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Abstract

Let F be a totally real number field, r = [F : Q], and N be an integral ideal. Let
Ak(N, ω) be the space of holomorphic Hilbert cusp forms with respect to K1(N), weight
k = (k1, ... , kr) with kj > 2, kj even for all j and central Hecke character ω. For a fixed
level N, we study the behavior of the Petersson trace formula for the Hecke operators
acting on Ak(N, ω) as k0 → ∞ where k0 = min(k1, ..., kr) subjected to a given condition.
We give an asymptotic formula for the Petersson formula under certain conditions. As an
application, we generalize a discrepancy result (proved in 2020) for classical cusp forms
with squarefree levels by Jung and Sardari to Hilbert cusp forms for F with the ring of
integers O having odd narrow class number 1, and the ideals being generated by numbers
belonging to Z.

In the second part, we restrict ourselves to classical cusp forms i.e. the case F = Q.
We obtain a generalization for the discrepancy result in the context of levels (of the form
2a × b with b odd, a = 0, 1, 2) and the space of old forms. Then we get a similar kind
of lower bound for λp2(f) for an eigenform f . This is achieved as an application to an
asymptotic version for the Petersson formula.
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Statement of Originality

The main results of this thesis that constitute original research are Theorem 3.1.2, 4.1.1,
4.3.5, 4.3.9, 6.0.1, 6.0.3 and 6.1.3.

Lemma 3.0.1, 3.1.1, 3.2.1, 3.2.4, 3.2.5 of Chapter 3, Lemma 4.3.2, 4.3.3, 4.3.4 of
Chapter 4 and Lemma 6.1.1, 6.1.2 of Chapter 6 are original subsidiary results towards
proving the main results.
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List of Symbols

• The sets N,Z,Q,R denote the set of natural numbers, integers, rational numbers
and real numbers respectively.

• Let f, g be two real valued functions. We say

f = Oa,b,c(g)

or
f ≪a,b,c g

if there exists C(a, b, c) > 0 depending on a, b and c such that |f(x)| ≤
C(a, b, c)|g(x)| for all x. If C(a, b, c) is an absolute constant then we write

f = O(g)

or
f ≪ g.

• Let f, g be two real valued functions with g ̸= 0. We write f = o(g) if

lim
x→∞

f(x)
g(x) = 0.

1



2 Contents

• For a set A with finite elements, |A| denotes the cardinality of A.

• Let ∥x∥ denote the usual Euclidean norm of x ∈ Rr for r ∈ N. This means if
x = (x1, . . . , xr), then ∥x∥ =

√
x2

1 + · · · + x2
r.

• The dimension of the vector space F over Q is denoted by [F : Q].

• For a natural number n, ϕ(n) denotes the number of natural numbers less that n
that are coprime to n.

• Given n ∈ N, µ(n) denotes the mobius function evaluated at n.

• For a square matrix g of order n, det(g) denotes the determinant of the matrix g.

• Given a set S and a function f defined on S, f(S) = {f(s) : s ∈ S}.

• Given n ∈ N, d(n) or τ(n) denotes the number of positive divisors of n.

• Given a, b, c ∈ N, (a, b) denotes the gcd of a and b. Similarly (a, b, c) denotes the
gcd of a, b and c.

• For m,n ∈ N, δ(m,n) = 1 if m = n otherwise, δ(m,n) = 0.

• Sk(N) denotes the space of cusp forms of even integer weight k and level N .

• Sk(N)∗ denotes the space of newforms with weight k and level N .

• e(x) = e2πix for a given x ∈ R.
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Introduction

Let Sk(N) denote the space of cusp forms of even integer weight k and level N . Let
dim(Sk(N)) denote the dimension of the vector space Sk(N). The nth normalised Hecke
operator acting on Sk(N) is given by

Tn(f)(z) := n
k−1

2
∑

ad=n,d>0

1
dk

∑
b(mod d)

f
(
az + b

d

)

for (n,N) = 1. Let Fk(N) be an orthonormal basis of Sk(N) consisting only of joint
eigenfunctions of the Hecke operators Tn with (n,N) = 1. For f ∈ Sk(N), we have
Fourier expansion of f at the cusp ∞ which is given by

f(z) =
∞∑

n=1
an(f)n k−1

2 e2πinz.

Let λn(f) be the nth normalised Hecke eigenvalue of f i.e. Tn(f) = λn(f)f . Let Sk(N)∗

be the space of newforms with weight k and level N . Let T̃n be the restriction of Hecke
operator Tn from Sk(N) to its subspace Sk(N)∗. Let Fk(N)∗ be an orthonormal basis of
Sk(N)∗ consisting only of joint eigenfunctions of the Hecke operators T̃n.

3



4 1.1. Discrepancy results for λp(f)

1.1 Discrepancy results for λp(f )

Definition 1.1.1. Let µ be a probability measure on [a, b]. A sequence of real numbers
xn ∈ [a, b] is equidistributed with respect to the measure µ if for any [a′, b′] ⊂ [a, b],

lim
n→∞

|{m ≤ n : xm ∈ [a′, b′]}|
n

=
∫ b′

a′
dµ.

Definition 1.1.2. Let µ be a probability measure on [a, b]. A sequence of finite multisets
An with |An| → ∞ as n → ∞ are equidistributed with respect to the measure µ if for
any [a′, b′] ⊂ [a, b],

lim
n→∞

|t ∈ An : t ∈ [a′, b′]|
|An|

=
∫ b′

a′
dµ.

Let us consider the Sato-Tate measure given by

µ∞(x) := 1
π

√
1 − x2

4

if x ∈ [−2, 2]. In 2011, Barnet-Lamb, Geraghty, Harris, and Taylor proved the following
equidistribution result ( [BLGHT11]) for a non-CM newform in Sk(N)∗.

Theorem 1.1.3 (Barnet-Lamb, Geraghty, Harris, and Taylor).Let f ∈ Fk(N)∗ be a fixed
non-CM newform. The sequence {λp(f) : p prime, (p,N) = 1} is equidistributed (see
5.1.1) in [−2, 2] with respect to the measure µ∞.

In 1997, Serre considered a vertical Sato Tate conjecture by fixing a prime p and
varying N and k. Consider the measure given by

µp(x) := p+ 1
π

(
1 − x2

4

) 1
2

(√p+
√
p−1)2 − x2 = p+ 1

(√p+
√
p−1)2 − x2µ∞(x)

if x ∈ [−2, 2].

Theorem 1.1.4 (Serre).Let p be a fixed prime number. If Nl + kl → ∞ with (p,Nl) = 1
and kl even, then the sequence of multisets {λp(f) : f ∈ Fkl

(Nl)} are equidistributed (see
5.1.2) in [−2, 2] with respect to the measure µp.
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The study of the vertical distribution of Hecke eigenvalues λp(f) where p is a fixed
prime and f varies over suitable cusp forms goes back to the work of Sarnak [Sar87], who
derived the above law in the context of Maass cusp forms. Theorem 1.1.4 for the case
N = 1 was also proved by Conrey, Duke, and Farmer [CDF97]. The generalization of
Theorem 1.1.4 for the space of newforms Sk(N)∗ was also proved in [Ser97]. Let

µk,N := 1
dim(Sk(N))

∑
f∈Fk(N)

δλp(f)

and
µ∗

k,N := 1
dim(S∗

k(N))
∑

f∈F∗
k

(N)
δλp(f)

where δx is the Dirac measure at x.

Definition 1.1.5. Let µ1 and µ2 be two finite measures on a compact set Ω ⊂ R. The
discrepancy between µ1 and µ2 is given by

D(µ1, µ2) := sup{|µ1(I) − µ2(I)| : I = [a, b] ⊂ Ω}.

The discrepancies D(µk,N , µp) and D(µ∗
k,N , µp) have been well investigated ( [Gol04],

[MS09], [MS10]). In [Gol04], the bound

D(µk,1, µp) = Oϵ

(
1

(log k)1−ϵ

)

was obtained for any ϵ > 0 in the special case when N = 1 and k is a positive, even
integer. The above bound was sharpened and generalized in [MS09] for any positive N
with (p,N) = 1 as follows:

D(µk,N , µp) = O

(
1

log kN

)
. (1.1)

A similar upper bound can also be obtained for D(µ∗
k,N , µp). In [MS10], the following

bound was obtained:
D(µ∗

k,N , µp) = O
( 1

log kN

)
. (1.2)

The discrepancy bound in (1.1) was extended to Hilbert modular forms by Lau, Li, and
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Wang in [LLW14].

A natural question to ask in this context is whether one can get a lower bound for
the discrepancies D(µk,N , µp) and D(µ∗

k,N , µp). For a fixed squarefree level N Jung and
Sardari [JS20], obtained a sequence of weights kn with kn → ∞ such that

D(µ∗
kn,N , µp) ≫ 1

k
1
3
n log2 kn

. (1.3)

Firstly, they consider the following weighted variants of µk,N and µ∗
k,N .

For f ∈ Fk(N) (respectively Fk(N)∗), define

ωf := Γ(k − 1)
(4π)k−1 |a1(f)|2,

Hk(N) :=
∑

f∈Fk(N)
ωf ,

and
Hk(N)∗ :=

∑
f∈Fk(N)∗

ωf .

Further, for any interval I = [a, b] ⊂ [−2, 2], define

νk,N(I) := 1
Hk(N)

∑
f∈Fk(N)

ωf δλp(f)(I),

and
ν∗

k,N(I) := 1
Hk(N)∗

∑
f∈F∗

k
(N)

ωf δλp(f)(I). (1.4)

Before proceeding we would like to introduce the concept of weak convergence of mea-
sures.

Definition 1.1.6. Let Ω be a compact subset of R. A sequence of probability measures
µ̃n converges weakly to a measure µ̃ if for every continuous function f on Ω,

∫
Ω
f dµ̃n →

∫
Ω
f dµ̃.
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Theorem 1.1.7.Let xn ∈ [a, b] be a sequence of real numbers and

µ̃n = 1
n

n∑
i=1

δxn .

The sequence xn is equidistributed with respect to the measure µ if and only if µ̃n converges
weakly to µ.

Remark 1.1.8.By virtue of the above theorem, we see that the notion of equidistribution
of a bounded real sequence xn and weak convergence of an associated counting measure

µ̃n = 1
n

n∑
i=1

δxn

are equivalent.

In [JS20], Petersson’s trace formula is used to show that both νk,N and ν∗
k,N converges

weakly to µ∞ as k +N → ∞ with (p,N) = 1. Equivalently, for any continuous function
g : [−2, 2] → C,

lim
k+N→∞
(p,N)=1

k even

1
Hk(N)

∑
f∈Fk(N)

ωf g(λp(f)) =
∫ 2

−2
g(x) dµ∞(x),

and
lim

k+N→∞
(p,N)=1

k even

1
Hk(N)∗

∑
f∈F∗

k
(N)

ωf g(λp(f)) =
∫ 2

−2
g(x) dµ∞(x).

Then for a fixed squarefree level N , Jung and Sardari obtain a sequence of weights kn

with kn → ∞ such that
D(ν∗

kn,N , µ∞) ≫ 1
k

1
3
n log2 kn

. (1.5)

We now look at the following questions that naturally arise from the above theorems.

Problem 1. Can one also extend the above discrepancy results of [JS20] to Hilbert
modular forms?

This problem is addressed in Section 3 of Chapter 4. A result like equation (1.5) is
obtained with the help of an explicit asymptotic version of the Petersson trace formula
(Theorem 5.1.7), which is an important ingredient in [JS20]. This motivates us to get
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an asymptotic version of the Petersson trace formula analogous to Theorem 5.1.7 in the
context of Hilbert cusp forms.

Problem 2. Can we generalize Theorem 5.1.7 for the setting of Hilbert cusp forms?

We address this problem in Section 2 and Section 3 of Chapter 4.

1.2 Discrepancy results for higher prime powers

The vertical Sato Tate Theorem (Theorem 1.1.4) talks about the distribution of λp(f)
for a fixed prime p. The following theorem talks about the distribution of eigenvalues
λp2(f) for a fixed prime p. Let

µp2(x) := p+ 1
2π

1
(√p+

√
p−1)2 − (x+ 1)

√
3 − x

x+ 1

if x ∈ [−1, 3]. In 2009, Omar and Mazhouda using Lemma 5.2.2 showed the following
equidistribution result.

Theorem 1.2.1 (Theorem 1, [OM09]).Let p be a fixed prime and k > 0 a fixed even
integer. Then the sequence of multisets

{(λp2(f))f∈Fk(N)∗ : N ∈ N}

are equidistributed in [−1, 3] with respect to the measure µp2 .

The distribution for (λp3(f)), (λp4(f)) and (λpr(f) − λpr−2(f)) for r ≥ 2 has been
addressed by Tang and Wang in [TW16].

Let
µk,N,2 := 1

dim(Sk(N))
∑

f∈Fk(N)
δλp2 (f)

and
µ∗

k,N,2 := 1
dim(S∗

k(N))
∑

f∈F∗
k

(N)
δλp2 (f).

We now consider the discrepancy between the following measures. The discrepancies
D(µ∗

k,N,2, µp2) have been well investigated in [TW16].
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Theorem 1.2.2 (Theorem 1, [TW16]).Let N = 1. Then we have D(µ∗
k,N,2, µp2) =

O
(
(log kN)−1

)
.

Consider the following weight variants of µk,N,2 and µ∗
k,N,2 analogue to variants in

(1.4). Let

νk,N,2 := Γ(k − 1)
(4π)k−1

∑
f∈Fk(N)

|a1(f)|2δλp2 (f),

ν∗
k,N,2 := Γ(k − 1)

(4π)k−1

∑
f∈F∗

k
(N)

|a1(f)|2δλp2 (f).

Let us consider the measure
µ∞,2(x) = 1

2π

√
3 − x

1 + x

for x ∈ [−1, 3]. One can use Petersson’s trace formula to show that both νk,N,2 and
ν∗

k,N,2 converge weakly to µ∞,2 for any fixed even weight k and N → ∞ with (p,N) = 1
(see [OM09, Theorem 3]).

Problem 3. Can one get a discrepancy result like equation (1.5) for λp2(f) as well?

Theorem 6.1.3 gives us the required discrepancy result for D(νk,N,2, µ∞,2). This
is basically a generalization of Jung and Sardari’s lower bound for the discrepancy
D(νk,N,2, µ∞,2). This again necessitates the use of an asymptotic version of the Petersson
trace formula that is analogous to Theorem 5.1.7.

Problem 4. Can we generalize Theorem 5.1.7 for classical cusp forms with a better error
term? Can we include more levels along with N squarefree?

We answer it partially. More precisely, for level 1 we get a better error term. Our
result includes levels for which 8 ∤ N. Theorem 6.0.1 and Lemma 4.3.7 addresses Problem
4. This has been discussed in Chapter 6.

1.3 Kloosterman sums

We dedicate Chapter 3 to discuss Klooosterman sums specifically as the main term in
the asymptotic we obtain contains a Kloosterman sum. The nonvanishing of Klooster-
man sums plays an important role in obtaining an asymptotic discussed in Problems 2
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and 4. Along with the nonvanishing of the Kloosterman sum, an upper bound of the
Kloosterman sum is also necessary for the estimation of the Petersson trace formula. The
following lemma for the Kloosterman sum for number fields due to Knightly and Li is
helpful.

Lemma 1.3.1 (Knightly, Li).Let m1,m2 ∈ d−1, n ∈ Ô nonzero and c ∈ N̂ ∩ A∗
fin. Then

|SωN
(m1,m2;n; c)| ≤ Nm(n)Nm(c).

Problem 5. Can we get a sharp bound for local Kloosterman sums as given by Lemma
1.3.1? Can we get an upper bound like Weil bound for classical Kloosterman sum?

Theorem 3.1.2 gives a partial answer to the above problem. We also discuss the
nonvanishing aspect of Kloosterman sums in Chapter 3.

Organisation of chapters

The first chapter contains an overview of thesis problems with background and organi-
zation of chapters.

In the Second Chapter, we recall the setting of adelic Hilbert modular forms. In the
third Section, we discuss Hecke operators. The last Section is dedicated to Petersson’s
trace formula.

The Third Chapter is entirely dedicated to Kloosteman sums. We provide a sharp
upper bound for local Kloosterman sum. The non-vanishing of Kloosterman sum plays
an important role in subsequent chapters. Therefore results concerning non-vanishing
have also been included in the chapter. The upper bound has been discussed in the first
Section and nonvanishing has been discussed in the second Section of the third Chapter.

The primary content of Chapter four is to derive an asymptotic version of Petersson’s
trace formula for the space Ak(N, ω) (see Section 2.2). This has been obtained in Section
one of Chapter four. As an application, we prove an analog of a discrepancy result proved
by Jung and Sardari in 2020. This has been achieved in Section 3.

Chapter 5 discusses equidistribution results concerning the eigenvalues of Hecke op-
erators. In Section 2 of this chapter, we discuss equidistribution and discrepancy results
for λp2(f) with f ∈ Sk(N).
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In Chapter 6, we stick to the base case of F = Q. We start with an asymptotic formula
for Petersson’s trace formula with a better error term. Then in the First Section, we find
a sequence of weights for which the lower bound for the discrepancy D(νk,N,2, µ∞,2) holds.
Finally, in the last section, we discuss future problems to work on.



2

Adelic Hilbert modular forms

In this chapter, we recall some basic facts about Hilbert modular forms and the Petersson
trace formula in this setting. Section 2.1 discusses the basics required for Hilbert modular
forms. Section 2.2 and Section 2.3 defines Adelic Hilbert modular forms and Hecke
operators respectively. Section 2.4 contains a brief introduction to the Petersson trace
formula and its applications that will be useful in a later chapter.

2.1 Review of basics

Let F be a totally real number field and r = [F : Q]. Let the distinct real embeddings be
given by σ1, ... , σr. This means for each j, σj is an injective field homorphism such that
σj(F ) ⊂ R. Let O be the ring of integers of F and F× = F \ {0}. We denote the group of
units of O as O×. Let F+ = {x ∈ F : σi(x) > 0 for all i}. Now we state Dirichlet’s unit
theorem for a totally real field.

Theorem 2.1.1.Let F be a totally real number field and r = [F : Q]. The group O× is
isomorphic to Z/2Z × Zr−1.

Proof. For a proof, refer to [Neu99, Chapter I, Theorem 7.4]. Since F is a totally
real field, the roots of unity that lie inside F are 1 and −1. Furthermore, F has r real
embeddings and no complex embedding which proves the claim. □

12
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Given an abelian group A which is finite with A := A/A2 and |A| = 2a, we define
dim2(A) := a. We let U = O×/(O×)2 = O×. Note that U is isomorphic to (Z/2Z)r.

This can be seen by the group homomorphism g : Z/2Z × Zr−1 → (Z/2Z)r given by
g ((a1, . . . , ar)) = ((−1)a1 , . . . , (−1)ar) with application of first isomorphism theorem.
Let {u1, ... u2r} be a fixed set of representatives of U. A fractional ideal I of O is an
O-submodule I of K such that there exists nonzero t ∈ O with tI ⊂ O. Let PF denote the
set of all principal fractional ideals which consists of O- submodule I of K generated by
a single nonzero element from K. The ideal class group C of F is defined to be the group
of fractional ideals(IF ) modulo the principal fractional ideal PF i.e. C = IF/PF . Let P+

F

be the subgroup of PF consisting of ideals of the form aO with a ∈ F+. The narrow class
group C+ of F is given by C = IF/P

+
F . The class number and narrow class number are

defined to be |C| and |C+| respectively. Let [a] denotes the image of fractional ideal a in
C.

Let ν = νp be the discrete valuation associated with the prime ideal p in O. More
precisely, ν : F× → Z given by ν(x) = n where xO = pna with p ∤ a. The local field
Fν is the completion of F with respect to the metric induced by the norm given by
∥x∥ = p−ν(x) for x ∈ F×. Let Oν be the ring of integers in the local field Fν . The Adele
ring of F is a subring A consisting of tuples (aν) such that aν ∈ Oν for all but finitely
many ν. We denote the finite adeles as Afin which consist of tuples (aν)ν ∈ ∏

ν<∞ Fν such
that aν ∈ Oν for all but finitely many ν. We have A = F∞ × Afin where F∞ is isomorphic
to Rr. The ideles A× are the units in the ring A. The finite ideles A×

fin denotes the group
of units of Afin so that A× = F×

∞ × A×
fin. For the case F = Q, we refer the reader to section

5 of [KL06] for a concise introduction to adeles and ideles.

We will use the hat notation for considering non-Archimedean valuations. For in-
stance, we let Ô = ∏

ν<∞ Oν . Similarly for a fractional ideal a, â = ∏
ν<∞ aν = aÔ. We

use the notation ordν(a) and aν for its order and localization at the valuation ν. We have
aν = ϖordν(a)

ν Oν where ϖν is a generator of the maximal ideal pν = pOν i.e. pν = ϖνOν .

Let F+
∞ ⊂ F∞ be the collection of vectors whose entries are all positive. The inverse

different ideal is given by d−1 = {x ∈ F : TrF
Q (xO) ⊂ Z} Let d−1

+ = d−1 ∩ F+ and
U+ = U ∩ F+.

Now we consider an equation in the ideal class group which will be helpful in subse-
quent chapters. An integral ideal I is a fractional ideal I ⊂ O. For a fixed integral ideal
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n, consider the following equation
[b]2[n] = 1. (2.1)

The solutions bi can be taken as integral ideals. Since the ideal class group is finite, the
number of solutions for the above equation is also finite. Now we will see an example of
solutions to the equation.

Example 2.1.1. Let F have class number 2. Then the equation (2.1) has a solution if
and only if n is a principal integral ideal. In the case of a solution existing, the solutions
can be taken as b1 = O and b2 to be any non-principal integral ideal.

Example 2.1.2. Let F have an odd class number. The equation (2.1) has a unique
solution.

Proof. For proof, we refer to [KL08, Example 5.16]. □

2.2 Adelic Hilbert modular forms

Let N be an integral ideal and k = (k1, ... , kr) where kj are positive integers with kj > 2.
Let ω : F×\A× → C× be an unitary Hecke character (see section 12.1 of [KL06]).
We have ω = ∏

ν ων where ων can be defined as follows. Let x ∈ A× be given by
x = (1, . . . , xν , . . . , 1, . . . ) such that xν ∈ Fν . Then ων(xν) = ω(x). For infinite valuation
and j = 1, . . . , r, define ω∞j

(x) = sgn(x)kj . We further let the conductor of ω divide N.

This means that ων is trivial on 1 + Nν for all p|N, and unramified for all p ∤ N.

Let Ḡ = GL2/Z(GL2) where Z(GL2) is the centre of GL2. Let L2(ω) = L2(Ḡ(F )
\Ḡ(A), ω) denote the space of left GL2(F) invariant functions on GL2(A) which transform
by ω under the center and are square integrable on Ḡ(F )\Ḡ(A). Let L2

0(ω) be the subspace
of cuspidal functions.

Let Kfin denote the maximal compact subgroup of GL2(Afin). We have

Kfin =
∏

ν<∞
Kν =

∏
ν<∞

GL2(Oν) = GL2(Ô).
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Given an integral ideal N, we now define the groups K0(N) and K1(N).

K0(N) =

a b

c d

 ∈ Kfin

∣∣∣∣ c ∈ NÔ


and

K1(N) =

a b

c d

 ∈ Kfin

∣∣∣∣ c ∈ NÔ, d ∈ 1 + NÔ

.
Note that K0(N) and K1(N) are analogues of Γ0(N) and Γ1(N) with level N for the
classical setting of F = Q. Let Ak(N, ω) be the set of ϕ ∈ L2

0(ω) satisfying the given
three conditions.

1. ϕ(gkfin) = ϕ(g) for every kfin ∈ K1(N),

2. ϕ(gk∞) = ∏r
j=1 e

ikjθjϕ(g) for all k∞ = ∏
j kθj

∈ K∞ = SO2(R)r,

3. For any fixed x ∈ GL2(A) and for all j, the function g∞j
7→ ϕ(xg∞j

) is annihilated

by R(E−), where E− =
 1 −i

−i −1

 ∈ GL2(C) and R denotes the right regular

action of GL2(F∞j
).

In condition (2) above, θj are such that

SO2(R)r =
r∏

j=1


 cos θj sin θj

− sin θj cos θj

 : θj ∈ R

 .
For details, see Proposition 12.5 and Theorem 12.6 of [KL06].

Theorem 2.2.1.Let ϕ ∈ Ak(N, ω). Then ϕ is a continuous function on GL2(A).

Proof. For a proof, we refer to Lemma 3.3 of [Li09]. □

Theorem 2.2.2.The space Ak(N, ω) is a finite-dimensional vector space.

Proof. The space Ak(N, ω) is finite- dimensional by a general theorem of Harish-
Chandra. We refer the reader to the first chapter of [HC68] (see also [BJ79]) for a
proof. □
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Definition 2.2.3. Let θ : A → C× denote the standard character of A. Concretely,
θ(x) = θ∞(x∞) ·∏ν<∞ θν(xν), where

1. θ∞ : F∞ → C× is defined by θ∞(x∞) = e−2πi(x1+···+xr) with x∞ = (x1, ..., xr), and

2. for ν < ∞, θν : Fν → C× is given by θν(xν) = e2πi(Trν(xν)). Here Trν(xν) is obtained
by composing the following maps: TrFν

Qp
: Fν → Qp, going modulo p-adic integers:

Qp → Zp, and identifying Qp/Zp with Q/Z. More precisely, let

TrFν
Qp

(xν) =
∞∑

n=n0

anp
n

where n0 ∈ Z ∪ {∞}, an0 ̸= 0, ⟨p⟩ = p ∩ Z and 0 ≤ an < p. Then

Trν(xν) =
−1∑

n=n0

anp
n.

The map θν is well-defined since e2πiZ = 1.

Note that the kernel of θν is the local inverse different d−1
ν = {x ∈ Fν | TrFν

Qp
(x) ∈ Zp}.

Let m ∈ d−1
+ and ϕ ∈ Ak(N, ω). The mth Fourier coefficient of ϕ is given by W ϕ

m

as in [KL08, §3.4]. Consider the unipotent subgroup Ñ =
{1 ∗

1

} of GL2. For any

g ∈ GL2(A), the map n 7→ ϕ(ng) is a continuous function on Ñ(F )\Ñ(A). We have a
Fourier expansion that is

ϕ

(1 x

1

 g) = 1√
dF

∑
m∈F

W ϕ
m(g)θm(x).

The coefficients are Whittaker functions given by

W ϕ
m(g) =

∫
F \A

ϕ

(1 x

1

 g)θ(mx)dx. (2.2)

For y ∈ A×, we have

W ϕ
m(y) = W ϕ

m

(y
1

).
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When y ∈ A×
fin, we identify A×

fin with {1∞} × A×
fin ⊂ A×. Let n be an integral ideal coprime

to the integral ideal N. Let ϕ be an eigenvector of the Hecke operator Tn (see section
2.3), then let Tnϕ = λn(ϕ)ϕ. Let {a1, . . . , ar} be a basis of O as a Z module. The
discriminant of the number field F is equal to the determinant of the matrix M = (mij)
where mij = σi(aj). We denote the discriminant of F as dF . We now recall the following
result which we use later.

Lemma 2.2.4 ( [KL08, Cor. 4.8]).Let d̃ ∈ A×
fin such that d̃Ô = d̂ and (md,N) = 1. Then

for any Tmd-eigenvector ϕ ∈ Ak(N, ω) with W ϕ
1 (1/d̃) = 1 and Tmdϕ = λmdϕ, we have

W ϕ
m(1) =

e2πr ∏r
j=1 σj(m)(kj/2)−1

dF e
2πTrF

Q (m)
λmd.

Lemma 2.2.4 gives a relation between a Fourier coefficient and an eigenvalue of the
Hecke operator.

2.3 Hecke operators

Let g ∈ Ḡ(R). For det(g) > 0 let

f∞j
(g) = kj − 1

4π
(det(g))

kj
2 (2i)kj

((c− b) + (a+ d)i)kj

and f∞j
(g) = 0 otherwise (see [KL06, Theorem 14.5]). We have f∞j

is integrable over
Ḡ(R) for kj > 2 (see [KL06, Proposition 14.3]). Let

f∞ =
r∏

j=1
f∞j

.

For non-archimedean valuation, we proceed as follows. Let nν ,Nν be two coprime
integral ideals in Oν and

M(nν ,Nν) =
{a b

c d

 ∈ M2(Oν) : c ∈ Nν , (ad− bc)Oν = nν

}
.
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Suppose ν | N and g =
a b

c d

 ∈ K0(N)ν where

K0(N) =

a b

c d

 ∈ GL2(Oν)
∣∣∣ c ∈ Nν

.
Then we let ων(g) = ων(d). We observe that ων is a character of K0(N)ν . Let m ∈
M(nν ,Nν). We now define fnν as per condition ν | N or ν ∤ N. Let z ∈ F×

ν . When ν ∤ N,
take fnν (zm) = (ων(z))−1. When ν | N, take fnν (zm) = ψ(Nν)(ων(z))−1(ων(m))−1 where

ψ(Nν) = (Nm(p))ordν(N)
(

1 + 1
Nm(p)

)
.

Now we define the global Hecke operator for an integral ideal n that is coprime to
the integral ideal N. Let fn be defined on Afin such that fn = ∏

ν fnν . Note that fn is
bi-K1(N) invariant and supported on A×

finM(n,N) with M(n,N) = ∏
ν<∞ M(nν ,Nν).

Proposition 2.3.1. Let z ∈ A×
fin and g ∈ GL2(Afin). Then

fn(zg) = (ωfin(z))−1fn(g).

Let f ∈ L1(GL2(A), ω−1) and ϕ ∈ L2(ω). The right regular action R of f on L2(ω) is
given by

R(f)(ϕ(x)) =
∫

Ḡ(A)
f(g)ϕ(xg) dg.

We define the operator Tn := R(f∞ × fn) on L2
0(ω).

Theorem 2.3.1 ( [KL08],Proposition 4.1).Let f∞ be defined as earlier. Let ffin be a
bi-K1(N) invariant function on GL2(Afin) satisfying ffin(zg) = (ωfin(z))−1ffin(g). Further
let the support of ffin be compact modulo A×

fin. Then R(f) vanishes on the orthogonal
complement of Ak(N, ω) in L2(ω) and its image is a subspace of Ak(N, ω).

Proof. For a proof, we refer the reader to [KL08, Proposition 4.1]. □

By virtue of Theorem 2.3.1 and Proposition 2.3.1, Tn can be viewed as an operator
on the space Ak(N, ω).

Proposition 2.3.2. There exists an orthogonal basis for Ak(N, ω) consisting of eigenfunc-
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tions for the Hecke operator Tn.

Proof. The vector space Ak(N, ω) is finite-dimensional. The result follows from apply-
ing Theorem 7.4.1 of [MDG15] to the commutative ring of Hecke operators acting on
Ak(N, ω). □

2.4 Petersson’s trace formula

Recall that n is an integral ideal coprime to the integral ideal N. Petersson’s trace formula
gives us a weighted orthogonality relation between Fourier coefficients of an eigenfunction
for the Hecke operator Tn. The formula under special cases yields a weighted formula for
the trace of the Hecke operator Tn (see Corollary 2.4.4, Proposition 5.1.1 and Theorem
5.1.5). Note that Corollary 2.4.3 of the formula also gives us a weighted orthogonality
relation between eigenvalues of an eigenfunction for the Hecke operator Tn.

Before we get to Petersson’s trace formula, we define Kloosterman sums, first locally
and then globally. For any finite valuation ν of F , let nν ∈ Oν \ {0} and m1ν ,m2ν ∈ d−1

ν .
For cν ∈ Nν \ {0}, we define a local Kloosterman sum by

Sων (m1ν ,m2ν ; nν ; cν) =
∑

s1,s2∈Oν/cνOν

s1s2≡nν mod cνOν

θν

(
m1νs1 +m2νs2

cν

)
ων(s2)−1. (2.3)

The sum is equal to 1 if cν ∈ O×
ν . Let n ∈ Ô ∩ A×

fin, c ∈ N̂ ∩ A×
fin, and m1,m2 ∈ d̂−1,

SωN
(m1,m2; n; c) =

∑
s1,s2∈Ô/cÔ

s1s2≡n mod cÔ

θfin

(
m1s1 +m2s2

c

)
ωN(s2)−1

where

ωN,ν =

ων , if ν|N

1, if ν ∤ N.

Also, let
ωN =

∏
ωN,ν =

∏
ν|N

ων .
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We have the following relation between the global and local Kloosterman sums,

SωN
(m1,m2; n; c) =

∏
ν<∞

SωN,ν
(m1ν ,m2ν ; nν ; cν). (2.4)

Note that the product over all finite valuations is well-defined because cν ∈ O∗
ν except

for finitely many ν.

We encounter the J-Bessel function of the first kind in the Petersson trace formula.
The Bessel functions of the first kind Ja(x) for a ≥ 0, can be defined by the following
power series representation

Ja(x) =
∞∑

j=0

(−1)j

Γ(j + 1)Γ(a+ j + 1)

(
x

2

)a+2j

,

where Γ(x) denotes the Gamma function evaluated at x. For our purpose, we will need
various estimates of the J-Bessel function which we recall in the next lemma.

Lemma 2.4.1.We have the following estimates of the J-Bessel function.
(i) If a ≥ 0 and 0 < x ≤ 1, we have

1 ≤ Ja(ax)
xaJa(a) ≤ ea(1−x).

(ii) 0 < Ja(a) ≪ 1
a

1
3

as a → ∞.

(iii) If |d| < 1, then
1
a

1
3

≪ Ja(a+ da
1
3 ) ≪ 1

a
1
3
.

(iv) For x ∈ R and a > 0, |Ja(x)| ≤ min(ba−1
3 , c|x|−1

3 ) where b = 0.674885... and
c = 0.7857468704... .
(v) For 1

2 ≤ x < 1, we have the following uniform bound

Ja(ax) ≪ 1
(1 − x2)1/4a1/2 .

We refer to [JS20, Section 2.1.1] for the Lemma except for Lemma 2.4.1 (iv). For
Lemma 2.4.1 (iv), we refer to [Lan00, Section 1]. It is worth noting that Lemma 2.4.1
(iii) is important for finding a lower bound for Theorem 4.1.1. The geometric origin of
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Lemma 2.4.1 (iii) has been discussed in [JS20, Section 5].
In 1932, Petersson expressed a weighted sum of am(f)an(f) over f with f ∈ Sk(N)

in terms of the Bessel function and a Kloosterman sum (see [Pet32]). This is the first
relative trace formula, about 22 years earlier than the unweighted trace formula which
was proved by Selberg [Sel56] in 1956. In 2009, Knightly and Li obtained the following
generalization of Petersson’s trace formula in the Hilbert modular forms setting for the
space Ak(N, ω).

Theorem 2.4.2 ( [KL08, Thm. 5.11]).Let n and N be two coprime integral ideals. Let
k = (k1, ..., kr) with all kj > 2. Let F be an orthogonal basis for Ak(N, ω) consisting of
eigenfunctions for the Hecke operator Tn. Then given m1,m2 ∈ d−1

+ , we have

e2πTrF
Q (m1+m2)

ψ(N)

 r∏
j=1

(kj − 2)!
(4π

√
σj(m1m2))kj−1

∑
ϕ∈F

λn(ϕ)W ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2

= T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωf (s)

+
t∑

i=1

∑
u∈U

ηiu∈F +

∑
s∈biN/±

s ̸=0

ωf (sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

×

√
Nm(ηiu)
Nm(s) ×

r∏
j=1

2π
(
√

−1)kj
Jkj−1

4π
√
σj(ηium1m2)
|σj(s)|

.
• where T̂ (m1,m2, n) is 1 if there exists s ∈ d̂−1 such that m1m2 ∈ sÔ with m1m2Ô =
s2n̂, and 0 otherwise,

• U is a set of representatives for O×/O×2,

• biÔ = b̂i for bi for i = 1, ..., t, where the bi are distinct solution(s) of the equation
[b]2[n] = 1 in the ideal class group of F ,

• ηi ∈ F generates the principal ideal b2
in,

• ωN = ∏
v|N ωv

∏
v∤N 1,

• and, ψ(N) = Nm(N)∏p|N

(
1 + 1

Nm(p)

)
.
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Corollary 2.4.3 ( [BDS23], Corollary 6).Let d̃ ∈ A×
f such that d̃Ô = d̂. Let m1,m2 ∈ d−1

+

such that (m1d,N) = (m2d,N) = 1 with W ϕ
1 (1/d̃) = 1 for ϕ ∈ F, where F is an orthogonal

basis for Ak(N, ω). Then

e4πr

ψ(N)d2
F

√
Nm(m1m2)

 r∏
j=1

(kj − 2)!
(4π)kj−1

∑
ϕ∈F

λm1d(ϕ)λm2d(ϕ)
∥ϕ∥2 = T̂ (m1,m2,O)

√
dF Nm(n)

ωN(m1/s)ωf (s)

+
t∑

i=1

∑
u∈U

ηiu∈F +

∑
s∈biN/±

s ̸=0

ωf (sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

×
r∏

j=1

2π
(
√

−1)kj
Jkj−1

4π
√
σj(ηium1m2)
|σj(s)|

.
Proof. This corollary is proved by substituting the expressions for W ϕ

m1(1) and W ϕ
m2(1)

obtained from Lemma 2.2.4 into Theorem 2.4.2. To see this

W ϕ
m1(1) =

e2πr ∏r
j=1 σj(m1)(kj/2)−1

dF e
2πTrF

Q (m2)
λm1d(ϕ)

and
W ϕ

m2(1) =
e2πr ∏r

j=1 σj(m2)(kj/2)−1

dF e
2πTrF

Q (m2)
λm2d(ϕ).

Multiplying the first with the conjugate of the second one, we get

W ϕ
m1(1)W ϕ

m2(1) =
e4πr ∏r

j=1 σj(m1m2)(kj/2)−1

d2
F e

2πTrF
Q (m1+m2)

λm1d(ϕ)λm2d(ϕ)

=
e4πr ∏r

j=1 σj(m1m2)((kj−1)/2)

d2
F

√∏r
j=1 σj(m1m2)e2πTrF

Q (m1+m2)
λm1d(ϕ)λm2d(ϕ).

Thus we have

e2πTrF
Q (m1+m2)∏r

j=1 σj(m1m2)((kj−1)/2)W
ϕ
m1(1)W ϕ

m2(1) = e4πr

d2
F

√
Nm(m1m2)

λm1d(ϕ)λm2d(ϕ).

□
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Corollary 2.4.4.Let p be a prime ideal coprime to the level N. Let k = (k1, ..., kr) with all
kj > 2 and ℓ ≥ 0. Let F be an orthogonal basis for Ak(N, ω) consisting of eigenfunctions
for the Hecke operator Tpℓ . Then, given m ∈ d−1

+ , we have

e4πTrF
Q (m)

ψ(N)

 r∏
j=1

(kj − 2)!
(4πσj(m))kj−1

∑
ϕ∈F

λpℓ(ϕ)|W ϕ
m(1)|2

∥ϕ∥2 = T̂ (m,m, pℓ)

√
dF Nm(pℓ)

ωN(m/s)ωf (s)

+
t∑

i=1

∑
u∈U

ηiu∈F +

∑
s∈biN/±

s ̸=0

ωf (sb−1
i )SωN

(m,m; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

×
r∏

j=1

2π
(
√

−1)kj
Jkj−1

4π|σj(m)|
√
σj(ηiu)

|σj(s)|

.
Proof. We obtain this corollary by taking n = pℓ and m1 = m2 = m in Theorem 2.4.2.
□
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Non-vanishing and bounds on Kloosterman sums

In this chapter, we discuss the nonvanishing of Kloosterman sums and a conditional
upper bound for a local Kloosterman sum. The non-vanishing of a Kloosterman sum is
an integral part of obtaining an asymptotic formula like Theorem 4.3.5. More precisely,
for finding a lower bound for the main term in Theorem 4.3.5. The conditional upper
bound is not used in deriving the asymptotic formula. However, the result gives a better
bound as compared to the bound given by Lemma 6.1 of [KL08] whose proof essentially
uses triangle inequality. Section 3.1 contains results regarding an upper bound for a local
Kloosterman sum and Section 3.2 contains results about the nonvanishing of the classical
Kloosterman sum.

In 1926, Kloosterman sums were introduced as an application to solve the following
problem. Given natural numbers a, b, c, d and n, Kloosterman obtained an asymptotic
formula in [Klo27] for the number of representations of n in the form ax2 +by2 +cz2 +dt2.
Given integer m,n and a natural number c, the Kloosterman sum is defined to be

S(m,n; c) =
∑

x(mod c),gcd(x,c)=1
e
(
mx+ nx

c

)

where x̄ denotes the multiplicative inverse of x modulo c and e(x) = e2πix. The sums for
the special case of m = 0 or n = 0 are called Ramanujan sums. Kloosterman sums also
appear in the Kuznetsov trace formula along with Petersson’s trace formula. Therefore
estimates for Kloosterman sums are important to consider. In 1948, Andre Weil [Wei48]

24
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gave a sharp bound for S(a, b, p) where p is a prime number. By the multiplicativity
property of Kloosterman sums, the bound is enough to show

|S(m,n, c)| ≤ τ(n)
√

gcd(m,n, c)
√
c. (3.1)

A slightly stronger bound is given by equation (2.13) of [ILS00]. For squarefree N , the
main term in Theorem 5.1.7 is

2πi−kµ(N)
N

∏
p|N

(1 − p−2)Jk−1(4π
√
mn).

Note that µ(N) = S(1, 0, N) (see equation (3.4) of [IK04]) which is nonzero if and only
if N is squarefree. Thus in order to have a Kloosterman sum as the main term, we need
to ensure the nonvanishing of that particular Kloosterman sum.

The definition of local and global Kloosterman sums for the totally real field F is
given by equation (2.3) and (2.4). We start with a lemma for the nonvanishing of a
Kloosterman sum satisfying certain conditions.

Lemma 3.0.1 ( [BDS23], Lemma 13).Let N = s̃O with s̃ ∈ N, s̃ be squarefree and ωN

be trivial. Then
SωN

(m1,m2; 1; s̃) ̸= 0.

Proof. We prove the lemma in two steps. Consider the prime factorisation of the ideal
s̃O = ∏t′

l=1 pl for distinct prime ideals pl. Let νl be the valuation for the prime ideal pl

and pl = pl ∩ Z. The first step shows,

e
(

Tr
(
m1νl

s1 +m2νl
s2

ϖνl

))
∈ Z

[
e

2πi
pl

]
.

In the second step we use this fact and method of contradiction to prove the claim.

Step (1). Note that

SωN
(m1,m2; 1; s̃) =

∏
ν<∞

SωN,ν
(m1ν ,m2ν ; 1; (s̃O)ν).
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If ϖνl
is a generator of the maximal ideal (pl)νl

= plOνl
, then we get

∏
ν<∞

SωN,ν
(m1ν ,m2ν ; 1; (s̃O)ν) =

t′∏
l=1

SωN,νl
(m1νl

,m2νl
; 1;ϖνl

).

We have ⟨pl⟩ = pl ∩ Z and plO = pl
∏s′

i=1 qi for distinct qi. We have

plOνl
= plOνl

= ϖνl
Oνl

.

Hence,
SωN,νl

(m1νl
,m2νl

; 1;ϖνl
) =

∑
s1,s2∈Oνl

/ϖνl
Oνl

s1s2≡1(mod)ϖνl
Oνl

θνl

(
m1νl

s1 +m2νl
s2

ϖνl

)

=
∑

s1,s2∈Oνl
/ϖνl

Oνl
s1s2≡1(mod)ϖνl

Oνl

e

Tr
(
m1νl

s1 +m2νl
s2

ϖνl

)

where e(x) = e2πix. Consider the following
e
Tr

(
m1νl

s1 +m2νl
s2

ϖνl

)pl

= e

pl · Tr
(
m1νl

s1 +m2νl
s2

ϖνl

)

= e

Tr
(
pl · m1νl

s1 +m2νl
s2

ϖνl

) = e

Tr
(
m1νl

pls1 +m2νl
pls2

ϖνl

)

= e

Tr
(
m1νl

pls1

ϖνl

) · e

Tr
(
m2νl

pls1

ϖνl

)
However plOνl

= ϖνl
Oνl

imply that both
(

m1νl
pls1

ϖνl

)
,
(

m2νl
pls2

ϖνl

)
belong to local inverse

different. Since θν is trivial on the local inverse different, we conclude
e
Tr

(
m1νl

s1 +m2νl
s2

ϖνl

)pl

= 1.

Step (2). Suppose SωN,νl
(m1νl

,m2νl
; 1;ϖνl

) = 0. Note that Z
[
e

2πi
pl

]
is isomorphic to

Z[x]/(Φpl
(x)) where e

2πi
pl gets mapped to x + (Φpl

(x)). Further more Z[x]/(Φpl
(x), pl) =
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Z[x]/((x− 1)pl , pl) by Exercise 8 of section 13.6 of [DF04]. Consider the ring homomor-
phism given by

Z[x]/(Φpl
(x)) → Z[x]/((x− 1)pl , pl) → Z[x]/((x− 1), pl) → Fpl

where
x+ (Φpl

(x)) 7→ x+ ((x− 1)pl , pl) 7→ x+ ((x− 1), pl)

= 1 + [x− 1] + ((x− 1), pl) = 1 + ((x− 1), pl) 7→ 1.

Thus e
2πi
pl gets mapped to 1 via the ring homomorphism. As shown earlier in step 1,

e
(

Tr
(

m1νl
s1+m2νl

s2
ϖνl

))
lies in Z

[
e

2πi
pl

]
. Hence e

(
Tr
(

m1νl
s1+m2νl

s2
πνl

))
gets mapped to 1 via

the ring homomorphism. This implies that SωN,νl
(m1νl

,m2νl
; 1;ϖνl

) will get mapped
to pf

l − 1 = −1 ∈ Fpl
with

∣∣∣Oνl
/ϖνl

Oνl

∣∣∣ = pf
l for some natural number f. This is a

contradiction as the image of SωN,νl
(m1νl

,m2νl
; 1;ϖνl

) should be 0.

□

3.1 An upper bound for a local Kloosterman sum

We prove the following sharp bound for a special case of the local Kloosterman sum (see
Lemma 1.3.1 or Lemma 6.1 of [KL08]). We assume the Hecke character to be trivial
for the next two lemmas. Let cν = uνϖ

k
ν for a fixed uniformizer ϖν and a unit uν

and d−1
ν = ⟨ϖ−δ

ν ⟩ for some δ ≥ 0. Further let ϖδ
νm1ν = m′

1ν and ϖδ
νm2ν = m′

2ν where
m′

1ν ,m
′
2ν ∈ Oν . Let uν denote the multiplicative inverse of uν in Oν/cνOν . Note that

Sν(m1ν ,m2ν ; cν) = Sν(uνm1ν , uνm2ν ; 1;ϖk
ν). Thus it is sufficient to prove bounds for

Sν(m1ν ,m2ν ; 1;ϖk
ν) since Nm(uν) = 1. First, we consider an analogue of Ramanujan

sum which is S(m1ν , 0; 1;ϖk
ν). We consider three cases to show the following bound.

Lemma 3.1.1.We have

|S(m1ν , 0; 1; cν)| ≤ τ(Nm(cν))
√

gcd(Nm(m′
1ν),Nm(cν))

√
Nm(cν)

if Nm(cν) is an odd natural number.
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Proof. If cνOν is a prime ideal for some ν, then Oν/cνOν is a finite field with Nm(cν)
elements. Now using 11.11 (Weil Theorem) of [IK04], we have |S(m1ν , 0; 1; cν)| ≤
2
√

Nm(cν). Thus we focus when cνOν is not necessarily a prime ideal. We now con-
sider three cases as per the value of ν(m1ν) to prove the lemma.

Case (1). When ν(m1ν) ≥ k − δ.

We have ν(m1νs1ϖ
−k
ν ) ≥ −δ which implies θν becomes trivial for each term in the

sum, so |S(m1ν , 0; 1;ϖk
ν)| = |(Oν/ϖ

k
νOν)×|. In such case, ν(m′

1ν) ≥ k, which implies
gcd(Nm(m′

1ν),Nm(ϖk
ν)) = Nm(ϖk

ν). Hence

τ(Nm(ϖk
ν))
√

gcd(Nm(m′
1ν),Nm(ϖk

ν))
√

Nm(ϖk
ν)

= τ(Nm(ϖk
ν))Nm(ϖk

ν) ≥ Nm(ϖk
ν).

Thus
|S(m1ν , 0; 1;ϖk

ν)| = |(Oν/ϖ
k
νOν)×| ≤ Nm(ϖk

ν)

≤ τ(Nm(ϖk
ν))
√

gcd(Nm(m′
1ν),Nm(ϖk

ν))
√

Nm(ϖk
ν).

Case (2). When ν(m1ν) = k − δ − 1.
we have s1 ∈ (Oν/ϖ

k
νOν)× if and only if gcd(s1, ϖν) = 1. Hence

(Oν/ϖ
k
νOν)× =

(Oν/ϖ
k
νOν) \ {s′

1 ∈ (Oν/ϖ
k
νOν) | s′

1 = ϖνs
′′
1, s

′′
1 ∈ (Oν/ϖ

k−1
ν Oν)}.

Therefore
S(m1ν , 0; 1;ϖk

ν) =
∑

s1∈(Oν/ϖk
νOν)×

θν

(
m1νs1

ϖk
ν

)

=
∑

s1∈(Oν/ϖk
νOν)

θν

(
m1νs1

ϖk
ν

)
−

∑
s1∈(Oν/ϖk−1

ν Oν)

θν

(
m1νs1

ϖk−1
ν

)
.

Now we try to see that ∑
s1∈(Oν/ϖk

νOν)
θν

(
m1νs1

ϖk
ν

)
= 0

On taking ν(s1) = 0 in particular, we get ν(m1νs1
ϖk

ν
) = −δ − 1. This makes the required

sum to be a nontrivial character sum over an additive group which is equal to 0. The
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second sum is given by

∑
s1∈(Oν/ϖk−1

ν Oν)

θν

(
m1νs1

ϖk−1
ν

)
= Nm(ϖk−1

ν )

since ν(m1νs1
ϖk−1

ν
) ≥ −δ and θν becomes trivial for each term in the sum. Finally

S(m1ν , 0; 1;ϖk
ν) = −Nm(ϖk−1

ν ). In this case ν(m′
1ν) = k − 1, gcd(Nm(m′

1ν),Nm(ϖk
ν)) =

Nm(ϖk−1
ν ) so that

τ(Nm(ϖk
ν))
√

gcd(Nm(m′
1ν),Nm(ϖk

ν))
√

Nm(ϖk
ν)

= τ(Nm(ϖk
ν))Nm(ϖk

ν)Nm(ϖν)− 1
2 ≥ Nm(ϖk−1

ν ).

Case (3). When −δ ≤ ν(m1ν) ≤ k − δ − 2.

S(m1ν , 0; 1;ϖk
ν) =

∑
s1∈(Oν/ϖk

νOν)×

θν

(
m1νs1

ϖk
ν

)

=
∑

s1∈(Oν/ϖk
νOν)

θν

(
m1νs1

ϖk
ν

)
−

∑
s1∈(Oν/ϖk−1

ν Oν)

θν

(
m1νs1

ϖk−1
ν

)
.

Similar to the previous case

∑
s1∈(Oν/ϖk

νOν)
θν

(
m1νs1

ϖk
ν

)
= 0

as we can take s1 such that ν(s1) = 0. Choosing s′
1 such that ν(s′

1) = 0, we get ν(m1νs′
1

ϖk−1
ν

) =
−δ − 1. Hence ∑

s′
1∈(Oν/ϖk−1

ν Oν)

θν

(
m1νs

′
1

ϖk−1
ν

)
= 0

and S(m1ν , 0; 1;ϖk
ν) = 0.

□

Theorem 3.1.2.We have

|S(m1ν ,m2ν ; 1; cν)| ≤ τ(Nm(cν))
√

gcd(Nm(m′
1ν),Nm(m′

2ν),Nm(cν))
√

Nm(cν)
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if Nm(cν) is an odd natural number.

Proof. If cνOν is a prime ideal, then using Theorem 11.11 (Weil Theorem) of [IK04]
again we get

|S(m1ν ,m2ν ; 1; cν)| ≤ 2
√

Nm(cν).

Note that S(m1ν ,m2ν ; 1;ϖk
ν) = S(m′

1ν ,m
′
2ν ; 1;ϖk+δ

ν ). Now we consider three cases to
prove the theorem.

Case (1). When ϖν neither divides m′
1ν nor m′

2ν .
For a given s ∈ (Oν/ϖ

k
νOν)×, let s be such that ss ≡ 1 (mod Oν/ϖ

k
νOν)×). Let us

consider the following sum for a given function f on (Oν/ϖ
k
νOν)× .

∑
s1∈(Oν/ϖk

νOν)×

f(s1) =
∑

r∈(Oν/ϖn
ν Oν)×

∑
t∈Oν/ϖk−n

ν Oν

f(r +ϖn
ν t),

with k
2 ≤ n < k. If k

2 ≤ n < k, then (r +ϖn
ν t) = r − r2ϖn

ν t. This is because

(r +ϖn
ν t)(r − r2ϖn

ν t) = rr + rϖn
ν t(1 − rr) + r2ϖ2n

ν t = 1 + rϖn
ν t(0) + 0 = 1.

Taking f(s1) = θν

(
m1νs1+m2νs1

ϖk
ν

)
in the identity mentioned we get

S(m1ν ,m2ν ; 1;ϖk
ν) =

∑
r∈(Oν/ϖn

ν Oν)×

∑
t∈Oν/ϖk−n

ν Oν

θν

(r +ϖn
ν t)m1ν + (r +ϖn

ν t)m2ν

ϖk
ν


=

∑
r∈(Oν/ϖn

ν Oν)×

∑
t∈Oν/ϖk−n

ν Oν

θν

(r +ϖn
ν t)m1ν + (r − r2ϖn

ν t)m2ν

ϖk
ν


=

∑
r∈(Oν/ϖn

ν Oν)×

θν

rm1ν + rm2ν

ϖk
ν

 ∑
t∈Oν/ϖk−n

ν Oν

θν

(m′
1ν − r2m′

2ν)t
ϖk−n+δ

ν


Now let us focus on the inner sum. The inner sum is Nm(ϖk−n

ν ) or 0 according to
ν(m′

1ν − r2m′
2ν) ≥ k − n or not respectively. Hence

|S(m1ν ,m2ν ; 1;ϖk
ν)| ≤ Nm(ϖk−n

ν )
∑

r∈(Oν/ϖn
ν Oν)×

m′
1ν−r2m′

2ν∈Oν/ϖk−n
ν Oν

1
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= Nm(ϖn
ν )

∑
r∈(Oν/ϖk−n

ν Oν)×

m′
1ν−r2m′

2ν∈Oν/ϖk−n
ν Oν

1

In the last summation contribution is 0 if ϖν divides either m′
1ν or m′

2ν . Therefore we
need to consider when r2 ≡ m′

2νm
′
1ν (mod Oν/ϖ

k−n
ν Oν). The number of solutions of

this equation in r is bounded by 2 whenever Nm(ϖν) is odd. To see this we consider
the following. Let r2 = r′2 (mod Oν/ϖ

k−n
ν Oν) with r = a + bϖν , r

′ = a′ + b′ϖν where
a, a′ ∈ Oν/ϖνOν and b, b′ ∈ Oν/ϖ

k−n−2
ν Oν . We have

(a2 − a′2) + 2(b− b′)ϖν + (b2 − b′2)ϖ2
ν = 0

modulo Oν/ϖ
k−n
ν Oν . This implies b = b′ as Nm(ϖν) odd and a2 = a′2. Let us write

a = α + βp and a′ = α′ + β′p, where Nm(ϖν) = pf with α, α′ ∈ Zp/pZp. Proceeding
similarly as above we end up getting β = β′ and , α2 = α′2. Hence we can have two
possibilities given by α′ = α, and α′ = −α. Finally on taking n = k

2 , we get

|S(m1ν ,m2ν ; 1;ϖk
ν)| ≤ 2

√
Nm(ϖk

ν).

Case (2). When ϖν divides m′
2ν and ϖν does not divide m′

1ν .
We have gcd(m′

1ν , ϖν) = 1 which implies gcd(m′
1ν , ϖ

k
ν) = 1. We claim that {s′

1 +
m′

2νm
′
1νs

′
1 | gcd(s′

1, ϖ
k
ν) = 1} sums over all elements of (Oν/ϖ

k
νOν)×. Note that

gcd(s′
1 + m′

2νm
′
1νs

′
1, ϖν) = 1. To see this suppose gcd(s′

1 + m′
2νm

′
1νs

′
1, ϖν) ̸= 1, then

ϖν divides m′
2νm

′
1νs

′
1. This implies ϖν divides s′

1 since ϖν divides m′
2ν . This shows

gcd(s′
1, ϖν) ̸= 1 which contradicts our assumption.

Let s′
1 ̸= t′1 ∈ Oν/ϖ

k
νOν and gcd(s′

1, ϖν) = gcd(t′1, ϖν) = 1. Our claim will be proved
once we show that s′

1 + m′
2νm

′
1νs

′
1 ̸= t′1 + m′

2νm
′
1νt

′
1 ∈ (Oν/ϖ

k
νOν)×. On the contrary,

suppose s′
1 +m′

2νm
′
1νs

′
1 = t′1 +m′

2νm
′
1νt

′
1. Then ϖk

ν divides

(s′
1 − t′1) +m′

2νm
′
1ν(s′

1 − t′1) = (s′
1 − t′1) +m′

2νm
′
1ν(t′1t′1s′

1 − s′
1s

′
1t

′
1)

= (s′
1 − t′1)(1 −m′

2νm
′
1νs

′
1t

′
1).

Since ϖν divides m′
2ν , ϖν does not divide (1 − m′

2νm
′
1νs

′
1t

′
1). Hence ϖν divides s′

1 − t′1,
which is a contradiction to the assumption s′

1 ̸= t′1 in Oν/ϖ
k
νOν .
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Therefore by taking s′
1 = m1νs1 we have

Sν(m1ν ,m2ν ; 1;ϖk
ν) =

∑
s′

1,s′
2∈Oν/ϖk

νOν

s′
1s′

2≡1 (mod) ϖk
νOν

θν

(
s′

1 +m′
2νm

′
1νs

′
1

ϖk+δ
ν

)

∑
s′′

1 ,s′′
2 ∈Oν/ϖk

νOν

s′′
1 s′′

2 ≡1 (mod ϖk
νOν)

θν

(
s′′

1
ϖk+δ

ν

)
=

∑
s′′

1 ,s′′
2 ∈Oν/ϖk

νOν

s′′
1 s′′

2 ≡1 (mod ϖk
νOν)

θν

(
m′

1νs
′′
1

ϖk+δ
ν

)
= Sν(m1ν , 0; 1;ϖk

ν).

This is an analogue of the Ramanujan sum for which the bound is given by Lemma 3.1.1.

Case (3). When ϖν divides both m′
1ν and m′

2ν .
We have four sub-cases for this case. Let m′

1ν = t1ϖ
k1
ν and m′

2ν = t2ϖ
k2
ν with

gcd(t1, ϖν) = gcd(t2, ϖν) = 1. Without loss of generality we can assume k2 ≥ k1 since
S(m1ν ,m2ν ; 1;ϖk

ν) = S(m2ν ,m1ν ; 1;ϖk
ν).

Subcase (1). When k2 ≥ k1 ≥ k.
We have

S(m1ν ,m2ν ; 1;ϖk
ν) =

∑
s1∈Oν/ϖk

νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1ϖ

k1
ν s1 + t2ϖ

k2
ν s1

ϖk+δ
ν

)

=
∑

s1∈Oν/ϖk
νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1s1ϖ

k1−k−δ
ν + t2ϖ

k2−k−δ
ν s1

)

Note that ν(t1s1ϖ
k1−k−δ
ν ) ≥ −δ and ν(t2s2ϖ

k1−k−δ
ν ) ≥ −δ and θν is trivial on d−1

ν . The
above sum hence reduces to

∑
s1∈Oν/ϖk

νOν

s1s2≡1 (mod ϖk
νOν)

1 = |(Oν/ϖ
k
νOν)×|.

Therefore gcd(m1ν ,m2ν , ϖ
k
ν) = ϖk

ν implies

|S(m1ν ,m2ν ; 1;ϖk
ν)| = |(Oν/ϖ

k
νOν)×| ≤ Nm(ϖk

ν)

≤ τ(Nm(ϖk
ν)) gcd(Nm(m1ν),Nm(m2ν),Nm(ϖk

ν))
√

Nm(ϖk
ν).

Subcase (2). When k > k1 = k2.



Chapter 3. Non-vanishing and bounds on Kloosterman sums 33

We have

S(m1ν ,m2ν ; 1;ϖk
ν) =

∑
s1∈Oν/ϖk

νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1ϖ

k1
ν s1 + t2ϖ

k1
ν s1

ϖk+δ
ν

)

=
∑

s1∈Oν/ϖk
νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1s1 + t2s1

ϖk−k1+δ
ν

)
= S(t1, t2, ϖk−k1+δ

ν ).

Since gcd(t1, ϖν) = gcd(t2, ϖν) = 1 reduces to the case 1.

Subcase (3). When k ≥ k2 > k1.

We have

S(m1ν ,m2ν ; 1;ϖk
ν) =

∑
s1∈Oν/ϖk

νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1ϖ

k1
ν x+ t2ϖ

k2
ν s1

ϖk+δ
ν

)

=
∑

s1∈Oν/ϖk+δ
ν Oν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1s1 + t2ϖ

k2−k1
ν s1

ϖk−k1+δ

)
= S(t1, t2ϖk2−k1

ν ; 1;ϖk−k1+δ
ν )

This reduces to Case 2. This is because gcd(t1, ϖν) = 1 is equivalent to ϖν does not
divide t1 and ϖν divides t2ϖk2−k1

ν .

Subcase (4). When k2 > k > k1.

We have

S(m1ν ,m2ν ; 1;ϖk
ν) =

∑
s1∈Oν/ϖk

νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1ϖ

k1
ν s1 + t2ϖ

k2
ν s1

ϖk+δ
ν

)

=
∑

s1∈Oν/ϖk
νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t2ϖ

k2−k−δ
ν s1 + t1s1

ϖk−k1+δ
ν

)

=
∑

s1∈Oν/ϖk
νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t2ϖ

k2−k−δ
ν s1

)
θν

(
t1s1

ϖk−k1+δ
ν

)
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since ν(t2ϖk2−k−δ
ν s1) ≥ −δ the sum simplifies to

∑
s1∈Oν/ϖk

νOν

s1s2≡1 (mod ϖk
νOν)

θν

(
t1s1

ϖk−k1+δ
ν

)
.

This subcase reduces to an analogue of the Ramanujan for which the bound is given by
Lemma 3.1.1.

□

Remark 3.1.3.We follow [Est61] for the argument given in Case(1) for the proof of
Theorem 3.1.2.

3.2 Non-vanishing of classical Kloosterman sums

Let p be a prime number and N = qβ1
1 . . . qβt

t where q1, . . . , qt are distinct prime numbers
with (p, qi) = 1 for all i = 1, . . . t. Let qβi

i = li and

ci = N∏i
j=1 lj

for i ∈ {1, . . . , t}. Further let m0 = 1, mi = ∏i
j=1 lj

cj for i ∈ {1, . . . , t − 1} where
ljlj

cj ≡ 1 (mod cj) and cjcj
lj ≡ 1 (mod lj). Now we demonstrate a lemma regarding

the multiplicative property of the Kloosterman sum. The lemma helps us to show the
non-vanishing of a Kloosterman sum by reducing the task to show the nonvanishing for
prime powers.

Lemma 3.2.1 ( [Das23], Lemma 3.1).Let n be a positive integer. Then

S(1, p2n, N) =
t∏

i=1
S(mi−1ci

li ,mi−1ci
lip2n, li).

Proof. We use the multiplicative property of the Kloosterman sum (see equation (1.59)
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of [IK04]) repetitively which is given by

S(a, b, cd) = S(acd, bcd, d)S(adc
, bd

c
, c) (3.2)

where (c, d) = 1, ccd ≡ 1 (mod d) and dd
c ≡ 1 (mod c). Consider

S(mt−1,mt−1p
2n, lt)S(mt−2ct−1

lt−1 ,mt−2ct−1
lt−1p2n, lt−1)

= S(mt−2lt−1
ct−1

,mt−2lt−1
ct−1

p2n, lt)S(mt−2ct−1
lt−1 ,mt−2ct−1

lt−1p2n, lt−1).

As ct−1
lt−1lt = lt

lt−1
lt = 1 (mod lt−1) and lt−1

ct−1
lt−1 = 1 (mod ct−1), on using equation

(3.2) the above product is equal to

S(mt−2,mt−2p
2n, lt−1lt).

Again using equation (3.2),

S(mt−i,mt−ip
2n, lt−i+1 ... lt)S(mt−i−1ct−i

lt−i ,mt−i−1ct−i
lt−ip2n, lt−i)

= S(mt−i−1,mt−i−1p
2n, lt−ilt−i+1 ... lt)

for any i ∈ {2, ... , t}. Now we justify why equation (3.2) is applicable. This is because

ct−i
lt−i(lt−i+1 ... lt) =

 N

l1 ... lt−i

lt−i

(lt−i+1 ... lt)

= (lt−i+1 ... lt)
lt−i(lt−i+1 ... lt) = 1

modulo lt−i) and mt−i = mt−i−1lt−i
ct−i . Therefore

S(1, p2n, N) =
t∏

i=1
S(mi−1ci

li ,mi−1ci
lip2n, li).

□

Remark 3.2.2.A similar result like Lemma 3.2.1 for S(a, b,N) with a, b ∈ N can be
derived. However, keeping equation (6.6) in mind, we consider only S(1, p2n, N).
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The next lemma considers the non-vanishing of the Kloosterman sum when N is an
odd powerful number.

Lemma 3.2.3 ( [Das23], Lemma 3.2).Let n ∈ N, β1, ... , βt be such that βi > 1 and qi is
odd for all i. Then S(1, p2n, N) ̸= 0.

Proof. Let i be fixed with li = qβi
i . Using Lemma 3.2.1, it is sufficient to show that

S(mi−1ci
li ,mi−1ci

lip2n, li) ̸= 0

for all i. Firstly, we show that qi does not divide 2(mi−1ci
li)2p2n. This is achieved in Step

1 and Step 2.

Step (1). If possible, suppose qi|2(mi−1ci
li)2p2n. Note qi divides (mi−1ci

li)2 as qi ∤ 2 and
qi ∤ p2n. Now suppose qi|(ci

li)2. cici
li ≡ 1 (mod li) implies

c2βi
i (ci

li)2βi ≡ 1 (mod li). (3.3)

However by our assumption qi|(ci
li)2. Hence qβi

i |(ci
li)2βi which implies

qβi
i |c2βi

i (ci
li)2βi .

By equation (3.3), qβi
i |1 a contradiction. Therefore qi|m2

i−1. qi being a prime number
implies qi|mi−1 where mi−1 = ∏i−1

j=1 lj
cj which has been defined earlier in the section.

Step (2). In this step we show that qi ∤ mi−1 using the method of contradiction. The
case i = 1 is impossible as this would mean q1 divides m0 = 1. Let ljlj

cj ≡ 1 (mod cj)
denote the equation (j) for j = 1, 2, . . . , i− 1. Multiplying (l2 . . . lj) for j = 2, . . . n− 1
gives

ljlj
cj (l2 . . . lj) ≡ (l2 . . . lj) (mod (l2 . . . ljcj))

⇒ ljlj
cj (l2 . . . lj) ≡ (l2 . . . lj) (mod c1)

let the equation be (j)′ for j = 2, . . . , i−1. On considering equations (1), (2)′, . . . , (i−1)′

which are modulo c1 and multiplying them yields

(l1 . . . li−1)(l1
c1
. . . li−1

ci−1)(li−2
2 li−3

3 . . . li−1) ≡ (li−2
2 li−3

3 . . . li−1) (mod c1). (3.4)



Chapter 3. Non-vanishing and bounds on Kloosterman sums 37

Since qi|c1 for i ≥ 2, qi divides

(l1 . . . li−1)(l1
c1
. . . li−1

ci−1)(li−2
2 li−3

3 . . . li−1) − (li−2
2 li−3

3 . . . li−1).

But the assumption qi|mi−1 implies qi|li−2
2 li−3

3 . . . li−1. In particular,
gcd(qi, l

i−2
2 li−3

3 . . . li−1) = qi which is absurd since gcd(qi, lj) = 1 for j = 2, . . . , i − 1.
Hence qi does not divide mi−1.

Step (3). By Step 1 and Step 2, the Kloosterman sum S(mi−1ci
li ,mi−1ci

lip2n, li) satisfy
the hypothesis for Exercise 1 of [IK04, Chapter 12]. Let ℜ(z) denotes the real part of
z ∈ C. Using the exercise,

S(mi−1ci
li ,mi−1ci

lip2n, li) = 2
 l′
li

√liℜ(ϵlie
4πil′

li

)

where l′2 ≡ (mi−1ci
lipn)2 (mod li), ϵli = 1 or i for li ≡ 1 or li ≡ 3 (mod 4) respectively.

By the congruence relation,
(

l′

li

)
= 1.

We show l′ /∈ {αli
8 |α ∈ Z}. Suppose not, then l′ = α0li

8 for some integer α0. The
congruence relation implies

(
α0li
8

)2
= (mi−1ci

lipn)2 + lit

with t ∈ Z. Equivalently,

α2
0l

2
i − 64lit = 64(mi−1ci

lipn)2.

Now qi divides 64(mi−1ci
lipn)2 as qi divides li. However qi ∤ 64p2n and qi ∤ ci

li imply
qi|m2

i−1. This is a contradiction by following arguments for qi ∤ m2
i−1 in step 2. Since

l′

li
/∈ {α

8 |α ∈ Z}, cos
(

4πl′

li

)
and sin

(
4πl′

li

)
are not equal to zero implying e

4πil′
li ̸∈ R ∪ {iy :

y ∈ R}. Hence
ℜ
(
ϵlie

4πil′
li

)
̸= 0

and the proof is complete.

□
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Lemma 3.2.4.Let p be an odd prime number. Then S(1, a, p) ̸= 0 for a ∈ Z.

Proof. The proof is quite similar to Step 2 of proof for Lemma 3.0.1. □

Lemma 3.2.5.Let N be a natural number given by 2ab with a = 0, 1, 2 and b an odd
number. If n ∈ N, then S(1, p2n, N) ̸= 0.

Proof. Lemma 3.2.1 implies

S(1, p2n, N) =
t∏

i=1
S(mi−1ci

li ,mi−1ci
lip2n, li) = S(1, (mi−1ci

lipn)2, li).

When li is odd, S(1, (mi−1ci
lipn)2, li) ̸= 0 by Lemma 3.2.3 and Lemma 3.2.4. We now

focus when li is an even number. Note that mi−1ci
lipn is odd follows from the proof of

Lemma 3.2.3. We have S(1, a2, 2b) = S(1, 1, 2b) for a odd and b = 1, 2, 3. On computing
the values of S(1, 1, 2), S(1, 1, 4) and S(1, 1, 8) are equal to 1,−2 and 0 respectively.
Hence for li = 2, 4, we also have S(1, (mi−1ci

lipn)2, li) ̸= 0. □

One can compute S(1, p2n, 2a) for a > 3 and check for the nonvanishing and vanishing
of it independently. We do it till a=3 as S(1, 1, 8) = 0.
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An asymptotic formula for Petersson trace formula

In this chapter, we derive an asymptotic formula for the Petersson formula under certain
conditions. This is achieved in Section 4.2. Section 4.1 contains preliminary lemmas and
the statement of the asymptotic formula. Section 4.3 considers the asymptotic formula
under special cases. As an application, we generalize equation (1.5) (Jung and Sardari’s
bound for D(ν∗

kn,N , µ∞)) for Ak(N, ω) with F having odd narrow class number 1 which
addresses Problem 1. Problem 2 has been discussed in Section 4.2 and Section 4.3.

4.1 Preliminary lemmas and statement of the Main
Theorem

As before, F is a totally real field and σ1, . . . , σr denote the distinct real embeddings of
F. Let ∥x∥ denote the usual Euclidean norm of x ∈ Rr and σ : F → Rr be given by
σ(s) = (σ1(s), ... , σr(s)). Consider the infimum of the given set for an integral ideal M.

inf{∥σ(s)∥ | s ∈ M/± \{0}} = δ0. (4.1)

δ0 basically represents the smallest distance of σ(M) \ {0} from the origin. Keeping the
notation used in Theorem 2.4.2 in mind let δ = δ0

2
√

r
and

Ai = ∩r
j=1{s ∈ biN/± : |σj(s)| ≤ 2δ, s ̸= 0}. (4.2)

39
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For a fixed i, Ai represents a cube along with its interior in Rr. Since σ(biN) is a discrete
set in Rr, Ai is in fact finite. Note that δ depends upon i.

The notation Ai is kept reserved throughout the thesis. Let γj = max({
√
σj(ηiu) :

i = 1, ... , t, u ∈ U, ηiu ∈ F+}) and βj = min({
√
σj(ηiu) : i = 1, ... , t, u ∈ U, ηiu ∈ F+}).

We take ϵj = γj

βj
for all j = 1, . . . , r. Theorem 4.1.1 is one of the main theorems in the

submitted article [BDS23, Theorem 1].

Theorem 4.1.1 ( [BDS23], Theorem 1).Let N and n be fixed integral ideals. Let δ and
Ais be as defined by equation (4.1),(4.2) and k0 = min{kj | 1 ≤ j ≤ r}. Further, assume
that

2πγj

√
σj(m1m2)
δ

∈
(

(kj − 1) − (kj − 1) 1
3 , (kj − 1)

)
for all j. Then as k0 → ∞ we have

e2πtrF
Q (m1+m2)

ψ(N)

 r∏
j=1

(kj − 2)!
(4π

√
σj(m1m2))kj−1

∑
ϕ∈F

λϕ
nW

ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2

= T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s)

+
t∑

i=1

∑
u∈U,ηiu∈F +

∑
s∈Ai

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s) ×

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)+ o
( r∏

j=1

(
kj − 1

)− 1
3
)
.

Remark 4.1.2.Theorem 4.1.1 is valid for any given number field F, integral ideal N, n,
and character ω. By Theorem 2.1.1, the set U is finite. This implies that the triple sum
involved is indeed a finite sum. In the later part, we discuss whether the triple sum can
also be taken to be a single term on certain restrictions on F,N, and ω.

Remark 4.1.3.We note that Theorem 4.1.1 is an analogue of Theorem 5.1.7 for the space
Ak(N, ω) that can be seen in the following manner. The term T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s)
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in the above theorem takes the role of δ(m,n) in Theorem 5.1.7. The term

t∑
i=1

∑
u∈U,ηiu∈F +

∑
s∈Ai

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

×
r∏

j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)
is an analogue of 2πi−k µ(N)

N

∏
p|N(1 − p−2)Jk−1(4π

√
mn) in Theorem 5.1.7.

We now consider some lemmas which will help us to prove Theorem 4.1.1.

Lemma 4.1.4.Let M, ϵ be two given real numbers M > 2e and ϵ > 0. We have,

lim
k→∞

 ∫ ∞

M
e

(k−1)

(
1− 16

9yϵ
+log

(
2
y

))
dy

 = 0.

Proof. Let us consider the integral

∫ ∞

M
e

(k−1)

(
1− 16

9yϵ
+log

(
2
y

))
dy

first. By the substitution 16
9yϵ

= x, we have − 16
9y2ϵ

dy = dx so that the integral becomes

(9ϵ
4

) ∫ 16
9Mϵ

0
e−(k−1)x

(9xϵ
8

)(k−3)
dx

≤
(9ϵ

4

) ∫ 16
9Mϵ

0
e−(k−1)x

( 2
M

)(k−3)
dx

=
(9ϵ

4

)( 2
M

)(k−3) ∫ 16
9Mϵ

0
e−(k−1)xdx =

(9ϵ
4

)( 2
M

)(k−3)(e−(k−1) 16
9Mϵ

−(k − 1) + 1
k − 1

)
Hence

lim
k→∞

∫ ∞

M
e

(k−1)

(
1− 16

9yϵ
+log

(
2
y

))
dy

≤
(9ϵ

4

)
lim

k→∞

( 2e
M

)(k−3)(e−(k−1) 16
9Mϵ

−(k − 1) + 1
k − 1

)
= 0
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for M > 2e. □

Lemma 4.1.5.Let A′
i = {s ∈ biN/± \{0} : s /∈ Ai}. Then

∣∣∣∣∣∣
∑

u∈U,ηiu∈F +

∑
s∈A′

i

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)∣∣∣∣∣∣
≤

∑
u∈U,ηiu∈F +

∑
s∈A′

i

Nm(ηiu) 3
2 Nm(b−3

i )
r∏

j=1
2π
∣∣∣∣∣∣Jkj−1

(√4πσj(ηium1m2)
|σj(s)|

)∣∣∣∣∣∣.
Proof. Using Lemma 1.3.1 we get∣∣∣∣SωN

(m1,m2; ηiub
−2
i ; sb−1

i )
∣∣∣∣ ≤ Nm(ηiub

−2
i )Nm(sb−1

i ).

Thus ∣∣∣∣∣∣ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

∣∣∣∣∣∣ ≤ Nm(ηiu) 3
2 Nm(b−3

i ).

Using triangle inequality, the proof of the lemma is complete. □

The next three lemmas consist of bounds for the Bessel function necessary to prove
Theorem 4.1.1.

Lemma 4.1.6.Let i be fixed. Let g be an index such that |σg(s)| > 2δ, kg > 28 and

2πγg

√
σg(m1m2)
δ

∈
(

(kg − 1) − (kg − 1) 1
3 , (kg − 1)

)
.

Then,

∣∣∣∣Jkg−1

(4π
√
σg(ηium1m2)
|σg(s)|

)∣∣∣∣ ≤ (kg − 1)−1
3 e

(kg−1)

1− 16δ
(9ϵg)|σg(s)| +log

(
2δ

|σg(s)|

)
. (4.3)
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Proof. Since kg > 28 and 2πγg

√
σg(m1m2)
δ

∈
(

(kg − 1) − (kg − 1) 1
3 , (kg − 1)

)
, we have

8
9 <

1 − 1
(kg − 1) 2

3

 <

∣∣∣∣∣∣
2πγg

√
σg(m1m2)

(kg − 1)δ

∣∣∣∣∣∣ < 1. (4.4)

It follows from Lemma 2.4.1(i) that
∣∣∣∣∣∣Jkg−1

(4π
√
σg(ηium1m2)
|σg(s)|

)∣∣∣∣∣∣ =
∣∣∣∣∣∣Jkg−1

(kg − 1)
4π
√
σg(ηium1m2)

(kg − 1)|σg(s)|

∣∣∣∣∣∣
≤ ea(1−x)xaJa(a)

where a = kg − 1 and x = 4π
√

σg(ηium1m2)
(kg−1)|σg(s)| since

x <
2πγg

√
σg(m1m2)

(kg − 1)δ < 1

by equation (4.4). But by 2.4.1(ii),

Ja(a) ≪ 1
a

1
3

= 1
(kg − 1) 1

3
. (4.5)

Note that the equation (4.4) also implies x < 2δ
|σg(s)| and x > 16δ

(9ϵg)|σg(s)| . Hence

ea(1−x)xa < e

a

1− 16δ
(9ϵg)|σg(s)| +log

(
2δ

|σg(s)|

)
(4.6)

since ea(1−x)xa = ea(1−x+log x). The proof is complete by (4.4) and (4.5). □

Lemma 4.1.7.Let i be fixed. Let l be an index such that |σl(s)| ≤ 2δ, kl > 28 and

2πγl

√
σg(m1m2)
δ

∈
(

(kl − 1) − (kl − 1) 1
3 , (kl − 1)

)
.
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Then, ∣∣∣∣Jkl−1

(4π
√
σl(ηium1m2)
|σl(s)|

)∣∣∣∣ ≪F,N,n (kl − 1)−1
3 . (4.7)

Proof. For index l, we use the uniform bound given by the Lemma 2.4.1(iv) as follows.

∣∣∣∣Jkl−1

(4π
√
σl(ηium1m2)
|σl(s)|

)∣∣∣∣ ≤ min
(kl − 1)−1

3 ,
(4π

√
σl(ηium1m2)
|σl(s)|

)−1
3



≪F,N min
(

(kl − 1)−1
3 ,
(√

σl(ηium1m2)
)−1

3
)

as |σl(s)| ≤ 2δ. By equation (4.4) we have
√
σl(ηium1m2) ≥ 4

√
σl(ηiu)(kl−1)δ

9πγl
which implies√

σl(ηium1m2) ≫F,N (kl − 1). Hence we have

∣∣∣∣Jkl−1

(4π
√
σl(ηium1m2)
|σl(s)|

)∣∣∣∣ ≪F,N min((kl − 1)−1
3 , (kl − 1)−1

3 ) = (kl − 1)−1
3 . (4.8)

□

Lemma 4.1.8.Let i be fixed and M > 2e. Let g′ be an index such that 2δ < |σg′(s)| ≤
(M + 1)δ, kg′ > 27 and

2πγg′

√
σg′(m1m2)
δ

∈
(

(kg′ − 1) − (kg′ − 1) 1
3 , (kg′ − 1)

)
.

Then,

Jkg′ −1

(4π
√
σg′(ηium1m2)
|σg′(s)|

)
= o((kg′ − 1)−1

3 ).

Proof. We apply the bounds in the following manner. Let

x′ =
4π
√
σg′(ηium1m2)

(kg′ − 1)|σg′(s)| < 1.

We consider three cases according to when 0 < x′ < 1
3 , 1

3 ≤ x′ < 1
2 or 1

2 ≤ x′ < 1. For
each part we use bounds as follows. When 1

2 ≤ x′ < 1 we use the uniform bound given
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by Lemma 2.4.1(v). This gives us

Jkg′ −1((kg′ − 1)x′) ≪ 1
(1 − x′2) 1

4 (kg′ − 1) 1
2

= o((kg′ − 1)−1
3 ).

For 1
3 ≤ x′ < 1

2 , using Lemma 2.4.1(i),(ii) we have

Jkg′ −1((kg′ − 1)x′) ≪ e(kg′ −1)(1−x′+log x′) · 1
(kg′ − 1)−1

3

≤ e(kg′ −1)(1− 1
3 +log 1

2 ) · 1
(kg′ − 1) 1

3
= o((kg′ − 1) 1

3 ).

Similarly for 0 < x′ < 1
3 ,

Jkg′ −1((kg′ − 1)x′) ≪ e(kg′ −1)(1+log 1
3 ) · 1

(kg′ − 1) 1
3

= o((kg′ − 1)−1
3 ).

□

4.2 Main Theorem

Proposition 4.2.1. Let k ∈ N and ϵ > 1 be fixed. Then the function

f(y) = e
(k−1)

(
− 16

(9ϵ)y
+log

(
2
y

))

is monotonically decreasing for y > 16
9 .

Proof. Note that

f(y) = e
(k−1)

(
− 16

(9ϵ)y
+log

(
2
y

))
=
(2
y

)k−1
e

−16(kg−1)
(9ϵ)y .

Hence

f ′(y) = 2k−1 ·
yk−3 × 16(k−1)

9ϵ
× e

−16(k−1)
(9ϵ)y − (k − 1) × yk−2

y2k−2
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= 2k−1 · (k − 1) · y−k−1
(16

9ϵ − y
)
.

The proof is complete since f ′(y) < 0 for y > 16
9ϵ
> 16

9 . □

Proof.[Theorem 4.1.1]
First, we try to estimate the triple sum appearing in the Petersson trace formula

(Theorem 2.4.2). Let i be fixed in the triple sum. Let us take A′
i = {s ∈ biN/± : s ̸=

0, s /∈ Ai}. We have,

∑
u∈U,ηiu∈F +

∑
s∈biN/±,s ̸=0

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)

=
∑

u∈U,ηiu∈F +

∑
s∈Ai

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)

+
∑

u∈U,ηiu∈F +

∑
s∈A′

i

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)
.

We estimate the sum when s ∈ A′
i and show that as k0 → ∞, the sum is in fact

o
(∏r

j=1

(
kj − 1

)−1
3
)
. Using Lemma 4.1.5 we get,

∣∣∣∣∣∣
∑

u∈U,ηiu∈F +

∑
s∈A′

i

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)∣∣∣∣∣∣
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≤
∑

u∈U,ηiu∈F +

∑
s∈A′

i

Nm(ηiu) 3
2 Nm(b−3

i )
r∏

j=1
2π
∣∣∣∣∣∣Jkj−1

(√4πσj(ηium1m2)
|σj(s)|

)∣∣∣∣∣∣.
Let us take u ∈ U and ηiu ∈ F+ to be fixed. We now estimate

∑
s∈A′

i

r∏
j=1

∣∣∣∣∣∣Jkj−1

(√4πσj(ηium1m2)
|σj(s)|

)∣∣∣∣∣∣
with using the estimates from previous section. Let h = ∑r

j=1 aj2j−1 where aj ∈ {0, 1}.
There is a one to one correspondence between h and r-tuple (a1, ... , ar) with aj ∈ {0, 1}.
To see this consider the map (a1, ... , ar) 7→ ∑r

j=1 aj2j−1. We partition the set A′
i as per

the given correspondence, i.e.
A′

i = ∪2r−1
h=1 A

′
i,h

where A′
i,h = {s ∈ A′

i : h = ∑r
j=1 aj2j−1, ag = 1, al = 0 for g, l ∈ {1, ... , r} with

|σg(s)| > 2δ and |σl(s)| ≤ 2δ}. Hence

∑
s∈A′

i

r∏
j=1

∣∣∣∣Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)∣∣∣∣
2r−1∑
h=1

∑
s∈A′

i,h

r∏
j=1

∣∣∣∣Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)∣∣∣∣.
Now let us fix the value of h. Corresponding to h = ∑r

j=1 aj2j−1, let g1, ... , gv, g′
1, ... , g

′
v′ ,

l1, ... , lw be a permutation of 1, ... , r with the property that ag1 , ... , agv = 1, ag′
1
, ... , ag′

v′
=

1 and al1 , ... , alw = 0. Let M be a fixed real number with M > 2e. We distinguish between
the index gα and g′

α with |σgα(s)| > (M + 1)δ and |σg′
α
(s)| ≤ (M + 1)δ respectively. Let

δ1, ..., δr denote the length of sides of the fundamental parallelopiped of the lattice σ(biN)
for a fixed i.

Let us take δ̃ = min(δ1, ..., δr) and ϵ =
(

δ̃
2

)r

. For the choice of ϵ, it is clear that a
cube of volume ϵ can contain at most one lattice point of σ(biN). Using Lemma 4.1.8 we
have,

∑
s∈A′

i,h

v∏
α=1

∣∣∣∣∣∣Jkgα −1

4π
√
σgα(ηium1m2)
|σgα(s)|

∣∣∣∣∣∣
v′∏

g′
α′ ,α

′=1

∣∣∣∣∣∣Jkg′
α′

−1

4π
√
σg′

α′
(ηium1m2)

|σg′
α′

(s)|

∣∣∣∣∣∣
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w∏
β=1

∣∣∣∣∣∣Jklβ
−1

4π
√
σlβ (ηium1m2)
|σlβ (s)|

∣∣∣∣∣∣
≪F,N,n

v′∏
g′

α′ ,α
′=1

f(kg′
α′

− 1)
∑

(M+1)δ<|σg1 (s)|
...

∑
(M+1)δ<|σgv (s)|

∑
(m1−1)ϵ

1
r <|σl1 (s)|≤m1ϵ

1
r

m1≤

[
2δ

ϵ
1
r

]
+1

...
∑

(mw−1)ϵ
1
r <|σlw (s)|≤mwϵ

1
r

mw≤

[
2δ

ϵ
1
r

]
+1

 v∏
α=1

∣∣∣∣∣∣Jkgα −1

4π
√
σgα(ηium1m2)
|σgα(s)|

∣∣∣∣∣∣×

w∏
β=1

∣∣∣∣∣∣Jklβ
−1

4π
√
σlβ (ηium1m2)
|σlβ (s)|

∣∣∣∣∣∣


where f(kg′
α′

− 1) = o((kg′
α′

− 1)−1
3 ) for all α′ = 1, 2, ..., v′. Using Lemma 4.7 and Lemma

4.8 the above expression is

≪F,N,n

v′∏
g′

α′ ,α
′=1

f(kg′
α′

− 1)
w∏

β=1
(klβ − 1)−1

3

∑
(M+1)δ+(n1−1)ϵ

1
r ≤|σg1 (s)|<(M+1)δ+n1ϵ

1
r

n1∈N

...
∑

(M+1)δ+(nv−1)ϵ
1
r ≤|σgv (s)|<(M+1)δ+nvϵ

1
r

nv∈N∑
(m1−1)ϵ

1
r <|σl1 (s)|≤m1ϵ

1
r

m1≤

[
2δ

ϵ
1
r

]
+1

...
∑

(mw−1)ϵ
1
r <|σlw (s)|≤mwϵ

1
r

mw≤

[
2δ

ϵ
1
r

]
+1

 v∏
α=1

(kgα − 1)−1
3 · e

(kgα −1)

1− 16δ
(9ϵgα )|σgα (s)| +log

(
2δ

|σgα (s)|

)

≤
v′∏

g′
α′ ,α

′=1
f(kg′

α′
− 1)

v∏
α=1

(kgα − 1)−1
3

w∏
β=1

(klβ − 1)−1
3

 v∑
α=1

∑
(M+1)δ+(nα−1)ϵ

1
r ≤|σgα (s)|<(M+1)δ+nαϵ

1
r

nα∈N
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w∑
β=1

∑
(mβ−1)ϵ

1
r <|σlβ

(s)|≤mβϵ
1
r

mβ≤

[
2δ

ϵ
1
r

]
+1

v∏
α=1

e

(kgα −1)

1− 16δ
(9ϵgα )|σgα (s)| +log

(
2δ

|σgα (s)|

).

For simplicity let us take yα = |σgα (s)|
δ

and zβ = |σlβ
(s)|

δ
. Thus we have

≤
v′∏

g′
α′ ,α

′=1
f(kg′

α′
− 1)

v∏
α=1

(kgα − 1)−1
3

w∏
β=1

(klβ − 1)−1
3

 v∑
α=1

∑
(M+1)+(nα−1) e

1
r
δ

≤yα<(M+1)+nα
e

1
r
δ

nα∈N

w∑
β=1

∑
(mβ−1) e

1
r
δ

<zβ≤mβ
e

1
r
δ

mβ≤

[
2

ϵ
1
r

]
+1

v∏
α=1

e

(kgα −1)

1− 16
(9ϵgα )yα

+log

(
2

yα

)

= δr

ϵ
×

v∏
α=1

(kgα − 1)−1
3

w∏
β=1

(klβ − 1)−1
3

 v∑
α=1

∑
(M+1)+(nα−1) e

1
r
δ

≤yα<(M+1)+nα
e

1
r
δ

nα∈N

w∑
β=1

∑
(mβ−1) e

1
r
δ

<zβ≤mβ
e

1
r
δ

mβ≤

[
2

ϵ
1
r

]
+1

v∏
α=1

e

(kgα −1)

1− 16
(9ϵgα )yα

+log

(
2

yα

)
ϵ

δr

.

By Proposition 4.2.1 and the integral test the above sum is bounded by the multiple
integral

≤ δr

ϵ

v′∏
g′

α′ ,α
′=1

f(kg′
α′

− 1)
v∏

α=1
(kgα − 1)−1

3

w∏
β=1

(klβ − 1)−1
3

∫ ∞

M
...
∫ ∞

M

∫ 2+ e
1
r
δ

0
...
∫ 2+ e

1
r
δ

0

 v∏
α=1

e

(kgα −1)

1− 16
(9ϵgα )yα

+log

(
2

yα

)dy1... dyvdz1... dzw
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≪F,N,n

v′∏
g′

α′ ,α
′=1

f(kg′
α′

− 1)
v∏

α=1
(kgα − 1)−1

3

w∏
β=1

(klβ − 1)−1
3

∫ ∞

M
...
∫ ∞

M

 v∏
α=1

e

(kgα −1)

1+log

(
2

yα

)dy1... dyv

=
v′∏

g′
α′ ,α

′=1
f(kg′

α′
−1)

v∏
α=1

(kgα −1)−1
3

w∏
β=1

(klβ −1)−1
3

v∏
α=1

∫ ∞

M
e

(kgα −1)

1− 16
(9ϵgα )yα

+log

(
2

yα

)
dyα.

However by Lemma 4.1.4,

lim
kgα →∞

∫ ∞

M
e

(kgα −1)

1− 16
(9ϵgα )yα

+log

(
2

yα

)
dyα = 0

for all possible α.

Therefore for each fixed i and fixed u ∈ U with ηiu ∈ F+ we obtain,

∑
s∈biN/±,s ̸=0

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)

=
∑

s∈Ai

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s)

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)
+ o

( r∏
j=1

(
kj − 1

)−1
3
)

Finally, varying i from 1 to t and u ∈ U with ηiu ∈ F+, we get

e2πtrF
Q (m1+m2)

ψ(N)

 r∏
j=1

(kj − 2)!
(4π

√
σj(m1m2))kj−1

∑
ϕ∈F

λϕ
nW

ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2
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= T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s)

+
t∑

i=1

∑
u∈U,ηiu∈F +

∑
s∈Ai

ωfin(sb−1
i )SωN

(m1,m2; ηiub
−2
i ; sb−1

i )

√
Nm(ηiu)
Nm(s) ×

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(ηium1m2)
|σj(s)|

)+ o
( r∏

j=1

(
kj − 1

)−1
3
)
.

□

4.3 Reformulation of Main Theorem in some special
cases

We remind the reader that the notation F,N, n remains the same throughout this section
and has been taken from Petersson trace formula for Ak(N, ω) (Theorem 2.4.2). In this
section, we focus on O having an odd narrow class number.

Lemma 4.3.1 ( [EMP86, Prop. 2.4]).Let O have an odd narrow class number. Then we
have t = 1 and |U+| = 1.

Proof. Since the class number divides the narrow class number, the class number is odd.
By the Example 2.1.2, the equation [b]2[n] = 1 has a unique solution implying t = 1.
By Proposition 2.4 of [EMP86], we have dim2(U+) ≤ dim2(C+) = 0 (see section 2.1 for
notation). Hence |U+| = 1. □

As t = 1, we can take η1 = 1. Lemma 4.3.1 also helps us to take |{u ∈ U : ηiu ∈ F+

for some i = 1, . . . , t}| = 1. Recall that inf{∥σ(s)∥ : s ∈ b1N/ ± \{0}} = δ0. For a
general number field F and integral ideal N, |{s ∈ b1N/ ± \{0} : ∥σ(s)∥ = δ0}| is not
necessarily equal to 1. For instance if we take b1 = O, N = Z

√
d with d ≡ 2, 3 (mod 4)

and square free, we have a unique s0. Whereas by taking the ideal (3 +
√

3)O ⊂ Z[
√

3]
we get |A1| = 3. Hence we ask the question whether there is a necessary and sufficient
condition for |{s ∈ b1N/ ± \{0} : ∥σ(s)∥ = δ0}| = 1. This will make the triple sum in
Theorem 4.1.1 a single term.
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Along this line, we provide sufficient conditions in the proceeding three lemmas.

Lemma 4.3.2.Suppose the infimum inf{∥σ(s)∥ : s ∈ b1N/± \{0}} = δ0 be attained for
some s0 with σ(s0) = (a, a, ... , a) =

(
δ0√

r
, δ0√

r
, ... , δ0√

r

)
. We have A1 =

{
δ0√

r

}
.

Proof. Note that A1 ⊂ Sδ0 where Sδ0 := {s ∈ b1N/± : σ2
1(s) + ... + σ2

r(s) = δ2
0}.

The set A1 basically represents a cube with centre (0, . . . , 0) in r-dimensional euclidean
space along with its interior where as Sδ0 denotes a sphere with radius δ0 and centre
(0, . . . , 0). Hence if s′ ∈ A1 ∩ Sδ0 , then s′ ∈ ∂A1 ∩ Sδ0 . This implies |σj(s′)| = δ0√

r

for all j = 1, ..., r. Therefore s′ is equal to
(
(−1)m1 δ0√

r
, (−1)m2 δ0√

r
, ... , (−1)mr δ0√

r

)
where

mj = 0, 1 for j = 1, ... , r. If mj = 0 or mj = 1 for all j, then s′ = s. In any different
case, we have mj0 = 0 for some j0 which yields σj0(s) = σj0(s′). Thus s′ = s0 = δ0√

r
as

σj0 is injective. □

Lemma 4.3.3.Let b1N = O for the set A1. We have δ0 =
√
r and A1 = {1}.

Proof. Let us consider minimizing inf{∥σ(s)∥ : s ∈ O/ ± \{0}}. This is equivalent to
minimize the quantity ∥σ(s)∥2 = σ2

1(s) + ...+ σ2
r(s). For a given s, if

σ(s′) =
(
(−1)m1σ1(s), (−1)m2σ2(s), ... , (−1)mrσr(s)

)
for mj ∈ N, then ∥σ(s′)∥ = ∥σ(s)∥. Without loss of generality we consider minimizing
∥σ(s)∥2 on the set {s : s ∈ O/± \{0}, σj(s) ≥ 0 for j = 1, ... , r}. The Cauchy-Schwartz
inequality implies

√
(12 + ...+ 12)(σ2

1(s) + ...+ σ2
r(s)) ≥ σ1(s) + ...+ σr(s).

Further using AM-GM inequality, we get

σ1(s) + ...+ σr(s)
r

≥ (σ1(s) × ...× σr(s))
1
r = Nm(s) 1

r .

Note that the equality holds when σi(s) = σj(s) for all possible i, j. In such scenario,
σ2

1(s) + ... + σ2
r(s) = rσ2

1(s) = r(Nm(s)) 2
r . However Nm(s) ∈ N, so that the minimum

value of r(Nm(s)) 2
r = r. This can happen when Nm(s) = 1 and σ2

1(s) = 1. Therefore
δ0 =

√
r and on applying Lemma 4.3.2 with taking s0 = δ0√

r
, we get A1 = {1}. □
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Lemma 4.3.4.Let b1N be an ideal in O such that b1N = s̃O with s̃ ∈ Z, then δ0 = |s̃|
√
r

and A1 = {|s̃|}.

Proof. The proof is quite similar to the proof of Lemma 4.3.3. We again have to
minimize inf{∥σ(s)∥ : s ∈ b1N/ ± \{0}}. Without loss of generality this is equivalent
minimizing ∥σ(s)∥2 = σ2

1(s) + ...+ σ2
r(s) on the set B = {s : s ∈ b1N/± \{0}, σj(s) ≥ 0

for j = 1, .., r }. Proceeding similar to the arguments given in Lemma 4.3.3, the possible
minimum value of ∥σ(s)∥2 is r(Nm(s)) 2

r . If s ∈ B, we have s = s̃s′ for some s′ ∈ O. This
implies Nm(s) = Nm(s̃)Nm(s′) consequently, Nm(s̃) divides Nm(s). Thus the minimum
value of Nm(s) is Nm(s̃). Hence r(Nm(s)) 2

r has minimum value r(Nm(s̃)) 2
r . This proves

∥σ(s)∥2 has minimum value r(Nm(s̃)) 2
r which can happen if σ(s) = (|s̃|, ... , |s̃|). However

by Lemma 4.3.2, we have A1 = {|s̃|}. □

We observe that for an ideal b1N = s̃O with s̃ /∈ Z may or may not satisfy the hy-
pothesis of Lemma 4.3.2. For instance the ideal (1+

√
3)O ⊂ Z[

√
3] satisfy the hypothesis

for Lemma 4.3.2 with s0 = 2. However if we take (3 +
√

3)O ⊂ Z[
√

3], we can show that
the ideal does not satisfy the hypothesis of Lemma 4.3.2. This illustrates hypothesis of
Lemma 4.3.2 is not necessary to have |{s ∈ b1N/± \{0} : ∥σ(s)∥ = δ0}| = 1. Nonethe-
less the hypothesis of b1N = s̃O with s̃ ∈ N in Theorem 4.3.5 can be replaced by any
ideal b1N with the property |{s ∈ b1N/ ± \{0} : ∥σ(s)∥ = δ0}| = 1 in order to have a
Theorem like Theorem 4.3.5.

Theorem 4.3.5 ( [BDS23], Theorem 2).Let F have an odd narrow class number and
assumptions of Theorem 4.1.1 hold true. Further let b1N = s̃O with s̃ ∈ N.

• Then the main term in Theorem 4.1.1 reduces to

T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s) +
ωfin(sb−1

1 )SωN
(m1,m2; η1b

−2
1 ; sb−1

1 )

√
Nm(η1)
Nm(s)

×
r∏

j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(η1m1m2)
|σj(s)|

)
where s = s̃.

• Further assume that SωN
(m1,m2; η1b

−2
1 ; sb−1

1 ) ̸= 0 for some m1 and m2. Then as
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k0 → ∞, we have

e2πtrF
Q (m1+m2)

ψ(N)

r∏
j=1

(kj − 2)!
(4π

√
|σj(m1m2)|)kj−1

∑
ϕ∈F

λϕ
nW

ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2

−T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s) ≫F,N

r∏
j=1

(kj − 1)− 1
3 .

Proof. Using Theorem 4.1.1, Lemma 4.3.1 and Lemma 4.3.4, we get
∣∣∣∣∣∣e

2πtrF
Q (m1+m2)

ψ(N)

 r∏
j=1

(kj − 2)!
(4π

√
σj(m1m2))kj−1

∑
ϕ∈F

λϕ
nW

ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2

− T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s)

∣∣∣∣∣∣
=
∣∣∣∣∣∣ωfin(sb−1

1 )SωN
(m1,m2; η1b

−2
1 ; sb−1

1 )

√
Nm(η1)
Nm(s) ×

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(η1m1m2)
|σj(s)|

)∣∣∣∣∣∣+ o
( r∏

j=1

(
kj − 1

)−1
3
)

≫F,N,n

r∏
j=1

Jkj−1

(4π
√
σj(η1m1m2)
|σj(s)|

)
+ o

( r∏
j=1

(
kj − 1

)−1
3
)

The last step of ≫F,N,n is justified in the following part. Note that

4π
√
σj(η1m1m2)
|σj(s)|

=
4π
√
σj(η1m1m2)
(δ0/

√
r) =

2π
√
σj(η1m1m2)

δ
.

By the given condition

2πγj

√
σj(m1m2)
δ

∈
(

(kj − 1) − (kj − 1) 1
3 ,
(
kj − 1)

)
,

which implies
2πγj

√
σj(m1m2)
δ

= (kj − 1) + d(kj − 1) 1
3
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with d ∈ (−1, 0). Using Lemma 2.4.1(iv)

r∏
j=1

Jkj−1

(4π
√
σj(η1m1m2)
|σj(s)|

)
≫

r∏
j=1

(
kj − 1

)−1
3 .

Therefore ∣∣∣∣∣∣e
2πtrF

Q (m1+m2)

ψ(N)

 r∏
j=1

(kj − 2)!
(4π

√
σj(m1m2))kj−1

∑
ϕ∈F

λϕ
nW

ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2

− T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s)

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(kj − 1)−1
3 .

□

Remark 4.3.6.For the case of SωN
(m1,m2; η1b

−2
1 ; sb−1

1 ) = 0 for some m1 and m2,
the main term in Theorem 4.1.1 reduces to T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s) . The assumption
SωN

(m1,m2; η1b
−2
1 ; sb−1

1 ) ̸= 0 is very important to have a lower bound like Theorem 4.3.5.
For instance, the main term of Theorem 5.1.7 is Jk−1(4π

√
mn)µ(N)

N

∏
p|N

(
1−p−2

)
. When

N is squarefree, µ(N) ̸= 0 so that Jk−1(4π
√
mn)µ(N)

N

∏
p|N

(
1−p−2

)
̸= 0 in Theorem 5.1.7.

Therefore the non-vanishing of the Kloosterman sum in Theorem 4.3.5 is a crucial as-
sumption in getting a lower bound (see Theorem 3.0.1 also).

Note that we can similarly obtain a result like Theorem 4.3.5 under the assumption
that 2πγj

√
σj(m1m2)
δ

∈
(

(kj − 1) − (kj − 1) 1
3 , (kj − 1)

)
for all j, with fixed d ∈ F ∗ and

γj =
√

σj(η1)
|σj(d)| . This is shown in the next lemma and the lemma will help us to get our

desired discrepancy result.

Lemma 4.3.7.Let F has odd narrow class number and b1N = s̃O with s̃ ∈ N. Let
dO = d and 2πγj

√
σj(m1m2)
δ

∈
(

(kj − 1) − (kj − 1) 1
3 , (kj − 1)

)
for all j, where γj =

√
σj(η1)

|σj(d)| .

Further assume that SωN
(m1,m2; η1b

−2
1 ; sb−1

1 ) ̸= 0 for some m1 and m2. Then
∣∣∣∣∣∣e

2πtrF
Q (m1+m2)

ψ(N)

 r∏
j=1

(kj − 2)!
(4π

√
σj(m1m2))kj−1

∑
ϕ∈F

λϕ
nW

ϕ
m1(1)W ϕ

m2(1)
∥ϕ∥2
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− T̂ (m1,m2, n)

√
dF Nm(n)

ωN(m1/s)ωfin(s)

∣∣∣∣∣∣ ≫F,N,n

r∏
j=1

(kj − 1)−1
3 .

Proof. To see this replace the new γj =
√

σj(η1)
|σj(d)| in place of the old γj =

√
σj(η1) in the

proof of Theorem 4.1.1. The rest of the argument follows through proof of Theorem 4.3.5
similarly. □

Corollary 4.3.8.Let F have an odd narrow class number equal to 1 and l be an odd
natural number. Let b1N = s̃O with s̃ ∈ N and squarefree. Further let ωN be trivial with
p̃O = p and dO = d. Let 2πγj

√
σj(p̃l)

δ|σj(d)| ∈
(

(kj − 1) − (kj − 1) 1
3 , (kj − 1)

)
for all j, with

γj =
√

σj(η1)
|σj(d)| . Then we have

∣∣∣∣∣∣ 1√
Nm(p̃l)

 r∏
j=1

(kj − 2)!
(4π)kj−1

∑
ϕ∈F

λϕ
pl

∥ϕ∥2

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(kj − 1)−1
3 .

Proof. We use Corollary 2.4.3 by taking m1 = p̃l

d
and m2 = 1

d
. Hence

e4πrNm(d)
ψ(N)d2

F

√
Nm(p̃l)

 r∏
j=1

(kj − 2)!
(4π)kj−1

∑
ϕ∈F

λϕ
pl

∥ϕ∥2

= T̂
(
p̃l

d
,
1
d
,O
) √

dF Nm(n)

ωN

(
p̃l

sd

)
ωfin(s)

+
∑

s∈b1N/±,s ̸=0

ωfin(sb−1
1 )SωN

(
p̃l

d
,
1
d

; 1; s̃
)

×

√
Nm(η1)
Nm(s) ×

r∏
j=1

2π
(
√

−1)kj
Jkj−1

(4π
√
σj(η1p̃l)

|σj(sd)|

).
l being an odd natural number , T̂

(
p̃l

d
, 1

d
,O
)

= 0. However by Lemma 3.0.1, we get

SωN

(
p̃l

d
, 1

d
; 1; s̃

)
̸= 0. Now apply Lemma 4.3.7 to have

∣∣∣∣∣∣ e4πrNm(d)
ψ(N)d2

F

√
Nm(p̃l)

 r∏
j=1

(kj − 2)!
(4π)kj−1

∑
ϕ∈F

λϕ
pl

∥ϕ∥2

∣∣∣∣∣∣
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≫F,N

r∏
j=1

(kj − 1)−1
3 .

Therefore ∣∣∣∣∣∣ 1√
Nm(p̃l)

 r∏
j=1

(kj − 2)!
(4π)kj−1

∑
ϕ∈F

λϕ
pl

∥ϕ∥2

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(kj − 1)− 1
3 .

□

Theorem 4.3.9 ( [BDS23], Theorem 3).Let F have a narrow class number equal to 1.
Let b1N = s̃O with s̃ ∈ Z and |s̃| being squarefree. Further let ωN be trivial. Then there
exists an infinite sequence of weights kl = (kl1, ..., klr) with (kl)0 → ∞ such that

D(ν̃kl,N, µ∞) ≫ 1(
log klj

)2
×∏r

i=1(kli − 1) 1
3

.

for all j ∈ {1, ... , r}.

The exponent 1
3 in Theorem 4.3.9 shows that one can not achieve

D(ν̃kl,N, µ∞) = Oϵ,N

( r∏
j=1

(kj − 1)− 1
2 +ϵ
)

for every even weight k = (k1, . . . , kr) (also refer to [JS20, (1.9)]).
Proof. Let klj be such that 2πγj

√
σj(p̃l)

δ|σj(d)| ∈
(

(klj − 1) − (klj − 1) 1
3 , (klj − 1)

)
. In particular

we can take klj =
[

2πγj

√
σj(p̃l)

δ|σj(d)|

]
−1. where [x] denotes the greatest integer part of x. Using

Corollary 4.3.8 we have∣∣∣∣∣∣ 1√
Nm(p̃l)

 r∏
j=1

(klj − 2)!
(4π)klj−1

∑
ϕ∈F

λϕ
pl

∥ϕ∥2

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(klj − 1)−1
3 (4.9)

Recall that κϕ
pl =

λϕ

pl√
Nm(pl)

and κϕ
pl ∈ [−2, 2]. By Proposition 4.5 of [KL08] we have

κϕ
pl = Xl(κϕ

p )

where Xl(2 cos θ) = sin(l+1)θ
sin θ

is the Chebyshev polynomial of second kind with degree l.
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Rewriting equation (4.9)
∣∣∣∣∣∣

r∏
j=1

(klj − 2)!
(4π)klj−1

∑
ϕ∈F

κϕ
pl

∥ϕ∥2

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(klj − 1)−1
3

equivalently ∣∣∣∣∣∣
r∏

j=1

(klj − 2)!
(4π)klj−1

∑
ϕ∈F

Xl(κϕ
p )

∥ϕ∥2

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(klj − 1)−1
3 .

Hence ∣∣∣∣∣∣
∫ 2

−2
Xl(x) dν̃kl,N(x)

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(klj − 1)−1
3 .

Using equation (5.1), ∫ 2

−2
Xl(x) dµ∞ = 0.

This helps us to deduce∣∣∣∣∣∣
∫ 2

−2
Xl(x) d(ν̃kl,N − µ∞)(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 2

−2
Xl(x) dν̃kl,N(x) −

∫ 2

−2
Xl(x) dµ∞(x)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫ 2

−2
Xl(x) dν̃kl,N(x)

∣∣∣∣∣∣ ≫F,N

r∏
j=1

(klj − 1)−1
3 . (4.10)

Using integration by parts and
∣∣∣X ′

l(x)
∣∣∣ ≪ l2 we get

∣∣∣∣∣∣
∫ 2

−2
Xl(x) d(ν̃kl,N − µ∞)(x)

∣∣∣∣∣∣ ≪ l2

∣∣∣∣∣∣
∫ 2

−2
d(ν̃kl,N − µ∞)(x)

∣∣∣∣∣∣ (4.11)

Consider

D(ν̃kl,N, µ∞) ≥

∣∣∣∣∣∣ν̃kl,N([−2, 2]) − µ∞([−2, 2])
∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫ 2

−2
d(ν̃kl,N − µ∞)(x)

∣∣∣∣∣∣ ≫ 1
l2

∣∣∣∣∣∣
∫ 2

−2
Xl(x) d(ν̃kl,N − µ∞)(x)

∣∣∣∣∣∣
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by equation (4.11). Equation (4.10) then implies

D(ν̃kl,N, µ∞) ≫ 1
l2 ×∏r

j=1(klj − 1) 1
3
.

However klj =
[

2πγj

√
σj(p̃l)

|σj(d)|δ

]
− 1 , so that 2πγj

√
σj(p̃l)

|σj(d)|δ < 2klj. This implies kljδ|σj(d)|
πγj

>(√
σj(p̃)

)l
and log klj ≫ l. Therefore

D(ν̃kl,N, µ∞) ≫ 1(
log klj0

)2
×∏r

j=1(klj − 1) 1
3

.

for any j0 ∈ {1, ... , r}. □



5

Equidistribution results for eigenvalues

In this chapter, we discuss some results involving equidistribution of eigenvalues. In
section 5.1 we consider equidistribution results for λp(f). Section 5.2 consists of equidis-
tribution results for λp2(f).

5.1 Equidistribution results for λp(f )

Let Sk(N) denote the space of cusp forms of even integer weight k and level N . Let
dim(Sk(N)) denote the dimension of the vector space Sk(N). The nth normalised Hecke
operator acting on Sk(N) is given by

Tn(f)(z) := n
k−1

2
∑

ad=n,d>0

1
dk

∑
b(mod d)

f
(
az + b

d

)
.

Let Fk(N) be an orthonormal basis of Sk(N) consisting only of joint eigenfunctions of
the Hecke operators Tn with (n,N) = 1. For f ∈ Sk(N), we have Fourier expansion of f
at the cusp ∞ which is given by

f(z) =
∞∑

n=1
an(f)n k−1

2 e2πinz.

60
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we denote λn(f) to be the nth normalised Hecke eigenvalue of f i.e. Tn(f) = λn(f)f . We
have an(f) = a1(f)λn(f). From the Ramanujan-Deligne bound [Del74] we have

|λn(f)| ≤ τ(n)

where τ(n) denotes the divisor function.
Consider the subspace of Sk(N) spanned by the set

{
f(mz) : d|N, d < N, f ∈ Sk(d),m divides N

d

}
.

The subspace obtained is the space of oldforms in Sk(N) denote by Sold
k (N). The space

of newforms Sk(N)∗ is defined to be the orthogonal complement of Sold
k (N) in Sk(N)

with respect to the Petersson inner product. The subspace Sold
k (N) and Sk(N)∗ are

stable under the Hecke operator Tn for all n ∈ N (see Proposition 5.6.2 of [DS05]).
Let T ∗

n be the restriction of Hecke operator Tn from Sk(N) to Sk(N)∗. Let Fk(N)∗ be an
orthonormal basis of Sk(N)∗ consisting only of joint eigenfunctions of the Hecke operators
T ∗

n (see Corollary 5.6.3 of [DS05]).

Definition 5.1.1. Let µ be a probability measure on [a, b]. A sequence of real numbers
xn ∈ [a, b] is equidistributed with respect to the measure µ if for any [a′, b′] ⊂ [a, b],

lim
n→∞

|{m ≤ n : xm ∈ [a′, b′]}|
n

=
∫ b′

a′
dµ.

Definition 5.1.2. Let µ be a probability measure on [a, b]. A sequence of finite multisets
An with |An| → ∞ as n → ∞ are equidistributed with respect to the measure µ if for
any [a′, b′] ⊂ [a, b],

lim
n→∞

|t ∈ An : t ∈ [a′, b′]|
|An|

=
∫ b′

a′
dµ.

Let us recall the Sato−Tate measure given by

µ∞(x) := 1
π

√
1 − x2

4

if x ∈ [−2, 2]. We recall the following two crucial theorems concerning the distribution
of eigenvalues which we already discussed in Chapter 1.
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Theorem 5.1.3 (Barnet-Lamb, Geraghty, Harris, and Taylor).Let f ∈ Sk(N)∗ be a
fixed non-CM newform. The sequence {λp(f) : p prime, (p,N) = 1} is equidistributed
in [−2, 2] with respect to the measure µ∞.

Proof. We refer to [BLGHT11, Theorem B(3)]. □

Theorem 5.1.4 (Serre).Let p be a fixed prime number. The familiy of multisets Al =
{λp(f) : (p,Nl) = 1, f ∈ Skl

(Nl) and Nl + kl → ∞} are equidistributed in [−2, 2] with
respect to the measure µp.

Proof. We refer to [Ser97, Theroem 1]. □

Recall
µk,N := 1

dim(Sk(N))
∑

f∈Fk(N)
δλp(f)

and
µ∗

k,N := 1
dim(S∗

k(N))
∑

f∈F∗
k

(N)
δλp(f)

where δx is the Dirac measure at x. We would also like the reader to recall the notion of
Discrepancy given by Definition 1.1.5. The main goal of Problem 1 is to get a discrepancy
result like equation (1.5) for Hilbert cusp forms. A result like equation (1.5) is obtained
with the help of an explicit asymptotic version of the Petersson trace formula (Theorem
5.1.7), which is an important ingredient in [JS20].

Before considering the asymptotic version of the Petersson trace formula, we consider

the Petersson trace formula for Sk(N). Let ρn(f) :=
(

Γ(k−1)
(4π)k−1

) 1
2
an(f) and ∆k,N(m,n) :=∑

f∈ ρm(f)ρn(f).

Proposition 5.1.1. Let n ∈ N. Then

∆k,N(1, n) =
Γ(k − 1)

(4π)k−1

 ∑
f∈Fk(N)

|a1(f)|2λn(f).

Proof. Take m = 1 in definition of ∆k,N(m,n) to get

∆k,N(1, n) =
∑

f∈Fk(N)
ρ1(f)ρn(f) =

Γ(k − 1)
(4π)k−1

 ∑
f∈Fk(N)

a1(f)an(f).
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The proposition follows from the fact an(f) = a1(f)λn(f). □

The proposition also justifies the choice of variants νk,N and ν∗
k,N (see (1.4)).

Theorem 5.1.5 ( [ILS00, Proposition 2.1]).Petersson’s Trace formula
Let m,n be natural numbers. We have

∆k,N(m,n) =
∑

f∈Fk(N)
ρm(f)ρn(f) = δ(m,n) + 2πik

∑
N |c,c>0

S(m,n; c)
c

Jk−1

(4π
√
mn

c

)
.

We would now like to consider the following asymptotic result of ∆k,N(m,n) for future
reference.

Theorem 5.1.6 ( [ILS00], Corollary 2.3).Let N be a fixed positive integer. Let m,n be
such that 4π

√
mn

N
≤ k

3 . We have

∆k,N(m,n) = δ(m,n) +ON

(
k1+ϵ

2k

)

Proof. For a proof, we refer the reader to the statement of Corollary 2.3 of [ILS00].
Since N is fixed,

(m,n,N)(
(m,N) + (n,N)

) 1
2

= ON(1).

The result follows as
d(mn) = ON(kϵ).

□

Let
∆∗

k,N(m,n) :=
∑

f∈F∗
k

(N)
ρm(f)ρn(f).

In 2020, Jung and Sardari obtained the following estimate for ∆∗
k,N(m,n) with a fixed

squarefree level N .

Theorem 5.1.7 ( [JS20], Theorem 1.7).Let N be a fixed squarefree positive integer. Let
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|4π
√
mn− k| < 2k 1

3 with gcd(mn,N) = 1. Then

∆∗
k,N(m,n) = δ(m,n) + 2πi−kµ(N)

N

∏
p|N

(1 − p−2)Jk−1(4π
√
mn) +ON(k− 1

2 ).

Proof. For a proof, we refer the reader to proof of Theorem 1.7 of [JS20]. □

Remark 5.1.8.Since |4π
√
mn−k| < 2k 1

3 in Theorem 5.1.7, using Lemma 2.4.1 (iii) we
have

|Jk−1(4π
√
mn)| ≫N k− 1

3 .

This makes 2πi−k µ(N)
N

∏
p|N(1−p−2)Jk−1(4π

√
mn) to be the main term in the above theo-

rem and |∆∗
k,N(m,n) − δ(m,n)| ≫N k− 1

3 . Note that Corollary 2.2 of [ILS00] gives us an
asymptotic result for ∆k,N(m,n) which Jung and Sardari in [JS20] use to prove Theorem
5.1.7.

5.2 Equidistribution results for λp2(f )

For a given non negative integer n, the Chebyshev polynomial of the second kind Xn(x)
is given by Xn(2 cos θ) = sin((n+1)θ)

sin θ
. The generating function for Xn is given by

∞∑
n=0

Xn(x)tn = 1
1 − xt+ t2

.

Proposition 5.2.1. Let n ∈ N ∪ {0}. Then Xn are orthogonal with respect to the measure
µ∞.

Proof. For a proof, we refer to [CDF97, Lemma 3]. □

In particular, for n ≥ 1, we have
∫ 2

−2
Xn(x) dµ∞(x) =

∫ 2

−2
X0(x)Xn(x) dµ∞(x) = 0. (5.1)

Let Yn(x) be defined by the generating function given by

∞∑
n=0

Yn(x)tn = 1 + t

1 − (x− 1)t+ t2
.
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We have the following relation between Xn and Yn.

Lemma 5.2.1.Let n ∈ N, then X2n = Yn ◦X2.

Proof. We have X2(x) = x2 − 1 which implies

∞∑
n=0

Yn(X2(x))tn = 1 + t

1 − ((x2 − 1) − 1)t+ t2
= 1 + t

(1 + t)2 − x2t
.

However for generating function of X2n, we calculate

∞∑
n=0

X2n(x)t2n = 1
2

( ∞∑
n=0

Xn(x)tn +
∞∑

n=0
Xn(x)(−t)n

)
= 1

2

( 1
1 − xt+ t2

+ 1
1 + xt+ t2

)

= 1 + t2

(1 − xt+ t2)(1 + xt+ t2) = 1 + t2

(1 + t2)2 − x2t2
.

On comparing the generating function of X2n and Yn ◦X2, we get X2n = Yn ◦X2. □

Let
Q2n+1 = Y1 + Y3 + · · · + Y2n+1

and
Q2n = Y0 + Y2 + · · · + Y2n.

Then by Lemma 2 of [OM09],

∞∑
n=0

Qn(x)tn = 1
(1 − t)(1 − (x− 1)t+ t2) .

The Ramanujan-Hecke identity for powers of λp(f) is given by

(λp(f))n = Xn

(
λp(f)

)
. (5.2)

For reference, we consider Lemma 3 of [CDF97] (see [Ser97]). The following Lemma due
to Omar and Mazouda talks about powers of λp2(f).

Lemma 5.2.2 ( [OM09], Lemma 4).Let n ∈ N. Then

(λp2(f))n = Qn(λp2(f)).
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Proof. For proof, we refer to [OM09, Lemma 4]. □

Recall that
µp2(x) = p+ 1

2π
1

(√p+
√
p−1)2 − (x+ 1)

√
3 − x

x+ 1

if x ∈ [−1, 3]. In 2009, Omar and Mazhouda, using Lemma 5.2.2, showed the following
equidistribution results.

Theorem 5.2.3 ( [OM09], Theorem 1).Let p be a fixed prime and k > 0 a fixed even
integer. The sequence

{(λp2(f))f∈Sk(N)∗ : N ∈ N}

is equidistributed with respect to the measure µp2 .

Proof. We refer the reader to the proof of [OM09, Theorem 1]. □

The distribution for (λp3(f)), (λp4(f)) and (λpr(f) − λpr−2(f)) for r ≥ 2 has been
discussed in [TW16].

Let
µk,N,2 := 1

dim(Sk(N))
∑

f∈Fk(N)
δλp2 (f)

and
µ∗

k,N,2 := 1
dim(S∗

k(N))
∑

f∈F∗
k

(N)
δλp2 (f).

We now consider the discrepancy between the following measures. The discrepancies
D(µ∗

k,N,2, µp2) have been well investigated in [TW16].

Theorem 5.2.4 ( [TW16], Theorem 1).Let N = 1. Then we have D(µ∗
k,1,2, µp2) =

O
(
(log k)−1

)
.

Proof. On taking r = 2 and N = 1 in [TW16, Theorem 1], we get D(µ∗
k,1,2, µp2) =

O
(
(log k)−1

)
. □

Definition 5.2.5. Let Ω be a compact subset of R. A sequence of probability measures
µ̃n converges weakly to a measure µ̃ if for every continuous function f on Ω,

∫
Ω
f dµ̃n →

∫
Ω
f dµ̃.
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Theorem 5.2.6.Let xn ∈ [a, b] be a sequence of real numbers and

µ̃n = 1
n

n∑
i=1

δxn .

The sequence xn is equidistributed with respect to the measure µ if and only if µ̃n converges
weakly to µ.

Proof. For a proof, we refer [KN74, Chapter 3, Theorem 1.2]. □

Remark 5.2.7.By virtue of the above theorem, we see that the notion of equidistribution
of a bounded real sequence xn and weak convergence of an associated counting measure

µ̃n = 1
n

n∑
i=1

δxn

are equivalent.

Consider the following weight variants of µk,N,2 and µ∗
k,N,2. Let

νk,N,2 := Γ(k − 1)
(4π)k−1

∑
f∈Fk(N)

|a1(f)|2δλp2 (f),

and
ν∗

k,N,2 := Γ(k − 1)
(4π)k−1

∑
f∈F∗

k
(N)

|a1(f)|2δλp2 (f).

One can use Petersson’s trace formula to show both νk,N,2 and ν∗
k,N,2 converges weakly

to µ∞,2 any positive N with (p,N) = 1 (see [OM09, Theorem 3]).
We conclude the chapter with the following upper bound for Q′

n that will be used in
the last chapter and play a role in solving Problem 5.

Lemma 5.2.8.Let ϵ > 0 be given and n ∈ N. Then for x ∈ (−1, 3],

|Q′
n(x)| ≪ϵ n

3+ϵ

and
|Qn(3)| ≪ n2.
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Proof. We prove for n even. The case when n is odd can be dealt with similarly. If
not, then for some fixed x0 ∈ (−1, 3] we have |Q′

2n(x0)| ≫ϵ n
3+ϵ. There exists some

y0 ∈ [−2, 2] \ {0} such that X2(y0) = y2
0 − 1 = x0. From proof of Theorem 1.7 of [JS20]

we have |X ′
α(x)| ≪ α2 for all x ∈ [−2, 2] and α ∈ N. This implies

∣∣∣∣ n∑
i=0

X ′
4i(y0)

∣∣∣∣ ≪ n3

Using Lemma 5.2.1 we have,
∣∣∣∣X ′

2(y0)
n∑

i=0
Y ′

2i(x0)
∣∣∣∣ ≪ n3

⇒
∣∣∣2y0

∣∣∣∣∣∣∣ n∑
i=0

Y ′
2i(x0)

∣∣∣∣ ≪ n3.

Since y0 is fixed, we get
∣∣∣Q′

2n(x0)
∣∣∣ ≪ n3. This is a contradiction to our assumption.

Therefore |Q′
2n(x)| ≪ϵ n

3+ϵ for x ∈ (−1, 3].

Q2n(3) =
n∑

i=0
Y2i(3) =

n∑
i=0

X4i(2).

Noting X2n(2) = 2n+ 1 yields |Q2n(3)| ≪ n2. □
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Discrepancy results for classical case

In this chapter, we restrict ourselves to the classical setting of F = Q. First we derive
an asymptotic formula similar to Theorem 5.1.7 with better estimates. This will help
us in obtaining a discrepancy result like Theorem 6.0.3 for more levels. In Section 6.1,
we discuss a discrepancy result for λp2(f) analogue to equation (1.5). The last section
contains details about future work.

Theorem 6.0.1 ( [Das23], Theorem 4).Let
∣∣∣4π

√
mn

N
− (k− 1)

∣∣∣ < (k− 1) 1
3 for k ≥ 28 and

m,n ∈ N. We have

∆k,N(m,n) = δ(m,n) + 2πikS(m,n,N)
N

Jk−1

(4π
√
mn

N

)
+ON

(
e(k−1)(1− 4

9 −log( 9
5 ))
)
.

Furthermore, if S(m,n,N) ̸= 0, then

∣∣∣∆k,N(m,n) − δ(m,n)
∣∣∣ ≫N (k − 1)− 1

3 .

Proof. Let us consider Petersson’s trace formula

∆k,N(m,n) = δ(m,n) + 2πik
∑

N |c,c>0

S(m,n; c)
c

Jk−1

(4π
√
mn

c

)

= δ(m,n) + 2πikS(m,n;N)
N

Jk−1

(4π
√
mn

N

)
+ 2πik

∑
b≥2

S(m,n; bN)
bN

Jk−1

(4π
√
mn

bN

)
.
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Using the triangle inequality and a trivial bound |S(m,n; bN)| ≤ bN, we get
∣∣∣∣∣∣
∑
b≥2

S(m,n; bN)
bN

Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣
≤
∑
b≥2

∣∣∣∣∣∣S(m,n; bN)
bN

Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣ ≤
∑
b≥2

∣∣∣∣∣∣Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣. (6.1)

Using the assumption,

1 − 1
(k − 1) 2

3
<

4π
√
mn

(k − 1)N < 1 + 1
(k − 1) 2

3
. (6.2)

Note that for b > 1 we can use the Lemma 2.4.1(i) as
∣∣∣ 4π

√
mn

(k−1)bN

∣∣∣ < 1. Hence

∣∣∣∣∣∣Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣ =
∣∣∣∣∣∣Jk−1

(k − 1) 4π
√
mn

(k − 1)bN

∣∣∣∣∣∣
≤ ea(1−x)xaJa(a)

where a = k − 1 and x = 4π
√

mn
(k−1)bN

. By virtue of equation (6.2) and k ≥ 28,

8
9b <

4π
√
mn

(k − 1)bN <
10
9b

We conclude
ea(1−x)xa = e(k−1)(1−x+log x)

≪N e
(k−1)

(
1− 8

9b
+log 10

9b

)
.

Proceeding from equation (6.1) and using Lemma 2.4.1(ii) we get the following bound.
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∑
b≥2

∣∣∣∣∣∣Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣ ≪N
e(k−1)

(k − 1) 1
3

∑
b≥2

e
−(k−1)

(
8
9b

+log 9b
10

)

≪N
e

−(k−1)
(

−1+ 8
18 +log 18

10

)
(k − 1) 1

3
+ e

−(k−1)
(

−1+ 8
27 +log 27

10

)
(k − 1) 1

3

+e
−(k−1)

(
−1+ 8

36 +log 36
10

)
(k − 1) 1

3
+ e(k−1)

(k − 1) 1
3

∑
b≥5

e
−(k−1)

(
8
9b

+log 9b
10

). (6.3)

Since
(

− 1 + 8
18 + log 18

10

)
,
(

− 1 + 8
27 + log 27

10

)
,
(

− 1 + 8
36 + log 36

10

)
≤
(

1 − 4
9 − log(9

5

))
,

the first three terms in the equation (6.3) are equal to ON(e(k−1)(1− 4
9 −log( 9

5 ))). We use the
integral test to estimate ∑

b≥5
e

−(k−1)
(

8
9b

+log 9b
10

).
Similar to the proof of Proposition 4.2.1, we can show e

−(k−1)
(

8
9x

+log 9x
10

)
is strictly de-

creasing for x > 2. Therefore
∑

b≥5
e

−(k−1)
(

8
9b

+log 9b
10

) ≤
∫ ∞

4
e

−(k−1)
(

8
9x

+log 9x
10

)
dx. (6.4)

Let y = 8
9x
, then dy = −8

9x2dx and

e
−(k−1)

(
8

9x
+log 9x

10

)
= e−(k−1)y

(9x
10 )k−3 · 100

81x2 = e−(k−1)y

( 4
5y

)k−3 · 100
81x2 .

This yields ∫ ∞

4
e

−(k−1)
(

8
9x

+log 9x
10

)
dx = 25

18

∫ 2
9

0
e−(k−1)y

(5y
4

)k−3
dy

≤ 25
18

∫ 2
9

0

( 5
18

)k−3
e−(k−1)y dy = 25

18

( 5
18

)k−3
 e

−2(k−1)
9

−(k − 1) + 1
(k − 1)


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as
(

5y
4

)k−3
≤
(

5
18

)k−3
. Applying the above bound for equation (6.4) and considering

equation (6.1), we get

∑
b≥2

∣∣∣∣∣∣Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣ ≪N A1(k) + e(k−1)

(k − 1) 1
3

( 5
18

)k−3
 e

−2(k−1)
9

−(k − 1) + 1
(k − 1)


where A1(k) = ON

(
e(k−1)(1− 4

9 −log( 9
5 ))
)
. However

e(k−1)

(k − 1) 1
3

( 5
18

)k−3
 e

−2(k−1)
9

−(k − 1) + 1
(k − 1)

 ≤ 2e(k−1)

(k − 1) 4
3

( 5
18

)k−3

= 2e2

(k − 1) 4
3

(5e
18

)k−3

Therefore ∑
b≥2

∣∣∣∣∣∣Jk−1

(4π
√
mn

bN

)∣∣∣∣∣∣ ≪N A1(k) + A2(k) (6.5)

where A2(k) = 2e2

(k−1)
4
3

(
5e
18

)k−3
= ON

(
e(k−1)(1− 4

9 −log( 9
5 ))
)
. Using equation (6.5) in equation

(6.1) we get

∆k,N(m,n) = δ(m,n) + 2πikS(m,n,N)
N

Jk−1

(4π
√
mn

N

)
+ON

(
e(k−1)(1− 4

9 −log( 9
5 ))
)

which proves the first part.

For second part, let 4π
√

mn
N

= (k − 1) + d(k − 1) 1
3 with |d| < 1. On applying Lemma

2.4.1 (iii),

Jk−1

(4π
√
mn

N

)
≫ 1

(k − 1) 1
3
.

This implies ∣∣∣∆k,N(m,n) − δ(m,n)
∣∣∣

≫N
1

(k − 1) 1
3

+ oN

(
(k − 1)− 1

3
)

≫N (k − 1)− 1
3

as e(k−1)(1− 4
9 −log( 9

5 )) = oN

(
(k − 1)− 1

3
)
. □
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Remark 6.0.2.Since (1− 4
9 −log(9

5)) < −0.03, we have e(k−1)(1− 4
9 −log( 9

5 )) = oN((k−1)−1
3 ).

If S(m,n,N) = 0, then

∆k,N(m,n) = δ(m,n) +ON(e(k−1)(1− 4
9 −log( 9

5 ))).

For level N = 1, Theorem 6.0.1 gives a better error term as compared to ON(k− 1
2 ) of

Theorem 5.1.7. That is we have

∆k,1(m,n) = δ(m,n) + 2πikJk−1

(
4π

√
mn

)
+ON

(
e(k−1)(1− 4

9 −log( 9
5 ))
)
.

Theorem 6.0.1 also expands on the remark of Theorem 1.7 of [JS20] which states that
Theorem 5.1.7 can be generalised for the condition∣∣∣∣∣4π

√
mn

N
− (k − 1)

∣∣∣∣∣ < (k − 1) 1
3 .

Note that Theorem 5.1.6 gives an asymptotic of ∆k,N(m,n) for 4π
√

mn
N

≤ k
3 , whereas

Theorem 6.0.1 gives an asymptotic of ∆k,N(m,n) for

(k − 1) − (k − 1) 1
3 <

4π
√
mn

N
< (k − 1) + (k − 1) 1

3 ,

where N is a fixed level.

Recall that
νk,N = Γ(k − 1)

(4π)k−1

∑
f∈Fk(N)

|a1(f)|2δλp(f).

On taking kn =
[

4πpn

N

]
and using Theorem 6.0.1, we have

∫ 2

−2
X2n(x) dνkn,N = ∆kn,N(1, p2n) = 2πikS(1, p2n, N)

N
Jkn−1

(4πpn

N

)
+ o((kn − 1)− 1

3 ).
(6.6)
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Theorem 6.0.3 ( [Das23], Theorem 1).Let N be a natural number given by 2ab with
a = 0, 1, 2 and b be an odd number. There exists an infinite sequence of weights kn with
kn → ∞ such that

D(νkn,N , µ∞) ≫ 1
(kn − 1) 1

3 (log kn)2
.

Proof. Let kn =
[

4πpn

N

]
. By Theorem 6.0.1(ii), Lemma 3.2.5, Equation (6.6) and (5.1)

we have
∫ 2

−2
X2n(x) d(νkn,N − µ∞)(x) =

∫ 2

−2
X2n(x) dνkn,N(x) −

∫ 2

−2
X2n(x) dµ∞(x)

=
∫ 2

−2
X2n(x) dνkn,N(x) ≫N (kn − 1)− 1

3 .

Using integration by parts ∣∣∣∣∣∣
∫ 2

−2
X2n(x) d(νkn,N − µ∞)(x)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
[
X2n(x) (νkn,N − µ∞)(x)

]2

−2
−
∫ 2

−2
X ′

n(x) (νkn,N − µ∞)(x)dx
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
(
X2n(2) +X2n(−2)

)
(νkn,N − µ∞)([−2, 2])

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫ 2

−2
X ′

n(x) (νkn,N − µ∞)(x)dx
∣∣∣∣∣∣

≪ n2

∣∣∣∣∣∣(νkn,N − µ∞)([−2, 2])
∣∣∣∣∣∣

as
∣∣∣∣X ′

2n(x)
∣∣∣∣ ≪ n2 and |X2n(2)| = |X2n(−2)| = 2n+ 1. Hence we have

D(νkn,N , µ∞) ≥
∣∣∣∣νkn,N([−2, 2]) − µ∞([−2, 2])

∣∣∣∣ =
∣∣∣∣∣∣(νkn,N − µ∞)([−2, 2])

∣∣∣∣∣∣
≫ 1

n2

∣∣∣∣∣∣
∫ 2

−2
X2n(x) d(νkn,N − µ∞)(x)

∣∣∣∣∣∣ ≫N
1

n2(kn − 1) 1
3
.

However kn =
[

4π
√

p2n

N

]
implies 4π

√
p2n

N
< 2kn. So kn ≫N pn which implies log kn ≫N n.
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Therefore
D(νkn,N , µ∞) ≫ 1

(kn − 1) 1
3 (log kn)2

.

□

Remark 6.0.4.Theorem 1.6 of [JS20] gives us a sequence of weights for squarefree levels
such that lower bound like equation (1.5) holds. Theorem 6.0.3 generalizes a version of
Theorem 1.6 of [JS20] for old forms to more levels of the form 2ab with b odd and
a = 0, 1, 2. Note that the natural density of squarefree integers is 6

π2 whereas the natural
density of the levels for Theorem 6.0.3 is 0.875.

6.1 Discrepancy result for λp2(f )

We now consider a Lemma that will be crucial for obtaining the discrepancy result for
λp2(f).

Lemma 6.1.1.Let N be a natural number given by 2ab with a = 0, 1, 2 and b be an odd
number. Given n ∈ N and

∣∣∣∣4πp2n+1

N
− (kn − 1)

∣∣∣∣ < (kn − 1) 1
3 , we have

(i)
n−1∑
i=0

∆kn,N(1, p4i+2) = ON

 log kn

(kn − 1) 1
3

·
(5e

18

)kn−1


(ii) ∆kn,N(1, p4n+2) ≫N (kn − 1)− 1
3 .

Proof. Let i ∈ {1, 2, . . . , n− 1} be given. Using Petersson’s trace formula, we get

∆kn,N(1, p4i+2) = 2πik
∑

N |c,c>0

S(1, p4i+2; c)
c

Jkn−1

(4πp2i+1

c

)
.

Note that
4πp2i+1

(kn − 1)N <
1
p2 (1 + (kn − 1)− 2

3 )
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which implies 4πp2i+1

(kn−1)N < 1
4 · 10

9 = 5
18 as p ≥ 2 and kn ≥ 28. Using Lemma 2.4.1 we have,

∣∣∣∣∆kn,N(1, p4i+2)
∣∣∣∣ ≤

∣∣∣∣Jkn−1

(4πp2i+1

N

)∣∣∣∣+ ∞∑
b=2

∣∣∣∣Jkn−1

(4πp2i+1

bN

)∣∣∣∣
≤ e(kn−1)

( 5
18

)kn−1
Jkn−1(kn − 1) + e(kn−1)Jkn−1(kn − 1)

∞∑
b=2

( 5
18b

)kn−1

as 4πp2i+1

(kn−1)bN
< 5

18b
for b ≥ 2.

≪N

(5e
18

)kn−1
(kn − 1)− 1

3

1 +
∫ ∞

1

(1
x

)(kn−1)
dx



≪N

(5e
18

)kn−1
(kn − 1)− 1

3

(
1 + lim

t→∞

[
x−kn+2

−kn + 2

]t

1

)

≪N

(5e
18

)kn−1
(kn − 1)− 1

3

(
1 + 1

(kn − 2)

)
≪N

(5e
18

)kn−1
(kn − 1)− 1

3 .

Now by triangle inequality

∣∣∣∣ n−1∑
i=0

∆kn,N(1, p4i+2)
∣∣∣∣ ≤

n−1∑
i=0

∣∣∣∣∆kn,N(1, p4i+2)
∣∣∣∣

≪N n
(5e

18

)kn−1
(kn − 1)− 1

3 ≪N log kn

(5e
18

)kn−1
(kn − 1)− 1

3 .

Using Theorem 6.0.1(ii) and observing log kn

(
5e
18

)kn−1
(kn − 1)− 1

3 = o((kn − 1)− 1
3 ), we

derive
|∆kn,N(1, p4n+2)| ≫N (kn − 1)− 1

3 .

□

Lemma 6.1.2.Let N be a natural number given by 2ab with a = 0, 1, 2 and b be an odd
number. There is a sequence of kn → ∞ such that∣∣∣∣∣∣

∫ 3

−1
(Q2n+1)(t) dνkn,N,2(t)

∣∣∣∣∣∣ ≫N
1

(kn − 1) 1
3
.
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Proof. Let us consider ∫ 3

−1
Q2n+1(t) dνkn,N,2(t)

= Γ(k − 1)
(4π)k−1

∑
f∈Fk,N

|a1(f)|2Q2n+1(λp2(f))

= Γ(k − 1)
(4π)k−1

∑
f∈Fk,N

|a1(f)|2Q2n+1(X2(λp(f))

=
∫ 2

−2
Q2n+1 ◦X2(t) dνkn,N(t)

=
n∑

i=0

Γ(k − 1)
(4π)k−1

∑
f∈Fk,N

|a1(f)|2X4n+2(λp(f))

as Q2α = Y0 +Y2 + · · ·+Y2α with Yα ◦X2 = X2α (see section 5.2). Now using Proposition
5.1.1 and equation (5.2), the above expression

=
n∑

i=0

Γ(k − 1)
(4π)k−1

∑
f∈Fk,N

|a1(f)|2λp4n+2(f)

=
n∑

i=0
∆k,N(1, p4n+2).

Let kn =
[

4πp2n+1

N

]
be the chosen sequence for n ∈ N. The above sequence satisfies the

hypothesis of Lemma 6.1.1. Therefore we get∣∣∣∣∣∣
∫ 3

−1
(Q2n+1)(t) dνkn,N,2(t)

∣∣∣∣∣∣ ≫N
1

(kn − 1) 1
3
.

□

Theorem 6.1.3 ( [Das23], Theorem 2).Let ϵ > 0 be given. Then there exists a sequence
of weights kn with kn → ∞ such that

D(µ∞,2, νkn,N,2) ≫N,ϵ
1

(log kn)3+ϵ(kn − 1) 1
3
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Proof. The proof is similar to that of Theorem 6.0.3. From equation (4.2) of [OM09],
∫ 3

−1
Q2n+1(t) dµ∞,2(t) =

∫ 2

−2
Q2n+1 ◦X2 dµ∞(t) = δ(2n+ 1, pair) = 0. (6.7)

By equation (6.7) and 6.1 we have
∫ 3

−1
Q2n+1(x) d(νkn,N,2 − µ∞,2)(x) =

∫ 3

−1
Q2n+1(x) dνkn,N,2(x) ≫N (kn − 1)− 1

3 .

Using integration by parts ∣∣∣∣∣∣
∫ 3

−1
Q2n+1(x) d(νkn,N,2 − µ∞,2)(x)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
[
Q2n+1(x) (νkn,N,2 − µ∞,2)(x)

]3

−1
−
∫ 3

−1
Q′

2n+1(x) (νkn,N,2 − µ∞,2)(x)dx
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
(
Q2n+1(−1)+Q2n+1(3)

)
(νkn,N,2 −µ∞,2)([−1, 3])

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫ 3

−1
Q′

2n+1(x) (νkn,N,2 −µ∞,2)(x)dx
∣∣∣∣∣∣

We now use Lemma 5.2.8 which yields

≪ϵ n
3+ϵ

∣∣∣∣∣∣(νkn,N,2 − µ∞,2)([−1, 3])
∣∣∣∣∣∣.

Hence we have

D(νkn,N,2, µ∞,2) ≥
∣∣∣∣νkn,N,2([−1, 3]) − µ∞,2([−1, 3])

∣∣∣∣ =
∣∣∣∣∣∣(νkn,N,2 − µ∞,2)([−1, 3])

∣∣∣∣∣∣
≫ 1

n3+ϵ

∣∣∣∣∣∣
∫ 2

−2
Q2n+1(x) d(νkn,N,2 − µ∞,2)(x)

∣∣∣∣∣∣ ≫N n−(3+ϵ)(kn − 1)− 1
3 .

For the chosen sequence kn =
4πp2n+1

N

, kn ≫N pn which implies log kn ≫N n. Finally

D(νkn,N,2, µ∞,2) ≫N,ϵ
1

(log kn)3+ϵ(kn − 1) 1
3
.
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□

Remark 6.1.4.Theorem 6.1.3 gives us an analogue of Theorem 1.6 of [JS20] (see equa-
tion (1.5)) for the discrepancy D(νkn,N,2, µ∞,2) corresponding to λp2(f) with more gener-
alized levels.

6.2 Future work

In this section, we would like to consider some of the future prospects to work upon.
Note that Theorem 4.3.5 and Theorem 4.3.9 holds true if F has an odd narrow class
number and b1N = s̃O with s̃ ∈ N. First, we consider generalization of Theorem 4.3.5 in
the aspects given by the following problem.

Problem 6. Can we generalize the lower bound result of Theorem 4.3.5 to any integral
ideal for a field with an odd narrow class number? Can we generalize Theorem 4.3.5 to
any arbitrary totally real field?

A similar generalization remark can be made for Theorem 4.3.9.

Problem 7. Can we generalize Theorem 4.3.9 to any integral ideal for a field with an
odd narrow class number? Can we generalize Theorem 4.3.9 to any arbitrary totally real
field?

Recall that Theorem 4.3.9 is a generalization of equation (1.5) for Hilbert modular
form setting. Equation (1.3) gives us a lower bound for the Discrepancy D(µ∗

k,N , µp).

Problem 8. Can we get a lower bound like D(µ∗
k,N , µp) for Hilbert cusp forms?

For f ∈ Sk(N), the discrepancy D(ν∗
kn,N , µ∞) corresponds to the distribution of

{λp(f)}. Theorem 6.1.3 gives us lower bound for D(µ∞,2, νkn,N,2) which corresponds to
the distribution of {λp2(f)}. It is natural to consider the following problem.

Problem 9. Can we generalise Theorem 6.1.3 for {λpr(f)} with r > 2 and f ∈ Sk(N)?

Upper bounds and nonvanishing of Kloosterman sums play a central role in prov-
ing Theorem 4.3.5, Theorem 6.0.3. In this regard, we can have some of the following
directions. Theorem 3.1.2 gives a conditional upper bound for the trivial character.
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Problem 10. Can we get an unconditional upper bound of Kloosterman sums for non-
trivial characters as well?

Another direction is to explore the non-vanishing of Kloosterman sums for a general
scenario. As seen in the proof of Lemma 3.2.3, getting explicit formula for a Kloosterman
sum might be a good way to show the nonvanishing of a Kloosterman sum. As a starting
point, We can consider generalizing some explicit formulas which are available for the
classical case.
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