of-attrition game with

incomplete information. The reputation here refers to the reputation of the opponent being

committed to a single offer. Building on the results of the war of attrition and economic

theories like the Coase conjecture, Abreu and Gul analyze the equilibrium of this game,

and its properties and similar to previous models, find a connection with the Rubinstein

solution at the limit of multiple different offers being available for a player to make during

the negotiation process.

The theory for this chapter is presented from [1], [3] and [5].
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3.2 The Structure of the Game

We begin by looking at a simplified version of the game. In this simplified version, the two

players have only one possible type they can take, and the bargaining is in continuous time.

Let the players be i and j. Let Ci and Cj be the set of all possible ’irrational types’ a player

can take. Ci ⊂ (0, 1) is a finite set of possible irrational types for Player i.

The irrationality of a player is probabilistic as well. With probabilities zi and zj, the

players are irrational. Thus, a player can take on a ’type’ from αi or αj if and only if they

are irrational, which happens with probability zi or zj. If they are indeed irrational, we

represent the type of the player using αi ∈ Ci and αj ∈ Cj. We categorize a player as

irrational in this game when they make the same offer every time it is their turn, regardless

of the other player’s offer. We use πi(αi) to represent the conditional probability that Player

i is irrational of type αi, given that Player i ends up being irrational.

3.2.1 The Game at t = 0

Once again, like all of our previous models, we consider that the bargaining problem involves

the players splitting a pie of size 1. At time 0, Player 1 will choose to make an offer of α1.

If the player is irrational, they are making this offer since they are of type α1. If they are

rational, however, this offer is a calculated one. Now, Player 2 would accept this offer in two

scenarios. The first case is that in which they are rational (check once again). The second

is if they are irrational of type α2 such that α2 < 1− α1, since this means they are getting

more than what they would have asked for anyways. If not, Player 2 rejects the offer and

makes their own offer of α2 such that α2 > 1− α1.

After this, if Player 1 accepts the offer, the game ends. If not, a war of attrition ensues

over the split.

3.2.2 The War of Attrition

The game now proceeds on to a war of attrition in continuous time. This means that at

any time, one or both of the players can choose to accept the offer of the other player.
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Thus, choosing not to accept would mean they choose to continue the war of attrition. As

mentioned previously, irrational players always make the same offer. A further property is

that in the war of attrition, they never choose to concede. Thus, we call αi the ’commitment

type’ of Player i. Further, we use ri to represent the players’ exponential discount rates in

this war of attrition.

We define µi as a probability distribution on the set of possible types Ci and F 1
α1,α2

as

a collection of cumulative probability distributions on R+ ∪ {∞}∀(α1, α2) ∈ C1 × C2, such

that α1 + α2 > 1. Here F 1
α1,α2

(t) represents the probability of Player 1 accepting Player 2’s

offer by time t.

3.3 Equilibrium with Single Type for Both Players

We know that an irrational player would never accept the opponent’s offer. Thus, the more

time that goes on without Player i conceding, the higher is Player i’s ’reputation’ of being

irrational. Thus we can express this reputation as a function of time as follows:

zi(t) =
zi

1− F i
α1,α2

(t)

From [Hendricks, Weiss, Wilson 1988] we know that for a war of attrition as that described

in the previous subsection, an equilibrium is characterized by the following three properties:

1. At most one player concedes with positive probability at time 0.

2. At any time t ̸= 0, the concession of Player i is at a constant hazard rate λi =
rj ·(1−αi)

(αj+αi−1)
.

This is the rate at which the opponent would become indifferent between the strategies

of conceding and staying.

3. Unless the game ends with probability 1 at time 0, concession by both players continues

forever.

However, the bargaining game differs slightly from a general war of attrition in that we

have non-zero prior probabilities of being of a particular commitment type (irrational). Due
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to this, Property 3 is replaced by the following:

1. Both players’ reputations reach the value 1 at the same time (say) T0.

We now show that the equilibrium does indeed possess the above properties. We begin

with Property 3. Consider that this property did not hold and without loss of generality,

Player i reached reputation 1 at some time T before Player j. Then, this would mean that

Player j at time T realizes that Player i is irrational. However, knowing Player j is irrational,

it would be much more beneficial for a rational Player i to concede at a time before T . And

this would be a contradiction since we are dealing with the equilibrium.

We move on to property 1. If this property did not hold, then it would mean that a

player could wait to see if their opponent concedes at time t = 0, and if they do not, concede

at the instant right after, which would lead to a higher payoff.

Using the same reasoning, the concession must be continuous for every instant after time

t = 0. In order for this to be possible, the players must be indifferent between staying in

the war of attrition or conceding. In order for this to be the case, the payoff received from

conceding at the current instant must be equal to that received in the next instant from

staying on. Thus, we have:

ri · (1− αj) = λj(αi − (1− αj)) (3.1)

From the above equation, for t ≤ T0 we have:

1− F j
α1,α2

(t) = (1− F j
α1,α2

(0)) · e−λjt

Now, from the definition of T0 we have:

zj(T0) =
zj

1− F j
α1,α2(t)

=
zje

λjt

1− F j
α1,α2(0)

= 1

As described above, since we are analyzing the equilibrium and we have assumed that

Player j is conceding at time 0 with non-zero probability, Player i will not concede at time 0.
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Thus, we will have F i
α1,α2

(0) = 0. Let Ti be the time at which Player i’s reputation reaches

1. Then, we have:

zie
λiTi = 1

=⇒ Ti = − log zi
λi

And carrying along the same line of reasoning, since at most one player can concede with

positive probability at time t = 0, and we need both Players reputation to reach the value

of 1 at the same time, we have T0 = min{T1, T2}.

This implies then that 1− F i
α1,α2

(0) = max
{
0, 1− ziz

−λi/λj

j

}
.

Thus, the equilibrium strategy profile for the single-type bargaining game is characterized

by the value of T0 and F i
α1,α2

(0), i = 1, 2.

From this, we obtain the payoffs of the Players in the equilibrium of the game as follows:

ui = F j
α1,α2

(0) · αi + (1− F j
α1,α2

(0)) · (1− αj)

3.4 Other Properties of the equilibrium

3.4.1 Inefficiency

An essential property of this equilibrium is that it has an inefficiency associated with it. By

this, we mean that the equilibrium payoff is not necessarily the maximum amount a player

could obtain at any step of the game. This means that part of the surplus being split between

the players is simply lost. With the help of an illustration, we show this inefficiency and also

show that this inefficiency is a consequence of a ’delay’ in the equilibrium.

Consider a symmetric model such that r1 = r2, α1 = α2 and z1 = z2. This would mean
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that λ1 = λ2, thus implying F 1
α1,α2

(0) = F 2
α1,α2

(0) = 0 at equilibrium. From the previous

result, this implies that the expected payoff for Player 1 would be (1−α1) if they are rational

since the best strategy for a rational player would be to concede at time t = 0. However,

the expected payoff of an irrational Player 1 would be lesser than that of (1 − α1), as they

would not immediately concede and allow the game to move on. Thus the expected payoff

for Player 1, in general, would be lesser than (1 − α1). This occurs due to the fact that

the probability of reaching an agreement where both players immediately concede has a

probability of z2, which is extremely small as z < 1. Thus this inefficiency arises due to the

fact that there is a delay in reaching an agreement.

3.4.2 Strength of Players and other Interpretations

The parameters Ti and Tj can also be interpreted as measurements for comparison of strength

between the players. This is because as seen, the one who concedes with positive probability

at time t = 0 is decided by ri and zi. Thus, an interpretation of the game in equilibrium

could be that of a race between the two players - whoever reaches reputation 1 first being

the winner. Thus, if Ti > Tj, then Player j wins the race. However, in the equilibrium, we

know that both players achieve reputation 1 at the same time. Thus, we interpret that this

is achieved through a boost at the very beginning by Player i, by having concession as a

possible strategy at the start. This is showcased in Figure 3.1. Here at the very start, we

see that there is a huge jump in the reputation of Player 2. With the parameters as shown

in the figure, we find that T2 > T1. We can say that the player with lesser Ti has a greater

bargaining strength.
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Figure 3.1: A graph representing the change in the reputation of the players with time. A

point to note is the jump in reputation for Player 2 (represented by blue) at time 0.

However, as mentioned earlier, zi is not the only term that makes up Ti. When Ti > Tj,

we have

ln zi
ln zj

ri
rj

1− αj

1− αi

> 1

Thus not only does the initial reputation decide who can win the race, but also ri and

αi. From the inequation above, we can see that the players can compensate by having a

smaller ri, which translates to having more patience. They can also make their offer smaller

to compensate and catch up.
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Another observation that can be made is that while the concession rates affect the time

of reaching reputation one linearly, the initial reputation affects it logarithmically.

3.5 Equilibrium with Multiple Types

We now build upon the model and results obtained in the previous section in this current

section. We extend the existing model by allowing players multiple commitment(irrational)

types. In order to do this, we first examine the case where one player has only one possible

type and the other player has any number and then examine the case where both players

are allowed to have multiple types. This allows us to explore a more general version of

the problem from the previous section, thus allowing us to make some of the properties

from the previous section more robust. The significant results from the analysis of this

further generalized game are equilibrium properties that are independent of the probability

distributions πi. The significance of these results is that this distribution is an exogenous

one. Thus, the results turn out to be independent of the exogenous factors of the game.

For the multiple-type game, we have the following result:

Proposition 3.5.1. For any bargaining game B =
{
(Ci, zi, πi, ri)

2
i=1

}
a sequential equilib-

rium
((

µ1, F 1
α1,α2

)
,
(
µ2
α1 , F 2

α1,α2

))
exists. Furthermore, all equilibria yield the same distri-

bution over outcomes.

We give the intuition of the proof for the above proposition. As outlined earlier, we

begin by examining the case where Player 1 has only one commitment type and Player 2 has

multiple types. We represent the probability that Player 1 is irrational by p ∈ (0, 1). We have

C1 = {α1}. Thus, µ1(α1) = 1. Thus, at time t = 0, Player 1 will make the offer α1. Player

2 has to possible strategies to play: concede at time 0 with a non-zero probability (play D)

or play some α2 ∈ C2, where α1 +α2 > 1. Similar to the previous model, there is a constant

rate of concession for both players at all times given by λi =
rj ·(1−αi)

(αj+αi−1)
. Let us assume that

Player 1 does not concede at t = 0. Then we know that Player 1’s reputation reaches 1 at

time T1 =
(− log x)

λ1
. Similarly for Player 2 we have T2 = − 1

λ2
log z2π2(α2)

z2π2(α2)+(1−z2)µ2
α1

(α2)
.

In order for Player 2 to be able to choose to make an offer α2 at t = 0, it is obvious that

T1 ≥ T2. If this inequality is strict, then player 1 must concede with positive probability at
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time 0 so that conditional on not conceding the probabilities of irrationality reach 1 for both

agents simultaneously. That is,

1

λ1

log
z1

z1 + (1− z1) (1− d)

=
1

λ2

log
z2π2 (α2)

z2π2 (α2) + (1− z2)µ2
α1

(α2)

Here, d is the probability that Player 1 concedes at time 0. Given that the utility expression

follows from the previous section as well, it is clear that the payoff of Player 2 if they are of

type α2 is increasing in d. This means that Player 2 obtains a payoff greater than 1 − α1

whenever d > 0. If the strategy of Player 2 is to be an equilibrium strategy, it is clear that

this must be a mixed strategy equilibrium. This means that the probabilities would have

to be distributed so that for every type present in the strategy profile, the resulting payoff

must be the same. Due to this, the distribution and hence the strategy become unique.

3.6 Relation between the Rubinstein model and the

Current Model

Proposition 3.6.1. For any bargaining game Bn =
{
(Ci, z

i
n, πi, ri)

2
i=1

}
be a sequence of

continuous-time bargaining games.

If (a) lim z1n = lim z2n = 0, lim z1n
z1n+z2n

∈ (0, 1) and (b) vin is the sequential equilibrium

payoff for Player i in the game Bn

(
where vi =

r1
ri+rj

)
, then lim inf vin ≥ vi. (vimax{α ∈

Ci ∪ {0}|α < vi})

Proof. Without loss of generality, assume that
(
µ1
n, µ

2
α2,n

)
converges to some

(
µ1, µ2

α2

)
.

Assume the following:

1. µ1 (α1) > 0

2. α1 >
r2

r1+r2

3. α2 <
r1

r1+r2
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Consider the situation where α1, α2 are the demands by the players at the time t = 0.

Let p1 be the conditional probability that Player 1 does not concede to Player 2. Then,

we know that p1 solves:

log π̄1 (α1)

r2 (1− α1)
=

log π̄2
α1

(α2)

r1 (1− α2)

where

π̄1 (α1) =
z1π1 (α1)

z1π1 (α1) + (1− z1) p1
and

π̄2
α1

(α2) =
z2π2 (α2)

z2π2 (α2) + (1− z2)µ2
α2

(α2)

that is

γ1
γ2

=

log

(
1 +

(1−z1)p1
z1π1(α1)

)
log

(
1 +

(1−z2)µα2 (α2)

z2π2(α2)

) where γi =
ri

1− αi

From assumption 2 and 3, γ1/γ2 > 1.

But since µ1 (α1) > 0 and z1 and z2 are converging to 0 at the same rate, p1 must converge

to 0 as well. If the conditional probability of 1 not conceding after (α1, α2) is realized, is

going to 0, the unconditional probability of conceding must go to µ1 (α1).

Now, Player 1 must accept the offer of Player 2 with probability µ1 (α1).

Thus, by choosing any α2 < r1/ (r1 + r2) player 2 can guarantee that his opponent

concedes immediately if he is rational and has initially demanded α1 > r2/ (r1 + r2). If 1

has demanded α1 < r2/ (r1 + r2), then 2 can guarantee at least r1/ (r1 + r2) by accepting

this demand. Hence 2 can guarantee a payoff of

v2 = max

{
α2 ∈ C2 | α2 <

r1
r1 + r2

}
A similar argument establishes that player 1 can guarantee v1.
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From the above result, it is clear that if the space of commitment types is sufficiently

rich for both players, then Player i’s equilibrium approaches the limit of v1, which would be
r2

r1+r2
, the payoff obtained at the equilibrium by the same player in the Rubinstein bargaining

model. Thus, we see that filling up the strategy space and making offers as frequently as

possible eliminates the delay inherent to this model.
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Chapter 4

Conclusion

This thesis has covered the study of the phenomenon of bargaining under the framework of

game theory, in its many realms and approaches. The equilibrium payoffs discussed in all of

these models are essentially the ideal payoffs in those particular types of games. However,

as seen throughout this thesis, it is also important to note that the Nash Solution provides

the most ideal solution to a bargaining problem, with the equilibrium only depending on

the players’ preferences and not going into any details of the negotiation processes while

maintaining complete information throughout. We see how changing the situation would

call for changes in the models with the K-S solution and the Rubinstein model. Finally,

we explored the model of reputational bargaining and the results of the initial paper from

Abreu and Gul. Thus, throughout this thesis, we have built up on the fundamentals of the

field, placing us in a position to understand recent developments.

This thesis, however, does not include many applications and extensions of reputational

bargaining and the apparent future background would be to gain relevant fundamental knowl-

edge in the field of Economics and begin exploring extensions of reputational bargaining,

which is where the field is currently located.
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dman. Cham: Springer International Publishing, 2022, pp. 35–60.

[4] Ehud Kalai and Meir Smorodinsky. “Other solutions to Nash’s bargaining problem”.

In: Econometrica: Journal of the Econometric Society (1975), pp. 513–518.

[5] Jonathan Levin. Bargaining and Reputation. 2006.

[6] John Nash. “Two-person cooperative games”. In: Econometrica: Journal of the Econo-

metric Society (1953), pp. 128–140.

[7] John F Nash Jr. “The bargaining problem”. In: Econometrica: Journal of the econo-

metric society (1950), pp. 155–162.

[8] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.

Princeton: Princeton University Press, 2004.

[9] Martin J Osborne and Ariel Rubinstein. Bargaining and markets. 1990.

[10] Ariel Rubinstein. “Perfect equilibrium in a bargaining model”. In: Econometrica: Jour-

nal of the Econometric Society (1982), pp. 97–109.

[11] Avner Shaked and John Sutton. “Involuntary unemployment as a perfect equilibrium

in a bargaining model”. In: Econometrica: Journal of the Econometric Society (1984),

pp. 1351–1364.

35


	8d6d744238f4fdf43b3e7a6cfef066eaca40b0ce6c29c827a34c18ab8180c3ff.pdf
	10124842ba24dbf42d5ab885d54014d08dede9d4796760fd5d9da6eed8b5e80a.pdf
	8d6d744238f4fdf43b3e7a6cfef066eaca40b0ce6c29c827a34c18ab8180c3ff.pdf
	10124842ba24dbf42d5ab885d54014d08dede9d4796760fd5d9da6eed8b5e80a.pdf
	8d6d744238f4fdf43b3e7a6cfef066eaca40b0ce6c29c827a34c18ab8180c3ff.pdf

