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Abstract

Accretion disks around black holes are at the heart of much of the activity ob-

served in active galactic nuclei and galactic microquasars. In turn, the structure

of accretion disks is governed by the micro-physical viscosity mechanism that

enables nearby plasma to lose its angular momentum and go accrete onto the

black hole.

In this work, we focus on hot, two-temperature accretion disks where the ions are

collisionless. We study two possible viscosity mechanisms. In the first model, we

assume a random magnetic field present throughout the disk and characterize it

using the ion inertial length as magnetic coherence length. In the second model,

we use radial diffusion of ions across the large-scale toroidal magnetic field to

characterize the coefficient of viscosity.

Systems with an accretion disk also often harbor powerful jets that are often

episodic. We attempt to understand the disk-jet connection using the second

model to interpret observations of X-ray variations from active radio galaxy 3C

120. We compare the time scale of the observed variations to the viscous time

scale associated with this particular disk model. We envisage a viscous instability

which results in disk collapse and possible episodic ejections of blobs. Our work

represents the first attempt to quantify this scenario with a specific viscosity

model.
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Chapter 1

Introduction

An accretion disk is a structure formed by diffused matter which gets pulled in the gravita-

tional field of a massive compact object. The central object can be a star, or black hole, or

an Active-Galactic Nuclei (AGN). In most accretion processes in the presence of magnetic

field, the infalling matter has angular momentum. It can approach the center only if there

is a mechanism in place to transport the angular momentum outwards. It is thought to be

done via micro-physical viscosity, but the exact mechanism is not known.

Many important astrophysical systems, like AGNs, quasars, etc., possess relativistic out-

flows or jets. These require generation of a large amount of energy in a compact region.

The nearby gas and dust act like the fuel. This gas, in most cases, has angular momentum

which leads to the formation of an accretion disk around the central object. It suggests that

there exists a direct link between these phenomena and accretion process. This makes the

question of the mechanism of angular momentum transport, an important one.

Shakura and Sunyaev [1], in their seminal paper, suggested parameterizing viscosity using

an ’α’ parameter in terms of pressure. This parameter incorporates all the physical details

we don’t know about the viscosity.

In the following chapters we attempt to provide a model for viscosity to be able to explain

the observations of emissions from AGNs in the form of relativistic jets or the X-ray spec-

trum. We focus on two-temperature, quasi-Keplerian accretion disks.

In the first part, we discuss a hybrid viscosity due to the presence of turbulent magnetic

fields and Coulomb collisions, where the magnetic coherence length of ions is defined by the

ion inertial length. We show what kind of disk this model gives rise to. In the second part,
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we model the viscosity coefficient based on the diffusion based transport coefficients. We

present the disk model it gives rise to and compare the viscous timescale of such a disk with

observations from active radio galaxy, 3C 120 [2].

1.1 Two Temperature Disk

For all the following discussions we have assumed a two-temperature disk. It was introduced

by Shapiro, Lightman, and Eardley [3] to explain the spectrum of Cyg-X1 and since has

been extensively used [4]. The structure of two-temperature disk is thought to be made of a

bloated inner region of accretion around a black hole, surrounded by a cool thin disk. Here,

I will derive the basic disk structure equations for the steady state which we will use later

on to build upon the viscosity models.

Assume a quasi-keplerian disk with no vertical structure and cylindrical symmetry with ac-

cretion rate Ṁ . We take H to be the half-thickness of the disk, R, radius, ρ to be mass

density. The azimuthal velocity, vφ will be

√
GM

R
.

Hydrostatic Equilibrium:

We have assumed the disk to be in a vertical hydrostatic equilibrium so the vertical compo-

nent of momentum becomes:
1

ρ

∂ P

∂ z
=

∂

∂ z
(

GM√
R2 + z2

) (1.1)

The term inside the partial derivative gives the force on a point particle. For a thin disk,

1

ρ

∂ P

∂ z
= −GM z

R3

∂ P

∂ z
∼ −P

H
, z ∼ H

we get:

P =
GM ρH2

R3
(1.2)
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Angular Momentum conservation:

That is, angular momentum of the matter being swept in due to viscous stress, is conserved

at every point.

(viscous stress).(area)R = (Angular momentum per unit mass).(accretion rate)

As defined by Shakura and Sunyaev [1], viscous stress is given by αP . We get the final

equation to be :

αP .(2πRH).R = (GM R)
1/2Ṁ (1.3)

⇒ αP =
(GMR)1/2Ṁ

4πR2H
(1.4)

Equation of state:

P = ρkB(Ti + Te)/mp (1.5)

where, Ti is ion temperature, Te is electron temperature, and ρ is the mass density. ρ = Nimp,

with Ni being the number density of ions.

P = NikB(Ti + Te) (1.6)

Ion Thermal Balance:

We have assumed the ions and electrons to be interacting only via Coulomb collisions. All

the energy from viscous dissipation is used up in heating the ions and consequently electrons

via Coulomb interactions. Energy dissipated due to viscous stress is:

D(R) =
3

8π

GMṀ

R3
(1.7)

With lnΛ being Coulomb logarithm (ratio of maximum to minimum impact parameter for
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Coulomb collisions), the ion thermal balance equation is:

3

8π

GMṀ

R3H
= 3.75× 1021mi lnΛN2

i kB
(Ti − Te)
T

3/2
e

(1.8)

Inverse Compton cooling We assume electron to cool via inverse Compton process. With

y being Compton parameter, temperature of electron is given by:

Te =
mec

2y

4kB

1

τesg(τes)
(1.9)

Here, g(τes) = 1 + τes.

And finally, optical depth given as:

τes = Ni σT H (1.10)

with σT being Thomson’s scattering cross section.

All the above calculations are done using classical equations, but as we go close to the

black hole, general relativistic effects become significant. The above equations are considered

to be valid only till 3Rg, as after that Keplerian assumption starts to break down. To make

it more general, we have added relativistic correction factors, f1, f2, f3 as calculated by Eilek

(1980) [5] for Kerr metric.

Equation 1.2 becomes:

P =
GM miNiH

2f1
R3

(1.11)

Equation 1.4:

αP =
(GMR)1/2Ṁ f2

4πR2H
(1.12)

and equation 1.8 becomes:

3

8π

GMṀ

R3H
f3 = 3.75× 1021mi lnΛN2

i kB
(Ti − Te)
T

3/2
e

(1.13)

We have used the above modified equations along with equations 1.6, 1.9 and 1.10 to

calculate various disk parameters for the models discussed later.
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Chapter 2

ION VISCOSITY BASED ON ION

INERTIAL LENGTH

The problem of transport of angular momentum across the disk is an old one. It is thought to

occur via viscous mechanisms, but molecular viscosity by itself doesn’t explain the accretion

rates reached to be able to justify the various emissions we observe. In the initial part of

the project, we were working on a viscosity model based on shear stress in the accretion

disk in presence of tangled magnetic fields, largely based on the work done in Subramanian,

Becker, Kafatos, 1996 [6] (referred as SBK96 from here). Ion viscosity arises from Coulombic

interactions, giving mean free path for the process as Coulomb mean free path, but the disk

may also have magnetic fields present which can have significant affect on viscosity. The

presence of magnetic fields drastically alters the transport properties. SBK96 assume a

tangled magnetic field embedded in the accretion disk. The magnetic field kinks play the

part of scattering centers and the operative mean free path essentially becomes the coherence

length of the tangled magnetic field. They have taken the coherence length to be a free

parameter. In this work, we adopt a different approach and adopt a specific prescription

for the mean free path. Sections 2.1.1 - 2.1.2 below sketch the formalism of SBK96 for

completeness and section 2.2.2 - 2.2.3 outlines the concept of the ion inertial length, which

we take to be the mean free path.

7



2.1 Hybrid Viscosity

2.1.1 Viscosity due to Coulomb collisions

Consider a field free plasma with viscosity constant, ηff , and velocity profile, u(y)ẑ. The

shear stress is equal to net flux of momentum in the vertical direction across radial direction.

λii is the ionic mean free path, that is, it defines the average length scale over which the

exchange of momentum is taking place.

−ηff
du

dy
= −Ni

√
kTi

2πmi

mi
du

dy
λii2 (2.1)

here, Ni is ionic density and Ti is ionic temperature. We can see that velocity of particles

varies over a length scale of λii

We assume plasma to be made up of completely ionized hydrogen, so mean free path is given

by:

λii = vrmstii

where vrms is the root mean square velocity of Maxwellian distribution and tii is the mean

time between Coulomb collisions.

The interactions, in this case, take place over a characteristic length scale of λii. But in the

case of accretion, many times velocity might vary over lengths larger than the characteristic

length, then the above won’t be valid anymore.

We haven’t considered the effect of magnetic fields present in the disk yet. If we assume a

uniform magnetic field in the ẑ direction that is perpendicular to the velocity gradient. We

have one more length scale in the picture, λL, Larmor radius of the ions. The momentum

carried by the ions will now be (du/dy)λLmi, with an extra factor of (λL/λii) for the

probability of particle undergoing Coulomb collision before completing a full circle. The

cross field viscosity now will be given by:

−η⊥
du

dy
= −2Ni

√
kTi

2πmi

mi
du

dy
λL
λL
λii

(2.2)
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2.1.2 Tangled magnetic fields

The picture above doesn’t give a realistic view of the magnetic fields in accretions disk.

The magnetic field might often be generated dynamically in the accretion disk, unlike the

constant field we had above. For the following calculations, we assume that the fields vary

randomly in time and space or is tangled. The field is assumed to be tangled in a self similar

manner with coherence length to be λcoh. Here unlike the previous case, the ions are not

always moving perpendicularly to a fixed field. At any given instant the ions will be gyrating

around randomly oriented magnetic field. We can see that only the component of momentum

parallel to the magnetic field will be conserved unless the ion undergoes a Coulomb collision

or hops on to a different magnetic field line.

These magnetic ’kinks’ or irregularities depend on the kind of turbulence the medium has.

The momentum can transfer into the gas by either of the two processes, Coulomb interaction

or through magnetic irregularities. The probability of either happening is related to their

respective mean free paths. If we assume them to be statistically uncorrelated, the effective

mean free path can be given as:
1

λ
=

1

λii
+

1

λcoh
(2.3)

where λcoh is the average length of magnetic kinks.

We assume same velocity distribution, of u(y)ẑ and isothermal ions with temperature, Ti.

From the frame of reference of the plasma, the ions have Maxwellian velocity distribution. We

only consider the transport of momentum along the field lines. Consider a particle starting

at a distance λ from the origin. Then the ŷ direction flux due to particles originating from

both sides of disk is:

P (θ, φ) = 2

∫ 0

−∞
(mivz)[Nivyf(vr)dvr] (2.4)

where vz is velocity in ẑ direction, vr is the velocity in radial direction and f(vr) is the

velocity distribution in radial direction (Maxwellian).

Since the local magnetic field is a random function over space; we need to average out the

above flux to get mean stress. We get the hybrid viscosity to be:

ηhyb = − P

u′(0)
=

2

15
miNiλ

√
2kTi
πmi

(2.5)
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2.2 Two Temperature Accretion Disk Model

We consider a quasi-keplerian, steady state disk. The ions and electrons are assumed to

be coupled only by Coulomb collisions. The electrons are at a temperature, Te and radiate

away energy via inverse Compton scattering. The underlying assumption is that inter-

species interactions happen at a much lower timescales than intra-species. That is the ions

get enough time to come to an equilibrium temperature but do not get sufficient time to

equilibrate with electrons before they are swept away into the black hole, i.e.,

tei > taccr > tii > tee

A model based on the basic structure equations, 1.9-1.13, derived in the previous chapter is

discussed in detail in SBK96. They start with a quasi-keplerian disk, with Ti � Te. The

viscosity parameter α is obtained from the hybrid viscosity found in eq 2.5. They work on

the assumption that magnetic coherence length varies in a self-similar manner with local

height, H.

λcoh = ξH (2.6)

where ξ is a free parameter, taken to be a constant for a particular model.

With the above constraints on temperature and making the disk structure equations di-

mensionless by substituting, M8 = M
108M�

,M∗ = Ṁ/1M� yr−1, and R∗ = R/(GM/c2) we

get:

Ti = 4.99× 1010(0.22× Ṁ∗
ME

)f2τes
−1α−1R∗

−3/2 (2.7)

Te = 1.40× 109yτes
−1(1 + τes)

−1 (2.8)

Ni = 4.70× 1010((0.22× Ṁ∗
ME

))
1
2Ṁ−1
∗ f

1/2
1 f

−1/2
2 τes

3/2α
1/2R∗

−3/4 (2.9)

The viscosity parameter α is defined by shear stress as

αhyb = −ηhybR
dΩkep

dR
(2.10)

With the above parameters, the following equations give a self consistent solution for the

model:

αhyb = 147.31δ
1/3f

−1/6
1 f

2/3
2 (0.22× Ṁ∗

ME

)
2/3τ−1es R

−1
∗ (2.11)
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Ti = 3.38× 1011δ
−1/3f

1/6
1 f

1/3
2 (0.22× Ṁ∗

ME

)
1/3R

−1/2
∗ (2.12)

Te =
1.40× 109y

τes(1 + τes)
(2.13)

Ni = 5.70× 1011δ
1/6f

5/12
1 f

−1/6
2 (0.22× Ṁ∗

ME

)
5/6((Ṁ)∗)

−1τes(R∗)
−5/4 (2.14)

H

R
= 0.175δ

−1/6f
5/12
1 f

1/6
2 (0.22× Ṁ∗

ME

)
1/6R

1/4

∗ (2.15)

where the parameter δ is defined as:

δ =
λ

λii
= (1 +

λii
ξH

) (2.16)

Given accretion rate, ξ parameter, and Compton y-parameter, we can determine δ as:

τes = 915.508ξ−1
δ1/3

1− δ
f

1/3
1 f

2/3
2 (0.22× Ṁ∗

ME

)
2/3R∗

−1 (2.17)

τ
7/3
es (1 + τes) = 57.8819δ

1
9f
−7/18
1 f

−1/9
2 f

2/3
3 y(0.22× Ṁ∗

ME

)
5/9R∗

−5/6 (2.18)

2.2.1 Ion Inertial length as Magnetic Coherence Length

The treatment of SBK96 assumed the ratio of the magnetic field coherence length to the

disk height to be a free parameter, which is not a realistic approximation. In this work,

we proposed to use ion inertial length as the magnetic coherence length. Going back to

the assumptions, notice that we have a tangled but frozen magnetic in plasma medium, and

practically no interaction between ions and electrons. Ion inertial length provides us with the

most general length scale to be considered for magnetic coherence length. This prescription

for the effective mean free path has been used to compute the operative viscosity in the

collisionless solar wind [7], [8].

λcoh =
c

ωp
∼ 2.28× 107N

− 1
2

i cm (2.19)
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With the above prescription, we now have ξ parameter as:

ξ = 2.28× 107N
− 1

2
i H−1 =

2.28× 107σTN
1/2
i

τes
(2.20)

That is, a ξ which also depends on local ionic density.

We solve the equations for the above model, with this new parametrization and observe

the changes and compare the two models. The new disk parameters are governed by the

following equations.

Using above and equation 3.12 with equation 2.17 to substitute ξ give us the following

equation:

τ
1/2
es = 8.651× 109 δ1/4

1− δ
f

1/8
1 f2(0.22× Ṁ∗

ME

)
1/4Ṁ

1/2
∗ R

−3/8
∗ (2.21)

Solving equation 2.17 for δ gives:

δ = (57.8819)9τ
21/3
es (1 + τes)

9f
7/2
1 f2f

−6
3 y−1(0.22× Ṁ∗

ME

)−5R
15/2
∗ (2.22)

Substituting for δ in the equation 2.21 for τ gives us an implicit equation for τes;

if

f(τ) = 1− (57.8819)9τ
21/3(1 + τ)9f

7/2
1 f2f

−6
3 y−1(0.22× Ṁ∗

ME

)−5R
15/2
∗

and

g(τ) = 8.651× 109f1f2f
−3/2
3 (0.22× Ṁ∗

ME

)
−1/2Ṁ

1/8
∗ R

3/2
∗ [τ

19/4(1 + τ)
9/4]

Then we can get τes from:
g(τes)

f(τes)
= 1 (2.23)

and subsequently we can solve equations 2.11-2.15 for δ, α, ionic density and other such

parameters.

2.3 Results and inferences

We have solved the model for a black hole of mass, 108 M� and Compton parameter, y = 1.

The legends on each graph are the accretion rates as a ratio to Eddington rate, (
Ṁ∗
M8

).
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The following figures give an idea of how various parameters vary as a function or radius of

accretion disk.

Following important conclusions can be drawn from the results:

• The parameter α which is usually expected to be in the range of 10−4 - 1 comes out

to be too small to have any significant effect on the disk structure.

• In the Model discussed in SBK-96, ξ as an external parameter is taken to be around

∼ 10−1 for a realistic disk model while solving for ξ self-consistently from this model

gives it to be very insignificant, which is a big red flag.

Figure 2.1: α for different accretion rates
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Figure 2.2: τes for different accretion rates

Figure 2.3: ξ for different accretion rates
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Figure 2.4: Ni for different accretion rates
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Chapter 3

VISCOSITY DUE TO DIFFUSION

OF CHARGED PARTICLES

THROUGH MAGNETIC FIELDS

We see that the model we study in the previous chapter doesn’t give a realistic picture of an

accretion disk. Recent studies have shown that a large-scale toroidal field is expected in the

disk along with the random turbulent magnetic components, or ’kinks’. The earlier picture

does not take into account the possibility of any such field. We are also not limited to a

fixed length scale fluctuations as opposed to ξ , giving the freedom to take into account all

magnetic irregularities below the maximum possible length, Lmax. With these considerations

in mind, we look at other sources to direct us towards a more comprehensive picture.

Transport of ions across turbulent magnetic fields has been studied extensively by people in

the context of cosmic rays. We follow one such recent work by Candia and Roulet, 2004 [9].

We will look at the kind of viscosity which arises out of ions diffusing across turbulent mag-

netic fields. Candia and Roulet perform Monte-Carlo simulations to get diffusion coefficients

in of such ions in the presence of a tangled magnetic fields and various levels of turbulence.

17



3.1 Transport coefficients

Consider a particle moving in a large-scale uniform regular magnetic field, Bo. It follows a

helical path with Larmor radius:

rL =
pc

ZeBo

(3.1)

Now assume a random magnetic field, Br, with the maximum scale of turbulence as Lmax.

So the net magnetic field is taken of the form,

BR = Boẑ +Br(r)

The particles will scatter off these ’kinks’ without changing their velocities (only direction).

In general the diffusion tensor is written as:

Dij = (D‖ −D⊥)bibj +D⊥δij +DAεijkbk (3.2)

here, ~b = ~Bo/B0 is a unit vector in the direction of large-scale magnetic field. A large

sample of configuration on random magnetic field is generated and then the trajectory of

the particle following net field is followed. This is averaged over a large number of different

field configurations and in different directions to provide a diffusion constant.

The different levels of turbulence are defined by σ2 ≡ <B2
r>

B2
o

. For details refer Candia and

Roulet, 2004 [9].

3.2 Hybrid Viscosity

Most simulations of the magnetorotational instability (MRI) in accretion disks reveal a large-

scale toroidal magnetic field embedded in the disk, together with turbulent irregularities. In

our case, we are looking at momentum transport in the radial direction; i.e., across the large-

scale toroidal field in the presence of turbulent magnetic field fluctuations. Motion of particles

in perpendicular direction to the large-scale magnetic field is what makes momentum flux

flow across the disk. So we use the perpendicular component of diffusion constant, D⊥

to characterize the mean free path of ions. This was initially suggested by Subramanian,

Becker, Kafatos 2005 [10].

18



We directly borrow the analytical fit given by Candia and Roulet, for D⊥.

D⊥ = vrmsLmaxDc (3.3)

Here,

Dc = N⊥(σ2)a⊥ρ
N‖
σ2

((
ρ

ρ‖
)2(1−γ) + (

ρ

ρ‖
)2)

1/2 (3.4)

where σ2, as defined, gives the level of turbulence in magnetic field, ρ denotes rigidity, and

other factors are determined by the type of turbulence used in the simulation. vrms is the

velocity of thermalized protons. Lmax, or the Larmor radius is taken to be radius, R of the

disk.

In it’s most general form, coefficient of dynamic viscosity can be defined as, η = Nmλ

(gcm−1s−1). Nm is the mass density of the particles in question and λ is the mean free

path.

On the other hand, diffusion constant, D, is defined as D = vλ (cm2s−1). Combining these

we get:

η = NmD

Or in case of hot protons, dynamic viscosity arising out of radial transport perpendicular to

magnetic field:

ηhyb = NimpD⊥ (3.5)

Substituting for D⊥ and mp and using equation of state, (equation 1.6) we get:

ηhyb = 2.511τesvrmsDc ×
R

H
(3.6)

Using this new definition of coefficient of viscosity, we would like to see how it affects the

same two-temperature disk model we discussed earlier with the previous ηhyb.

3.3 Two-Temperature Accretion Disk Model

To get the disk structure equations, we solve for αhyb, using equation 2.10, with ηhyb as in

the previous section.

αhybP = −ηhybR
dΩkep

dR
(3.7)
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Using Ωkep =

√
GM

R3
and equation 1.6 for pressure, P we get: (After substituting to make

it dimensionless)

αhyb = 1.4161f−12 τesD
2
c (0.22× Ṁ∗

ME

)−1M−2
8 R

1/2
∗ (3.8)

We can solve for other disk parameters like temperature, ion density, etc. using the following:

τes = 7.85× 10−4 f
−1/5
1 f

2/5
2 f

2/5
3 y

3/5R
−1/5
∗ D

2/5
c M

−2/5
8 (3.9)

Ti = 4.99× 1010(0.22× Ṁ∗
ME

)f2τes
−1α−1R∗

−3/2 (3.10)

Te = 1.40× 109yτes
−1(1 + τes)

−1 (3.11)

Ni = 4.70× 1010(0.22× Ṁ∗
ME

)
−1
2 M−1

8 f
1/2
1 f

−1/2
2 τes

3/2α
1/2R∗

−3/4 (3.12)

H

R
= 0.1014 τes (R∗NiM8)

−1 (3.13)

Notice that we have the optical depth, τes, and hence ionic density, Ni and H/R inde-

pendent of accretion rate. We have an almost self consistent disk model with only external

parameters being, turbulence level σ2, ρ and accretion rate, (0.22 × Ṁ∗
ME

). Rigidity, ρ is de-

fined as the ratio between Larmor radius and the maximum scale length ρ =
rL
Lmax

. Lmax

could be taken as either be H or R (minimum of both).

σ2 is varied from 0.01 to 1 which covers low to high levels of turbulence. Similarly, ρ is

also varied from 0.01 to 1 and the optimum value is taken. Here ’optimum’ value is mostly

defined by realistic ion temperature. Higher temperature correlates with lower values of σ2

and ρ.

3.4 Results

We solved the above equations for Kraichnan and Kolmogorov processes with the parameters

given below:
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Spectrum γ N‖ ρ‖ N⊥ a⊥

Kraichnan 3/2 2.0 0.22 0.019 1.37

Kolmogorov 5/3 1.7 0.20 0.025 1.36

The Ionic temperature keeps on increasing with accretion rate. We notice that for accre-

tion rates (0.22 × Ṁ∗
ME

) > 0.001, the temperature goes above 1013 K at which ions cannot be

in a thermal equilibrium, so we take it as an upper limit for our model, that is we take this

prescription to be valid only for underfed accretion disks. (Fig. 3.1)

Figure 3.1: Ti for Kolmogorov process for accretion rates of 0.0001, 0.0005, and 0.001.

There are following important observations about the disk from the numerical analysis:

• We have optical depth, τes ∼ 10−4 independent of the accretion rate, hence remains

constant, albeit optically thin. Fig 3.3

• The ion temperature is high. It increases with increasing the accretion rate giving an

upper cut off for accretion rate. Fig 3.4

• As we can see, H/R value is of the order ∼ 105, that is the disk is not a thin disk, rather

it’s puffed up. It also clears up that turbulent magnetic length scale, Lmax should be
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taken as R, not H. This is also independent of accretion rate, which is interesting. Fig

3.5

• We can see from the figures 3.6, 3.7, 3.8, 3.9, that the Kraichnan parameters result in

rather unrealistic disk structure. The temperature it leads to completely unreasonable.

In the following discussions we will only consider the Kolmogorov spectrum.

Following figures give some disk structure parameters for Kolmogorov and Kraichnan tur-

bulence for accretion rates, 0.0001, 0.0005 and 0.001, keeping below our upper cut-off, for a

black hole of mass 108M�.

Figure 3.2: α for Kolmogorov process for the given accretion rates of 0.0001, 0.0005, and
0.001.
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Figure 3.3: τes for Kolmogorov spectrum (Independent of accretion rate).

Figure 3.4: Kolmogorov Spectrum: Temperature/1013 for different accretion rates
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Figure 3.5: Kolmogorov Spectrum:
H

R
(Independent of accretion rate)

Figure 3.6: Kraichnan Spectrum: α for different accretion rates
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Figure 3.7: τes for Kraichnan spectrum (Independent of accretion rate).

Figure 3.8: Kraichnan Spectrum: Temperature/1013 for different accretion rates
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Figure 3.9: Kraichnan Spectrum:
H

R
(Independent of accretion rate).
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Chapter 4

Instability of Disk and Viscous

timescales

Accretion process has long been connected with phenomena like jet ejections, X-ray varia-

tions, etc. Disk instabilities, if any, can be used to explain some of these observed variations.

With this motivation, we would like to test the accretion disk model discussed in the previous

chapter for stability. There has been a lot of significant work done in discussing an accretion

disk’s stability, notably by Shakura and Sunyaev, 1976 [11], Piran, 1978 [12]. We follow the

general prescription given by Piran to check the stability.

4.1 Disk Instability

The most important factors in deciding if a disk is stable or not are it’s dissipation and

cooling rate, which are defined by the viscosity and cooling mechanism in play. The stability

condition is given as: [12]
d lnQ+

d lnH

∣∣∣∣
U

<
d lnQ−

d lnH

∣∣∣∣
U

(4.1)

where Q+, Q− are the dissipation rate and cooling rate respectively and U(= NimpH) is the

surface density of ions.

To generalize the derivation, the dynamic viscosity, (ν) and cooling rates are described
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phenomenologically in terms of their logarithmic derivatives with respect to H and U:

ν =
α

9

ω

Uo
nHo

m−2H
mUn (4.2)

and

Q− = δ
ω3

Uo
l−1Ho

k−2H
kU l (4.3)

where Uo and Ho are steady state values of H and U, and α and δ are dimensionless param-

eters. k,l,m,n are defined as [12]:

k ≡ d lnQ−

d lnH

∣∣∣∣
U

; l ≡ d lnQ−

d lnU

∣∣∣∣
H

; m ≡ d ln ν

d lnH

∣∣∣∣
U

; n ≡ d ln ν

d lnU

∣∣∣∣
H

(4.4)

To study the temporal behaviour of the disk, we look the energy balance equation and the

mass transfer equation:
∂

∂t
E =

P

ρ2
dρ

dt
+
Q+

U
− Q−

U
(4.5)

and
∂

∂t
U = − 1

R

∂

∂R
(UVrR) =

6

R

∂

∂R

1

ωR

∂

∂R
(νωUR2) (4.6)

We introduce axially symmetric perturbations of the wavelength, Λ. Assuming solutions

for U and H as U = Uo(1+u) and H = Ho(1+h), where u and h are small, linearize equation

4.5 and 4.6. In order to look for growing perturbations, we find the dispersion relation with

an exponential time dependence. [For details, see Piran [12]]. The solutions of the dispersion

relation are:

(4.7)Ω± =
3αω

2A
[[−[2B(

Ho

3Λ
)2 − (1 + 2βo)(m− k)]

± ([2B(
Ho

3Λ
)2 − (1 + 3βo)(m− k)]2 + 8A(1 + 3βo)[ml − (n+ 1)k](

Ho

3Λ
)2)

1/2]]

For the perturbations to grow and make the disk unstable, the Re(Ω) should be positive.

The stability depends on the signs of the terms in the equation. The necessary conditions

for stability comes out to be:

m < k (4.8)

ml < (n+ 1)k (4.9)
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In long wavelength limit, with condition 4.8 satisfied, Ω+ corresponds to the Lightman-

Eardley mode and Ω− to the thermal mode, and vice-versa for m > k. When m > k, the

disk becomes very hot and thermally unstable. Condition 4.9 determines the stability of

Lightman-Eardley mode. For detailed analysis, refer Piran, 1978 [12].

4.1.1 Stability of Diffusion based model

To check the stability of our model; we need to calculate m, n, k and l parameters. From

equation 3.6, we have

ηhyb = 2.511τesvrmsDc

so dynamic viscosity (ν) will be:

ν = ηhyb/mass density = ηhyb/Nimp = ηhybH/U (4.10)

vrms is given by

√
3kBTi
mp

, and we use equation 1.10 τes = NiσTH =
UσT
mp

. So we get,

ν = 2.511
H

U

UσT
mp

H

√
3kBTi
mp

(4.11)

From equation 2.7, we know that Ti ∝ τ−1es , we finally get:

ν ∝ H2U
−1/2

Giving us m = 2 and n = −1/2. For a two temperature disk, main process by which it loses

energy is Comptonization, which gives k = 1 and l = 7/2. Comparing with the stability

criterion, we have:

m > k

and

ml > (n+ 1)k

That is the disk in not stable in thermal mode but is stable in Lightman-Eardley mode [13],

(viscous perturbations). This signifies that the cooling process is not able to keep up with

heat dissipation and the disk temperature increases fast, or the disk is hot, which we have
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already seen from the temperature profile. In the Lightman-Eardley mode, the disk oscillates

with Q+ = Q−.

4.2 Viscous Timescales and Comparison with Obser-

vations

A lot of transient phenomena in astrophysics are thought to take place in viscous timescales,

that is timescales at which matter is supposed to move through the disc under the effect of

viscous torques. Accretion process powers the black holes, and active galactic nuclei (AGNs)

and many of these systems emit radiations and have relativistic jets. We try to compare the

timescales at which these happen to the viscous timescale obtained with our model to see if

it can hint towards possible disk-jet connections.

4.2.1 Viscous Timescale

The viscous timescale or the time which a small disk annulus takes to reach radius R is given

by [14]:

tvisc ∼
R2

ν
(4.12)

We had the dynamic viscosity as:

ν =
ηhyb
Nimp

= D⊥ = vrmsHDc (4.13)

⇒ ν = 0.2367× 1029 T
1/2
i τesN

−1
i Dc (4.14)

Substituting R∗ = R(GM/c2) in equation 4.12:

tvisc = 0.928× 10−2R2
∗M

2
8 T

−1/2
i (τesDc)

−1Ni (4.15)

We will use the above expression from here on to calculate viscous time while comparing with

observations. Following graph give viscous timescales (in seconds) for Kolmogorov process

(Fig 4.1).
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Figure 4.1: tvisc for Kolmogorov process for different accretion rates

4.2.2 Observations

Active Galactic Nuclei (AGNs) and Black hole X-ray binaries (BHXRBs) are powered by

accretion onto black hole and emit radiation and relativistic jets. We follow the work done

by Chatterjee, et al. [2], where they have presented the results of monitoring of active radio

galaxy 3C 120 between 2002 and 2007 in X-ray, optical and radio wave bands. The system

exhibits an interesting correlation and anti-correlation between X-ray dips and optical and

X-rays and radio emissions respectively. Most of the X-rays are produced in the immediate

vicinity of the accretion disk, in corona, via hot wind or at the base of the jet, and the corre-

lations between radio emissions, jets might suggest related origins for radio jets. Following

are the significant results from the observations [2]:

• X-rays lead the radio variation by 120 ± 30 days. X-ray dips are followed by the

appearance of superluminal knot and hence enhancement in 37 GHz flux.
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• We can say the decrease in X-ray production is linked with an increase in speed in jet

flow, causing a shock front to move downstream.

• X-ray variations lead optical by 0.5 ± 4 days.

• X-rays are produced close to the center of the disk by viscous heating, along with UV,

which is then Compton scattered by disk phtons that reach corona to form hard X-

ray spectrum in AGN. Part of these X-rays reheats the disk to produce more thermal

photons.

We take the time of X-ray dips and compare it to our viscous timescale. The mass of

galaxy is taken to be 107 M�. Fig. 4.2 gives the observed data for X-rays dips from 3C 120.

The time period of X-ray dips varies greatly with maximum period of tmax = 120 days to

minimum of just tmin = 5 days with an average of tavg = 45.3 days.

The accretion rate in this AGN is supposed to be near Eddington, i.e, Ṁ
ME
∼ 1, but since we

are restricted a maximum accretion rate of Ṁ
ME
∼ 0.001, we optimize other parameters, σ2

and ρ to get near observed timescale. The viscous time is though not very sensitive to either

σ2 or ρ. It increases slightly with increase in these parameters, so we take the maximum

allowed values when comparing with observed time.

The figures, 4.3, 4.4, 4.5 give the expected value vs observed time to compare.

4.2.3 Mφ Mach number

We also calculate azimuthal Mach number which the medium is likely to have with the above

parameters. Azimuthal mach number is defined as[14]:

Mφ =
vφ
cs

(4.16)

Where vphi =
√

GM
R

is keplerian angular velocity and cs =
√

P
ρ

is the speed of sound in the

medium. We get mach number, Mφ to be:

Mφ = 3.300× 106 (TiR∗)
−1/2 (4.17)

Fig. 4.6 give mach number for Kolmogorov process.

The flow is mostly subsonic and seems to reach supersonic only for very low accretion rates.
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[2]

Figure 4.2: X-ray dip observations for 3C 120
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Figure 4.3: tvisc
tmax

for Ṁ
ME

= 0.0001 and 0.0005

Figure 4.4: tvisc
tmin

for Ṁ
ME

= 0.0001 and 0.0005
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Figure 4.5: tvisc
tavg

for Ṁ
ME

= 0.0001 and 0.0005

Figure 4.6: Mφ for different accretion rates for Kolmogorov process
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Chapter 5

Results and Discussion

5.1 Summary

Accretion process is speculated to be related to many transient astrophysical phenomena.

We started out with the aim to understand the viscosity mechanism responsible for transport

of angular momentum in accretion disks around black holes, to be able to explain some of

the observations of X-ray variations from AGNs. We studied two mechanisms, first with ion

inertial length as magnetic coherence length. We then looked at the viscosity defined by

the radial diffusion of ions across large-scale toroidal magnetic field. We currently have the

following results at hand:

• We have an accretion disk model with viscosity defined via transport coefficient of ions

in the presence of a large-scale magnetic field with turbulence.

ηhyb = 2.511τes vrmsDc

• The ion temperature is very high (1012 K). This also provides us with an upper limit

on possible accretion rate:
Ṁ

ME

≤ 0.001

• The disk comes out to be puffed up with
H

R
∼ 103. It is optically thin with high ion
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density in the inner regions which decreases as we move outwards.

• The viscous timescale is of the order ∼ 102 s or a few hours. It is small in the inner

region and increases as we move out into the disk.

One of the major problems this model has is the ion temperature going too high which

puts a strict limit on accretion rate. We look at some physical aspects and processes going

on in the disk.

5.2 Further work

5.2.1 Two temperature condition and Advection dominated flow

Two temperature disks have been studied by many people after being introduced by Shapiro,

Lightman and Eardley [3]. The idea is that the ions and electrons are coupled only by

Coulomb collisions, we have assumed that there is no other kind of interactions in the gas.

The electrons get enough time to come to an equilibrium temperature and the ions also come

to an equilibrium, but both the species do not get enough to reach and equilibrium before

they are swept inside the black hole. Also, because of more mass and less susceptibility

to radiative losses, ions get heated up more by the viscous dissipation. Ions are generally

at a temperature of 1012 K and electrons around 109 K. The thermal balance equation we

considered for our model is [15]:

3

8π

GMṀ

R3H
f3 = 3.75× 1021mi lnΛN2

i

(Ti − Te)
T

3/2
e

(5.1)

Here, lnΛ is the Coulomb logarithm. The left-hand side is just viscous heat dissipation and

the right-hand side is the thermal balance between ions and electrons, in this case, Ti ≥ Te.

If we assume other kind of thermal interactions between ions and electrons, the equation will

have more terms and will give rise to a different disk structure.

The temperature of electrons is limited by Compton scattering while the ions are heated pref-

erentially by the viscous dissipation. The ions are only assumed to cool down via Coulomb

collisions, but there might be other processes taking place.

Advection-dominated flow can take place in systems with optically thin disks and sub-
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Eddington accretion rates. That is, the accreting gas is not able to cool down efficiently

within accretion time. The dissipated viscous energy is stored in the gas as thermal energy

which is not able to radiate away and gets advected into the central object [16].

Q+ −Q− = f ν ρR2 (
dΩ

R
)2 (5.2)

f is the ratio of advected energy to heat generated, it measures the degree to which the flow

is advection dominated.

Upper limit on accretion rate is relatively relaxed as opposed to one imposed by the two

temperature condition. The form of ion thermal energy balance equation 5.1, would change

to accommodate an advective term.

5.2.2 Assumptions

There are two important assumptions in play here:

1. Thermal coupling of ions and electrons.

We have assumed that there is no other interaction between ions and electrons other

than Coulomb interaction, leading to difference in temperatures. In magnetized plasma,

it may be that ions and electron interact via other mechanisms and reach equilibrium.

2. Heating of ions.

Ions being more inertial and less prone to radiative losses have assumed to be the

recipient of the dissipated viscous energy. But this might not necessarily be the case

as there might be other processes undergoing which might heat up the electrons.

5.2.3 Disk-Jet Connection

The inflow and outflow of matter in an accreting system is intricately related to kind of

questions we are trying to answer.

1. Though the exact physical origin of jets from Black hole X-ray binaries (BHXRBs) and

AGNs is not known, they can be assumed to be expelled magnetically from the central
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engine. This hints towards a significant connection between inner regions of accretion

disks and the jet ejection.

2. An important reason we look at the X-ray dips observed to compare our viscous

timescales is the speculated mechanism behind this process. X-ray emission is observed

in the corona, where it is supposed to originate from upscattering of soft accretion disk

photons via Compton scattering, which means the X-ray flux is proportional to the

number of electron in the disk. The decrease in electron number results in what we

see as a dip in the X-ray spectrum. This decrease may be caused by accreting matter

accumulating in the corona over several viscous timescales and eventually collapsing

into the central black hole.

3. Chatterjee, et al.[2] show that the optical variations from 3C 120 are strongly correlated

with the X-ray variations. This suggests both emissions to originate from the same

region. Optical emission can be blackbody radiation from the accretion disk.

4. Further evidence comes from the observation of X-ray and optical spectrum during the

dip between October 2006 and April 2007. The optical flux starts to decrease around

40 days before the X-ray dip. An obvious conclusion is a perturbation traveling from

the outer edge of accretion disk towards inner or the accretion disk collapsing onto the

black hole?(Fig. 5.1 [?]

We have established that X-rays dips in the spectrum of 3C 120 can arise due to the

collapse of the accretion disk corona over several viscous timescales. However, we are yet

to arrive at an understanding of the connection between the X-ray dips and the ejection of

blobs in the episodic jets as shown by the correlations in Chatterjee, et. al.

We will be studying observations from more system, preferably with sub-Eddington accretion

rates and compare the viscous timescales. We need to answer questions like, Is the coronal

plasma which collapses into the central black hole redirected into the jet? If so, is it possible

to come up with an integrated model that can explain the timescale over which these jet are

ejected as well as this emptying out of the coronal plasma?
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[2]

Figure 5.1: Observation of X-ray, Radio and Optical flux from 3C 120.
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