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Abstract 

 

Leishmania, categorized as a neglected tropical ailment, is instigated by a protozoan 

belonging to the leishmania genus and is transmitted through sandflies. This disease 

imposes a significant global health burden, particularly in regions with limited access 

to healthcare facilities. The parasite undergoes two distinct stages of development: 

amastigote and promastigote, each playing pivotal roles in the infection process. 

Various species of sandflies, including Sergentomyia and Phlebotomus, serve as 

vectors for disease transmission. This study addresses the challenges encountered in 

drug discovery for leishmaniasis, emphasizing the critical need for effective and safe 

treatments. Presently available therapeutics exhibit limitations, including adverse side 

effects and the emergence of drug-resistant strains. Moreover, the pharmaceutical 

industry's market-driven approach has led to a dearth of innovations for neglected 

tropical diseases like leishmaniasis.       

  To confront this issue, we propose an innovative approach combining 

machine learning with cheminformatics to classify drugs as either active or inactive 

against leishmania promastigote. The study leverages a dataset comprising 65,057 

molecules sourced from the PubChem database, employing the Alamar Blue-based 

assay to assess their susceptibility to various drugs. Molecular fingerprints, derived 

from Simplified Molecular Input Line Entry System (SMILES) notations, are employed 

for data encoding. Three distinct types of fingerprints, namely Avalon Fingerprint, 

MACCS Key Fingerprint, and Pharmacophore Fingerprint, are utilized to train machine 

learning models. These models aim to accurately categorize molecules according to 

their characteristics and chemical structure, potentially revolutionizing the approach to 

drug discovery for leishmaniasis. The study's significance lies in its potential to 

expedite the drug discovery process, address the global impact of leishmaniasis, and 

serve as a model for tackling other neglected tropical diseases. 
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Chapter 1 Introduction 

 

1.1 Leishmaniasis 

Leishmaniasis is a neglected tropical disease. The Trypanosomatidae family of 

protozoa, notably the genus Leishmania, is responsible for this disease. It develops 

into two stages: promastigote and amastigote. Promastigote are an extracellular form 

that adheres to the microvilli of insects, whereas amastigotes mostly infect the 

lysosomal vacuoles of phagocytic cells. Various species of sandflies serve as vectors 

for disease transmission. Among them, Sergentomyia and Phlebotomus are the most 

common vectors responsible for transmitting the Old World disease. (Steverding, 

2017)           

 Adult sandflies, much smaller in size than even small mosquitoes, are prone to 

dehydration, thus they thrive in moist climatic conditions. This explains the distribution 

of the disease in areas with high humidity. Both male and female sandflies feed on 

plant juices for carbohydrates, but only female sandfly stand in need of a blood meal. 

It is this process during which the protozoa are transmitted to the host. 

 The disease is endemic to regions in Asia, South and Central America, 

Northern Africa, the Middle East, and the Mediterranean(Alvar et al., 2012) .As only 

female sandflies require a blood meal, it is during this feeding that the parasites of 

Leishmania are either passed on to the host or acquired by the fly. The fly uses 

specialized mouthparts to create a small wound in the skin and then draws blood from 

injured capillaries. This is how promastigotes enter the foregut of the sandfly and begin 

replication.(Handman and Bullen, 2002; Rogers et al., 2002; Torres-Guerrero et al., 

2017) When the sandfly feeds on another host, which can include canines, humans, 

marsupials, or rodents, it transmits the disease.(Steverding, 2017) Once the protozoa 

gain access to the host, they enter the phagolysosomes. Depending on the subtype 

of cell infected, cutaneous or visceral leishmaniasis can occur.     

 In cutaneous leishmaniasis, the parasite infects resident macrophages in the 

skin and begins replicating. Once each compromised cell is filled with amastigotes, it 

ruptures, releasing them and thus infecting neighbouring macrophages. Visceral 

Leishmaniasis is caused by amstigotes that transfer hematogenously to the 
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mononuclear cells in the spleen, liver, bone marrow, and intestinal lymph 

node(Steverding, 2017) 

 

1.2 Motivation 

1.2.1The global impact of leishmaniasis: 

Leishmaniasis, according to a study, ranks as the ninth most significant global health 

burden(Alvar et al., 2012). This disease is prevalent in 98 countries and three 

territories spanning five continents. Government data, “indicates an annual occurrence 

of over 58,000 cases of visceral leishmaniasis and 220,000 instances of cutaneous 

leishmaniasis. Estimates propose that there are approximately 0.7 to 1.2 million cases 

of cutaneous leishmaniasis and 0.2 to 0.4 million cases of visceral leishmaniasis 

reported each year”(Alvar et al., 2012). A mere six countries contribute to more than 

90% of all global instances of visceral leishmaniasis.: Bangladesh, India, Brazil, 

Sudan, and South Sudan. As per the report, the mortality rate for visceral 

leishmaniasis in Brazil was 7.2% in 2006, whereas in India it was 1.5% from 2004 to 

2008. In Nepal, the rate was 6.2%(2004-2008),and in Bangladesh, it was 2.4%(2004-

2008)(Alvar et al., 2012). 

 

1.2.2 The Challenges in Drug Discovery for Leishmaniasis 

Unfortunately, leishmaniasis predominantly afflicts impoverished nations. More than 

90 percent of the mucocutaneous instances are concentrated in nations including  

Brazil, Ethiopia,Peru, and Bolivia (Boakye et al., 2005; Maxfield and Crane, 2023). To 

date, there remains a dearth of both effective and safe treatments for leishmaniasis. 

Profit-driven entities, such as pharmaceutical companies, not only seek financial gain 

but also aim to recoup the expenses associated with drug discovery and development. 

Consequently, these companies have redirected their focus towards innovating drugs 

for diseases prevalent in high-income regions. This market-oriented approach has led 

to a grievous imbalance, neglecting diseases of paramount importance to developing 

countries. From 1975 to 2004, a total of 1556 new molecular entities received 

approval, with only 21 (a mere 1.3%) being developed for tuberculosis and other 

neglected tropical diseases(Kameda, 2014; Weng et al., 2018). 
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Medications such as antimonial compounds, meglumine antimonate that have been 

used for more than 70 years, exhibit serious adverse side effects. Additionally, their 

treatment exposure is extensive, leading to the rapid development of strains that are 

antimonial-resistant. However, alternative medications such as amphotericin B (as 

deoxycholate), pentamidine, and liposome based formulations are recommended. 

Yet, they come with severe toxicity and are expensive. The sole orally active treatment, 

which received approval in 2014 and was initially designed for cancer treatment, 

demonstrates effectiveness against infections caused by L. panamensis, L. 

braziliensis, and L. guyanensis (Dorlo et al., 2012; Monge-Maillo and López-Vélez, 

2015). However, there is limited data regarding the efficacy of miltefosine against Old 

World leishmaniasis ((Haldar et al., 2011; Kevric et al., 2015; Monge-Maillo and López-

Vélez, 2015; van Griensven et al., 2016))Due to the restricted availability of effective 

therapeutics against leishmaniasis, there is a substantial disease burden with an 

escalating development of resistance. Strategies aimed at addressing this issue are 

faltering in their efforts to introduce new drugs, leading to a widening gap in available 

therapeutics. 

 

1.3 Significance of the Study. 

Combining machine learning with cheminformatics for classifying drugs as active or 

inactive against leishmaniasis holds significant importance for several reasons: 

A) This study addresses leishmaniasis, a neglected tropical disease that poses a 

global burden, particularly affecting impoverished and vulnerable populations.(Alvar et 

al., 2012) It is prevalent in regions with limited access to healthcare facilities. The 

application of machine learning aims to streamline the research and development 

process of therapeutics in a economical way, revolutionizing the approach to drug 

discovery for leishmaniasis. 

B) This approach significantly reduces the time required for the drug discovery and 

development process  
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given the leishmania parasite's  complex life cycle and the diverse range of disease-

causing species, traditional methods of drug discovery are time-consuming and 

resource-intensive.(Pushpakom et al., 2019) By utilizing machine learning with large 

datasets to analyze patterns and relationships in molecules, the process becomes 

faster. This accelerated pace aids in controlling the further spread of the disease and 

alleviating human suffering. 

C) Insights gleaned from these studies serve as a testament to the potential of 

combining machine learning with chemoinformatic for drug discovery. (Pushpakom et 

al., 2019)Consequently, these methods and approaches can be extrapolated to 

address other global health challenges posed by various diseases. 

1.4 Objective: 

This study aims to utilize three distinct types of molecular fingerprints to train a range 

of machine learning models. The objective is to differentiate molecules as either active 

or inactive against leishmania promastigote. The ultimate aim is to develop a reliable 

classifier proficient in precise categorization of molecules, relying on their chemical 

composition and characteristics. 

- Train a machine learning model using 65,057 molecules. 

- Utilize different types of fingerprints for each molecule. 

- Assess the effectiveness of different machine learning models separately for each 

fingerprint type. 

- check the performance of the best performing model on the unseen data(FDA 

approved drugs). 
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Chapter 2 Materials and Methods  

 

                                    Figure 1 Methodology 

2.1 Resources and tools: 

The entire study was conducted within a Kaggle notebook, utilizing Python version 

3.10. The RDKit library, version 2023.3.3, was employed for gathering molecular 

fingerprints. Additionally, data visualization was facilitated by the use of Matplotlib 

(version 3.7.2) and Seaborn (version 0.12.2). Fundamental libraries such as NumPy 

and Pandas were extensively utilized throughout the project. 

2.2 Dataset: 

The dataset comprises a list of 65,057 molecules sourced from the PubChem 

database, specifically referenced as AID 1063. This data originates from an 

experiment where an Alamar Blue-based assay was employed to assess the 

susceptibility of Leishmania parasites to various drugs. The assay yielded a binary 

outcome, distinguishing between "antileishmanial" (active) and "leishmanial" (inactive) 

states, representing the growth and viability of the Leishmania parasite. 1 denotes 

active compound and 0 denotes inactive compound.47427 compounds are inactive 

and 17630 compounds are active. Figure(1) is the graphical representation of data 
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distribution. List of Food and Drug Administration (FDA) approved was taken from 

github. 

 

 

 

 

              

 

 

 

 

                                            Figure 2 Graphical representation of data 

 

2.2.1 Alamar blue-based assay: 

"The Alamar Blue assay is mainly employed for studying the in vitro cytotoxicity of 

compounds(Fields and Lancaster, 1993; Ahmed et al., 1994). This method relies on 

metabolism. as indicated by its name, It is based on a blue-coloured compound that 

is non-fluorescent known as resazurin, which functions as a fluorometric redox 

indicator. Once taken up by the cell, resazurin undergoes reduction in the cell's 

reducing environment, transforming into the fluorescent compound resorufin. This 

conversion process is facilitated by diaphorases present inside the cell, in conjunction 

with NADH or NADPH as the reductant(O’Brien et al., 2000). Resorufin emits a bright 

red coloured fluorescence with an range of emission between 580-610nm and an 

excitation of range 530-570nm. The intensity of this fluorescence is measured to 

determine cell viability. Additionally, absorbance at 570nm, using 600nm as a 

reference, can also be employed for reading the test. 
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2.3 Data encoding 

The chemical structures of the molecules were encoded using the Simplified Molecular 

Entry Line System (SMILES). Subsequently, these SMILES notations were 

transformed into three distinct types of fingerprints: Avalon Fingerprint, MACCS Key 

Fingerprint, and Pharmacophore Fingerprint. The dataset was initially partitioned into 

a training set of 70% and a temporary set of 30%. The test and validation sets were 

made by further splitting of a temporary set, each receiving 50% of the data. This 

approach ensures a comprehensive evaluation of the model's performance. 

2.3.1 SMILES: 

The Simplified Molecular Input Line Entry System (SMILES) is a type of a notation that 

enables users to represent the structure of a molecule. this format of the molecule can 

be interpreted by computers.(Alvar et al., 2012) It adheres to five fundamental syntax 

rules for representing a molecule. These rules are as follows: 

Simple Chains:                    

The simple chain structure is represented by combining bond symbols and atomic 

symbols. The software comprehends the potential number of connections each atom 

can make, considering all the elements permitted in SMILES notation. In this method, 

molecules are represented without explicitly including hydrogen atoms. If the bonds 

represented by SMILES notation do not appear to be sufficient, it is assumed that 

these connections are satisfied by hydrogen atoms.   

For example: 

CC          CH3CH3   Ethane 

CBr         CH3Br     Bromomethane 

Atoms and Bonds:               

SMILES represents atoms and bonds using their respective atomic symbols. Aromatic 

atoms are denoted by uppercase letters, while non-aromatic atoms are represented 

by lowercase letters. If the symbol of an atom contains more than one alphabetic then, 

the 2nd alphabetic must be in lowercase. For instance, in SMILES notation, "CC" 

implies that 2 non-aromatic atoms are attached by a single bond. By default, single 

bonds are assumed. The same convention applies for other types of bonds as well. 
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Following are the bond representation: 

Single bond                       ( - ) 

double bond                      ( = ) 

Aromatic bond                   ( * ) 

Triple bond                        ( # ) 

Disconnected structures    ( . ) 

Rings:             

In SMILES notation, the opening and closing of a ring are indicated by numbers. If 

there are multiple rings, they are distinguished by representing each ring with different 

numbers. When a ring closure is represented by double bond,(-) the symbol of bond 

is placed prior to the number denoting ring closure. For instance, in the SMILES string 

"C1CCCC1", the first carbon is assigned the number one and is connected to the last 

carbon by a single bond. The last carbon is also numbered as one. 

 

 

Some more examples: 

C1OC1CC                 Ethyloxirane 

c1cc2ccccc2cc1        Napthalene. 

Branches:            

In a molecular chain,a branch is denoted by enclosing the SMILES symbol(s) for the 

branch within parentheses. within the parentheses,string is positioned immediately 

after the atomic to which it is attached. symbol directly follows the left parenthesis, If 

the branch is connected by a double or triple bond, 

Example: 

CC(CC)C                      2 Methylbutane 

c1c(N(=O)=O)cccc1      Nitrobenzene 

Charged Atoms:          
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For charged atoms the brackets are placed after the atom .its atomic charge is shown 

inside the closed bracket. 

For example:          

CCC(=O)O{-}                       propanoic acid in the ionized form. 

c1ccccn{+1}1CC(=O)O       1-Carboxylmethyl pyridinium. 

 

3.3.2 MOLECULAR FINGERPRINTS: 

A molecular fingerprint is a condensed, mathematical representation of a molecule's 

structure. It encodes crucial structural characteristics, patterns, and properties in a 

format conducive to computational analysis. These fingerprints play a vital role in 

cheminformatics and computational chemistry, supporting tasks like similarity 

analysis, quantitative structure-activity relationship (QSAR) and virtual screening, 

modeling. They encapsulate information which tells if the specific substructure is 

present or absent, as well as various physicochemical properties of the molecule. In 

summary, a molecular fingerprint serves as a distinctive numerical pattern or bitstring, 

acting as a unique identifier for a molecule. This enables efficient comparison and 

analysis across extensive datasets of chemical compounds. Depending on the specific 

application, different types of fingerprints may emphasize varying aspects of a 

molecule's structure or properties. 

Avalon Fingerprint:  

Information about a molecule's characteristics and the existence or lack of particular 

chemical substructures is encoded in the Avalon fingerprint.. These substructures 

encompass both aromatic and non-aromatic rings, functional groups, and other 

molecular motifs. Represented as a fixed-length bit vector consisting of 0s and 1s, 

where each bit denotes the existence or lack of a particular substructure. Specifically, 

a bit is set to 1 if the corresponding substructure is present, otherwise, it is set to 0. 

Moreover, the Avalon fingerprint provides insights into the way atoms are  arranged in 

a space within a molecule, including considerations of chirality. It also encapsulates 

details about atom connectivity, bond arrangements around atoms, bond types, and 
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hydrogen bonding sites. This information is pivotal in comprehending the molecule's 

biological activity. 

3D Pharmacophore Fingerprint:  

The 3D pharmacophore fingerprint encodes comprehensive information regarding the 

nature and 3D arrangement of chemical functionalities within a ligand. This 

encompasses characteristics such as aromatic rings, hydrophobic areas, hydrogen 

bond donors, hydrogen bond acceptors, as well as positively and negatively charged 

ionizable groups. Specifically, when it comes to hydrogen bonds and aromatic 

interactions, it provides details about the directional preferences of these features. To 

delve into the details, let's consider 2 features of pharmacophore fingerprint denoted 

as A and B. By takin into account every conceivable pairing of two or three features, 

along with two distance bins, we can discern several scenarios. 

Three pairs (BB, AA, and AB) and four triplets (BBB, AAA, AAB, and ABB) may be 

created by combining Features A and B. The first bin (0), which indicates two or less 

bonds, and the second bin (1), which indicates more than two bonds, may be used to 

classify the distance between these feature pairs. This suggests that two bits describe 

a single two-point pharmacophore. Due to the presence of three inner distances, these 

pharmacophores are represented by eight bits. These can fall within either the first or 

the second distance bin. Altogether, 38 bits are employed to represent the complete 

signature. 

                 

                           Figure 3 Pharmacophore print generation (Warszycki et al., 2021) 
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MACCS Fingerprint:   

The Molecular ACCess System (MACCS) key fingerprints are utilized to measure 

molecular similarity and operate within a 2D structural framework. Each feature in 

the fingerprint is represented by either '1' or '0', where ‘1’ denotes the presence and 

‘0’ denotes the absence of specific substructures. These fingerprints represent 

whether specific pre-defined structural patterns or substructures are present or not. 

There exist two sets of MACCS keys: one with 960 keys and the other with 166 keys. 

These keys account for the count of substructures, encompassing a variety of non-

hydrogen atoms (Maggiora et al., 2014).To calculate how similar two molecules are 

to one another, the Tanimoto coefficient is used. This coefficient is defined as the 

ratio of the number of shared "1" bits to the total number of "1" bits present in at least 

one of the fingerprints.  

      

Tanimoto (A, B) = (A ∩ B) / (A ∪ B) 

A: set of “1 ” bits in the fingerprint of a molecule A. 

B: set of “1 ” bits in the fingerprint of molecule B. 

A ∩ B: number of shared “1” bits. 

A ∪ B: total number of “1” bits in A or B. 

 

 

 

Figure 4 MACCS Key representation 
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2.4 MACHINE LEARNING:  

Our study encompassed the implementation and evaluation of four distinct machine 

learning algorithms. These models were meticulously trained utilizing molecular 

fingerprints as inputs, with the aim of effecting assigning molecules to either the active 

or inactive category through a binary classification process. To diversify our approach, 

we employed three distinct types of fingerprints: MACCS key fingerprint, Avalon 

fingerprint, and pharmacophore fingerprint. The algorithms selected for this study 

comprised Random Forest (RF), Gradient Boosting (GB), and Decision Tree (DT), 

each chosen for their unique characteristics and proven efficacy in similar 

classification tasks. Data was split into train (70%) test(15%) and validation(15%) 

,followed by balancing that was done using SMOTE(Synthetic minority oversampling 

technique).            

 A comprehensive training regimen was undertaken, involving the application of 

each of the aforementioned algorithms to all three types of fingerprints. This rigorous 

approach was undertaken to ensure a robust evaluation of their performance across 

diverse input data. To test the model, unseen data was given to the trained Random 

forest model. The RF model, previously trained on a separate dataset, was applied to 

the FDA-approved drugs dataset. This allowed us to assess the model's predictive 

capability on previously unseen compounds.To quantitatively assess the models' 

performance, we calculated key metrics including accuracy, precision, F1 score, and 

Area Under the Curve (AUC) for all combinations of algorithms and fingerprints. We 

employed box plots, heatmaps, and bar graphs to provide clear and intuitive 

visualizations of the performance metrics. These visual aids not only facilitate a rapid 

grasp of the relative performance of different models, but also serve as valuable tools 

for conveying our results effectively to a wider audience. 

2.4.1 Machine learning algorithms: 

Random Forest:   

One of the method of supervised learning is Random Forest. It is based on the idea of 

ensemble learning, which combines several classifiers to solve a challenging issue 

and enhance the model's functionality. To improve the dataset's predicting accuracy, 

Random Forest utilizes multiple decision trees on different parts of the input data, 

subsequently combining their outcomes. Based on the majority votes of these 
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predictions, the Random Forest algorithm uses the predictions from these several 

decision trees to decide the final result. With the accuracy increases with the number 

of trees in the forest.Moreover, it effectively prevents the model from overfitting.In 

addition to its high accuracy and overfitting prevention capabilities, Random Forest 

excels in handling large datasets with high dimensions. 

Working of Random Forest Algorithm:  

Bagging, exemplified by techniques like Random Forest, begins with the creation of 

different training subsets from the sample dataset. These subsets are formed by row 

sampling. This selection results in what is termed Bootstrap samples, drawn from the 

original data. Following this, models are created independently for each bootstrap 

sample through raining. This step involves training each model on its respective 

bootstrap sample. Consequently, results are generated for each model.To determine 

the final output, the results from all the models are combined through a process called 

majority voting. This entails selecting the outcome that is most commonly predicted. 

This process of merging outcomes determined by a majority vote to generate the final 

output is known as aggregation. 

 

                                                        Figure 5 workflow of Random Forest classifier 
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DECISION TREE 

One of type of supervised learning technique is the decision tree. It builds a structure 

like a tree, beginning with the root node and continuing into branches; this is how it 

gets its name. It can be applied to regression issues as well, albeit its main usage is 

in classification problems. Essentially, it is a tree-structured classifier. The dataset's 

characteristics are represented by the internal nodes of this tree, decision rules by the 

branches, and outcomes by each leaf node. A decision tree has two different kinds of 

nodes: decision nodes and leaf nodes. Decision nodes possess multiple branches and 

are instrumental in making decisions. Conversely, leaf nodes do not have any further 

branches and they hold the output of the decision. The dataset contains features that 

serve as the basis for the decisions or tests performed. The fundamental principle it 

operates on involves posing questions with binary answers (yes or no). Depending on 

the response, it splits the tree into subtrees.The algorithm employed for building a tree 

is known as the Classification and Regression Tree algorithm (CART). The root node 

of the Decision Tree is where the tree starts for a classification . It compares the values 

of the root attribute with the real dataset's equivalent attribute. It follows the branch 

that goes to the next node based on this comparison. This procedure keeps on until it 

reaches a leaf node. 

 

                                         Figure 6 workflow of Decision tree classifier 
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To outline the steps: 

o The tree starts with the root node, denoted as S, which encompasses the entire 

dataset. 

o By employing an attribute selection measure, the best attribute in the dataset 

is identified. 

o To obtain the potential values for this best attribute, S is divided into subsets. 

o A decision tree node is then generated, containing the chosen best attribute. 

o Utilizing the subset of the dataset created in step 3, a new decision tree is 

formed. This process iterates until a stage is reached where further 

classification is not possible, culminating in the final node referred to as the leaf 

node. 

Gradient Boosting: 

Gradient boosting combines several weak learners to create a strong learner, making 

it one of the most powerful tools in machine learning algorithms.Using gradient 

descent, each new model in this method is trained to minimize the loss function—such 

as cross entropy—of the preceding model. The approach calculates the gradient of 

the loss function in relation to the current ensemble predictions for every iteration.. It 

then proceeds to train the new model. The predictions from this new model are added 

to the ensembled predictions of the previous models, and the process iterated to meet 

the specified criteria.(Li) 

Algorithm: 

To understand it stepwise: 

We begin with calculation of the error also called the residual(ri) . 

   ri= yi- F(xi) 

yi  is the value for the data point i.and F(xi) is the prediction made by the current model 

for the data point i. 

to fix the mistakes made by the previous model we create a new model . 

hm (xi)=ri where hm (xi) is the prediction of the new model for datapoint i in round m. 
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ri  is the residual calculated for the i data point. 

We combine model by adding the predictions from the corrective models to the 

predictions of the previous model. The overall improved predictions is represented by 

Fm+1(xi) =Fm(xi)+ hm(xi) 

Where, Fm+1(xi) is combined predictions hm(xi),for the i datapoint in m+1 round. 

Fm(xi) is the prediction of current ensemble of models for i datapoint in m round. 

hm(xi), is the prediction of the new model in m round for the datapoint i. 

 

Multilayer Perceptron: 

The input layer, output layer, and hidden layer are the three layers that make up the 

Multilayer Perceptron.It serves as an extension of the feedforward neural network. The 

input layer receives the signals, while the outer layer handles tasks such as 

classification and prediction.The Multilayer Perceptron's real computational engine is 

the arbitrary number of hidden layers positioned between the input and outer layers. 

Like a feedforward neural network, data moves from the input layer to the output layer. 

The backpropagation technique is used in the Multilayer Perceptron to train its 

neurons.. It is designed in a way that enables it to solve any continuous function. This 

architecture finds significant application in classification, prediction, recognition, and 

approximation (Abirami and Chitra, 2020). 

 

Figure 7 Working Pathway Multilayer Perceptron 
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The computation that takes place in the hidden layer and at every neuron at the output 

is as follows: 

O(x) =G(b(2))+ W (2)h(x)) 

h(x)= Φ(x)=s(b(1) +w(1)) 

here b1 and b2 are are bias vectors,   

W(1) and W(2) are weight matrices,  

G and s are activation functions. 

The set of parameters to learn is set theta which includes {W(1),W(2),b(1),b(2)}. 

Choice for s includes tanh function. That is tanh(a)=(ea-e-a) /(ea+e-a)  

Or the sigmoid function with sigmoid(a)=1/(1+e-a). 
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Chapter 3 Results 

 

3.1 AVALON FINGERPRINT: 

 

Table:1 Performance Metrics of Machine Learning Models Using Avalon fingerprint 

 

Models Avalon Accuracy Precision AUC F1-Score 

Random Forest 0.83          0.90          0.83       0.81 

Gradient Boosting 0.82          0.88          0.82       0.80 

Decision Tree 0.76 0.76          0.75       0.75 

Multilayer Perceptron 0.69 0.76          0.71       0.69 

 

The performance of 4 different types of machine learning models using Avalon 

fingerprints for predicting molecular activity is summarized in Table 1. Among the 

models, Random Forest exhibited the highest accuracy at 0.83, along with notable 

precision of 0.90, indicating a low rate of false positives. This model also 

demonstrated an AUC of 0.83, signifying its ability to effectively distinguish between 

active and inactive molecules. The F1-Score, which balances precision and recall, 

was measured at 0.81 for Random Forest. Gradient Boosting showed similar 

performance, with an accuracy of 0.82, precision of 0.88, AUC of 0.82, and F1-Score 

of 0.80. Decision Tree exhibited an accuracy of 0.76, along with precision and AUC 

values of 0.76 and 0.75, respectively. The F1-Score for Decision Tree was recorded 

at 0.75. Multilayer Perceptron, while demonstrating a lower accuracy of 0.69, 

showed a competitive precision of 0.76 and an AUC of 0.71. The F1-Score for 

Multilayer Perceptron was 0.69, indicating a balanced performance in terms of 

precision and recall. 
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Figure 8 Confusion Matrix for machine learning models using Avalon Fingerprint 

 

The confusion matrix in Figure 8 illustrates the performance of four machine learning 

models (Random Forest, Gradient Boosting, Decision Tree, and Multilayer 

Perceptron) applied to the Avalon fingerprint for predicting molecular activity. The 

matrix provides a detailed breakdown of the model's predictions, showing the number 

of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

instances. This allows us to assess the model's performance in classifying molecules 

as active or inactive.  
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PHARMACOPHORE FINGERPRINT: 

Table 2: Performance Metrics of Machine Learning Models Using Pharmacophore 

fingerprint 

 

         Models   Accuracy           Precision          AUC     F1-Score 

  Random Forest 0.82 0.87          0.82       0.81 

  Gradient Boosting       0.80             0.82           0.80       0.79 

  Decision Tree 0.71 0.73          0.72       0.70 

  Multilayer Perceptron      0.82            0.86          0.82        0.81 

 

The table presents the performance metrics of various machine learning models 

trained on the pharmacophore fingerprint for predicting molecular activity. Random 

Forest achieved an accuracy of 0.82, with a precision of 0.87, an AUC of 0.82, and 

an F1-Score of 0.81. Gradient Boosting demonstrated similar performance with an 

accuracy of 0.80, a precision of 0.82, an AUC of 0.80, and an F1-Score of 0.79. 

Decision Tree yielded an accuracy of 0.71, a precision of 0.73, an AUC of 0.72, and 

an F1-Score of 0.70. Multilayer Perceptron showcased competitive performance with 

an accuracy of 0.82, a precision of 0.86, an AUC of 0.82, and an F1-Score of 0.81. 

These metrics collectively provide a comprehensive assessment of the models' 

performance in classifying molecules based on the pharmacophore fingerprint. The 

high values for accuracy, precision, and AUC indicate robust predictive capabilities, 

demonstrating the efficacy of the pharmacophore fingerprint in this predictive 

modeling task. 
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Figure 9 Confusion Matrix for machine learning models using pharmacophore fingerprint 

    

 

MACCS FINGERPRINT: 

Table.3 Performance Metrics of Machine Learning Models Using MACCS fingerprint 

         Models   Accuracy           Precision          AUC     F1-Score 

  Random Forest 0.70 0.78          0.70       0.64 

  Gradient Boosting       0.71             0.71           0.71       0.71 

  Decision Tree 0.62 0.65           0.62       0.58 

  Multilayer Perceptron      0.71            0.70           0.71        0.71 

 

The models' performance was evaluated using a range of metrics including accuracy, 

precision, area under the curve (AUC), and F1-Score. Random Forest exhibited an 
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accuracy of 0.70, a precision of 0.78, an AUC of 0.70, and an F1-Score of 0.64. 

Gradient Boosting demonstrated consistent performance across metrics, achieving an 

accuracy of 0.71, a precision of 0.71, an AUC of 0.71, and an F1-Score of 0.71. The 

Decision Tree model showed slightly lower performance with an accuracy of 0.62, a 

precision of 0.65, an AUC of 0.62, and an F1-Score of 0.58. Similarly, the Multilayer 

Perceptron model achieved an accuracy of 0.71, a precision of 0.70, an AUC of 0.71, 

and an F1-Score of 0.71. These results provide a comprehensive assessment of the 

models' predictive capabilities, indicating that Gradient Boosting and Multilayer 

Perceptron models exhibited particularly robust performance across the evaluated 

metrics. 

 

Figure 10 Confusion Matrix for machine learning models using MACCS fingerprint 
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             Figure 11 AUC and F1 score comparison Across Different Fingerprint Types 

The box plots presented in Figure 11 illustrate the distribution of performance metrics, 

specifically the Area Under the Curve (AUC) and F1 Score, across different classifiers 

using the three types of fingerprints: MACCS, Avalon, and Pharmacophore. In the 

AUC box plot (Figure 11, left panel), it is observed that Random Forest consistently 

exhibits higher median AUC values compared to the other classifiers across all 

fingerprint types. Gradient Boosting also demonstrates competitive performance, 

particularly with Avalon and Pharmacophore fingerprints. Decision Tree shows slightly 

lower median AUC scores, while Multilayer Perceptron exhibits a wider spread of AUC 

values. 

Turning to the F1 Score box plot (Figure 11, right panel), similar trends are observed. 

Random Forest consistently achieves higher median F1 Scores,demonstrating its 

efficiency in striking a balance between recall and accuracy. Gradient Boosting 

performs well, especially with Avalon and Pharmacophore fingerprints. Decision Tree 

and Multilayer Perceptron show comparable performance, with slightly lower median 

F1 Scores.Overall, these box plots provide valuable insights into the comparative 

performance of classifiers across different fingerprint types. Random Forest emerges 

as a robust choice, particularly when combined with the Avalon fingerprint, 

showcasing its potential for accurate classification of active and inactive molecules 

against Leishmania."  
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                  Figure 12 Classifier Performance Comparison Across Different Fingerprint Types 

The subplots in Figure 12 provide a comprehensive comparison of classifier performance 

across three different fingerprint types 
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 Table 4. Predicted Probabilities of FDA Approved Drugs Against Leishmania 

The table presents the predicted probabilities of FDA approved drugs potentially 

exhibiting activity against leishmania. The listed drugs, including Tolbutamide, 

Difluprednate, Halobetasol Propionate, Pyrazinamide, Lidocaine, Pentoxifylline, 

Podofilox, Caffeine, Clobetasol, Fluorouracil, Lisdexamfetamine, and Mefenamic 

acid, are ranked based on their respective probabilities, suggesting their potential 

suitability for repurposing efforts against leishmania. 

 

 

 

 

 

 

 

 

 

 

Names Prob 

Tolbutamide 0.97 

Difluprednate 0.96 

Halobetasol Propionate 0.96 

Pyrazinamide 0.95 

Lidocaine 0.93 

Pentoxifylline 0.93 

Podofilox 0.92 

Caffeine 0.92 

Clobetasol 0.92 

Fluorouracil 0.92 

Lisdexamfetamine 0.92 

Mefenamic acid 0.92 
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Chapter 4 Discussion 

In this study, we conducted a comparative analysis of various machine learning 

algorithms for predicting leishmanial activity based on molecular fingerprints. It was 

observed that Random Forest exhibited high accuracy across all three fingerprints 

(Avalon, Pharmacophore, and MACCS). The Multilayer Perceptron demonstrated 

accuracy close to that of Random Forest, but it did not surpass it. Both Random Forest 

and Multilayer Perceptron appeared to outperform Gradient Boosting and Decision 

Tree in terms of accuracy, precision, AUC, and F1-Score. This could be attributed to 

the fact that Random Forest is an ensemble method, utilizing multiple decision trees 

for prediction. This allows it to capture intricate relationships within the data, which is 

crucial for classifying molecules based on their structure. Additionally, Random Forest 

is less susceptible to overfitting, providing an advantage. The size and quality of the 

data also play vital roles in the model's performance. Random Forest tends to be more 

resilient to noisy and incomplete data compared to other machine learning models, 

which could contribute to its higher accuracy.The performance of the machine learning 

models is influenced by the choice of the molecular fingerprint.   

 The accuracy on Avalon fingerprint is the highest among all the fingerprints, 

with the accuracy of the pharmacophore being slightly closer to that of Avalon. 

Notably, the precision is highest for the Avalon fingerprint. This can be attributed to 

the fact that, compared to the other two fingerprints, Avalon captures a wide array of 

structural features such as bond types, atom environments, and information about 

substructures. We can infer that the structural characteristics encoded by the Avalon 

fingerprint are relevant for predicting activity against Leishmania. This suggests that 

the presence of certain motifs or the arrangement of certain motifs in a molecule is 

linked to its biological activity against the Leishmania promastigote. Additionally, 

Avalon fingerprint allows for detailed analysis of the substructures present in a 

molecule, encoding information about specific molecular fragments. Certain ring 

structures or spatial arrangements may be particularly effective in interacting with key 

targets in the Leishmania parasite. It may be possible to gain information on the 

potential mechanism of compounds that are active and inactive against Leishmania 

by analysing the specific structural features highlighted by Avalon fingerprints. If a 



37 
 

certain set of substructures are consistently associated with high accuracy, it cannot 

be ruled out that they are involved in interactions with biological targets in the 

promastigote. This understanding of the association of specific structural elements 

with the highest activity against Leishmania allows for targeted lead optimization 

efforts. Further modifying or improving these key features may enhance the potency 

and efficiency of the compounds. This can be instrumental in developing new 

therapeutics. The higher precision shown by the Avalon fingerprints is a positive sign 

of the model's robustness, indicating a lower chance of falsely identifying inactive 

molecules as active. In the process of drug discovery, where false positives can lead 

to harmful and costly consequences, the precision metric demonstrates its importance. 

Given the high accuracy achieved by our trained Random Forest (RF) model, we 

sought to validate its performance on previously unseen data. To do so, we utilized a 

list of FDA-approved drugs obtained from a reputable source on GitHub.Upon 

subjecting this dataset to our RF model, we observed that the model accurately 

identified three drugs with a predicted probability of activity exceeding 0.92. This 

notable result underscores the robustness and reliability of our model in predicting the 

activity of pharmaceutical compounds.       

 All the findings align and support previous studies highlighting the importance 

of selecting appropriate molecular fingerprints for predictive modeling. This study 

conducted addresses the question of how different molecular fingerprints, when 

combined with machine learning algorithms, impact predictive modeling.The results 

highlight that with further research into feature engineering and in-depth analysis of 

the chemical features captured by each fingerprint type, we could uncover specific 

structural motifs that will influence the predictive task of the machine learning model. 

Using the knowledge of important structural motifs identified through Avalon 

fingerprints, further research can delve into scaffold hopping — identifying chemically 

distinct compounds that have similar biological activity against Leishmania, thereby 

increasing the scope of potential lead compounds.  

As for the result in Table (4), higher probabilities indicate a stronger confidence in the 

prediction, they do not inherently guarantee efficacy against leishmania. Consulting 

domain experts in parasitology or pharmacology is of great significance to validate the 

model's predictions. Their specialized knowledge can provide invaluable context and 

assist in deciphering the practical implications of the results.  
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