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Abstract

In [BS19], Balasubramanyam and Sinha derived the first moment of the pair correlation
function for Hecke angles lying in small subintervals of [0, 1], as one averages over large families
of Hecke newforms of weight k with respect to Γ0(N). The goal of this thesis is to study the
second moment of this pair correlation function. We also record estimates for lower order error
terms in the computation of the second moment and show that the variance goes to 0 under the
same growth conditions on weights and levels for the families of Hecke newforms as required for
the convergence of the first moment.
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Statement of Originality

The main results of this thesis which constitute original research are Theorems 6.5.15, 6.5.16
and 6.5.17. The content of Chapter 6 is original.

In Chapter 2, we explicitly write down some proofs of the theorems which were known
before, but had not been clearly explained in the literature. These include Lemmas 2.1.5, 2.1.7,
Corollaries 2.1.6, 2.1.8 and Theorem 2.1.9 in this chapter.

In Chapter 3, we review well-known results about the dimension formula for spaces of
modular cusp forms and the Eichler-Selberg trace formula for the Hecke operators acting on these
spaces. We recall and present these results systematically in a manner suitable for application
to the original results in this thesis.

In Chapter 4, we present Propositions 4.5.2 and 4.5.3 as immediate applications of pre-
viously known results in the literature. The results mentioned in Section 4.4 are explicitly
presented for the first time in this thesis.
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Notations

Symbol What it represents
N The set of all positive integers
Z The ring of all integers
Q The field of rational numbers
R The field of real numbers
C The field of complex numbers

Re z (or, Im z ) The real part (or, imaginary part) of a complex number z
|z| (or, z̄ ) The absolute value (or, conjugate )of a complex number z

H The complex upper half-plane
Mn(Z) The group of all n× n integer matrices
SL2(Z) The group of all 2× 2 integer matrices of determinant 1
GL+

2 (R) The group of all 2× 2 real matrices with positive determinant
I2 The 2× 2 identity matrix

(a, b) The greatest common divisor of two natural numbers a and b
Mk(N) The space of modular forms of weight k and of level N
Sk(N) The space of cusp forms of weight k and of level N
Snewk (N) The space of primitive modular cusp forms of weight k and of level N
FN,k The space of all Hecke newforms of weight k and level N∑∞

n=1 n
k−1
2 af (n)q

n The Fourier expansion of a newform f ∈ FN,k
af (n) The normalised n-th Fourier coefficient of a newform f ∈ FN,k
Tm The m-th Hecke operator on the space Mk(N) (or, Sk(N))
a|b a divides b
a ∤ b a does not divide b
⌊x⌋ The greatest integer n ≤ x

#M or |M | The number of elements in the set M
|[a, b]| The length of the interval [a, b], i.e., b− a
π(x) The number of primes less than or equal to x
πN (x) The number of primes less than or equal to x, which are coprime to N
ν(n) The number of distinct prime divisors of n
µ(n) The Möbius function

d(n) or σ0(n) The number of distinct positive divisors of n
σ1(n) The sum of positive divisors of n
p A prime number

νp(n) max{e ∈ Z : pe divides n}

ψ(n) n
∏
p|n

p prime

(
1 +

1

p

)

ϕ(n) n
∏
p|n

p prime

(
1− 1

p

)
C∞(X) The space of functions on X having continuous derivatives of all orders
Cc(X) The space of compactly supported continuous functions on X

13
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Whenever the following notations are used in the thesis, they will bear the meaning ex-
plained below.

• Let f, g : R → R be functions with g ̸= 0. We write f ∼ g to mean lim
x→∞

f(x)

g(x)
= 1.

• Let f, g : R → R be functions with g ̸= 0. We write f = o(g) to mean lim
x→∞

f(x)

g(x)
= 0.

• Let f, g : R → R be functions with g(x) > 0, for all x ∈ R. We say f = OK(g) (or,
f ≪K g), if there exists a positive constant c = c(K), depending only on K such that
|f(x)| ≤ c(K)g(x), for all x.

If the implied constant c is absolute, then we simply write f = O(g) (or, f ≪ g).

• A function f ∈ C∞(X) is called a smooth function on X.

• For a function U : FN,k → C, we define

⟨U(f)⟩ := 1

|FN,k|
∑

f∈FN,k

U(f).

• By FN,k, we denote an orthogonal basis of Snewk (N) consisting of normalised Hecke eigen-
forms (See Definition 3.1.55).

• Let {p1, p2, · · · , pt} be a finite set of primes. We denote
∑

p1,··· ,pt≤x all distinct
(p1,N)=1,··· ,(pt,N)=1

by
∑′

p1,··· ,pt≤x

.

• Let N0 be the set of non-negative integers, and for any n ∈ N0, let Nn0 := N0 × · · · × N0︸ ︷︷ ︸
n times

be

the n-fold Cartesian product. The Schwartz space (or Schwartz class) or space of rapidly
decreasing functions on Rn is the function space

S (Rn) :=

{
f ∈ C∞ (Rn) | ∀α, β ∈ Nn, sup

x∈Rn

∣∣∣∣xα (Dβf
)
(x)

∣∣∣∣ <∞

}
,

where C∞ (Rn) is the function space of smooth functions on Rn, and sup denotes the
supremum, and we used multi-index notation, i.e. xα := xα1

1 xα2
2 . . . xαn

n and Dβ :=

∂β1

1 ∂β2

2 . . . ∂βn
n .



Organisation of the Thesis

The thesis contains seven chapters. In Chapter 1, we review some basic notions of equidistribu-
tion and some equivalent conditions for a sequence to be equidistributed mod 1.

Chapter 2 is devoted to the study of the level spacing distribution function and pair corre-
lation function, or, more generally, k-level correlation of a sequence. We also see some equivalent
definitions of these statistics.

In Chapter 3, we give a brief introduction to modular forms, and review some of their
properties necessary to understand the thesis problem. We also recall the Eichler-Selberg trace
formula for the trace of a Hecke operator Tn(N, k) acting on Sk(N), for all n, obtain precise
estimates for the terms appearing in the formula and make their dependence on n explicit.
In Section 3.2.3, we recall the formula for the trace of a Hecke operator Tnewn (N, k) acting on
Snewk (N), for all n with (n,N) = 1 and similarly obtain precise estimates for the terms appearing
in this formula. Many of the results in Section 3.2 are already available in the literature and
some of them, although easily derivable from the available results are not explicitly mentioned
in the literature. Hence, they have been written down explicitly for the benefit of the reader. In
Section 3.3, we collect the properties of Hecke eigenvalues, which we will use frequently in our
estimation.

In Chapter 4, we introduce the thesis problem and also share some motivation for consid-
ering the thesis problem. Section 4.1 is dedicated to a question of Katz and Sarnak, which is
the primary motivation behind the thesis problem, and modify the question in terms of localized
pair correlation function. In Section 4.2, we mention the result available on the first moment of
smooth localized pair correlation function ([BS19]). In Section 4.3, we mention the main results
of this thesis without proof.

The goal of Section 4.4 is to simplify the pair correlation function to express it in terms
of characteristic functions, as mentioned in Theorem 4.4.3. In Section 4.5, we consider the
smooth analogue of this pair correlation function by considering a special class of Schwartz class
functions, since one can approximate the characteristic functions by functions from such a class
(See [Hil22, Lemma 2.1]).

In Chapter 5, we revisit the result obtained for the first moment or average of the smooth
localized pair correlation function in [BS19] and record a generalization. We also present the
inequalities in a much clearer form so that the optimal choice for the parameters required in our
results becomes clear to us.

In Chapter 6, we estimate the second moment of the smooth localized pair correlation
function and calculate the variance from this. This is the original contribution of this thesis.

In Chapter 7, we mention some possible directions for future research.

In Appendix A, we give a quick reference to terms mentioned in Chapters 5 and 6 for the
convenience of the reader. While reading Chapters 5 and 6, readers can keep track of notations
by referring to the appendix whenever needed.
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Chapter 1

Equidistribution and related results

1.1 Introduction

For a sequence of real numbers and any given interval, a common question to ask is whether the
given interval contains any elements from the sequence and if it does, the very next question one
can ask is how dense the elements of the sequence are in that given interval. Further, are the
elements placed “uniformly" across the interval or are they likely to cluster around some specific
points? How are the elements of the sequence spaced apart in that interval? To understand this
for a given sequence of numbers in the unit interval, we recall the notion of uniform distribution
modulo one and more generally, asymptotic distribution of sequences. We also recall the more
sophisticated notions of level spacing distribution and pair correlation statistics.

1.2 Introduction to equidistribution

Definition 1.2.1. (Uniform distribution modulo one) A sequence (xn)n≥1 of real numbers
is said to be equidistributed mod 1 or uniformly distributed modulo 1 (abbreviated u.d.
mod1), if for every pair of real numbers a, b with 0 ≤ a < b ≤ 1, we have

lim
N→∞

#
{
n ≤ N : {xn} ∈ [a, b]

}
N

= b− a,

where {xn} := xn − ⌊xn⌋ denotes the fractional part of xn.

In particular, a sequence (xn)n≥1(⊆ [0, 1]) is said to be uniformly distributed modulo 1
(or, simply uniformly distributed), if for every pair of real numbers a, b with 0 ≤ a < b ≤ 1,
we have

lim
N→∞

#
{
n ≤ N : xn ∈ [a, b]

}
N

= b− a.

Remark 1.2.2. For a u.d. mod1 sequence of real numbers (xn)n≥1, we have

#{1 ≤ n ≤ N : xn = a} = o(N), for each a ∈ [0, 1].

Examples of uniformly distributed modulo 1 sequences :

• (Bohl, Sierpiński and Weyl independently in 1909-1910) (nθ)n≥1 is u.d. mod 1 if θ ∈ R−Q.

• Let P (x) =
m∑
k=0

αix
i ∈ R[x] (m ≥ 1) with at least one coefficient αj(j > 0) in R−Q. Then

(P (n))n≥1 is u.d. mod 1 (See [KN74, Theorem 3.2]).

19
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• The sequence 0, θ,−θ, 2θ,−2θ. . . . , is u.d. mod 1, if θ ∈ R−Q.

• The sequence 0
1 ,

0
2 ,

1
2 ,

0
3 ,

1
3 ,

2
3 , . . . ,

0
k ,

1
k , . . . ,

k−1
k , . . . is u.d. mod 1.

• (Csillag, Fejér, 1930) (αnσ)n≥1, where α ̸= 0, and σ > 0 with σ not an integer, is u.d. mod
1.

• (αnσ(log n)τ )n≥2, where α ̸= 0, τ ∈ R, and σ > 0 with σ not an integer, is u.d. mod 1
(Follows from Fejér’s theorem).

• (Ivan Vinogradov, 1935) (pnθ)n≥1 is u.d. mod 1, where pn is the nth prime and θ ∈ R−Q.

• (logFn)n≥1, where Fn is Fibonacci sequence, is u.d. mod 1
(

Since lim
n→∞

Fn+1

Fn
=

1 +
√
5

2

)
.

• (
√
n)n≥1, (log n!)n≥1 are u.d. mod 1.

• Let logk(x) be recursively defined by log1 x = log x and logk x = logk−1(log x) for k ≥ 2.
For each k ≥ 1, (n logk n)n≥n0(k) is u.d. mod 1, where n0(k) is the smallest positive integer
in the domain of logk x.

Examples of sequences which are not uniformly distributed mod 1 :

• (nθ)n≥1 (or, (n2θ)n≥1) is not u.d. mod 1 if θ ∈ Q, (Weyl criterion) but ({nθ})n≥1 is
everywhere dense in [0, 1].

• Let P (x) =
m∑
k=0

αix
i ∈ R[x] (m ≥ 1) with all coefficients αj(j > 0) in Q. Then (P (n))n≥1

is not u.d. mod 1.

• (c log n)n≥1 is not u.d. mod 1, where c is a constant, but it is dense mod 1 in [0, 1].

• The sequence (n!e)n≥1 has only one limit point and hence it is not dense mod 1. Therefore,
it is not u.d. mod 1.

• (log pn)n≥1 is not u.d. mod 1, where pn is the nth prime.

• (log log n!)n≥1 is not u.d. mod 1.

Not-known : (en)n≥1, (π
n)n≥1, ((

3
2 )
n)n≥1.

We now mention below a special sequence of particular importance, namely a van der
Corput sequence which is uniformly distributed mod 1.

Definition 1.2.3. Let b ∈ N and b ≥ 2.

• The b-adic radical inverse function is defined as ϕb : N0 → [0, 1),

ϕb(n) =
n0
b

+
n1
b2

+
n2
b3

+ · · · ,

for n ∈ N0 with b-adic digit expansion n = n0+n1b+n2b
2+· · · , where ni ∈ {0, 1, · · · , b−1}.

In other words, is the reflection of the b-adic digit expansion of n at the comma. for
example, n = (100.)2 implies ϕ2(n) = (.001)2.

• The van der Corput sequence in base b is defined as (xn)n≥0 with xn = ϕb(n).

Proposition 1.2.4. The van der Corput sequence in base b is uniformly distributed mod1.

Proof. Let us fix m ∈ N. For every a ∈ {0, 1, · · · , bm − 1} with b-adic digit expansion a =
a0b

m−1 + a1b
m−2 + · · ·+ am−2b+ am−1, we consider the so-called elementary interval in base b

of the form Ja = [ abm ,
a+1
bm ). For n ∈ N0 with b-adic digit expansion n = n0 + n1b+ n2b

2 + · · · ,
the element xn = ϕb(n) belongs to Ja iff

a

bm
≤ n0

b
+
n1
b2

+
n2
b3

+ · · · < a+ 1

bm
,
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i.e.,
a ≤ Y + t < a+ 1,

where Y = n0b
m−1 + n1b

m−2 + · · · + nm−1 ∈ N0 and t := nm

b + nm+1

b2 + · · · ∈ [0, 1). Hence,
a = Y, which implies, ni = ai, for 0 ≤ i ≤ m. Therefore, n ≡ a′ (mod bm), where a′ =
a0 + a1b+ · · ·+ am−1b

m−1.

Since the congruence x ≡ a′ (mod bm) has a unique solution mod bm, it follows that exactly
one of bm consecutive elements of the van der Corput sequence belongs to Ja. Hence, for N ∈ N,
it holds that

#{n ≤ N : {xn} ∈ Ja}
=#{n ≤ N : ϕb(n) ∈ Ja}

=
⌊ N
bm

⌋
+ θ,

with θ ∈ {0, 1}. Therefore,

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ Ja} =

1

bm
= λ(Ja),

where λ denotes the one-dimensional Lebesgue measure.

Arbitrary intervals [a, b] ⊆ [0, 1) are approximated from the interior and exterior by a finite
union of intervals of the form Ja. Therefore, the same result also holds for general intervals of
the form [a, b]. Therefore, the van der Corput sequence in base b is uniformly distributed mod
1.

Remark 1.2.5. In particular, taking b = 2, we obtain the sequence 0, 12 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 , · · · is

uniformly distributed mod1. It is interesting to note that the same set with lexicographic order,
i.e., the sequence 0, 12 ,

1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8 ,

1
16 , · · · is not u.d. mod1. (Ex. 4.7, section 4, chapter

2,[KN74])

We now mention the following results connecting uniform distribution and density.

Proposition 1.2.6. The following statements are true.

(a) For a uniformly distributed sequence (xn), the sequence of its fractional parts ({xn}) is
dense in [0, 1].

(b) Any dense sequence in [0, 1] has a rearrangement that is uniformly distributed mod1.

(c) Any sequence has a rearrangement that is not uniformly distributed.

Proof.

(a) We prove this by contrapositive statement. Suppose the sequence of fractional parts ({xn})
of the sequence (xn) is not dense in [0, 1]. Then there is an open interval (a, b) ⊆ [0, 1],
such that (a, b) ∩ {{xn} : n ∈ N} = ϕ. Let d := a+b

2 and c := a+d
2 . Then

lim
N→∞

#{n ≤ N : {xn} ∈ [c, d]}
N

= 0 ̸= d− c,

proves that the sequence (xn) is not uniformly distributed.

(b) The proof follows from Corollary 1.2.10, as a part of a more general theorem.

(c) Using (a), we note that if the sequence is not dense in [0, 1], none of its arrangements can
be u.d. We now suppose, the sequence (xn) is dense. Let A := {{xn} : n ∈ N}∩ [0, 1/2] and
B := {{xn} : n ∈ N} ∩ (1/2, 1). Both A and B are infinite because the sequence is dense.
Let Z := (zn) be the new sequence after rearrangement of the sequence (xn) such that
A = {{z10n} : n ∈ N}. Since the numerator in the following limit is non-zero only when n
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is a multiple of 10, considering all the 10 subsequences of the form z10N+i (i = 0, 1, . . . , 10),
we have

lim
N→∞

#{n ≤ N : {zn} ∈ [0, 1/2]}
N

=
1

10
̸= 1

2
.

Hence the new sequence Z := (zn) is not uniformly distributed.

Remark 1.2.7. The converse of (a) in Proposition 1.2.6 need not be true. For example, one
can take xn = log n (or, sinn). The sequence ({log n}) (or, ({sinn})) is dense in [0, 1], but
(log n) (or, (sinn) ) is not u.d. mod1 (See Example 2.4 and Exercise 2.7 of [KN74])

To prove ({lnn})n is dense in [0, 1], we first claim that at least one of ln 2 and ln 3 is
irrational, otherwise 2p = 3q for some integers p, q, a contradiction. Thus either ({n ln 2})n or
({n ln 3})n is dense in [0, 1] since (nθ)n≥1 is u.d. mod 1 for θ ∈ R − Q. Therefore, we have a
subsequence ({ln(2n)})n or ({ln(3n)})n of ({lnn})n which is dense in [0, 1], and so is ({lnn})n.

To show {sinn} is dense in [0, 1], it is enough to show that sin(N) is dense in [−1, 1]. For
this we first show that, sin(Z) is dense in [−1, 1]. We know, any subgroup of (R,+) is either
dense or cyclic. Z + πZ is a non-cyclic subgroup of (R,+), and hence dense in R. Since the
function x→ sinx is continuous, we deduce that

[−1, 1] = sin(R) = sin(Z+ πZ) ⊆ sin(Z+ πZ) = sin (Z).

We now prove a general theorem regarding the rearrangement of a sequence to a uniformly
distributed sequence. Let (X, d) be a compact metric space. For a sequence ω = (zn)n≥1

in X, then let A(ω) denote the set of all accumulation points of ω, i.e., x ∈ A(ω) iff every
neighbourhood of x contains infinitely many zn’s.

Lemma 1.2.8. For any sequence ω = (zn)n≥1 containing elements of X, there exists a sequence
(ωn)n≥1 containing elements of A(ω) with lim

n→∞
d(zn, ωn) = 0.

Proof. Since A = A(ω) is compact (a closed subset of a compact set is compact), we can define
the function f : X → R, by f(x) = min

a∈A
d(x, a), for all x ∈ X. The function f is continuous on

X. For any n ∈ N, there exists ωn ∈ A with f(zn) = d(zn, ωn). We now prove lim
n→∞

f(zn) = 0 by
contradiction. lim

n→∞
f(zn) ̸= 0 implies that there exists ϵ > 0 such that f(zn) ≥ ϵ for infinitely

many n. Since S := {x ∈ X : f(x) ≥ ϵ} is compact set containing the sequence ω = (zn)n≥1,
ω has an accumulation point z ∈ S, i.e., f(z) ≥ ϵ. Also, z ∈ A, by definition, which implies
f(z) = d(z, z) = 0, leading to a contradiction.

Theorem 1.2.9. (Harald Niederreiter, 1984) For any two sequences ω1 = (xn)n≥1 and ω2 =
(yn)n≥1 in the compact metric space (X, d), the following are equivalent:

(a) There exists a permutation τ of N such that lim
n→∞

d(xn, yτ(n)) = 0.

(b) A(ω1) = A(ω2).

Proof. The proof of (a) =⇒ (b) is straightforward. We now prove (b) =⇒ (a). Using the
Lemma 1.2.8, we obtain that there exist sequences (x′n) and (y′n) in A(ω1) = A(ω2) such that
lim
n→∞

d(xn, x
′
n) = 0 and lim

n→∞
d(yn, y

′
n) = 0. Now, since x′ns are in A(ω2) and y′ns are in A(ω1),

we can find strictly increasing sequences (α(n)) and (β(n)) in N such that lim
n→∞

d(x′n, yα(n)) = 0

and lim
n→∞

d(y′n, xβ(n)) = 0. It follows that

lim
n→∞

d(xn, yα(n)) = 0 and lim
n→∞

d(yn, xβ(n)) = 0. (1.1)

Now, both α : N → N and β : N → N are injections, we can apply Banach’s theorem to get
disjoint decompositions N = K1 ∪K2 and N = L1 ∪L2, for which α(K1) = L1 and β(L2) = K2.
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Then, the map τ : N → N defined by τ(n) =

{
α(n) if n ∈ K1

β−1(n) if n ∈ K2,
is a bijection. Hence, using

equation (1.1), we obtain d(xn, yτ(n)) ≤ d(xn, yα(n)) + d(xn, yβ−1(n)) → 0, as n→ ∞.

The short proof of the above theorem was given by Lech Drewnowski in 1987. As a corollary
to the above theorem, we obtain

Corollary 1.2.10. The sequence ω = (zn) of elements of X has a µ-u.d. rearrangement if and
only if A(ω) contains the support of µ.

Proof. A sequence (zn)n≥1 of elements of X is called µ-uniformly distributed (where µ is a
Borel probability measure) iff

lim
N→∞

1

N

N∑
n=1

f(zn) =

∫
X

fdµ,

holds for all real-valued continuous functions f on X. Equivalently, (zn)n≥1 is µ-uniformly dis-
tributed iff

ω∗(B) := lim inf
N→∞

1

N

N∑
n=1

χB(zn) ≥ µ(B)

holds for all open sets B in X, where χB denoted the characteristic function of B. The
support K of the measure µ in X is defined to be the set K = {x ∈ X : µ(D) >
0 for all open neighbourhoods D of x}. Let x ∈ K and V be a neighbourhood of x. Then there
is an open neighbourhood U of x such that U ⊆ V. By definition, µ(U) > 0 and hence ω∗(U) > 0.
We claim that χU (zn) = 1, for infinitely many values of n. If not, χU (zn) = 0 eventually, which
implies ω∗(U) = 0, a contradiction. Our claim implies, χU (zn) = 1, i.e., χV (zn) = 1, and hence,
zn ∈ V for infinitely many values of n. Therefore, K ⊆ A(ω).

We now assume, K ⊆ A(ω). It follows from Theorems 1.3 and 2.2, Ch. 3 in [KN74], there is
a µ-u.d. sequence (yn)n≥1 with all yn ∈ K. We set xn = zp for a square n = p2, p = 1, 2, · · · and
xn = yn otherwise, we get a µ-u.d. sequence ω1 = (xn)n≥1 with A(ω1) = A(ω). Hence, using
Theorem 1.2.9, we obtain that there exists a permutation τ of N such that lim

n→∞
d(xn, zτ(n)) = 0

and this implies (zτ(n))n≥1 is µ-uniformly distributed.

We now recall the following equivalent criteria for a sequence to be uniformly distributed
mod 1, including a well-known criterion of Weyl.

Theorem 1.2.11. For a sequence (xn)
∞
n=1 of real numbers, the following are equivalent:

(a) The sequence (xn)n≥1 is uniformly distributed mod1.

(b) lim
N→∞

1

N

∑
n≤N

χ
[a,b]({xn}) =

∫ 1

0

χ
[a,b](x)dx, for all [a, b] ⊆ [0, 1].

(c) lim
N→∞

1

N

∑
n≤N

f({xn}) =
∫ 1

0

f(x)dx, for all real-valued continuous functions f on [0, 1].

(d) lim
N→∞

1

N

∑
n≤N

f({xn}) =
∫ 1

0

f(x)dx, for all complex-valued continuous functions f on [0, 1].

(e) lim
N→∞

1

N

∑
n≤N

f(xn) =

∫ 1

0

f(x)dx, for all complex-valued continuous functions f on R with

period 1.

(f) lim
N→∞

1

N

∑
n≤N

f(xn) =

∫ 1

0

f(x)dx, for all complex-valued continuous functions f : R/Z →

C.
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(g) lim
N→∞

1

N

∑
n≤N

f({xn}) =
∫ 1

0

f(x)dx, for all f ∈ H, a countable dense subset in C([0, 1],R),

the space of real-valued continuous functions on [0, 1] with the sup norm.

(h) lim
N→∞

1

N

∑
n≤N

f({xn}) =
∫ 1

0

f(x)dx, for all Riemann integrable functions f on [0, 1].

(i) (Weyl criterion,1916) lim
N→∞

1

N

∑
n≤N

e2πihxn = 0, for all h ∈ Z− {0}.

(j) lim
N→∞

1

N

∑
n≤N

e2πihxn = 0, for all h ∈ N.

Proof.

• (a) ⇐⇒ (b) follows from definition.

• (b) =⇒ (c) follows from the following fact: For ϵ > 0 and f ∈ C([0, 1],R), there exist
step functions (finite R-linear combinations of characteristic functions) f1 and f2 such that
f1)(x) ≤ f(x) ≤ f2(x) and

0 ≤
∫ 1

0

(f2(x)− f1(x))dx < ϵ.

• (c) =⇒ (b) follows from the following fact: For ϵ > 0 and closed interval [a, b] ⊆ [0, 1],
there exist continuous functions f1, f2 ∈ C([0, 1],R) such that f1)(x) ≤ χ

[a,b](x) ≤ f2(x)
and

0 ≤
∫ 1

0

(f2(x)− f1(x))dx < ϵ.

Therefore, (a) ⇐⇒ (b) ⇐⇒ (c).

• (c) =⇒ (d), (d) =⇒ (e), (e) =⇒ (f), and (f) =⇒ (d) and (d) =⇒ (c) are obvious.
Combining all the above, we obtain

(a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) ⇐⇒ (f).

• (h) =⇒ (b) is obvious.

• (b) =⇒ (h) follows from the following fact: For ϵ > 0 and f ∈ R([0, 1]), there exist step
functions (finite R-linear combinations of characteristic functions) f1 and f2 such that
f1)(x) ≤ f(x) ≤ f2(x) and

0 ≤
∫ 1

0

(f2(x)− f1(x))dx < ϵ.

• (c) =⇒ (g) is obvious.

• (g) =⇒ (c) follows from the following fact: For ϵ > 0 and f ∈ C([0, 1]), there exist ψ ∈ H
such that ||f − ψ||∞ < ϵ (by density), i.e., sup

x∈[0,1]

|f(x)− ψ(x)| < ϵ. Now we have

|
∫ 1

0

fdx− 1

N

∑
n≤N

f(xn)|

≤|
∫ 1

0

(f − ψ)dx|+ |
∫ 1

0

ψdx− 1

N

∑
n≤N

ψ(xn)|+ | 1
N

∑
n≤N

(f(xn)− ψ(xn))| < 3ϵ.

The first term and the third terms on the right are both < ϵ, whatever the value of N
using ||f −ψ||∞ < ϵ. The second term is also < ϵ for sufficiently large N using hypothesis.
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• (i) =⇒ (e) Let ϵ > 0. By Weierstrass approximation theorem, there exists a trigonometric
polynomial ψ(x), i.e., a finite linear combination of functions of the type e2πihx, h ∈ Z,
with complex coefficients such that ||f − ψ||∞ < ϵ. The rest of the proof is the same as
calculations mentioned in (g) =⇒ (c).

• (e) =⇒ (i) For h ∈ Z− {0}, let us define fh(x) := e2πihx. Then each fh is a continuous 1

periodic function with
∫ 1

0
fh(x)dx = 0. This completes the proof.

• (i) ⇐⇒ (j) follows upon taking complex conjugation.

This completes the proof.

Remark 1.2.12. (a) =⇒ (h) does not hold if we replace ‘Riemann integrable functions’ with
‘Lebesgue integrable functions’. In fact, for an arbitrary sequence of real numbers (xn)n≥1, one
can construct a Lebesgue-measurable set E of I, considering the complement of the set determined
by the range of the sequence ({xn})n≥1, such that λ(E) = 1 and

lim
N→∞

#{n ≤ N : {xn} ∈ E}
N

= 0 ̸= λ(E).

We now define the notion of asymptotic distribution functions mod 1, which can be con-
sidered as a generalization of the concept of uniform distribution.

Definition 1.2.13. (Asymptotic distribution functions mod1) A sequence (xn)
∞
n=1 of real num-

bers is said to have the asymptotic distribution function mod 1 (abbreviated a.d.f. mod1
or simply a.d.f.) g(x) if for every x ∈ [0, 1], we have

lim
N→∞

#{n ≤ N : {xn} ∈ [0, x]}
N

= g(x).

Remark 1.2.14. The function g is a non-decreasing function on [0, 1] with g(0) = 0 and g(1) =
1.

Remark 1.2.15. A sequence which is uniformly distributed mod1 has asymptotic distribution
function g(x) = x.

Theorem 1.2.16. For a sequence (xn)
∞
n=1 of real numbers, the following are equivalent:

(a) The sequence (xn)n≥1 has the continuous asymptotic distribution function g(x).

(b) lim
N→∞

1

N

∑
n≤N

χ
[a,b]({xn}) =

∫ 1

0

χ
[a,b](x)dg(x), for all [a, b] ⊆ [0, 1] and g is continuous.

(c) lim
N→∞

1

N

∑
n≤N

f({xn}) =
∫ 1

0

f(x)dg(x), for all real-valued continuous functions f on [0, 1].

(d) lim
N→∞

1

N

∑
n≤N

f({xn}) =

∫ 1

0

f(x)dg(x), for all complex-valued continuous functions f on

[0, 1].

(e) lim
N→∞

1

N

∑
n≤N

f(xn) =

∫ 1

0

f(x)dg(x), for all complex-valued continuous functions f on R

with period 1.

(f) lim
N→∞

1

N

∑
n≤N

f(xn) =

∫ 1

0

f(x)dg(x), for all complex-valued continuous functions f :

R/Z → C.
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(g) lim
N→∞

1

N

∑
n≤N

f({xn}) =

∫ 1

0

f(x)dg(x), for all f ∈ H, a countable dense subset in

C([0, 1],R), the space of real-valued continuous functions on [0, 1] with the sup norm.

(h) lim
N→∞

1

N

∑
n≤N

f({xn}) =
∫ 1

0

f(x)dg(x), for all Riemann integrable functions f on [0, 1].

(i) lim
N→∞

1

N

∑
n≤N

e2πihxn =

∫ 1

0

e2πihxdg(x), for all h ∈ Z− {0}.

(j) lim
N→∞

1

N

∑
n≤N

e2πihxn =

∫ 1

0

e2πihxdg(x), for all h ∈ N.

Proof. The proofs are similar to the proofs mentioned in Theorem 1.2.11 where we replace the
Riemann integration with Riemann-Stieltjes integration w.r.t the non-decreasing function g(x).

Theorem 1.2.17. [Wiener – Schoenberg, 1928] The sequence (xn)
∞
n=1 of real numbers has a

continuous a.d.f. if and only if for all m ∈ N, the limit

am := lim
N→∞

1

N

N∑
n=1

e2πimxn

exists and
N∑
m=1

|am|2 = o(N).

Proof. We refer the readers to Chapter 11 of [Mur01] for a proof.



Chapter 2

Level spacing statistics

2.1 Introduction

Once we know that a sequence is uniformly distributed, we can investigate some finer statistics
and compare them with those of suitable random models. In this section, we give definitions of
some of those finer level spacing statistics, namely the level spacing distribution function and
pair correlation function. Also, there are other level spacing statistics, namely maximal gap and
minimal gap statistics. We exclude their discussion from this chapter.

We begin with the definition of the level-spacing distribution function of a sequence.
Let (xn)n≥1 be a uniformly distributed mod 1 sequence in the unit interval [0, 1].

We consider the nearest-neighbour spacings of the sequence as follows:

We order the first N elements of the sequence as x1,N ≤ x2,N ≤ · · · ≤ xN,N . The mean or
average spacing between consecutive elements is ∼ 1/N as N → ∞. We define the normalised
spacings to be

δ(N)
n := N(xn+1,N − xn,N ).

Definition 2.1.1. We say that the sequence (xn)n≥1 ⊂ [0, 1] has the level spacing distribu-
tion function P (s) on [0,∞) if, for each interval [a, b] ⊆ [0,∞),

lim
N→∞

1

N
#{1 ≤ n ≤ N − 1 : δ(N)

n ∈ [a, b]} =

∫ b

a

P (s)ds.

Equivalently,

lim
N→∞

1

N
#

{
1 ≤ n ≤ N − 1 : xn+1,N − xn,N ∈

[
a

N
,
b

N

]}
=

∫ b

a

P (s)ds.

Definition 2.1.2. Let (xn)n≥1 ⊆ [0, 1] be a sequence. We say, (xn)n≥1 has Poissonian level
spacing distribution function if P (s) = e−s.

To compute the level-spacing distribution function of a sequence, we need to order the
points first and then compute nearest-neighbour gaps, and this makes the analysis of proving
some results about the level-spacing distribution function difficult. Hence, we consider the
unordered spacings, where we look at the pairwise differences of all elements of the sequences
(in the scale of the mean spacing), not just between nearest neighbours and define the pair
correlation function of a sequence.

We now give the definition of the pair correlation function of a sequence by considering
unordered spacings.

27
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Definition 2.1.3. Let X = (xn)n≥1 be a sequence in [0, 1]. If the limit

lim
N→∞

1

N
#

{
(i, j) : 1 ≤ i ̸= j ≤ N, xi − xj ∈

[
−s
N
,
s

N

]
+ Z

}
exists for each s > 0, the function RX : [0,∞) → R defined by

RX(s) := lim
N→∞

1

N
#

{
(i, j) : 1 ≤ i ̸= j ≤ N, xi − xj ∈

[
−s
N
,
s

N

]
+ Z

}
is called the pair correlation function of the sequence X.

We also denote the pair correlation function by R(s) if the implied sequence is clear to us.

Remark 2.1.4. Although there are N(N − 1) pairs of differences, we only divide by N before
taking the limit and not by N2, in the definition of the pair correlation function. The reason is,
if we fix i and try to count the number of pairs (i, j), we only expect one j within distance 1

N of
xi, or, in other words, we expect a bounded (i.e., O(1)) number of j′s such that xj ∈ xi+[−sN , sN ],
since the average spacing between nearest neighbours is 1

N . Summing over all N number of x′is,
we expect our count to be of size roughly O(N).

We now list some equivalent definitions of the pair correlation function in the theorem
below, for which we need the following lemmas.

Lemma 2.1.5. Let s > 0 be fixed and (ti,j)i≥1,j≥1 be a double sequence. There exists N0 ∈ N
such that ∑

1≤i ̸=j≤N
0≤{ti,j}< 1

2

χ
[−s,s](N{ti,j}) =

∑
1≤i ̸=j≤N
0≤{ti,j}< 1

2

∑
m∈Z

χ
[−s,s](N(ti,j +m))

for all N ≥ N0.

Proof. There exists N0 ∈ N such that s
N0

< 1
2 . Therefore, for all N ≥ N0,

s
N ≤ s

N0
< 1

2 .

We claim that if m ̸= 0, then χ
[−s,s](N({ti,j} − m)) = 0 for all N ≥ N0, for all pairs

(i, j) (i ̸= j) with 0 ≤ {ti,j} < 1
2 .

If not, there exist a pair (i, j) (i ̸= j) with 0 ≤ {ti,j} < 1
2 , such that χ[−s,s](N

′({ti,j}−m)) =
1 for some m ̸= 0, and for some N ′ ≥ N0.

Therefore, for that specific pair (i, j),

{ti,j} ∈
[
m− s

N ′ ,m+
s

N ′

]
=⇒ {ti,j} ∈

(
m− 1

2
,m+

1

2

)
∩
[
0,

1

2

)
= ϕ,

which is a contradiction. This proves our claim.

Therefore, for all N ≥ N0,∑
1≤i̸=j≤N
0≤{ti,j}< 1

2

χ
[−s,s](N({ti,j}))

=
∑

1≤i ̸=j≤N
0≤{ti,j}< 1

2

∑
0̸=m∈Z

χ[
− s

N ,
s
N

]({ti,j} −m) +
∑

1≤i ̸=j≤N
0≤{ti,j}< 1

2

χ[
− s

N ,
s
N

]({ti,j}))
=

∑
1≤i ̸=j≤N
0≤{ti,j}< 1

2

∑
m∈Z

χ[
− s

N ,
s
N

]({ti,j} −m)

=
∑

1≤i̸=j≤N
0≤{ti,j}< 1

2

∑
m∈Z

χ
[−s,s](N({ti,j}+m))

=
∑

1≤i ̸=j≤N
0≤{ti,j}< 1

2

∑
m∈Z

χ
[−s,s](N(ti,j +m)).
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Corollary 2.1.6. Let s > 0 be fixed and (ti,j)i≥1,j≥1 be a double sequence. There exists N0 ∈ N
such that∑
1≤i ̸=j≤N
0≤{ti,j}< 1

2

χ
[−s,s](N{ti,j}) = #

{
(i, j) : 1 ≤ i ̸= j ≤ N, 0 ≤ {ti,j} <

1

2
, {ti,j} ∈

[
− s

N
,
s

N

]
+ Z

}

for all N ≥ N0.

Lemma 2.1.7. Let s > 0 be fixed and (ti,j)i≥1,j≥1 be a double sequence. There exists N0 ∈ N
such that ∑

1≤i̸=j≤N
1
2≤{ti,j}<1

χ
[−s,s](N({ti,j} − 1)) =

∑
1≤i̸=j≤N
1
2≤{ti,j}<1

∑
m∈Z

χ
[−s,s](N(ti,j +m)),

for all N ≥ N0.

Proof. Let N0 ∈ N as mentioned in the proof of Lemma 2.1.5. Therefore, for all N ≥ N0,
s
N ≤

s
N0

< 1
2 .

We claim that if m ̸= 1, then χ
[−s,s](N({ti,j} − m)) = 0 for all N ≥ N0, for all pairs

(i, j) (i ̸= j) with 1
2 ≤ {ti,j} < 1.

If not, there exist a pair (i, j) (i ̸= j) with 1
2 ≤ {ti,j} < 1, such that χ[−s,s](N

′′({ti,j}−m)) =
1 for some m ̸= 1, and for some N ′′ ≥ N0.

Therefore, for that specific pair (i, j),

{ti,j} ∈
[
m− s

N ′′ ,m+
s

N ′′

]
=⇒ {ti,j} ∈

(
m− 1

2
,m+

1

2

)
∩
[1
2
, 1
)
= ϕ,

which is a contradiction. This proves our claim.

Therefore, for all N ≥ N0,∑
1≤i ̸=j≤N
1
2≤{ti,j}<1

χ
[−s,s](N({ti,j} − 1))

=
∑

1≤i ̸=j≤N
1
2≤{ti,j}<1

∑
1̸=m∈Z

χ[
− s

N ,
s
N

]({ti,j} −m) +
∑

1≤i ̸=j≤N
1
2≤{ti,j}<1

χ[
− s

N ,
s
N

]({ti,j} − 1))

=
∑

1≤i ̸=j≤N
1
2≤{ti,j}<1

∑
m∈Z

χ[
− s

N ,
s
N

]({ti,j} −m)

=
∑

1≤i ̸=j≤N
1
2≤{ti,j}<1

∑
m∈Z

χ
[−s,s](N({ti,j}+m))

=
∑

1≤i ̸=j≤N
1
2≤{ti,j}<1

∑
m∈Z

χ
[−s,s](N(ti,j +m)).

Corollary 2.1.8. Let s > 0 be fixed and (ti,j)i≥1,j≥1 be a double sequence. There exists N0 ∈ N
such that ∑

1≤i ̸=j≤N
1
2≤{ti,j}<1

χ
[−s,s](N({ti,j} − 1))

=#
{
(i, j) : 1 ≤ i ̸= j ≤ N,

1

2
≤ {ti,j} < 1, {ti,j} ∈

[
− s

N
,
s

N

]
+ Z

}
,
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for all N ≥ N0.

Theorem 2.1.9. Let (xn)n≥1 ⊆ [0, 1] be a sequence of real numbers, N ∈ N and s > 0 be fixed.
Let

R2([−s, s], (xn)n, N) :=
1

N
#

{
1 ≤ i ̸= j ≤ N : xi − xj ∈

[
− s

N
,
s

N

]
+ Z

}
,

R′
2([−s, s], (xn)n, N) :=

1

N

∑
1≤i̸=j≤N

∑
m∈Z

χ
[−s,s](N(xi − xj +m)),

R′′
2 ([−s, s], (xn)n, N) :=

1

N
#

{
1 ≤ i ̸= j ≤ N : ||xi − xj || ≤

s

N

}
,

R′′′
2 ([−s, s], (xn)n, N) :=

1

N
#

{
1 ≤ i ̸= j ≤ N : ((xi − xj)) ∈

[
− s

N
,
s

N

]}
,

where ((·)) : R → [− 1
2 ,

1
2 ) is the signed distance to the nearest integer, i.e.,

((x)) =

{
{x} if 0 ≤ {x} < 1

2

{x} − 1 if 1
2 ≤ {x} < 1,

and ∥·∥ denotes the distance to the nearest integer function. If any of the above sequences is
convergent as N → ∞, all other sequences are also convergent, and they all converge to the same
limit, i.e.,

lim
N→∞

R2([−s, s], (xn)n, N) = lim
N→∞

R′
2([−s, s], (xn)n, N) = lim

N→∞
R′′

2 ([−s, s], (xn)n, N)

and
lim
N→∞

R2([−s, s], (xn)n, N) = lim
N→∞

R′′′
2 ([−s, s], (xn)n, N),

provided the limit exists in at least one case.

Proof. Let N0 ∈ N as mentioned in Lemma 2.1.5, i.e., 2s < N0 and we write ti,j = xi − xj .
Hence, for any N ≥ N0, we have

R′′′
2 ([−s, s], (xn)n, N) (2.1)

=
1

N
#

{
1 ≤ i ̸= j ≤ N : ((xi − xj)) ∈

[
− s

N
,
s

N

]}
=

1

N
#
{
1 ≤ i ̸= j ≤ N : N((ti,j)) ∈ [−s, s]

}
=

1

N

∑
1≤i ̸=j≤N

χ
[−s,s](N((ti,j)))

=
1

N

∑
1≤i̸=j≤N
0≤{ti,j}< 1

2

χ
[−s,s](N((ti,j))) +

1

N

∑
1≤i ̸=j≤N
1
2≤{ti,j}<1

χ
[−s,s](N((ti,j)))

=
1

N

∑
1≤i̸=j≤N
0≤{ti,j}< 1

2

χ
[−s,s](N{ti,j}) +

1

N

∑
1≤i ̸=j≤N
1
2≤{ti,j}<1

χ
[−s,s](N({ti,j} − 1))

=
1

N

∑
1≤i̸=j≤N
0≤{ti,j}< 1

2

∑
m∈Z

χ
[−s,s](N(ti,j +m)) +

1

N

∑
1≤i ̸=j≤N
1
2≤{ti,j}<1

∑
m∈Z

χ
[−s,s](N(ti,j +m))

=
1

N

∑
1≤i ̸=j≤N

∑
m∈Z

χ
[−s,s](N(ti,j +m))
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=
1

N

∑
1≤i ̸=j≤N

∑
m∈Z

χ
[−s,s](N(xi − xj +m)

=R′
2([−s, s], (xn)n, N),

where we use Lemmas 2.1.5 and 2.1.7 in the last fourth line.

Using Corollaries 2.1.6 and 2.1.8, for any N ≥ N0, and for any s > 0, we have

R2([−s, s], (xn)n, N)

=
1

N
#

{
1 ≤ i ̸= j ≤ N : xi − xj ∈

[
− s

N
,
s

N

]
+ Z

}
=

1

N
#

{
1 ≤ i ̸= j ≤ N : {ti,j} ∈

[
− s

N
,
s

N

]
+ Z

}
=

1

N
#
{
(i, j) : 1 ≤ i ̸= j ≤ N, 0 ≤ {ti,j} <

1

2
, {ti,j} ∈

[
− s

N
,
s

N

]
+ Z

}
+

1

N
#
{
(i, j) : 1 ≤ i ̸= j ≤ N,

1

2
≤ {ti,j} < 1, {ti,j} ∈

[
− s

N
,
s

N

]
+ Z

}
=

1

N

∑
1≤i ̸=j≤N
0≤{ti,j}< 1

2

χ
[−s,s](N{ti,j}) +

1

N

∑
1≤i ̸=j≤N
1
2≤{ti,j}<1

χ
[−s,s](N({ti,j} − 1))

=R′
2([−s, s], (xn)n, N),

(2.2)

where we use the last five lines of equation (2.1) in the last line.

We can show, for any a > 0, ((x)) ∈ [−a, a] ⇐⇒ ||x|| ≤ a.

This shows, for any N ∈ N, and for any s > 0,

R′′
2 ([−s, s], (xn)n, N) = R′′′

2 ([−s, s], (xn)n, N). (2.3)

Combining equations (2.1), (2.2) and (2.3), we obtain that for all N ≥ N0,

R2([−s, s], (xn)n, N) = R′
2([−s, s], (xn)n, N) = R′′

2 ([−s, s], (xn)n, N) = R′′′
2 ([−s, s], (xn)n, N),

and this completes the proof.

Remark 2.1.10. The above definition of pair correlation function is in particular 2-level cor-
relation function, where the definition of k-level correlation is given in the following way.

Definition 2.1.11. Let k ≥ 2. Given a bounded set B ⊆ Rk−1, we define k-level correlation of
the sequence (xn)n≥1 as

Rk(B,N) :=
1

N
#{i1, ..., ik ≤ N all distinct: N(((xi1 − xi2)), ((xi1 − xi3)), ..., ((xi1 − xik))) ∈ B}

=
1

N

∑
i1,...,ik≤N

distinct

χB(N((xi1 − xi2)), N((xi1 − xi3)), ..., N((xi1 − xik))).

The following theorem shows that one can also consider the differences ((xi1 − xi2)), ((xi2 −
xi3)), ..., ((xik−1

−xik)) in the definition instead of the differences ((xi1−xi2)), ((xi1−xi3)), ..., ((xi1−
xik)).

Theorem 2.1.12. Let (xn)n≥1 ⊆ [0, 1] be a sequence and k ≥ 2. The following are equivalent:

(a) For all test functions, f ∈ Cc(Rk−1), we have

lim
N→∞

1

N

∑
i1,...,ik≤N
all distinct

f(N((xi1 − xi2)), N((xi1 − xi3)), ..., N((xi1 − xik))) =

∫
Rk−1

f(x) dx
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(b) For all test functions, g ∈ Cc(Rk−1), we have

lim
N→∞

1

N

∑
i1,...,ik≤N
all distinct

g(N((xi1 − xi2)), N((xi2 − xi3)), ..., N((xik−1
− xik))) =

∫
Rk−1

g(x) dx

(c) For all rectangles B = [a1, b1]× [a2, b2]× · · · [ak−1, bk−1], bi > ai, 1 ≤ i ≤ k − 1,

lim
N→∞

1

N

∑
i1,...,ik≤N
all distinct

χB(N((xi1 − xi2)), N((xi1 − xi3)), ..., N((xi1 − xik))) = λ(B),

where λ denotes the (k − 1) dimensional Lebesgue measure.

Proof. We refer the readers to [HZ23, Appendix A] for a proof.

Definition 2.1.13. Let (xn)n≥1 ⊆ [0, 1] be a sequence and k ≥ 2. We say, the sequence has
Poissonian k-th order correlation if the sequence satisfies any of the above criteria mentioned in
Theorem 2.1.12.

Remark 2.1.14. Let k ≥ 2 and (xn)n≥1 ⊆ [0, 1] has Poissonian k-th order correlation. We
know, for any a > 0, ((x)) ∈ [−a, a] ⇐⇒ ||x|| ≤ a. Therefore, using condition (c) of Theorem
2.1.12 in the second last line, we obtain

lim
N→∞

1

N
#{i1, ..., ik ≤ N all distinct : ||xi1 − xir+1 || ≤

sr
N
, for all 1 ≤ r ≤ k − 1}

= lim
N→∞

1

N
#{i1, ..., ik ≤ N all distinct : N((xi1 − xir+1

)) ∈ [−sr, sr], for all 1 ≤ r ≤ k − 1}

= lim
N→∞

1

N

∑
i1,...,ik≤N
all distinct

χ
[−s1,s1]×···×[−sk−1,sk−1](N((xi1 − xi2)), N((xi1 − xi3)), ..., N((xi1 − xik)))

=λ([−s1, s1]× · · · × [−sk−1, sk−1])

=(2s1)(2s2) · · · (2sk−1).

Corollary 2.1.15. Let (xn)n≥1 ⊆ [0, 1] be a sequence. The following are equivalent:

(a) For all test functions, f ∈ Cc(R), we have

lim
N→∞

1

N

∑
i1 ̸=i2≤N

f(N((xi1 − xi2))) =

∫
R
f(x) dx

(b) For all intervals [a1, b1], b1 > a1,

lim
N→∞

1

N

∑
i1 ̸=i2≤N

χ
[a1,b1](N((xi1 − xi2))) = b1 − a1.

(c) For all intervals [−s, s], s > 0,

lim
N→∞

1

N

∑
i1 ̸=i2≤N

χ
[−s,s](N((xi1 − xi2))) = 2s.

Proof. In view of Theorem 2.1.12, to prove this corollary, it is enough to show that condition (c)
implies condition (b) (the other part is trivial). For this, we show #{(i, j) : i ̸= j ≤ N,N((xi −
xj)) ∈ [0, s]} = s o(N), for all s > 0. Let s > 0. We start with the following observations:

{−x} = 1− {x}, for x /∈ Z, (2.4)
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and

((−x)) =

{
−((x)), if {x} ∈ [0, 12 ) ∪ ( 12 , 1)

((x)), if {x} = 1
2 .

(2.5)

Using equations (2.4) and (2.5), we get

#{(i, j) : i ̸= j ≤ N, {xi − xj} ≠
1

2
, N((xi − xj)) ∈ [−s, 0)}

=#{(i, j) : i ̸= j ≤ N, 1− {xj − xi} ≠
1

2
,−N((xj − xi)) ∈ [−s, 0)}

=#{(j, i) : i ̸= j ≤ N, {xj − xi} ≠
1

2
, N((xj − xi)) ∈ (0, s]}

=#{(i, j) : i ̸= j ≤ N, {xi − xj} ≠
1

2
, N((xi − xj)) ∈ (0, s]},

(2.6)

where we use the bijection #{(i, j) : i ̸= j ≤ N, · · · } ↔ #{(j, i) : i ̸= j ≤ N, · · · } in the third
line. For N > 2s, equation 2.1.9 gives

#{(i, j) : i ̸= j ≤ N, {xi − xj} =
1

2
, N((xi − xj)) ∈ [−s, 0)}

=#{(i, j) : i ̸= j ≤ N, {xi − xj} =
1

2
,−N/2 ∈ [−s, 0)} = 0.

(2.7)

For N > 2s, adding equations (2.6)and (2.7), we obtain

#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [−s, 0)}

=#{(i, j) : i ̸= j ≤ N, {xi − xj} ≠
1

2
, N((xi − xj)) ∈ (0, s]}

+#{(i, j) : i ̸= j ≤ N, {xi − xj} =
1

2
, N((xi − xj)) ∈ (0, s]}

=#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ (0, s]},

where the set in the third line is an empty set.

Using the given hypothesis, we obtain

0 ≤ lim
N→∞

1

N
#{(i, j) : i ̸= j ≤ N, ((xi − xj)) = 0}

≤ lim
N→∞

1

N
#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [ϵ, ϵ]} = 2ϵ, for any ϵ > 0, i.e.,

lim
N→∞

1

N
#{(i, j) : i ̸= j ≤ N, ((xi − xj)) = 0} = 0. (2.8)

Therefore, for N > 2s,

#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [−s, s]}
=#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [−s, 0)}+#{(i, j) : i ̸= j ≤ N, ((xi − xj)) = 0}
+#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ (0, s]}
=#2{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [0, s]} −#{(i, j) : i ̸= j ≤ N, ((xi − xj)) = 0},

(2.9)

and hence, using equation (2.8) together with the hypothesis, we obtain

lim
N→∞

1

N
#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [0, s]}

=
1

2
lim
N→∞

1

N
#{(i, j) : i ̸= j ≤ N,N((xi − xj)) ∈ [−s, s]} =

1

2
(2s) = s, for any s > 0,

which proves condition (b).
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Condition (c) of Corollary 2.1.15 allows us to say that a sequence (xn)n≥1 ⊆ [0, 1] has
Poissonian 2-th order correlation (or, Poissonian pair correlation) if for any s > 0, it satisfies

lim
N→∞

1

N
#

{
1 ≤ i ̸= j ≤ N : ((xi − xj)) ∈

[
− s

N
,
s

N

]}
= 2s.

Remark 2.1.16. It is important to note that we cannot obtain a similar version of the equiv-
alence of Condition (c) to any other conditions mentioned in the proof of Corollary 2.1.15 for
higher order correlations (k ≥ 3) since a similar symmetry argument cannot be used to obtain
a generalization of (2.9), i.e., for the rectangle B = [0, s1] × · · · × [0, sk−1], the following is not
true in general:

1

N
#
{
i1, · · · , ik ≤ Nall distinct, N((xi1 − xir+1)) ∈ [0, sr] (1 ≤ r < k)

}
∼
(
1

2

)k−1
1

N
#
{
i1, · · · , ik ≤ Nall distinct, N((xi1 − xir+1)) ∈ [−sr, sr] (1 ≤ r < k)

}
.

The following theorem shows having Poissonian pair correlation is stronger than uniform
distribution mod 1.

Theorem 2.1.17. Let (xn)n≥1 ⊆ [0, 1] be a sequence. If (xn)n≥1 has Poissonian pair correla-
tion, then (xn)n≥1 is uniformly distributed.

Remark 2.1.18. Theorem 2.1.17 was proved independently by Aistleitner, Lachmann and
Pausinger [ALP18] and by Grepstad and Larcher [GL17].

We can recover Poissonian level spacing distribution, if we have Poissonian correlations of
all orders k ≥ 2.

Theorem 2.1.19. Let (xn)n≥1 ⊆ [0, 1] be a sequence. If (xn)n≥1 has Poissonian correlations
of all orders k ≥ 2, then the sequence has Poissonian level spacing distribution function.

Proof. We refer the readers to [KR99, Appendix A] for a proof.



Chapter 3

Introduction to Modular forms

3.1 Preliminaries

The main goal of this thesis is to study pair correlation statistics in the context of modular forms.
For this, we need a brief introduction to modular forms, which we give in this chapter. Modular
forms play an essential role not only in Number Theory but also in other parts of Mathematics.
Modular forms are used for the construction of Ramanujan graphs, cryptography, and coding
theory and are often related to generating functions for partitions of an integer. In this section,
we review the properties of modular forms necessary to understand the thesis problem and to
tackle it. We refer the readers to [Miy89] and [MDG16] for a more detailed understanding of
this topic.

3.1.1 Modular Forms

Let us consider the following matrix group, namely the special linear group over the set of
integers Z.

SL2(Z) =

{(
a b
c d

) ∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1

}
.

For each positive integer N, we define

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡
(
1 0
0 1

)
(mod N)

}
.

In particular, Γ(1) = SL2(Z). We call Γ(N) the principal congruence modular group.

Definition 3.1.1. A subgroup Γ ⊆ SL2(Z) is called a congruence subgroup if Γ(N) ⊆ Γ for
some N ∈ N.

If Γ is a congruence subgroup, the smallest N such that Γ(N) ⊆ Γ is called the level of Γ.

Remark 3.1.2. It can be shown that Γ(N) has finite index in SL2(Z). Hence, every congruence
subgroup Γ also has finite index in SL2(Z).

Let H := {z ∈ C : Im (z) > 0} be the upper half-plane, considered as an open subset of C
with the usual topology.

The group

GL+
2 (R) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc > 0

}

35
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acts on H via Möbius transformations (or fractional linear transformations):

GL+
2 (R)×H → H(

γ =

(
a b
c d

)
, z

)
7→ az + b

cz + d
,

(3.1)

i.e.,

γ · z = az + b

cz + d
.

Remark 3.1.3. The action of GL+
2 (R) on H extends by the same formula (3.1) to include its

boundary R ∪ {∞} as follows:

((
a b
c d

)
, x

)
7→ ax+b

cx+d , for x ∈ R, and

((
a b
c d

)
,∞

)
7→ a

c .

Definition 3.1.4. A subgroup Γ of a topological group G is called a discrete subgroup if Γ is
discrete with respect to the topology of G.

Definition 3.1.5. A non-scalar element α of GL+
2 (R) is called elliptic, parabolic or hyperbolic,

when it satisfies

(tr (α))2 < 4 det (α), (tr (α))2 = 4 det (α), or, (tr (α))2 > 4 det (α),

respectively.

Definition 3.1.6. Let Γ be a discrete subgroup of SL2(R). An element s ∈ R ∪ {∞} is called a
cusp of Γ, if γ · s = s for some parabolic element γ ∈ Γ.

Proposition 3.1.7. Let Γ ⊆ SL2(Z) be a subgroup of finite index. Then the set of cusps of Γ
is given by Q ∪ {∞}.

Proof. We refer the readers to [KL06, Proposition 3.5] for a proof.

Definition 3.1.8. Let k be an integer. A function f : H → C is called a classical (or
“elliptic”) modular form of weight k with respect to the full modular group Γ = SL2(Z), if it
satisfies the following conditions:

(1) f is holomorphic on H.

(2) f
(
az+b
cz+d

)
= (cz + d)kf(z), for all

(
a b
c d

)
∈ SL2(Z), and z ∈ H.

(3) f(z) is bounded as Im (z) → ∞.

Remark 3.1.9. Let f be a holomorphic function on H satisfying Condition 2 of the definition
3.1.8, i.e., f(z + 1) = f(z), for all z ∈ H. This means f has a Laurent series expansion (See
page 3 of [DS05] for a discussion), which we call Fourier series at ∞ :

f(z) =

∞∑
n=−∞

af (n)q
n, q = e2πiz.

Since q → 0 as Im z → ∞, Condition 3 of Definition 3.1.8 ensures that af (n) = 0 for n < 0.
Therefore, the Fourier series of f is in fact a power series :

f(z) =

∞∑
n=0

af (n)q
n, q = e2πiz.

Definition 3.1.10. Let f be a holomorphic function on H satisfying condition 2 of Definition
3.1.8, and af (n) = 0, for n < 0 in the Fourier expansion (as mentioned above) of f at ∞. Then
f is said to be holomorphic at ∞.
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Remark 3.1.11. Some authors also prefer to give the definition of a modular form with the
equivalent Condition (3)′ : f is holomorphic at ∞, in place of condition (3) in the Definition
3.1.8.

Remark 3.1.12. Taking
(
a b
c d

)
= −

(
1 0
0 1

)
in Condition 2 of Definition 3.1.8, we get f =

(−1)kf , which shows that the only modular form with respect to the full modular group SL2(Z)
of any odd weight k, is the zero function, but non-zero odd weight examples exist in more general
contexts.

Definition 3.1.13. A classical modular form f : H → C of weight k with respect to the full
modular group SL2(Z) is called a cusp form of weight k with respect to the full modular group
SL2(Z), if af (0) = 0 in the Fourier series expansion of f at ∞.

We now define modular forms for congruence subgroups Γ of SL2(Z).

For k ∈ Z and γ =

(
a b
c d

)
∈ GL+

2 (R), we introduce the following notation: for any

holomorphic function f on H,

(f [γ]k)(z) := (det γ)k/2(cz + d)−kf
(az + b

cz + d

)
. (3.2)

Remark 3.1.14. Sometimes f |[γ]k is used in place of f [γ]k, and it is usually called the “slash”
notation because of the slash that is put, but we will use the above notation f [γ]k.

In the following definition, we define the notion of holomorphy at ∞ for a congruence
subgroup, which we will need in condition (3) of the definition 3.1.16. We refer the readers to
page 16 of [DS05] for a more detailed discussion.

Definition 3.1.15. Let Γ be a congruence subgroup of SL2(Z). Then Γ contains a matrix of the

form
(
1 h
0 1

)
for some minimal h ∈ N. Let f : H → C be a holomorphic function which satisfies

f [γ]k = f for all γ ∈ Γ. Therefore, f(z + h) = f(z), and hence f has a Laurent expansion. f is
said to be holomorphic at ∞ with respect to Γ, if f has a Fourier series expansion:

f(z) =

∞∑
n=0

af (n)q
n
h , qh = e2πiz/h.

Definition 3.1.16. Let k be an integer and Γ be a congruence subgroup of SL2(Z). A function
f : H → C is called a classical (or “elliptic”) modular form of weight k with respect to Γ,
if it satisfies the following conditions:

(1) f is holomorphic on H.

(2) f [γ]k = f for all γ ∈ Γ.

(3) For all γ ∈ SL2(Z), f [γ]k is holomorphic at ∞ with respect to γ−1Γγ.

Remark 3.1.17. Since g := f [γ]k is holomorphic on H and g[α]k = g for all α ∈ γ−1Γγ = Γ′,
where Γ′ is again a congruence subgroup of SL2(Z), its holomorphy at ∞ (as mentioned in
Definition 3.1.15) is well defined.

Definition 3.1.18. Let k be an integer and Γ be a congruence subgroup of SL2(Z). A classical
modular form f : H → C of weight k with respect to Γ is called a cusp form of weight k with
respect to Γ, if af (0) = 0 in the Fourier series expansion of f [γ]k at ∞, for all γ ∈ SL2(Z).

Definition 3.1.19. Let k be an integer and Γ be a congruence subgroup of SL2(Z). The space
of modular forms and cusp forms of weight k with respect to Γ are denoted by Mk(Γ) and Sk(Γ).
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In this thesis, we will only be dealing with the following special congruence subgroup,
namely Hecke congruence subgroup of level N :

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ N divides c

}
.

Definition 3.1.20. Let k and N be integers with N ≥ 1. A classical modular form (or cusp
form) of weight k with respect to Γ0(N) is called a modular form (or cusp form) of weight
k and level N .

Remark 3.1.21. Let f be a modular form of weight k and level N. Then, f [γ]k is holomorphic
at ∞ with respect to γ−1Γ0(N)γ, for all γ ∈ SL2(Z) (using Definition 3.1.16). In particular,
taking γ = I2, we have f [I2]k = f is holomorphic at ∞ with respect to Γ′ = Γ0(N).

Therefore, using Definition 3.1.15 with the observation that h = 1 is the minimal natural

number such that
(
1 h
0 1

)
∈ Γ0(N) = Γ′, we can say that if f is a modular form of weight k

and level N, f has a Fourier series expansion:

f(z) =
∞∑
n=0

af (n)q
n, q = e2πiz.

Similarly, if f is a cusp form of weight k and level N, f has a Fourier series expansion
with af (0) = 0 :

f(z) =

∞∑
n=1

af (n)q
n, q = e2πiz.

Definition 3.1.22. Let k and N be integers with N ≥ 1. The space of modular forms and cusp
forms of weight k and of level N are denoted by Mk(N) and Sk(N), i.e., Mk(N) =Mk(Γ0(N))
and Sk(N) = Sk(Γ0(N)).

Remark 3.1.23. It can be shown that both Mk(N) and Sk(N) are finite-dimensional complex
vector spaces, where Sk(N) is a vector subspace of Mk(N) [CS17, Theorem 7.4.1].

In the next few sections, we find a basis of eigenforms for the space Sk(N). But for this, we
need to make Sk(N) an inner product space, which was first done by the German mathematician
Hans Petersson and this inner product is called Petersson Inner Product.

3.1.2 Petersson Inner Product

We recall that the action of the group GL+
2 (R) on H is given by equation (3.1).

Definition 3.1.24. In the upper half plane H, we define the hyperbolic measure

dµ(z) =
dx dy

y2
, z = x+ iy ∈ H.

We record the following two propositions whose proofs are straightforward.

Proposition 3.1.25. The hyperbolic measure dµ is invariant under the action of GL+
2 (R) on H,

i.e., for all α ∈ GL+
2 (R), z ∈ H, dµ(α·z) = dµ(z). Hence, dµ is also invariant under Γ = SL2(Z)

and so under Γ0(N).

Proposition 3.1.26. Let f, g ∈ Mk(Γ0(N)). Then f(z)g(z)(Im z)k is Γ0(N)-invariant, i.e.,
for all α ∈ Γ0(N),

f(α · z)g(α · z)(Im (α · z))k = f(z)g(z)(Im z)k.
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Definition 3.1.27. Let f ∈Mk(N), and g ∈ Sk(N), where Mk(N) and Sk(N) are as mentioned
in Definition 3.1.22. We define the Petersson Inner Product as the following:

⟨·, ·⟩ :Mk(N)× Sk(N) → C

given by

⟨f, g⟩ :=
∫
Γ0(N)\H

f(z)g(z)(Im z)kdµ(z), (3.3)

where Γ0(N)\H is the orbit space of the action of Γ0(N) on H.

Remark 3.1.28. The integral in equation (3.3) is finite as long as one of f and g belongs to
Sk(N) and the other belongs to Mk(N).

Remark 3.1.29. Using Propositions 3.1.25 and 3.1.26, we obtain that the integral in equation
(3.3) is well-defined.

Proposition 3.1.30. Let Γ be a congruence subgroup of SL2(Z). Let and f, g ∈Mk(Γ). Then

(a) ⟨·, ·⟩ is linear in first argument,

(b) ⟨·, ·⟩ is conjugate symmetric, i.e., ⟨f, g⟩ = ⟨g, f⟩,

(c) ⟨f, f⟩ > 0 for f ̸= 0.

Therefore, the Petersson inner product defines a Hermitian inner product on Sk(Γ).

Proof. We refer the readers to [MDG16, Chapter 7] for a proof.

Remark 3.1.31. The Petersson inner product defines a Hermitian inner product on Sk(N), for
integers k and N with N ≥ 1.

We now state the following standard result from the functional analysis without proof.

Lemma 3.1.32. A finite-dimensional inner product space V over C is a Hilbert space.

Theorem 3.1.33. The space Sk(N) of cusp forms of weight k and level N , is a Hilbert space
with respect to Petersson inner product.

Proof. The proof follows from Proposition 3.1.30 and Remark 3.1.23.

3.1.3 Hecke Operators
For each weight k and level N , we define a family of linear operators that preserve the spaces
Mk(N) and Sk(N), called the Hecke operators (See [Kob84], Proposition 35 on page 160).

Definition 3.1.34. Let G be a group acting on a set X. The orbit of an element x in X is the
set of elements in X to which x can be moved by the elements of G. The orbit of x is denoted
by G · x:

G · x = {g · x : g ∈ G}.

The set of all orbits of X under the action of G is called the orbit space of the action and is
written as G\X, i.e.,

G\X = {G · x : x ∈ X}.

There are different ways of defining Hecke operators on the space of modular forms Mk(N),
although all of them are equivalent. We follow the treatment by Cohen and Stromberg [CS17].

For positive integers m and N , we define the set

Xm(N) :=

{(
a b
c d

)
∈M2(Z), N |c, (a,N) = 1, det

(
a b
c d

)
= m

}
.

We observe that the group Γ0(N) acts on the set Xm(N) by the left multiplication of matrices.
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Definition 3.1.35. Let f ∈ Mk(N). For m ∈ N, the m-th Hecke operator Tm on the space
Mk(N) is defined by

Tm(f) := mk/2−1
∑

γ∈Γ0(N)\Xm(N)

f [γ]k.

Remark 3.1.36. It can be shown that the definition of Tm is independent of the choice of
representatives for the cosets Γ0(N)\Xm(N) (See [CS17, Proposition 10.2.3 (a)] for a proof).

Remark 3.1.37. In general, it may happen that f [γ]k /∈Mk(N), for arbitrary γ ∈ GL+(R) and
f ∈ Mk(N). For this reason, we define the Hecke operator where we sum elements of the form
f [γ]k for a given modular form f over the orbit representatives to get back a modular form of
weight k and level N.

Theorem 3.1.38. A system of orbit representatives of Xm(N) for the left action of Γ0(N) is
given by the set,

∆N
m :=

{(
a b
0 d

)
∈M2(Z) : (a,N) = 1, ad = m, a > 0, 0 ≤ b ≤ d− 1

}
,

that is,

Xm(N) =
⊔

ad=m
(a,N)=1,a>0

d−1⊔
b=0

Γ0(N)

(
a b
0 d

)
.

Proof. We refer the readers to [CS17, Proposition 6.5.3 (b)] for a proof.

Using Theorem 3.1.38, we have the following explicit expression for them-th Hecke operator.

Definition 3.1.39. Let f ∈ Mk(N). For m ∈ N, the m-th Hecke operator Tm on the space
Mk(N) is given by

Tm(f) =mk/2−1
∑
γ∈∆N

m

f [γ]k

=mk/2−1
∑
ad=m

(a,N)=1,a>0

d−1∑
b=0

f

[(
a b
0 d

)]
k

=
1

m

∑
ad=m

(a,N)=1,a>0

ak
d−1∑
b=0

f

(
az + b

d

)
,

where f [γ]k is the slash operator defined in equation (3.2).

Proposition 3.1.40. Let n and N be positive integers, k be a non-negative even integer and
f =

∑
m≥0 λf (m)qm ∈Mk(N). Then Tnf(z) =

∑
m≥0 bf (m)qm, where

bf (m) =
∑

d|(m,n),d>0
(d,N)=1

dk−1λf

(
mn

d2

)
.

Proof. We refer the readers to [CS17, Proposition 10.2.5] for a proof.

Remark 3.1.41. Let m and N be positive integers and k be a non-negative even integer. The
m-th Hecke operator is a well-defined linear map from Mk(N) to Mk(N) and from Sk(N) to
Sk(N).
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Corollary 3.1.42. Let N be a positive integer, p be a prime, k be a non-negative even integer
and f =

∑
m≥0 λf (m)qm ∈Mk(N). Then

Tpf(z) =

{∑
m≥0 λf (pm)qm + pk−1

∑
r≥0 λf (r)q

pr if p ̸ |N∑
m≥0 λf (pm)qm if p|N.

When p divides the level N , the Hecke operator Tp is often denoted by Up.

Proof. If p|N, then (p,N) = p, and hence,

bf (m) =
∑

d|(m,p),d>0
(d,N)=1

dk−1λf

(
mp

d2

)
= λf (pm).

If p ̸ |N, then (p,N) = 1. Hence, for prime p dividing m,

bf (m) =
∑

d|(m,p),d>0
(d,N)=1

dk−1λf

(
mp

d2

)
= λf (pm) + pk−1λf

(
m

p

)
, and

for prime p not dividing m,

bf (m) =
∑

d|(m,p),d>0
(d,N)=1

dk−1λf

(
mp

d2

)
= λf (pm).

We now record some important properties of Hecke operators below.

Theorem 3.1.43 (Hecke). The Hecke operators {Tn : n ≥ 1} acting on Sk(N) satisfy the
following properties :

(a) For m,n ∈ N,
TmTn =

∑
d|(m,n)
(d,N)=1

dk−1Tmn
d2
.

In particular, TmTn = TnTm, for m,n ∈ N.

(b) The Hecke operators are multiplicative, i.e., for m,n ∈ N with (m,n) = 1, TmTn = Tmn.

(c) For a positive integer r and a prime p, such that (p,N) = 1, TprTp = Tpr+1 + pk−1Tpr−1 .
If p|N, then Tpr = (Tp)

r.

Proof. We refer the readers to [CS17, Theorem 10.2.9] for a proof.

Theorem 3.1.44 (Petersson). The Hecke operators {Tn : (n,N) = 1}n≥1 on Sk(N) are self-
adjoint (or, Hermitian) with respect to the Petersson inner product, i.e., for any f, g ∈ Sk(N),
and (n,N) = 1, we have ⟨Tnf, g⟩ = ⟨f, Tng⟩.

Proof. For a proof of this theorem, we refer the readers to [Kob84, Proposition 50].

Definition 3.1.45. A cusp form f ∈ Sk(N) is called a Hecke eigenform if it is an
eigenfunction for each Tn with (n,N) = 1, i.e., there exists a sequence of complex numbers
{αn : (n,N) = 1} such that

Tnf = αnf.

If the first Fourier coefficient af (1) of an eigenform is 1, then we say that f is a normalised
Hecke eigenform.

Definition 3.1.46. A basis of Sk(N) consisting of Hecke eigenforms is called a Hecke eigen-
basis.
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We now begin with the following standard theorem from linear algebra.

Theorem 3.1.47. Let R be a commutative ring of Hermitian operators on a finite-dimensional
Hilbert space V over C. Then V has an orthogonal basis f1, f2, · · · , fr of eigenvectors of R.

Proof. For a proof of this theorem, we refer the readers to [MDG16, Theorem 7.4.1].

Theorem 3.1.48. The space of cusp forms Sk(N) has an orthogonal basis consisting of eigen-
functions of Tm for all (m,N) = 1. In particular, if N = 1, there exists an orthogonal Hecke
eigenbasis for all Tn, n ≥ 1.

Proof. Using Theorem 3.1.33, we note that the space of cusp forms Sk(N) is a finite-dimensional
Hilbert space over C with respect to Petersson inner product. Also, using Theorems 3.1.43 and
3.1.44, we obtain that R = {Tn : (n,N) = 1}n≥1 is a commutative ring of Hermitian operators
on Sk(N). The proof now follows from Theorem 3.1.47.

3.1.4 Oldforms and newforms
In this section, we discuss the theory of newforms developed by Atkin–Lehner, generalized by
W. Li. Newforms are analogues of primitive characters in the context of modular forms. In
particular, we will see that there is a natural decomposition of the spaces Sk(N) and that
newforms have nicer properties than general modular forms. The advantage of having the space
of newforms is that we will have a basis consisting of normalised eigenforms of all Hecke operators.

Theorem 3.1.48 shows that Sk(N) has an orthogonal basis consisting of eigenfunctions of
Tm under the restriction, (m,N) = 1, and this basis need not be unique. However, on the space
of newforms Snewk (Γ0(N)) (to be defined below), we will see that there exists a basis of forms
(unique, up to normalization and ordering) which are simultaneous eigenfunctions for all the
Hecke operators Tp, including those with p|N .

In 1970, Atkin and Lehner resolved this difficulty by focusing on forms, which are indeed of
level N , i.e., they don’t come from lower levels. We observe that if N ′|N, then Γ0(N) ⊆ Γ0(N

′),
and hence Sk(N

′) ⊆ Sk(N). More generally, if d| NN ′ , and f(z) ∈ Sk(N
′), it turns out that

f(dz) ∈ Sk(N). We name the subspace containing all the duplicating forms coming from lower
levels as the space of oldforms.

Definition 3.1.49. The C-span of⋃
N ′|N
N ̸=N ′

⋃
d| N

N′

{f(dz) : f ∈ Sk(N
′)}

is called the space of oldforms on Γ0(N), and is denoted by Soldk (N). The orthogonal complement
of the space of oldforms with respect to the Petersson inner product in Sk(N) is called the space
of primitive modular cusp forms on Γ0(N), and is denoted by Snewk (N).

Remark 3.1.50. We have the following orthogonal decomposition for the space Sk(N),

Sk(N) = Soldk (N)
⊕

Snewk (N).

Remark 3.1.51. By the Atkin-Lehner decomposition [AL70], we know that

Sk(N) =
⊕
d|N

⊕
a|Nd

ia,d(S
new
k (d)), (3.4)

where, for positive integers a and d such that ad|N , ia,d denotes the embedding f(z) → f(az) of
Sk(d) into Sk(N).

Remark 3.1.52. The spaces Soldk (N) and Snewk (N) are stable under the action of all Hecke
operators {Tn}n≥1, not only those with (n,N) = 1 (See [CS17]).
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The space Snewk (N) has the following nice properties:

Theorem 3.1.53. The following statements are true:

(a) There exists an orthogonal basis of the space Snewk (N) formed by eigenforms of all the
Hecke operators Tn.

(b) Let f =
∑∞
n=1 λf (n)q

n ∈ Snewk (N) be a Hecke eigenform. Then, λf (1) ̸= 0.

(c) If f =
∑∞
n=1 λf (n)q

n ∈ Snewk (N) is a normalised Hecke eigenform, i.e., λf (1) = 1, then
Tnf = λf (n)f for all integers n.

(d) If f =
∑∞
n=1 λf (n)q

n ∈ Snewk (N) is a normalised Hecke eigenform, then

λf (m)λf (n) =
∑

d|(m,n),d>0
(d,N)=1

dk−1λf

(
mn

d2

)
.

Remark 3.1.54. We note parts (c) and (d) of Theorem 3.1.53 follow from the following fact:
Let f(z) =

∑∞
n=1 λf (n)q

n ∈ Snewk (N), where λf (1) = 1 and

Tn(f(z)) = α(n)f(z), n ≥ 1.

Using Proposition 3.1.40, we obtain∑
d|(m,n),d>0
(d,N)=1

dk−1λf

(
mn

d2

)
= α(m)λf (n).

In particular, n = 1 gives λf (m) = α(m)λf (1), i.e., λf (m) = α(m).

Hence, we obtain

λf (m)λf (n) =
∑

d|(m,n),d>0
(d,N)=1

dk−1λf

(
mn

d2

)
.

Definition 3.1.55. Theorem 3.1.53 (a) and (b) guarantee the existence of an orthogonal basis of
Snewk (N) consisting of normalised Hecke eigenforms, which we denote by FN,k. Any f(z) ∈ FN,k
is called a Hecke newform of weight k and level N.

Remark 3.1.56. We note that we don’t call every function in Snewk (N) a newform. A normalised
cusp form f ∈ Snewk (N) which belongs to an orthogonal basis of Snewk (N) and is a common
eigenfunction for the Hecke operators Tn with (n,N) = 1 is called a newform.

Definition 3.1.57. A newform f(z) =
∑
n≥1 λf (n)q

n of level N and weight k is said to be a
CM form (or to have complex multiplication) if there exists an imaginary quadratic field K
such that λf (p) = 0 if and only if p is inert in K. For weight k ≥ 2, the field K is unique and
we say that f has CM by K.

If no such field exists, we say that f is a non-CM newform.

3.1.5 Ramanujan-Petersson conjecture
Let k and N be positive integers with k even. Let Snewk (N) denote the space of primitive modular
cusp forms of weight k with respect to Γ0(N). For n ≥ 1, let Tn denote the n-th Hecke operator
acting on Snewk (N). We denote the set of Hecke newforms of level N in Snewk (N) by FN,k (as
mentioned in Definition 3.1.55). Using Theorem 3.1.53, any f(z) ∈ FN,k has a Fourier expansion

f(z) =

∞∑
n=1

λf (n)q
n, q = e2πiz,
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where λf (1) = 1 and

Tn(f(z)) = λf (n)f(z), n ≥ 1. (3.5)

We now mention below the Ramanujan-Petersson conjecture, which was first conjectured
by Ramanujan for the Ramanujan τ function and later generalized by Petersson for more general
modular forms. The conjecture was completely proved by Deligne in 1974, using his proof of the
general Weil conjectures (See [CS17] for a history of the problem).

Theorem 3.1.58 (Ramanujan–Petersson conjecture). Let f(z) =
∑
n≥1 λf (n)q

n be a nor-
malised Hecke eigenform. Then, for any prime p with (p,N) = 1,

|λf (p)| ≤ 2p
k−1
2 .

Remark 3.1.59. It follows from Ramanujan–Petersson conjecture for any n ∈ N with (n,N) =
1,

|λf (n)| ≤ d(n)n
k−1
2 ,

where d(n) is the number of positive divisors of n (See Exercise 5.3.2 in [MDG16] for a proof).

If we consider the normalised eigenvalues af (n) =
λf (n)

n(k−1)/2 , then Ramanujan–Petersson
bound gives that for any n ∈ N with (n,N) = 1,

|af (n)| ≤ d(n). (3.6)

Hence, using equation (3.5), we obtain that any f(z) ∈ FN,k has a Fourier expansion

f(z) =

∞∑
n=1

n
k−1
2 af (n)q

n, q = e2πiz,

where af (1) = 1 and

Tn(f(z))

n
k−1
2

= af (n)f(z), n ≥ 1. (3.7)

Let us fix N and k and consider a newform f(z) in FN,k (as mentioned in Definition 3.1.55).
Let p be a prime number with (p,N) = 1. Equation (3.6) gives, |af (p)| ≤ 2. Moreover, af (p)’s
being the eigenvalues of a Hermitian operator, af (p) ∈ R. Hence, the eigenvalues af (p) lie in the
interval [−2, 2] and if we denote af (p) = 2 cosπ θf (p), we have θf (p) ∈ [0, 1].

Theorem 3.1.60. If f =
∑∞
n=1 λf (n)q

n ∈ Snewk (N) is a normalized eigenform, then the Fourier
coefficients satisfy

(a) λf (m)λf (n) =
∑

d|(m,n),d>0
(d,N)=1

dk−1λf

(
mn

d2

)
.

(b) λf (m)λf (n) = λf (mn), if (m,n) = 1.

(c) λf (p)λf (p
n) = λf (p

n+1) + pk−1λf (p
n−1), for n ≥ 1, and prime p such that (p,N) = 1.

Proof. Proof of (b) and (c) directly follows from (a), which is already mentioned in Theorem
3.1.53.

Corollary 3.1.61. If f =
∑∞
n=1 n

k−1
2 af (n)q

n ∈ Snewk (N) is a normalized eigenform, then the
normalised Fourier coefficients satisfy

(a) af (m)af (n) =
∑

d|(m,n),d>0
(d,N)=1

af

(
mn

d2

)
.
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(b) af (m)af (n) = af (mn), if (m,n) = 1.

(c) af (p)af (p
n) = af (p

n+1) + pk−1af (p
n−1), for n ≥ 1, and prime p such that (p,N) = 1.

Proof. The proof follows from Theorem 3.1.60 after putting λf (n) = n
k−1
2 af (n).

3.2 Eichler-Selberg Trace formula

The Eichler-Selberg trace formula gives us a formula for the trace Tr of the Hecke operator
Tn(N, k) acting on Sk(N), for each n ∈ N, in terms of Kronecker class numbers. Selberg proved
this formula for SL2(R), in the level 1 case, in his famous 1956 paper ([Sel56]). In the same year,
Eichler ([Eic56]) obtained a formula for k = 2 and square-free level. Hijikata ([Hij74]) gave the
formula for traces of Hecke operators for Γ0(N), where (n,N) = 1. Joseph Oesterlé gave a more
general formula for the space of cusp forms of weight k and level N , which is valid for all n ∈ N,
in his thesis [Oes77]). This explicit formula is known as the Eichler-Selberg trace formula.

3.2.1 Class Numbers
For a negative integer ∆ congruent to 0 or 1 (mod 4), we let B(∆) denote the set of all positive
definite binary quadratic forms (not necessarily primitive) with discriminant ∆ (i.e., ∆ < 0),

B(∆) = {aX2 + bXY + cY 2, a, b, c ∈ Z, a > 0, and b2 − 4ac = ∆}.

By b(∆), we denote primitive such forms,

b(∆) = {aX2 + bXY + cY 2 ∈ B(∆), gcd (a, b, c) = 1}.

One can define a right action of the group SL2(Z) on B(∆) by(
α β
γ δ

)
· f(X,Y ) := f(αX + βY, γX + δY ) for f(X,Y ) ∈ B(∆).

This action respects primitive forms. It is well known that there are only finitely many orbits
(See for example [Bak84]). The number of orbits in b(∆) is called the class number of ∆ and is
denoted by h(∆). For a negative integer ∆ congruent to 0 or 1 (mod 4), the Hurwitz-Kronecker
class number of ∆ is denoted by H(−∆), it is defined to be the number of orbits in B(∆), but
one should count the forms aX2 + aY 2 and aX2 + aXY + aY 2, if at all present in B(∆), with
multiplicity 1

2 and 1
3 , respectively. The Hurwitz-Kronecker class number H is extended to Z,

by defining H(0) = − 1
12 , and H(n) = 0 for −n ≡ 2 or 3 (mod 4), where n ∈ N. The relation

between the Hurwitz-Kronecker class number and the ordinary class numbers is given as follows:

Proposition 3.2.1. Let ∆ be a negative integer congruent to 0 or 1 (mod 4) and hw be defined
as follows:

hw(−3) =
1

3
,

hw(−4) =
1

2
,

hw(∆) = h(∆), for ∆ < −4.

Then
H(−∆) =

∑
f

hw

(
∆

f2

)
,

where f runs over all positive divisors of ∆ for which ∆/f2 ∈ Z is congruent to 0 or 1 (mod 4).

Proof. This formula follows from the definition of H(N).

We now mention the following proposition which will be useful while estimating trace for-
mula.
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Proposition 3.2.2. Let n be a positive integer. Then∑
t∈Z,t2<4n

H(4n− t2) =

{
2σ1(n)− λ(n) + 1

6 , if n is a square,
2σ1(n)− λ(n), otherwise,

where
λ(n) =

∑
d|n

min
(
d,
n

d

)
and σ1(n) =

∑
d|n
d>0

d.

Proof. The above recursion formula is due to Kronecker (1857) and Gierster (1879). We refer
the readers to [Coh93, Theorem 5.3.8] for a proof.

Remark 3.2.3. It can be observed from [Coh93, Corollary 5.3.9] (which follows from Proposition
3.2.2 and we don’t mention it here) that to compute individual class numbers, we need to know
the preceding ones. Thus Proposition 3.2.2 gives a recursive formula for class numbers.

3.2.2 Trace formula on the space Sk(N)

In this section, we mention the well-known Eichler-Selberg trace formula Tn on the space Sk(N),
of modular cusp forms of weight k and level N , for each n ∈ N.

Theorem 3.2.4. (Eichler-Selberg trace formula) Let n be a positive integer. The trace of
the Hecke operator Tn(N, k) acting on Sk(N) is given by

TrTn(N, k) = Ã1(n,N, k) + Ã2(n,N, k) + Ã3(n,N, k) + Ã4(n,N, k).

where Ãi(n,N, k)’s are as follows:

Ã1(n,N, k) =

{
n(k/2−1) · k−1

12 ψ(N) if n is a square,
0 otherwise,

Ã2(n,N, k) = −1

2

∑
t∈Z,t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑
f

hw

(
t2 − 4n

f2

)
µ(t, f, n),

Ã3(n,N, k) = −
∑′

d|n
0<d≤

√
n

dk−1F (N)d,

Ã4(n,N, k) =

{∑
t|n,t>0 t if k = 2,

0 otherwise,

where

• ψ(N) = N
∏
p|N

p prime

(
1 +

1

p

)
.

• ρ and ρ̄ are the zeros of the polynomial x2 − tx+n, and hw is as mentioned in the Section
3.2.1.

• The inner sum in Ã2(n,N, k) runs over all positive divisors f of t2 − 4n such that t2 −
4n/f2 ∈ Z is congruent to 0 or 1 (mod 4).

• For a positive integer f, µ(t, f, n) is given by

µ(t, f, n) =
ψ(N)

ψ
(
N
Nf

)M(t, n,NNf ),

where Nf = (N, f), and M(t, n,K) denotes the number of solutions of the congruence
x2 − tx+ n ≡ 0 (mod K).
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• The term F (N)d in Ã3(n,N, k) is a multiplicative function of N given by

F (N)d =
∑
c|N

(c,Nc )|
n
d −d

ϕ

((
c,
N

c

))
.

• The prime on the summation in Ã3(n,N, k) indicates that if there is a contribution from
the term d =

√
n, it should be multiplied by 1

2 .

Proof. We refer the readers to [Eic56], [Hij74], and [Oes77] for proofs and to the introduction
in Section 3.2 for a history behind proof of this formula.

Remark 3.2.5. Ã1(n,N, k), Ã2(n,N, k) and Ã3(n,N, k) are called the identity term, elliptic
term and hyperbolic-unipotent term respectively. We refer the readers to Theorem 2.1 and Equa-
tion 3.53 of [KL06] for the reasoning behind such nomenclature.

The rest of this section is dedicated to estimating the terms Ãi(n,N, k) arising from the
Eichler-Selberg trace formula. We follow [Ser97, Section 4.2] for a proof of Proposition 3.2.7, for
which we need the following Lemma 3.2.6 and ultimately prove Theorem 3.2.9.

Lemma 3.2.6. Let t2 − 4n ̸= 0, and ν(N) denotes the number of distinct prime divisors of N.
Given an integer K, let M(t, n,K) denotes the number of solutions of the congruence x2−tx+n ≡
0 (mod K). Then,

M(t, n,K) ≤ 2ν(K)|t2 − 4n|1/2.

Proof. We refer the readers to [Hux81] for a proof. One can also check [KL06, Lemma 29.3].

Proposition 3.2.7. In the trace of Tn(N, k) of Theorem 3.2.4, the elliptic term,

|Ã2(n,N, k)| =

∣∣∣∣∣∣−1

2

∑
t∈Z,t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑
f

hw

(
t2 − 4n

f2

)
µ(t, f, n)

∣∣∣∣∣∣
≤2(2+

lnn
ln 4 )n(k+1)/2

(
2σ1(n)− λ(n) +

1

6

)
2ν(N).

Proof. Since | t
2−4n
f2 | ≤ 4n, it follows that hw

(
t2−4n
f2

)
is bounded by a constant which depends

only on n, but not on k and N.

Also, ρ2 − tρ+ n = 0 implies that |ρ| = |ρ̄| = n1/2, and |ρ− ρ̄| =
√
4n− t2 ≥ 1. Hence,∣∣∣∣∣ρk−1 − ρ̄k−1

ρ− ρ̄

∣∣∣∣∣ ≤ n(k−1)/2

√
4n− t2

≤ n(k−1)/2. (3.8)

For any divisor d of N,

• ψ(N)

ψ(N
d )

=
N

∏
p|N

(
1+ 1

p

)
N
d

∏
p|N

d

(
1+ 1

p

) ≤ d
∏
p|d

(
1 + 1

p

)
= ψ(d), and

• ψ(d) = d
∏
p|d

(
1 + 1

p

)
≤ N

∏
p|N

(
1 + 1

p

)
= ψ(N).

Now, f2|(4n− t2) implies f ≤
√
4n− t2 ≤

√
4n = 2n

1
2 , and hence

ψ(N)

ψ
(
N/(N, f)

) ≤ ψ((N, f)) ≤ ψ(f) = f
∏
p|f

(
1 +

1

p

)
≤ f2ν(f) ≤ f2

ln f
ln 2 ≤ 2(2+

lnn
ln 4 )

√
n. (3.9)
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The summation over t contains at most ⌊4
√
n⌋ + 1 many terms and the summation over f

contains at most ⌊2
√
n⌋+ 1 many terms.

Using Lemma 3.2.6, we obtain

|M(t, n,NNf )| ≤ 2ν(NNf )|t2 − 4n|1/2 ≤ 2ν(N)+1
√
n. (3.10)

Thus, using equations (3.9) and (3.10), we get

|µ(t, f, n)| = ψ(N)

ψ
(
N
Nf

) |M(t, n,NNf )| ≤ 2(3+
lnn
ln 4 )n2ν(N). (3.11)

Therefore, using Proposition 3.2.2 and equations (3.8) and (3.11), we obtain

|Ã2(n,N, k)|

=

∣∣∣∣∣∣−1

2

∑
t∈Z,t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑
f

hw

(
t2 − 4n

f2

)
µ(t, f, n)

∣∣∣∣∣∣
≤1

2
n(k−1)/2

∑
t∈Z,t2<4n

∑
f

hw

(
t2 − 4n

f2

)
2(3+

lnn
ln 4 )n2ν(N)

≤2(2+
lnn
ln 4 )n(k+1)/2

(
2σ1(n)− λ(n) +

1

6

)
2ν(N),

Proposition 3.2.8. In the trace of Tn(N, k) of Theorem 3.2.4, the hyperbolic-unipotent term,

|Ã3(n,N, k)| = |−
∑′

d|n
0<d≤

√
n

dk−1F (N)d| ≤ d(N)
√
Nn

k−1
2 d(n),

where F (N)d is a multiplicative function of N as mentioned in Theorem 3.2.4 and the prime
on the summation indicates that if there is a contribution from the term d =

√
n, it should be

multiplied by 1
2 .

Proof. Since ϕ
((

c, Nc

))
≤
(
c, Nc

)
≤ min

(
c, Nc

)
≤

√
N, we have

F (N)d =
∑
c|N

(c,Nc )|
n
d −d

ϕ

((
c,
N

c

))
≤
∑
c|N

√
N ≤ d(N)

√
N.

Therefore, ∑′

d|n
0<d≤

√
n

dk−1F (N)d ≤ d(N)
√
N

∑′

d|n
0<d≤

√
n

dk−1 ≤ d(N)
√
Nn

k−1
2 d(n).

Theorem 3.2.9. Let n, k and N be positive integers with k even. The trace of the Hecke
operator Tn(N, k) acting on Sk(N) is given by

TrTn(N, k) =

n
k
2−1 k−1

12 ψ(N) + O
(
2(

lnn
ln 4 )n(k+1)/2σ1(n)d(N)

√
Nd(n)

)
if n is a square,

O
(
2(

lnn
ln 4 )n(k+1)/2σ1(n)d(N)

√
Nd(n)

)
otherwise,

where the implied constant is the error term is absolute.
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Proof. We note that

Ã4(n,N, k) =

{∑
t|n,t>0 t if k = 2,

0 otherwise,
≤ nd(n). (3.12)

The proof now follows from Theorem 3.2.4, where we use Propositions 3.2.7 and 3.2.8 and
equation (3.12). Therefore, if n is a square,

TrTn(N, k)− n
k
2−1 k − 1

12
ψ(N)

=O

(
2(2+

lnn
ln 4 )n(k+1)/2

(
2σ1(n)− λ(n) +

1

6

)
2ν(N) + d(N)

√
Nn

k−1
2 d(n) + nd(n)

)
=O

(
2(

lnn
ln 4 )n(k+1)/2σ1(n)2

ν(N) + d(N)
√
Nn(k−1)/2d(n) + nd(n)

)
=O

(
2(

lnn
ln 4 )n(k+1)/2σ1(n)d(N)

√
Nd(n)

)
, using 2ν(N) ≤ d(N).

Remark 3.2.10. Since d(N) ≪ϵ N
ϵ, for any ϵ > 0, and N < ψ(N), we have

√
Nd(N) ≪ N

1
2+

1
3 ≪ N ≪ ψ(N),

as k +N → ∞. Also, n
k
2 ≪ n

k
2 (k − 1), as k +N → ∞. Therefore, the main term in Theorem

3.2.9, is indeed a dominant term as k +N → ∞.

Corollary 3.2.11. Let k and N be positive integers with k even. Then the dimension of the
space Sk(N), of cusp forms of weight k and level N is given by

dim Sk(N) =
k − 1

12
ψ(N) + O

(√
Nd(N)

)
,

where the implied constant is the error term is absolute.

Proof. Using Theorem 3.1.40, we obtain that the Hecke operator T1, is just the identity map
on Sk(N). Hence, we have Tr(T1) = dim Sk(N). The proof now follows from Theorem 3.2.9.

3.2.3 Trace formula on the space Snew
k (N)

We now compute a formula for the trace of Tn acting on Snewk (N), which we denote as Tnewn (N, k).

Proposition 3.2.12. (Murty, Sinha, 2010) Let n be a positive integer coprime to N . The
trace of the Hecke operator Tnewn (N, k) acting on Snewk (N) is given by

TrTnewn (N, k) = A1(n,N, k) +A2(n,N, k) +A3(n,N, k) +A4(n,N, k).

where Ai(n)’s are as follows:

A1(n,N, k) =

{
n(k/2−1) · k−1

12 NB1(N) if n is a square,
0 otherwise,

A2(n,N, k) = −1

2

∑
t∈Z,t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑
f

hw

(
t2 − 4n

f2

)
B2(N)f ,

A3(n,N, k) =
∑′

d|n
0<d≤

√
n

dk−1B3(N)d,
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A4(n,N, k) =

{
µ(N)

∑
t|n t if k = 2,

0 otherwise,

where

• B1(N) is a multiplicative function such that for a prime power pr,

B1(p
r) =


1− 1

p if r = 1,

1− 1
p −

1
p2 if r = 2,(

1− 1
p

)(
1− 1

p2

)
if r ≥ 3.

• ρ and ρ̄ are the zeros of the polynomial, x2 − tx+ n.

• The inner sum in A2(n,N, k) runs over all positive divisors f of t2 − 4n such that(
t2 − 4n

)
/f2 ∈ Z is congruent to 0 or 1 (mod 4).

• For a positive integer f, B2(N)f is a multiplicative function of N such that

B2(p)f =

p− 1 if p|f,
−1 +

(
t2−4n
p

)
otherwise,

where
(∗
∗
)

denotes the Legendre symbol. If N = pr for some r ≥ 2 and pb||f, then

B2(p
r)f =

r∑
i=r−2

σ−1
0 (pr−i)

ψ(pi)

ψ(pi−min {i,b})
M(t, n, pi+min {i,b}),

where
ψ(N) = N

∏
p|N

p prime

(
1 +

1

p

)
,

σ−1
0 (N) denotes the Dirichlet inverse of σ0(N) and M(t, n, pi+min{i,b}) denotes the number

of elements of (Z/piZ)∗ which lift to solutions of x2 − tx+ n ≡ 0 mod (pi+min{i,b}).

• The prime on the summation in A3(n,N, k) indicates that if there is a contribution from
the term d =

√
n, it should be multiplied by 1

2 .

• B3(N)d is a multiplicative function of N such that for a prime power pr,

B3(p
r)d =


−ϕ(p r−2

2 ) if r is even and p
r−2
2 ||(nd − d),

ϕ(p
r
2 )− ϕ(p

r−2
2 ) if r is even and p

r
2 |(nd − d),

0 otherwise.

• µ(n) is the Möbius function, defined by

µ(n) =


1 if n = 1 ,

(−1)ν(n) if n is squarefree,
0 otherwise,

where ν(n) denotes the number of distinct prime divisors of n.

Proof. The proof uses the Eichler-Selberg trace formula for Hecke operators on the space of
cusp forms, Sk(N), as mentioned in Theorem 3.2.4. Then, one uses Atkin-Lehner decomposition
as mentioned in (3.4) and Möbius inversion formula to obtain the trace formula on the space
Snewk (N) of primitive modular cusp forms. We refer the readers to [MS10] for a complete proof.
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3.2.4 Estimation of the terms of trace formula

Lemma 3.2.13. Let a and b be integers such that a2 − 4b ̸= 0. Let p be a prime and N = pα,
α ∈ N. Then, the number of solutions (mod N) of the congruence x2 − ax + b ≡ 0 (mod N) is

at most 2⌊
νp(|a2−4b|)

2 ⌋, where νp(|a2 − 4b|) is the largest power of the prime dividing |a2 − 4b|.

Proof. This lemma is due to M. N. Huxley ([Hux81]). We refer the readers to Corollary 2 of
[Ste91, Page 805] or, [Ser97, Page 84] for a proof.

Corollary 3.2.14. Let t, n ∈ Z, α ∈ N, and p be a prime. Then,

M(t, n, pα) ≤ 2⌊
νp(|t2−4n|)

2 ⌋,

where M(t, n,K) is as defined in Theorem 3.2.4.

We now mention the following simple result which we will use frequently.

Lemma 3.2.15. Let M and N be positive integers. Then,
∏
p|N p

νp(M) ≤M.

Proof. ∏
p|N

pνp(M) =
∏
p|N
p|M

pνp(M)
∏
p|N
p∤M

pνp(M) =
∏
p|N
p|M

pνp(M) ≤
∏
p|M

pνp(M) =M.

Lemma 3.2.16. Let t, n ∈ Z, f,N ∈ N. Then,

|B2(N)f | ≤ 4ν(N)f
√

|t2 − 4n|.

Proof. From the definition of B2(N)f , in Proposition 3.2.12, we get that if N = pr for some
r ≥ 2, and pb||f, then

B2(p
r)f =

r∑
i=r−2

σ−1
0 (pr−i)

ψ(pi)

ψ(pi−min {i,b})
M(t, n, pi+min {i,b})

=

r∑
i=r−2

σ−1
0 (pr−i)pmin {i,b}M(t, n, pi+min {i,b}),

where σ−1
0 (N), the inverse of σ0(N) with respect to Dirichlet convolution, is a multiplicative

function defined on prime powers as follows:

σ−1
0 (pr) =


1 if r = 0 or 2,

−2 if r = 1,

0 if r > 2.

We define g(i, b) := pmin {i,b}M(t, n, pi+min {i,b}), and note that g(i, b) ≥ 0.

Hence, if N = pr for some r ≥ 2, and pb||f, then

B2(p
r)f =

r∑
i=r−2

σ−1
0 (pr−i)pmin {i,b}M(t, n, pi+min {i,b})

=σ−1
0 (p2)g(r − 2, b) + σ−1

0 (p)g(r − 1, b) + σ−1
0 (1)g(r, b)

=g(r − 2, b)− 2g(r − 1, b) + g(r, b)

Hence,

|B2(p
r)f | ≤g(r − 2, b) + 2g(r − 1, b) + g(r, b) (3.13)
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=pmin {r−2,b}M(t, n, pr−2+min {r−2,b}) + 2pmin {r−1,b}M(t, n, pr−1+min {r−1,b})

+pmin {r,b}M(t, n, pr+min {r,b})

≤pb2⌊
νp(|t2−4n|)

2 ⌋ + 2pb2⌊
νp(|t2−4n|)

2 ⌋ + pb2⌊
νp(|t2−4n|)

2 ⌋

≤4pb2
νp(|t2−4n|)

2

≤4pνp(f)
√
pνp(|t

2−4n|).

Also, for a positive integer f,

B2(p)f ≤ p ≤ pνp(f). (3.14)

Combining equations (3.13) and (3.14), we obtain that for any r ∈ N,

|B2(p
r)f | ≤ 4pνp(f)

√
pνp(|t

2−4n|).

Therefore, using the fact, B2(N)f is a multiplicative function of N, we obtain that

B2(N)f = B2

∏
p|N

pνp(N)


f

=
∏
p|N

B2

(
pνp(N)

)
f
,

and hence,

|B2(N)f | ≤
∏
p|N

|B2

(
pνp(N)

)
f
| ≤

∏
p|N

4pνp(f)
√
pνp(|t

2−4n|) ≤ 4ν(N)f
√
|t2 − 4n|,

where we use Lemma 3.2.15 in the last inequality.

Proposition 3.2.17. In the trace of Tnewn (N, k) of Theorem 3.2.12, the elliptic term,

A2(n,N, k) = −1

2

∑
t∈Z,t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑
f

hw

(
t2 − 4n

f2

)
B2(N)f = O(4ν(N)nk/2σ1(n)),

where σ1(n) is the sum of positive divisors of n.

Proof. We observe that the inner sum in A2(n,N, k) runs over all positive divisors f of t2 − 4n
such that t2 − 4n/f2 ∈ Z is congruent to 0 or 1 (mod 4), i.e., f ≤

√
|4n− t2|. Hence, Lemma

3.2.16 gives,

|B2(N)f | ≤ 4ν(N)f
√

|t2 − 4n| ≤ 4ν(N)f
√
|t2 − 4n| ≤ 4ν(N)|t2 − 4n|.

Using equation (3.8) and Proposition 3.2.2, we obtain

|A2(n,N, k)| =

∣∣∣∣∣∣12
∑

t∈Z,t2<4n

ρk−1 − ρ̄k−1

ρ− ρ̄

∑
f

hw

(
t2 − 4n

f2

)
B2(N)f

∣∣∣∣∣∣
≤1

2

∑
t∈Z,t2<4n

n(k−1)/2

√
4n− t2

∑
f

hw

(
t2 − 4n

f2

)∣∣B2(N)f
∣∣

≤1

2

∑
t∈Z,t2<4n

n(k−1)/2

√
4n− t2

∑
f

hw

(
t2 − 4n

f2

)
4ν(N)|t2 − 4n|

≤n
(k−1)/2

2
4ν(N)

∑
t∈Z,t2<4n

√
4n− t2

∑
f

hw

(
t2 − 4n

f2

)
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≤n
(k−1)/2

2
4ν(N)

√
4n

∑
t∈Z,t2<4n

H(4n− t2)

≤nk/24ν(N)

(
2σ1(n)− λ(n) +

1

6

)
≪nk/24ν(N)σ1(n).

Proposition 3.2.18. In the trace of Tnewn (N, k) of Theorem 3.2.12,

A3(n,N, k) =
∑′

d|n
0<d≤

√
n

dk−1B3(N)d = O(nk/2d(n)),

where the prime on the summation indicates that if there is a contribution from the term d =
√
n,

it should be multiplied by 1
2 .

Proof. B3(N)d is a multiplicative function of N such that for a prime power pr,

B3(p
r)d =


−ϕ(p r−2

2 ) if r is even and p
r−2
2 ||(nd − d),

ϕ(p
r
2 )− ϕ(p

r−2
2 ) if r is even and p

r
2 |(nd − d),

0 otherwise.

Hence,

B3(p
r)d =


−p r−2

2

(
1− 1

p

)
if r is even and p

r−2
2 ||(nd − d),

p
r
2

(
1− 1

p

)2
if r is even and p

r
2 |(nd − d),

0 otherwise.

Thus,

|B3(p
r)d| ≤


p

r−2
2 = 2νp(

n
d −d) if r is even and p

r−2
2 ||(nd − d),

p
r
2 ≤ 2νp(

n
d −d) if r is even and p

r
2 |(nd − d),

0 otherwise.

So, for any r ∈ N,

|B3(p
r)d| ≤ 2νp(

n
d −d) ≤ pνp(

n
d −d).

Therefore, using the fact, B3(N)d is a multiplicative function of N, we obtain that

B3(N)d = B3

∏
p|N

pνp(N)


d

=
∏
p|N

B3

(
pνp(N)

)
d
,

and hence,
|B3(N)d| ≤

∏
p|N

|B3

(
pνp(N)

)
d
| ≤

∏
p|N

pνp(
n
d −d) ≤ n

d
− d, (3.15)

where we use Lemma 3.2.15 in the last inequality. Therefore, using equation (3.15), we obtain

|A3(n,N, k)| ≤
∑′

d|n
0<d≤

√
n

dk−1|B3(N)d|
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≤
∑
d|n

0<d≤
√
n

dk−1

(
n

d
− d

)

≤
∑
d|n

0<d≤
√
n

dk−2(n− d2)

≤n
∑
d|n

0<d≤
√
n

dk−2

≤nn(k−2)/2d(n)

≤nk/2d(n).

Proposition 3.2.19. In the trace of Tnewn (N, k) of Theorem 3.2.12,

A4(n,N, k) =

{
µ(N)

∑
t|n t if k = 2,

0 otherwise,
= O(σ1(n)).

Proof.

|A4(n,N, k)| =

{
|µ(N)||

∑
t|n t| if k = 2,

0 otherwise,
≤

{
σ1(n) if k = 2,

0 otherwise.

We also note that if N is not squarefree, then µ(N) = 0, and hence, A4(n,N, k) = 0.

Theorem 3.2.20. Let n be a positive integer coprime to N . The trace of the Hecke operator
Tnewn (N, k) acting on Snewk (N) is given by

TrTnewn (N, k) =

{
n(k/2−1) · k−1

12 NB1(N) + O(4ν(N)nk/2σ1(n)) if n is a square,
O(4ν(N)nk/2σ1(n)) otherwise,

where B1(N) is as mentioned in Theorem 3.2.12.

Proof. Applying the bounds for Ai(n,N, k) (i = 2, 3, 4) obtained in Propositions 3.2.17, 3.2.18
and 3.2.19 in Theorem 3.2.12, we obtain

TrTnewn (N, k) =A1(n,N, k) +A2(n,N, k) +A3(n,N, k) +A4(n,N, k)

=A1(n,N, k) + O(4ν(N)nk/2σ1(n) + O(nk/2d(n)) + O(σ1(n))

=A1(n,N, k) + O(4ν(N)nk/2σ1(n))

=

{
n(k/2−1) · k−1

12 NB1(N) + O(4ν(N)nk/2σ1(n)) if n is a square,
O(4ν(N)nk/2σ1(n)) otherwise.

(3.16)

Corollary 3.2.21. Let N and k be positive integers with k even and (n,N) = 1. The trace of
the normalised Hecke operator T̂newn (N, k) acting on Snewk (N) is given by

TrT̂newn (N, k) =

{
1√
n
· k−1

12 NB1(N) + O(4ν(N)
√
nσ1(n)) if n is a square,

O(4ν(N)
√
nσ1(n)) otherwise,

where T̂newn (N, k) :=
Tnew
n (N,k)

n(k−1)/2 .

Proof. The proof follows from equation (3.16), when we divide both sides of the equation by
n(k−1)/2.
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Corollary 3.2.22. Let N and k be positive integers with k even and (n,N) = 1. Let FN,k
be the set of Hecke newforms of weight k and level N (as mentioned in Definition 3.1.55) and
n

k−1
2 af (n) denote the n-th Fourier coefficient of f ∈ FN,k. Then

∑
f∈FN,k

af (n) =

{
1√
n
· k−1

12 NB1(N) + O(4ν(N)
√
nσ1(n)) if n is a square,

O(4ν(N)
√
nσ1(n)) otherwise.

Proof. We note that for each positive integer n such that (n,N) = 1, the sum
∑
f∈FN,k

af (n)

is precisely the trace of the normalised Hecke operator T̂newn (N, k) =
Tnew
n (N,k)

n(k−1)/2 = Tn(N,k)
n(k−1)/2 acting

on Snewk (N), by equation (3.7), i.e.,
∑
f∈FN,k

af (n) = TrT̂newn (N, k). The proof now follows from
Corollary 3.2.21

Lemma 3.2.23. Let N and k be positive integers with k even. Then,

A0(k − 1)

12
ϕ(N) + O(

√
N) < |FN,k| <

(k − 1)

12
ϕ(N) + O(2ν(N)), where

A0 =
∏

p prime

(
1− 1

p2 − p

)
≈ 0.373956.

Moreover, if N is not a perfect square, the lower bound can be improved to

A0(k − 1)

12
ϕ(N) + O(2ν(N)) ≪ |FN,k|.

Proof. We refer the readers to [Mar05, Theorem 6(C)] for a proof.

Lemma 3.2.24. Let N and k be positive integers with k even. Then, |FN,k| ≫ Nk
2ν(N) as

N, k → ∞.

Proof. Using Lemma 3.2.23, we have |FN,k| > A0(k−1)
12 ϕ(N) + O(

√
N), for all even integers

k ≥ 2 and all integers N ≥ 1, where A0 is a positive constant.

We also know, for all N ∈ N, ϕ(N) ≥ N
2ν(N) .

Thus, for N ∈ N, |FN,k| > A0(k−1)
12 ϕ(N) + O(

√
N) ≥ A0(k−1)

12
N

2ν(N) +O(
√
N).

Hence, |FN,k| 2
ν(N)

Nk > (A0(k−1)
12

N
2ν(N) +O(

√
N)) 2

ν(N)

Nk = A0

12

(
1− 1

k

)
+O

(
2ν(N)

k
√
N

)
.

Therefore, 1
|FN,k|

Nk
2ν(N) <

1
A0
12 (1− 1

k )+O( 2ν(N)

k
√

N
)
.

We know, 2ν(N) ≤ d(N), and d(N) ≪ N ϵ, for any ϵ > 0, where d(N) denotes the divisor
function and ν(N) denotes the number of distinct prime divisors of N .

Therefore, 2ν(N) ≪ N1/4, and this implies O( 2
ν(N)

k
√
N
) = O( 1

kN1/4 ) → 0 as N, k → ∞.

Therefore, lim
N,k→∞

1

|FN,k|
Nk

2ν(N)
≤ 12

A0
. This completes the proof.

Theorem 3.2.25. Let n, N and k be positive integers with k even and (n,N) = 1. Then,

(a)

∑
f∈FN,k

af (n) =


|FN,k|√

n
+O(4ν(N)

√
nσ1(n)) if n is a square,

O(4ν(N)
√
nσ1(n)) otherwise.
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(b)

1

|FN,k|
∑

f∈FN,k

af (n) =


1√
n
+O

(
8ν(N)√nσ1(n)

kN

)
if n is a square,

O

(
8ν(N)√nσ1(n)

kN

)
otherwise.

Here, σ1(n) refers to the sum of positive divisors of n and the implied constants in the error
terms are absolute.

Proof. We note that T̂new1 (N, k) is the identity map on Snewk (N) by equation (3.7). Hence, we
have Tr(T̂new1 (N, k)) =

∑
f∈FN,k

af (1) =
∑
f∈FN,k

1 = |FN,k| = dim Snewk (N), where FN,k is as
mentioned in Definition 3.1.55. In particular, if we put n = 1 in Corollary 3.2.21, we get

|FN,k| = TrT̂new1 (N, k) =
k − 1

12
NB1(N) + O(4ν(N)).

Hence,

k − 1

12
NB1(N) = |FN,k|+O(4ν(N)).

If n is a square, Corollary 3.2.22 gives,∑
f∈FN,k

af (n) =
1√
n
· k − 1

12
NB1(N) + O(4ν(N)

√
nσ1(n))

=
1√
n
(|FN,k|+O(4ν(N))) + O(4ν(N)

√
nσ1(n))

=
|FN,k|√

n
+O(4ν(N)

√
nσ1(n)).

This completes the proof of (a).

Dividing both sides of the above equation by |FN,k|, we obtain

1

|FN,k|
∑

f∈FN,k

af (n) =
1√
n
+O

(
4ν(N)

√
nσ1(n)

|FN,k|

)
.

Using Lemma 3.2.24, we obtain 1
|FN,k| ≪

2ν(N)

kN as N, k → ∞, and hence,

1

|FN,k|
∑

f∈FN,k

af (n) =
1√
n
+O

(
8ν(N)

√
nσ1(n)

kN

)
.

Corollary 3.2.26. Let n, N and k be positive integers with k even and (n,N) = 1. Then, for
any c′ > 3

2 ,

(a)

∑
f∈FN,k

af (n) =


|FN,k|√

n
+O(4ν(N)nc

′
) if n is a square,

O(4ν(N)nc
′
) otherwise.

(b)

1

|FN,k|
∑

f∈FN,k

af (n) =


1√
n
+O

(
8ν(N)nc′

kN

)
if n is a square,

O

(
8ν(N)nc′

kN

)
otherwise.
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Here the implied constants in the error terms are absolute.

Proof. Let n be a square. Since σ1(n) =
∑
d|n d ≤ nd(n) ≤ n1+ϵ, for any ϵ > 0, we have

1

|FN,k|
∑

f∈FN,k

af (n) =
1√
n
+O

(
8ν(N)

√
nσ1(n)

kN

)

=
1√
n
+O

(
8ν(N)n

3
2+ϵ

kN

)
, for any ϵ > 0.

Therefore, if n is a square,

1

|FN,k|
∑

f∈FN,k

af (n) =
1√
n
+O

(
8ν(N)nc

′

kN

)
, for any c′ >

3

2
.

Corollary 3.2.27. Let N and k be positive integers with k even. Let {p1, p2, · · · , pt} be a finite
set of distinct primes such that (pi, N) = 1, and mi ∈ N ∪ {0}, for each i = 1, 2, · · · , t. Then,
for any c′ > 3

2 ,

1

|FN,k|
∑

f∈FN,k

af (p
2m1
1 p2m2

2 . . . p2mt
t )

=
1

pm1
1 pm2

2 . . . pmt
t

+O

(
8ν(N)(p2m1

1 p2m2
2 . . . p2mt

t )c
′

kN

)

Here the implied constant in the error term is absolute.

Proof. The proof follows from Corollary 3.2.26.

Corollary 3.2.28. Let k be a positive even integer and N be a positive integer. For a prime p
such that (p,N) = 1 and l ≥ 1, we have

1

|FN,k|
∑

f∈FN,k

af (p
2l) =

1

pl
+O

(
lp3l4ν(N)

|FN,k|

)
.

Proof. The proof follows from Theorem 3.2.25 and the fact σ1(n) ≤ nd(n).

Remark 3.2.29. Let N, k and n be positive integers with k even. Then, for any c′ > 3
2 and

β ∈ (0, 1),

1

|FN,k|
∑

f∈FN,k

af (n) =


1√
n
+O

(
nc′

kNβ

)
if n is a square,

O

(
nc′

kNβ

)
otherwise.

Proof. We note that 8ν(N) ≤ d(N)3 ≤ N1−β , for any β ∈ (0, 1).

Therefore, if n is a square, for any c′ > 3
2 and β ∈ (0, 1),

1

|FN,k|
∑

f∈FN,k

af (n) =
1√
n
+O

(
nc

′
N1−β

kN

)
=

1√
n
+O

(
nc

′

kNβ

)
.
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3.2.5 Key estimates from the trace formula

The following lemmas form the key to a major part of the calculations in Section 6.2.

Lemma 3.2.30. Let k = k(x) and N = N(x) be positive integers with k even. If
(m1,m2, . . . ,mt) = (0, 0, . . . , 0), then

1

|FN,k|
∑

p1,p2,...,pt≤x
all distinct primes

∑
f∈FN,k

af (p
2m1
1 p2m2

2 . . . p2mt
t ) =

t−1∏
i=0

(πN (x)− i).

On the other hand, for an integer a ≥ 0, let

(a)∑
(m1,m2,m3,...,mt)

denote a sum over a subset of the set of t-tuples

{(m1,m2,m3, . . . ,mt) ∈ Zt : 1 ≤ mi ≤Mi if 1 ≤ i ≤ t− a and mi = 0 if t− a+ 1 ≤ i ≤ t}.

Then,

1

|FN,k|
∑

p1,p2,...,pt≤x
all distinct primes

(a)∑
(m1,m2,m3,...,mt)

∑
f∈FN,k

af (p
2m1
1 p2m2

2 . . . p2mt
t )

= O
(
πN (x)a(log log x)t−a

)
+O

(
πN (x)tx(2M1+2M2+···+2Mt)c

′
8ν(N)

kN

)
.

Here, c′ is a fixed number greater than 3
2 and the implied constant in the error terms is absolute.

Proof. We denote t′ = t− a.

Using Corollary 3.2.27, we obtain

1

|FN,k|
∑

p1,p2,...,pt≤x
all distinct primes

∑
f∈FN,k

af (p
2m1
1 p2m2

2 . . . p2mt
t )

=
1

|FN,k|
∑

p1,p2,...,pt≤x
all distinct primes

∑
f∈FN,k

af (p
2m1
1 p2m2

2 . . . p
2mt′
t′ )

=
∑

pt′+1,...,pt′+a≤x all distinct
pt′+i /∈{p1,...,pt′ ,...,pt′+i−1}

1
∑

p1,...,pt′≤x
all distinct primes

 1

|FN,k|
∑

f∈FN,k

af (p
2m1
1 p2m2

2 . . . p
2mt′
t′ )


= (πN (x)− t′)(πN (x)− t′ − 1)(πN (x)− t′ − 2) . . . (πN (x)− t′ − (a− 1))

×
∑

p1,p2,...,pt′≤x
all distinct primes

 1

pm1
1 pm2

2 . . . p
mt′
t′

+O

8ν(N)p2m1c
′

1 p2m2c
′

2 . . . p
2mt′c

′

t′

kN


 .

Therefore,

1

|FN,k|
∑

p1,p2,...,pt≤x
all distinct primes

(a)∑
(m1,m2,m3,...,mt)

∑
f∈FN,k

af (p
2m1
1 p2m2

2 . . . p2mt
t )
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≪ πN (x)a

∑
p≤x

∑
m≥1

1

pm

t′

+ πN (x)a
∑

p1,p2,...,pt′≤x
all distinct primes

(a)∑
(m1,m2,m3,...,mt)

8ν(N)p2m1c
′

1 p2m2c
′

2 . . . p
2mt′c

′

t′

kN

≪ πN (x)a

∑
p≤x

∑
m≥1

1

pm

t′

+ πN (x)a

(
8ν(N)

kN

) ∑
p1,p2,...,pt′≤x

all distinct primes

t′∏
i=1

 Mi∑
mi=1

p2mic
′

i



≪ πN (x)a

∑
p≤x

∑
m≥1

1

pm

t′

+ πN (x)a

(
8ν(N)

kN

) ∑
p1,p2,...,pt′≤x

all distinct primes

 t′∏
i=1

p2Mic
′

i



≪ πN (x)a

∑
p≤x

1

p

t′

+ πN (x)a

(
8ν(N)x(2M1+2M2+···+2Mt′ )c

′

kN

) ∑
p1,p2,...,pt′≤x

all distinct primes

1

≪ πN (x)a (log log x)
t′
+ πN (x)a+t

′

(
8ν(N)x(2M1+2M2+···+2Mt′ )c

′

kN

)

≪ πN (x)a(log log x)t−a +
πN (x)t8ν(N)x(2M1+2M2+···+2Mt)c

′

kN
.

3.3 Properties of Hecke eigenvalues and estimates

In this section, we collect properties of Hecke eigenvalues and estimates for their averages. These
will be used in the proof of Theorem 4.3.1. The following lemmas will be useful in determining
the asymptotic conditions under which our main theorem holds.

Lemma 3.3.1. Let f, g be functions with lim
x→∞

g(x) = ∞ and there exist numbers x0 ∈ R,

M ∈ (0, 1) such that |f(x)| ≤Mg(x) for all x > x0. Then ef(x) ≪ eg(x).

Proof. lim
x→∞

g(x) = ∞ implies that there exists x′0 such that g(x) > 0 for all x > x′0.

Since t 7→ et is an increasing function, the given condition implies, for all x > x′′0 =
max{x0, x′0},

|f(x)| ≤Mg(x)

=⇒ −Mg(x) ≤ f(x) ≤Mg(x)

=⇒ − (M + 1)g(x) ≤ f(x)− g(x) ≤ (M − 1)g(x)

=⇒ e−(M+1)g(x) ≤ ef(x)−g(x) ≤ e(M−1)g(x)

=⇒ lim
x→∞

ef(x)−g(x) = 0,

by sandwich theorem.

Therefore, corresponding to some K > 0, there exists G such that for all x > G, ef(x)−g(x) ≤
K, i.e., ef(x) ≤ Keg(x).

Thus, ef(x) = O
(
eg(x)

)
.
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Lemma 3.3.2. Let f, g be functions such that g(x) > 0 in its domain with lim
x→∞

f(x) = ∞ and

f(x) = o(g(x)). Then ef(x) = o
(
eg(x)

)
, as x→ ∞.

Proof. Let G > 0 be sufficiently large.

Since lim
x→∞

(
f(x)

g(x)
− 1

)
= −1 = β(say), corresponding to ϵ = 1

2 , there exists M ′ such that

for all x > M ′, f(x)g(x) − 1 < β + ϵ = − 1
2 , i.e., f(x)− g(x) < − g(x)

2 .

Now, g(x) > 0, lim
x→∞

f(x) = ∞ and f(x) = o(g(x)) implies lim
x→∞

g(x) = ∞.

Since lim
x→∞

g(x) = ∞, there exists M ′′ such that for all x > M ′′, g(x) > 2G, i.e., − g(x)
2 <

−G.

Thus, for all x > M = max{M ′,M ′′}, f(x)− g(x) < − g(x)
2 < −G.

Therefore, lim
x→∞

(f(x)− g(x)) = −∞, meaning lim
x→∞

ef(x)−g(x) = 0, i.e., lim
x→∞

ef(x)

eg(x)
= 0.

Corollary 3.3.3. Let f, g be functions such that g(x) > 1 in its domain with lim
x→∞

f(x) = ∞
and log f(x) = o(log g(x)). Then f(x) = o(g(x)), as x→ ∞.

Proof. We note that g(x) > 1 implies log g(x) > 0 and lim
x→∞

f(x) = ∞ implies lim
x→∞

log f(x) =
∞.

The proof now follows from Lemma 3.3.2.

Lemma 3.3.4. Let l ≥ 0, N, n ≥ 1, k be a positive even integer and p be a prime coprime to N .
Let f be a newform in FN,k and Lp(l, n) := af (p

2l)(af (p
2n)− af (p

2n−2)). Then,

1) Lp(l, n; l > n) = af (p
2l−2n) + af (p

2l+2n),

2) Lp(l, n; l < n) = af (p
2l+2n)− af (p

2n−2l−2),

3) Lp(l, n; l = n) = 1 + af (p
4l), where the summations Lp(l, n; l > n), Lp(l, n; l < n), and

Lp(l, n : l = n) denote different cases l > n, l < n and l = n respectively.

Proof.

1) Since l > n implies that l ≥ n−1, we have min {2l, 2n−2} = 2n−2 and min {2l, 2n} = 2n.

Therefore, using Lemma 3.3.6, we obtain

Lp(l, n; l > n)

=af (p
2l)(af (p

2n)− af (p
2n−2))

=af (p
2l)af (p

2n)− af (p
2l)af (p

2n−2)

=

2n∑
t=0

af (p
2l+2n−2t)−

2n−2∑
t=0

af (p
2l+2n−2−2t)

=

l+n∑
t=l−n

af (p
2t)−

l+n−1∑
t=l−n+1

af (p
2t)

=af (p
2l−2n) +

l+n−1∑
t=l−n+1

af (p
2t) + af (p

2l+2n)−
l+n−1∑
t=l−n+1

af (p
2t)

=af (p
2l−2n) + af (p

2l+2n).

2) Since l < n implies that l ≤ n− 1, we have min {2l, 2n− 2} = 2l and min {2l, 2n} = 2l.
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Therefore, using Lemma 3.3.6, we obtain

Lp(l, n; l < n)

=af (p
2l)(af (p

2n)− af (p
2n−2))

=af (p
2l)af (p

2n)− af (p
2l)af (p

2n−2)

=

2l∑
t=0

af (p
2l+2n−2t)−

2l∑
t=0

af (p
2l+2n−2−2t)

=

l+n∑
t=n−l

af (p
2t)−

l+n−1∑
t=n−l−1

af (p
2t)

=

l+n−1∑
t=n−l

af (p
2t) + af (p

2l+2n)− af (p
2n−2l−2)−

l+n−1∑
t=n−l

af (p
2t)

=af (p
2l+2n)− af (p

2n−2l−2).

3) Since l = n, using Lemma 3.3.6, we obtain

Lp(l, n; l = n)

=af (p
2l)(af (p

2n)− af (p
2n−2))

=af (p
2l)(af (p

2l)− af (p
2l−2))

=af (p
2l)af (p

2l)− af (p
2l)af (p

2l−2)

=

2l∑
t=0

af (p
2l+2l−2t)−

2l−2∑
t=0

af (p
2l+2l−2−2t)

=

2l∑
t=0

af (p
2t)−

2l−1∑
t=1

af (p
2t)

=1 +

2l−1∑
t=1

af (p
2t) + af (p

4l)−
2l−1∑
t=1

af (p
2t)

=1 + af (p
4l).

Corollary 3.3.5. Let f be a newform in FN,k. For a prime p coprime to the level N and
integers l ≥ 0 and n ≥ 1,

af (p
2l)
(
af (p

2n)− af (p
2n−2)

)
= af (p

2l+2n) +

{
af (p

2l−2n) if l ≥ n,

−af (p2n−2l−2) if l < n.

The next result regarding the multiplicative relationship between Hecke eigenvalues is clas-
sical.

Lemma 3.3.6. For primes p1, p2 coprime to the level N and non-negative integers i, j,

af (p
i
1)af (p

j
2) =


af (p

i
1p
j
2), if p1 ̸= p2,

min (i,j)∑
l=0

af (p
i+j−2l
1 ), if p1 = p2.

Moreover, if p1 = p2, then(
af (p

2n1
1 )− af (p

2n1−2
1 )

)(
af (p

2n2
2 )− af (p

2n2−2
2 )

)
=

{
af (p

2n1+2n2
1 )− af (p

2n1+2n2−2
1 ) + af (p

|2n1−2n2|
1 )− af (p

|2n1−2n2|−2
1 ), if n1 ̸= n2,

af (p
4n1
1 )− af (p

4n1−2
1 ) + 2, if n1 = n2.
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Proof. The first part of the proof follows from Corollary 3.1.61 and the second part follows
from Lemma 3.3.4.

Lemma 3.3.7. Let us consider positive integers k = k(x) and N = N(x) such that

log
(
kN/8ν(N)

)
x

→ ∞ as x→ ∞.

Then, for any absolute constant C > 0,

xCπN (x) = o

(
kN

8ν(N)

)
as x→ ∞

Proof. Using Corollary 3.3.3, we observe that xCπN (x)c′ = o
(
kN/8ν(N)

)
holds if

CπN (x) log x = o

(
log
(
kN/8ν(N)

))
, i.e., if x = o

(
log
(
kN/8ν(N)

))
, as x→ ∞.



Chapter 4

History of the thesis problem and
new results

Let k and N be positive integers with k even. Let Sk(N) denote the space of modular cusp forms
of weight k with respect to Γ0(N). For n ≥ 1, let Tn denote the n-th Hecke operator acting on
Sk(N). We denote the set of Hecke newforms in Sk(N) by FN,k. Any f(z) ∈ FN,k has a Fourier
expansion

f(z) =

∞∑
n=1

n
k−1
2 af (n)q

n, q = e2πiz,

where af (1) = 1 and
Tn(f(z))

n
k−1
2

= af (n)f(z), n ≥ 1.

We denote s(N, k) := |FN,k| and note that s(N, k) is the dimension of the subspace of primitive
cusp forms in Sk(N).

Let p be a prime number with (p,N) = 1. By a conjecture of Ramanujan, which was
later proved by Deligne, the eigenvalues af (p) lie in the interval [−2, 2]. We denote af (p) =
2 cosπ θf (p), with θf (p) ∈ [0, 1].

The Sato-Tate conjecture, now a theorem [BLGHT11] due to Barnet-Lamb, David Geraghty,
Harris, and Taylor in 2011, is the assertion that if f is a non-CM newform in FN,k, then the
Sato-Tate sequence

{θf (p) : p prime, (p,N) = 1} ⊆ [0, 1]

is equidistributed in the interval [0, 1] with respect to the measure µ(t)dt, where µ(t) = 2 sin2(πt).
That is, for an interval I = [a, b] such that 0 ≤ a < b ≤ 1,

lim
x→∞

1

πN (x)
#{p ≤ x : (p,N) = 1, θf (p) ∈ [a, b]} = µ(I), (4.1)

where πN (x) denotes the number of primes p ≤ x such that (p,N) = 1, and µ(I) denotes the
measure

∫
I
µ(t)dt of the interval I.

We “straighten out" the Sato-Tate sequence into a uniformly distributed sequence by defin-
ing,

H(θf (p)) :=
∫ θf (p)

0

µ(t)dt. (4.2)

As an immediate consequence of (4.1), we see that the sequence {H(θf (p)) : (p,N) = 1} is
uniformly distributed in the interval [0, 1].
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4.1 Katz-Sarnak Conjecture

A study of the moments of the pair correlation function for the sequence {H(θf (p)) : (p,N) = 1}
as one varies f over appropriate families FN,k was initiated in [BS19]. This study is primarily
motivated by a question of Katz and Sarnak that compares the spacings between straightened
Hecke angles to spacings between points arising from independent and uniformly distributed
random variables in the unit interval. As we saw in Chapter 2, one way to address these
questions is via the pair correlation function, which looks at the spacings between unordered
elements of a uniformly distributed sequence. In this context, the question of Katz and Sarnak
can be stated as follows:

Question 4.1.1 (Katz, Sarnak [KS99]). For any s > 0, the pair correlation function of the
sequence {H(θf (p)) : p prime, (p,N) = 1} is defined as:

R(x, s)(f) :=
1

πN (x)
#

{
(p, q) : p ̸= q ≤ x,

(p,N) = (q,N) = 1,

H(θf (p))−H(θf (q)) ∈
[

−s
πN (x) ,

s
πN (x)

]
+ Z

}
.

For any s > 0, does the limit lim
x→∞

R(x, s)(f) exist and is it equal to 2s?

If the answer is yes, we say that the sequence {H(θf (p)) : p prime, (p,N) = 1} has Pois-
sonnian pair correlation.

A variation of the question above was addressed in [BS19] by restricting θf (p) to short
intervals I, such that |I| → 0 as x→ ∞.

Question 4.1.2. Let 0 < ψ < 1 and Iδ denote intervals of the form

[ψ − δ, ψ + δ] , δ = δ(x) → 0 as x→ ∞.

Suppose
#
{
p ≤ x : (p,N) = 1, θf (p) ∈ Iδ

}
∼ πN (x)µ(Iδ) as x→ ∞. (4.3)

We define

R̃δ(x, s)(f) :=
1

πN (x)µ(Iδ)
#

{
(p, q) : p ̸= q ≤ x,

(p,N) = (q,N) = 1, θf (p), θf (q)) ∈ Iδ,

H(θf (p))−H(θf (q)) ∈
[

−s
πN (x) ,

s
πN (x)

] }
.

Does the limit lim
x→∞

R̃δ(x, s)(f) exist and is it equal to 2s?

To answer the above question meaningfully, we need conditions on δ(x) for which (4.3) holds.
The existence and distribution of Hecke angles in shrinking intervals I with |I| → 0 as x→ ∞ is
inextricably linked to effective error terms in the Sato-Tate equidistribution theorem (we explain
this in detail later). These error terms have been addressed in [Mur85], [RT17], [Tho21] and
[HIJS22]. In this context, an unconditional theorem of Thorner leads to the following result:

Theorem 4.1.3 (Thorner, [Tho21]). Let F (x) be a monotonically increasing function with
lim
x→∞

F (x) = ∞. Then, for any interval I ⊂ [0, 1] of length,

µ(I) ≥ log(kN log x)F (x)√
log x

,

we have
lim
x→∞

1

πN (x)
#{p ≤ x : (p,N) = 1, θf (p) ∈ I} = µ(I).

In particular, if δ(x) → 0 is chosen such that

µ(Iδ) ≥
log(kN log x)F (x)√

log x
,

then
#{p ≤ x : (p,N) = 1, θf (p) ∈ Iδ} ∼ πN (x)µ(Iδ) as x→ ∞.
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One simplifies Question 4.1.2 as follows: for 0 < ψ < 1, henceforth, we denote A :=
2 sin2 πψ. Let us consider intervals

IL(ψ) :=
[
ψ − 1

AL
,ψ +

1

AL

]
,

such that L = L(x) → ∞ as x→ ∞, and (4.3) holds for δ = 1/AL. Then, as x→ ∞,

Lf (ψ) := #
{
p ≤ x : (p,N) = 1, θf (p) ∈ IL(ψ)

}
∼ πN (x)µ(IL(ψ)).

The advantage of localizing our intervals around ψ is that the Sato-Tate density 2 sin2 πt ∼ A is
essentially constant in short intervals and the straightening of the Hecke angles is more or less
equivalent to rescaling them. That is,

Lf (ψ) ∼ πN (x)

∫ ψ+ 1
AL

ψ− 1
AL

2 sin2 πt dt ∼ A
2

AL
πN (x) =

2πN (x)

L

and if θf (p), θf (p) ∈ IL(ψ), then

H(θf (p))−H(θf (q)) =
∫ θf (p)

θf (q)
2 sin2 πt dt ∼ A(θf (p)− θf (q)) as x→ ∞.

Thus,

R̃ 1
AL

(x, s)(f) =
1

Lf (ψ)
#

{
(p, q) : p ̸= q ≤ x,

(p,N) = (q,N) = 1, θf (p)), θf (q) ∈ IL(ψ),
H(θf (p))−H(θf (q)) ∈

[
−s

πN (x) ,
s

πN (x)

] }

∼ 1

Lf (ψ)
#

{
(p, q) : p ̸= q ≤ x,

(p,N) = (q,N) = 1, θf (p), θf (q) ∈ IL(ψ),
θf (p)− θf (q) ∈ Ix

}
,

where

Ix =

[
−s

AπN (x)
,

s

AπN (x)

]
.

The pair correlation function of a sequence is obtained by evaluating some exponential sums
related to the sequence. In the case of Hecke angles, we have to remove the imaginary parts of
these sums in order to apply existing techniques. Therefore, we modify the above question and
consider the families

Af,x := {± θf (p) mod 1 : p ≤ x, (p,N) = 1}.

As explained in Section 4.4, the pair correlation function of the families Af,x turns out to
be asymptotic to

R1/L(x, s)(f) :=
L

8πN (x)

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

(∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (p)−ψ + n))

×
∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (q)−ψ + n))

∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n))

)

While the function R1/L(x, s)(f) is difficult to study (we explain this in Sections 4.5.1 and
4.5.2), one way to address its convergence can be through the method of moments. That is, one
may study the moments

1

|FN,k|
∑

f∈FN,k

(
R1/L(x, s)(f)

)r
, r ∈ N.
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4.2 Motivation for consideration of the thesis problem

The perspective of averaging quantities related to f over all Hecke newforms (or eigenforms)
goes back to the work of [Sar87], [CDF97] and [Ser97]. In order to approach difficult arithmetic
questions pertaining to a Hecke newform f (such as the distribution or spacing properties of
Hecke angles θf (p)), one can ask what happens to those questions “on average" over families of
eigenforms. Summing over all Hecke newforms (or eigenforms as the case may be) allows us to
bring in techniques such as the Eichler-Selberg trace formula for the trace of Hecke operators
acting on subspaces of cusp forms of weight k with respect to Γ0(N). For example, Conrey,
Duke and Farmer [CDF97] used the trace formula to prove that the Sato-Tate conjecture holds
on average over large families. That is, if k(x) > ex, they showed that

lim
x→∞

1

|F1,k|
∑

f∈F1,k

(
1

πN (x)
#{p ≤ x : θf (p) ∈ [a, b]}

)
=

∫
I

2 sin2 πt dt,

In [Nag06], it is shown that the above asymptotic holds when log k
log x → ∞ as x→ ∞.

In [BS19], this approach of averaging is adopted in the investigation of the pair correlation
function for the Hecke angles. Since we also let the levels N vary, the growth conditions take
into account the contribution coming from them. Moreover, it is feasible to consider a smooth
variant of R1/L(x, s)(f). This leads to the following theorem:

Theorem 4.2.1 (Balasubramanyam, Sinha, [BS19]). Let us consider families FN,k with levels
N = N(x) and even weights k = k(x). Let g, ρ be real-valued, even functions ∈ C∞(R) in the
Schwartz class with Fourier transforms supported in the interval [−1, 1]. Let 0 < ψ < 1, ψ ̸= 1/2.
Define A := 2 sin2 πψ. Define

ρL(θ) :=
∑
n∈Z

ρ(L(θ + n)) for L = L(x) ≥ 1, (4.4)

Gx(θ) :=
∑
n∈Z

g
(
πN (x)(θ + n)

)
,

and the smooth localized pair correlation function,

R2(ρ, g; f)(x) :=
L

8πN (x)

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

ρL(± θf (p)−ψ)ρL(± θf (q)−ψ)Gx(± θf (p)± θf (q)).

(4.5)

[Note: A detailed discussion of the above definitions is presented in Section 4.4.]

(a) Let L = L(x) → ∞ as x→ ∞, and L≪ πN (x). Then

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)

=
T (g, ρ)

4L
+O

(
1

L

)
+O

(
L(log log x)2

πN (x)

)
+O

(
8ν(N)x(8πN (x)+8)c′

kN

)
,

as x→ ∞, where c′ is an absolute positive constant and

T (g, ρ) =
∑
l≥1

(U(l)− U(l − 1))2ĝ

(
l

πN (x)

)
,

with
U(l) = ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ).
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(b) If we choose L such that

L = o

(
πN (x)

(log log x)2

)
,

and consider families FN,k with levels N = N(x) and even weights k = k(x) such that

log
(
kN/8ν(N)

)
x

→ ∞ as x→ ∞,

then,
1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x) ∼
T (g, ρ)

4L
as x→ ∞.

Furthermore,
T (g, ρ)

4L
∼ A2ĝ(0)ρ ∗ ρ(0) as x→ ∞.

We again revisit this theorem with a proof in Theorem 5.5.3 of Chapter 5. We make a few
remarks here.

1. The above theorem tells us that the “expected" value of the smooth localized pair corre-
lation function R2(ρ, g; f)(x) upon averaging over all newforms f ∈ FN,k is asymptotic to
A2ĝ(0)ρ ∗ ρ(0). However, we require the size of the families FN,k to grow rapidly for this
asymptotic to hold. This limitation comes from the estimation of a term in the Eichler-
Selberg trace formula. The elliptic term in the trace formula leads to estimates of the
form

O

(
xDπN (x)8ν(N)

kN

)
for a positive constant D in the pair correlation sum. The use of alternative trace formulas
such as the Petersson trace formula leads to lower values of D than those obtained by the
Eichler-Selberg trace formula, but causes the same problem if we want the above error
term to go to zero.

2. In [BS19], the “expected" value of R2(ρ, g; f)(x) upon averaging over f ∈ FN,k was obtained
for positive integers N and k such that N is prime and k is even. The techniques can be
readily generalized to all levels N . Accordingly, a modified version of the result of [BS19]
has been stated above.

The above theorem about the expected value

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)

naturally leads us to questions about higher moments and the variance of R2(ρ, g; f)(x). What
can we say about

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2
and

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−A2ĝ(0)ρ ∗ ρ(0)

)2
?

4.3 New Results

The primary objective of this thesis is to address these questions. In this direction, we prove the
following theorem.
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Theorem 4.3.1. Let us consider families FN,k with levels N = N(x) and even weights k = k(x).
Let g, ρ be real-valued, even functions ∈ C∞(R) in the Schwartz class with Fourier transforms
supported in [−1, 1] and L = L(x) → ∞ as x → ∞. Let 0 < ψ < 1, ψ ̸= 1/2, and let
A = 2 sin2 πψ.

(a) With ρL, Gx, R2(ρ, g; f)(x) and T (g, ρ) as defined in the previous theorem, we have

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2 −(T (g, ρ)
4L

)2

≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

πN (x)L

+
(log log x)3

πN (x)L2
+

1

L2

8ν(N)x26πN (x)c′

kN
,

where c′ > 3
2 is an absolute constant.

(b) Also,

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−

T (g, ρ)

4L

)2

≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L(log log x)2

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3

+
(log log x)2

πN (x)L
+

(log log x)3

πN (x)L2
+

1

L2

8ν(N)x26πN (x)c′

kN
,

where c′ > 3
2 is an absolute constant.

(c) In particular, if we choose L(x) = o
(

πN (x)
(log log x)2

)
, and consider families FN,k with levels

N = N(x) and even weights k = k(x) such that

log
(
kN/8ν(N)

)
x

→ ∞ as x→ ∞,

then

lim
x→∞

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2
= (A2ĝ(0)(0)ρ ∗ ρ(0))2

and

lim
x→∞

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−A2ĝ(0)ρ ∗ ρ(0)

)2
= 0.

Remark 4.3.2. The above theorem is proved in Theorems 6.5.15, 6.5.16 and 6.5.17.

Remark 4.3.3. The above theorem tells us that E[(R2(ρ, g; f)(x))
2] ∼ E[(R2(ρ, g; f)(x))]

2 for
very rapidly growing families FN,k. In turn, these are asymptotic to what one would expect
from a Poissonnian model. This indicates an affirmative answer to Question 4.1.2 for a random
Hecke newform in Sk(N) with appropriate parameters as specified in Theorem 4.3.1(c).

Remark 4.3.4. Another version of the above theorem with fewer lower order terms appears in
[MS23]. In the preprint, we address (R2(ρ, g; f)(x))

r for any natural number r. However, since
the treatment in this thesis is restricted to the case r = 2, the calculations in this thesis give us
a better understanding of the lower order terms.
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4.4 The pair correlation function for Hecke angles

Let
Af,x := {± θf (p) mod 1 : p ≤ x, (p,N) = 1}, (4.6)

and

IL(ψ) :=
[
ψ − 1

AL
,ψ +

1

AL

]
,

such that L = L(x) → ∞ as x→ ∞. Then, let us consider L such that

Lf (ψ) :=#
{
p ≤ x : (p,N) = 1, θf (p) ∈ IL(ψ)

}
∼πN (x)

∫ ψ+ 1
AL

ψ− 1
AL

2 sin2 πt dt ∼ πN (x)A
2

AL
∼ 2πN (x)

L
, as x→ ∞,

and

Lf (1− ψ) :=#
{
p ≤ x : (p,N) = 1, θf (p) ∈ IL(1− ψ)

}
∼ πN (x)

∫ 1−ψ+ 1
AL

1−ψ− 1
AL

2 sin2 πt dt

∼ πN (x)2 sin2 π(1− ψ)
2

AL
∼ 2πN (x)

L
, as x→ ∞.

Note that the family IL ∩ Af,x has cardinality

#(IL ∩ Af,x) = Lf (ψ) + Lf (1− ψ) ∼ 4πN (x)

L
, (4.7)

as x→ ∞. Therefore, the mean spacing of the family Af,x of Hecke angles in the intervals IL is

|IL|
#(IL ∩ Af,x)

∼ 1

2AπN (x)
as x→ ∞.

We have the following lemma:

Lemma 4.4.1. Let ψ ∈ (0, 1) and A = 2 sin2 πψ and IL :=
[
ψ − 1

AL , ψ + 1
AL

]
. Then, for a

fixed prime p, and sufficiently large L,

χIL
(θf (p)) + χIL

(1− θf (p))

=
∑
m∈Z

χ
[− 1

A ,
1
A ]
(L(θf (p)−ψ +m)) +

∑
m∈Z

χ
[− 1

A ,
1
A ]
(L(− θf (p)−ψ +m)).

Proof. We know, 0 ≤ θf (p) ≤ 1 and −1 < −ψ < 0. Hence, 0 < θf (p)− ψ < 1.

For m ≥ 2, and sufficiently large L,

1 ≤ m− 1 < θf (p)− ψ +m

=⇒ θf (p)− ψ +m > 1

=⇒ θf (p)− ψ +m /∈
[
− 1

AL
,

1

AL

]
=⇒ θf (p) +m /∈

[
ψ − 1

AL
,ψ +

1

AL

]
=⇒ χ

[ψ− 1
AL ,ψ+

1
AL ]

(θf (p) +m) = 0.

(4.8)
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For m ≤ −2, and sufficiently large L,

θf (p)− ψ +m < m+ 1 ≤ −1

=⇒ θf (p)− ψ +m < −1

=⇒ θf (p)− ψ +m /∈
[
− 1

AL
,

1

AL

]
=⇒ θf (p) +m /∈

[
ψ − 1

AL
,ψ +

1

AL

]
=⇒ χ

[ψ− 1
AL ,ψ+

1
AL ]

(θf (p) +m) = 0.

(4.9)

Now, if χ[ψ− 1
AL ,ψ+

1
AL ]

(θf (p) + 1) = 1 for some prime p, we get

θf (p) + 1 ∈
[
ψ − 1

AL
,ψ +

1

AL

]
∩ [1, 2] ⊆ (0, 1) ∩ [1, 2],

which is a contradiction.

Hence, for all primes p, and sufficiently large L,

χ
[ψ− 1

AL ,ψ+
1

AL ]
(θf (p) + 1) = 0. (4.10)

Similarly, for all primes p, and sufficiently large L,

χ
[ψ− 1

AL ,ψ+
1

AL ]
(θf (p)− 1) = 0. (4.11)

Combining equations (4.8), (4.9), (4.10) and (4.11), we obtain∑
m∈Z

χ
[ψ− 1

AL ,ψ+
1

AL ]
(θf (p) +m) = χ

[ψ− 1
AL ,ψ+

1
AL ]

(θf (p)). (4.12)

We know, −1 ≤ −θf (p) ≤ 0 and −1 < −ψ < 0. Hence, −2 < −θf (p)− ψ < 0.

For m ≥ 3, and sufficiently large L,

1 ≤ m− 2 < −θf (p)− ψ +m

=⇒ − θf (p)− ψ +m > 1

=⇒ − θf (p)− ψ +m /∈
[
− 1

AL
,

1

AL

]
=⇒ − θf (p) +m /∈

[
ψ − 1

AL
,ψ +

1

AL

]
=⇒ χ

[ψ− 1
AL ,ψ+

1
AL ]

(−θf (p) +m) = 0.

(4.13)

For m ≤ −1, and sufficiently large L,

− θf (p)− ψ +m < m ≤ −1

=⇒ − θf (p)− ψ +m < −1

=⇒ − θf (p)− ψ +m /∈
[
− 1

AL
,

1

AL

]
=⇒ − θf (p) +m /∈

[
ψ − 1

AL
,ψ +

1

AL

]
=⇒ χ

[ψ− 1
AL ,ψ+

1
AL ]

(−θf (p) +m) = 0.

(4.14)
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Now, if χ[ψ− 1
AL ,ψ+

1
AL ]

(−θf (p)) = 1 for some prime p, we have

−θf (p) ∈
[
ψ − 1

AL
,ψ +

1

AL

]
∩ [−1, 0] ⊆ (0, 1) ∩ [−1, 0],

which is a contradiction.

Hence, for all primes p, and sufficiently large L,

χ
[ψ− 1

AL ,ψ+
1

AL ]
(−θf (p)) = 0. (4.15)

Similarly, for all primes p, and sufficiently large L,

χ
[ψ− 1

AL ,ψ+
1

AL ]
(−θf (p) + 2) = 0. (4.16)

Combining equations (4.13), (4.14), (4.15) and (4.16), we obtain∑
m∈Z

χ
[ψ− 1

AL ,ψ+
1

AL ]
(−θf (p) +m) = χ

[ψ− 1
AL ,ψ+

1
AL ]

(1− θf (p)). (4.17)

Adding equations (4.12) and (4.17), we obtain that for a fixed prime p, and sufficiently large
L,

χIL
(θf (p)) + χIL

(1− θf (p))

=
∑
m∈Z

χ
[ψ− 1

AL ,ψ+
1

AL ]
(θf (p) +m) +

∑
m∈Z

χ
[ψ− 1

AL ,ψ+
1

AL ]
(−θf (p) +m)

=
∑
m∈Z

χ
[− 1

A ,
1
A ]
(L(θf (p)−ψ +m)) +

∑
m∈Z

χ
[− 1

A ,
1
A ]
(L(− θf (p)−ψ +m)).

Lemma 4.4.2. Let ψ ∈ (0, 1) and A = 2 sin2 πψ and Ix =
[
− s
AπN (x) ,

s
AπN (x)

]
. Then, for a fixed

prime p, and sufficiently large x,∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n)) = 2B(θf (p), θf (q), x, s),

where

B(θf (p), θf (q), x, s) = χIx(θf (p)− θf (q)−1) + χIx(θf (p)− θf (q)) + χIx(θf (p)− θf (q)+1)

+χIx(θf (p)+ θf (q)) + χIx(θf (p)+ θf (q)−1) + χIx(θf (p)+ θf (q)−2).

Proof. Part 1 : We know, 0 ≤ θf (p), θf (q) ≤ 1.

Hence, 0 ≤ θf (p)+ θf (q) ≤ 2, and this implies m ≤ θf (p)+ θf (q)+m ≤ m + 2, for any
integer m.

For m ≥ 1, and sufficiently large x,

1 ≤ m ≤ θf (p)+ θf (q)+m

=⇒ θf (p)+ θf (q)+m /∈
[
− s

AπN (x)
,

s

AπN (x)

]
= Ix

=⇒ χIx(θf (p)+ θf (q)+m) = 0.

(4.18)
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For m ≤ −3, and sufficiently large x,

θf (p)+ θf (q)+m ≤ m+ 2 ≤ −1

=⇒ θf (p)+ θf (q)+m /∈
[
− s

AπN (x)
,

s

AπN (x)

]
= Ix

=⇒ χIx(θf (p)+ θf (q)+m) = 0.

(4.19)

Hence, using equations (4.18) and (4.19), we obtain∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(θf (p)+ θf (q)+m))

=
∑
m∈Z

χIx(θf (p)+ θf (q)+m)

=

0∑
m=−2

χIx(θf (p)+ θf (q)+m).

(4.20)

Part 2 : We know, 0 ≤ θf (p), θf (q) ≤ 1.

Hence, −1 ≤ θf (p)− θf (q) ≤ 1, and this implies m− 1 ≤ θf (p)+ θf (q)+m ≤ m+1, for any
integer m.

For m ≥ 2, and sufficiently large x,

1 ≤ m− 1 ≤ θf (p)− θf (q)+m

=⇒ θf (p)− θf (q)+m /∈
[
− s

AπN (x)
,

s

AπN (x)

]
= Ix

=⇒ χIx(θf (p)− θf (q)+m) = 0.

(4.21)

For m ≤ −2, and sufficiently large x,

θf (p)− θf (q)+m ≤ m+ 1 ≤ −1

=⇒ θf (p)− θf (q)+m /∈
[
− s

AπN (x)
,

s

AπN (x)

]
= Ix

=⇒ χIx(θf (p)− θf (q)+m) = 0.

(4.22)

Hence, using equations (4.21) and (4.22), we obtain∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(θf (p)− θf (q)+m))

=
∑
m∈Z

χIx(θf (p)− θf (q)+m)

=

1∑
m=−1

χIx(θf (p)− θf (q)+m).

(4.23)

Part 3 : Similarly, we obtain∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(− θf (p)+ θf (q)+m))

=

1∑
m=−1

χIx(− θf (p)+ θf (q)+m).

(4.24)
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Part 4 : We know, 0 ≤ θf (p), θf (q) ≤ 1.

Hence, −2 ≤ − θf (p)− θf (q) ≤ 0, and this implies m − 2 ≤ − θf (p)− θf (q)+m ≤ m, for
any integer m.

For m ≥ 3, and sufficiently large x,

1 ≤ m− 2 ≤ − θf (p)− θf (q)+m

=⇒ − θf (p)− θf (q)+m /∈
[
− s

AπN (x)
,

s

AπN (x)

]
= Ix

=⇒ χIx(− θf (p)− θf (q)+m) = 0.

(4.25)

For m ≤ −1, and sufficiently large x,

− θf (p)− θf (q)+m ≤ m ≤ −1

=⇒ − θf (p)− θf (q)+m /∈
[
− s

AπN (x)
,

s

AπN (x)

]
= Ix

=⇒ χIx(− θf (p)− θf (q)+m) = 0.

(4.26)

Hence, using equations (4.25) and (4.26), we obtain

∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(− θf (p)− θf (q)+m))

=
∑
m∈Z

χIx(− θf (p)− θf (q)+m)

=

2∑
m=0

χIx(− θf (p)− θf (q)+m).

(4.27)

Adding equations (4.20), (4.23), (4.24) and (4.27), we obtain

∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n))

=
∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(θf (p)+ θf (q)+m)) +

∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(θf (p)− θf (q)+m))

+
∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(− θf (p)+ θf (q)+m)) +

∑
m∈Z

χ
[− s

A ,
s
A ]
(πN (x)(− θf (p)− θf (q)+m))

=

0∑
m=−2

χIx(θf (p)+ θf (q)+m) + 2

1∑
m=−1

χIx(θf (p)− θf (q)+m) +

2∑
m=0

χIx(− θf (p)− θf (q)+m)

=

0∑
m=−2

χIx(θf (p)+ θf (q)+m) + 2

1∑
m=−1

χIx(θf (p)− θf (q)+m) +

2∑
m=0

χIx(θf (p)+ θf (q)−m)

=2

0∑
m=−2

χIx(θf (p)+ θf (q)+m) + 2

1∑
m=−1

χIx(θf (p)− θf (q)+m)

=2B(θf (p), θf (q), x, s).
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Theorem 4.4.3. Let 0 < ψ < 1 and ψ ̸= 1/2. Then,

#

{
(i, j) : i ̸= j, xi, xj ∈ (IL ∩ Af,x), xi − xj ∈

[
− s

AπN (x)
,

s

AπN (x)

]}

=
1

2

∑
(p,q):p̸=q≤x

(p,N)=(q,N)=1

(∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (p)−ψ + n))

∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (q)−ψ + n))

×
∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n))

)
,

where
Af,x := {± θf (p)mod 1 : p ≤ x, (p,N) = 1}.

Proof. Let 0 < ψ < 1 and ψ ̸= 1/2. Then, using Lemmas 4.4.1 and 4.4.2, we obtain∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

(∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (p)−ψ + n))

∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (q)−ψ + n)) (4.28)

×
∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n))

)
=

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q)))

× 2B(θf (p), θf (q), x, s),

where

B(θf (p), θf (q), x, s) =
0∑

m=−2

χIx(θf (p)+ θf (q)+m) +

1∑
m=−1

χIx(θf (p)− θf (q)+m).

Now, for sufficiently large L, and ψ ̸= 1
2 , [ψ− 1

AL , ψ+ 1
AL ]∩ [1−ψ− 1

AL , 1−ψ+ 1
AL ] = ϕ. Hence,

for a prime r,

χIL
(θf (r)) = 1 (4.29)

⇐⇒ θf (r) ∈
[
ψ − 1

AL
,ψ +

1

AL

]
⇐⇒ θf (r) /∈

[
1− ψ − 1

AL
, 1− ψ +

1

AL

]
⇐⇒ − θf (r) /∈

[
− 1 + ψ − 1

AL
,−1 + ψ +

1

AL

]
⇐⇒ 1− θf (r) /∈

[
ψ − 1

AL
,ψ +

1

AL

]
⇐⇒ χIL

(1− θf (r)) = 0,

which implies

(χIL
(θf (r)), χIL

(1− θf (r))) = (0, 0), or, (0, 1), or, (1, 0), i.e.,
χIL

(θf (r)) + χIL
(1− θf (r)) = 0, or, 1.

Therefore, for any pair of primes (p, q),

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q))) ̸= 0, iff,
χIL

(θf (p)) + χIL
(1− θf (p)) = χIL

(θf (q)) + χIL
(1− θf (q)) = 1,

if and only if exactly one of the following happens:
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(i) θf (p) ∈ IL, and θf (q) ∈ IL;

(ii) θf (p) ∈ IL, and 1− θf (q) ∈ IL;

(iii) 1− θf (p) ∈ IL, and θf (q) ∈ IL;

(iv) 1− θf (p) ∈ IL, and 1− θf (q) ∈ IL.

We now evaluate each of these cases separately.

Part 1 : θf (p) ∈ IL, and θf (q) ∈ IL. Hence,

ψ − 1

AL
≤ θf (p), θf (q) ≤ ψ +

1

AL

=⇒ 2ψ − 2

AL
≤ θf (p)+ θf (q) ≤ 2ψ +

2

AL

=⇒ (2ψ − 1)− 2

AL
≤ θf (p)+ θf (q)−1 ≤ (2ψ − 1) +

2

AL

=⇒ (2ψ − 2)− 2

AL
≤ θf (p)+ θf (q)−2 ≤ (2ψ − 2) +

2

AL
.

Therefore, for sufficiently large L, and for ψ ∈ (0, 1), with ψ ̸= 1/2,[
(2ψ +m)− 2

AL
, (2ψ +m) +

2

AL

]
∩ Ix = ϕ, for m = 0,−1,−2,

and hence,
χIx(θf (p)+ θf (q)+m) = 0, for m = 0,−1,−2.

Similarly, we obtain that for sufficiently large L, and for ψ ∈ (0, 1), with ψ ̸= 1/2,[
m− 2

AL
,m+

2

AL

]
∩ Ix = ϕ, for m = −1, 1,

and hence,

χIx(θf (p)− θf (q)+m) = 0, for m = −1, 1.

Hence,

B(θf (p), θf (q), x, s) =
0∑

m=−2

χIx(θf (p)+ θf (q)+m) +

1∑
m=−1

χIx(θf (p)− θf (q)+m)

=χIx(θf (p)− θf (q)).

Therefore, using equation (4.29), we obtain∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1
θf (p)∈IL,θf (q)∈IL

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q)))

×B(θf (p), θf (q), x, s)

=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

θf (p)∈IL,θf (q)∈IL

B(θf (p), θf (q), x, s)

=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

θf (p)∈IL,θf (q)∈IL

χIx(θf (p)− θf (q))

=#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, θf (p) ∈ IL, θf (q) ∈ IL, θf (p)− θf (q) ∈ Ix}.
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Part 2 : θf (p) ∈ IL, and 1− θf (q) ∈ IL. Hence,

ψ − 1

AL
≤ θf (p), 1− θf (q) ≤ ψ +

1

AL

=⇒ 1− 2

AL
≤ θf (p)+ θf (q) ≤ 1 +

2

AL

=⇒ − 2

AL
≤ θf (p)+ θf (q)−1 ≤ 2

AL

=⇒ − 1− 2

AL
≤ θf (p)+ θf (q)−2 ≤ −1 +

2

AL
.

Therefore, for sufficiently large L, and for ψ ∈ (0, 1), with ψ ̸= 1/2,[
m− 2

AL
,m+

2

AL

]
∩ Ix = ϕ, for m = −1, 1,

and hence,
χIx(θf (p)+ θf (q)+m) = 0, for m = 0,−2.

Similarly, we obtain that for sufficiently large L, and for ψ ∈ (0, 1), with ψ ̸= 1/2,[
(2ψ −m)− 2

AL
, (2ψ −m) +

2

AL

]
∩ Ix = ϕ, for m = 0, 1, 2,

and hence,

χIx(θf (p)− θf (q)+m) = 0, for m = −0,−1,−2.

Hence,

B(θf (p), θf (q), x, s) =
0∑

m=−2

χIx(θf (p)+ θf (q)+m) +

1∑
m=−1

χIx(θf (p)− θf (q)+m)

=χIx(θf (p)+ θf (q)−1).

Therefore, using equation (4.29), we obtain∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1
θf (p)∈IL,1−θf (q)∈IL

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q)))

×B(θf (p), θf (q), x, s)

=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

θf (p)∈IL,1−θf (q)∈IL

B(θf (p), θf (q), x, s)

=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

θf (p)∈IL,1−θf (q)∈IL

χIx(θf (p)+ θf (q)−1)

=#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, θf (p) ∈ IL, 1− θf (q) ∈ IL, θf (p)+ θf (q)−1 ∈ Ix}.

Part 3 : 1− θf (p) ∈ IL, and θf (q) ∈ IL. Similarly, as in part 2, we obtain∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1
1−θf (p)∈IL,θf (q)∈IL

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q)))

×B(θf (p), θf (q), x, s)
=#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, 1− θf (p) ∈ IL, θf (q) ∈ IL, θf (p)+ θf (q)−1 ∈ Ix}.
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Part 4 : 1− θf (p) ∈ IL, and 1− θf (q) ∈ IL. Hence,

ψ − 1

AL
≤ 1− θf (p), 1− θf (q) ≤ ψ +

1

AL

=⇒ (2− 2ψ)− 2

AL
≤ θf (p)+ θf (q) ≤ (2− 2ψ) +

2

AL

=⇒ (1− 2ψ)− 2

AL
≤ θf (p)+ θf (q)−1 ≤ (1− 2ψ) +

2

AL

=⇒ − 2ψ − 2

AL
≤ θf (p)+ θf (q)−2 ≤ −2ψ +

2

AL
.

Therefore, for sufficiently large L, and for ψ ∈ (0, 1), with ψ ̸= 1/2,[
(m− 2ψ)− 2

AL
, (m− 2ψ) +

2

AL

]
∩ Ix = ϕ, for m = 0, 1, 2,

and hence,
χIx(θf (p)+ θf (q)+m) = 0, for m = 0,−1,−2.

Similarly, we obtain that for sufficiently large L, and for ψ ∈ (0, 1), with ψ ̸= 1/2,[
m− 2

AL
,m+

2

AL

]
∩ Ix = ϕ, for m = −1, 1,

and hence,
χIx(θf (p)− θf (q)+m) = 0, for m = −1, 1.

Hence,

B(θf (p), θf (q), x, s) =
0∑

m=−2

χIx(θf (p)+ θf (q)+m) +

1∑
m=−1

χIx(θf (p)− θf (q)+m)

=χIx(θf (p)− θf (q)).

Therefore, ∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1
1−θf (p)∈IL,1−θf (q)∈IL

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q)))

×B(θf (p), θf (q), x, s)

=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

1−θf (p)∈IL,1−θf (q)∈IL

B(θf (p), θf (q), x, s)

=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

1−θf (p)∈IL,1−θf (q)∈IL

χIx(θf (p)− θf (q))

=#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, 1− θf (p) ∈ IL, 1− θf (q) ∈ IL, θf (p)− θf (q) ∈ Ix}.

Therefore, using equation (4.28) and parts (1), (2), (3), and (4), we obtain

1

2

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

(∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (p)−ψ + n))

∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (q)−ψ + n))

×
∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n))

)
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=
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

(χIL
(θf (p)) + χIL

(1− θf (p)))(χIL
(θf (q)) + χIL

(1− θf (q)))

×B(θf (p), θf (q), x, s)

=


∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

θf (p)∈IL,θf (q)∈IL

+
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

θf (p)∈IL,1−θf (q)∈IL

+
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

1−θf (p)∈IL,θf (q)∈IL

+
∑

(p,q):p ̸=q≤x
(p,N)=(q,N)=1

1−θf (p)∈IL,1−θf (q)∈IL


(χIL

(θf (p)) + χIL
(1− θf (p)))(χIL

(θf (q)) + χIL
(1− θf (q)))×B(θf (p), θf (q), x, s)

=#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, θf (p) ∈ IL, θf (q) ∈ IL, θf (p)− θf (q) ∈ Ix}

+#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, θf (p) ∈ IL, 1− θf (q) ∈ IL, θf (p)−(1− θf (q)) ∈ Ix}

+#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, θf (p) ∈ IL, 1− θf (q) ∈ IL, θf (q)−(1− θf (p)) ∈ Ix}

+#{(p, q) : p ̸= q ≤ x, (p,N) = (q,N) = 1, 1− θf (p) ∈ IL, 1− θf (q) ∈ IL,
(1− θf (p))− (1− θf (q)) ∈ Ix}

=#
{
(i, j) : i ̸= j, xi, xj ∈ (IL ∩ Af,x), xi − xj ∈ Ix

}
=#

{
(i, j) : i ̸= j, xi, xj ∈ (IL ∩ Af,x), xi − xj ∈

[
− s

AπN (x)
,

s

AπN (x)

]}
,

where
Af,x ={θf (p), 1− θf (p) : p ≤ x, (p,N) = 1}

={± θf (p) mod 1 : p ≤ x, (p,N) = 1}.

Remark 4.4.4. It is important to note that the above theorem does not hold true for ψ =
1
2 . The obstruction comes from the fact that B(θf (p), θf (q), x, s) = χIx(θf (p)+ θf (q)−1) +
χIx(θf (p)− θf (q)), for ψ = 1

2 , and when it is plugged into equation (4.28), this doesn’t give
anything significant in terms of the pair correlation function for Hecke angles.

Using equation (4.7) and Theorem 4.4.3, the pair correlation function for the families Af,x∩
IL is given by

1

|IL ∩ Af,x|
#

{
(i, j) : i ̸= j, xi, xj ∈ (IL ∩ Af,x), xi − xj ∈

[
− s

AπN (x)
,

s

AπN (x)

]}

∼ L

8πN (x)

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (p)−ψ + n))

∑
n∈Z

χ
[− 1

A ,
1
A ]
(L(± θf (q)−ψ + n))

×
∑
n∈Z

χ
[− s

A ,
s
A ]
(πN (x)(± θf (p)± θf (q)+n)).

(4.30)

4.5 Smooth analogue

We now consider a smooth analogue of the right-hand side of equation (4.30).
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Let ρ be an even test function in the Schwartz class (see Notations) such that the Fourier
transform ρ̂ of ρ is smooth and compactly supported, and normalised so that

sup{|t| : ρ̂(t) ̸= 0} = 1.

We define
ρL(θ) :=

∑
n∈Z

ρ(L(θ + n)).

ρL(θ) is a 1-periodic function, localized to a scale of 1/L, and therefore, effectively counts points
θ such that |θ| < 1/L. It has the Fourier expansion

ρL(θ) =
∑
|l|≤L

ρ̂L(l)e(lθ) = ρ̂L(0) +
∑

1≤l≤L

ρ̂L(l)2 cos(2πlθ),

where ρ̂L(l) = 1
L ρ̂
(
l
L

)
.

Similarly, let g be an even test function satisfying the same properties as ρ, that is, an
even test function in the Schwartz class such that the Fourier transform ĝ of g is smooth and
compactly supported, and normalised so that

sup{|t| : ĝ(t) ̸= 0} = 1.

We define

Gx(θ) :=
∑
n∈Z

g
(
πN (x)(θ + n)

)
=

∑
|n|≤πN (x)

Ĝx(n)e(nθ)

=Ĝx(0) +
∑

1≤n≤πN (x)

Ĝx(n)2 cos(2πnθ),

where Ĝx(n) := 1
πN (x) ĝ

(
n

πN (x)

)
. Similar to the case of ρL, the function Gx(θ) is a 1-periodic

function, localized to a scale of 1/πN (x), and therefore, effectively counts points θ such that
|θ| < 1/πN (x).

The smooth analogue of the right-hand side of (4.30) is defined as

R2(ρ, g; f)(x) :=
L

8πN (x)

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

ρL(± θf (p)−ψ)ρL(± θf (q)−ψ)Gx(± θf (p)± θf (q)).

We recall the following classical result, which gives a recursive relation between af (p
l),

l ≥ 0. For an integer l ≥ 0,

2 cos 2πl θf (p) =

{
2, if l = 0,

af (p
2l)− af (p

2l−2), if l ≥ 1.
(4.31)

Denote
U(l) = ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ), (0 ≤ l ≤ L)

and
G(n) = ĝ

(
n

πN (x)

)
, 0 ≤ n ≤ πN (x).

Lemma 4.5.1. Let ρ, f, L and ψ be as defined earlier. Then, for any prime p coprime to level
N,

2ρ̂(0) +
∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)(2 cos 2πl θf (p)) =

∑
l≥0

U(l)af (p
2l).
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Proof. Using equation (4.31), we obtain

2ρ̂(0) +
∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)(2 cos 2πl θf (p))

=2ρ̂(0) +
∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)(af (p

2l)− af (p
2l−2))

=2ρ̂(0) +
∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)af (p

2l)−
∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)af (p

2l−2)

=2ρ̂(0) +
∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)af (p

2l)−
∑
l≥0

ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ)af (p

2l)

=2ρ̂(0)− ρ̂

(
1

L

)
(2 cos 2πψ) +

∑
l≥1

ρ̂

(
l

L

)
(2 cos 2πlψ)af (p

2l)

−
∑
l≥1

ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ)af (p

2l)

=2ρ̂(0)− ρ̂

(
1

L

)
(2 cos 2πψ) +

∑
l≥1

(
ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ)

)
af (p

2l)

=
∑
l≥0

(
ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ)

)
af (p

2l)

=
∑
l≥0

U(l)af (p
2l).

Using Lemma 4.5.1, we have

ρL(± θf (p)−ψ) = ρL(θf (p)−ψ) + ρL(− θf (p)−ψ)

=
∑
|l|≤L

ρ̂L(l)
{
e(l(θf (p)−ψ)) + e(l(− θf (p)−ψ))

}
=
∑
|l|≤L

ρ̂L(l)e(−lψ)2 cos(2πl θf (p))

=

2ρ̂L(0) +
∑

1≤l≤L

ρ̂L(l)(2 cos 2πlψ)2 cos(2πl θf (p))

 .

=
1

L

∑
0≤l≤L

U(l)af (p
2l).

(4.32)

Similarly,

Gx
(
± θf (p)± θf (q)

)
=

1

πN (x)

∑
|n|≤πN (x)

ĝ

(
n

πN (x)

)
e
(
±n θf (p)±n θf (q)

)
)

=
1

πN (x)

4G(0) +
∑
n≥1

2G(n)(2 cos 2πn θf (p))(2 cos 2πn θf (q))

 ,
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Using the above Fourier expansions,

R2(ρ, g; f)(x) =
L

8πN (x)

1

L2πN (x)

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

∑
l≥0

U(l)af (p
2l)

∑
l′≥0

U(l′)af (q
2l′)


4G(0) +∑

n≥1

2G(n)(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2))


(4.33)

We now denote
T1(p) :=

∑
l≥0

U(l)af (p
2l),

T2(q) :=
∑
l′≥0

U(l′)af (q
2l′)

and
T3(p, q) :=

∑
n≥0

G(n)A(p, q, n),

where

A(p, q, n) =

{
4 if n = 0

2(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2)) if n ≥ 1.

Thus, we get

R2(ρ, g; f)(x) =
1

8πN (x)2L

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

T1(p)T2(q)T3(p, q)

=
1

8πN (x)2L

∑′

p,q≤x

T1(p)T2(q)T3(p, q).

(4.34)

Since ρ̂ and ĝ are continuous and compactly supported, we have the bounds |U(li)|, |U(ki)|,
|G(ni)| ≪ 1, which will be used in the calculations in this thesis.

4.5.1 Equidistribution properties of Hecke angles in small scales

In this section, we explain the connection between the error terms in the Sato-Tate distribution
theorem (see equation (4.1)) and the distribution of the families Af,x (defined in (4.6)) in shrink-
ing intervals IL where L = L(x) → ∞ as x→ ∞. As we will see below, this provides an insight
into the difficulties in obtaining the pair correlation function for a deterministic f ∈ FN,k, and
why it helps to consider a random f ∈ FN,k instead.

The question is, what growth conditions on L = L(x) are sufficient to ensure that

lim
x→∞

1

|Af,x|
∑

θ∈Af,x

ρL(θ − ψ) =

∫ 1

0

ρL(t− ψ)µ(t)dt?

Define
Nρ,L,f (x) :=

∑
θ∈Af,x

ρL(θ − ψ).
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By (4.32),

Nρ,L,f (x)

|Af,x|
=

1

2πN (x)

2ρ̂L(0)πN (x) +
∑

1≤l≤L

ρ̂L(l)(2 cos 2πlψ)
∑
p≤x

(p,N)=1

(af (p
2l)− af (p

2l−2))


=

1

2πN (x)

∑
0≤l≤L

U(l)

L

∑
p≤x

(p,N)=1

af (p
2l).

(4.35)

It is easy to see that
U(0)

2L
=

∫ 1

0

ρL(t− ψ)µ(t)dt.

The following proposition is a consequence of Thorner’s discrepancy estimates.

Proposition 4.5.2. Let N ≥ 1 and k ≥ 2 be integers with k even. Let f ∈ FN,k be a non-CM
newform. Let ρ be as defined in (4.4). If 0 < ψ < 1 and L is chosen such that

L ≤ c11
√
log x

2
√

log(kN log x)

for a suitably small constant c11, we have

Nρ,L,f (x)

2πN (x)
∼
∫ 1

0

ρL(t− ψ)µ(t)dt as x→ ∞. (4.36)

Proof. The key ingredient in the proof is the following estimate, which follows from [Tho21,
Proposition 2.1]. Let f ∈ FN,k be a non-CM newform. Then there exist constants c9 (suitably
large) and c10 and c11 (suitably small) such that if

2l ≤ c11
√

log x/
√

log(kN log x),

then ∑
p≤x

(p,N)=1

af

(
p2l
)
≪ l2πN (x)

(
x−

1
2c9l + e

− c10 log x

4l2 log(2kNl) + e
− c10

√
log x√
2l

)
. (4.37)

Note that ρ̂ is a compactly supported, continuous function and therefore, absolutely bounded.
Thus,

U(l)

L
=

1

L

[
ρ̂

(
l

L

)
cos 2πlψ − ρ̂

(
l + 1

L

)
cos 2π(l + 1)ψ

]
≪ 1

L
.

Choosing

L ≤ c11
√
log x

2
√
log(kN log x)

,

we have
Nρ,L,f (x)

2πN (x)
− U(0)

2L

=
1

2πN (x)

∑
1≤l≤L

U(l)

L

∑
p≤x

(p,N)=1

af (p
2l)

≪ 1

LπN (x)

∑
1≤l≤L

l2
(
x−

1
2c9l + e

− c10 log x

4l2 log(2kNl) + e
− c10

√
log x√
2l

)

≪ L2

πN (x)

(
x−

1
2c9L + e

− c10 log x

4L2 log(2kNL) + e
− c10

√
log x√
2L

)
.
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The above term → 0 as x → ∞, if L ≪
√
log x/

√
log(kN log x). This proves the proposition.

The limitation of the above proposition is in the range of L for which it holds. Is it possible
to obtain the asymptotic (4.36) for a larger range of L, for example, L(x) ≪ xα for some α > 0? It
turns out that this can be done if one assumes strong analytic hypotheses on symmetric power
L-functions corresponding to a non-CM newform f with squarefree level N . In this respect,
using conditional discrepancy estimates of Rouse and Thorner [RT17], we have the following
proposition:

Proposition 4.5.3. Let N ≥ 1 and k ≥ 2 be integers with N squarefree and k even. Let
f ∈ FN,k be a non-CM newform such that for each l ≥ 0, the following hypotheses hold:

1. The symmetric power L-function L(s, Symlf) is the L-function of a cuspidal automorphic
representation on GLl+1(AQ).

2. The Generalized Riemann hypothesis holds for L(s, Symlf).

Let ρ be as defined in (4.4). If 0 < ψ < 1 and L is chosen such that

L = o

(
x1/2c

(log x)2/c

)

for a constant c > 1, we have

Nρ,L,f (x)

2πN (x)
∼
∫ 1

0

ρL(t− ψ)µ(t)dt as x→ ∞.

Proof. By [RT17, Proposition 3.3], if l ≥ 1 and x ≥ 5× 105,∑
p≤x

(p,N)=1

af

(
p2l
)
≪ (l log l)

√
x log x log(N(k − 1)). (4.38)

As in the proof of Proposition 4.5.2, we obtain that for x ≥ 5× 105,

Nρ,L,f (x)

2πN (x)
− U(0)

2L
=

1

2πN (x)

∑
1≤l≤L

U(l)

L

∑
p≤x

(p,N)=1

af (p
2l)

≪ L logL

√
x log x

πN (x)
log(N(k − 1))

≪ L logL
(log x)2√

x
log(N(k − 1)).

Let us choose L(x) such that

L(x) = o

(
x1/2c

(log x)2/c

)
for c > 1.

Then,

L logL
(log x)2√

x
log(N(k − 1)) → 0 as x→ ∞.

By the results of Newton and Thorne [NT21a], [NT21b], the hypothesis (1) in the above
proposition is now known to be true for all l ≥ 1. Therefore, in comparison to Proposition 4.5.2,
we have a larger range of L for which (4.36) holds, under GRH.
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In what follows, we make some remarks here about Nρ,L,f (x) for a random f ∈ FN,k.
We derive the expected value of Nρ,L,f (x) as we average over all f ∈ FN,k (not just non-CM
newforms). As we will see, averaging enables us to obtain the asymptotic in (4.36) over a more
flexible range of L.

We first introduce the following notation: for any ϕ : FN,k → C, we denote

⟨ϕ⟩ := 1

|FN,k|
∑

f∈FN,k

ϕ(f).

The following proposition tells us that an average version of (4.36) holds over a range of L
that grows with the size of the families FN,k under consideration.

Proposition 4.5.4. Consider families FN,k with levels N = N(x) and even weights k = k(x)
such that

log
(
|FN,k|/4ν(N)

)
log x

→ ∞ as x→ ∞.

Let ρ be as chosen above. If 0 < ψ < 1 and L is chosen such that

L = o

 log
(
|FN,k|/4ν(N)

)
log x

 ,

we have 〈
Nρ,L,f (x)

2πN (x)

〉
∼
∫ 1

0

ρL(t− ψ)µ(t)dt as x→ ∞.

Proof. Applying (4.35), Corollary 3.2.28 and the estimate U(l) ≪ 1,〈
Nρ,L,f (x)

2πN (x)
− U(0)

2L

〉
=

1

πN (x)

∑
1≤l≤L

U(l)

L

∑
p≤x

(p,N)=1

〈
af (p

2l)
〉

=
1

2πN (x)

∑
1≤l≤L

U(l)

L

∑
p≤x

(p,N)=1

 1

pl
+O

(
lp3l4ν(N)

|FN,k|

)

=
1

2πN (x)L

∑
1≤l≤L

 ∑
p≤x

(p,N)=1

U(l)

pl
+O

(
4ν(N)x3LπN (x)

|FN,k|

)
=O

(
log log x

πN (x)

)
+O

(
4ν(N)x3L

|FN,k|

)

If L = o

 log
(
|FN,k|/4ν(N)

)
log x

 , then, x3L = o

(
|FN,k|
4ν(N)

)
.

Thus, we have 〈
Nρ,L,f (x)

2πN (x)
− U(0)

2L

〉
→ 0 as x→ ∞.
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Corollary 4.5.5. We consider families FN,k with levels N = N(x) and even weights k = k(x)
such that

log
(
kN/8ν(N)

)
log x

→ ∞ as x→ ∞.

Let ρ be as chosen above. If 0 < ψ < 1 and L is chosen such that

L = o

 log
(
kN/8ν(N)

)
log x

 ,

we have 〈
Nρ,L,f (x)

2πN (x)

〉
∼
∫ 1

0

ρL(t− ψ)µ(t)dt as x→ ∞.

Proof. The proof follows from Lemma 3.2.24.

Remark 4.5.6. If N varies over prime levels, then the above asymptotic will hold for families
FN,k such that

log kN

log x
→ ∞ as x→ ∞.

4.5.2 Remarks on the pair correlation function
In Section 4.5.1, we saw that Thorner’s unconditional estimate (4.37) and the conditional esti-
mate of Rouse and Thorner (4.38) for sums

∑
p≤x

af (p
2u) play a pivotal role in deriving equidis-

tribution properties of Hecke angles. By (4.33), these sums also appear in the pair correlation
function R2(ρ, g; f)(x). But, we need estimates for these sums for u as large as πN (x), whereas
(4.37) holds for

u≪
√

log x/
√
log(kN log x).

The conditional estimate (4.38) holds for all u ≥ 1, if x is sufficiently large. However, when we
apply this estimate to (4.33), we get

R2(ρ, g; f)(x) ≪ x(log x)2 log2(N(k − 1)),

which is not enough to determine the convergence of R2(ρ, g; f)(x) as x→ ∞.

In [BS19], the trace formula estimates in Corollary 3.2.26 were applied to obtain the limit

lim
x→∞

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x),

albeit for rapidly increasing families FN,k, parametrized by

log
(
kN/8ν(N)

)
x

→ ∞.

The main theorem of this article, Theorem 4.3.1 makes the following fundamental observa-
tions over and above the results of [BS19].

1. The first observation is that in these rapidly increasing families, the trace formula es-
timates are versatile enough to accommodate the convergence of the second moment of
R2(ρ, g; f)(x). To simplify the second moment

1

|FN,k|
∑

f∈FN,k

(R2(ρ, g; f)(x))
2



86 CHAPTER 4. HISTORY OF THE THESIS PROBLEM AND NEW RESULTS

addressed in this article, we require a delicate balancing act between estimates for several
sums of type ∑

p,q,r,s

af (p
2uq2vr2ws2t)

and the ranges of u, v, w and t in each of these sums. These calculations are carried out
in Section 6.2.

2. The second observation is that we obtain the convergence of the second moment of
R2(ρ, g; f)(x) with the same choice of L and the same growth conditions for FN,k as
those required for the convergence of the first moment of R2(ρ, g; f)(x).

3. The Katz-Sarnak conjecture predicts that

lim
x→∞

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2
=

 lim
x→∞

1

|FN,k|
∑

f∈FN,k

(R2(ρ, g; f)(x))

2

.

That is,
E[(R2(ρ, g; f)(x))

2] ∼ E[(R2(ρ, g; f)(x))]
2 as x→ ∞.

In Theorem 4.3.1, we are able to obtain this asymptotic, for (N, k) such that

log
(
kN/8ν(N)

)
x

→ ∞.

In the next two chapters, we will focus on the first and second moments of the smooth
localized pair correlation function R2(g, ρ; f)(x). In Chapter 5, we revisit the result on first
moment [BS19] and mention the main result for any level N. In Chapter 6, we find the second
moment and variance of R2(g, ρ; f)(x), and record estimates for lower order error terms in their
computations, which is the main contribution of this thesis. We also show that the variance goes
to 0 under the same growth conditions on weights and levels for the families of Hecke newforms
as required for the convergence of the first moment.



Chapter 5

First moment of the pair correlation
function R2(g, ρ; f )(x)

We revisit Theorem 4.2.1 obtained for the first moment or average of the smooth localized pair
correlation function R2(g, ρ; f)(x) in [BS19]. The goal of this chapter is to present inequalities
and estimates for any level N . In [BS19], only prime levels were addressed. However, some
modifications need to be made taking into account the levels N which are not prime. With our
current estimates, it becomes clear to us what the optimal choice for L should be to obtain the
convergence of the first moment of R2(ρ, g; f)(x) (defined in equation (4.5)). The idea used in
the proof is the same as in [BS19].

We recall the definition of R2(ρ, g; f)(x) from equation (4.33) and simplify it to obtain

R2(ρ, g; f)(x)

=
1

8πN (x)2L

∑′

p,q≤x

∑
l≥0

U(l)af (p
2l)

∑
l′≥0

U(l′)af (q
2l′)


4G(0) +

∑
n≥1

2G(n)(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2))


=

1

8πN (x)2L

∑′

p,q≤x

(
4G(0)

∑
l,l′≥0

U(l)U(l′)af (p
2l)af (q

2l′)

+U(0)2
∑
n≥1

2G(n)(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2))

+
∑

l,l′≥0,n≥1
(l,l′ )̸=(0,0)

2U(l)U(l′)G(n)af (p
2l)(af (p

2n)− af (p
2n−2))af (q

2l′)(af (q
2n)− af (q

2n−2))

)
.

(5.1)

To find the average of R2(ρ, g; f)(x) over newforms f ∈ FN,k, we take the average over each
of these three subparts separately. The averages over newforms of these three sums which we
denote by P, Q, and T , are estimated in Propositions 5.1.1, 5.1.2, and 5.4.1 respectively.

Therefore,

P(ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

4G(0)
∑
l,l′≥0

U(l)U(l′)af (p
2l)af (q

2l′),

87
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Q(ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

U(0)2
∑
n≥1

2G(n)

× (af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2)),

T (ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

∑
l,l′≥0,n≥1
(l,l′) ̸=(0,0)

2U(l)U(l′)G(n)

× af (p
2l)(af (p

2n)− af (p
2n−2))af (q

2l′)(af (q
2n)− af (q

2n−2)).

(5.2)

Hence,
1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x) = P(ρ, g; f)(x) +Q(ρ, g; f)(x) + T (ρ, g; f)(x).

T is estimated by further breaking it into two sums, namely R and S in equation (5.3), where
R and S are defined in equations (5.4) and (5.5) respectively.

The estimation for R is done in Proposition 5.2.1. The estimation for S is done in Section
5.3 and the final estimate is mentioned in Proposition 5.3.7.

Adding 2R and S, we find estimate for T in Proposition 5.4.1. Finally, we find an estimation
for the average of R2(ρ, g; f)(x) over newforms for all levels in Theorem 5.5.3. We note that
the term S contributes the main term (see Proposition 5.3.7). In Proposition 5.5.2, we find an
asymptotic limit for the main term.

Propositions 5.1.1, 5.1.2, 5.2.1 and 5.3.7 are generalisations of Proposition 15 of [BS19] to
all levels N. We omit their proofs, as the proofs are similar to that of prime levels mentioned in
[BS19] and can be obtained as a direct application of the Eichler-Selberg trace formula.

Section A.1 in Appendix A gives a quick reference to the terms mentioned in this chapter.

5.1 Revisiting the Pair correlation sum

We now evaluate 1
|FN,k|

∑
f∈FN,k

R2(ρ, g; f)(x) by finding estimates for each of the sums mentioned

in equation (5.1). Before we start estimating the sums separately, we record the following lemmas
without proof.

The following two propositions estimate P(ρ, g; f) and Q(ρ, g; f) respectively.

Proposition 5.1.1. Let N, k be positive integers with k even and L = L(x) → ∞ as x → ∞.
Then,

P(ρ, g; f) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

4G(0)
∑
l,l′≥0

U(l)U(l′)af (p
2l)af (q

2l′)

=O

(
1

L

)
+O

(
8ν(N)L

kN
x4Lc

′

)
,

where both the summations over l and l′ run up to ⌊L⌋.

Proposition 5.1.2. Let N, k be positive integers with k even and L = L(x) → ∞ as x → ∞.
Then,

Q(ρ, g; f) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

U(0)2
∑
n≥1

2G(n)(af (p
2n)− af (p

2n−2))×

(af (q
2n)− af (q

2n−2)) = O

(
1

L

)
+O

(
πN (x)

L

8ν(N)x4πN (x)c′

kN

)
,

where the summation over n runs up to πN (x).
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We now find an estimate for T (ρ, g; f)(x) (defined in equation (5.2)), where the summations
over l and l′ run up to ⌊L⌋ and the summation over n runs up to πN (x). Since the summation
is over (l, l′) ̸= (0, 0), we can break the summation into the following three parts:

1) l ≥ 1, l′ = 0, n ≥ 1,

2) l = 0, l′ ≥ 1, n ≥ 1,

3) l ≥ 1, l′ ≥ 1, n ≥ 1.

By interchanging the variables l and l′ first and then interchanging the variables p and q in
the summation over l = 0, l′ ≥ 1, n ≥ 1, we note that the summation over l = 0, l′ ≥ 1, n ≥ 1 is
exactly the same as the summation over l ≥ 1, l′ = 0, n ≥ 1.

We denote the summations over l ≥ 1, l′ = 0, n ≥ 1 and over l ≥ 1, l′ ≥ 1, n ≥ 1 by
R(ρ, g; f)(x) and S(ρ, g; f)(x) respectively, i.e.,

Therefore,

T (ρ, g; f)(x) = 2R(ρ, g; f)(x) + S(ρ, g; f)(x). (5.3)

5.2 Estimation for R(ρ, g; f)(x)

From the definition of R(ρ, g; f)(x), we have

R(ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

∑
l,n≥1

2U(l)U(0)G(n)af (p
2l)(af (p

2n)− af (p
2n−2))

× (af (q
2n)− af (q

2n−2)).

(5.4)

The following proposition gives estimates for R(ρ, g; f)(x).

Proposition 5.2.1. Let N and k be positive integers with k even. With ρ and g as defined
earlier, we have

R(ρ, g; f)(x) = O

(
1

L

)
+O

(
8ν(N)x8πN (x)c′πN (x)L

kN

)
.

5.3 Estimation for S(ρ, g; f)(x)
From the definition of S(ρ, g; f)(x), we have

S(ρ, g; f)(x) = 1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1

2U(l)U(l′)G(n)af (p
2l)

×(af (p
2n)− af (p

2n−2))af (q
2l′)(af (q

2n)− af (q
2n−2)).

(5.5)

Since the summation is over l, l′, n ≥ 1, where the indexes l and l′ run up to ⌊L⌋ and the index
n runs up to πN (x), we can break the summation into the following four parts:

1) l ̸= n, l′ ̸= n,

2) l = n, l′ ̸= n,

3) l ̸= n, l′ = n,

4) l = n, l′ = n, i.e., l = l′ = n.

We also denote the summation in the i-th part by Si(ρ, g; f)(x), i = 1, 2, 3, 4 respectively.
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By interchanging the variables l and l′ first and then interchanging the variables p and q in
the summation over l ̸= n, l′ = n, we note that the summation over l ̸= n, l′ = n is exactly the
same as the summation over l = n, l′ ̸= n.

Therefore,

S(ρ, g; f)(x) =
4∑
i=1

Si(ρ, g; f)(x) = S1(ρ, g; f)(x) + 2S2(ρ, g; f)(x) + S4(ρ, g; f)(x). (5.6)

We also set the notation Si(.), where the condition(s) within the first bracket indicates the
summation has been taken over all l, l′, n satisfying the condition(s) within the bracket, although
this notation has no specific meaning in general (because there will be no l, l′, n after the sum
is estimated). For example, S1(l ̸= n, l′ > n) will mean the summation has been taken over all
l, l′, n satisfying the condition l ̸= n, l′ > n.

5.3.1 Estimation for S1(ρ, g; f)(x)

We now estimate S1(ρ, g; f)(x). With the notations mentioned in Lemma 3.3.4, we have

S1(ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1
l ̸=n,l′ ̸=n

2U(l)U(l′)G(n)Lp(l, n)× Lq(l
′, n).

Using the same idea similar to that of equation (5.6), we get

S1(ρ, g; f)(x)

=S1(l > n, l′ > n) + S1(l > n, l′ < n) + S1(l < n, l′ > n) + S1(l < n, l′ < n)

=S1(l > n, l′ > n) + 2S1(l > n, l′ < n) + S1(l < n, l′ < n).

We estimate all three sums separately in the following lemmas.

Lemma 5.3.1. Let N and k be positive integers with k even. With ρ and g as defined earlier,
we have

S1(l > n, l′ > n) = O

(
(log log x)2

πN (x)2

)
+O

(
8ν(N)x8Lc

′
L2

kN

)
.

Lemma 5.3.2. Let N and k be positive integers with k even. With ρ and g as defined earlier,
we have

S1(l > n, l′ < n) = O

(
L log log x

πN (x)

)
+O

(
8ν(N)x8Lc

′
L2

kN

)
.

Lemma 5.3.3. Let N and k be positive integers with k even. With ρ and g as defined earlier,
we have

S1(l < n, l′ < n)

=
πN (x)(πN (x)− 1)

8πN (x)2L

∑
l≥1

2U(l)2G(l + 1) + O

(
L(log log x)2

πN (x)

)
+O

(
1

πN (x)L

)

+O

(
8ν(N)x(8L+4)c′

kN

)
+O

(
8ν(N)x8πN (x)c′LπN (x)

kN

)
,

as x→ ∞, where L≪ πN (x).

Combining Lemmas 5.3.1, 5.3.2 and 5.3.3, we obtain the following proposition.
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Proposition 5.3.4. Let N and k be positive integers with k even. With ρ and g as defined
earlier, we have

S1(ρ, g; f)(x)

=
πN (x)(πN (x)− 1)

4πN (x)2L

⌊L⌋∑
l=1

U(l)2G(l + 1) + O

(
L(log log x)2

πN (x)

)
+O

(
1

πN (x)L

)

+O

(
8ν(N)x(8πN (x)+4)c′

kN

)
,

as x→ ∞, where L≪ πN (x).

5.3.2 Estimation for S2(ρ, g; f)(x) = S3(ρ, g; f)(x)

We now estimate S2(ρ, g; f)(x). With the notations mentioned in Lemma 3.3.4, we have

S2(ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1
l=n,l′ ̸=n

2U(l)U(l′)G(n)Lp(l, n)× Lq(l
′, n).

Therefore,

S2(ρ, g; f)(x) = S2(l = n, l′ > n) + S2(l = n, l′ < n).

We estimate both sums S2(l = n, l′ > n), and S2(l = n, l′ < n) separately and then add
them together to obtain the following proposition.

Proposition 5.3.5. Let N and k be positive integers with k even. With ρ and g as defined
earlier, we have

S2(ρ, g; f)(x)

=− πN (x)(πN (x)− 1)

4πN (x)2L

⌊L⌋∑
l=1

U(l + 1)U(l)G(l + 1) + O

(
8ν(N)x(8L+8)c′

kN

)

+O

(
1

πN (x)L

)
+O

(
log log x

πN (x)

)
.

5.3.3 Estimation for S4(ρ, g; f)(x)

We first calculate S4(ρ, g; f)(x). With the notations mentioned in Lemma 3.3.4, we have

S4(ρ, g; f)(x) =
1

|FN,k|
∑

f∈FN,k

1

8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1
l=n=l′

2U(l)U(l′)G(n)Lp(l, n)× Lq(l
′, n).

Proposition 5.3.6. Let N and k be positive integers with k even. With ρ and g as defined
earlier, we have

S4(ρ, g; f)(x) =
πN (x)(πN (x)− 1)

4πN (x)2L

⌊L⌋∑
l=1

U(l)2G(l) + O

(
1

πN (x)L

)
+O

(
8ν(N)x8Lc

′

kN

)
.

Using equation (5.6), and combining Propositions 5.3.4, 5.3.5, and 5.3.6, we obtain the
following proposition.
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Proposition 5.3.7. Let N and k be positive integers with k even. With ρ and g as defined
earlier, we have

S(ρ, g; f)(x)

=
πN (x)(πN (x)− 1)

4πN (x)2L

⌊L⌋∑
l=1

U(l)2G(l + 1)−
⌊L⌋∑
l=1

2U(l + 1)U(l)G(l + 1) +

⌊L⌋∑
l=1

U(l)2G(l)


+O

(
1

πN (x)L

)
+O

(
L(log log x)2

πN (x)

)
+O

(
8ν(N)x(8πN (x)+8)c′

kN

)
.

5.4 Estimation for T (ρ, g; f)(x) = S(ρ, g; f)(x) + 2R(ρ, g; f)(x)

Combining Propositions 5.2.1 and 5.3.7, with equation (5.3), we obtain the following proposition.

Proposition 5.4.1. Let N and k be positive integers with k even. With ρ and g as defined
earlier, we have

T (ρ, g; f)(x)

=
πN (x)(πN (x)− 1)

4πN (x)2L

⌊L⌋∑
l=1

U(l)2G(l + 1)−
⌊L⌋∑
l=1

2U(l + 1)U(l)G(l + 1) +

⌊L⌋∑
l=1

U(l)2G(l)


+O

(
1

L

)
+O

(
L(log log x)2

πN (x)

)
+O

(
8ν(N)x(8πN (x)+8)c′

kN

)
,

as x→ ∞, where L≪ πN (x).

5.5 Average of R2(ρ, g; f)(x) over newforms for all levels

We now revisit Theorem 4.2.1 and restate it in the Theorem 5.5.3 for the convenience of the
reader.

5.5.1 Estimating the main term

Lemma 5.5.1. Let 0 < ψ < 1. With ρ as defined earlier,

(1) lim
x→∞

1

L

⌊L⌋∑
n=1

ρ̂

(
n

L

)2

cos 4nπψ =

{
(ρ∗ρ)(0)

2 , if ψ = 1
2

0, if ψ ̸= 1
2

,

(2) lim
x→∞

1

L

⌊L⌋∑
n=1

ρ̂

(
n

L

)2

=
(ρ ∗ ρ)(0)

2
,

(3) lim
x→∞

1

L

⌊L⌋∑
n=1

ρ̂

(
n

L

)2

sin 4nπψ = 0, where (ρ ∗ ρ)(0) =
∫ ∞

−∞
ρ(t)2 dt.

Proof. The proof follows from Theorem 2 of [BS19].

Using Lemma 5.5.1, we prove the following proposition.

Proposition 5.5.2. Let N and k be positive integers with k even and L is such that L = L(x) →
∞ as x→ ∞. Then, with ρ, g and f as defined earlier and for ψ ∈ (0, 1) ,

T (g, ρ)

4L
∼ CψA

2ĝ(0)(ρ ∗ ρ)(0),
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where A = 2 sin2 πψ, and

Cψ =

{
2 if ψ = 1

2 ,

1 if ψ ̸= 1
2 .

Proof. The proof follows from Theorem 2 of [BS19].

Theorem 5.5.3. Let us consider families FN,k with levels N = N(x) and even weights k = k(x).
Let g, ρ be real-valued, even functions ∈ C∞(R) in the Schwartz class with Fourier transforms
supported in the interval [−1, 1]. Let 0 < ψ < 1, ψ ̸= 1/2. Define A := 2 sin2 πψ.

(a) Let L = L(x) → ∞ as x→ ∞, and L≪ πN (x). Then

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)

=
T (g, ρ)

4L
+O

(
1

L

)
+O

(
L(log log x)2

πN (x)

)
+O

(
8ν(N)x(8πN (x)+8)c′

kN

)
,

where c′ is an absolute positive constant and

T (g, ρ) =
∑
l≥1

(U(l)− U(l − 1))2ĝ

(
l

πN (x)

)
with

U(l) = ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ).

(b) In particular, if we choose L(x) = o
(

πN (x)
(log log x)2

)
with L = L(x) → ∞ as x → ∞ and

families FN,k with levels N = N(x) and even weights k = k(x) such that

log
(
kN/8ν(N)

)
x

→ ∞, as x→ ∞,

then
1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x) ∼
T (g, ρ)

4L
, as x→ ∞.

Furthermore,
T (g, ρ)

4L
∼ A2G(0)(ρ ∗ ρ)(0), as x→ ∞.

Proof. Using equation (5.3), and Propositions 5.1.1, 5.1.2 and 5.3.7, we obtain the proof of (a).

We note that 8ν(N)x(8πN (x)+8)c′

kN ≪ 8ν(N)xEπN (x)c′

kN , for some constant E. Also,

lim
x→∞

8ν(N)xEπN (x)c′

kN
= 0 holds, if xEπN (x)c′ = o

(
kN/8ν(N)

)
, as x → ∞, which is true us-

ing Lemma 3.3.7.

Thus,
log

(
kN/8ν(N)

)
x → ∞, as x→ ∞, implies lim

x→∞

8ν(N)x(8πN (x)+8)c′

kN
= 0.

Since L(x) = o
(

πN (x)
(log log x)2

)
implies L(x) ≪ πN (x), and L(log log x)2

πN (x) , the proof follows from
Proposition 5.5.2 and part (a).
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Chapter 6

Second moment of the pair
correlation function R2(g, ρ; f )(x)

6.1 A brief overview

The goal of this chapter is to prove Theorem 4.3.1, which is the original contribution of this
thesis. As we saw before, Theorem 4.3.1 addresses the second moment of the pair correlation
function R2(ρ, g; f)(x), where

R2(ρ, g; f)(x) :=
L

8πN (x)

∑
(p,q):p ̸=q≤x

(p,N)=(q,N)=1

ρL(± θf (p)−ψ)ρL(± θf (q)−ψ)Gx(± θf (p)± θf (q)),

as defined in equation (4.5).

In this chapter, we will frequently use ∗̃ to denote the function ∗(ρ, g; f)(x). To find the
second moment of R2(ρ, g; f)(x) over newforms f ∈ FN,k, we first break R2(ρ, g; f)(x)

2 in three
parts, namely K(ρ, g; f)(x), L(ρ, g; f)(x), and M(ρ, g; f)(x) in equation (6.1) and then take the
average of each part over newforms f ∈ FN,k.

Section A.2 in Appendix A gives a quick reference to the terms mentioned in this chapter.

6.2 Second moment of R2(ρ, g; f)(x) and variance

The goal of this section is to prove Theorem 4.3.1.

Henceforth, in all the sums below, p, q, r and s will denote distinct primes coprime to N .
Also, for a finite set of primes {p1, p2, · · · , pt}, we denote

∑
p1,··· ,pt≤x all distinct
(p1,N)=1,··· ,(pt,N)=1

by
∑′

p1,··· ,pt≤x

.

Using equation (4.34), we obtain

(
R2(ρ, g; f)(x)

)2
=

 1

8πN (x)2L

∑′

p,q≤x

T1(p)T2(q)T3(p, q)

2

=
1

64πN (x)4L2

∑′

p,q≤x

∑′

r,s≤x

T1(p)T2(q)T3(p, q)T1(r)T2(s)T3(r, s)

=K(ρ, g; f)(x) + L(ρ, g; f)(x) +M(ρ, g; f)(x), (6.1)

95
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where
K(ρ, g; f)(x) :=

2

64πN (x)4L2

∑′

p,q≤x

T 2
1 (p)T

2
2 (q)T

2
3 (p, q),

L(ρ, g; f)(x) := 4

64πN (x)4L2

∑′

p,q,r≤x

T 2
1 (p)T2(q)T2(r)T3(p, q)T3(p, r),

and
M(ρ, g; f)(x) :=

1

64πN (x)4L2

∑′

p,q,r,s≤x

T1(p)T2(q)T3(p, q)T1(r)T2(s)T3(r, s).

The averages of each of these sums over newforms (denoted by ⟨·⟩) are evaluated in separate
sections below.

The estimation for the average of K(ρ, g; f)(x), which we denoted by
〈
K(ρ, g; f)(x)

〉
, is

addressed in Section 6.3 and the final estimate for
〈
K(ρ, g; f)(x)

〉
is presented in in Proposition

6.3.26.

The estimation for the average of L(ρ, g; f)(x) is addressed in Section 6.4 and the final
estimate for

〈
L(ρ, g; f)(x)

〉
is presented in Proposition 6.4.31.

The estimation for the average of M(ρ, g; f)(x) is addressed in Section 6.5 and the final
estimate for

〈
M(ρ, g; f)(x)

〉
is mentioned in Proposition 6.5.14. We also note that the contribu-

tion for the main term comes from the sum with four distinct primes, i.e.,
〈
M(ρ, g; f)(x)

〉
(see

equation (6.141)).

Finally, we combine all the estimates obtained in Propositions 6.3.26, 6.4.31 and 6.5.14
together to prove Theorem 6.5.15, which proves the first part of our main theorem on the second
moment of the local pair correlation function R2(ρ, g; f)(x), previously stated as Theorem 4.3.1
(a).

In Theorem 6.5.16, we find the variance of the local pair correlation function R2(ρ, g; f)(x),
which proves the second part of our main theorem, previously stated as Theorem 4.3.1 (b).

In Theorem 6.5.17, we show that the variance goes to 0 under the same growth conditions
on weights and levels for the families of Hecke newforms, as required for the convergence of the
first moment, and this proves the third part of our main theorem (Theorem 4.3.1 (c)). Theorem
6.5.17 gives us the optimal choice of L = L(x) and the growth condition on weights k = k(x)
and levels N = N(x), for which the second moment of R2(ρ, g; f)(x) is asymptotic to the square
of the expected value of R2(ρ, g; f)(x) and the variance goes to zero, as x→ ∞.

6.3 Estimation for
〈
K(ρ, g; f)(x)

〉
=
〈
(K1+2K2+K4)(ρ, g; f)(x)

〉
We first address

K(ρ, g; f)(x) =
1

32πN (x)4L2

∑′

p,q≤x

T 2
1 (p)T

2
2 (q)T

2
3 (p, q).

Here,
T 2
1 (p) =

∑
l1,l2≥0

U(l1)U(l2)af (p
2l1)af (p

2l2),

T 2
2 (q) =

∑
k1,k2≥0

U(k1)U(k2)af (q
2k1)af (q

2k2),

and
T 2
3 (p, q) =

∑
n1,n2≥0

G(n1)G(n2)A(p, q, n1)A(p, q, n2).

Thus,

K(ρ, g; f)(x) (6.2)
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=
1

32πN (x)4L2

∑′

p,q≤x

T 2
1 (p)T

2
2 (q)T

2
3 (p, q)

=
1

32πN (x)4L2

∑′

p,q≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥0

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, n1)A(p, q, n2).

The indices n1, n2 run up to πN (x) and we can break the summation into the following four
parts:

1) n1 = 0, n2 = 0,

2) n1 ̸= 0, n2 = 0,

3) n1 = 0, n2 ̸= 0,

4) n1 ̸= 0, n2 ̸= 0.

We also denote the sum in the i-th part by Ki(ρ, g; f)(x), i = 1, 2, 3, 4 respectively. We note
that the sum over n1, n2 where n1 = 0, n2 ̸= 0, is exactly the same as the sum over n1, n2 where
n1 ̸= 0, n2 = 0, that is, K2(ρ, g; f)(x) = K3(ρ, g; f)(x).

Therefore,

K(ρ, g; f)(x) =

4∑
i=1

Ki(ρ, g; f)(x) = K1(ρ, g; f)(x) + 2K3(ρ, g; f)(x) +K4(ρ, g; f)(x), (6.3)

where K1(ρ, g; f)(x), K3(ρ, g; f)(x), and K4(ρ, g; f)(x) are defined in Sections 6.3.1, 6.3.2, and
6.3.3 respectively.

We now prove a few propositions to evaluate each of the above sums. The following estimates
follow from Lemma 3.2.30, and will be used in Propositions 6.3.1 - 6.16.

Let u and v denote non-negative integers.

1

|FN,k|
∑

f∈FN,k

∑′

p,q≤x

(1)∑
(u,v)̸=(0,0)
u=0 or v=0

0≤u≤U
0≤v≤V

af (p
2uq2v) ≪ πN (x) log log x+

πN (x)2x(2U+2V )c′8ν(N)

kN
, (6.4)

and

1

|FN,k|
∑

f∈FN,k

∑′

p,q≤x

(0)∑
(u,v)

1≤u≤U
1≤v≤V

af (p
2uq2v) ≪ (log log x)2 +

πN (x)2x(2U+2V )c′8ν(N)

kN
. (6.5)

6.3.1 Estimation for
〈
K1(ρ, g; f)(x)

〉
Proposition 6.3.1. Let ρ, f, g be as defined earlier. For positive integers k and N with k even,

1

|FN,k|
∑

f∈FN,k

K1(ρ, g; f)(x) (6.6)

=
1

|FN,k|
∑

f∈FN,k

1

32πN (x)4L2

∑
l1,l2≥0

∑
k1,k2≥0

16U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)

≪ 1

πN (x)2
+
L log log x

πN (x)3
+
L2(log log x)2

πN (x)4
+
L2x8Lc

′
8ν(N)

πN (x)3kN
,
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where c′ > 3
2 is an absolute constant.

Proof. We note that each of the indices in the above sum l1, l2, k1 and k2 run up to L.

By Lemma 3.3.6,

af (p
2l1)af (p

2l2) =

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i).

Thus,∑
l1,l2≥0

∑
k1,k2≥0

16U(l1)U(l2)U(k1)U(k2)G(0)
2
∑′

p,q≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2) (6.7)

=
∑

l1,l2≥0

∑
k1,k2≥0

16U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q≤x

min{2l1,2l2}∑
i=0

min{2k1,2k2}∑
j=0

af (p
2l1+2l2−2iq2k1+2k2−2j).

The innermost part in each of the above terms is of the form af (p
2uq2v) where both 2u and 2v

are at most 4L. We first collect those terms with u = v = 0 in the sum

∑
l1,l2≥0

∑
k1,k2≥0

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i)

min{2k1,2k2}∑
j=0

af (q
2k1+2k2−2j).

Note that the exponent u = 0 only appears when l1 = l2 and when i = 2l1 = 2l2. So, the part
of the sum∑

l1,l2≥0

∑
k1,k2≥0

16U(l1)U(l2)U(k1)U(k2)G(0)
2
∑′

p,q≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)

with u = v = 0 is ∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2πN (x)(πN (x)− 1).

We see that

1

32πN (x)4L2

∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2πN (x)(πN (x)− 1)

≪ L2πN (x)2

πN (x)4L2
≪ 1

πN (x)2
.

Next, we collect those terms with (u, v) ̸= (0, 0), but either u = 0 or v = 0. If u = 0, then
l1 = l2 and i = 2l1 = 2l2. Since v ̸= 0, the contribution of these terms to (6.7) is

1

|FN,k|
∑

f∈FN,k

1

32πN (x)4L2

∑
l1≥0

∑
k1,k2≥0
k1 ̸=k2

16U(l1)
2U(k1)U(k2)G(0)

2

×
∑′

p,q≤x

min{2k1,2k2}∑
j=0

af (p
0)af (q

2k1+2k2−2j)

=
1

2πN (x)4L2

∑
l1≥0

∑
k1,k2≥0
k1 ̸=k2

U(l1)
2U(k1)U(k2)G(0)

2

×
∑′

p,q≤x

min{2k1,2k2}∑
j=0

1

|FN,k|
∑

f∈FN,k

af (q
2k1+2k2−2j)
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=
1

2πN (x)4L2

∑
l1≥0

∑
k1,k2≥0
k1 ̸=k2

U(l1)
2U(k1)U(k2)G(0)

2

(
πN (x) log log x+ πN (x)2x4Lc

′ 8ν(N)

kN

)

≪ 1

πN (x)4L2

∑
l1≥0

∑
k1,k2≥0
k1 ̸=k2

(
πN (x) log log x+ πN (x)2x4Lc

′ 8ν(N)

kN

)

≪ L3

πN (x)4L2

(
πN (x) log log x+ πN (x)2x4Lc

′ 8ν(N)

kN

)

≪L log log x

πN (x)3
+
Lx4Lc

′

πN (x)2
8ν(N)

kN
.

by (6.4).

The estimate for the contribution of terms with u ̸= 0 and v = 0 is similar.

We now collect those terms in (6.7) such that u and v are both non-zero. By (6.5), the
contribution of these terms to (6.7) is

≪ L4

πN (x)4L2

(
(log log x)2 + πN (x)2x8Lc

′ 8ν(N)

kN

)

≪L2(log log x)2

πN (x)4
+
L2x8Lc

′

πN (x)2
8ν(N)

kN
.

Finally,

1

|FN,k|
∑

f∈FN,k

K1(ρ, g; f)(x)

≪ 1

πN (x)2
+
L log log x

πN (x)3
+
Lx4Lc

′

πN (x)2
8ν(N)

kN
+
L2(log log x)2

πN (x)4
+
L2x8Lc

′

πN (x)2
8ν(N)

kN

≪ 1

πN (x)2
+
L log log x

πN (x)3
+
L2(log log x)2

πN (x)4
+
L2x8Lc

′
8ν(N)

πN (x)2kN
.

6.3.2 Estimation for
〈
(K2 +K3)(ρ, g; f)(x)

〉
We now look at the part of the sum K(ρ, g; f)(x) with n1 = 0 and n2 ̸= 0, i.e., we now estimate
K3(ρ, g; f)(x). In this case, the innermost term

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, n1)A(p, q, n2)

=8af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)(af (p
2n2)− af (p

2n2−2))(af (q
2n2)− af (q

2n2−2))

=8{af (p2l1)af (p2l2)(af (p2n2)− af (p
2n2−2))}{af (q2k1)af (q2k2)(af (q2n2)− af (q

2n2−2))}.

We want to find an estimate for

K3(ρ, g; f)(x) (6.8)

=
1

32πN (x)4L2

∑′

p,q≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n2≥1

U(l1)U(l2)U(k1)U(k2)G(0)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, 0)A(p, q, n2)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n2≥1

U(l1)U(l2)U(k1)U(k2)G(0)G(n2)
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× af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)(af (p
2n2)− af (p

2n2−2))(af (q
2n2)− af (q

2n2−2))

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)
∑

l1,l2≥0

U(l1)U(l2)af (p
2l1)af (p

2l2)(af (p
2n2)− af (p

2n2−2))

∑
k1,k2≥0

U(k1)U(k2)af (q
2k1)af (q

2k2)(af (q
2n2)− af (q

2n2−2))

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)A(ρ, g; f ;n2, p)A(ρ, g; f ;n2, q),

where for n ≥ 1, and for any prime r,

A(ρ, g; f ;n, r) :=
∑

l1,l2≥0

U(l1)U(l2)af (r
2l1)af (r

2l2)(af (r
2n)− af (r

2n−2)). (6.9)

Using Lemma 3.3.5, for l2 ≥ n2, we have

af (p
2l1)af (p

2l2)(af (p
2n2)− af (p

2n2−2))

=af (p
2l1)(af (p

2l2−2n2) + af (p
2l2+2n2))

=af (p
2l1)af (p

2l2−2n2) + af (p
2l1)af (p

2l2+2n2).

We note that

1) The product af (p2l1)af (p2l2−2n2) gives 1, only if, l1 = l2 − n2, i.e., l1 − l2 = −n2, and

2) The product af (p2l1)af (p2l2+2n2) gives 1, only if, l1 = l2 + n2, i.e., l1 − l2 = n2.

Using Lemma 3.3.5, for l2 < n2, we have

af (p
2l1)af (p

2l2)(af (p
2n2)− af (p

2n2−2))

=af (p
2l1)(af (p

2l2+2n2)− af (p
2n2−2l2−2))

=af (p
2l1)af (p

2l2+2n2)− af (p
2l1)af (p

2n2−2l2−2)).

We note that

1) The product af (p2l1)af (p2l2+2n2) gives 1, only if, l1 = l2 + n2, i.e., l1 − l2 = n2, and

2) The product af (p2l1)af (p2n2−2l2−2) gives 1, only if, l1 = n2− l2−1, i.e., l1+ l2 = n2−1.

For any prime r and positive integer n2, we define

A1(ρ, g; f ;n2, r) :=
∑

l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (r
2l1)af (r

2l2+2n2),
(6.10)

A2(ρ, g; f ;n2, r) :=
∑

l1,l2≥0,l2≥n2
l1−l2 ̸=−n2

U(l1)U(l2)af (r
2l1)af (r

2l2−2n2),

A3(ρ, g; f ;n2, r) := −
∑

l1,l2≥0,l2<n2
l1+l2 ̸=n2−1

U(l1)U(l2)af (r
2l1)af (r

2n2−2l2−2).

For a positive integer n2, we define

B1(ρ, g; f ;n2) := 2
∑
l≥0

U(l)U(l + n2), (6.11)
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B2(ρ, g; f ;n2) :=

n2−1∑
l≥0

U(l)U(n2 − 1− l). (6.12)

We will write Ai(n2, r) and Bj(n2) for Ai(ρ, g; f ;n2, r) and Bj(ρ, g; f ;n2) respectively, i =
1, 2, 3 and j = 1, 2.

For any prime r and fixed integer n2 ≥ 1,

A(ρ, g; f ;n2, r) (6.13)

=
∑

l1,l2≥0

U(l1)U(l2)af (r
2l1)af (r

2l2)(af (r
2n2)− af (r

2n2−2))

=
∑

l1,l2≥0,l2≥n2

U(l1)U(l2)(af (r
2l1)af (r

2l2−2n2) + af (r
2l1)af (r

2l2+2n2))

+
∑

l1,l2≥0,l2<n2

U(l1)U(l2)(−af (r2l1)af (r2n2−2l2−1) + af (r
2l1)af (r

2l2+2n2))

=
∑

l1,l2≥0,l2≥n2
l1−l2=−n2

U(l1)U(l2) +
∑

l1,l2≥0,l2≥n2
l1−l2 ̸=−n2

U(l1)U(l2)af (r
2l1)af (r

2l2−2n2)

+
∑

l1,l2≥0,l2≥n2
l1−l2=n2

U(l1)U(l2) +
∑

l1,l2≥0,l2≥n2
l1−l2 ̸=n2

U(l1)U(l2)af (r
2l1)af (r

2l2+2n2)

+
∑

l1,l2≥0,l2<n2
l1−l2=n2

U(l1)U(l2) +
∑

l1,l2≥0,l2<n2
l1−l2 ̸=n2

U(l1)U(l2)af (r
2l1)af (r

2l2+2n2)

−
∑

l1,l2≥0,l2<n2
l1+l2=n2−1

U(l1)U(l2)−
∑

l1,l2≥0,l2<n2
l1+l2 ̸=n2−1

U(l1)U(l2)af (r
2l1)af (r

2n2−2l2−2)

=
∑

l1,l2≥0,l2≥n2
l1−l2=−n2

U(l1)U(l2) +
∑

l1,l2≥0,l2≥n2
l1−l2 ̸=−n2

U(l1)U(l2)af (r
2l1)af (r

2l2−2n2)

+
∑

l1,l2≥0,
l1−l2=n2

U(l1)U(l2) +
∑

l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (r
2l1)af (r

2l2+2n2)

−
∑

l1,l2≥0,l2<n2
l1+l2=n2−1

U(l1)U(l2)−
∑

l1,l2≥0,l2<n2
l1+l2 ̸=n2−1

U(l1)U(l2)af (r
2l1)af (r

2n2−2l2−2)

=
∑
l≥0

U(l)U(l + n2) +
∑

l1,l2≥0,l2≥n2
l1−l2 ̸=−n2

U(l1)U(l2)af (r
2l1)af (r

2l2−2n2)

+
∑
l≥0

U(l)U(l + n2) +
∑

l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (r
2l1)af (r

2l2+2n2)

−
n2−1∑
l≥0

U(l)U(n2 − 1− l)−
∑

l1,l2≥0,l2<n2
l1+l2 ̸=n2−1

U(l1)U(l2)af (r
2l1)af (r

2n2−2l2−2)

=2
∑
l≥0

U(l)U(l + n2)−
n2−1∑
l≥0

U(l)U(n2 − 1− l) +

3∑
i=1

Ai(n2, r)

=B1(n2)−B2(n2) +

3∑
i=1

Ai(n2, r).
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We note that

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)A1(n2, p)A1(n2, q)

=
1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)∑
l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (p
2l1)af (p

2l2+2n2)×
∑

k1,k2≥0
k1−k2 ̸=n2

U(k1)U(k2)af (q
2k1)af (q

2k2+2n2)

=
1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)
∑

l1,l2≥0
l1−l2 ̸=n2

∑
k1,k2≥0
k1−k2 ̸=n2

U(l1)U(l2)U(k1)U(k2)

l1+l2+n2∑
t=|l1−(l2+n2)|

af (p
2t)×

k1+k2+n2∑
t′=|k1−(k2+n2)|

af (q
2t′)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)
∑

l1,l2≥0
l1−l2 ̸=n2

∑
k1,k2≥0
k1−k2 ̸=n2

U(l1)U(l2)U(k1)U(k2)

l1+l2+n2∑
t=|l1−(l2+n2)|

k1+k2+n2∑
t′=|k1−(k2+n2)|

 1

|FN,k|
∑

f∈FN,k

af (p
2tq2t

′
)


≪ 1

πN (x)4L2

∑′

p,q≤x

∑
n2≥1

∑
l1,l2≥0
l1−l2 ̸=n2

∑
k1,k2≥0
k1−k2 ̸=n2

l1+l2+n2∑
t=|l1−(l2+n2)|

k1+k2+n2∑
t′=|k1−(k2+n2)|

(
1

ptqt′
+

8ν(N)p2tc
′
q2t

′c′

kN

)

≪ 1

πN (x)4L2

∑′

p,q≤x

∑
n2≥1

(
1

p
+

1

p2
+ · · ·

)
L

(
1

q
+

1

q2
+ · · ·

)
L+

1

πN (x)4L2

∑′

p,q≤x

∑
n2≥1∑

l1,l2≥0
l1−l2 ̸=n2

∑
k1,k2≥0
k1−k2 ̸=n2

(l1 + l2 + n2)(k1 + k2 + n2)

(
8ν(N)p2(l1+l2+n2)c

′
q2(k1+k2+n2)c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q≤x

∑
n2≥1

(
1

p
+

1

p2
+ · · ·

)
L

(
1

q
+

1

q2
+ · · ·

)
L

+
1

πN (x)4L2

∑′

p,q≤x

∑
n2≥1

L4πN (x)2

(
8ν(N)(pq)2(2L+n2)c

′

kN

)

≪ 1

πN (x)4

∑
n2≥1

∑′

p,q≤x

1

pq

+
1

πN (x)2

∑′

p,q≤x

∑
n2≥1

L2

(
8ν(N)(x2)2(2L+πN (x))c′

kN

)

≪ (log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x(8L+4πN (x))c′

kN

)
.

A similar calculation holds when A1(n2, p)A1(n2, q) is replaced by Ai(n2, p)Aj(n2, q), where
i = 1, 2, 3 and j = 1, 2, 3. Hence,

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

3∑
i=1

3∑
j=1

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)Ai(n2, p)Aj(n2, q) (6.14)
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≪ (log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x(8L+4πN (x))c′

kN

)
.

Therefore, using equations (6.8) and (6.14), we obtain

1

|FN,k|
∑

f∈FN,k

K3(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)A(ρ, g; f ;n2, p)A(ρ, g; f ;n2, q)

=
1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)

B1(n2)−B2(n2) +

3∑
i=1

Ai(n2, p)


×

B1(n2)−B2(n2) +

3∑
i=1

Ai(n2, q)


=

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)
(
B1(n2)−B2(n2)

)2
+

1

|FN,k|
∑

f∈FN,k

16

32πN (x)4L2

3∑
i=1

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)Ai(n2, p)B1(n2)

− 1

|FN,k|
∑

f∈FN,k

16

32πN (x)4L2

3∑
i=1

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)Ai(n2, p)B2(n2)

+
1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

3∑
i=1

3∑
j=1

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)Ai(n2, p)Aj(n2, q)

≪ 1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

(2L+ L)
2

+

3∑
i=1

2∑
j=1

1

|FN,k|
∑

f∈FN,k

16

32πN (x)4L2

∑′

p,q≤x

∑
n2≥1

LL2

+
(log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x((8L+4)+4πN (x))c′

kN

)

≪ 1

πN (x)2L2

∑
n2≥1

(2L+ L)
2
+

1

πN (x)2L2

∑
n2≥1

LL2

+
(log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x(16L+4πN (x))c′

kN

)

≪ 1

πN (x)2L2
L3πN (x) +

(log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x((8L+4)+4πN (x))c′

kN

)

≪ L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x(16L+4πN (x))c′

kN

)
.

Thus,
1

|FN,k|
∑

f∈FN,k

(K2 +K3)(ρ, g; f)(x) (6.15)

=
2

|FN,k|
∑

f∈FN,k

K2(ρ, g; f)(x)
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≪ L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x(16L+4πN (x))c′

kN

)
.

6.3.3 Estimation for
〈
K4(ρ, g; f)(x)

〉
We now look at the part of the sum K(ρ, g; f)(x) with n1 ̸= 0 and n2 ̸= 0, i.e., we now estimate
K4(ρ, g; f)(x).

For n1, n2 ≥ 1 and for any prime p, we define

T (p, n1, n2) := (af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2)).

Thus,
A(p, q, n1)A(p, q, n2) = 4T (p, n1, n2)T (q, n1, n2).

In this case, the innermost term then becomes

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, n1)A(p, q, n2)

=4af (p
2l1)af (p

2l2)(af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2))

× af (q
2k1)af (q

2k2)(af (q
2n1)− af (q

2n1−2))(af (q
2n2)− af (q

2n2−2))

=4af (p
2l1)af (p

2l2)T (p, n1, n2)af (q
2k1)af (q

2k2)T (q, n1, n2)

=4k(p, n1, n2, l1, l2)k(q, n1, n2, l1, l2),

where for n1, n2 ≥ 1, l1, l2 ≥ 0 and for any prime r,

k(r, n1, n2, l1, l2) := af (r
2l1)af (r

2l2)T (r, n1, n2).

For n1, n2 ≥ 1 and for any prime r, we define

k(r, n1, n2) :=
∑

l1,l2≥0

U(l1)U(l2)k(r, n1, n2, l1, l2).

Therefore, k(r, n1, n2) = k(r, n2, n1).

We want to find an estimate for

K4(ρ, g; f)(x) (6.16)

=
1

32πN (x)4L2

∑′

p,q≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, n1)A(p, q, n2)

=
4

32πN (x)4L2

∑′

p,q≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

k(p, n1, n2, l1, l2)k(q, n1, n2, l1, l2)

=
4

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1

G(n1)G(n2)
∑

l1,l2≥0

U(l1)U(l2)k(p, n1, n2, l1, l2)∑
k1,k2≥0

U(k1)U(k2)k(q, n1, n2, l1, l2)

=
4

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2)
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+
4

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2)

=C(ρ, g; f)(x) +D(ρ, g; f)(x),

where

C(ρ, g; f)(x) := 8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2). (6.17)

and

D(ρ, g; f)(x) :=
4

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2). (6.18)

We now find an estimate for

C(ρ, g; f)(x) := 8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2).

To estimate C(ρ, g; f)(x), we first find estimate for k(p, n1, n2) in Proposition 6.3.8, where

k(p, n1, n2)

=
∑

l1,l2≥0

U(l1)U(l2)k(p, n1, n2, l1, l2)

=
∑

l1,l2≥0

U(l1)U(l2)af (p
2l1)af (p

2l2)T (p, n1, n2)

=
∑

l1,l2≥0

U(l1)U(l2)af (p
2l1)af (p

2l2)(af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2)).

In what follows below in this section, we always have n2 > n1.

We also note that since the summation is over l1, l2, where the indexes l1 and l2 run up to
⌊L⌋, we can break the summation into the following four parts:

1) l1 ≥ n1, l2 ≥ n2,

2) l1 ≥ n1, l2 < n2,

3) l1 < n1, l2 ≥ n2,

4) l1 < n1, l2 < n2.

We denote the summation in the i-th part by αi(ρ, g; f, n1, n2, p), i = 1, 2, 3, 4 respectively.

We will write αi(n1, n2, p) for αi(ρ, g; f, n1, n2, p), i = 1, 2, 3, 4, in short.

Therefore,

k(p, n1, n2) =

4∑
i=1

αi(n1, n2, p).

We now estimate αi(n1, n2, r) for each i = 1, 2, 3, 4 in the following lemmas. We begin with
α1(n1, n2, r).

Lemma 6.3.2. Let α1(n1, n2, r) be the part of k(r, n1, n2), where the summation is taken over
l1, l2 ≥ 0, with l1 ≥ n1, l2 ≥ n2, and the indexes l1 and l2 run up to ⌊L⌋. Then, for any prime r
and positive integers n1, n2 with n2 ≥ n1,

α1(n1, n2, r)
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=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1+n2

U(l1)U(l2)

+
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1−n2

U(l1)U(l2) + (X1 +X2 +X3 +X4)(ρ, g; f ;n1, n2, r),

where Xi(ρ, g; f ;n1, n2, r) (i = 1, 2, 3, 4) are defined in equations (6.19), (6.20), (6.21), and (6.22)
respective]y.

Proof. Using Corollary 3.3.5, for any prime r and integers l1, l2 with l1 ≥ n1, l2 ≥ n2, we have

af (r
2l1)af (r

2l2)(af (r
2n1)− af (r

2n1−2))(af (r
2n2)− af (r

2n2−2))

=af (r
2l1)(af (r

2n1)− af (r
2n1−2))af (r

2l2)(af (r
2n2)− af (r

2n2−2))

=(af (r
2l1−2n1) + af (r

2l1+2n1))(af (r
2l2−2n2) + af (r

2l2+2n2))

=af (r
2l1−2n1)af (r

2l2−2n2) + af (r
2l1−2n1)af (r

2l2+2n2)

+af (r
2l1+2n1)af (r

2l2−2n2) + af (r
2l1+2n1)af (r

2l2+2n2).

We note that

1) The product af (r2l1−2n1)af (r
2l2−2n2) gives 1, only if l1−n1 = l2−n2, i.e., l1−l2 = n1−n2,

2) The product af (r2l1−2n1)af (r
2l2+2n2) gives 1, only if l1−n1 = l2+n2, i.e., l1−l2 = n1+n2,

3) The product af (r2l1+2n1)af (r
2l2−2n2) gives 1, only if l1 + n1 = l2 − n2, i.e., l1 − l2 =

−n1 − n2, and

4) The product af (r2l1+2n1)af (r
2l2+2n2) gives 1, only if l1+n1 = l2+n2, i.e., l1−l2 = n2−n1.

For any prime r and positive integers n1, n2 with n2 ≥ n1, we define

X1(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2 ̸=n2−n1

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2+2n2), (6.19)

X2(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2 ̸=−n1−n2

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2−2n2), (6.20)

X3(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2 ̸=n1+n2

U(l1)U(l2)af (r
2l1−2n1)af (r

2l2+2n2), (6.21)

and

X4(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2 ̸=n1−n2

U(l1)U(l2)af (r
2l1−2n1)af (r

2l2−2n2). (6.22)

We will write Xi(n1, n2, r) for Xi(ρ, g; f ;n1, n2, r), i = 1, 2, 3, 4.
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For any prime r and positive integers n1, n2 with n2 ≥ n1,

α1(n1, n2, r)

=α1(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1≥n1,l2≥n2

U(l1)U(l2)af (r
2l1)af (r

2l2)(af (r
2n1)− af (r

2n1−2))(af (r
2n2)− af (r

2n2−2))

=
∑

l1,l2≥0
l1≥n1,l2≥n2

U(l1)U(l2)
{
af (r

2l1−2n1)af (r
2l2−2n2) + af (r

2l1−2n1)af (r
2l2+2n2)+

af (r
2l1+2n1)af (r

2l2−2n2) + af (r
2l1+2n1)af (r

2l2+2n2)
}

=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +X1(ρ, g; f ;n1, n2, r) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2) +X2(ρ, g; f ;n1, n2, r)

+
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1+n2

U(l1)U(l2) +X3(ρ, g; f ;n1, n2, r) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1−n2

U(l1)U(l2) +X4(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1+n2

U(l1)U(l2)

+
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1−n2

U(l1)U(l2) + (X1 +X2 +X3 +X4)(ρ, g; f ;n1, n2, r).

(6.23)

Lemma 6.3.3. Let α2(n1, n2, r) be the part of k(r, n1, n2), where the summation is taken over
l1, l2 ≥ 0, with l1 ≥ n1, l2 < n2, and the indexes l1 and l2 run up to ⌊L⌋. Then, for any prime r
and positive integers n1, n2 with n2 ≥ n1,

α2(n1, n2, r)

=
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n1+n2

U(l1)U(l2)

−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n1+n2−1

U(l1)U(l2) + (Y1 + Y2 + Y3 + Y4)(ρ, g; f ;n1, n2, r),

where Yi(ρ, g; f ;n1, n2, r) (i = 1, 2, 3, 4) are defined in equations (6.24), (6.25), (6.26), and (6.27)
respective]y.

Proof. Using Corollary 3.3.5, for any prime r and integers l1, l2 with l1 ≥ n1, l2 < n2, we have

af (r
2l1)af (r

2l2)(af (r
2n1)− af (r

2n1−2))(af (r
2n2)− af (r

2n2−2))

=af (r
2l1)(af (r

2n1)− af (r
2n1−2))af (r

2l2)(af (r
2n2)− af (r

2n2−2))

=(af (r
2l1−2n1) + af (r

2l1+2n1))(af (r
2l2+2n2)− af (r

2n2−2l2−2))

=af (r
2l1+2n1)af (r

2l2+2n2)− af (r
2l1+2n1)af (r

2n2−2l2−2)

+af (r
2l1−2n1)af (r

2l2+2n2)− af (r
2l1−2n1)af (r

2n2−2l2−2).

We note that
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1) The product af (r2l1+2n1)af (r
2l2+2n2) gives 1, only if l1+n1 = l2+n2, i.e., l1−l2 = n2−n1,

2) The product af (r2l1+2n1)af (r
2n2−2l2−2) gives 1, only if l1 + n1 = n2 − l2 − 1, i.e.,

l1 + l2 = n2 − n1 − 1,

3) The product af (r2l1−2n1)af (r
2l2+2n2) gives 1, only if l1−n1 = l2+n2, i.e., l1−l2 = n2+n1,

and

4) The product af (r2l1−2n1)af (r
2n2−2l2−2) gives 1, only if l1 − n1 = n2 − l2 − 1, i.e.,

l1 + l2 = n2 + n1 − 1.

For any prime r and positive integers n1, n2 with n2 ≥ n1, we define

Y1(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2 ̸=n2−n1

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2+2n2), (6.24)

Y2(ρ, g; f ;n1, n2, r) := −
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2 ̸=n2−n1−1

U(l1)U(l2)af (r
2l1+2n1)af (r

2n2−2l2−2), (6.25)

Y3(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2 ̸=n1+n2

U(l1)U(l2)af (r
2l1−2n1)af (r

2l2+2n2), (6.26)

and

Y4(ρ, g; f ;n1, n2, r) := −
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2 ̸=n1+n2−1

U(l1)U(l2)af (r
2l1−2n1)af (r

2n2−2l2−2). (6.27)

We will write Yi(n1, n2, r) for Yi(ρ, g; f ;n1, n2, r), i = 1, 2, 3, 4.

For any prime r and positive integers n1, n2 with n2 ≥ n1,

α2(n1, n2, r) (6.28)
=α2(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1≥n1,l2<n2

U(l1)U(l2)af (p
2l1)af (p

2l2)(af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2))

=
∑

l1,l2≥0
l1≥n1,l2<n2

U(l1)U(l2)
{
af (r

2l1+2n1)af (r
2l2+2n2)− af (r

2l1+2n1)af (r
2n2−2l2−2)+

af (r
2l1−2n1)af (r

2l2+2n2)− af (r
2l1−2n1)af (r

2n2−2l2−2)
}

=
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2) + Y1(ρ, g; f ;n1, n2, r)−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2) + Y2(ρ, g; f ;n1, n2, r)

+
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n1+n2

U(l1)U(l2) + Y3(ρ, g; f ;n1, n2, r)−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n1+n2−1

U(l1)U(l2) + Y4(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n1+n2

U(l1)U(l2)
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−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n1+n2−1

U(l1)U(l2) + (Y1 + Y2 + Y3 + Y4)(ρ, g; f ;n1, n2, r).

Lemma 6.3.4. Let α3(n1, n2, r) be the part of k(r, n1, n2), where the summation is taken over
l1, l2 ≥ 0, with l1 < n1, l2 ≥ n2, and the indexes l1 and l2 run up to ⌊L⌋. Then, for any prime r
and positive integers n1, n2 with n2 ≥ n1,

α3(n1, n2, r)

=
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1−n2−1

U(l1)U(l2)

−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1+n2−1

U(l1)U(l2) + (Z1 + Z2 + Z3 + Z4)(ρ, g; f ;n1, n2, r),

where Zi(ρ, g; f ;n1, n2, r) (i = 1, 2, 3, 4) are defined in equations (6.29), (6.30), (6.31), and (6.32)
respective]y.

Proof. Using Corollary 3.3.5, for any prime r and integers l1, l2 with l1 < n1, l2 ≥ n2, we have

af (r
2l1)af (r

2l2)(af (r
2n1)− af (r

2n1−2))(af (r
2n2)− af (r

2n2−2))

=af (r
2l1)(af (r

2n1)− af (r
2n1−2))af (r

2l2)(af (r
2n2)− af (r

2n2−2))

=(af (r
2l1+2n1)− af (r

2n1−2l1−2))(af (r
2l2−2n2) + af (r

2l2+2n2))

=af (r
2l1+2n1)af (r

2l2+2n2) + af (r
2l1+2n1)af (r

2l2−2n2)

−af (r2n1−2l1−2)af (r
2l2+2n2)− af (r

2n1−2l1−2)af (r
2l2−2n2).

We note that

1) The product af (r2l1+2n1)af (r
2l2+2n2) gives 1, only if l1+n1 = l2+n2, i.e., l1−l2 = n2−n1,

2) The product af (r2l1+2n1)af (r
2l2−2n2) gives 1, only if l1 + n1 = l2 − n2, i.e., l1 − l2 =

−n1 − n2,

3) The product af (r2n1−2l1−2)af (r
2l2+2n2) gives 1, only if n1 − l1 − 1 = l2 + n2, i.e.,

l1 + l2 = n1 − n2 − 1, and

4) The product af (r2n1−2l1−2)af (r
2l2−2n2) gives 1, only if n1 − l1 − 1 = l2 − n2, i.e.,

l1 + l2 = n1 + n2 − 1.

For any prime r and positive integers n1, n2 with n2 ≥ n1, we define

Z1(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2 ̸=n2−n1

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2+2n2), (6.29)

Z2(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2 ̸=−n1−n2

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2−2n2), (6.30)

Z3(ρ, g; f ;n1, n2, r) := −
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2 ̸=n1−n2−1

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2l2+2n2), (6.31)
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and

Z4(ρ, g; f ;n1, n2, r) := −
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2 ̸=n1+n2−1

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2l2−2n2). (6.32)

We will write Zi(n1, n2, r) for Zi(ρ, g; f ;n1, n2, r), i = 1, 2, 3, 4.

For any prime r and positive integers n1, n2 with n2 ≥ n1,

α3(n1, n2, r) (6.33)
=α3(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1<n1,l2≥n2

U(l1)U(l2)af (p
2l1)af (p

2l2)(af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2))

=
∑

l1,l2≥0
l1<n1,l2≥n2

U(l1)U(l2)
{
af (r

2l1+2n1)af (r
2l2+2n2) + af (r

2l1+2n1)af (r
2l2−2n2)

− af (r
2n1−2l1−2)af (r

2l2+2n2)− af (r
2n1−2l1−2)af (r

2l2−2n2)
}

=
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2)

−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1−n2−1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1+n2−1

U(l1)U(l2)

+Z1(ρ, g; f ;n1, n2, r) + Z2(ρ, g; f ;n1, n2, r) + Z3(ρ, g; f ;n1, n2, r) + Z4(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1−n2−1

U(l1)U(l2)

−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1+n2−1

U(l1)U(l2) + (Z1 + Z2 + Z3 + Z4)(ρ, g; f ;n1, n2, r).

Lemma 6.3.5. Let α3(n1, n2, r) be the part of k(r, n1, n2), where the summation is taken over
l1, l2 ≥ 0, with l1 < n1, l2 < n2, and the indexes l1 and l2 run up to ⌊L⌋. Then, for any prime r
and positive integers n1, n2 with n2 ≥ n1,

α4(n1, n2, r)

=
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n1−n2−1

U(l1)U(l2)

+
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n1−n2

U(l1)U(l2) + (W1 +W2 +W3 +W4)(ρ, g; f ;n1, n2, r),

where Wi(ρ, g; f ;n1, n2, r) (i = 1, 2, 3, 4) are defined in equations (6.34), (6.35), (6.36), and
(6.37) respective]y.

Proof. Using Corollary 3.3.5, for any prime r and integers l1, l2 with l1 < n1, l2 < n2, we have

af (r
2l1)af (r

2l2)(af (r
2n1)− af (r

2n1−2))(af (r
2n2)− af (r

2n2−2))

=af (r
2l1)(af (r

2n1)− af (r
2n1−2))af (r

2l2)(af (r
2n2)− af (r

2n2−2))
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=(af (r
2l1+2n1)− af (r

2n1−2l1−2))(af (r
2l2+2n2)− af (r

2n2−2l2−2))

=af (r
2l1+2n1)af (r

2l2+2n2)− af (r
2l1+2n1)af (r

2n2−2l2−2)

−af (r2n1−2l1−2)af (r
2l2+2n2) + af (r

2n1−2l1−2)af (r
2n2−2l2−2).

We note that

1) The product af (r2l1+2n1)af (r
2l2+2n2) gives 1, only if l1+n1 = l2+n2, i.e., l1−l2 = n2−n1,

2) The product af (r2l1+2n1)af (r
2n2−2l2−2) gives 1, only if l1 + n1 = n2 − l2 − 1, i.e.,

l1 + l2 = n2 − n1 − 1,

3) The product af (r2n1−2l1−2)af (r
2l2+2n2) gives 1, only if n1 − l1 − 1 = l2 + n2, i.e.,

l1 + l2 = n1 − n2 − 1, and

4) The product af (r2n1−2l1−2)af (r
2n2−2l2−2) gives 1, only if n1 − l1 − 1 = n2 − l2 − 1, i.e.,

l1 + l2 = n1 − n2.

For any prime r and positive integers n1, n2 with n2 ≥ n1, we define

W1(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2 ̸=n2−n1

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2+2n2), (6.34)

W2(ρ, g; f ;n1, n2, r) := −
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2 ̸=n2−n1−1

U(l1)U(l2)af (r
2l1+2n1)af (r

2n2−2l2−2), (6.35)

W3(ρ, g; f ;n1, n2, r) := −
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2 ̸=n1−n2−1

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2l2+2n2), (6.36)

W4(ρ, g; f ;n1, n2, r) :=
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2 ̸=n1−n2

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2n2−2l2−2). (6.37)

We will write Wi(n1, n2, r) for Wi(ρ, g; f ;n1, n2, r), i = 1, 2, 3, 4.

For any prime r and positive integers n1, n2 with n2 ≥ n1,

α4(n1, n2, r) (6.38)
=α4(ρ, g; f ;n1, n2, r)

=
∑

l1,l2≥0
l1<n1,l2<n2

U(l1)U(l2)af (p
2l1)af (p

2l2)(af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2))

=
∑

l1,l2≥0
l1<n1,l2<n2

U(l1)U(l2)
{
af (r

2l1+2n1)af (r
2l2+2n2)− af (r

2l1+2n1)af (r
2n2−2l2−2)

− af (r
2n1−2l1−2)af (r

2l2+2n2) + af (r
2n1−2l1−2)af (r

2n2−2l2−2)
}

=
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)

−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n1−n2−1

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n1−n2

U(l1)U(l2)

+W1(ρ, g; f ;n1, n2, r) +W2(ρ, g; f ;n1, n2, r) +W3(ρ, g; f ;n1, n2, r) +W4(ρ, g; f ;n1, n2, r)
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=
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n1−n2−1

U(l1)U(l2)

+
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n1−n2

U(l1)U(l2) + (W1 +W2 +W3 +W4)(ρ, g; f ;n1, n2, r).

Lemma 6.3.6. Let ρ, f, g be as defined earlier. Then for any prime r and integers n1, n2 ≥ 1
with n2 ≥ n1, we have∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1+n2

U(l1)U(l2)

+
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1−n2

U(l1)U(l2)

+
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n1+n2

U(l1)U(l2)

−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n1+n2−1

U(l1)U(l2))

+
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=n2−n1

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1−n2−1

U(l1)U(l2)

−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1+n2−1

U(l1)U(l2)

+
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n2−n1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n1−n2−1

U(l1)U(l2)

+
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n1−n2

U(l1)U(l2)

=2
∑
l≥0

U(l)U(l + n2 − n1) + 2
∑
l≥0

U(l)U(l + n2 + n1)

−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l)−
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l).

Proof. We denote the terms (with their corresponding signs) in the lemma by Ji(ρ, n1, n2),

i = 1, 2, · · · , 16, so that the required sum =

16∑
i=1

Ji(ρ, n1, n2).

We note that

J1(ρ, n1, n2) + J5(ρ, n1, n2) + J9(ρ, n1, n2) + J13(ρ, n1, n2) (6.39)

=
∑

l1,l2≥0
l1−l2=n2−n1

U(l1)U(l2)
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=
∑
l≥0

U(l)U(l + n2 − n1).

J2(ρ, n1, n2) + J10(ρ, n1, n2) (6.40)

=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2≥n2
l1−l2=−n1−n2

U(l1)U(l2)

=
∑

l1,l2≥0
l2≥n2

l1−l2=−n1−n2

U(l1)U(l2)

=
∑
l≥0

U(l)U(l + n2 + n1).

J3(ρ, n1, n2) + J7(ρ, n1, n2) (6.41)

=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1+n2

U(l1)U(l2) +
∑

l1,l2≥0
l1≥n1,l2<n2
l1−l2=n1+n2

U(l1)U(l2)

=
∑

l1,l2≥0
l1≥n1

l1−l2=n1+n2

U(l1)U(l2)

=
∑
l≥0

U(l)U(l + n2 + n1).

J4(ρ, n1, n2) + J16(ρ, n1, n2)

=
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2=n1−n2

U(l1)U(l2) +
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2=n1−n2

U(l1)U(l2)

=
∑
l≥0
l≥n1

U(l)U(l + n2 − n1) +
∑
l≥0
l<n1

U(l)U(l + n2 − n1)

=
∑
l≥0

U(l1)U(l + n2 − n1).

(6.42)

J6(ρ, n1, n2) + J14(ρ, n1, n2) (6.43)

=−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)−
∑

l1,l2≥0
l1<n1,l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)

=−
∑

l1,l2≥0
l2<n2

l1+l2=n2−n1−1

U(l1)U(l2)

=−
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l).

J8(ρ, n1, n2) + J12(ρ, n1, n2) (6.44)

=−
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2=n1+n2−1

U(l1)U(l2))−
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2=n1+n2−1

U(l1)U(l2)
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=−
n2−1∑
l=0

U(l)U(n1 + n2 − 1− l)−
n1−1∑
l=0

U(l)U(n1 + n2 − 1− l)

=−
n1+n2−1∑
l=n1

U(l)U(n1 + n2 − 1− l)−
n1−1∑
l=0

U(l)U(n1 + n2 − 1− l)

=−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l).

We also note that the indexing sets in J11(ρ, n1, n2) and J15(ρ, n1, n2) are empty sets, because
for n2 > n1, we have 0 ≤ l2 + l2 = n1 − n2 − 1 < −1, which is a contradiction. Hence,
J11(ρ, n1, n2) = 0 = J15(ρ, n1, n2).

Therefore, adding equations (6.39), (6.40), (6.41), (6.42), (6.43), and (6.44), we obtain

16∑
i=1

Ji(ρ, n1, n2)

=2
∑
l≥0

U(l)U(l + n2 − n1) + 2
∑
l≥0

U(l)U(l + n2 + n1)

−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l)−
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l).

Lemma 6.3.7. Let ρ, f, g be as defined earlier. Xi (i = 1, 2, 3, 4) be as defined in equations
(6.19), (6.20), (6.21), and (6.22) respectively. Let Yi (i = 1, 2, 3, 4) be as defined in equations
(6.24), (6.25), (6.26), and (6.27) respectively. Let Zi (i = 1, 2, 3, 4) be as defined in equations
(6.29), (6.30), (6.31), and (6.32) respectively. Let Wi (i = 1, 2, 3, 4) be as defined in equations
(6.34), (6.35), (6.36), and (6.37) respectively. Then for any prime r and integers n1, n2 ≥ 1 with
n2 ≥ n1, we have

4∑
i=1

(Xi + Yi + Zi +Wi)(ρ, g; f ;n1, n2, r) =

9∑
i=1

Vi(ρ, g; f ;n1, n2, r),

where,
V1(ρ, g; f ;n1, n2, r) =

∑
l1,l2≥0

l1−l2 ̸=n2−n1

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2+2n2),

V2(ρ, g; f ;n1, n2, r) =
∑

l1,l2≥0
l2≥n2

l1−l2 ̸=−n1−n2

U(l1)U(l2)af (r
2l1+2n1)af (r

2l2−2n2),

V3(ρ, g; f ;n1, n2, r) =
∑

l1,l2≥0
l1≥n1

l1−l2 ̸=n1+n2

U(l1)U(l2)af (r
2l1−2n1)af (r

2l2+2n2),

V4(ρ, g; f ;n1, n2, r) =
∑

l1,l2≥0
l1≥n1,l2≥n2
l1−l2 ̸=n1−n2

U(l1)U(l2)af (r
2l1−2n1)af (r

2l2−2n2),

V5(ρ, g; f ;n1, n2, r) = −
∑

l1,l2≥0
l2<n2

l1+l2 ̸=n2−n1−1

U(l1)U(l2)af (r
2l1+2n1)af (r

2n2−2l2−2),
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V6(ρ, g; f ;n1, n2, r) = −
∑

l1,l2≥0
l1≥n1,l2<n2

l1+l2 ̸=n1+n2−1

U(l1)U(l2)af (r
2l1−2n1)af (r

2n2−2l2−2),

V7(ρ, g; f ;n1, n2, r) = −
∑

l1,l2≥0
l1<n1

l1+l2 ̸=n1−n2−1

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2l2+2n2),

V8(ρ, g; f ;n1, n2, r) = −
∑

l1,l2≥0
l1<n1,l2≥n2

l1+l2 ̸=n1+n2−1

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2l2−2n2),

V9(ρ, g; f ;n1, n2, r) =
∑

l1,l2≥0
l1<n1,l2<n2
l1−l2 ̸=n1−n2

U(l1)U(l2)af (r
2n1−2l1−2)af (r

2n2−2l2−2).

Proof. The proof follows from the following facts:

V1(ρ, g; f ;n1, n2, r) = (X1 + Y1 + Z1 +W1)(ρ, g; f ;n1, n2, r),

V2(ρ, g; f ;n1, n2, r) = (X2 + Z2)(ρ, g; f ;n1, n2, r),

V3(ρ, g; f ;n1, n2, r) = (X3 + Y3)(ρ, g; f ;n1, n2, r),

V4(ρ, g; f ;n1, n2, r) = X4(ρ, g; f ;n1, n2, r),

V5(ρ, g; f ;n1, n2, r) = (Y2 +W2)(ρ, g; f ;n1, n2, r),

V6(ρ, g; f ;n1, n2, r) = Y4(ρ, g; f ;n1, n2, r),

V7(ρ, g; f ;n1, n2, r) = (Z3 +W3)(ρ, g; f ;n1, n2, r),

V8(ρ, g; f ;n1, n2, r) = Z4(ρ, g; f ;n1, n2, r),

V9(ρ, g; f ;n1, n2, r) =W4(ρ, g; f ;n1, n2, r).

Proposition 6.3.8. Let ρ, f, g be as defined earlier and Vi(ρ, g; f ;n1, n2, r) (i = 1, · · · , 9) be as
defined in Lemma 6.3.7. Then for any prime r and integers n1, n2 ≥ 1 with n2 > n1, we have

k(r, n1, n2)

=2
∑
l≥0

U(l)U(l + n2 − n1) + 2
∑
l≥0

U(l)U(l + n2 + n1)

−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l)−
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l) +

9∑
i=1

Vi(ρ, g; f ;n1, n2, r)

=
4∑
i=1

Ei(ρ, g; f ;n1, n2) +

9∑
i=1

Vi(ρ, g; f ;n1, n2, r)

=

4∑
i=1

Ei(n1, n2) +

9∑
i=1

Vi(n1, n2, r),

where

E1(ρ, g; f ;n1, n2) :=2
∑
l≥0

U(l)U(l + n2 − n1),

E2(ρ, g; f ;n1, n2) :=2
∑
l≥0

U(l)U(l + n2 + n1),

E3(ρ, g; f ;n1, n2) :=−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l),
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E4(ρ, g; f ;n1, n2) :=−
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l).

We write Vi(n1, n2, r) for Vi(ρ, g; f ;n1, n2, r) (i = 1, · · · , 9). We also write Ej(n1, n2) for
Ej(ρ, g; f ;n1, n2) (j = 1, · · · , 4).

Proof. Adding equations (6.23),(6.28),(6.33) and (6.38) and using Lemma 6.3.6 and Lemma
6.3.7, we obtain that for any prime r and integers n1, n2 ≥ 1 with n2 > n1,

k(r, n1, n2)

=

4∑
i=1

αi(n1, n2, r)

=

16∑
i=1

Ji(ρ, n1, n2) +

4∑
i=1

(Xi + Yi + Zi +Wi)(ρ, g; f ;n1, n2, r)

=2
∑
l≥0

U(l)U(l + n2 − n1) + 2
∑
l≥0

U(l)U(l + n2 + n1)

−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l)−
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l) +

9∑
i=1

Vi(ρ, g; f ;n1, n2, r).

Corollary 6.3.9. Let ρ, f, g, Vi(ρ, g; f ;n1, n2, r) (i = 1, · · · , 9) be as defined in Lemma 6.3.7.
Then for any prime r and integers n1, n2 ≥ 1 with n2 = n1 = n, we have

k(r, n1, n2)

=2
∑
l≥0

U(l)U(l + n2 − n1) + 2
∑
l≥0

U(l)U(l + n2 + n1)

−
n1+n2−1∑

l=0

U(l)U(n1 + n2 − 1− l) +

9∑
i=1

Vi(ρ, g; f ;n1, n2, r)

=
3∑
i=1

Ei(ρ, g; f ;n1, n2) +
9∑
i=1

Vi(ρ, g; f ;n1, n2, r)

=

3∑
i=1

Ei(n1, n2) +

9∑
i=1

Vi(n1, n2, r),

where Ei(ρ, g; f ;n1, n2) is as defined in Proposition 6.3.8.

Proof. The proof is the same as the proof in Proposition 6.3.8, the only exception being the

term
n2−n1−1∑

l=0

U(l)U(n2 − n1 − 1− l) does not appear here, since n1 = n2.

With the estimates of k(r, n1, n2) in our hand, we are now ready to find
〈
C(ρ, g; f)(x)

〉
,

where C(ρ, g; f)(x) is defined in equation (6.17).

Lemma 6.3.10. Let ρ, f, g be as defined earlier. Let Ei(ρ, g; f ;n1, n2) (i = 1, · · · , 4) be as
defined in Proposition 6.3.8. Let Vj(ρ, g; f ;n1, n2, r), (i = 1, · · · , 9), and C(ρ, g; f)(x) be as
defined in Lemma 6.3.7 and equation (6.17) respectively. Then,

C(ρ, g; f)(x) =
3∑
i=1

Ci(ρ, g; f)(x),
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where

C1(ρ, g; f)(x) :=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2)

2

, (6.45)

C2(ρ, g; f)(x) :=
16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)

 ,

(6.46)

C3(ρ, g; f)(x) :=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 9∑
i=1

9∑
j=1

Vi(n1, n2, p)Vj(n1, n2, q)

 .

(6.47)

Proof.

C(ρ, g; f)(x)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2) +

9∑
i=1

Vi(n1, n2, p)



×

 4∑
i=1

Ei(n1, n2) +

9∑
i=1

Vi(n1, n2, q)


=

8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2)

2

+
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)



+
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, q)



+
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 9∑
i=1

9∑
j=1

Vi(n1, n2, p)Vj(n1, n2, q)



=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2)

2

+
16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)



+
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 9∑
i=1

9∑
j=1

Vi(n1, n2, p)Vj(n1, n2, q)
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=C1(ρ, g; f)(x) + C2(ρ, g; f)(x) + C3(ρ, g; f)(x).

We now find
〈
C1(ρ, g; f)(x)

〉
in Lemma 6.3.12 using the next lemma.

Lemma 6.3.11. Let Ei(n1, n2) (i = 1, 2, 3, 4) be as mentioned in Proposition 6.3.8. Then,
Ei(n1, n2) = 0, (i = 1, 2, 3, 4) for n2 − n1 > 2⌊L⌋+ 1.

Proof. We note that if n2 − n1 > 2⌊L⌋+ 1, then n2 + n1 > 2⌊L⌋+ 1 and hence,

1) l + n2 − n1 > 2⌊L⌋+ 1,

2) l + n2 + n1 > 2⌊L⌋+ 1,

3) n2 − n1 − 1− l ≥ n2 − n1 − 1− ⌊L⌋ > 2⌊L⌋ − ⌊L⌋ = ⌊L⌋, i.e., n2 − n1 − 1− l > ⌊L⌋, and

4) n2 + n1 − 1− l ≥ n2 + n1 − 1− ⌊L⌋ > 2⌊L⌋ − ⌊L⌋ = ⌊L⌋, i.e., n2 + n1 − 1− l > ⌊L⌋.

Since l′ > ⌊L⌋, i.e., l′ ≥ ⌊L⌋ + 1, implies U(l′) = 0, we have Ei(n1, n2) = 0, (i = 1, 2, 3, 4)
for n2 − n1 > 2⌊L⌋+ 1.

Lemma 6.3.12. Let ρ, f , g be as defined earlier and C1(ρ, g; f)(x) be as defined in equation
(6.45). Then, C1(ρ, g; f)(x) = O

(
L

πN (x)

)
and hence,

1

|FN,k|
∑

f∈FN,k

C1(ρ, g; f)(x) ≪
L

πN (x)
.

Proof. We want to find an estimate for

C1(ρ, g; f)(x) =
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2)

2

,

where Ei(n1, n2) (i = 1, 2, 3, 4) are mentioned in Proposition 6.3.8.

We know, for l ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ− ρ̂

(
l+1
L

)
2 cos 2π(l+1)ψ| ≤ 2k1+2k1 = 4k1,

for some k1 > 0 and U(l) = 0 for l > ⌊L⌋. Therefore, |Ei(n1, n2)| ≤ 32k21(L+ 1) ≤ 64k21L.

Also, for n ≥ 0, |G(n)| ≤ k2.

Hence, using Lemma 6.3.11,

C1(ρ, g; f)(x)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2)

2

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1,n2>n1

n2−n1≤2⌊L⌋+1

G(n1)G(n2)

 4∑
i=1

Ei(n1, n2)

2

≪ 8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1

0<n2−n1≤2⌊L⌋+1

 4∑
i=1

64k21L

2

≪ 8

32πN (x)4L2

∑′

p,q≤x

πN (x)∑
n1=1

2⌊L⌋+n1+1∑
n2=n1+1

 4∑
i=1

64k21L

2
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≪L3πN (x)3

πN (x)4L2

=
L

πN (x)
.

Therefore,
1

|FN,k|
∑

f∈FN,k

C1(ρ, g; f)(x) ≪
L

πN (x)
. (6.48)

We now find
〈
C2(ρ, g; f)(x)

〉
in Lemma 6.3.14 using the next lemma.

Lemma 6.3.13. Let n1, n2 ≥ 1 be integers with n2 ≥ n1 and p be prime with p ≤ x. Then,

1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p) ≪
1

p
L+ (L+ πN (x))L2 8

ν(N)x4Lc
′+4n2c

′

kN
,

where V1(n1, n2, p) is defined in Lemma 6.3.7.

Proof. For prime p with p ≤ x, we have

1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0

l1−l2 ̸=n2−n1

U(l1)U(l2)af (p
2l1+2n1)af (p

2l2+2n2)

=
∑

l1,l2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

|FN,k|
∑

f∈FN,k

af (p
2t)



=
∑

l1,l2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

pt
+O

(
8ν(N)p2tc

′

kN

)
≪

∑
l1,l2≥0

l1−l2 ̸=n2−n1

(
1

p|(l1−l2)−(n2−n1)|
+

1

p|(l1−l2)−(n2−n1)|+1
+ · · ·

)

+
∑

l1,l2≥0
l1−l2 ̸=n2−n1

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

8ν(N)p2(l1+l2+n1+n2)c
′

kN

≪
(
1

p
+

1

p2
+ · · ·

)
L+

∑
l1,l2≥0

l1−l2 ̸=n2−n1

(l1 + l2 + n1 + n2)
8ν(N)p4Lc

′+4n2c
′

kN

≪1

p
L+ (L+ πN (x))L2 8

ν(N)x4Lc
′+4n2c

′

kN
.

Lemma 6.3.14. Let ρ, f , g be as defined earlier and C2(ρ, g; f)(x) be as defined in equation
(6.46). Then,

1

|FN,k|
∑

f∈FN,k

C2(ρ, g; f)(x) ≪
L(log log x)

πN (x)2
+
L2(L+ πN (x))

πN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
.
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Proof. We want to find an estimate for the average of

C2(ρ, g; f)(x) =
16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)

 ,

where Ei(n1, n2) (i = 1, 2, 3, 4) are mentioned in Proposition 6.3.8.

We know, for l, n ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ − ρ̂

(
l+1
L

)
2 cos 2π(l + 1)ψ| ≤ 2k1 + 2k1 =

4k1, |G(n)| ≤ k2 for some k1, k2 > 0 and U(l) = 0 for l > ⌊L⌋.

We note that for i = 1, 2, 3, 4,

|Ei(n1, n2)| ≤ 32k21(L+ 1) ≤ 64k21L.

Hence, using Lemma 6.3.11 and Lemma 6.3.13, we obtain for i = 1, 2, 3, 4,

1

|FN,k|
∑

f∈FN,k

16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)Ei(n1, n2)V1(n1, n2, p)

=
1

2πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1,n2>n1

n2−n1≤2⌊L⌋+1

G(n1)G(n2)Ei(n1, n2)

 1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)


≪ 1

πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1

0<n2−n1≤2⌊L⌋+1

L

(
1

p
L+ (L+ πN (x))L2 8

ν(N)x4Lc
′+4n2c

′

kN

)

≪ L

πN (x)4L2

∑′

p,q≤x

πN (x)∑
n1=1

2⌊L⌋+n1+1∑
n2=n1+1

(
1

p
L+ (L+ πN (x))L2 8

ν(N)x4Lc
′+4πN (x)c′

kN

)

≪ L

πN (x)4L2
L2πN (x)

∑′

p,q≤x

1

p

+
L

πN (x)4L2

∑′

p,q≤x

πN (x)∑
n1=1

2⌊L⌋+n1+1∑
n2=n1+1

(L+ πN (x))L2 8
ν(N)x4Lc

′+4πN (x)c′

kN

≪ L

πN (x)3
(log log x)πN (x) +

L

πN (x)4L2
πN (x)3(L+ πN (x))L3 8

ν(N)x4Lc
′+4πN (x)c′

kN

≪L(log log x)

πN (x)2
+
L2(L+ πN (x))

πN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
.

We note that other terms also give the same estimate.

Therefore,

1

|FN,k|
∑

f∈FN,k

C2(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 4∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)


≪L(log log x)

πN (x)2
+
L2(L+ πN (x))

πN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
.

(6.49)
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We now find
〈
C3(ρ, g; f)(x)

〉
in Lemma 6.3.17 using the next two lemmas, where

C3(ρ, g; f)(x) =
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)

 9∑
i=1

9∑
j=1

Vi(n1, n2, p)Vj(n1, n2, q)

 .

Lemma 6.3.15. Let n1, n2 ≥ 1 be integers and p and q be distinct primes with p ̸= q ≤ x.
Then,

1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)V1(n1, n2, q) ≪
1

pq
L2 + (L+ πN (x))2L4 8

ν(N)x8Lc
′+8πN (x)c′

kN
,

where V1(n1, n2, p) is defined in Lemma 6.3.7.

Proof.

For distinct primes p and q with p ̸= q ≤ x, we have

1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)V1(n1, n2, q)

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0

l1−l2 ̸=n2−n1

U(l1)U(l2)af (p
2l1+2n1)af (p

2l2+2n2)

×
∑

k1,k2≥0
k1−k2 ̸=n2−n1

U(k1)U(k2)af (q
2k1+2n1)af (q

2k2+2n2)

=
∑

l1,l2≥0
l1−l2 ̸=n2−n1

∑
k1,k2≥0

k1−k2 ̸=n2−n1

U(l1)U(l2)U(k1)U(k2)

×
l1+l2+n1+n2∑

t=|(l1−l2)−(n2−n1)|

k1+k2+n1+n2∑
t′=|(k1−k2)−(n2−n1)|

 1

|FN,k|
∑

f∈FN,k

af (p
2tq2t

′
)


=

∑
l1,l2≥0

l1−l2 ̸=n2−n1

∑
k1,k2≥0

k1−k2 ̸=n2−n1

U(l1)U(l2)U(k1)U(k2)

×
l1+l2+n1+n2∑

t=|(l1−l2)−(n2−n1)|

k1+k2+n1+n2∑
t′=|(k1−k2)−(n2−n1)|

 1

ptqt′
+O

(
8ν(N)p2tc

′
q2t

′c′

kN

)
≪

∑
l1,l2≥0

l1−l2 ̸=n2−n1

∑
k1,k2≥0

k1−k2 ̸=n2−n1

(
1

p|(l1−l2)−(n2−n1)|
+

1

p|(l1−l2)−(n2−n1)|+1
+ · · ·

)

×
(

1

q|(k1−k2)−(n2−n1)|
+

1

q|(k1−k2)−(n2−n1)|+1
+ · · ·

)
+

∑
l1,l2≥0

l1−l2 ̸=n2−n1

∑
k1,k2≥0

k1−k2 ̸=n2−n1

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

k1+k2+n1+n2∑
t′=|(k1−k2)−(n2−n1)|

8ν(N)(pq)2(2L+n1+n2)c
′

kN

≪
(
1

p
+

1

p2
+ · · ·

)
L

(
1

q
+

1

q2
+ · · ·

)
L

+
∑

l1,l2≥0
l1−l2 ̸=n2−n1

∑
k1,k2≥0

k1−k2 ̸=n2−n1

(l1 + l2 + n1 + n2)(k1 + k2 + n1 + n2)
8ν(N)(pq)4Lc

′+4πN (x)c′

kN

≪ 1

pq
L2 + (L+ πN (x))2L4 8

ν(N)x8Lc
′+8πN (x)c′

kN
.
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Lemma 6.3.16. Let N ≥ 1 be a positive integer and k be even integer.Then

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)V1(n1, n2, p)V1(n1, n2, q)

≪ (log log x)2

πN (x)2
+ (L+ πN (x))2L4 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proof. Using Lemma 6.3.15, we obtain

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)V1(n1, n2, p)V1(n1, n2, q)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)
1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)V1(n1, n2, q)

≪ 1

πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

(
1

pq
L2 + (L+ πN (x))2L4 8

ν(N)x8Lc
′+8πN (x)c′

kN

)

≪ 1

πN (x)2L2

∑′

p,q≤x

1

pq
L2 + (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

≪ (log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

We note that the other terms also give the same estimate. Therefore, we have the following
lemma.

Lemma 6.3.17. Let ρ, f , g be as defined earlier and C3(ρ, g; f)(x) be as defined in equation
(6.47). Then,

1

|FN,k|
∑

f∈FN,k

C3(ρ, g; f)(x) ≪
(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
. (6.50)

Proposition 6.3.18. Let ρ, f, g be as defined earlier. Let C(ρ, g; f)(x) be as defined in equation
(6.17). Then,

1

|FN,k|
∑

f∈FN,k

C(ρ, g; f)(x)

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proof. Combining inequations (6.48), (6.49) and (6.50), and using Lemma 6.3.10, we obtain

1

|FN,k|
∑

f∈FN,k

C(ρ, g; f)(x) (6.51)

=
1

|FN,k|
∑

f∈FN,k

 3∑
i=1

Ci(ρ, g; f)(x)
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=

3∑
i=1

 1

|FN,k|
∑

f∈FN,k

Ci(ρ, g; f)(x)


≪ L

πN (x)
+
L(log log x)

πN (x)2
+
L2(L+ πN (x))

πN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN

+
(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

We now find an estimate for
〈
D(ρ, g; f)(x)

〉
, where D(ρ, g; f)(x) is defined in equation

(6.18), i.e.,

D(ρ, g; f)(x)

=
4

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2)

=
4

32πN (x)4L2

∑′

p,q≤x

∑
n≥1

G(n)G(n)k(p, n, n)k(q, n, n).

Lemma 6.3.19. Let ρ, f, g, Ei(ρ, g; f ;n1, n2)(i = 1, 2, 3), Vj(ρ, g; f ;n1, n2, r), (i = 1, · · · , 9), and
D(ρ, g; f)(x) be as defined earlier. Then,

D(ρ, g; f)(x) =

3∑
i=1

Di(ρ, g; f)(x),

where

D1(ρ, g; f)(x) :=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 3∑
i=1

Ei(n1, n2)

2

, (6.52)

D2(ρ, g; f)(x) :=
16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 3∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)

 ,

(6.53)

D3(ρ, g; f)(x) :=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 9∑
i=1

9∑
j=1

Vi(n1, n2, p)Vj(n1, n2, q)

 .

(6.54)

Proof. The proof is similar to the proof of Lemma 6.3.10.

We find an estimate for
〈
D1(ρ, g; f)(x)

〉
in the following lemma.

Lemma 6.3.20. Let ρ, f, g be as defined earlier. Let D1(ρ, g; f)(x) be as defined in equation
(6.52). Then, D1(ρ, g; f)(x) = O

(
1

πN (x)

)
and hence,

1

|FN,k|
∑

f∈FN,k

D1(ρ, g; f)(x) ≪
1

πN (x)
.
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Proof. We want to find an estimate for

D1(ρ, g; f)(x) =
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 3∑
i=1

Ei(n1, n2)

2

,

where Ei(n1, n2) (i = 1, 2, 3) are mentioned in Proposition 6.3.8.

We know, for l ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ− ρ̂

(
l+1
L

)
2 cos 2π(l+1)ψ| ≤ 2k1+2k1 = 4k1,

for some k1 > 0 and U(l) = 0 for l > ⌊L⌋. Therefore, |Ei(n1, n2)| ≤ 32k21(L+ 1) ≤ 64k21L.

Also, for n ≥ 0, |G(n)| ≤ k2.

Hence,

D1(ρ, g; f)(x)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 3∑
i=1

Ei(n1, n2)

2

≪ 8

32πN (x)4L2

∑′

p,q≤x

πN (x)∑
n1=1

 3∑
i=1

64k21L

2

≪L2πN (x)3

πN (x)4L2
=

1

πN (x)
.

Therefore,
1

|FN,k|
∑

f∈FN,k

D1(ρ, g; f)(x) ≪
1

πN (x)
. (6.55)

We find an estimate for
〈
D2(ρ, g; f)(x)

〉
in the following lemma.

Lemma 6.3.21. Let ρ, f, g be as defined earlier. Let D2(ρ, g; f)(x) be as defined in equation
(6.53). Then, D2(ρ, g; f)(x) = O

(
L

πN (x)

)
and hence,

1

|FN,k|
∑

f∈FN,k

D2(ρ, g; f)(x) ≪
L

πN (x)
.

Proof. We want to find an estimate for

D2(ρ, g; f)(x) =
16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 3∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)

 ,

where Ei(n1, n2) (i = 1, 2, 3) are mentioned in Proposition 6.3.8.

We know, for l, n ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ − ρ̂

(
l+1
L

)
2 cos 2π(l + 1)ψ| ≤ 2k1 + 2k1 =

4k1, |G(n)| ≤ k2 for some k1, k2 > 0 and U(l) = 0 for l > ⌊L⌋.

We note that for i = 1, 2, 3, 4,

|Ei(n1, n2)| ≤ 32k21(L+ 1) ≤ 64k21L.

Also, for j = 1, · · · , 9,

|Vj(n1, n2, p)| ≤ 64k21
∑

l1,l2≥0

1 ≤ 64k21L
2.
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Therefore, for i = 1, 2, 3, and j = 1, · · · , 9,

|Ei(n1, n2)Vj(n1, n2, p)| ≤ 642k41L
3.

Hence,

D2(ρ, g; f)(x)

=
16

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)

 3∑
i=1

9∑
j=1

Ei(n1, n2)Vj(n1, n2, p)


≪ 1

πN (x)4L2

∑′

p,q≤x

πN (x)∑
n1=1

 3∑
i=1

9∑
j=1

642k41L
3


≪L3πN (x)3

πN (x)4L2
=

L

πN (x)
.

Therefore,
1

|FN,k|
∑

f∈FN,k

D2(ρ, g; f)(x) ≪
L

πN (x)
. (6.56)

To find an estimate for
〈
D3(ρ, g; f)(x)

〉
, we use the following lemma.

Lemma 6.3.22. Let N and k be positive integers with k even.Then

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)V1(n1, n2, p)V1(n1, n2, q)

≪ (log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
,

whenever L≪ πN (x), where V1(n1, n2, p) is defined in Lemma 6.3.7.

Proof. Using Lemma 6.3.15, we obtain

1

|FN,k|
∑

f∈FN,k

8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)V1(n1, n2, p)V1(n1, n2, q)

=
8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)
1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)V1(n1, n2, q)

≪ 1

πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2=n1

(
1

pq
L2 + (L+ πN (x))2L4 8

ν(N)x8Lc
′+8πN (x)c′

kN

)

≪ 1

πN (x)3L2

∑′

p,q≤x

1

pq
L2 +

(L+ πN (x))2

πN (x)
L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

≪ (log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

We note that the other terms also give the same estimate. Therefore, we have the following
lemma.
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Lemma 6.3.23. Let ρ, f, g be as defined earlier. Let D3(ρ, g; f)(x) be as defined in equation
(6.54). Then,

1

|FN,k|
∑

f∈FN,k

D3(ρ, g; f)(x) ≪
(log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
, (6.57)

whenever L≪ πN (x).

We find
〈
D(ρ, g; f)(x)

〉
in the following proposition.

Proposition 6.3.24. Let ρ, f, g be as defined earlier. Let D(ρ, g; f)(x) be as defined in equation
(6.18). Then,

1

|FN,k|
∑

f∈FN,k

D(ρ, g; f)(x) ≪ L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
,

whenever L≪ πN (x).

Proof. Combining inequations (6.55), (6.56) and (6.57), we obtain

1

|FN,k|
∑

f∈FN,k

D(ρ, g; f)(x) (6.58)

=
1

|FN,k|
∑

f∈FN,k

 3∑
i=1

Di(ρ, g; f)(x)


=

3∑
i=1

 1

|FN,k|
∑

f∈FN,k

Di(ρ, g; f)(x)


≪ 1

πN (x)
+

L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

≪ L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proposition 6.3.25. Let ρ, f, g be as defined earlier. Let K4(ρ, g; f)(x) be as defined in equation
(6.16). For positive integers k and N with k even,

1

|FN,k|
∑

f∈FN,k

K4(ρ, g; f)(x)

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
,

where c′ > 3
2 is an absolute constant and L≪ πN (x).

Proof. Combining equations (6.51) and (6.58), and using equation (6.16), we obtain

1

|FN,k|
∑

f∈FN,k

K4(ρ, g; f)(x) (6.59)

=
1

|FN,k|
∑

f∈FN,k

C(ρ, g; f)(x) + 1

|FN,k|
∑

f∈FN,k

D(ρ, g; f)(x)

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

+
L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
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≪ L

πN (x)
+
L(log log x)

πN (x)2
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proposition 6.3.26. Let ρ, f, g be as defined earlier. Let K(ρ, g; f)(x) be as defined in equation
(6.2). For positive integers k and N with k even,

1

|FN,k|
∑

f∈FN,k

K(ρ, g; f)(x)

≪ L

πN (x)
+
L log log x

πN (x)2
+
L2(log log x)2

πN (x)4
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
,

where c′ > 3
2 is an absolute constant and L≪ πN (x).

Proof. Combining estimates in equations (6.6), (6.15), (6.59) and using equation (6.3), we have

1

|FN,k|
∑

f∈FN,k

K(ρ, g; f)(x) (6.60)

=
1

|FN,k|
∑

f∈FN,k

 4∑
i=1

Ki(ρ, g; f)(x)


=

1

|FN,k|
∑

f∈FN,k

K1(ρ, g; f)(x) +
2

|FN,k|
∑

f∈FN,k

K2(ρ, g; f)(x) +
1

|FN,k|
∑

f∈FN,k

K4(ρ, g; f)(x)

≪ 1

πN (x)2
+
L log log x

πN (x)3
+
L2(log log x)2

πN (x)4
+
L2x8Lc

′
8ν(N)

πN (x)3kN

+
L

πN (x)
+

(log log x)2

πN (x)3
+ πN (x)L2

(
8ν(N)x(8L+4πN (x))c′

kN

)

+
L

πN (x)
+
L(log log x)

πN (x)2
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

≪ L

πN (x)
+
L log log x

πN (x)2
+
L2(log log x)2

πN (x)4
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

6.4 Estimation for
〈
L(ρ, g; f)(x)

〉
=
〈
(L1 + 2L2 + L4)(ρ, g; f)(x)

〉
We now find estimate for

L(ρ, g; f)(x) = 1

16πN (x)4L2

∑′

p,q,r≤x

T 2
1 (p)T2(q)T2(r)T3(p, q)T3(p, r).

Here,
T 2
1 (p) =

∑
l1,l2≥0

U(l1)U(l2)af (p
2l1)af (p

2l2),

T2(q) =
∑
k1≥0

U(k1)af (q
2k1),

T2(r) =
∑
k2≥0

U(k2)af (r
2k2),
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T3(p, q)

=4G(0) +
∑
n≥1

2ĝ

(
n

πN (x)

)
(af (p

2n)− af (p
2n−2))(af (q

2n)− af (q
2n−2))

=
∑
n1≥0

ĝ

(
n1

πN (x)

)
A(p, q, n1),

and

T3(p, r) =
∑
n2≥0

ĝ

(
n2

πN (x)

)
A(p, r, n2),

where

A(p, q, n) =

{
4 if n = 0

2(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2)) if n ≥ 1,

and G(n) = ĝ
(

n
πN (x)

)
, as defined earlier.

Thus,

L(ρ, g; f)(x)

=
1

16πN (x)4L2

∑′

p,q,r≤x

T 2
1 (p)T2(q)T2(r)T3(p, q)T3(p, r)

=
1

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥0

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, n1)A(p, r, n2).

Since the summation is over n1, n2, where the indexes n1, n2 run up to πN (x), we can break
the summation into the following four parts:

1) n1 = 0, n2 = 0,

2) n1 ̸= 0, n2 = 0,

3) n1 = 0, n2 ̸= 0,

4) n1 ̸= 0, n2 ̸= 0.

We also denote the summation in the i-th part by Li(ρ, g; f)(x), i = 1, 2, 3, 4 respectively.

We will also write Li for Li(ρ, g; f)(x), i = 1, 2, 3, 4, in short.

By interchanging the variables n1, n2 first and then interchanging the variables q, r and
at last interchanging the variables k1, k2, in L3(ρ, g; f)(x), the summation over n1, n2 where
n1 = 0, n2 ̸= 0, we note that the summation over n1, n2 where n1 = 0, n2 ̸= 0, is exactly the
same as the summation over n1, n2 where n1 ̸= 0, n2 = 0, i.e., L2(ρ, g; f)(x) = L3(ρ, g; f)(x).

Therefore,

L(ρ, g; f)(x) =
4∑
i=1

Li(ρ, g; f)(x) = L1(ρ, g; f)(x) + 2L3(ρ, g; f)(x) + L4(ρ, g; f)(x), (6.61)

where L1(ρ, g; f)(x), L3(ρ, g; f)(x), and L4(ρ, g; f)(x) are defined in Sections 6.4.1, 6.4.2, and
6.4.3 respectively.
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6.4.1 Estimation for
〈
L1(ρ, g; f)(x)

〉
If (n1, n2) = (0, 0), then the innermost term is

16af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2).

Thus,

L1(ρ, g; f)(x) =
1

16πN (x)4L2

∑
l1,l2≥0

∑
k1,k2≥0

16U(l1)U(l2)U(k1)U(k2)G(0)
2 (6.62)

×
∑′

p,q,r≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2).

We also note that since the summation is over l1, l2, k1, k2, where the indexes l1, l2, k1 and k2
run up to ⌊L⌋, we can break the summation into the following four parts:

1) l1 = l2, k1 = k2,

2) l1 ̸= l2, k1 = k2,

3) l1 = l2, k1 ̸= k2,

4) l1 ̸= l2, k1 ̸= k2.

We also denote the summation in the i-th part by L1i(ρ, g; f)(x), i = 1, 2, 3, 4 respectively,
i.e.,

16πN (x)4L2L11(ρ, g; f)(x) (6.63)

=
∑

l1,l2≥0
l1=l2

∑
k1,k2≥0
k1=k2

16U(l1)U(l2)U(k1)U(k2)G(0)
2
∑′

p,q,r≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2),

16πN (x)4L2L12(ρ, g; f)(x) (6.64)

=
∑

l1,l2≥0
l1 ̸=l2

∑
k1≥0

16U(l1)U(l2)U(k1)
2G(0)2

∑′

p,q,r≤x

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i)af (q

2k1r2k1),

16πN (x)4L2L13(ρ, g; f)(x) (6.65)

=
∑
l1≥0

∑
k1,k2≥0
k1 ̸=k2

16U(l1)
2U(k1)U(k2)G(0)

2
∑′

p,q,r≤x

2l1∑
i=0

af (p
4l1−2i)af (q

2k1r2k2),

16πN (x)4L2L14(ρ, g; f)(x) (6.66)

=
∑

l1,l2≥0
l1 ̸=l2

∑
k1,k2≥0
k1 ̸=k2

16U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q,r≤x

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i)af (q

2k1r2k2).

Therefore,

L1(ρ, g; f)(x)

=

4∑
i=1

L1i(ρ, g; f)(x)
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=L11(ρ, g; f)(x) + L12(ρ, g; f)(x) + L13(ρ, g; f)(x) + L14(ρ, g; f)(x).

We note that

af (p
2l1)af (p

2l2) =

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i).

We see that 2l1 + 2l2 − 2i = 0 only if i = 2l1 = 2l2.

Proposition 6.4.1. With L11(ρ, g; f)(x) defined in equation (6.63), we have

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L11(ρ, g; f)(x)

≪L2πN (x)3 + L3πN (x)2 log log x+
8ν(N)L3πN (x)3x8Lc

′

kN
.

Proof.

16πN (x)4L2L11(ρ, g; f)(x)

=
∑

l1,l2≥0
l1=l2

∑
k1,k2≥0
k1=k2

16U(l1)U(l2)U(k1)U(k2)G(0)
2
∑′

p,q,r≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)

=
∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2
∑′

p,q,r≤x

2l1∑
i=0

af (p
4l1−2i)af (q

2k1r2k1)

=
∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2πN (x)(πN (x)− 1)(πN (x)− 2)

+
∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2
∑′

p,q,r≤x

2l1∑
i=0

(i,k1 )̸=(2l1,0)

af (p
4l1−2iq2k1r2k1).

Now, using proof of Lemma 3.2.30, if (i, k1) ̸= (2l1, 0),∑′

p,q,r≤x

〈
af (p

4l1−2iq2k1r2k1)
〉
= O(πN (x)2 log log x) + O

(
8ν(N)πN (x)3x(4l1+4k1−2i)c′

kN

)
.

Thus,

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L11(ρ, g; f)(x) (6.67)

=
1

|FN,k|
∑

f∈FN,k

∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2πN (x)(πN (x)− 1)(πN (x)− 2)

+
∑
l1≥0

∑
k1≥0

16U(l1)
2U(k1)

2G(0)2
∑′

p,q,r≤x

2l1∑
i=0

(i,k1 )̸=(2l1,0)

〈
af (p

4l1−2iq2k1r2k1)
〉

≪πN (x)(πN (x)− 1)(πN (x)− 2)L2

+
∑
l1≥0

∑
k1≥0

2l1∑
i=0

(i,k1 )̸=(2l1,0)

(
πN (x)2 log log x+

8ν(N)πN (x)3x(4l1+4k1−2i)c′

kN

)

≪L2πN (x)3 + πN (x)2 log log x
∑
l1≥0

∑
k1≥0

l1
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+
∑
l1≥0

∑
k1≥0

l1
8ν(N)πN (x)3x(4l1+4k1)c

′

kN

≪L2πN (x)3 + L3πN (x)2 log log x+
8ν(N)L3πN (x)3x8Lc

′

kN
.

Proposition 6.4.2. With L12(ρ, g; f)(x) defined in equation (6.64), we have

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L12(ρ, g; f)(x)

≪L4πN (x)2 log log x+
8ν(N)L4πN (x)3x8Lc

′

kN
.

Proof. We find an estimate for
〈
L12(ρ, g; f)(x)

〉
, where

16πN (x)4L2L12(ρ, g; f)(x)

=
∑

l1,l2≥0
l1 ̸=l2

∑
k1≥0

16U(l1)U(l2)U(k1)
2G(0)2

∑′

p,q,r≤x

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i)af (q

2k1r2k1)

=
∑

l1,l2≥0
l1<l2

∑
k1≥0

32U(l1)U(l2)U(k1)
2G(0)2

∑′

p,q,r≤x

2l1∑
i=0

af (p
2l1+2l2−2iq2k1r2k1).

Now, using proof of the Lemma 3.2.30, for l1, l2, k1 ≥ 0, l1 < l2 and 0 ≤ i ≤ 2l1,∑′

p,q,r≤x

〈
af (p

2l1+2l2−2iq2k1r2k1)
〉

=O(πN (x)2 log log x) + O

(
8ν(N)πN (x)3x(2l1+2l2+4k1−2i)c′

kN

)
.

Thus,

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L12(ρ, g; f)(x) (6.68)

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0
l1<l2

∑
k1≥0

32U(l1)U(l2)U(k1)
2G(0)2

∑′

p,q,r≤x

2l1∑
i=0

af (p
2l1+2l2−2iq2k1r2k1)

=
∑

l1,l2≥0
l1<l2

∑
k1≥0

32U(l1)U(l2)U(k1)
2G(0)2

2l1∑
i=0

∑′

p,q,r≤x

〈
af (p

2l1+2l2−2iq2k1r2k1)
〉

≪
∑

l1,l2≥0
l1<l2

∑
k1≥0

2l1∑
i=0

(
πN (x)2 log log x+

8ν(N)πN (x)3x(2l1+2l2+4k1−2i)c′

kN

)

≪πN (x)2 log log x
∑

l1,l2≥0
l1<l2

∑
k1≥0

l1 +
∑

l1,l2≥0
l1<l2

∑
k1≥0

l1
8ν(N)πN (x)3x(2l1+2l2+4k1)c

′

kN

≪L4πN (x)2 log log x+
8ν(N)L4πN (x)3x8Lc

′

kN
.
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Proposition 6.4.3. With L13(ρ, g; f)(x) defined in equation (6.65), we have

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L13(ρ, g; f)(x)

≪L4πN (x)2 log log x+
8ν(N)L4πN (x)3x8Lc

′

kN
.

Proof. Here, we find estimate for
〈
L13(ρ, g; f)(x)

〉
, where

16πN (x)4L2L13(ρ, g; f)(x)

=
∑
l1≥0

∑
k1,k2≥0
k1 ̸=k2

16U(l1)
2U(k1)U(k2)G(0)

2
∑′

p,q,r≤x

2l1∑
i=0

af (p
4l1−2i)af (q

2k1r2k2)

=
∑
l1≥0

∑
k1,k2≥0
k1<k2

32U(l1)
2U(k1)U(k2)G(0)

2
∑′

p,q,r≤x

2l1∑
i=0

af (p
4l1−2i)af (q

2k1r2k2)

=
∑
l1≥0

∑
k1,k2≥0
k1<k2

32U(l1)
2U(k1)U(k2)G(0)

2
∑′

p,q,r≤x

2l1∑
i=0

af (p
4l1−2iq2k1r2k2).

Now, by Lemma 3.2.30, for k1, k2, l1 ≥ 0 with k2 > k1, i.e., k2 ̸= 0, and 0 ≤ i ≤ 2l1,∑′

p,q,r≤x

〈
af (p

4l1−2iq2k1r2k2)
〉

=O(πN (x)2 log log x) + O

(
8ν(N)πN (x)3x(2k1+2k2+4l1−2i)c′

kN

)
.

Thus,

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L13(ρ, g; f)(x) (6.69)

=
1

|FN,k|
∑

f∈FN,k

∑
l1≥0

∑
k1,k2≥0
k1<k2

32U(l1)
2U(k1)U(k2)G(0)

2
∑′

p,q,r≤x

2l1∑
i=0

af (p
4l1−2iq2k1r2k2)

=
∑
l1≥0

∑
k1,k2≥0
k1<k2

32U(l1)
2U(k1)U(k2)G(0)

2
2l1∑
i=0

∑′

p,q,r≤x

〈
af (p

4l1−2iq2k1r2k2)
〉

≪
∑
l1≥0

∑
k1,k2≥0
k1<k2

2l1∑
i=0

(
πN (x)2 log log x+

8ν(N)πN (x)3x(2k1+2k2+4l1−2i)c′

kN

)

≪πN (x)2 log log x
∑
l1≥0

∑
k1,k2≥0
k1<k2

l1 +
∑
l1≥0

∑
k1,k2≥0
k1<k2

l1
8ν(N)πN (x)3x(2k1+2k2+4l1)c

′

kN

≪L4πN (x)2 log log x+
8ν(N)L4πN (x)3x8Lc

′

kN
.

Proposition 6.4.4. With L14(ρ, g; f)(x) defined in equation (6.66), we have

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L14(ρ, g; f)(x)
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≪L5πN (x)(log log x)2 +
8ν(N)L5πN (x)3x8Lc

′

kN
.

Proof. We find estimate for
〈
L14(ρ, g; f)(x)

〉
, where

16πN (x)4L2L14(ρ, g; f)(x)

=
∑

l1,l2≥0
l1 ̸=l2

∑
k1,k2≥0
k1 ̸=k2

16U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q,r≤x

min{2l1,2l2}∑
i=0

af (p
2l1+2l2−2i)af (q

2k1r2k2)

=
∑

l1,l2≥0
l1<l2

∑
k1,k2≥0
k1<k2

64U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q,r≤x

2l1∑
i=0

af (p
2l1+2l2−2iq2k1r2k2).

For l1, l2 ≥ 0 with l2 > l1 and 0 ≤ i ≤ 2l1, we have 2l1 + 2l2 − 2i ̸= 0.

Similarly, for k1, k2 ≥ 0 with k2 > k1, we obtain k2 ̸= 0.

Now, using proof of the Lemma 3.2.30, for 0 ≤ i ≤ 2l1, l1 < l2, k1 < k2, we obtain∑′

p,q,r≤x

〈
af (p

2l1+2l2−2iq2k1r2k2)
〉

=O(πN (x)(log log x)2) + O

(
8ν(N)πN (x)3x(2k1+2k2+2l1+2l2−2i)c′

kN

)

=O(πN (x)(log log x)2) + O

(
8ν(N)πN (x)3x(4k2+4l2−2i)c′

kN

)
.

Thus,

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L14(ρ, g; f)(x) (6.70)

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0
l1<l2

∑
k1,k2≥0
k1<k2

64U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q,r≤x

2l1∑
i=0

af (p
2l1+2l2−2iq2k1r2k2)

=
∑

l1,l2≥0
l1<l2

∑
k1,k2≥0
k1<k2

64U(l1)U(l2)U(k1)U(k2)G(0)
2 ×

2l1∑
i=0

∑′

p,q,r≤x

〈
af (p

2l1+2l2−2iq2k1r2k2)
〉

≪
∑

l1,l2≥0
l1<l2

∑
k1,k2≥0
k1<k2

2l1∑
i=0

(
πN (x)(log log x)2 +

8ν(N)πN (x)3x(4k2+4l2−2i)c′

kN

)

≪πN (x)(log log x)2
∑

l1,l2≥0
l1<l2

∑
k1,k2≥0
k1<k2

l1 +
∑

l1,l2≥0
l1<l2

∑
k1,k2≥0
k1<k2

l1
8ν(N)πN (x)3x(4l2+4k2)c

′

kN
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≪L5πN (x)(log log x)2 +
8ν(N)L5πN (x)3x8Lc

′

kN
.

Proposition 6.4.5. With L1(ρ, g; f)(x) defined in equation (6.62), we have

1

|FN,k|
∑

f∈FN,k

L1(ρ, g; f)(x)

≪ 1

πN (x)
+
L2 log log x

πN (x)2
+
L3(log log x)2

πN (x)3
+

1

πN (x)

8ν(N)L3x8Lc
′

kN
.

Proof. Adding equations (6.67),(6.68),(6.69) and (6.70), we obtain

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L1(ρ, g; f)(x)

=

4∑
i=1

16πN (x)4L2 1

|FN,k|
∑

f∈FN,k

L1i(ρ, g; f)(x)


≪L2πN (x)3 + L3πN (x)2 log log x+

8ν(N)L3πN (x)3x8Lc
′

kN

+L4πN (x)2 log log x+
8ν(N)L4πN (x)3x8Lc

′

kN

+L4πN (x)2 log log x+
8ν(N)L4πN (x)3x8Lc

′

kN

+L5πN (x)(log log x)2 +
8ν(N)L5πN (x)3x8Lc

′

kN

≪L2πN (x)3 + L4πN (x)2 log log x+ L5πN (x)(log log x)2 +
8ν(N)L5πN (x)3x8Lc

′

kN
.

Therefore,

1

|FN,k|
∑

f∈FN,k

L1(ρ, g; f)(x) (6.71)

≪ 1

πN (x)4L2

(
L2πN (x)3 + L4πN (x)2 log log x+ L5πN (x)(log log x)2 +

8ν(N)L5πN (x)3x8Lc
′

kN

)

≪ 1

πN (x)
+
L2 log log x

πN (x)2
+
L3(log log x)2

πN (x)3
+

1

πN (x)

8ν(N)L3x8Lc
′

kN
.

6.4.2 Estimation for
〈
(L2 + L3)(ρ, g; f)(x)

〉
We now look at the part of the sum L(ρ, g; f)(x) with n1 = 0 and n2 ̸= 0, i.e., we now estimate
L3(ρ, g; f)(x). In this case, the innermost term

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, 0)A(p, r, n2)

=8af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)(af (p
2n2)− af (p

2n2−2))(af (r
2n2)− af (r

2n2−2))

=8{af (p2l1)af (p2l2)(af (p2n2)− af (p
2n2−2))}af (q2k1){(af (r2n2)− af (r

2n2−2))}af (r2k2).



6.4. ESTIMATION FOR
〈
L(ρ, g; f)(x)

〉
=
〈
(L1 + 2L2 + L4)(ρ, g; f)(x)

〉
135

We want to find an estimate for

(L2 + L3)(ρ, g; f)(x)

=2L3(ρ, g; f)(x)

=
2

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n2≥1

U(l1)U(l2)U(k1)U(k2)G(0)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, 0)A(p, r, n2)

=
16

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n2≥1

U(l1)U(l2)U(k1)U(k2)G(0)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)(af (p
2n2)− af (p

2n2−2))(af (r
2n2)− af (r

2n2−2))

=
G(0)

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(n2)
∑

l1,l2≥0

U(l1)U(l2)af (p
2l1)af (p

2l2)(af (p
2n2)− af (p

2n2−2))

∑
k1,k2≥0

U(k1)U(k2)af (q
2k1)af (r

2k2)af ((af (r
2n2)− af (r

2n2−2))

=
1

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)A(ρ, g; f ;n2, p)A1(ρ, g; f ;n2, q, r),

(6.72)

where, for n ≥ 1, and primes q and r,

A1(ρ, g; f ;n, q, r) :=
∑

k1,k2≥0

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n)− af (r

2n−2)), (6.73)

and

A(ρ, g; f ;n, r) =
∑

l1,l2≥0

U(l1)U(l2)af (r
2l1)af (r

2l2)(af (r
2n)− af (r

2n−2)),

as defined in equation (6.9). We now estimate A1(ρ, g; f ;n, q, r).

Using Corollary 3.3.5, for k2 ≥ n2, we have

af (q
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

=af (q
2k1)(af (r

2k2−2n2) + af (r
2k2+2n2)).

We note that the product af (q2k1)(af (r2k2−2n2) + af (r
2k2+2n2)) gives 1 = af (q

0r0), only if
k1 = 0 and k2 − n2 = 0, i.e., k1 = 0 and k2 = n2, i.e., (k1, k2) = (0, n2).

Using Corollary 3.3.5, for k2 < n2, we have

af (q
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

=af (q
2k1)(af (r

2k2+2n2)− af (r
2n2−2k2−2)).

We note that the product af (q2k1)(af (r2k2+2n2) − af (r
2n2−2k2−2)) gives −1 = −af (q0r0),

only if k1 = 0 and n2 = k2 + 1, i.e., (k1, k2) = (0, n2 − 1).

For primes r, q and positive integer n2, we define

F1(ρ, g; f ;n2, q, r) :=
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2)),
(6.74)
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F2(ρ, g; f ;n2, q, r) :=
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2)).

(6.75)

For any primes q, r and fixed integer n2 ≥ 1,

A1(ρ, g; f ;n2, q, r) (6.76)

=
∑

k1,k2≥0

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n)− af (r

2n−2))

=
∑

k1,k2≥0,k2≥n2

(k1,k2)=(0,n2)

U(k1)U(k2) + F1(ρ, g; f ;n2, q, r)

−
∑

k1,k2≥0,k2<n2

(k1,k2)=(0,n2−1)

U(k1)U(k2) + F2(ρ, g; f ;n2, q, r)

=U(0)U(n2) + F1(ρ, g; f ;n2, q, r)− U(0)U(n2 − 1) + F2(ρ, g; f ;n2, q, r)

=U(0)(U(n2)− U(n2 − 1)) + F1(n2, q, r) + F2(n2, q, r),

where we write Fi(n2, q, r) for Fi(ρ, g; f ;n2, q, r), i = 1, 2.

We note that for i = 1, 2, and j = 1, 2, 3,
∣∣Bi(n2)∣∣ ≤ 32k21L,

∣∣Fi(n2, q, r)∣∣ ≤ 256k21L
2 and∣∣Aj(n2, p)∣∣ ≤ 64k21L

2.

We define, F (n) := U(n)− U(n− 1).

For primes p, q, r and fixed integer n2 ≥ 1, using equation (6.13), we obtain

A(ρ, g; f ;n2, p)×A1(ρ, g; f ;n2, q, r) (6.77)

=

B1(n2) +B2(n2) +

3∑
i=1

Ai(n2, p)

(U(0)(U(n2)− U(n2 − 1)) + F1(n2, q, r) + F2(n2, q, r)
)

=

B1(n2) +B2(n2) +

3∑
i=1

Ai(n2, p)

(U(0)F (n2) + F1(n2, q, r) + F2(n2, q, r)
)

=U(0)F (n2)(B1(n2) +B2(n2)) +

3∑
i=1

U(0)F (n2)Ai(n2, p)

+F1(n2, q, r)(B1(n2) +B2(n2)) +

3∑
i=1

F1(n2, q, r)Ai(n2, p)

+F2(n2, q, r)(B1(n2) +B2(n2)) +

3∑
i=1

F2(n2, q, r)Ai(n2, p).

Using equation (6.72), we obtain

1

|FN,k|
∑

f∈FN,k

(L2(ρ, g; f)(x) + L3(ρ, g; f)(x)) (6.78)

=2
1

|FN,k|
∑

f∈FN,k

L3(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)A(ρ, g; f ;n2, p)A1(ρ, g; f ;n2, q, r)
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=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)U(0)F (n2)(B1(n2) +B2(n2))

+
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

U(0)F (n2)Ai(n2, p)

+
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)F1(n2, q, r)(B1(n2) +B2(n2))

+
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

F1(n2, q, r)Ai(n2, p)

+
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)F2(n2, q, r)(B1(n2) +B2(n2))

+
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

F2(n2, q, r)Ai(n2, p)

=

6∑
t=1

λt(x),

where
6∑
t=1

λt(x) are defined in accordance with the order of terms in the previous line.

Proposition 6.4.6. With λ1 defined in equation (6.78), we have

λ1(x) ≪
1

πN (x)
.

Proof. We know, there exists k1 > 0 such that
∣∣F (n)∣∣ ≤ 8k1 for all positive integers n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.77), we obtain

λ1(x) (6.79)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)U(0)F (n2)(B1(n2) +B2(n2))

≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n2=1

|B1(n2) +B2(n2)|

≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n2=1

L

≪ 1

πN (x)4L2
πN (x)3L2

=
1

πN (x)
.

Proposition 6.4.7. With λ2 defined in equation (6.78), we have

λ2(x) ≪
L

πN (x)
.
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Proof. We know, there exists k1 > 0 such that
∣∣F (n)∣∣ ≤ 8k1 for all positive integers n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.77), we obtain

λ2(x) (6.80)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

U(0)F (n2)Ai(n2, p)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n2=1

G(0)G(n2)U(0)F (n2)

3∑
i=1

Ai(n2, p)

≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n2=1

∣∣∣∣∣∣
3∑
i=1

Ai(n2, p)

∣∣∣∣∣∣
≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n2=1

L2

≪ 1

πN (x)4L2
πN (x)3L3

=
L

πN (x)
.

To find an estimate for λ3(x) (defined in equation (6.78), we first prove the following lemma.

Lemma 6.4.8.

1

|FN,k|
∑

f∈FN,k

F1(n2, p, r) ≪
(
1

r
+

1

p
+

1

pr

)
+ L3 8

ν(N)(pr)4Lc
′

|FN,k|
.

Proof.
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)

=
1

|FN,k|
∑

f∈FN,k

∑
k1,k2≥0,k2≥n2

(k1,k2) ̸=(0,n2)

U(k1)U(k2)af (p
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

=
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)

(〈
af (p

2k1r2k2−2n2)
〉
+
〈
af (p

2k1r2k2+2n2)
〉)

=
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)

 1

pk1rk2−n2
+

1

pk1rk2+n2
+O

(
8ν(N)p2k1c

′
r2k2c

′+2n2c
′

kN

)
≪

∑
k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

(
2

pk1rk2−n2
+

8ν(N)p2k1c
′
r2k2c

′+2n2c
′

kN

)

≪
(
1

r
+ · · ·

)
+

(
1

p
+ · · ·

)
+

(
1

p
+ · · ·

)(
1

r
+ · · ·

)
+ L3 8

ν(N)(pr)4Lc
′

kN

≪
(
1

r
+

1

p
+

1

pr

)
+ L3 8

ν(N)(pr)4Lc
′

kN
.
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Proposition 6.4.9. With λ3 defined in equation (6.78), we have

λ3(x) ≪
log log x

πN (x)L
+ L2 8

ν(N)x8Lc
′

kN
.

Proof. Using Lemma 6.4.8, we obtain

λ3(x) (6.81)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)F1(n2, q, r)(B1(n2) +B2(n2))

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

G(0)G(n2)F1(n2, q, r)(B1(n2) +B2(n2))

=
2

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

G(0)G(n2)(B1(n2) +B2(n2))
1

|FN,k|
∑

f∈FN,k

F1(n2, q, r)

≪ 2

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

|B1(n2) +B2(n2)|

∣∣∣∣∣∣ 1

|FN,k|
∑

f∈FN,k

F1(n2, q, r)

∣∣∣∣∣∣
≪ 1

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

L

((
1

r
+

1

q
+

1

qr

)
+ L3 8

ν(N)(qr)4Lc
′

kN

)

≪ 1

πN (x)4L2
LπN (x)

∑′

p,q,r≤x

((
1

r
+

1

q
+

1

qr

)
+ L3 8

ν(N)(qr)4Lc
′

kN

)

≪ 1

πN (x)3L

∑′

p,q,r≤x

1

r
+ L2 8

ν(N)x8Lc
′

kN

≪ 1

πN (x)3L
πN (x)(πN (x)− 1)

∑
r≤x

1

r
+ L2 8

ν(N)x8Lc
′

kN

≪ log log x

πN (x)L
+ L2 8

ν(N)x8Lc
′

kN
.

To find an estimate for λ4(x) (defined in equation (6.78), we first prove the following lemma.

Lemma 6.4.10.
3∑
i=1

1

|FN,k|
∑

f∈FN,k

F1(n2, q, r)Ai(n2, p)

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L5 8

ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

Proof. Using equation (6.74) and definition (6.10), we obtain

1

|FN,k|
∑

f∈FN,k

F1(n2, q, r)A1(n2, p)

=
1

|FN,k|
∑

f∈FN,k

∑
k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

×
∑

l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (p
2l1)af (p

2l2+2n2)
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=
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

∑
l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)U(k1)U(k2)

×
l1+l2+n2∑

t=|l1−l2−n2|

1

|FN,k|
∑

f∈FN,k

(
af (p

2tq2k1)× (af (r
2k2−2n2) + af (r

2k2+2n2))
)

=
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

∑
l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)U(k1)U(k2)

l1+l2+n2∑
t=|l1−l2−n2|

(〈
af (p

2tq2k1r2k2−2n2)
〉
+
〈
af (p

2tq2k1r2k2+2n2)
〉)

≪
∑

k1,k2≥0,k2≥n2

(k1,k2) ̸=(0,n2)

∑
l1,l2≥0
l1−l2 ̸=n2

l1+l2+n2∑
t=|l1−l2−n2|

 1

pt
1

qk1

(
1

rk2−n2
+

1

rk2+n2

)
+

(
8ν(N)p2tc

′
q2k1c

′
r2k2c

′+2n2c
′

kN

)
≪

∑
k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

1

qk1
1

rk2−n2

∑
l1,l2≥0
l1−l2 ̸=n2

l1+l2+n2∑
t=|l1−l2−n2|

1

pt

+
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

∑
l1,l2≥0
l1−l2 ̸=n2

(
(l1 + l2 + n2)

8ν(N)p2(l1+l2+n2)c
′
q2k1c

′
r2k2c

′+2n2c
′

kN

)

≪

((
1

r
+ · · ·

)
+

(
1

q
+ · · ·

)
+

(
1

q
+ · · ·

)(
1

r
+ · · ·

))(
1

p
+ · · ·

)
L

+ L4L
8ν(N)p4Lc

′+2n2c
′
q2Lc

′
r2Lc

′+2n2c
′

kN

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L5 8

ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

We also note that a similar calculation leads to the same estimate for i = 2, 3 and we have

1

|FN,k|
∑

f∈FN,k

F1(n2, q, r)Ai(n2, p)

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L5 8

ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

and hence, adding all three inequations, we obtain

3∑
i=1

1

|FN,k|
∑

f∈FN,k

F1(n2, q, r)Ai(n2, p) (6.82)

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L5 8

ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

Proposition 6.4.11. With λ4 defined in equation (6.78), we have

λ4(x) ≪
(log log x)2

πN (x)2L
+ L3 8

ν(N)x8Lc
′+4πN (x)c′

kN
.
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Proof. Using equation (6.82), we have

λ4(x) (6.83)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

F1(n2, q, r)Ai(n2, p)

=
2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

1

|FN,k|
∑

f∈FN,k

Ai(n2, p)F1(n2, q, r)

≪ 2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

∣∣∣∣∣∣
3∑
i=1

1

|FN,k|
∑

f∈FN,k

Ai(n2, p)F1(n2, q, r)

∣∣∣∣∣∣
≪ 2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

((
1

pr
+

1

pq
+

1

pqr

)
L+ L5 8

ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN

)

≪ 1

πN (x)4L2
πN (x)L

∑′

p,q,r≤x

1

pr
+

1

πN (x)4L2

∑′

p,q,r≤x

L5πN (x)
8ν(N)(x2)4Lc

′+2πN (x)c′

kN

≪ 1

πN (x)4L2
πN (x)L(log log x)2πN (x) +

1

πN (x)4L2
L5πN (x)4

8ν(N)(x2)4Lc
′+2πN (x)c′

kN

≪ (log log x)2

πN (x)2L
+ L3 8

ν(N)x8Lc
′+4πN (x)c′

kN
.

To find an estimate for λ5(x) (defined in equation (6.78), we first prove the following lemma.

Lemma 6.4.12.

1

|FN,k|
∑

f∈FN,k

F2(n2, p, r) ≪
(
1

r
+

1

p
+

1

pr

)
+ L2 8

ν(N)p2Lc
′
r2Lc

′+2n2c
′

kN
.

Proof. Using equations (6.75), (6.11) and (6.12), we obtain

1

|FN,k|
∑

f∈FN,k

F2(n2, p, r)

=
1

|FN,k|
∑

f∈FN,k

∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

U(k1)U(k2)af (p
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

=
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

U(k1)U(k2)

(〈
af (p

2k1r2k2+2n2)
〉
−
〈
af (p

2k1r2n2−2k2−2)
〉)

=
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

U(k1)U(k2)

 1

pk1rk2+n2
+

1

pk1rn2−k2−1
+O

(
8ν(N)p2k1c

′
r2k2c

′+2n2c
′

kN

)
≪

∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

(
2

pk1rn2−k2−1
+

8ν(N)p2k1c
′
r2k2c

′+2n2c
′

kN

)

≪
(
1

r
+ · · ·

)
+

(
1

p
+ · · ·

)
+

(
1

p
+ · · ·

)(
1

r
+ · · ·

)
+ L2 8

ν(N)p2Lc
′
r2Lc

′+2n2c
′

kN

≪
(
1

r
+

1

p
+

1

pr

)
+ L2 8

ν(N)p2Lc
′
r2Lc

′+2n2c
′

kN
.
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Proposition 6.4.13. With λ5 defined in equation (6.78), we have

λ5(x) ≪
log log x

πN (x)L
+ L

8ν(N)x4Lc
′+2πN (x)c′

kN
.

Proof. l > 1 + ⌊L⌋, implies U(l) = 0 and hence, B1(n2) +B2(n2) = 0, or n2 > 1 + ⌊L⌋.

Using Lemma 6.4.12, we obtain

λ5(x) (6.84)

=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

G(0)G(n2)F2(n2, q, r)(B1(n2) +B2(n2))

=
2

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

G(0)G(n2)(B1(n2) +B2(n2))
1

|FN,k|
∑

f∈FN,k

F2(n2, q, r)

≪ 2

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

|B1(n2) +B2(n2)|

∣∣∣∣∣∣ 1

|FN,k|
∑

f∈FN,k

F2(n2, q, r)

∣∣∣∣∣∣
≪ 1

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n2=1

L

((
1

r
+

1

q
+

1

qr

)
+ L2 8

ν(N)p2Lc
′
r2Lc

′+2n2c
′

kN

)

≪ 1

πN (x)4L2
LπN (x)

∑′

p,q,r≤x

((
1

r
+

1

q
+

1

qr

)
+ L2 8

ν(N)p2Lc
′
r2Lc

′+2πN (x)c′

kN

)

≪ 1

πN (x)3L

∑′

p,q,r≤x

1

r
+ L

8ν(N)x4Lc
′+2πN (x)c′

kN
≪ log log x

πN (x)L
+ L

8ν(N)x4Lc
′+2πN (x)c′

kN
.

To find an estimate for λ6(x) (defined in equation (6.78), we first prove the following lemma.

Lemma 6.4.14.

3∑
i=1

1

|FN,k|
∑

f∈FN,k

F2(n2, q, r)Ai(n2, p)

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L4πN (x)

8ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

Proof. Using equation (6.75) and definition (6.10), we obtain

1

|FN,k|
∑

f∈FN,k

F2(n2, q, r)A1(n2, p)

=
1

|FN,k|
∑

f∈FN,k

∑
k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

×
∑

l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (p
2l1)af (p

2l2+2n2)

=
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

∑
l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)U(k1)U(k2)
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l1+l2+n2∑
t=|l1−l2−n2|

1

|FN,k|
∑

f∈FN,k

(
af (p

2tq2k1)× (af (r
2k2+2n2)− af (r

2n2−2k2−2))
)

=
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

∑
l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)U(k1)U(k2)

l1+l2+n2∑
t=|l1−l2−n2|

(〈
af (p

2tq2k1r2k2+2n2)
〉
−
〈
af (p

2tq2k1r2n2−2k2−2)
〉)

≪
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

∑
l1,l2≥0
l1−l2 ̸=n2

l1+l2+n2∑
t=|l1−l2−n2|

 1

pt
1

qk1

(
1

rk2+n2
+

1

rn2−k2−1

)
+

(
8ν(N)p2tc

′
q2k1c

′
r2k2c

′+2n2c
′

kN

)
≪

∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

1

qk1
1

rn2−k2−1

∑
l1,l2≥0
l1−l2 ̸=n2

l1+l2+n2∑
t=|l1−l2−n2|

1

pt

+
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

∑
l1,l2≥0
l1−l2 ̸=n2

(
(l1 + l2 + n2)

8ν(N)p2(l1+l2+n2)c
′
q2k1c

′
r2k2c

′+2n2c
′

kN

)

≪

((
1

r
+ · · ·

)
+

(
1

q
+ · · ·

)
+

(
1

q
+ · · ·

)(
1

r
+ · · ·

))(
1

p
+ · · ·

)
L

+ L4πN (x)
8ν(N)p4Lc

′+2n2c
′
q2Lc

′
r2Lc

′+2n2c
′

kN

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L4πN (x)

8ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

We also note that a similar calculation leads to the same estimate for i = 2, 3 and we have

1

|FN,k|
∑

f∈FN,k

F2(n2, q, r)Ai(n2, p)

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L4πN (x)

8ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
,

and hence, adding all three inequations, we obtain

3∑
i=1

1

|FN,k|
∑

f∈FN,k

F2(n2, q, r)Ai(n2, p) (6.85)

≪
(

1

pr
+

1

pq
+

1

pqr

)
L+ L4πN (x)

8ν(N)p4Lc
′+2n2c

′
q2Lc

′
r2Lc

′+2n2c
′

kN
.

Proposition 6.4.15. With λ6 defined in equation (6.78), we have

λ6(x) ≪
(log log x)2

πN (x)2L
+ L2πN (x)

8ν(N)x8Lc
′+4πN (x)c′

kN
.

Proof. Using equation (6.85), we have

λ6(x) (6.86)
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=
1

|FN,k|
∑

f∈FN,k

2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

F2(n2, q, r)Ai(n2, p)

=
2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)

3∑
i=1

1

|FN,k|
∑

f∈FN,k

Ai(n2, p)F2(n2, q, r)

≪ 2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

∣∣∣∣∣∣
3∑
i=1

1

|FN,k|
∑

f∈FN,k

Ai(n2, p)F2(n2, q, r)

∣∣∣∣∣∣
≪ 2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

(
1

pr
+

1

pq
+

1

pqr

)
L

+
2

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

L4πN (x)
8ν(N)p4Lc

′+2n2c
′
q2Lc

′
r2Lc

′+2n2c
′

kN

≪ 1

πN (x)4L2
πN (x)L

∑′

p,q,r≤x

1

pr
+

1

πN (x)4L2

∑′

p,q,r≤x

L4πN (x)2
8ν(N)x8Lc

′+4πN (x)c′

kN

≪ 1

πN (x)4L2
πN (x)L(log log x)2πN (x) +

1

πN (x)4L2
L4πN (x)5

8ν(N)x8Lc
′+4πN (x)c′

kN

≪ (log log x)2

πN (x)2L
+ L2πN (x)

8ν(N)x8Lc
′+4πN (x)c′

kN
.

Proposition 6.4.16. With (L2 + L3)(ρ, g; f)(x) defined in equation (6.72), we have

1

|FN,k|
∑

f∈FN,k

(L2 + L3)(ρ, g; f)(x)

≪ L

πN (x)
+

log log x

πN (x)L
+ L2(L+ πN (x))

8ν(N)x8Lc
′+4πN (x)c′

kN
.

Proof. Adding equations (6.79), (6.80), (6.81), (6.83), (6.84) and (6.86), and using equation
(6.78), we obtain

1

|FN,k|
∑

f∈FN,k

(L2(ρ, g; f)(x) + L3(ρ, g; f)(x))

=

6∑
t=1

λt(x)

≪ 1

πN (x)
+

L

πN (x)
+

log log x

πN (x)L
+ L2 8

ν(N)x8Lc
′

kN
+

(log log x)2

πN (x)2L
+ L3 8

ν(N)x8Lc
′+4πN (x)c′

kN

+
log log x

πN (x)L
+ L

8ν(N)x4Lc
′+2πN (x)c′

kN
+

(log log x)2

πN (x)2L
+ L2πN (x)

8ν(N)x8Lc
′+4πN (x)c′

kN

≪ L

πN (x)
+

log log x

πN (x)L
+ L2(L+ πN (x))

8ν(N)x8Lc
′+4πN (x)c′

kN
,

Thus,

1

|FN,k|
∑

f∈FN,k

(L2 + L3)(ρ, g; f)(x) (6.87)

≪ L

πN (x)
+

log log x

πN (x)L
+ L2(L+ πN (x))

8ν(N)x8Lc
′+4πN (x)c′

kN
.
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6.4.3 Estimation for
〈
L4(ρ, g; f)(x)

〉
We now look at the part of the sum L(ρ, g; f)(x) with n1 ̸= 0 and n2 ̸= 0, i.e., we now estimate
L4(ρ, g; f)(x).

For l ≥ 0, n, n1, n2 ≥ 1 and for any prime p, let

Lp(l, n) = af (p
2l)(af (p

2n)− af (p
2n−2)),

and
T (p, n1, n2) = (af (p

2n1)− af (p
2n1−2))(af (p

2n2)− af (p
2n2−2)),

be the same as defined earlier.

Thus,

A(p, q, n1)A(p, r, n2) = 4T (p, n1, n2)(af (q
2n1)− af (q

2n1−2))(af (r
2n2)− af (r

2n2−2)).

In this case, the innermost term is

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, n1)A(p, r, n2)

=4af (p
2l1)af (p

2l2)(af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2))

× af (q
2k1)(af (q

2n1)− af (q
2n1−2))

× af (r
2k2)(af (r

2n2)− af (r
2n2−2))

=4af (p
2l1)af (p

2l2)T (p, n1, n2)Lq(k1, n1)Lr(k2, n2)

=4k(p, n1, n2, l1, l2)Lq(k1, n1)Lr(k2, n2),

where for n1, n2 ≥ 1, l1, l2 ≥ 0 and for any prime r,

k(r, n1, n2, l1, l2) = af (r
2l1)af (r

2l2)T (r, n1, n2),

as defined earlier.

Now, T (r, n1, n2) = T (r, n2, n1) implies k(r, n1, n2, l1, l2) = k(r, n2, n1, l1, l2).

Hence, we have
k(r, n1, n2) = k(r, n2, n1). (6.88)

For n1, n2 ≥ 1 and for primes q, r, we define

L(q, r, n1, n2) :=
∑

k1,k2≥0

U(k1)U(k2)Lq(k1, n1)Lr(k2, n2),

and
k(r, n1, n2) =

∑
l1,l2≥0

U(l1)U(l2)k(r, n1, n2, l1, l2),

as defined earlier.

We also note that

L(q, r, n2, n1) (6.89)

=
∑

k1,k2≥0

U(k1)U(k2)Lq(k1, n2)Lr(k2, n1)

=
∑

k1,k2≥0

U(k2)U(k1)Lr(k1, n1)Lq(k2, n2)

=L(r, q, n1, n2).
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Therefore, using equations (6.88) and (6.89) in the third line, we obtain∑′

p,q,r≤x

∑
n1,n2≥1
n2<n1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2) (6.90)

=
∑′

p,q,r≤x

∑
n′
1,n

′
2≥1

n′
1<n

′
2

G(n′2)G(n
′
1)k(p, n

′
2, n

′
1)L(q, r, n

′
2, n

′
1)

=
∑′

p,q,r≤x

∑
n′
1,n

′
2≥1

n′
1<n

′
2

G(n′2)G(n
′
1)k(p, n

′
1, n

′
2)L(r, q, n

′
1, n

′
2)

=
∑′

p,q,r≤x

∑
n′
1,n

′
2≥1

n′
1<n

′
2

G(n′2)G(n
′
1)k(p, n

′
1, n

′
2)L(q, r, n

′
1, n

′
2)

=
∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2),

where the fourth line is obtained by interchanging the variables q and r.

Using equation (6.90), we obtain

L4(ρ, g; f)(x) (6.91)

=
1

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, n1)A(p, r, n2)

=
4

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

k(p, n1, n2, l1, l2)Lq(k1, n1)Lr(k2, n2)

=
4

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1

G(n1)G(n2)
∑

l1,l2≥0

U(l1)U(l2)k(p, n1, n2, l1, l2)∑
k1,k2≥0

U(k1)U(k2)Lq(k1, n1)Lr(k2, n2)

=
4

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2)

=
8

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2)

+
4

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2)

=E(ρ, g; f)(x) + F(ρ, g; f)(x),

where

E(ρ, g; f)(x) := 8

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2), (6.92)

and

F(ρ, g; f)(x) :=
4

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2). (6.93)
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We now find an estimate for E(ρ, g; f)(x). To estimate
〈
E(ρ, g; f)(x)

〉
, we first find estimate

for L(q, r, n1, n2) in the following lemmas.

Lemma 6.4.17. Let ρ, f, g be as defined earlier. Then for primes q, r, and integers n1, n2 ≥ 1
with n2 ≥ n1, we have

L(q, r, n1, n2)

=F (n1)F (n2) + F (n1)

3∑
i=1

Mi(n1, q) + F (n2)

3∑
i=1

Mi(n2, r) +

3∑
i=1

3∑
j=1

Mi(n1, q)Mj(n2, r),

where Mi(n, s) =Mi(ρ, g; f ;n, s) (i = 1, 2, 3), are given by

M1(ρ, g; f ;n, s) :=
∑

k≥0,k>n

U(k)af (s
2k−2n),

M2(ρ, g; f ;n, s) :=
∑
k≥0

U(k)af (s
2k+2n),

M3(ρ, g; f ;n, s) := −
∑

k≥0,k<n−1

U(k)af (s
2n−2k−2),

and
F (n) := U(n)− U(n− 1),

for any positive integer n and any prime s.

Proof.

L(q, r, n1, n2) (6.94)

=
∑

k1,k2≥0

U(k1)U(k2)Lq(k1, n1)Lr(k2, n2)

=
∑
k1≥0

U(k1)Lq(k1, n1)
∑
k2≥0

U(k2)Lr(k2, n2)

=

 ∑
k1≥0,k1≥n1

U(k1)Lq(k1, n1) +
∑

k1≥0,k1<n1

U(k1)Lq(k1, n1)


×

 ∑
k2≥0,k2≥n2

U(k2)Lr(k2, n2) +
∑

k2≥0,k2<n2

U(k2)Lr(k2, n2)


=(D1 +D2)(q, n1)× (D1 +D2)(r, n2),

where Di(q, n1), and Di(r, n2), (i = 1, 2) are defined in the following way.

For any prime s and any positive integer n,

D1(s, n) :=
∑

k≥0,k≥n

U(k)Ls(k, n, k ≥ n),

and
D2(s, n) :=

∑
k≥0,k<n

U(k)Ls(k, n, k < n),

We now estimate D1(s, n), for any prime s and positive integer n.

Using Corollary 3.3.5, we have

D1(s, n) (6.95)
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=
∑

k≥0,k≥n

U(k)Ls(k, n, k ≥ n)

=
∑

k≥0,k≥n

U(k)(af (s
2k−2n) + af (s

2k+2n))

=U(n) + U(n)af (s
4n) +

∑
k≥0,k>n

U(k)(af (s
2k−2n) + af (s

2k+2n))

=U(n) +
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0,k≥n

U(k)af (s
2k+2n).

We now estimate D2(s, n), for any prime s and positive integer n.

Using Corollary 3.3.5, we have

D2(s, n) (6.96)

=
∑

k≥0,k<n

U(k)Ls(k, n, k < n)

=
∑

k≥0,k<n

U(k)(af (s
2k+2n)− af (s

2n−2k−2))

=− U(n− 1) + U(n− 1)af (s
4n−2) +

∑
k≥0,k<n−1

U(k)(af (s
2k+2n)− af (s

2n−2k−2))

=− U(n− 1) +
∑

k≥0,k<n

U(k)af (s
2k+2n)−

∑
k≥0,k<n−1

U(k)af (s
2n−2k−2).

Adding equations (6.95) and (6.96), we obtain

(D1 +D2)(s, n) (6.97)

=
∑
k≥0

U(k)Ls(k, n)

=U(n) +
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0,k≥n

U(k)af (s
2k+2n)

−U(n− 1) +
∑

k≥0,k<n

U(k)af (s
2k+2n)−

∑
k≥0,k<n−1

U(k)af (s
2n−2k−2)

=U(n)− U(n− 1) +
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0

U(k)af (s
2k+2n)

−
∑

k≥0,k<n−1

U(k)af (s
2n−2k−2)

=U(n)− U(n− 1) +

3∑
i=1

Mi(ρ, g; f ;n, s),

=U(n)− U(n− 1) +

3∑
i=1

Mi(n, s)

=F (n) +

3∑
i=1

Mi(n, s),

where F (n) := U(n)− U(n− 1).

Putting the estimate for (D1 +D2)(s, n) in equation (6.94), we obtain

L(q, r, n1, n2)

=(D1 +D2)(q, n1)× (D1 +D2)(r, n2)
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=

U(n1)− U(n1 − 1) +

3∑
i=1

Mi(n1, q)

U(n2)− U(n2 − 1) +

3∑
i=1

Mi(n2, r)


=(D1 +D2)(q, n1)× (D1 +D2)(r, n2)

=
(
U(n1)− U(n1 − 1)

) (
U(n2)− U(n2 − 1)

)
+
(
U(n1)− U(n1 − 1)

) 3∑
i=1

Mi(n1, q)

+
(
U(n2)− U(n2 − 1)

) 3∑
i=1

Mi(n2, r)

+

3∑
i=1

3∑
j=1

Mi(n1, q)Mj(n2, r)

=F (n1)F (n2) + F (n1)

3∑
i=1

Mi(n1, q) + F (n2)

3∑
i=1

Mi(n2, r) +

3∑
i=1

3∑
j=1

Mi(n1, q)Mj(n2, r).

Lemma 6.4.18. For any prime s and positive integer n,

3∑
i=1

Mi(n, s) =

⌊L⌋+1+n∑
t=1

U(t, n)af (s
2t),

where

U(t, n) =


U1(t, n), if n = 1

U2(t, n), if 2 ≤ n ≤ ⌊L⌋+1
2

U3(t, n), if ⌊L⌋+3
2 ≤ n ≤ ⌊L⌋

U4(t, n), if ⌊L⌋+ 1 ≤ n ≤ πN (x).

Proof.

Let n = 1.

Hence, for any prime s,

3∑
i=1

Mi(n, s) (6.98)

=
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0

U(k)af (s
2k+2n)−

∑
k≥0,k<n−1

U(k)af (s
2n−2k−2)

=

⌊L⌋+1∑
k=n+1

U(k)af (s
2k−2n) +

⌊L⌋+1∑
k=0

U(k)af (s
2k+2n)

=

⌊L⌋+1−n∑
t=1

U(t+ n)af (s
2t) +

⌊L⌋+1+n∑
t=n

U(t− n)af (s
2t)

=

⌊L⌋+1+n∑
t=1

U1(t, n)af (s
2t),

where

U1(t, n) =

{
U(t+ n) + U(t− n), if (1 =)n ≤ t ≤ ⌊L⌋+ 1− n

U(t− n), if ⌊L⌋+ 2− n ≤ t ≤ ⌊L⌋+ 1 + n.
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Let 2 ≤ n ≤ ⌊L⌋+1
2 .

Hence, for any prime s,

3∑
i=1

Mi(n, s) (6.99)

=
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0

U(k)af (s
2k+2n)−

∑
k≥0,k<n−1

U(k)af (s
2n−2k−2)

=

⌊L⌋+1∑
k=n+1

U(k)af (s
2k−2n) +

⌊L⌋+1∑
k=0

U(k)af (s
2k+2n)−

n−2∑
k=0

U(k)af (s
2n−2k−2)

=

⌊L⌋+1−n∑
t=1

U(t+ n)af (s
2t) +

⌊L⌋+1+n∑
t=n

U(t− n)af (s
2t)−

n−1∑
t=1

U(n− t− 1)af (s
2t)

=

⌊L⌋+1+n∑
t=1

U2(t, n)af (s
2t),

where

U2(t, n) =


U(t+ n)− U(n− t− 1), if 1 ≤ t ≤ n− 1

U(t+ n) + U(t− n), if n ≤ t ≤ ⌊L⌋+ 1− n

U(t− n), if ⌊L⌋+ 2− n ≤ t ≤ ⌊L⌋+ 1 + n.

Let ⌊L⌋+3
2 ≤ n ≤ ⌊L⌋.

Hence, for any prime s,

3∑
i=1

Mi(n, s) (6.100)

=
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0

U(k)af (s
2k+2n)−

∑
k≥0,k<n−1

U(k)af (s
2n−2k−2)

=

⌊L⌋+1∑
k=n+1

U(k)af (s
2k−2n) +

⌊L⌋+1∑
k=0

U(k)af (s
2k+2n)−

n−2∑
k=0

U(k)af (s
2n−2k−2)

=

⌊L⌋+1−n∑
t=1

U(t+ n)af (s
2t) +

⌊L⌋+1+n∑
t=n

U(t− n)af (s
2t)−

n−1∑
t=1

U(n− t− 1)af (s
2t)

=

⌊L⌋+1+n∑
t=1

U3(t, n)af (s
2t),

where

U3(t, n) :=


−U(n− t− 1) + U(t+ n), if 1 ≤ t ≤ ⌊L⌋+ 1− n

−U(n− t− 1), if ⌊L⌋+ 2− n ≤ t ≤ n− 1

U(t− n), if n ≤ t ≤ ⌊L⌋+ 1 + n,

Let ⌊L⌋+ 1 ≤ n ≤ πN (x). Then, n+ 1 ≥ ⌊L⌋+ 2, and hence, U(k) = 0, for all k ≥ n+ 1.

Hence, for any prime s,

3∑
i=1

Mi(n, s) (6.101)
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=
∑

k≥0,k>n

U(k)af (s
2k−2n) +

∑
k≥0

U(k)af (s
2k+2n)−

∑
k≥0,k<n−1

U(k)af (s
2n−2k−2)

=

⌊L⌋+1∑
k=0

U(k)af (s
2k+2n)−

n−2∑
k=0

U(k)af (s
2n−2k−2)

=

⌊L⌋+1+n∑
t=n

U(t− n)af (s
2t)−

n−1∑
t=1

U(n− t− 1)af (s
2t)

=

⌊L⌋+1+n∑
t=1

U4(t, n)af (s
2t),

where

U4(t, n) =

{
−U(n− t− 1), if 1 ≤ t ≤ n− 1

U(t− n), if n ≤ t ≤ ⌊L⌋+ 1 + n.

Hence, for 1 ≤ n ≤ πN (x), combining equations (6.98), (6.99), (6.100) and (6.101), we
obtain

3∑
i=1

Mi(n, s) =

⌊L⌋+1+n∑
t=1

U(t, n)af (s
2t),

where

U(t, n) =


U1(t, n), if n = 1

U2(t, n), if 2 ≤ n ≤ ⌊L⌋+1
2

U3(t, n), if ⌊L⌋+3
2 ≤ n ≤ ⌊L⌋

U4(t, n), if ⌊L⌋+ 1 ≤ n ≤ πN (x).

Corollary 6.4.19. Let s be any prime and n be a positive integer such that 1 ≤ n ≤ πN (x).
Then,

∑
k≥0

U(k)Ls(k, n) = F (n) +

⌊L⌋+1+n∑
t=1

U(t, n)af (s
2t),

where F (n) = U(n)− U(n− 1) and for 1 ≤ n ≤ πN (x) and 1 ≤ t ≤ ⌊L⌋+ 1 + n,

|U(t, n)| ≤ 12k1.

Proof. Using equation (6.97) and Lemma 6.4.18, we obtain

∑
k≥0

U(k)Ls(k, n)

=F (n) +

3∑
i=1

Mi(n, s)

=F (n) +

⌊L⌋+1+n∑
t=1

U(t, n)af (s
2t),

where F (n) = U(n)− U(n− 1) and

U(t, n) =


U1(t, n), if n = 1

U2(t, n), if 2 ≤ n ≤ ⌊L⌋+1
2

U3(t, n), if ⌊L⌋+3
2 ≤ n ≤ ⌊L⌋

U4(t, n), if ⌊L⌋+ 1 ≤ n ≤ πN (x).
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We note that for l ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ− ρ̂

(
l+1
L

)
2 cos 2π(l+1)ψ| ≤ 2k1 +2k1 =

4k1, for some k1 > 0 (In particular, k1 = 1 with our assumption). Hence, for 1 ≤ n ≤ πN (x)
and 1 ≤ t ≤ ⌊L⌋+ 1 + n, |U(t, n)| ≤ 12k1.

Also, using Proposition 6.3.8, we have

k(p, n1, n2) =

4∑
i=1

Ei(n1, n2) +

9∑
i=1

Vi(n1, n2, p),

where Ei(n1, n2) (i = 1, 2, 3, 4) and Vj(n1, n2, p) (j = 1, · · · , 9), are mentioned in Proposition
6.3.8 and Lemma 6.3.7 respectively.

Hence,

k(p, n1, n2)× L(q, r, n1, n2)

=

F (n1)F (n2) + F (n1)

3∑
i=1

Mi(n1, q) + F (n2)

3∑
i=1

Mi(n2, r) +

3∑
i=1

3∑
j=1

Mi(n1, q)Mj(n2, r)


×

 4∑
l=1

El(n1, n2) +

9∑
l=1

Vl(n1, n2, p)


=F (n2)F (n1)

4∑
l=1

El(n1, n2) + F (n2)F (n1)

9∑
l=1

Vl(n1, n2, p)

+F (n2)

3∑
i=1

4∑
l=1

Mi(n2, r)El(n1, n2) + F (n2)

3∑
i=1

9∑
l=1

Mi(n2, r)Vl(n1, n2, p)

+F (n1)

3∑
i=1

4∑
l=1

Mi(n1, q)El(n1, n2) + F (n1)

3∑
i=1

9∑
l=1

Mi(n1, q)Vl(n1, n2, p)

+

3∑
i=1

3∑
j=1

4∑
l=1

Mi(n1, q)Mj(n2, r)El(n1, n2) +

3∑
i=1

3∑
j=1

9∑
l=1

Mi(n1, q)Mj(n2, r)Vl(n1, n2, p)

=

8∑
t=1

Ht(p, q, r, n1, n2),

(6.102)

where Ht(p, q, r, n1, n2) (t = 1, · · · , 8) are defined in respective order by the terms in the previous
line.

Hence, using equation (6.92), we obtain

1

|FN,k|
∑

f∈FN,k

E(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

8

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2)

=

8∑
t=1

1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)Ht(p, q, r, n1, n2)

=

8∑
t=1

βt(x), where

(6.103)

βt(x) =
1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)⟨Ht(p, q, r, n1, n2)⟩, (6.104)
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for all i = 1, · · · , 8.

Proposition 6.4.20. With β1(x) defined in equation (6.104), we have β1(x) ≪ L
πN (x) .

Proof. With the observations made in Lemma 6.3.14, we note that for i = 1, 2, 3, 4,

|Ei(n1, n2)| ≤ 64k21L,

and also,
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.102) and equation (6.103), we obtain

β1(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H1(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)F (n1)

4∑
l=1

El(n1, n2)

≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

4∑
l=1

L

≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2
πN (x)3L3

≪ L

πN (x)
.

Hence,

β1(x) ≪
L

πN (x)
. (6.105)

Proposition 6.4.21. With β2(x) defined in equation (6.104), we have

β2(x) ≪
L(log log x)

πN (x)2
+ L2 8

ν(N)x12Lc
′

kN
.

Proof. With the observations made in Lemma 6.3.14, we note that for j = 1, · · · , 9,

|Vj(n1, n2, p)| ≤ 64k21(L)
2,

and also,
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using Lemma 6.3.13, we obtain

1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)

× F (n2)F (n1)V1(n1, n2, p)

=
1

2πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)

× F (n2)F (n1)

 1

|FN,k|
∑

f∈FN,k

V1(n1, n2, p)
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≪ 1

πN (x)4L2

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

∑′

p,q,r≤x

(
1

p
L+ (L+ πN (x))L2 8

ν(N)x4Lc
′+4n2c

′

kN

)

≪ 1

πN (x)4L2

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

∑′

p,q,r≤x

1

p
L

+
1

πN (x)4L2

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

∑′

p,q,r≤x

(L+ πN (x))L2 8
ν(N)x4Lc

′+4(L+1)c′

kN

≪ 1

πN (x)4L2
L3

∑′

p,q,r≤x

1

p
+

1

πN (x)4L2
L2πN (x)3πN (x)L2 8

ν(N)x12Lc
′

kN

≪ 1

πN (x)4
L(log log x)πN (x)2 + L2 8

ν(N)x12Lc
′

kN

≪L(log log x)

πN (x)2
+ L2 8

ν(N)x12Lc
′

kN
,

using L≪ πN (x) in the last third line.

Since other sums also give the same estimate, using equation (6.102) and equation (6.103),
we obtain

β2(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H2(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)

× F (n2)F (n1)

9∑
l=1

Vl(n1, n2, p)

≪L(log log x)

πN (x)2
+ L2 8

ν(N)x12Lc
′

kN
.

Hence,

β2(x) ≪
L(log log x)

πN (x)2
+ L2 8

ν(N)x12Lc
′

kN
. (6.106)

Proposition 6.4.22. With β3(x) defined in equation (6.104), we have

β3(x) ≪
log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
.

Proof. We know, for l ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ− ρ̂

(
l+1
L

)
2 cos 2π(l+1)ψ| ≤ 2k1 +2k1 =

4k1, for some k1 > 0 and U(l) = 0 for l > ⌊L⌋. Therefore, |Ei(n1, n2)| ≤ 32k21(L + 1) ≤ 64k21L,
and also,

∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.102) and equation (6.103), we obtain

β3(x)
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=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H3(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)

× F (n2)

3∑
i=1

4∑
l=1

Mi(n2, r)El(n1, n2)

=

3∑
i=1

4∑
l=1

1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

Mi(n2, r).

It is enough to find an estimate for

1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)El(n1, n2)
1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n2, r),

for each l ∈ {1, 2, 3, 4}, since the other two sums corresponding to M1(n2, r) and M3(n2, r) can
be estimated similarly and give the same estimate.

We have,

1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n2, r)

=
1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

∑
k2≥0

U(k2)af (r
2k2+2n2)

=
1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)El(n1, n2)
∑′

p,q,r≤x

×
∑
k2≥0

U(k2)

 1

rk2+n2
+O

(
8ν(N)r2k2c

′+2n2c
′

kN

)
≪ 1

πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

L
∑′

p,q,r≤x

×
∑
k2≥0

 1

rk2+n2
+

(
8ν(N)r2k2c

′+2n2c
′

kN

)
≪ 1

πN (x)4L2

πN (x)∑
n1=1

L
∑′

p,q,r≤x

×
1+⌊L⌋∑

n2=n1+1


(

1

rn2
+

1

rn2+1
+ · · ·

)
+

(
L
8ν(N)r2Lc

′+2n2c
′

kN

)
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≪ L

πN (x)4L2

πN (x)∑
n1=1

∑′

p,q,r≤x

L
(
1

r
+

1

r2
+ · · ·

)
+

(
L2 8

ν(N)r2Lc
′+2Lc′+2c′

kN

)
≪ 1

πN (x)3L

L ∑′

p,q,r≤x

1

r
+
∑′

p,q,r≤x

(
L2 8

ν(N)r2Lc
′+2Lc′+2c′

kN

)
≪ 1

πN (x)3L

LπN (x)2 log log x+ πN (x)3

(
L2 8

ν(N)x6Lc
′

kN

)
≪ log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
.

Hence,

β3(x) ≪
log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
. (6.107)

Proposition 6.4.23. With β4(x) defined in equation (6.104), we have

β4(x) ≪
(log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x6Lc
′+6πN (x)c′

kN
.

Proof. We know, for l ≥ 0, |U(l)| ≤ 4k1, for some k1 > 0 and U(l) = 0 for l > ⌊L⌋.

Also,
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.102) and equation (6.103), we obtain

β4(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H4(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)

× F (n2)

3∑
i=1

9∑
l=1

Mi(n2, r)Vl(n1, n2, p)

=

3∑
i=1

9∑
l=1

1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

Mi(n2, r)Vl(n1, n2, p).

It is enough to find an estimate for

1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n2, r)V1(n1, n2, p),
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since the other sums can be estimated similarly and give the same upper bound.

We have,

1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n2, r)V1(n1, n2, p)

=
1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)
1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

×
∑
k2≥0

U(k2)af (r
2k2+2n2)

∑
l1,l2≥0

l1−l2 ̸=n2−n1

U(l1)U(l2)af (p
2l1+2n1)af (p

2l2+2n2)

=
1

2πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)
∑′

p,q,r≤x

×
∑

l1,l2,k2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)U(k2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

|FN,k|
∑

f∈FN,k

af (p
2tr2k2+2n2)



=
1

πN (x)4L2

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

G(n1)G(n2)F (n2)
∑′

p,q,r≤x

×
∑

l1,l2,k2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)U(k2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

ptrk2+n2
+O

(
8ν(N)p2tc

′
r2k2c

′+2n2c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

∑
l1,l2≥0

l1−l2 ̸=n2−n1{(
1

p|(l1−l2)−(n2−n1)|
+

1

p|(l1−l2)−(n2−n1)|+1
+ · · ·

)(
1

rn2
+

1

rn2+1
+ · · ·

)

+

(
L(l1 + l2 + n1 + n2)

8ν(N)p2(l1+l2+n1+n2)c
′
r2Lc

′+2n2c
′

kN

)}

≪ 1

πN (x)4L2

∑′

p,q,r≤x

{(
1

p
+

1

p2
+ · · ·

)
L

(
1

r
+

1

r2
+ · · ·

)
LπN (x)

+

(
L3πN (x)

πN (x)∑
n1=1

1+⌊L⌋∑
n2=n1+1

8ν(N)p4Lc
′+4n2c

′
r2Lc

′+2n2c
′

kN

)}

≪ 1

πN (x)3

∑′

p,q,r≤x

1

pr
+

1

πN (x)4L2

∑′

p,q,r≤x

(
πN (x)2L4 8

ν(N)x6Lc
′+6πN (x)c′

kN

)

≪ 1

πN (x)3
πN (x)(log log x)2 +

(
πN (x)L2 8

ν(N)x6Lc
′+6πN (x)c′

kN

)

≪ (log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x6Lc
′+6πN (x)c′

kN
,

using L≪ πN (x) in the last fourth line.
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Hence,

β4(x) ≪
(log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x6Lc
′+6πN (x)c′

kN
. (6.108)

Proposition 6.4.24. With β5(x) defined in equation (6.104), we have

β5(x) ≪
log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
.

Proof. We know, for l ≥ 0, |U(l)| = |ρ̂
(
l
L

)
2 cos 2πlψ− ρ̂

(
l+1
L

)
2 cos 2π(l+1)ψ| ≤ 2k1 +2k1 =

4k1, for some k1 > 0 and U(l) = 0 for l > ⌊L⌋. Therefore, |Ei(n1, n2)| ≤ 32k21(L + 1) ≤ 64k21L,
and also,

∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.102) and equation (6.103), we obtain

β5(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H5(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

× F (n1)

3∑
i=1

4∑
l=1

Mi(n1, q)El(n1, n2)

=

3∑
i=1

4∑
l=1

1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

Mi(n1, q).

It is enough to find an estimate for

1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)El(n1, n2)
1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q),

for each l ∈ {1, 2, 3, 4}, since the other two sums corresponding to M1(n1, q) and M3(n1, q) can
be estimated similarly and give the same estimate.

We have,

1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)

=
1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

∑
k2≥0

U(k2)af (q
2k2+2n1)
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=
1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)El(n1, n2)
∑′

p,q,r≤x

×
∑
k2≥0

U(k2)

 1

qk2+n1
+O

(
8ν(N)q2k2c

′+2n1c
′

kN

)
≪ 1

πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

L
∑′

p,q,r≤x

∑
k2≥0

 1

qk2+n1
+

(
8ν(N)q2k2c

′+2n1c
′

kN

)
≪ 1

πN (x)4L2

1+⌊L⌋∑
n1=1

L
∑′

p,q,r≤x

×
πN (x)∑

n2=n1+1


(

1

qn1
+

1

qn1+1
+ · · ·

)
+

(
L
8ν(N)q2Lc

′+2n1c
′

kN

)
≪ L

πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

∑′

p,q,r≤x


(
1

q
+

1

q2
+ · · ·

)
+

(
L
8ν(N)q2Lc

′+2Lc′+2c′

kN

)
≪ L

πN (x)4L2
LπN (x)

 ∑′

p,q,r≤x

1

q
+
∑′

p,q,r≤x

(
L
8ν(N)q2Lc

′+2Lc′+2c′

kN

)
≪ 1

πN (x)3

πN (x)2 log log x+ πN (x)3

(
L
8ν(N)x6Lc

′

kN

)
≪ log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
.

Hence,

β5(x) ≪
log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
. (6.109)

Proposition 6.4.25. With β6(x) defined in equation (6.104), we have

β6(x) ≪
(log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proof. We know, for l ≥ 0, |U(l)| ≤ 4k1, for some k1 > 0 and U(l) = 0 for l > ⌊L⌋.

Also,
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.102) and equation (6.103), we obtain

β6(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H6(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

× F (n1)

3∑
i=1

9∑
l=1

Mi(n1, q)Vl(n1, n2, p)
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=

3∑
i=1

9∑
l=1

1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

Mi(n1, q)Vl(n1, n2, p).

It is enough to find an estimate for

1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)V1(n1, n2, p),

since the other sums can be estimated similarly and give the same upper bound.

We have,

1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)V1(n1, n2, p)

=
1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)
1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

×
∑
k2≥0

U(k2)af (q
2k2+2n1)

∑
l1,l2≥0

l1−l2 ̸=n2−n1

U(l1)U(l2)af (p
2l1+2n1)af (p

2l2+2n2)

=
1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)
∑′

p,q,r≤x

×
∑

l1,l2,k2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)U(k2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

|FN,k|
∑

f∈FN,k

af (p
2tq2k2+2n1)



=
1

2πN (x)4L2

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)F (n1)
∑′

p,q,r≤x

×
∑

l1,l2,k2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)U(k2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

ptqk2+n1
+O

(
8ν(N)p2tc

′
q2k2c

′+2n1c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r≤x

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

∑
l1,l2≥0

l1−l2 ̸=n2−n1{(
1

p|(l1−l2)−(n2−n1)|
+

1

p|(l1−l2)−(n2−n1)|+1
+ · · ·

)(
1

qn1
+

1

qn1+1
+ · · ·

)

+

(
L(l1 + l2 + n1 + n2)

8ν(N)p2(l1+l2+n1+n2)c
′
q2Lc

′+2n1c
′

kN

)}

≪ 1

πN (x)4L2

∑′

p,q,r≤x

{(
1

p
+

1

p2
+ · · ·

)(
1

q
+

1

q2
+ · · ·

)
L2πN (x)
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+

(
L3πN (x)

1+⌊L⌋∑
n1=1

πN (x)∑
n2=n1+1

8ν(N)(pq)4Lc
′+4πN (x)c′

kN

)}

≪ 1

πN (x)3

∑′

p,q,r≤x

1

pq
+

1

πN (x)4L2

∑′

p,q,r≤x

(
πN (x)2L4 8

ν(N)x8Lc
′+8πN (x)c′

kN

)

≪ 1

πN (x)3
πN (x)(log log x)2 +

(
πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

)

≪ (log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Hence,

β6(x) ≪
(log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
. (6.110)

Proposition 6.4.26. With β7(x) defined in equation (6.104), we have

β7(x) ≪
(log log x)2

πN (x)L
+ LπN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
.

Proof. We know, for l ≥ 0, |U(l)| ≤ 4k1, for some k1 > 0 and U(l) = 0 for l > ⌊L⌋.

Using equation (6.102) and equation (6.103), we obtain

β7(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H7(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

×
3∑
i=1

3∑
j=1

4∑
l=1

Mi(n1, q)Mj(n2, r)El(n1, n2)

=

3∑
i=1

3∑
j=1

4∑
l=1

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

Mi(n1, q)Mj(n2, r).

It is enough to find an estimate for

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)El(n1, n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)M2(n2, r),

since the other terms can be estimated similarly and give the same upper bound.

We have,

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)El(n1, n2)
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× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)M2(n2, r)

=
1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)El(n1, n2)
1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x∑
k1,k2≥0

U(k1)U(k2)af (q
2k1+2n1)af (r

2k2+2n2)

=
1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)El(n1, n2)
∑

k1,k2≥0

U(k1)U(k2)

×
∑′

p,q,r≤x

 1

|FN,k|
∑

f∈FN,k

af (q
2k1+2n1r2k2+2n2)


=

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)El(n1, n2)
∑

k1,k2≥0

U(k1)U(k2)

×
∑′

p,q,r≤x

 1

qk1+n1rk2+n2
+O

(
8ν(N)q2k1c

′+2n1c
′
r2k2c

′+2n2c
′

kN

)
≪ L

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

{(
1

qn1
+

1

qn1+1
+ · · ·

)(
1

rn2
+

1

rn2+1
+ · · ·

)

+

(
L2 8

ν(N)q2Lc
′+2n1c

′
r2Lc

′+2n2c
′

kN

)}

≪ L

πN (x)4L2

∑′

p,q,r≤x

{(
1

q
+

1

q2
+ · · ·

)
πN (x)

(
1

r
+

1

r2
+ · · ·

)
πN (x)

+

(
L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

8ν(N)(qr)2Lc
′+2πN (x)c′

kN

)}

≪ L

πN (x)2L2

∑′

p,q,r≤x

1

qr
+

L

πN (x)4L2

∑′

p,q,r≤x

(
πN (x)2L2 8

ν(N)x4Lc
′+4πN (x)c′

kN

)

≪ L

πN (x)2L2
πN (x)(log log x)2 +

(
LπN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN

)

≪ (log log x)2

πN (x)L
+ LπN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
.

Hence,

β7(x) ≪
(log log x)2

πN (x)L
+ LπN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
. (6.111)

Proposition 6.4.27. With β8(x) defined in equation (6.104), we have

β8(x) ≪
(log log x)3

πN (x)2L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proof. We know, for l ≥ 0, |U(l)| ≤ 4k1, for some k1 > 0 and U(l) = 0 for l > ⌊L⌋.
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Using equation (6.102) and equation (6.103), we obtain

β8(x)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)H8(p, q, r, n1, n2)

=
1

|FN,k|
∑

f∈FN,k

1

2πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

×
3∑
i=1

3∑
j=1

9∑
l=1

Mi(n1, q)Mj(n2, r)Vl(n1, n2, p)

=

3∑
i=1

3∑
j=1

9∑
l=1

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

Mi(n1, q)Mj(n2, r)Vl(n1, n2, p).

It is enough to find an estimate for

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)M2(n2, r)V1(n1, n2, p),

since the other terms can be estimated similarly and give the same upper bound.

We have,

1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)

× 1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x

M2(n1, q)M2(n2, r)V1(n1, n2, p)

=
1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)
1

|FN,k|
∑

f∈FN,k

∑′

p,q,r≤x∑
k1,k2≥0

U(k1)U(k2)af (q
2k1+2n1)af (r

2k2+2n2)
∑

l1,l2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)af (p
2l1+2n1)af (p

2l2+2n2)

=
1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)
∑′

p,q,r≤x∑
l1,l2,k1,k2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)U(k1)U(k2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

1

|FN,k|
∑

f∈FN,k

af (p
2tq2k1+2n1r2k2+2n2)

=
1

2πN (x)4L2

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

G(n1)G(n2)
∑′

p,q,r≤x

∑
l1,l2,k1,k2≥0
l1−l2 ̸=n2−n1

U(l1)U(l2)U(k1)U(k2)

l1+l2+n1+n2∑
t=|(l1−l2)−(n2−n1)|

 1

ptqk1+n1rk2+n2
+O

(
8ν(N)p2tc

′
q2k1c

′+2n1c
′
r2k2c

′+2n2c
′

kN

)
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≪ 1

πN (x)4L2

∑′

p,q,r≤x

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

∑
l1,l2≥0

l1−l2 ̸=n2−n1

{(
1

qn1
+

1

qn1+1
+ · · ·

)(
1

rn2
+

1

rn2+1
+ · · ·

)

×

(
1

p|(l1−l2)−(n2−n1)|
+

1

p|(l1−l2)−(n2−n1)|+1
+ · · ·

)

+

(
L2(l1 + l2 + n1 + n2)

8ν(N)p2(l1+l2+n1+n2)c
′
q2Lc

′+2n1c
′
r2Lc

′+2n2c
′

kN

)}

≪ 1

πN (x)4L2

∑′

p,q,r≤x

{(
1

p
+

1

p2
+ · · ·

)(
1

q
+

1

q2
+ · · ·

)(
1

r
+

1

r2
+ · · ·

)
LπN (x)2

+

(
L4πN (x)

πN (x)∑
n1=1

πN (x)∑
n2=n1+1

8ν(N)x8Lc
′+8πN (x)c′

kN

)}

≪ 1

πN (x)2L

∑′

p,q,r≤x

1

pqr
+

1

πN (x)4L2

∑′

p,q,r≤x

(
πN (x)3L4 8

ν(N)x8Lc
′+8πN (x)c′

kN

)

≪ 1

πN (x)2L
(log log x)3 +

(
πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

)

≪ (log log x)3

πN (x)2L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Hence,

β8(x) ≪
(log log x)3

πN (x)2L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
. (6.112)

Proposition 6.4.28. Let L = L(x) → ∞, as x → ∞ such that L ≪ πN (x). With E(ρ, g; f)(x)
defined in equation (6.92), we have

1

|FN,k|
∑

f∈FN,k

E(ρ, g; f)(x) (6.113)

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proof. Adding equations (6.105), (6.106), (6.107), (6.108), (6.109), (6.110), (6.111) and (6.112),
and using equation (6.103), we obtain

1

|FN,k|
∑

f∈FN,k

E(ρ, g; f)(x)

=

8∑
t=1

βt(x)

=
L

πN (x)
+
L(log log x)

πN (x)2
+ L2 8

ν(N)x12Lc
′

kN

+
log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
+

(log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x6Lc
′+6πN (x)c′

kN

+
log log x

πN (x)
+ L

8ν(N)x6Lc
′

kN
+

(log log x)2

πN (x)2
+ πN (x)L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

+
(log log x)2

πN (x)L
+ LπN (x)

8ν(N)x4Lc
′+4πN (x)c′

kN
+

(log log x)3

πN (x)2L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
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≪ L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proposition 6.4.29. Let L = L(x) → ∞, as x→ ∞ such that L≪ πN (x). With F(ρ, g; f)(x)
defined in equation (6.93), we have

1

|FN,k|
∑

f∈FN,k

F(ρ, g; f)(x) (6.114)

≪ 1

πN (x)

(
L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

)
.

Proof. Using equations (6.93) and (6.102), we obtain

1

|FN,k|
∑

f∈FN,k

F(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

4

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2)

=

8∑
t=1

1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2=n1

G(n1)G(n2)Ht(p, q, r, n1, n2)

=

8∑
t=1

ωt(x),

where
8∑
t=1

ωt(x) are defined in respective order by the terms in the equation (6.102).

We note that after replacing “
∑

n1,n2≥1
n2>n1

”, i.e., “
πN (x)∑
n1=1

πN (x)∑
n2=n1+1

” with “
πN (x)∑
n1=1

” in βi(x), we obtain

ωi(x),for each i = 1, 2, · · · , 8.

Hence, using inequation (6.113) in the last line, we obtain

1

|FN,k|
∑

f∈FN,k

F(ρ, g; f)(x)

=

8∑
t=1

ωt(x)

≪ 1

πN (x)

(
L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

)
.

Proposition 6.4.30. With L4(ρ, g; f)(x) defined in equation (6.91), we have

1

|FN,k|
∑

f∈FN,k

L4(ρ, g; f)(x) (6.115)

=
1

|FN,k|
∑

f∈FN,k

E(ρ, g; f)(x) + 1

|FN,k|
∑

f∈FN,k

D(ρ, g; f)(x)

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.
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Proof. Adding equations (6.113) and (6.114), and using equation (6.91), we obtain

1

|FN,k|
∑

f∈FN,k

L4(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

E(ρ, g; f)(x) + 1

|FN,k|
∑

f∈FN,k

D(ρ, g; f)(x)

≪ L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN
.

Proposition 6.4.31. For positive integers k and N with k even, and L≪ πN (x),

1

|FN,k|
∑

f∈FN,k

L(ρ, g; f)(x) ≪ L

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

πN (x)L

+
log log x

πN (x)
+ L2πN (x)2

8ν(N)x8Lc
′+8πN (x)c′

kN
.

Proof. Adding equations (6.71), (6.87) and (6.115) and using equation (6.61), we obtain

1

|FN,k|
∑

f∈FN,k

L(ρ, g; f)(x) (6.116)

=
1

|FN,k|
∑

f∈FN,k

 4∑
i=1

Li(ρ, g; f)(x)


=

1

|FN,k|
∑

f∈FN,k

L1(ρ, g; f)(x) +
2

|FN,k|
∑

f∈FN,k

L2(ρ, g; f)(x) +
1

|FN,k|
∑

f∈FN,k

L4(ρ, g; f)(x)

≪ 1

πN (x)
+
L2 log log x

πN (x)2
+
L3(log log x)2

πN (x)3
+

1

πN (x)

8ν(N)L3x8Lc
′

kN

+
L

πN (x)
+

log log x

πN (x)L
+ L2(L+ πN (x))

8ν(N)x8Lc
′+4πN (x)c′

kN

+
L

πN (x)
+
L(log log x)

πN (x)2
+

log log x

πN (x)
+

(log log x)2

πN (x)L
+ πN (x)2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

≪ L

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

πN (x)L

+
log log x

πN (x)
+ L2πN (x)2

8ν(N)x8Lc
′+8πN (x)c′

kN
.

6.5 Estimation for
〈
M(ρ, g; f)(x)

〉
=

〈
(M1 + 2M2 +

M4)(ρ, g; f)(x)
〉

We now address

M(ρ, g; f)(x) =
1

64πN (x)4L2

∑′

p,q,r,s≤x

T1(p)T2(q)T3(p, q)T1(r)T2(s)T3(r, s).

Here,
T1(p) =

∑
l1≥0

U(l1)af (p
2l1),
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T2(q) =
∑
l2≥0

U(l2)af (q
2l2),

T1(r) =
∑
k1≥0

U(k1)af (r
2k1),

T2(s) =
∑
k2≥0

U(k2)af (s
2k2),

T3(p, q)

=4G(0) +
∑
n≥1

2ĝ

(
n

πN (x)

)
(af (p

2n)− af (p
2n−2))(af (q

2n)− af (q
2n−2))

=
∑
n1≥0

ĝ

(
n1

πN (x)

)
A(p, q, n1),

and

T3(r, s) =
∑
n2≥0

ĝ

(
n2

πN (x)

)
A(r, s, n2),

where

A(p, q, n) =

{
4 if n = 0

2(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2)) if n ≥ 1,

and G(n) = ĝ
(

n
πN (x)

)
, as defined earlier.

Thus,

M(ρ, g; f)(x) (6.117)

=
1

64πN (x)4L2

∑′

p,q,r,s≤x

T1(p)T2(q)T3(p, q)T1(r)T2(s)T3(r, s)

=
1

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥0

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

× af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, n1)A(r, s, n2).

Since the summation is over n1, n2, where the indexes n1, n2 run up to πN (x), we can break
the summation into the following four parts:

1) n1 = 0, n2 = 0,

2) n1 ̸= 0, n2 = 0,

3) n1 = 0, n2 ̸= 0,

4) n1 ̸= 0, n2 ̸= 0.

We also denote the summation in the i-th part by Mi(ρ, g; f)(x), i = 1, 2, 3, 4 respectively.

We will also write Mi for Mi(ρ, g; f)(x), i = 1, 2, 3, 4, in short.

By interchanging the variables n1, n2 first and then replacing the variables p, q, r and
s with r, s, p and q respectively and at last interchanging the variables k1, k2, with l1, l2 in
M3(ρ, g; f)(x), the summation over n1, n2 where n1 = 0, n2 ̸= 0, we note that the summation
over n1, n2 where n1 = 0, n2 ̸= 0, is exactly the same as the summation over n1, n2 where
n1 ̸= 0, n2 = 0, i.e., M2(ρ, g; f)(x) = M3(ρ, g; f)(x).
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Therefore,

M(ρ, g; f)(x) (6.118)

=

4∑
i=1

Mi(ρ, g; f)(x)

=M1(ρ, g; f)(x) + 2M3(ρ, g; f)(x) +M4(ρ, g; f)(x),

where M1(ρ, g; f)(x),M3(ρ, g; f)(x), and M4(ρ, g; f)(x) are defined in Sections 6.5.1, 6.5.2, and
6.5.3 respectively.

6.5.1 Estimation for
〈
M1(ρ, g; f)(x)

〉
If (n1, n2) = (0, 0), then the innermost term is

16af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2).

Thus, using equation (6.117), we obtain

1

|FN,k|
∑

f∈FN,k

M1(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

1

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

U(l1)U(l2)U(k1)U(k2)G(0)
2

× af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, 0)A(r, s, 0)

=
16

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

U(l1)U(l2)U(k1)U(k2)G(0)
2

×

 1

|FN,k|
∑

f∈FN,k

af (p
2l1q2l2r2k1s2k2)


=

G(0)2

4πN (x)4L2

∑′

p,q,r,s≤x

{
U(0)4 +

∑
l1,l2,k1,k2≥0

(l1,l2,k1,k2 )̸=(0,0,0,0)

U(l1)U(l2)U(k1)U(k2)

×

(
1

pl1ql2rk1sk2
+

8ν(N)p2l1c
′
q2l2c

′
r2k1c

′
s2k2c

′

kN

)}

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

{
1+

∑
l1,l2,k1,k2≥0

(l1,l2,k1,k2 )̸=(0,0,0,0)

(
1

pl1ql2rk1sk2
+

8ν(N)p2l1c
′
q2l2c

′
r2k1c

′
s2k2c

′

kN

)}

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

{ ∑
l1,l2,k1,k2≥0

1

pl1ql2rk1sk2

+
∑

l1,l2,k1,k2≥0
(l1,l2,k1,k2 )̸=(0,0,0,0)

8ν(N)p2l1c
′
q2l2c

′
r2k1c

′
s2k2c

′

kN

}

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

{∑
l1≥0

1

pl1

∑
l2≥0

1

ql2

∑
k1≥0

1

rk1

∑
k2≥0

1

sk2
+ L4 8

ν(N)(pqrs)2Lc
′

kN

}

≪ 1

πN (x)4L2

{ ∑′

p,q,r,s≤x

24 +
∑′

p,q,r,s≤x

L4 8
ν(N)(pqrs)2Lc

′

kN

}
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≪ 1

πN (x)4L2

{
πN (x)4 + πN (x)4L4 8

ν(N)x8Lc
′

kN

}

≪ 1

L2
+ L2 8

ν(N)x8Lc
′

kN
.

Hence,

1

|FN,k|
∑

f∈FN,k

M1(ρ, g; f)(x) ≪
1

L2
+ L2 8

ν(N)x8Lc
′

kN
. (6.119)

6.5.2 Estimation for
〈
(M2 +M3)(ρ, g; f)(x)

〉
We now look at the part of the sum M(ρ, g; f)(x) with n1 = 0 and n2 ̸= 0, i.e., we now estimate
M3(ρ, g; f)(x). In this case, the innermost term

af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, 0)A(r, s, n2)

=8af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)(af (r
2n2)− af (r

2n2−2))(af (s
2n2)− af (s

2n2−2))

=8af (p
2l1)af (q

2l2){af (r2k1)(af (r2n2)− af (r
2n2−2))}{af (s2k2)(af (s2n2)− af (s

2n2−2))}.

We want to find an estimate for

M2(ρ, g; f)(x) +M3(ρ, g; f)(x) (6.120)
=2M3(ρ, g; f)(x)

=
2

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n2≥1

U(l1)U(l2)U(k1)U(k2)G(0)G(n2)

af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, 0)A(p, r, n2)

=
16

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n2≥1

U(l1)U(l2)U(k1)U(k2)G(0)G(n2)

af (p
2l1)af (q

2l2){af (r2k1)(af (r2n2)− af (r
2n2−2))}{af (s2k2)(af (s2n2)− af (s

2n2−2))}

=
G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(n2)
∑

l1,k1≥0

U(l1)U(k1)af (p
2l1)af (r

2k1)(af (r
2n2)− af (r

2n2−2))

×
∑

l2,k2≥0

U(l2)U(k2)af (q
2l2)af (s

2k2)(af (s
2n2)− af (s

2n2−2))

=
1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)A1(ρ, g; f ;n2, p, r)A1(ρ, g; f ;n2, q, s),

where A1(ρ, g; f ;n2, p, r) is defined in equation (6.73) and thus,

A1(ρ, g; f ;n2, u, v) =
∑

l1,k1≥0

U(l1)U(k1)af (u
2l1)af (v

2k1)(af (v
2n2)− af (v

2n2−2)).

Using equation (6.76), we obtain

A1(ρ, g; f ;n2, p, r) = U(0)(U(n2)− U(n2 − 1)) + F1(n2, p, r) + F2(n2, p, r),

and

A1(ρ, g; f ;n2, q, s) = U(0)(U(n2)− U(n2 − 1)) + F1(n2, q, s) + F2(n2, q, s).
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For primes p, q, r, s and fixed integer n2 ≥ 1, using the above equations, we obtain

A1(ρ, g; f ;n2, p, r)×A1(ρ, g; f ;n2, q, s)

=
(
U(0)(U(n2)− U(n2 − 1)) + F1(n2, p, r) + F2(n2, p, r)

)
×
(
U(0)(U(n2)− U(n2 − 1)) + F1(n2, q, s) + F2(n2, q, s)

)
=
(
U(0)F (n2) + F1(n2, p, r) + F2(n2, p, r)

)
×
(
U(0)F (n2) + F1(n2, q, s) + F2(n2, q, s)

)
=U(0)2F (n2)

2 + U(0)F (n2)(F1 + F2)(n2, p, r) + U(0)F (n2)(F1 + F2)(n2, q, s)

+F1(n2, p, r)F1(n2, q, s) + F1(n2, p, r)F2(n2, q, s)

+F1(n2, q, s)F2(n2, p, r) + F2(n2, p, r)F2(n2, q, s),

where
F (n) = U(n)− U(n− 1).

Therefore, using equation (6.120), we obtain

1

|FN,k|
∑

f∈FN,k

(M2(ρ, g; f)(x) +M3(ρ, g; f)(x)) (6.121)

=
1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)A1(ρ, g; f ;n2, p, r)A1(ρ, g; f ;n2, q, s)

=
1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)U(0)2F (n2)
2

+
1

|FN,k|
∑

f∈FN,k

2

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)U(0)F (n2)(F1 + F2)(n2, p, r)

+
1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)F1(n2, p, r)F1(n2, q, s)

+
1

|FN,k|
∑

f∈FN,k

2

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)F1(n2, p, r)F2(n2, q, s)

+
1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)F2(n2, p, r)F2(n2, q, s)

=

5∑
t=1

γt(x),

where
5∑
t=1

γt(x) are defined in respective order with the order in the previous line.

Proposition 6.5.1. With γ1(x) defined in equation (6.121), we have γ1(x) ≪ 1
L .

Proof. We know,
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Using equation (6.121), we obtain

γ1(x) (6.122)

=
1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)U(0)2F (n2)
2

=
1

|FN,k|
∑

f∈FN,k

1

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(0)G(n2)U(0)2F (n2)
2
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≪ 1

|FN,k|
∑

f∈FN,k

1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

1

≪ 1

πN (x)4L2
πN (x)4L

=
1

L
.

Proposition 6.5.2. With γ2(x) defined in equation (6.121), we have

γ2(x) ≪
(log log x)

πN (x)L
+ L

8ν(N)x6Lc
′

kN
.

Proof. We know,
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Hence,

1

|FN,k|
∑

f∈FN,k

2

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)U(0)F (n2)F1(n2, p, r) (6.123)

=
1

|FN,k|
∑

f∈FN,k

2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)F1(n2, p, r)

=
1

|FN,k|
∑

f∈FN,k

2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)

×
∑

k1,k2≥0,k2≥n2

(k1,k2) ̸=(0,n2)

U(k1)U(k2)af (p
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

=
2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)

×
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)

(〈
af (p

2k1r2k2−2n2)
〉
+
〈
af (p

2k1r2k2+2n2)
〉)

=
2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)

×
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)

 1

pk1rk2−n2
+

1

pk1rk2+n2
+O

(
8ν(N)p2k1c

′
r2k2c

′+2n2c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

∑
k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

(
2

pk1rk2−n2
+

8ν(N)p2k1c
′
r2k2c

′+2n2c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

((
1

r
+ · · ·

)
L+

(
1

p
+ · · ·

)
L+

(
1

p
+ · · ·

)(
1

r
+ · · ·

)
L

+ L3 8
ν(N)p2Lc

′
r4Lc

′

kN

)
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≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

r
L+

1

p
L+

1

pr
L+ L3 8

ν(N)x6Lc
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

r
L

)
+ L

8ν(N)x6Lc
′

kN
≪ (log log x)

πN (x)L
+ L

8ν(N)x6Lc
′

kN
.

We also have,

1

|FN,k|
∑

f∈FN,k

2

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)U(0)F (n2)F2(n2, p, r) (6.124)

=
1

|FN,k|
∑

f∈FN,k

2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)F2(n2, p, r)

=
1

|FN,k|
∑

f∈FN,k

2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)

×
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)af (p
2k1)af (r

2k2)(af (r
2n2)− af (r

2n2−2))

=
2U(0)G(0)

4πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)

×
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)

(〈
af (p

2k1r2k2+2n2)
〉
−
〈
af (p

2k1r2n2−2k2−2)
〉)

=
2U(0)G(0)

A2πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

G(n2)F (n2)

×
∑

k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

U(k1)U(k2)

 1

pk1rk2+n2
− 1

pk1rn2−k2−1
+O

(
8ν(N)p2k1c

′
r2k2c

′+2n2c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n2=1

∑
k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

(
2

pk1rn2−k2−1
+

8ν(N)p2k1c
′
r2k2c

′+2n2c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

((
1

r
+ · · ·

)
L+

(
1

p
+ · · ·

)
L+

(
1

p
+ · · ·

)(
1

r
+ · · ·

)
L

+ L3 8
ν(N)p2Lc

′
p4Lc

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

r
L+

1

p
L+

1

pr
L+ L3 8

ν(N)x6Lc
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

r
L

)
+ L

8ν(N)x6Lc
′

kN
≪ (log log x)

πN (x)L
+ L

8ν(N)x6Lc
′

kN
.

Adding equations (6.123) and (6.124) and using equation (6.121), we obtain

γ2(x) (6.125)

=
1

|FN,k|
∑

f∈FN,k

2

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)U(0)F (n2)(F1 + F2)(n2, p, r)



6.5. ESTIMATION FOR
〈
M(ρ, g; f)(x)

〉
=
〈
(M1 + 2M2 +M4)(ρ, g; f)(x)

〉
173

≪ (log log x)

πN (x)L
+ L

8ν(N)x6Lc
′

kN
.

Proposition 6.5.3. With γ3(x) defined in equation (6.121), we have

γ3(x) ≪
(log log x)2

πN (x)2L
+ πN (x)4L5 8

ν(N)x12Lc
′

kN
.

Proof. We first find an estimate for
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F1(n2, q, s).

1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F1(n2, q, s) (6.126)

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

U(l1)U(l2)af (p
2l1)af (r

2l2)(af (r
2n2)− af (r

2n2−2))

×
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)af (q
2k1)af (s

2k2)(af (s
2n2)− af (s

2n2−2))

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

U(l1)U(l2)af (p
2l1)(af (r

2l2−2n2) + af (r
2l2+2n2))

×
∑

k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

U(k1)U(k2)af (q
2k1)(af (s

2k2−2n2) + af (s
2k2+2n2))

=
∑

l1,l2≥0,l2≥n2

(l1,l2) ̸=(0,n2)

∑
k1,k2≥0,k2≥n2

(k1,k2) ̸=(0,n2)

U(l1)U(l2)U(k1)U(k2)
〈
af (p

2l1q2k1)

× (af (r
2l2−2n2) + af (r

2l2+2n2))× (af (s
2k2−2n2) + af (s

2k2+2n2))
〉

≪
∑

l1,l2≥0,l2≥n2

(l1,l2) ̸=(0,n2)

∑
k1,k2≥0,k2≥n2

(k1,k2) ̸=(0,n2)

(
1

pl1qk1

(
1

rl2−n2
+

1

rl2+n2

)(
1

sk2−n2
+

1

sk2+n2

)

+
8ν(N)p2l1c

′
q2k1c

′
r2l2c

′+2n2c
′
s2k2c

′+2n2c
′

kN

)

≪
∑

l1,l2≥0,l2≥n2

(l1,l2) ̸=(0,n2)

∑
k1,k2≥0,k2≥n2

(k1,k2) ̸=(0,n2)

(
1

pl1qk1
1

rl2−n2

1

sk2−k2

)
+ L4 8

ν(N)(pq)2Lc
′
(rs)4Lc

′

kN
.

We now use equation (6.126) and the fact n2 ≤ l2, (i.e., n2 ≤ ⌊L⌋ in the following sum) to
obtain ∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F1(n2, q, s) (6.127)

≪
∑′

p,q,r,s≤x

∑
n2≥1

∑
l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

1

pl1
1

rl2−n2

∑
k1,k2≥0,k2≥n2

(k1,k2 )̸=(0,n2)

1

qk1
1

sk2−n2

+
∑′

p,q,r,s≤x

∑
n2≥1

L4 8
ν(N)(pq)2Lc

′
(rs)4Lc

′

kN
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≪
∑′

p,q,r,s≤x

∑
n2≥1

(
1

p
+

1

r
+

1

pr

)(
1

q
+

1

s
+

1

qs

)

+
∑′

p,q,r,s≤x

L5 8
ν(N)x4Lc

′+8Lc′

kN

≪
∑′

p,q,r,s≤x

L
1

pq
+ πN (x)4L5 8

ν(N)x12Lc
′

kN

≪(log log x)2LπN (x)2 + πN (x)4L5 8
ν(N)x12Lc

′

kN
.

Using equation (6.127), we obtain

γ3(x) (6.128)

=
1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F1(n2, q, s)

≪ 1

πN (x)4L2

(
(log log x)2LπN (x)2 + πN (x)4L5 8

ν(N)x12Lc
′

kN

)

=
(log log x)2

πN (x)2L
+ πN (x)4L5 8

ν(N)x12Lc
′

kN
.

Proposition 6.5.4. With γ4(x) defined in equation (6.121), we have

γ4(x) ≪
(log log x)2

πN (x)2L
+ L3 8

ν(N)x6Lc
′

kN
.

Proof. We first find an estimate for
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F2(n2, q, s).

Using the fact n2 ≤ l2, (i.e., n2 ≤ ⌊L⌋ in the following sum), we obtain

1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F2(n2, q, s) (6.129)

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

U(l1)U(l2)af (p
2l1)af (r

2l2)(af (r
2n2)− af (r

2n2−2))

×
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)af (q
2k1)af (s

2k2)(af (s
2n2)− af (s

2n2−2))

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

U(l1)U(l2)af (p
2l1)(af (r

2l2−2n2) + af (r
2l2+2n2))

×
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)af (q
2k1)(af (s

2k2+2n2)− af (s
2n2−2k2−2))

=
∑

l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

∑
k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(l1)U(l2)U(k1)U(k2)
〈
af (p

2l1q2k1)

× (af (r
2l2−2n2) + af (r

2l2+2n2))× (af (s
2k2+2n2)− af (s

2n2−2k2−2))
〉
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≪
∑

l1,l2≥0,l2≥n2

(l1,l2) ̸=(0,n2)

∑
k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

(
1

pl1qk1

(
1

rl2−n2
+

1

rl2+n2

)(
1

sk2+n2
− 1

sn2−k2−1

)

+
8ν(N)p2l1c

′
q2k1c

′
r2l2c

′+2n2c
′
s2k2c

′+2n2c
′

kN

)

≪
∑

l1,l2≥0,l2≥n2

(l1,l2) ̸=(0,n2)

∑
k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

(
1

pl1qk1
1

rl2−n2

1

sn2−k2−1

)
+ L4 8

ν(N)(pq)2Lc
′
(rs)4Lc

′

kN
.

We now use equation (6.129) to obtain∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F2(n2, q, s) (6.130)

≪
∑′

p,q,r,s≤x

∑
n2≥1

( ∑
l1,l2≥0,l2≥n2

(l1,l2 )̸=(0,n2)

1

pl1
1

rl2−n2

)( ∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

1

qk1
1

sn2−k2−1

)

+
∑′

p,q,r,s≤x

∑
n2≥1

L4 8
ν(N)(pq)2Lc

′
(rs)4Lc

′

kN

≪
∑′

p,q,r,s≤x

∑
n2≥1

(
1

p
+

1

r
+

1

pr

)(
1

q
+

1

s
+

1

qs

)
+

∑′

p,q,r,s≤x

L5 8
ν(N)x6Lc

′

kN

≪
∑′

p,q,r,s≤x

L
1

pq
+ πN (x)4L5 8

ν(N)x6Lc
′

kN

≪(log log x)2πN (x)2L+ πN (x)4L5 8
ν(N)x6Lc

′

kN
.

Using equation (6.130), we obtain

γ4(x) (6.131)

=
2

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)
1

|FN,k|
∑

f∈FN,k

F1(n2, p, r)F2(n2, q, s)

≪ 1

πN (x)4L2

(
(log log x)2πN (x)2L+ πN (x)4L5 8

ν(N)x6Lc
′

kN

)

=
(log log x)2

πN (x)2L
+ L3 8

ν(N)x6Lc
′

kN
.

Proposition 6.5.5. With γ5 defined in equation (6.121), we have

γ5(x) ≪
(log log x)2

πN (x)L2
+ πN (x)L2 8

ν(N)x8Lc
′+4πN (x)c′

kN
.

Proof. We first find estimate for
1

|FN,k|
∑

f∈FN,k

F2(n2, p, r)F2(n2, q, s).

1

|FN,k|
∑

f∈FN,k

F2(n2, p, r)F2(n2, q, s) (6.132)
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=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0,l2<n2

(l1,l2 )̸=(0,n2−1)

U(l1)U(l2)af (p
2l1)af (r

2l2)(af (r
2n2)− af (r

2n2−2))

×
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)af (q
2k1)af (s

2k2)(af (s
2n2)− af (s

2n2−2))

=
1

|FN,k|
∑

f∈FN,k

∑
l1,l2≥0,l2<n2

(l1,l2 )̸=(0,n2−1)

U(l1)U(l2)af (p
2l1)(af (r

2l2+2n2)− af (r
2n2−2l2−2))

×
∑

k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

U(k1)U(k2)af (q
2k1)(af (s

2k2+2n2)− af (s
2n2−2k2−2))

=
∑

l1,l2≥0,l2<n2

(l1,l2) ̸=(0,n2−1)

∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

U(l1)U(l2)U(k1)U(k2)
〈
af (p

2l1q2k1)

× (af (r
2l2+2n2)− af (r

2n2−2l2−2))× (af (s
2k2+2n2)− af (s

2n2−2k2−2))
〉

≪
∑

l1,l2≥0,l2<n2

(l1,l2 )̸=(0,n2−1)

∑
k1,k2≥0,k2<n2

(k1,k2) ̸=(0,n2−1)

(
1

pl1qk1

(
1

rl2+n2
+

1

rn2−l2−1

)(
1

sk2+n2
+

1

sn2−k2−1

)

+
8ν(N)p2l1c

′
q2k1c

′
r2l2c

′+2n2c
′
s2k2c

′+2n2c
′

kN

)

≪
∑

l1,l2≥0,l2<n2

(l1,l2) ̸=(0,n2−1)

∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

(
1

pl1qk1
1

rn2−l2−1

1

sn2−k2−1

)
+ L4 8

ν(N)(pq)2Lc
′
(rs)2Lc

′+2n2c
′

kN
.

We now use equation (6.132) to obtain∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)
1

|FN,k|
∑

f∈FN,k

F2(n2, p, r)F2(n2, q, s) (6.133)

≪
∑′

p,q,r,s≤x

πN (x)∑
n2=1

( ∑
l1,l2≥0,l2<n2

(l1,l2) ̸=(0,n2−1)

1

pl1
1

rn2−l2−1

)( ∑
k1,k2≥0,k2<n2

(k1,k2 )̸=(0,n2−1)

1

qk1
1

sn2−k2−1

)

+
∑′

p,q,r,s≤x

πN (x)∑
n2=1

L4 8
ν(N)(pq)2Lc

′
(rs)2Lc

′+2n2c
′

kN

≪
∑′

p,q,r,s≤x

πN (x)∑
n2=1

(
1

p
+

1

r
+

1

pr

)(
1

q
+

1

s
+

1

qs

)

+
∑′

p,q,r,s≤x

πN (x)L4 8
ν(N)x4Lc

′
x4Lc

′+4πN (x)c′

kN

≪
∑′

p,q,r,s≤x

πN (x)
1

pq
+ πN (x)5L4 8

ν(N)x8Lc
′+4πN (x)c′

kN

≪(log log x)2πN (x)3 + πN (x)5L4 8
ν(N)x8Lc

′+4πN (x)c′

kN
.

Using equation (6.133), we obtain

γ5(x) (6.134)
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=
1

4πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)
1

|FN,k|
∑

f∈FN,k

F2(n2, p, r)F2(n2, q, s)

≪ 1

πN (x)4L2

(
(log log x)2πN (x)3 + πN (x)5L4 8

ν(N)x8Lc
′+4πN (x)c′

kN

)

=
(log log x)2

πN (x)L2
+ πN (x)L2 8

ν(N)x8Lc
′+4πN (x)c′

kN
.

Proposition 6.5.6. Let L = L(x) → ∞, as x→ ∞ such that L≪ πN (x). With M2(ρ, g; f)(x),
and M3(ρ, g; f)(x) defined in equation (6.120), we have

1

|FN,k|
∑

f∈FN,k

(M2(ρ, g; f)(x) +M3(ρ, g; f)(x))

≪ 1

L
+

(log log x)

πN (x)L
+

(log log x)2

πN (x)L2
+ πN (x)4L5 8

ν(N)x8Lc
′+4πN (x)c′

kN
.

Proof. Adding equations (6.122), (6.125), (6.128), (6.131) and (6.134), and using equation
(6.121), we obtain

1

|FN,k|
∑

f∈FN,k

(M2(ρ, g; f)(x) +M3(ρ, g; f)(x)) (6.135)

=
2

|FN,k|
∑

f∈FN,k

M3(ρ, g; f)(x)

=

5∑
t=1

γt(x)

≪ 1

L
+

(log log x)

πN (x)L
+ L

8ν(N)x6Lc
′

kN
+

(log log x)2

πN (x)2L
+ πN (x)4L5 8

ν(N)x12Lc
′

kN

+
(log log x)2

πN (x)2L
+ L3 8

ν(N)x6Lc
′

kN
+

(log log x)2

πN (x)L2
+ πN (x)L2 8

ν(N)x8Lc
′+4πN (x)c′

kN

≪ 1

L
+

(log log x)

πN (x)L
+

(log log x)2

πN (x)L2
+ πN (x)4L5 8

ν(N)x8Lc
′+4πN (x)c′

kN
,

using L≪ πN (x) in the last line.

6.5.3 Estimation for
〈
M4(ρ, g; f)(x)

〉
We now look at the part of the sum M(ρ, g; f)(x) with n1 ̸= 0 and n2 ̸= 0, i.e., we now estimate〈
M4(ρ, g; f)(x)

〉
.

For l ≥ 0, n, n1, n2 ≥ 1 and for any prime p, let

Lp(l, n) = af (p
2l)(af (p

2n)− af (p
2n−2)),

be the same as defined earlier.

Also,

A(p, q, n1)A(r, s, n2)

=4(af (p
2n1)− af (p

2n1−2))(af (q
2n1)− af (q

2n1−2))

× (af (r
2n2)− af (r

2n2−2))(af (s
2n2)− af (s

2n2−2)).
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In this case, the innermost term is

af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, n1)A(r, s, n2) (6.136)

=4af (p
2l1)(af (p

2n1)− af (p
2n1−2))

× af (q
2l2)(af (q

2n1)− af (q
2n1−2))

× af (r
2k1)(af (r

2n2)− af (q
2n2−2))

× af (s
2k2)(af (s

2n2)− af (s
2n2−2))

=4Lp(l1, n1)Lq(l2, n1)Lr(k1, n2)Ls(k2, n2).

For n ≥ 1 and for any primes p, let

K(p, n) :=
∑
l1≥0

U(l1)Lp(l1, n).

Hence,

K(p, n1) =
∑
l1≥0

U(l1)Lp(l1, n1).

K(q, n1) =
∑
l2≥0

U(l2)Lq(l2, n1),

K(r, n2) =
∑
k1≥0

U(k1)Lr(k1, n2),

and

K(s, n2) =
∑
k2≥0

U(k2)Ls(k2, n2).

Using equations (6.136), we obtain

M4(ρ, g; f)(x) (6.137)

=
1

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, n1)A(r, s, n2)

=
4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

Lp(l1, n1)Lq(l2, n1)Lr(k1, n2)Ls(k2, n2)

=
4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

∑
l1≥0

U(l1)Lp(l1, n1)


×

∑
k1≥0

U(k1)Lr(k1, n2)

∑
l2≥0

U(l2)Lq(l2, n1)

∑
k2≥0

U(k2)Ls(k2, n2)


=

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)K(p, n1)K(q, n1)K(r, n2)K(s, n2).
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We now find estimate for K(p, n1)K(q, n1).

Using Corollary 6.4.19, we have for any two distinct primes p, q and positive integer n,

K(p, n1)K(q, n1)

=

F (n1) + ⌊L⌋+1+n1∑
t1=1

U(t1, n1)af (p
2t1)

F (n1) + ⌊L⌋+1+n1∑
t2=1

U(t2, n1)af (q
2t2)


=F (n1)

2 + F (n1)

⌊L⌋+1+n1∑
t2=1

U(t2, n1)af (q
2t2)

+F (n1)

⌊L⌋+1+n1∑
t1=1

U(t1, n1)af (p
2t1) +

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

U(t1, n1)U(t2, n1)af (p
2t1q2t2)

=F (n1)
2 + F (n1)

⌊L⌋+1+n1∑
t=1

U(t, n1)(af (p
2t) + af (q

2t))

+

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

U(t1, n1)U(t2, n1)af (p
2t1q2t2)

=F (n1)
2 + F (n1)

⌊L⌋+1+n1∑
t=1

G(t, n1, p, q) +

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

H(t1, t2, n1, p, q),

where
G(t′, n, r, s) := U(t′, n)(af (r

2t′) + af (s
2t′)),

and
H(t, t′, n, r, s) := U(t, n)U(t′, n)af (r

2ts2t
′
),

for distinct primes r, s, and positive integer t, t′, n.

Hence,

K(r, n2)K(s, n2)

=

F (n2) + ⌊L⌋+1+n2∑
t3=1

U(t3, n2)af (r
2t3)

F (n2) + ⌊L⌋+1+n2∑
t4=1

U(t4, n2)af (s
2t4)


=F (n2)

2 + F (n2)

⌊L⌋+1+n2∑
t′=1

G(t′, n2, r, s) +

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t3, t4, n2, r, s).

Therefore, distinct primes p, q, r, s and positive integers n1, n2,

K(p, n1)K(q, n1)K(r, n2)K(s, n2) (6.138)

=

F (n1)2 + F (n1)

⌊L⌋+1+n1∑
t=1

G(t, n1, p, q) +

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

H(t1, t2, n1, p, q)


×

F (n2)2 + F (n2)

⌊L⌋+1+n2∑
t′=1

G(t′, n2, r, s) +

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t3, t4, n2, r, s)


=F (n1)

2F (n2)
2 + F (n1)

2F (n2)

⌊L⌋+1+n2∑
t′=1

G(t′, n2, r, s)

+F (n1)
2

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t3, t4, n2, r, s) + F (n2)
2F (n1)

⌊L⌋+1+n1∑
t=1

G(t, n1, p, q)
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+F (n1)F (n2)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t′=1

G(t, n1, p, q)G(t
′, n2, r, s)

+F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

G(t, n1, p, q)H(t3, t4, n2, r, s)

+F (n2)
2

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

H(t1, t2, n1, p, q)

+F (n2)

⌊L⌋+1+n2∑
t′=1

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

G(t′, n2, r, s)H(t1, t2, n1, p, q)

+

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t1, t2, n1, p, q)H(t3, t4, n2, r, s)

=

9∑
i=1

wi(n1, n2, p, q, r, s),

where wi(n1, n2, p, q, r, s) are defined in respective order by the terms in the previous equation.

Using equation (6.137) and equation (6.138), we obtain

1

|FN,k|
∑

f∈FN,k

M4(ρ, g; f)(x) (6.139)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)K(p, n1)K(q, n1)K(r, n2)K(s, n2)

=

9∑
t=1

1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)wt(n1, n2, p, q, r, s)

=

9∑
t=1

δt(x), where

δt(x) =
4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)⟨wt(n1, n2, p, q, r, s)⟩, (6.140)

for all i = 1, · · · , 9.

Proposition 6.5.7. With δ1(x) defined in equation (6.140), we have

δ1(x) =

(
T (g, ρ)

4L

)2

+O

(
1

πN (x)

)
,

where

T (g, ρ) =

1+⌊L⌋∑
l=1

(U(l)− U(l − 1))2ĝ

(
l

πN (x)

)
.

Proof. We note that
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Hence, using equation (6.138) and equation (6.139), we obtain

δ1(x) (6.141)
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=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w1(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w1(n1, n2, p, q, r, s)

=
1

16πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)F (n1)
2F (n2)

2

=
πN (x)(πN (x)− 1)(πN (x)− 2)(πN (x)− 3)

16πN (x)4L2

∑
n1,n2≥1

G(n1)G(n2)F (n1)
2F (n2)

2

=

(
1 + O

(
1

πN (x)

))
1

16L2

∑
n1,n2≥1

G(n1)G(n2)F (n1)
2F (n2)

2

=

(
1 + O

(
1

πN (x)

))
· 1

4L

∑
n1≥1

G(n1)F (n1)
2 · 1

4L

∑
n2≥1

G(n2)F (n2)
2

=

(
1 + O

(
1

πN (x)

)) 1

4L

∑
n≥1

G(n)F (n)2

2

=

(
1 + O

(
1

πN (x)

)) 1

4L

1+⌊L⌋∑
n=1

ĝ

(
n

πN (x)

)
(U(n)− U(n− 1))2

2

=

(
1 + O

(
1

πN (x)

))(
T (g, ρ)

4L

)2

=

(
T (g, ρ)

4L

)2

+O

(
1

πN (x)

)
.

Proposition 6.5.8. With δ2(x), and δ4(x), defined in equation (6.140), we have

δ2(x) + δ4(x) ≪
(log log x)

πN (x)
+

8ν(N)x4(L+1)c′

kN
.

Proof.

Using equation (6.138) and equation (6.139), we obtain

δ4(x)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w4(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n2)
2F (n1)

⌊L⌋+1+n1∑
t=1

G(t, n1, p, q)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n2)G(n1)

F (n1)
2F (n2)

⌊L⌋+1+n2∑
t=1

G(t, n2, p, q)
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=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n2)G(n1)

F (n1)
2F (n2)

⌊L⌋+1+n2∑
t=1

G(t, n2, r, s)

=δ2(x),

where we first interchange variables n1, n2 in the third line, and then we replace the dummy
variable by p, q, r, s by r, s, p, q respectively in the fourth line.

We note that
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Hence,

δ2(x) + δ4(x)

=2δ2(x)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w2(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n1)
2F (n2)

⌊L⌋+1+n2∑
t′=1

G(t′, n2, r, s)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n1)
2F (n2)

⌊L⌋+1+n2∑
t′=1

U(t′, n)(af (r
2t′) + af (s

2t′))

=
16

64πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=1

G(n1)G(n2)

F (n1)
2F (n2)

⌊L⌋+1+n2∑
t′=1

U(t′, n)

 1

|FN,k|
∑

f∈FN,k

af (r
2t′)


≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=1

⌊L⌋+1+n2∑
t=1

(
1

rt
+

8ν(N)r2t
′c′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=1

(
1

r
+

1

r2
+ · · ·+ 8ν(N)r2(⌊L⌋+1+n2)c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

r
L2 + L2 8

ν(N)r2(L+1+L+1)c′

kN

)

≪ 1

πN (x)4L2
(log log x)πN (x)3L2 +

8ν(N)x4(L+1)c′

kN

≪ (log log x)

πN (x)
+

8ν(N)x4(L+1)c′

kN
.

Therefore,

δ2(x) + δ4(x) ≪
(log log x)

πN (x)
+

8ν(N)x4(L+1)c′

kN
. (6.142)
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Proposition 6.5.9. With δ3(x), and δ7(x), defined in equation (6.140), we have

δ3(x) + δ7(x) ≪
(log log x)2

LπN (x)
+
πN (x)

L

8ν(N)x2(L+1)c′+2πN (x)c′

kN
.

Proof. Using equation (6.138) and equation (6.139), we obtain

δ7(x)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w7(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n2)
2

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

H(t1, t2, n1, p, q)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n2)G(n1)

F (n1)
2

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t3, t4, n2, p, q)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n1)
2

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t3, t4, n2, r, s)

=δ3(x),

where we first interchange variables n1, n2 in the third line, and then we replace the dummy
variable by p, q, r, s by r, s, p, q respectively in the fourth line.

We note that
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.

Hence,

δ3(x) + δ7(x)

=2δ7(x)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w7(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n2)
2

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

H(t1, t2, n1, p, q)

=
8

64πN (x)4L2

∑′

p,q,r,s≤x

πN (x)∑
n1=1

1+⌊L⌋∑
n2=1

G(n1)G(n2)

F (n2)
2

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

U(t1, n1)U(t2, n1)
〈
af (p

2t1q2t2)
〉
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≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

πN (x)∑
n1=1

1+⌊L⌋∑
n2=1

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

(
1

pt1qt2
+

8ν(N)p2t1c
′
q2t2c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

πN (x)∑
n1=1

1+⌊L⌋∑
n2=1

(
1

(p− 1)(q − 1)
+

8ν(N)x2(⌊L⌋+1+n1)c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

pq
LπN (x) + LπN (x)

8ν(N)x2(L+1+πN (x))c′

kN

)

≪ 1

πN (x)4L2
(log log x)2πN (x)2LπN (x) +

πN (x)

L

8ν(N)x2(L+1+πN (x))c′

kN

≪ (log log x)2

LπN (x)
+
πN (x)

L

8ν(N)x2(L+1)c′+2πN (x)c′

kN
.

Therefore,

δ3(x) + δ7(x) ≪
(log log x)2

LπN (x)
+
πN (x)

L

8ν(N)x2(L+1)c′+2πN (x)c′

kN
. (6.143)

Proposition 6.5.10. With δ6(x), and δ8(x), defined in equation (6.140), we have

δ6(x) + δ8(x) ≪
(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x6(L+1)c′+6πN (x)c′

kN
.

Proof. Using equation (6.138) and equation (6.139), we obtain

δ8(x)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w8(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n2)

⌊L⌋+1+n2∑
t′=1

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

G(t′, n2, r, s)H(t1, t2, n1, p, q)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n2)G(n1)

F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

G(t, n1, r, s)H(t3, t4, n2, p, q)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n2)G(n1)

F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

G(t, n1, p, q)H(t3, t4, n2, r, s)

=δ6(x),

where we first interchange variables n1, n2 in the third line, and then we replace the dummy
variable by p, q, r, s by r, s, p, q respectively in the fourth line.

Hence,

δ6(x) + δ8(x)
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=2δ6(x)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w6(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

G(t, n1, p, q)H(t3, t4, n2, r, s)

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

U(t, n1)U(t3, n2)U(t4, n2)(af (p
2t) + af (q

2t))(af (r
2t3s2t4))

=
1

|FN,k|
∑

f∈FN,k

8

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

U(t, n1)U(t3, n2)U(t4, n2)(af (p
2tr2t3s2t4) + af (q

2tr2t3s2t4))

=
16

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)F (n1)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

U(t, n1)U(t3, n2)U(t4, n2)
〈
af (p

2tr2t3s2t4)
〉

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n1∑
t3,t4=1

(
1

ptrt3st4
+

8ν(N)p2tc
′
r2t3c

′
s2t4c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

πN (x)∑
n1=1

πN (x)∑
n2=1

(
1

(p− 1)(r − 1)(s− 1)
+

8ν(N)x6(⌊L⌋+1+n1)c
′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

prs
πN (x)2 + πN (x)2

8ν(N)x6(L+1+πN (x))c′

kN

)

≪ 1

πN (x)4L2
(log log x)3πN (x)πN (x)2 +

πN (x)2

L2

8ν(N)x6(L+1)c′+6πN (x)c′

kN

≪ (log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x6(L+1)c′+6πN (x)c′

kN
.

Hence,

δ6(x) + δ8(x) ≪
(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x6(L+1)c′+6πN (x)c′

kN
. (6.144)

Proposition 6.5.11. With δ5(x) defined in equation (6.140), we have

δ5(x) ≪
(log log x)2

πN (x)2
+

8ν(N)x8(L+1)c′

kN
.

Proof. We note that
∣∣F (n)∣∣ ≤ 8k1, for a positive integer n.

Now, n > 1 + ⌊L⌋, implies U(n) = 0 and hence, F (n) = U(n)− U(n− 1) = 0.



186 CHAPTER 6. SECOND MOMENT

Hence, using equation (6.138) and equation (6.139), we obtain

δ5(x)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w5(n1, n2, p, q, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

F (n1)F (n2)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t′=1

G(t, n1, p, q)G(t
′, n2, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)F (n1)F (n2)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t′=1

U(t, n1)(af (p
2t) + af (q

2t))U(t′, n2)(af (r
2t′) + af (s

2t′))

=
16

64πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=1

G(n1)G(n2)F (n1)F (n2)

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t′=1

U(t, n1)U(t′, n2)
〈
af (p

2tr2t
′
)
〉

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=1

⌊L⌋+1+n1∑
t=1

⌊L⌋+1+n2∑
t′=1

(
1

ptrt′
+

8ν(N)p2tc
′
r2t

′c′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

1+⌊L⌋∑
n1=1

1+⌊L⌋∑
n2=1

(
1

(p− 1)(r − 1)
+

8ν(N)x2(⌊L⌋+1+n1)c
′
x2(⌊L⌋+1+n2)c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

pr
L2 + L2 8

ν(N)x8(⌊L⌋+1)c′

kN

)

≪ 1

πN (x)4L2
(log log x)2πN (x)2L2 +

8ν(N)x8(L+1)c′

kN

≪ (log log x)2

πN (x)2
+

8ν(N)x8(L+1)c′

kN
.

Hence,

δ5(x) ≪
(log log x)2

πN (x)2
+

8ν(N)x8(L+1)c′

kN
. (6.145)

Proposition 6.5.12. With δ9(x) defined in equation (6.140), we have

δ9(x) ≪
(log log x)4

πN (x)2L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
.

Proof. Using equation (6.138) and equation (6.139), we obtain

δ9(x)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)w9(n1, n2, p, q, r, s)
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=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

H(t1, t2, n1, p, q)H(t3, t4, n2, r, s)

=
1

|FN,k|
∑

f∈FN,k

4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

U(t1, n1)U(t2, n1)af (p
2t1q2t2)U(t3, n2)U(t4, n2)af (r

2t3s2t4)

=
4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

U(t1, n1)U(t2, n1)U(t3, n2)U(t4, n2)
〈
af (p

2t1q2t2r2t3s2t4)
〉

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

πN (x)∑
n1=1

πN (x)∑
n2=1

⌊L⌋+1+n1∑
t1=1

⌊L⌋+1+n1∑
t2=1

⌊L⌋+1+n2∑
t3=1

⌊L⌋+1+n2∑
t4=1

(
1

pt1qt2rt3st4
+

8ν(N)p2t1c
′
q2t2c

′
r2t3c

′
s2t4c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

πN (x)∑
n1=1

πN (x)∑
n2=1

(
1

(p− 1)(q − 1)(r − 1)(s− 1)

+
8ν(N)x4(⌊L⌋+1+n1)c

′
x4(⌊L⌋+1+n2)c

′

kN

)

≪ 1

πN (x)4L2

∑′

p,q,r,s≤x

(
1

pqrs
πN (x)2 + πN (x)2

8ν(N)x8(⌊L⌋+1+πN (x))c′

kN

)

≪ 1

πN (x)4L2
(log log x)4πN (x)2 +

πN (x)2

L2

8ν(N)x8(L+1+πN (x))c′

kN

≪ (log log x)4

πN (x)2L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
.

Hence,

δ9(x) ≪
(log log x)4

πN (x)2L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
. (6.146)

Proposition 6.5.13. With δt(x) (t = 1, .., 9) defined in equation (6.140), we have

1

|FN,k|
∑

f∈FN,k

M4(ρ, g; f)(x)−

(
T (g, ρ)

4L

)2

≪ (log log x)

πN (x)
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
.

Proof. Adding equations (6.142), (6.143), (6.144), (6.145), and (6.146), and using equation



188 CHAPTER 6. SECOND MOMENT

(6.139), we obtain

1

|FN,k|
∑

f∈FN,k

M4(ρ, g; f)(x)−

(
T (g, ρ)

4L

)2

(6.147)

=

9∑
t=1

δt(x)−

(
T (g, ρ)

4L

)2

≪ 1

πN (x)
+

(log log x)

πN (x)
+

8ν(N)x4(L+1)c′

kN
+

(log log x)2

LπN (x)

+
πN (x)

L

8ν(N)x2(L+1)c′+2πN (x)c′

kN
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x6(L+1)c′+6πN (x)c′

kN

+
(log log x)2

πN (x)2
+

8ν(N)x8(L+1)c′

kN
+

(log log x)4

πN (x)2L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN

≪ (log log x)

πN (x)
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
,

using the fact, log log x≪ πN (x) in the last line.

Proposition 6.5.14. For positive integers k and N with k even, and L≪ πN (x),

1

|FN,k|
∑

f∈FN,k

M(ρ, g; f)(x)−
(
T (g, ρ)

4L

)2

≪ 1

L
+

(log log x)

πN (x)
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
.

Proof. Adding inequations (6.119), (6.135) and (6.147) and using equation (6.118), we obtain

1

|FN,k|
∑

f∈FN,k

M(ρ, g; f)(x)−

(
T (g, ρ)

4L

)2

(6.148)

=
1

|FN,k|
∑

f∈FN,k

 4∑
i=1

Mi(ρ, g; f)(x)

−

(
T (g, ρ)

4L

)2

=
1

|FN,k|
∑

f∈FN,k

M1(ρ, g; f)(x) +
2

|FN,k|
∑

f∈FN,k

M2(ρ, g; f)(x)

+
1

|FN,k|
∑

f∈FN,k

M4(ρ, g; f)(x)−

(
T (g, ρ)

4L

)2

≪ 1

L2
+ L2 8

ν(N)x8Lc
′

kN

+
1

L
+

(log log x)

πN (x)L
+

(log log x)2

πN (x)L2
+ πN (x)4L5 8

ν(N)x8Lc
′+4πN (x)c′

kN

+
(log log x)

πN (x)
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN

≪ 1

L
+

(log log x)

πN (x)
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN
,

using the fact πN (x)2L7 ≪ x8c
′+4πN (x)c′ , which holds since πN (x)2L7 ≪ x2x

7L
2 ≪ x8c

′
x4Lc

′ ≪
x8c

′+4πN (x)c′ , where c′ > 3
2 .

Theorem 4.3.1 has been restated again in Theorems 6.5.15 and 6.5.16 for the convenience
of the reader.
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Theorem 6.5.15. Let us consider families FN,k with levels N = N(x) and even weights k =
k(x). Let g, ρ be real-valued, even functions ∈ C∞(R) in the Schwartz class with compactly
supported Fourier transforms and L ≪ πN (x), be such that L = L(x) → ∞ as x → ∞, Then,
for 0 < ψ < 1, ψ ̸= 1/2 we have

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2 −(T (g, ρ)
4L

)2

≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

πN (x)L

+
(log log x)3

πN (x)L2
+

1

L2

8ν(N)x26πN (x)c′

kN
,

where c′ > 3
2 is an absolute constant.

Proof. Adding inequations (6.60), (6.116) and (6.148), and using equation (6.1), we obtain

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2 −(T (g, ρ)
4L

)2

=
1

|FN,k|
∑

f∈FN,k

K(ρ, g; f)(x) +
1

|FN,k|
∑

f∈FN,k

L(ρ, g; f)(x)

+
1

|FN,k|
∑

f∈FN,k

M(ρ, g; f)(x)−

(
T (g, ρ)

4L

)2

≪ L

πN (x)
+
L log log x

πN (x)2
+
L2(log log x)2

πN (x)4
+

(log log x)2

πN (x)2
+ (L+ πN (x))2L2 8

ν(N)x8Lc
′+8πN (x)c′

kN

+
L

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

πN (x)L

+
log log x

πN (x)
+ L2πN (x)2

8ν(N)x8Lc
′+8πN (x)c′

kN

+
1

L
+

(log log x)

πN (x)
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2
+
πN (x)2

L2

8ν(N)x8(L+1)c′+8πN (x)c′

kN

≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

LπN (x)
+

(log log x)3

πN (x)L2

+
1

L2

8ν(N)x26πN (x)c′

kN
,

with the choice of L satisfying L≪ πN (x).

Theorem 6.5.16. Let us consider families FN,k with levels N = N(x) and even weights k =
k(x). Let g, ρ be real-valued, even functions ∈ C∞(R) in the Schwartz class with compactly
supported Fourier transforms and L ≪ πN (x), be such that L = L(x) → ∞ as x → ∞, Then,
for 0 < ψ < 1, ψ ̸= 1/2 we have

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−

T (g, ρ)

4L

)2

≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L(log log x)2

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3

+
(log log x)2

πN (x)L
+

(log log x)3

πN (x)L2
+

1

L2

8ν(N)x26πN (x)c′

kN
,

where c′ > 3
2 is an absolute constant.
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Proof. Using Theorems 5.5.3 and 6.5.15 with the fact T (g,ρ)
4L ≪ 1, we obtain

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−

T (g, ρ)

4L

)2

=
1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2
+

(
T (g, ρ)

4L

)2

− 2
T (g, ρ)

4L

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)

=
1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2 −(T (g, ρ)
4L

)2

−2
T (g, ρ)

4L

 1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)−
T (g, ρ)

4L


≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+

(log log x)2

πN (x)L

+
(log log x)3

πN (x)L2
+

1

L2

8ν(N)x26πN (x)c′

kN
+

1

L
+
L(log log x)2

πN (x)
+

8ν(N)x(8πN (x)+8)c′

kN

≪ 1

L
+

L

πN (x)
+

log log x

πN (x)
+
L2(log log x)

πN (x)2
+
L3(log log x)2

πN (x)3
+
L(log log x)2

πN (x)

+
(log log x)2

πN (x)L
+

(log log x)3

πN (x)L2
+

1

L2

8ν(N)x26πN (x)c′

kN
,

with the choice of L satisfying L≪ πN (x).

Theorem 6.5.17. Let us consider families FN,k with levels N = N(x) and even weights k =
k(x) such that

log
(
kN/8ν(N)

)
x

→ ∞ as x→ ∞.

Let g, ρ be real-valued, even functions ∈ C∞(R) in the Schwartz class with compactly supported
Fourier transforms supported in [−1, 1] and L(x) = o

(
πN (x)

(log log x)2

)
be such that L = L(x) → ∞

as x→ ∞. Then, for 0 < ψ < 1, ψ ̸= 1/2, and A = 2 sin2 πψ, we have

lim
x→∞

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)2
= (A2ĝ(0)ρ ∗ ρ(0))2,

and

lim
x→∞

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−A2ĝ(0)ρ ∗ ρ(0)

)2
= 0.

Proof. We note that L(x) = o
(

πN (x)
(log log x)2

)
implies that L≪ πN (x) and lim

x→∞

L(log log x)2

πN (x)
= 0.

Hence, all the lower order terms except the first and last terms in Theorem 6.5.15 goes to
0, as x→ ∞.

Also, using Lemma 3.3.7 to the condition

log
(
kN/8ν(N)

)
x

→ ∞ as x→ ∞,

we obtain that the last term 1
L2

8ν(N)x26πN (x)c′

kN also goes to 0, as x→ ∞.
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Using Proposition 5.5.2, we have

lim
x→∞

T (g, ρ)

4L
= A2ĝ(0)ρ ∗ ρ(0).

Combining all the results obtained in Theorem 6.5.15, we obtain

lim
x→∞

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)
2 = (A2ĝ(0)ρ ∗ ρ(0))2. (6.149)

We denote β = A2ĝ(0)ρ ∗ ρ(0).

Using equation (6.149) with the growth condition on weights and levels, and L(x) =

o
(

πN (x)
(log log x)2

)
, we obtain

lim
x→∞

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)−A2 ĝ(0)(ρ ∗ ρ)(0)

)2
= lim
x→∞

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)
2 + β2 − 2β lim

x→∞

1

|FN,k|
∑

f∈FN,k

R2(ρ, g; f)(x)

=β2 + β2 − 2β2

=0.

Remark 6.5.18. The above theorem tells us that E[(R2(ρ, g; f)(x))
2] ∼ E[(R2(ρ, g; f)(x))]

2 for
very rapidly growing families FN,k. In turn, these are asymptotic to what one would expect
from a Poissonnian model. This indicates an affirmative answer to Question 4.1.2 for a random
Hecke newform in Sk(N) with appropriate parameters as specified in Theorem 4.3.1(c).
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Chapter 7

Future Research plans

There are several interesting directions for future research. We start by introducing questions
of Katz and Sarnak. Let H(θf (p)) be as in equation (4.2). We arrange the set {H(θf (p)), p ≤
x, (p,N) = 1} in ascending order:

0 ≤ H(θf (p))1 ≤ H(θf (p))2 · · · ≤ H(θf (p))πN (x) ≤ 1

and consider the consecutive spacings H(θf (p))i+1 −H(θf (p))i, 1 ≤ i ≤ πN (x). Katz asked the
following question.

Question 7.0.1 (Katz). Is the level spacing distribution of the sequence {H(θf (p)), p ≤
x, (p,N) = 1} Poissonnian? That is, for any [a, b] ⊆ [0,∞), is the limit

lim
x→∞

1

πN (x)
#

{
1 ≤ i ≤ πN (x)− 1 : H(θf (p))i+1 −H(θf (p))i ∈

[
a

πN (x)
,

b

πN (x)

]}
=

∫ b

a

e−tdt?

Katz and Sarnak [KS99, Page 9] also considered a vertical variant of the above problem.
Let p be a prime and let N be a positive integer such that (p,N) = 1. One defines the multiset

Ap(N, k) = {H(θf (p)), f ∈ FN,k} ⊆ [0, 1].

The multiset Ap(N, k) is then arranged in ascending order as follows:

0 ≤ H(θf1(p)) ≤ H(θf2(p)) · · · ≤ H(θfr (p)) ≤ 1.

Here, r = |FN,k|. Katz and Sarnak consider the level spacings among the multisets Ap(N, k)
for k = 2, N → ∞ (N coprime to p) and ask if the level spacing distribution matches that of
a sequence of independent and uniform random points on [0, 1]. More precisely, they ask the
following question.

Question 7.0.2 ([KS99, Page 9]). Let p be a fixed prime. Let k be an even positive integer and
N be a positive integer coprime to p. Is the level spacing distribution of the multisets Ap(N, k)
Poissonnian as N ranges over positive integers coprime to p? That is, is it true that for any
[a, b] ⊆ [0,∞),

lim
N→∞
(p,N)=1

1

|FN,k|
#

1 ≤ i ≤ |FN,k| − 1 : H(θfi+1
(p))−H(θfi(p)) ∈

[
a

|FN,k|
,

b

|FN,k|

]
=

∫ b

a

e−tdt?

193
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We note that Katz and Sarnak state the above question for prime levels N and k = 2. A
generalization of their question to higher weights and a larger class of levels N is what has been
stated above. As a partial answer to their question (for k = 2 and N prime), they average over
primes and state the following theorem:

Theorem 7.0.3 ([KS99, Page 9]). For any [a, b] ⊆ [0,∞),

lim
x→∞
N→∞

N prime

1

π(x)

∑
p≤x
p ̸=N

1

|FN,k|
#

1 ≤ i ≤ |FN,k| − 1 : H(θfi+1
(p))−H(θfi(p)) ∈

[
a

|FN,k|
,

b

|FN,k|

]
=

∫ b

a

e−tdt.

Remark 6.5.18 motivates us to think of Question 7.0.4, i.e., what happens to the expected
value of the higher moments of smooth localised pair correlation function R2(ρ, g; f)(x).

If Question 4.1.2 for δ = 1
AL has an affirmative answer, then for a fixed f ∈ FN,k,

(R2(ρ, g; f)(x))
r ∼ (CψA

2ĝ(0)ρ ∗ ρ(0))r,

for each r ≥ 1. Therefore, in the spirit of Theorem 6.5.15, it would be natural to ask what
(R2(ρ, g; f)(x))

r is, for a random f ∈ FN,k.

Question 7.0.4. Can we show that

1

|FN,k|
∑

f∈FN,k

(
R2(ρ, g; f)(x)

)r ∼ (CψA
2ĝ(0)ρ ∗ ρ(0))r

for r ≥ 3, under the same growth conditions on L, N, and k as in Theorem 6.5.17? In other
words, we ask the following:

Is it true that for any integer r ≥ 3,

E[(R2(ρ, g; f)(x))
r] ∼ E[(R2(ρ, g; f)(x))]

r as x→ ∞?

We expect that the techniques used in the proof of Theorem 4.3.1 can be generalized to
answer Question 7.0.4, but the range of L might change. We have partially answered this
question in [MS23].

Question 7.0.5. Can we answer Question 7.0.1 of Katz? We would like to first study the m-
level correlation of the Sato-Tate sequence for integers m ≥ 2 and use the road map provided by
Kurlberg and Rudnick [KR99, Appendix A] to derive the level spacing distribution function of
this sequence from these.

Question 7.0.6. Can we answer Question 7.0.2 of Katz and Sarnak for the vertical Sato-Tate
families Ap(N, k)? As above, we would have to first investigate the m-level correlation of the
vertical Sato-Tate families.

Question 7.0.7. Can we investigate the local analogues of the pair correlation function of ver-
tical Sato-Tate families?

Question 7.0.8. Can we investigate the local analogues of the level spacing distribution function
of Sato-Tate sequences as well as vertical Sato-Tate families?

Question 7.0.9. Can we answer Question 7.0.5 in the context of Hilbert modular forms and
modular forms on hyperbolic 3-spaces?



Appendix A

Quick reference for the meaning of
terms in Chapters 5 and 6

This appendix aims to give a quick reference to the terms mentioned in Chapters 5 and 6, so the
reader doesn’t have to go back and forth between the pages in both chapters. In Section A.2,
the notation K̃(∗) means that the sum under consideration is K̃ with additional condition(s) “∗”.
For example, K̃(n1 ̸= 0, n2 = 0) means that the sum under consideration is K̃ with additional
condition n1 ̸= 0, n2 = 0.

A.1 References for terms mentioned in Chapter 5

1. U(l) = ρ̂
(
l
L

)
(2 cos 2πlψ)− ρ̂

(
l+1
L

)
(2 cos 2π(l + 1)ψ), 0 ≤ l ≤ L.

2. G(n) = ĝ
(

n
πN (x)

)
, 0 ≤ n ≤ πN (x).

3. A(p, q, n) =

{
4 if n = 0

2(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2)) if n ≥ 1.

4. Lp(l, n) = af (p
2l)(af (p

2n)− af (p
2n−2)).

5. R(ρ, g; f)(x) = 1
8πN (x)2L

∑′

p,q≤x

∑
l,n≥1

2U(l)U(0)G(n)
〈
Lp(l, n)(af (q

2n)− af (q
2n−2))

〉
.

6. S(ρ, g; f)(x) = 1
8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1

2U(l)U(l′)G(n)
〈
Lp(l, n)Lq(l

′, n)
〉
.

7. T (ρ, g; f)(x) = 2R(ρ, g; f)(x) + S(ρ, g; f)(x).

8. S1(ρ, g; f)(x) =
1

8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1
l ̸=n,l′ ̸=n

2U(l)U(l′)G(n)
〈
Lp(l, n)Lq(l

′, n)
〉
.

9. S2(ρ, g; f)(x) =
1

8πN (x)2L

∑′

p,q≤x

∑
l,l′,n≥1
l=n,l′ ̸=n

2U(l)U(l′)G(n)
〈
Lp(l, n)Lq(l

′, n)
〉
.

10. S4(ρ, g; f)(x) =
1

8πN (x)2L

∑′

p,q≤x

∑
l≥1

2U(l)2G(l)
〈
Lp(l, n; l = n)× Lq(l, n; l = n)

〉
.

11. S(ρ, g; f)(x) = S1(ρ, g; f)(x) + 2S2(ρ, g; f)(x) + S4(ρ, g; f)(x).
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A.2 References for terms mentioned in Chapter 6

1. A(p, q, n) =

{
4 if n = 0

2(af (p
2n)− af (p

2n−2))(af (q
2n)− af (q

2n−2)) if n ≥ 1.

2. K(ρ, g; f)(x) =
1

32πN (x)4L2

∑′

p,q≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥0

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, n1)A(p, q, n2).

3. K̃ := K(ρ, g; f)(x); K1(ρ, g; f)(x) = K̃(n1 = 0, n2 = 0).

4. K3(ρ, g; f)(x) = K̃(n1 ̸= 0, n2 = 0) ;K4(ρ, g; f)(x) = K̃(n1 ̸= 0, n2 ̸= 0).

5. K(ρ, g; f)(x) = K1(ρ, g; f)(x) + 2K3(ρ, g; f)(x) +K4(ρ, g; f)(x).

6. A(ρ, g; f ;n, r) =
∑

l1,l2≥0

U(l1)U(l2)af (r
2l1)af (r

2l2)(af (r
2n)− af (r

2n−2)).

7. K3(ρ, g; f)(x) =
1

4πN (x)4L2

∑′

p,q≤x

∑
n2≥1

G(0)G(n2)A(ρ, g; f ;n2, p)A(ρ, g; f ;n2, q).

8. A1(n2, r) = A1(ρ, g; f ;n2, r) =
∑

l1,l2≥0
l1−l2 ̸=n2

U(l1)U(l2)af (r
2l1)af (r

2l2+2n2).

9. A2(n2, r) = A2(ρ, g; f ;n2, r) =
∑

l1,l2≥0,l2≥n2
l1−l2 ̸=−n2

U(l1)U(l2)af (r
2l1)af (r

2l2−2n2).

10. A3(n2, r) = A3(ρ, g; f ;n2, r) = −
∑

l1,l2≥0,l2<n2
l1+l2 ̸=n2−1

U(l1)U(l2)af (r
2l1)af (r

2n2−2l2−2).

11. B1(n2) = B1(ρ, g; f ;n2) = 2
∑
l≥0

U(l)U(l + n2).

12. B2(n2) = B2(ρ, g; f ;n2) =
∑
l≥0

U(l)U(n2 − 1− l).

13. A(ρ, g; f ;n2, r) = B1(n2)−B2(n2) +A1(n2, r) +A2(n2, r) +A3(n2, r).

14. T (p, n1, n2) = (af (p
2n1)− af (p

2n1−2))(af (p
2n2)− af (p

2n2−2)).

15. k(r, n1, n2, l1, l2) = af (r
2l1)af (r

2l2)T (r, n1, n2).

16. af (p
2l1)af (p

2l2)af (q
2k1)af (q

2k2)A(p, q, n1)A(p, q, n2)

= 4k(p, n1, n2, l1, l2)k(q, n1, n2, l1, l2).

17. k̃ := k(p, n1, n2) =
∑

l1,l2≥0

U(l1)U(l2)k(p, n1, n2, l1, l2).

18. α1(n1, n2, p) = k̃(l1 ≥ n1, l2 ≥ n2); α2(n1, n2, p) = k̃(l1 ≥ n1, l2 < n2).

19. α3(n1, n2, p) = k̃(l1 < n1, l2 ≥ n2); α4(n1, n2, p) = k̃(l1 < n1, l2 < n2).

20. k(p, n1, n2) = (α1 + α2 + α3 + α4)(n1, n2, p).

21. C(ρ, g; f)(x) = 8

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2).
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22. D(ρ, g; f)(x) =
4

32πN (x)4L2

∑′

p,q≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)k(q, n1, n2).

23. K4(ρ, g; f)(x) = C(ρ, g; f)(x) +D(ρ, g; f)(x).

24. C′
is (i = 1, 2, 3) are defined in equations 6.45, (6.46), (6.47) respectively.

25. C(ρ, g; f)(x) = C1(ρ, g; f)(x) + C2(ρ, g; f)(x) + C3(ρ, g; f)(x).

26. D′
is (i = 1, 2, 3) are defined in equations 6.52, (6.53), (6.54) respectively.

27. D(ρ, g; f)(x) = (D1 +D2 +D3)(ρ, g; f)(x).

28. L(ρ, g; f)(x) = 1

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥0

U(l1)U(l2)U(k1)U(k2)G(n1)G(n2)

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, n1)A(p, r, n2).

29. L̃ := L(ρ, g; f)(x); L1(ρ, g; f)(x) = L̃(n1 = 0, n2 = 0).

30. L3(ρ, g; f)(x) = L̃(n1 ̸= 0, n2 = 0) ;L4(ρ, g; f)(x) = L̃(n1 ̸= 0, n2 ̸= 0).

31. L̃1 := L1(ρ, g; f)(x) =
1

16πN (x)4L2

∑
l1,l2≥0

∑
k1,k2≥0

16U(l1)U(l2)U(k1)U(k2)G(0)
2

×
∑′

p,q,r≤x

af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2).

32. L11(ρ, g; f)(x) = L̃1(l1 = l2, k1 = k2); L12(ρ, g; f)(x) = L̃1(l1 ̸= l2, k1 = k2).

33. L13(ρ, g; f)(x) = L̃1(l1 = l2, k1 ̸= k2); L14(ρ, g; f)(x) = L̃1(l1 ̸= l2, k1 ̸= k2).

34. L1(ρ, g; f)(x) = (L11 + L12 + L13 + L14)(ρ, g; f)(x).

35. A1(ρ, g; f ;n, q, r) =
∑

k1,k2≥0

U(k1)U(k2)af (q
2k1)af (r

2k2)(af (r
2n)− af (r

2n−2)).

36. 2L3(ρ, g; f)(x) =
1

πN (x)4L2

∑′

p,q,r≤x

∑
n2≥1

G(0)G(n2)A(ρ, g; f ;n2, p)A1(ρ, g; f ;n2, q, r).

37. F ′
i s are defined in equations (6.74) and (6.75).

38. A1(ρ, g; f ;n2, q, r) = U(0)(U(n2)− U(n2 − 1)) + F1(ρ, g; f ;n2, q, r) + F2(ρ, g; f ;n2, q, r).

39. ⟨2L3(ρ, g; f)(x)⟩ = (λ1 + λ2 + · · ·+ λ6)(x).

40. λ′is (i = 1, ..., 6) are defined in equation (6.78).

41. L4(ρ, g; f)(x) =
1

16πN (x)4L2

∑′

p,q,r≤x

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥1

U(l1)U(l2)U(k1)U(k2)

G(n1)G(n2)af (p
2l1)af (p

2l2)af (q
2k1)af (r

2k2)A(p, q, n1)A(p, r, n2).

42. L(ρ, g; f)(x) = (L1 + 2L3 + L4)(ρ, g; f)(x).

43. Lp(l, n) = af (p
2l)(af (p

2n)− af (p
2n−2)).

44. L(q, r, n1, n2) =
∑

k1,k2≥0

U(k1)U(k2)Lq(k1, n1)Lr(k2, n2).

45. E(ρ, g; f)(x) = 8

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n2>n1

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2).
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46. F(ρ, g; f)(x) =
4

16πN (x)4L2

∑′

p,q,r≤x

∑
n1,n2≥1
n1=n2

G(n1)G(n2)k(p, n1, n2)L(q, r, n1, n2).

47. L4(ρ, g; f)(x) = E(ρ, g; f)(x) + F(ρ, g; f)(x).

48. F (n) = U(n)− U(n− 1) and Mi’s are defined in Lemma 6.4.17 .

49. L(q, r, n1, n2)

=F (n1)F (n2) + F (n1)

3∑
i=1

Mi(n1, q) + F (n2)

3∑
i=1

Mi(n2, r) +

3∑
i=1

3∑
j=1

Mi(n1, q)Mj(n2, r).

50. U(t, n)’s are defined in Lemma 6.4.18.

51.
3∑
i=1

Mi(n, s) =

⌊L⌋+1+n∑
t=1

U(t, n)af (s
2t).

52.
∑
k≥0

U(k)Ls(k, n) = F (n) +

⌊L⌋+1+n∑
t=1

U(t, n)af (s
2t).

53. Ei(n1, n2) (i = 1, ..., 4) are defined in Proposition 6.3.8.

54. Vj(n1, n2, p) (j = 1, ..., 9) are defined in Lemma 6.3.7.

55. k(p, n1, n2) =

4∑
i=1

Ei(n1, n2) +

9∑
i=1

Vi(n1, n2, p).

56. βi’s (i = 1, ..., 8) are defined in equation (6.104).

57. ⟨E(ρ, g; f)(x)⟩ = (β1 + · · ·+ β8)(x).

58. M(ρ, g; f)(x) =
1

64πN (x)4L2

∑
p,q,r,s≤x
all distinct

∑
l1,l2≥0

∑
k1,k2≥0

∑
n1,n2≥0

U(l1)U(l2)U(k1)U(k2)

×G(n1)G(n2)af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, n1)A(r, s, n2).

59. M̃ := M(ρ, g; f)(x); M1(ρ, g; f)(x) = M̃(n1 = 0, n2 = 0).

60. M2(ρ, g; f)(x) = M̃(n1 ̸= 0, n2 = 0) ;M4(ρ, g; f)(x) = M̃(n1 ̸= 0, n2 ̸= 0).

61. M1(ρ, g; f)(x) =
1

64πN (x)4L2

∑′

p,q,r,s≤x

∑
l1,l2≥0

∑
k1,k2≥0

U(l1)U(l2)U(k1)U(k2)G(0)
2

× af (p
2l1)af (q

2l2)af (r
2k1)af (s

2k2)A(p, q, 0)A(r, s, 0).

62. M3(ρ, g; f)(x) =
1

8πN (x)4L2

∑′

p,q,r,s≤x

∑
n2≥1

G(0)G(n2)A1(ρ, g; f ;n2, p, r)A1(ρ, g; f ;n2, q, s).

63. γi’s (i = 1, ..., 5) are defined in equation (6.121).

64. ⟨2M3(ρ, g; f)(x)⟩ = (γ1 + γ2 + · · ·+ γ5)(x).

65. K(p, n) =
∑
l≥0

U(l)Lp(l, n).

66. M4(ρ, g; f)(x) =
4

64πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)

×K(p, n1)K(q, n1)K(r, n2)K(s, n2).

67. M(ρ, g; f)(x) = M1(ρ, g; f)(x) + 2M3(ρ, g; f)(x) +M4(ρ, g; f)(x).

68. wi(n1, n2, p, q, r, s)’s (i = 1, ..., 9) are defined in equation (6.138).
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69. δt(x) =
1

16πN (x)4L2

∑′

p,q,r,s≤x

∑
n1,n2≥1

G(n1)G(n2)⟨wt(n1, n2, p, q, r, s)⟩.

70. ⟨M4(ρ, g; f)(x)⟩ = (δ1 + δ2 + · · ·+ δ9)(x).

71.
(
R2(ρ, g; f)(x)

)2
= K(ρ, g; f)(x) + L(ρ, g; f)(x) +M(ρ, g; f)(x).
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