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Abstract

This thesis delves into the realm of Hidden Valley models, which introduce the intriguing

concept of a new gauge group alongside the Standard Model gauge group, connected by a

heavy mediator particle. Seeking to discern their signatures at the Large Hadron Collider

(LHC), a binary classification MLP (Multi-Layer Perceptron) neural network serves as a

key tool for signal discrimination. The introduction of the SIFT algorithm enhances the

extraction of dark meson mass scales and discriminating the Hidden Valley jets against

ordinary quark or gluon jets. We also introduce other benchmarks to explore sensitivity

to heavy and light quark decays of Hidden Valley mesons. The use CNNs, with jet-images

as inputs, offers an alternative avenue to study the properties of Hidden Valley jets. This

comprehensive analysis unveils the potential to decipher elusive signals of the Hidden Valley.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) is a proton-proton collider situated at CERN, operating

at a center-of-mass energy of 13.6 TeV during its run 3. Within the data generated at the

LHC, we seek clues that may uncover the secrets of physics beyond the Standard Model

(BSM). A particularly intriguing avenue of exploration is the Hidden Valley model. This

model predicts existence of a new gauge group in addition to SM gauge group, and connects

the two sectors using a heavy mediator particle.

This thesis embarks on a quest to identify the distinctive signatures of the Hidden Valley

model within simulated LHC data. To provide essential background information, this chapter

lays the foundation with discussions of prerequisite concepts. In Chapter 2, we delve into the

intricacies of the machine learning tools along with high-energy event generator PYTHIA

8. Chapter 3 explores our application of Neural Networks to distinguish Hidden Valley

phenomena, accompanied by a presentation of the corresponding results. Chapter 4 serves

as a summary of the outcomes observed in Chapter 3.

Looking ahead, Chapter 5 outlines the limitations encountered during this study and

offers a glimpse into our future research plans.
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1.1 Standard Model

The quest to understand the fundamental building blocks of the universe and the forces that

govern their interactions has been one of the most profound scientific endeavors in human

history. At the heart of this quest lies the Standard Model of particle physics, a remarkably

successful theoretical framework that provides a comprehensive description of the elementary

particles and fundamental forces that shape the universe.

The Standard Model describes the universe’s building blocks as follows:

1. Quarks: Quarks are the constituents of protons, neutrons, and other strongly interact-

ing particles. There are six flavors of quarks: up (u), down (d), charm (c), strange (s),

top (t), and bottom (b).

2. Leptons: Leptons are another family of elementary particles, including electrons (e),

muons (µ), taus (τ), and their associated neutrinos (νe, νµ, ντ ).

3. Gauge Bosons: These are the force carriers that mediate the fundamental forces in the

universe:

� Photon (γ) mediates the electromagnetic force.

� W and Z bosons (W±, Z0) mediate the weak nuclear force responsible for pro-

cesses like beta decay.

� Gluons (g) mediate the strong nuclear force that binds quarks together inside

protons, neutrons, and other hadrons.

4. Higgs Boson: The Higgs boson (H) is a unique particle associated with the Higgs field.

It is responsible for endowing other particles with mass through the Higgs mechanism.

Standard Model follows a SU(3)C × SU(2)L × U(1)Y group. In this the SU(3)C group

corresponds to QCD, and the ‘C’ in the subscript stands for ‘color’ charge. SU(2)L group

corresponds to electroweak interaction and the U(1)Y corresponds to electromagnetic inter-

action.
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Figure 1.1: Particle content of Standard Model of Particle Physics

1.1.1 Quantum Chromodynamics (QCD)

QCD is the theory of the strong interaction between quarks mediated by gluons. QCD

lagrangian is given by,

LQCD = −1

4
Ga

µνG
a,µν +

∑
f

q̄f (iγ
µDµ −mf )qf (1.1)

Where,

Dµ = ∂µ − igs
λa

2
Aa

µ,

and Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν ,
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� ∂µ and ∂ν are partial derivatives with respect to spacetime coordinates.

� gs is the strong coupling constant, which characterizes the strength of the strong force.

� λa are the Gell-Mann matrices, which are generators of the SU(3) color group for QCD.

They are indexed by a and represent the color charge of quarks and gluons.

� Aa
µ is the gluon field, representing the eight different gluon fields (indexed by a), which

are the carriers of the strong force.

In the Lagrangian, the first term describes the kinetic energy of the gluons, which are

the gauge bosons of the strong force. a is an index representing the eight different gluon

color charges. Ga
µν is the gluon field strength tensor. And the second term represents the

kinetic and mass terms for quarks. f runs over the different flavors of quarks (up, down,

strange, charm, bottom, and top). q̄f and qf are the quark fields and their antiparticles,

respectively. iγµDµ is the Dirac operator coupled to the gluon field, which describes the

interaction between quarks and gluons. mf is the mass of the quark.

Peculiar properties of QCD:

Color confinement is the property which states that quarks and gluons are never found

in isolation, and are forever bound within color-neutral particles known as hadrons. And

Asymptotic freedom refers to a steady reduction in the strength of interactions between

quarks and gluons as the energy scale of those interactions increases.

The Standard Model of particle physics has proven to be a remarkably successful theory,

describing the fundamental particles and their interactions with astonishing precision. How-

ever, it leaves some crucial questions unanswered, including the existence of ‘Dark Matter’.

Hidden Valley is a model that offers a potential solution to this mystery.

1.2 Hidden Valley

There are two broad candidates of physics Beyond Standard Model (BSM). One in which

you have heavy particles with the coupling of the order of standard model, and the other

one, in which there are light particles which do not have any SM charge. These particles
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couple to SM through heavy mediator particles carrying both the SM charge and the charge

of the new gauge group. Hidden Valley models [1–10] lie in the second category.

In the hidden valley scenarios, SM gauge group is extended by a gauge group G. This

new gauge group can be a broken U(1) (also denoted as ��U(1)) or an unbroken SU(N). The

gauge boson corresponding to ��U(1) case is a light γv and the one corresponding to SU(N)

case is massless gv. For this study, the new gauge group is SU(3).

The particle content consists of two kind of particles, qv and Fv. Fv particles are charged

under both SM gauge group and the new gauge group G, and qv particles are charged only

under the new gauge group. For this study qv is spin 1/2 and Fv is spin 0. 12 Fv particles are

introduced which mirror the SM fermions. And two pure dark quarks qv’s are introduced,

named qv1 and qv2

Dark sector production is through a Zv resonance. Zv boson is charged under both SM

and HV gauge group.

The interaction term between the mediator Zv and the SM quarks is given by,

L = gSM q̄γµqZv
µ, (1.2)

whereas for the Zv and the HV quarks is given by,

L = gHV q̄vγµqvZv
µ, (1.3)

Pair production of dark quarks is through the following process,

�Zv

q

q̄

q̄v

qv

We also need a mechanism for dark sector decaying back to SM. This is achieved through

a fraction of dark mesons decaying to SM quarks q q̄. For this, the diagonal dark meson

are considered to decay back to SM, whereas off-diagonal dark mesons are considered to

be stable. This gives rise to jets with both visible and invisible content. These are called
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semi-visible jets[11]. This results in significant missing energy along one of the jets.

Mesons of interest here are πv’s and ρv’s dark sector partners to π and ρ mesons. By

helicity conservation an extra m2
q factor comes in the πv to q q̄ coupling compared to ρv to

q q̄. Hence the branching ratios for πv is proportional to squared mass of the decay quarks,

whereas ρv decays are democratic.

For simplicity all the HV quarks are chosen to have same mass, and all the mesons are

also chosen to have same mass.

1.3 LHC Experiments and Detector Schematic

In collider physics, the accurate detection and measurement of particles produced during

high-energy collisions are crucial for understanding the fundamental processes that govern

the universe. The LHC, located at CERN (European Organization for Nuclear Research), is

the world’s largest and most powerful particle accelerator. It consists of 9 detectors, which

includes CMS, ATLAS, LHCb, ALICE and 5 other specialised and small scale detectors.

I will briefly explain LHCb and ALICE before moving on to CMS and ATLAS, which are

more relevant for our analysis.

LHCb’s primary goal is to unravel the mysteries of CP violation, a phenomenon that

explains why there is more matter than antimatter in the universe. By studying the decays

of particles containing bottom and charm quarks, LHCb seeks to understand the fundamental

differences in the behavior of matter and antimatter.

The primary objective of the ALICE experiment is to study and recreate the conditions

that prevailed in the universe microseconds after the Big Bang. During this early phase, the

universe existed in a state of extreme temperature and energy density, wherein protons and

neutrons had not yet formed, and quarks and gluons—the fundamental building blocks of

matter—roamed freely. ALICE aims to recreate this state of matter, known as quark-gluon

plasma (QGP), by colliding heavy ions, such as lead nuclei, at ultra-relativistic speeds. These

collisions generate temperatures and energy densities that are orders of magnitude higher

than those typically encountered in everyday matter. By studying QGP, ALICE seeks to

answer fundamental questions about the universe’s evolution, the behavior of matter under
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Figure 1.2: CMS Detector
(Source: cms.cern)

extreme conditions, and the strong force that governs quarks and gluons.

The CMS and ATLAS are general purpose detectors. We will be trying to understand

the detector schematic of these detectors in this section.

The key components of the detector schematic include:

Inner Tracking System:

The innermost layer of the detector is the Inner Tracking System. It is responsible for

precisely measuring the trajectories of charged particles as they emerge from collisions. This

information is vital for determining particle momenta and identifying their types.

Calorimeters:

13



Calorimeters are used to measure the energy of particles. The detector includes two types

of calorimeters:

� Electromagnetic Calorimeter (ECAL): Primarily designed to measure the energy

of electrons and photons.

� Hadron Calorimeter (HCAL): Designed to measure the energy of hadrons, includ-

ing protons, neutrons, and other strongly interacting particles.

Magnet Systems:

Magnet systems, including superconducting magnets, are used to bend the paths of

charged particles, allowing for their momenta to be determined based on the curvature of

their trajectories.

Muon Detectors:

Muons are relatively penetrating particles that can traverse through several layers of

detectors. Specialized muon detectors are strategically placed at the outermost layer of the

detector to identify muons and measure their momentum accurately.

Trigger System:

Given the immense rate at which collisions occur in the LHC, it is impossible to record

and analyze every event in real-time. The trigger system is responsible for selecting the most

interesting events for further analysis based on predefined criteria.

A detailed understanding of the detector components is essential for the analysis of

Hidden Valley jet signatures and the development of discrimination methods. In the following

sections, we will explore the jet algorithms used for reconstructing particle jets and various

observables employed for characterizing these jets in the detector environment.

1.3.1 Jet algorithms

In the high-energy environments created at particle accelerators like the LHC, high-velocity

protons or other heavy ions collide with each other, generating a cascade of subatomic
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interactions. These collisions produce a myriad of particles, often including quarks and

gluons, which are the fundamental constituents of matter and carriers of the strong nuclear

force. Due to the nature of the strong force, quarks and gluons cannot exist as isolated

particles but instead undergo a process known as hadronization. This results in the creation

of sprays of particles moving in roughly the same direction, which are called jets.

Understanding the behavior of these jets is essential for making precise measurements

and testing theoretical predictions in particle physics. This is where jet algorithms come

into play.

Jet algorithms are a set of computational techniques and procedures designed to identify

and characterize the individual jets originating from high-energy collisions. Jet algorithms

have evolved and diversified over the years to meet the increasingly demanding requirements

of modern particle physics experiments [12].

Infrared and Collinear (IRC) Safety

Infrared and collinear safety are required properties of self-consistent jet clustering algo-

rithms. These properties ensure the robustness and reliability of the algorithms in identifying

and characterizing jets.

Infrared Safety: Infrared safety refers to the insensitivity of the algorithm to soft

(low-energy) particles or radiation. In high-energy collisions, many low-energy particles are

produced as a result of the underlying QCD processes.

An infrared-safe jet algorithm is one that does not produce significantly different jet

structures when soft particles are added to the event or when they are removed. In other

words, the algorithm shouldn’t be significantly affected by the presence or absence of low-

energy radiation.

Collinear Safety: Collinear safety, on the other hand, relates to the behavior of the jet

algorithm when particles are closely aligned in direction, forming collinear configurations. In

particle collisions, quarks and gluons can radiate additional particles that are almost parallel

in direction to the parent particle.

A collinear-safe jet algorithm should produce stable and consistent jet reconstructions
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regardless of whether closely aligned particles are treated as a single constituent or separate

constituents

IRC safety ensures that running the jet algorithm on event generators and detector

outputs gives analogous results.

1.3.2 Rapidity and Psuedorapidity

Rapidity(w): It is commonly used as a measure of relativistic velocity. It is defined as,

w = arctanh(v/c) (1.4)

Thus,

coshw = cosh
(
arctanh

v

c

)
=

1√
1− v2

c2

= γ

sinhw = sinh
(
arctanh

v

c

)
=

v
c√

1− v2

c2

= βγ,

As we know,

E = mc2 coshw

|p| = mc sinhw.

We get,

w = arctanh
|p|c
E

=
1

2
ln

E + |p|c
E − |p|c

.

But in collider physics we define rapidity in a slightly different way. We use rapidity w.r.t

beam axis (y), i.e |p| is replaced by pz.

y =
1

2
ln

E + pzc

E − pzc
.

Psuedorapidity η: It is defined as,

η ≡ − ln

[
tan

(
θ

2

)]
,

Where, θ is the angle between 3 momenta of the particle and beam axis.
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η =
1

2
ln

(
|p|+ pz
|p| − pz

)

In the limit, m ≪ |p| ⇒ E ≈ |p| ⇒ η ≈ y. Therefore, both these terms are used

equivalently in collider physics.

1.3.3 Anti-kT

The anti-kT algorithm [13] is a widely used jet clustering algorithm in particle physics. The

anti-kT jet algorithms work as follows:

1. For each protojet (i) and each pair of protojets (i, j) a distance measure is defined as

dij = min

(
1

p2T,i
,

1

p2T,j

)
∆R2

ij

R2
(1.5)

di =
1

p2T,i
,

R is called radius of the jet as it roughly decides the size of the jet. And ∆Ri,j =√
(ηj − ηi)2 + (ϕj − ϕi)2, where, ηi is the pseudorapidity and ϕi is the azimuthal angle

of the particle i. To initialize the algorithm, input particles are taken as protojets.

2. Find smallest of all dij and di and call it dmin

3. If dmin is for pair i, j then combine the two protojets i, j to form a new protojet k. If

dmin is di for protojet i, then remove i from list of protojets and add it to list of jets.

4. Repeat until the list of protojets is empty.

To understand the functionality of anti-kT algorithm, consider an event with few well-

separated hard particles and large number of soft particles. The dij between a hard particle

and a soft particle depends exclusively on transverse momenta of the hard particle and ∆Rij

between the two particles. Importantly, this distance measure does not take into account

the transverse momentum of the soft particle. It is also worth noting that dij is significantly

larger for pairs of soft particles. Therefore, before any soft-soft clustering takes place, all the
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hard-soft clustering should have take place. So, for a hard particle, if there were no hard

particle within 2R neighbourhood, it would produce a perfectly conical jet. If another hard

particle exists in within distance R to 2R, such that pT2 ≪ pT1, then the harder particle will

produce a conical jet and the softer one will produce a partly conical jet. From these we

can see that, in general anti-kT algorithm will usually produce jets that are closer to conical

shape.

Note that, in some cases I have also used C-A1 jet algorithm, specially while reclustering

jet constituents to obtain subjets.

I have used SlowJet within PYTHIA 8 to implement anti-kT (and C-A) algorithms.

Throughout this project, R = 0.7 has been used for clustering jets using anti-kT algorithms,

while R = 0.3 has been used for subjets reclustered using C-A algorithm. ‘p = -1’ gives

anti-kT and ‘p = 0’ gives C-A. There are a few more parameters that can be set while using

SlowJet. ‘pTjetMin’ puts a cut on minimum pT required for an entity to be called a jet. So

the list of jets will contain only those jets satisfying this condition. ‘etaMax’ puts an upper

cut on the η of the input particles to be considered as inputs, i.e the input particles with

|η| > etaMax are ignored. This condition is required keeping in mind the limitations on the

range of the detectors.

SIFT

SIFT (Scale-Invariant Filtered Tree) [14] is a jet clustering algorithm that was introduced to

maintain the resolution of substructure for collimated decay products at large boosts. One

of the main drawbacks of anti-kT (and most other algorithms) is that it requires radius of a

jet (R) as parameter, which defines the scale for the algorithm. Whereas in case of SIFT, as

the name suggests, the scale is not defined using any external parameter.

The main factor responsible for the dependence of traditional jet clustering methods on

the conjugate momentum scale is the specification of an angular size parameter R. In order

to develop a scale-independent algorithm, it is necessary to eliminate this factor from the

clustering measure. However, we also want it to mimic successful approaches like anti-kT

in the asymptotic limit. Therefore, desirable behaviors include giving preference to pairs

1C-A algorithm works in the same way as anti-kT , with the only difference being, distance measure is

defined as dij =
∆R2

ij

R2 and di = 1
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of particles that are close in angular proximity and favoring pairs where one particle has a

large transverse boost. To fulfill the former objective, the concept of mass-square difference

is introduced, which is defined as follows:

∆m2
AB ≡ (pAµ + pBµ )

2 −m2
A −m2

B = 2pAµp
B
µ

≃ 2EAEB (1− cos∆θAB) ≃ EAEB∆θ2AB (1.6)

The latter objective is achieved through suppression of denominator by the summed trans-

verse energy-square: ∑
(ET )

2 ≡ (EA
T )

2 + (EB
T )

2 (1.7)

(ET )
2 ≡ p2T +m2 = E2 − p2z

Putting it together, the measure is given by

δSIFT
AB =

∆m2
AB

(EA
T )

2 + (EB
T )

2
(1.8)

After that the procedure is somewhat similar to anti-kT , i.e to find the pair with smallest

value of measure and to sequentially combine it.

But there are a few issues that needs to be taken care of,

� Extraneous wide and soft radiation is assimilated very early, which in turn distorts the

kinematic reconstruction

� Without any halting condition, it will end up clustering all the particles

For the first point, we can take a hint from ‘SoftDrop’ to solve the issue, which, as it

turns out, also takes care of the second point.

SoftDrop iteratively declusters C-A jets, dropping the softer objects till the following

condition is met,
min(pT,i, pT,j)

pT,i + pT,j
> zcut

(
∆Rij

R

)β

, (1.9)

where R is the jet radius.

Before going further, let us first factorize the SIFT measure by defining 2 other quantities,

19



∆R̃2
AB and ϵAB, such that δAB = ϵAB ×∆R̃2

AB,

∆R̃2
AB ≡ ∆m2

AB

EA
T E

B
T

(1.10)

This factor plays the role of angular factor, i.e it promotes the merger at small angular

separation.

ϵAB ≡ EA
T E

B
T

(EA
T )

2 + (EB
T )

2
=

{(
EA

T

EB
T

)
+

(
EB

T

EA
T

)}−1

. (1.11)

Notice that this has a maxima when EA
T = EB

T , ϵ
AB = 1/2. And decreases as scale disparity

increases. Therefore, this factor will try to defer the clustering of mutually hard pair.

Clustering condition for SIFT is given as follows:

∆R̃2
AB

2
<
{ (

2 ϵAB
)
≤ 1
}

(1.12)

This condition can fail in 2 ways,

1. The transverse scales may be too hierarchically separated, i.e (ϵAB ≪ 1) and (∆R̃2
AB ∼

1) such that (δAB ≪ 1). In this case we would want put aside the softer candidate

(Drop).

2. Angular opening may be too wide, i.e (∆R̃2
AB ≫ 1) and (ϵAB ∼ 1). In this case

appropriate thing to would be to consider both the candidates as jets (Isolate).

Thus, we get the following conditions:

Drop:
{ (

2 ϵAB
)2 ≤ 1

}
≤ δAB <

{
1
}

Isolate:
{
1
}
≤ δAB (1.13)

Figure 1.3 gives visual intuition to the above criteria. The blue region stands for 1 ≤ δAB,

where isolation is to be performed. Dropping is to be performed in the red region, and the

clustering criteria is satisfied by the green region.
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Figure 1.3: Phase diagram displaying the conditions for object merging, filtering, and isola-
tion responses.

Comparison

I have compared the pT and Radius of the jets formed by using anti-kT and SIFT algorithms.

For this comparison QCD samples were used and pTjetMin is set to 50 GeV for both the

case. ‘R’ for anti-kT is set to 0.7.

Radius of the jet is defined here as, the maximum value of ∆R between a jet and its

constituents. The comparison plots can be seen in Figures 1.4, 1.5 and 1.6. From this it can

be seen that the SIFT jets are much thinner than the anti-kT jets. It can also be seen that

the SIFT algorithm is much more efficiency in extracting dark meson mass.

Figure 1.4: Comparing pT of the jets clustered with anti-kT algorithm and SIFT algorithm,
for the two hardest jets
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Figure 1.5: Comparing radius of the jets clustered with anti-kT algorithm and SIFT algo-
rithm, for the two hardest jets

Figure 1.6: Comparing invariant mass of the jets clustered with anti-kT algorithm and SIFT
algorithm, for the two hardest jets

1.3.4 Other observables

Missing Transverse Energy (MET)

MET is a concept in collider physics, which represents the imbalance in visible transverse

momentum in an event. In searches for new particles or interactions beyond the Standard

Model, MET is a crucial discriminant. The presence of undetected, massive particles, such

as dark matter candidates, can manifest as significant MET signatures.

The MET is calculated as the negative vector sum of the transverse momenta (pT ) of all
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visible particles in the event:

MET = −
∑
i

p⃗
(i)
T (1.14)

Where, p⃗
(i)
T is the transverse momentum vector of the i-th visible particle.

Invariant mass

Invariant mass is a fundamental concept in particle physics used to investigate the properties

and dynamics of particle systems. It remains unchanged under Lorentz transformations.

For a particle, this is also called rest mass, as it gives the mass of the particle at rest. The

invariant mass (m) is given by:

m2 = pµpµ (1.15)

Where, for a system of particles (like jets),

pµ =
∑

i∈{particles}

pµi ,

pµi being pµ (4-momentum) of the particle i. In the context of jets, the term mass is used

interchangeably with invariant mass.

Energy-Correlation Functions

Energy-Correlation Functions (ECFs) are used to characterize the internal structure and

substructure of jets. It provides valuable insights into the distribution of energy within a

jet.

Jets exhibit distinct substructures depending on the nature of the initiating parton or

their parent particle. For example, quark jets, originating from quarks, tend to have a more

localized energy distribution. While, gluon jets, originating from gluons, typically exhibit a

broader energy distribution.

The Energy Correlation Function aims to quantify these differences by examining the

energy distribution within a jet, specifically focusing on the arrangement of subjets and

their energy-sharing patterns. It is a powerful discriminator in identifying the underlying
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parton of a jet and distinguishing signal jets from background.

The Energy Correlation Function for a jet is defined as follows:

eβ2 =
∑

i<j∈jet

zizj ×∆Rβ
i,j, (1.16)

eβ3 =
∑

i<j<k∈jet

zizjzk ×∆Rβ
i,j∆Rβ

j,k∆Rβ
i,k, (1.17)

.

.

.

eβN =
∑

i1<...<iN∈jet

(
N∏
j=1

zij

)(
N∏

k<l=1

∆Rβ
ik,il

)
, (1.18)

Where,

� zi =
pT,i

pjetT

� n is the number of subjets to consider.

� pT,i represents the transverse momentum of the i-th subjet.

� pjetT is the transverse momentum of the entire jet.

� β is an exponent that controls the sensitivity to subjet energy sharing.

� ∆Ri,j is the angular separation between the i-th and j-th subjets.

The ECFs can be used to characterize the substructure of Hidden Valley jets. Deviations

from typical quark and gluon jet ECF distributions may indicate the presence of hidden

particles. We have used β = 1 throughout this thesis, as this is the most commonly used

value in literature.

Lund Jet Plane (LJP)

Since we use a sequential recombination algorithm to cluster jets, it is in principle possible to

reverse the clustering history to obtain values of momenta at each radiation splitting. This
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is captured in the ‘Lund Jet Plane’. Since the clustering history of the anti-kT algorithm is

not the reverse of QCD showering, the jet has been reclustered using C-A algorithm with

same radius.

To plot the LJP [15], we cluster first with anti-kT (R = 0.8), recluster the constituents

with C-A and uncluster the last step. We refer to the softer protojet as emission and the

harder protojet as core. Then, kT is defined as transverse momentum of emission w.r.t the

core. At each step, note down the kT and the angular distance (∆R =
√

∆ϕ2 +∆η2) between

emission and core. Next, consider the harder protojet and continue with unclustering its

last step, continuing to note down kT and ∆R. Follow the same procedure till no protojets

remain. I then plot the ln(kT/GeV ) vs ln(R/∆R), each point on the plot corresponding to

one unclustering step.

The goal of this exercise is to determine if the components of HV jets (which come from

the decays of HV mesons) have a different clustering history compared to QCD jets (where

the clustering history mimics QCD emissions). The LJP’s for HV2 and QCD cases can be

seen in figure 1.7. We can see that there is some difference in large-R emissions in HV2 case

compared to QCD case.
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Figure 1.7: Comparing LJPs for HV2 (on the left) and QCD (on the right)
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Chapter 2

Computational Setup

2.1 PYTHIA 8

PYTHIA 8 [16] is a tool that is widely used for the generation of events in high-energy

collisions between particles, where the QCD effects are highly important. In particle physics,

an ‘event’ refers to the outcome of a collision between two incoming particles or the isolated

decay of a particle. At its core, an event comprises a collection of outgoing particles that

could be observed in an idealized detector snapshot.

I have used PYTHIA 8.3 to generate QCD and HV events.

2.1.1 Event Generation

QCD

For Generating QCD events, following settings are used:

� ‘Beams:idA’ and ‘Beams:idB’ are used to determine the particles to collide. Both are

set to 2212, which is the PDG ID 1 for protons. This is to say that both the colliding

particles are protons, as is the case for LHC.

1PDG ID is a unique code given to each type of particle by Particle Data Group
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� ‘Beams:eCM=13600’ sets the energy scale of the collision. It is set to 13600 GeV, the

energy at LHC for run 3.

� ‘HardQCD:all=on’ turns on all QCD 2 → 2 quark/gluon production processes.

� ‘pTHatMin=15’ sets lower cut on transverse momentum of the interacting partons. It is

set to 15 GeV. As these processes diverge at pT → 0, it is necessary to put some lower

cut.

� ‘PhaseSpace:bias2Selection=on’ It switches on biased phase space sampling for 2 →
2.

� ‘PhaseSpace:bias2SelectionPow’ and ‘PhaseSpace:bias2SelectionRef’ are bias pa-

rameters and are set to 4.5 and 100 respectively. To get suitable pT distribution for

the QCD sample2.

As, pT scale is model dependent, we don’t want the Machine Learning techniques to

discriminate based on pT distributions of the model. Therefor to remove dependence of pT

from the analysis, bin-wise matching of pT distributions was done. For this, the histograms

were plotted for QCD and HV with bin size 25 GeV. And ratio of the value of the bins for HV

and the value of the bins for QCD was stored as weights. QCD events within each bin were

then accepted with probability equal to the weight of that bin. After doing this exercise, the

pT distributions were closely aligned, and hence dependence on the pT distributions from the

analysis was removed. The resulting sample will be called bin-wise matched QCD, and it will

be understood that it is matched with corresponding HV counterpart under consideration.

HV

For generating HV, I have used different benchmarks, common settings include,

� ‘HiddenValley:ffbar2Zv=on’ turns on pair production of HV quarks via Zv.

� ‘HiddenValley:FSR = on’ , turns on final state radiation in hidden sector.

2This will not affect the analysis as bin-wise normalization is applied anyway. This just allows to achieve
bin-wise normalization with generating fewer number of events
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Decay to

u ū d d̄ s s̄ c c̄ b b̄

M
es
on

s

rhov11 0.2 0.2 0.2 0.2 0.2
rhov22 0.2 0.2 0.2 0.2 0.2
rhov21 0 0 0 0 0
piv11 0 0 0 0.089 0.911
piv22 0 0 0 0.089 0.911
piv21 0 0 0 0 0

Decay to

u ū d d̄ s s̄ c c̄ b b̄
0.333 0.333 0.333 0 0
0.333 0.333 0.333 0 0
0 0 0 0 0

0.333 0.333 0.333 0 0
0.333 0.333 0.333 0 0
0 0 0 0 0

Table 2.1: Decay modes for HV3 benchmarks with dark pions decaying to heavy SM quarks
(left), and to light SM quarks (right)

Decay to

νe ν̄e u ū d d̄ s s̄ c c̄ b b̄

M
es
on

s

rhov11 r
1−r

0.2 0.2 0.2 0.2 0.2

rhov22 r
1−r

0.2 0.2 0.2 0.2 0.2

rhov21 r
1−r

0.2 0.2 0.2 0.2 0.2

piv11 r
1−r

0 0 0 0.089 0.911

piv22 r
1−r

0 0 0 0.089 0.911

piv21 r
1−r

0 0 0 0.089 0.911

Table 2.2: Decay modes for HV3 benchmarks with fixed rinv (rinv = r) and dark pions
decaying to heavy SM quarks (HQ case)

Decay to

νe ν̄e u ū d d̄ s s̄ c c̄ b b̄

M
es
on

s

rhov11 r
1−r

0.333 0.333 0.333 0 0

rhov22 r
1−r

0.333 0.333 0.333 0 0

rhov21 r
1−r

0.333 0.333 0.333 0 0

piv11 r
1−r

0.333 0.333 0.333 0 0

piv22 r
1−r

0.333 0.333 0.333 0 0

piv21 r
1−r

0.333 0.333 0.333 0 0

Table 2.3: Decay modes for HV3 benchmarks with fixed rinv (rinv = r) and dark pions
decaying to light SM quarks (LQ case)
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� ‘HiddenValley:fragment = on’ turns on string fragmentation of the HV partonic

system. So hadrons can form.

� ‘PartonLevel:ISR=off’ , turns off initial state radiation.

� ‘HiddenValley:nFlav=2’ this determines the no. of flavours of hidden valley quarks

to include in the model. It is set to 2.

For the benchmarks HV2 and HV3:

The Diagonal mesons (piv11,piv22 and rhov11,rhov22) are set to decay to SM quarks namely

u (up), d (down), s (strange), c (charm), b (bottom). The t (top) quark is not considered

as it is extremely heavy and not kinematically accessible. And off-diagonal mesons (piv21

and rhov21) are not allowed to decay. Vector mesons (rho mesons) decay democratically,

whereas pseudoscalar mesons (pi mesons) branching ratios are proportional to mass of the

decay products. for HV2, the mass of the dark meson, ‘mdark’ is set to 10 GeV. Whereas for

HV3, it is set to 20 GeV.

For the benchmarks HV3 HQ and HV3 LQ, the decay modes are as shown in the tables 2.1,

respectively.

Some samples with fixed rinvisible, or rinv in short, is defined as the total invisible branching

fraction of the dark hadrons. In the default PYTHIA 8 case all the off-diagonal mesons

remain in the invisible sector while the diagonal mesons do not. So, for this case, where

all mesons are degenerate, the rinv will be the ratio of number of off-diagonal dark mesons

to the total number of dark mesons. Another computational work-around to get an exact

invisible fraction is to assign an arbitrary decay table to all dark mesons keeping only the

fraction rinv into either neutrino or dark matter states. This is what we use to test our NN’s

on different values of rinv.

For these cases the decay modes for HV model with ‘rinv = r’ are as shown on tables 2.2

and 2.3.
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2.2 Machine Learning techniques

In this section I will discuss the various Machine Learning techniques that have been used

for the analysis.

2.2.1 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a type of artificial neural network commonly used in

machine learning. It consists of multiple layers of interconnected nodes, also known as

artificial neurons. The network is organized into three main types of layers: input, hidden,

and output layers. The input layer serves as the entry point for data and contains nodes

corresponding to the features or variables of the input data. The number of nodes in the

input layer is determined by the number of input features.

In between the input and output layers, there can be one or more hidden layers. These

hidden layers are named as such because they are not directly connected to the input or

output, but they play a crucial role in the network’s ability to learn complex patterns and

relationships within the data. Each node in a hidden layer is connected to every node in the

previous and subsequent layers.

The output layer is responsible for producing the network’s predictions or outputs. The

number of nodes in the output layer depends on the specific problem the network is de-

signed to solve. For binary classification, there is a single output node, while for multi-class

classification, there can be multiple output nodes, each representing a class or category.

Each node in an MLP performs a simple computation. It calculates a weighted sum of

its inputs, applies an activation function to this sum, and then passes the result to nodes

in the next layer. The activation function introduces non-linearity into the model, allowing

the network to learn complex relationships in the data. The ‘Rectified Linear Unit(ReLU)’

is the most commonly used activation function in MLP models. The function returns 0

if it receives any negative input, but returns the value back for any positive value x. So,

mathematically, It can be expressed as f(x) = max(0, x). ‘Sigmoid’ and ‘tanh’ are other

popular alternatives. But as you can see in the Figure 2.2, the gradient of the sigmoid

and tanh functions disappears quickly in the region outside (-2,2). This makes it difficult
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Figure 2.1: A schematic of a Multi-Layer Perceptron with one input layer(4 nodes), one
hidden layer(5 nodes) and one output layer(single node)

Figure 2.2: Graphical representations of various activation functions

to improve weights using gradient descent. This problem is known as ‘vanishing gradient

problem’. This problem is not applicable for ReLU, hence it has become more and more

popular in the recent years. Therefore, ReLU has been used as the activation function for the

input and hidden layers.

A loss function (also known as a cost function) is used to measure the difference between

the predicted output and the actual target values. For binary classification tasks, a commonly

used loss function is binary cross-entropy. The formula for binary cross-entropy is as follows:

BCE = − 1

N

N∑
i=1

[yi · log(p(yi) + (1− yi) · log(1− p(yi)] (2.1)

where, yi is the true binary label, and p(yi) is the predicted probability of yi.

32



Gradient descent is an optimization algorithm used in machine learning to minimize the

cost or loss function of a model. It works by iteratively adjusting model parameters (weights

and biases) in the direction of the steepest descent of the cost function. This adjustment is

made in proportion to the negative gradient of the cost function, effectively seeking the lowest

point (minimum) of the cost surface. The learning rate (α) is a small positive value that

determines the step size in each iteration. Adam (Adaptive Moment Estimation) optimizer

is a variant and improvement over the basic gradient descent optimization algorithm. Adam

dynamically adjusts the learning rate for each parameter, making it well-suited for a wide

range of neural network training tasks. It helps speed up convergence and improve training

efficiency by maintaining moving averages of past gradients and their square values.

The ‘He normal’ initializer is a weight initialization technique commonly used in deep

neural networks, including MLPs. The purpose of weight initialization is to set the ini-

tial values of the network’s weights to suitable values to facilitate efficient training. The

‘He normal’ initializer initializes the weights using a normal distribution with a mean of 0

and a standard deviation calculated as the
√

2
n
, where n is the number of nodes in the pre-

vious layer. This initialization method helps mitigate the vanishing gradient problem and

promotes faster and more stable convergence during training, especially in deep networks

with multiple hidden layers.

To train an MLP, you need a labeled dataset. The network’s weights and biases are

adjusted through backpropagation and optimization algorithms to minimize a loss function,

which quantifies the discrepancy between the predicted output and the actual target values.

Overtraining is a phenomenon that occurs when a machine learning model learns to fit

the training data too closely, capturing noise and specific patterns rather than general trends.

This leads to poor performance on new, unseen data because the model doesn’t generalize

well. To have a check on overtraining, the input dataset is divided into two datasets, training

dataset and testing dataset, randomly. The model is trained only on the training dataset,

and then tested on the training as well as testing dataset. An overtrained model will perform

much better on trained dataset compared to testing dataset. Higher the difference between

the performance of the model on the two datasets, higher is the overtraining.

Dropout is a regularization technique used in neural networks to prevent overfitting.

It involves randomly ‘dropping out’ (setting to zero) a fraction of the neurons or units in

a neural network layer during each training iteration. These dropped out units do not
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contribute to the forward or backward pass of that iteration. ‘Dropout rate’, the primary

hyper-parameter of the layer determines the probability of dropping out each neuron during

training iteration.

It’s important to note that while MLPs can solve a variety of problems, they may not

be the best choice for all tasks, especially when dealing with images. In such cases, more

advanced architectures like Convolutional Neural Networks (CNNs) are required.

2.2.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically de-

signed for processing and analyzing visual data, such as images and videos. They have

revolutionized computer vision tasks and found applications in various domains beyond im-

age analysis. CNNs consist of several key components, including convolutional layers, pooling

layers, fully connected layers, and activation functions.

Figure 2.3: Visual schematic for calculating output of a convolutional layer [17]
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Figure 2.4: Visual schematic for pooling layer [18]

In the convolutional layers, small filters (kernels) slide over the input image, and output

is obtained by computations as shown in Figure 2.3. It enables the network to detect features

like edges, textures, and patterns. Filters are the learnable parameters, each highlighting

specific patterns. The stride determines the units by which filter moves during convolution,

affecting the spatial dimensions of the feature maps.

Pooling layers are used to reduce the spatial dimensions of the feature maps while re-

taining crucial information. Techniques like max-pooling and average-pooling help in this

process. These layers contribute to reducing computational complexity and preventing over-

fitting. The working of these layers can be visualised from Figure 2.4.

Padding is technique that involves adding extra rows and columns of zeros around the

input image or feature maps. It is used to preserve the dimensions of the image under the

application of convolution. It also ensures that the information in the corner and edges of

an image is read more often.

In a neural network, as data flows through layers, the distribution of inputs to each

layer can change. This phenomenon, known as internal covariate shift, can make training

deep networks challenging because it requires careful initialization of weights and the use

of small learning rates to prevent divergence or slow convergence. Batch Normalization

addresses this problem by normalizing the inputs within each batch of data. For each feature,

Batch Normalization calculates the mean and standard deviation across the batch. It then

normalizes the feature by subtracting the mean and dividing by the standard deviation.
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This effectively centers the distribution of the feature around zero and scales it to have

unit variance. After normalization, the feature is scaled by a learnable parameter called

‘gamma’ and shifted by another learnable parameter called ‘beta’. These parameters allow

the network to learn the appropriate scale and shift for each feature. They provide flexibility

in handling variations in the data distribution.

Fully connected layers, similar to those in a Multi-Layer Perceptron (MLP), come after

a series of convolutional, pooling and batch normalization layers. They are responsible for

classification or regression tasks based on the extracted features from previous layers.

2.2.3 Analysing output of NN

Various plots that are used to analyze the performance of NN, are discussed below.

NN score plot

NN score is the final output the model. For binary classification tasks, the value closer to the

label of a class implies higher probability of the input being of that class. Usually signal is

labelled ‘1’ and the background is labelled ‘0’. In that case, higher NN score implies higher

probability of being signal. NN score plot is the histogram of NN score of the model. It is

plotted as separate curves for the inputs labelled 0 and 1. This plot helps in determining

the cut on NN score above which a the input is to be considered as signal.

ROC curve

The ROC plot is a graphical representation of the classifier’s performance at various thresh-

olds. It displays the trade-off between True Positive Rate (sensitivity) and False Positive

Rate (1−specificity) as you vary the decision threshold. A model with a ROC curve that

approaches the top-left corner has better classification accuracy and is more capable of dis-

criminating between the classes. The Area Under the ROC Curve (AUC) summarizes the

model’s overall performance. An AUC value of 0.5 suggests a random classifier, while a value

of 1 indicates a perfect classifier.
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Signal efficiency vs background rejection plots

Signal efficiency is defined as fraction of signal events that are classified as signal by the

model. And the background efficiency is defined as the fraction of background events that

are classified as signal by the model. For this plot, the signal efficiency is plotted on the

x-axis and the inverse of background efficiency is plotted on the y-axis. This plot helps us

find the balance between the trade off between sensitivity and background rejection.

In the subsequent chapters we will use the term ‘network’ instead of ‘model’, as the term

‘model’ is also used to refer different HV models.
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Chapter 3

Discriminating Hidden Valley jets

In this chapter we will use various machine learning tools to discriminate HV jets against

the background of QCD jets.

3.1 Discriminating HV jets clustered with anti-kT us-

ing MLP

Here, the QCD and HV2 events are clustered using anti-kT jet algorithm with R = 0.7. For

the analysis, pTjetMin is set to 100 GeV and the requirement of minimum numbers of jets

to be 2 is also put.

Based on our preliminary investigations, the following quantities were chosen as inputs

to the neural network:

� Number of constituents in the two hardest jets. Here, I have used anti-kT to cluster

jets.

� Scalar sum of pT of photons in a jet for the two hardest jets in the event.

� Subjet-pT of upto three hardest subjets of the two hardest jets in the event.

� ∆R between subjets, for up to three hardest subjets of the two hardest jets.
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� Energy correlation functions [19, 20] e2 and e3.

� Lund jet plane variables (∆R and kT ) for the first five unclusterings.

Histograms for few of the input quantities are shown in Figures (3.1-3.2). And the LJP

plots are shown in Figure 1.7.

Figure 3.1: Energy Correlation Functions, e2 on the left and e3 on the right

Figure 3.2: Number of constituents in the hardest (left) and second hardest (right) jet

3.1.1 NN architecture

Sequential network have been used with 7 Dense layers, containing 32, 32, 16, 8, 4, 2, 1

neurons respectively. Of which, the first 6 layers use activation function ‘ReLU’ and the last
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Figure 3.3: Scalar sum of pT of gamma particles in the hardest (left) and second hardest
(right) jet

Figure 3.4: Hardest subjet pT of the hardest (left) and second hardest (right) jet

(output) layer uses ‘sigmoid’ activation function. Adam optimizer is used for compiling the

network.

The input size is about 40000 (20000 QCD + 20000 HV3) events, 80% of which is used for

training and the remaining 20% is used for testing. The network is trained for 400 epochs

with batch size of 100. Early stopping condition is applied with patience = 20, along with

restore best weights set to True, monitor being val accuracy.
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Figure 3.5: ∆R between 2 hardest subjets of the hardest (left) and second hardest (right)
jet

Figure 3.6: ∆ϕ of MET with the hardest jet (left) and the second hardest jet (right)

3.1.2 NN output

The output of the neural network is shown in figure 3.7. As can be seen, there is a good

discrimination between signal and background, with consistent performance for both the

training and testing samples.

I have plotted 1/background efficiency (1/ϵbkg) vs signal efficiency (ϵsig), as well as the

ROC(Receiver Operating Characteristic) curve in Figure 3.7.

Then QCD background is bin-wise matched, and the network was retrained (with exactly
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Figure 3.7: Plot on the top shows the histogram for NN score, the bottom left shows signal
efficiency vs background rejection plot, and ROC curve on the bottom right, for the MLP
network on HV2 model, with anti-kT algorithm used for clustering jets

same NN architecture), and the output can be seen in the Figure 3.8.

43



0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
am

pl
es

NN Output
Test HV
Test QCD
Train HV
Train QCD

0.2 0.4 0.6 0.8 1.0
sig

100

101

102

1/
bg

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve

Testing ROC (AUC = 0.8331)
Training ROC (AUC = 0.8492)

Figure 3.8: Plot on the top shows the histogram for NN score, the bottom left shows signal
efficiency vs background rejection plot, and ROC curve on the bottom right, for the MLP
network on HV2 model with bin-wise matched pT distribution, with anti-kT algorithm used
for clustering jets
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3.2 Discriminating HV jets clustered with SIFT, using

MLP

Here the jets has been clustered using the SIFT algorithm with ‘pTjetMin=50 GeV’. And

the condition of having atleast 2 jets in each event has also been put. As the SIFT jets

are very thin compared to HV, instead of going to subjets, the detector level quantities

of the jets have been used for analysis i.e transverse momentum (pT ), invariant mass (m),

pseudorapidity (η), azimuthal angle (ϕ) of the 2 hardest jets. And to see the effect of MET on

the network, I have separately trained another network which has an extra input parameter

MET, along with the other inputs. Here, the HV3 HQ, HV3 LQ samples, as described in sec

2.1.1, are differentiated against bin-wise matched QCD sample. The plot 3.9 verifies the bin-

wise matching. The plot 3.10 gives a peak at 20 GeV, which is the dark meson mass. From

this, it can be seen that the SIFT algorithm can be helpful in extracting mass scales of dark

mesons.

Figure 3.9: pT of the hardest jet (left) and the second hardest jet (right)

This is to check the dependence of the network on dark mesons decaying to heavy quarks

like, b b̄. Hence, two different scenarios are considered, one in which the dark pions decay

to light quarks only, and one in which it decays to heavy quarks only. The decays of the ρ

mesons have not been altered. So, here, in total I have trained 4 networks, labelled as:

1. HQ wo MET: HV3 HQ sample is used and MET is not included in inputs.

2. HQ with MET: HV3 HQ sample is used and MET is included in inputs.
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Figure 3.10: Invariant mass of the hardest jet (left) and the second hardest jet (right)

3. LQ wo MET: HV3 LQ sample is used and MET is not included in inputs.

4. LQ with MET: HV3 LQ sample is used and MET is included in inputs.

3.2.1 NN architecture

Sequential network have been used with 7 Dense layers, containing 32, 16, 16, 8, 4, 2, 1

neurons respectively. Of which, the first 6 layers use activation function ‘ReLU’ and the last

layer uses ‘sigmoid’ activation function. Adam optimizer is used for compiling the network.

For each network the input size is about 50000 (25000 QCD + 25000 HV3) events, 80% of

which is used for training and the remaining 20% is used for testing. The network is trained

for 400 epochs with batch size of 100. Early stopping condition is applied with patience =

20, along with restore best weights set to True, monitor being val accuracy.

3.2.2 NN output

The performance of all the four trained networks, HQ wo MET, HQ with MET, LQ wo MET and

LQ with MET on the corresponding testing datasets can be seen in the figures 3.11, 3.12, 3.13,

3.14 respectively.

Note that, for the benchmarks HV2, HV3, HV3 HQ and HV3 LQ, the rinv was not fixed. To
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Figure 3.11: NN score plot (on the left) and signal efficiency vs background rejection plot
(on the right), for the HQ wo MET network on the testing dataset

Figure 3.12: NN score plot (on the left) and signal efficiency vs background rejection plot
(on the right), for the HQ with MET network on the testing dataset

Figure 3.13: NN score plot (on the left) and signal efficiency vs background rejection plot
(on the right), for the LQ wo MET network on the testing dataset
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Figure 3.14: NN score plot (on the left) and signal efficiency vs background rejection plot
(on the right), for the LQ with MET network on the testing dataset

see how the performance changes with changing rinv, I used the benchmarks with fixed rinv

and tested their samples with these trained NN networks, and calculated the proportion

of events accepted with the cut of 0.9 on NN score. This quantity will be referred to as

‘acceptance efficiency’. This acceptance efficiency is normalized by dividing it with the

acceptance efficiency of the benchmark on which the network was trained. The behaviour of

this ‘normalized acceptance efficiency’ (to be denoted as ϵA) on changing the rinv is shown

in Figure 3.15.

As can be seen seen in the Figure 3.15, normalised acceptance efficiency increases with

increase in rinv.

3.3 Discriminating HV jets clustered with SIFT, using

CNN

In this study, we harness the capabilities of Convolutional Neural Networks (CNNs) to

differentiate between HV and QCD signature. The approach begins by representing the

calorimetric deposits at the detector as pixelated images, as was previously done by [21–23].

Each pixel within these images corresponds to a calorimetric cell. These images serve as

the input data for the CNNs. The CNN architecture, with its inherent ability to capture

intricate patterns and spatial dependencies within images, is adept at finding subtle features

that distinguish HV and QCD events.
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Figure 3.15: Normalized acceptance efficiency for MLP networks trained on SIFT jets. On
x-axis lies the model on which the trained network is being tested and different plots are for
different trained networks. The top figure have testing samples of the HQ type and bottom
figure have testing sample of the LQ type.

3.3.1 Jet-image formation

For this analysis, a calorimetric cell is considered to be of dimension 0.05 × 0.05 in the

η − ϕ plane. I have used PYTHIA 8 to generate the events, for the benchmarks HV3 HQ,

HV3 LQ and QCD and clustered them using SIFT algorithm with pTjetMin = 50 GeV along

with the condition of having atleast 2 jets in each event. The input data consists of a

21 × 21 pixel, square grid centered at jet-center of the hardest jet. Jet-images are then

formed by interpreting energy depositions at each calorimetric cell as the pixel intensity of

the corresponding image. An exampler image, is as shown in the figure 3.16.
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Image pre-processing

To optimize the learning of distinguishing characteristics between signal and background,

and to prevent the acquisition of spatial and temporal symmetries, the jet images need to

be pre-processed.

Here, the pre-processing is done in 2 steps, translation and rotation. In translation the

jet-image is translated so that the hardest calorimetric tower occupies the center of the jet-

image. And in rotation, jet-image is rotated so that second hardest calorimetric tower lies on

the positive x-axis. The pre-processed jet-image will be of size 13×13 pixels. An example of

the pre-processed jet image is shown in the figure 3.16. The jet-images are then normalized

so that the sum of the square of each pixel intensity of an image is 1.

Figure 3.16: Exampler jet-image, before pre-processing on the left and after pre-processing
on the right

CNN architecture

The Convolutional Neural Network (CNN) architecture, used here, is a sequential network

featuring:

1. Conv2D Layer: 32 filters, (3,3) kernel size, (2,2) stride, ‘he uniform’ weight initializa-

tion.

2. AveragePooling2D Layer: (2,2) pooling size.
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3. BatchNormalization layer to enhance training stability.

4. Dropout layer: with dropout rate of 0.2 , to mitigate overfitting.

5. Conv2D Layer: 32 filters, (3,3) kernel size, (1,1) stride.

6. MaxPooling2D Layer: (2,2) pooling size and ‘same’ padding followed by a BatchNormalization

layer

7. Flatten layer, which flattens the feature maps to arrays. Followed by a Dropout layer:

with dropout rate of 0.2.

8. Followed by 3 Dense layers with 16, 8, 1 neurons respectively.

For each network (trained on HV3 HQ and HV3 LQ) the input size is about 50000 (25000

QCD + 25000 HV3) events, 80% of which is used for training and the remaining 20% is

used for testing. Early stopping condition is applied with patience = 10, along with

restore best weights set to True, monitor being val accuracy.

Activation function used for the last layer, with a single neuron, is Sigmoid. For all the

other layers ReLU is used as activation function. And padding is set to ‘same’ for all the

convolutional and pooling layers.

CNN output

The performance of networks trained on HV3 HQ and HV3 LQ can be seen in Figure 3.17 and

3.18 respectively.

And then these two trained networks were tested on the various fixed rinv samples, and

the behaviour of normalized acceptance efficiency was shown in Figure 3.19. In this case as

well the normalized acceptance efficiency can be seen to increase with increase in rinv. It can

also be noticed that the model trained on HV3 LQ does not perform well on testing samples

of HQ type.
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Figure 3.17: Plot on the top shows the histogram for NN score, the bottom left shows signal
efficiency vs background rejection plot, and ROC curve on the bottom right for CNN network
trained on the HV3 HQ samples.
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Figure 3.18: Plot on the top shows the histogram for NN score, the bottom left shows
signal efficiency vs background rejection plot, and ROC curve on the bottom right, for CNN
network trained on the HV3 LQ samples.

3.4 Discriminating HV jets clustered with SIFT, using

CNN+MLP

As a last method in this study, I have tried to mix the CNN and MLP approach. In this

case, the input consist of the combined inputs of last 2 sections (3.2 and 3.3), i.e. jet-image
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Figure 3.19: Plot showing the behaviour of normalized acceptance efficiency w.r.t different
rinv samples for networks trained on HV3 HQ (on the left) and HV3 LQ (on the right).

for the hardest jet and mass, pT , η, ϕ of the 2 hardest jets. Benchmarks used for analysis

are HV3 HQ and bin-wise matched QCD. All the pre-processing steps from section 3.3.1 are

applied to the jet images

3.4.1 CNN+MLP architecture

In this case, the architecture is mostly similar to that of CNN (3.3.1), with the only difference

being, after the flattening layer, the MLP input is appended to the flattened array. And

then the Dense layers follows as usual.

3.4.2 CNN+MLP output

Performance for the CNN+MLP network can be seen in the Figure 3.20.
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Figure 3.20: Plot on the top shows the histogram for NN score, the bottom left shows signal
efficiency vs background rejection plot, and ROC curve on the bottom right, for CNN+MLP
network on HV3 HQ model
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Chapter 4

Summary and Conclusions

In this thesis, we’ve made significant progress in understanding Hidden Valley models by

using advanced machine learning techniques. In this final chapter, we’ll summarize the main

findings of our research.

We began by identifying crucial jet variables, for anti-kT jets, capable of effectively dis-

criminating between HV jets and the QCD background. A binary classification MLP neural

network was then trained using these variables as inputs, and its performance was assessed

through the analysis of various plots. To mitigate scale dependence, we implemented a

bin-wise matching approach, aligning the transverse momentum (pT ) distribution for the

hardest jet of the background with that of the signal. The subsequent network, trained and

analyzed for this purpose, exhibited a noticeable decrease in performance compared to the

initial network.

We then replaced the anti-kT algorithm by the SIFT algorithm to cluster jets. SIFT jets

proved to be more useful in extracting the dark meson mass scale, and also in discriminating

the HV model. Subsequently, another MLP was trained with the detector level quantities,

(m, pT , η, ϕ) of the first two jets, as inputs to the network. To study the dependence of the

network in picking up heavy and light quark decays, two other benchmarks were introduced,

one in which the dark pions decay to heavy quarks (c,b) only, and other one in which they

decay to light quarks only. Each MLP network was separately trained on samples from these

benchmarks. Additionally, we explored the influence of missing transverse energy (MET) by

introducing two more networks with MET as an additional input.
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Few more benchmarks were introduced, where the invisible fraction rinv was artificially

fixed to different values to test the response of the trained network to different fractions of

missing energy. To examine the impact of rinv on the network’s performance, we tested all

four trained networks on samples with varying fixed rinv values. It was observed that the

performance of networks improve with increase in rinv.

To investigate whether HV events can be discriminated against QCD without relying on

jet mass, we harnessed the power of Convolutional Neural Networks (CNNs). Jet images

of the hardest jet served as inputs for the CNN, offering a promising avenue for future

investigations. Here again, CNN’s were trained for HV3 HQ and HV3 LQ models separately

and the trained CNN networks were tested on the samples with varying fixed rinv values,

and it was again observed that the performance of networks improve with increase in rinv.

In the end, we tried to mix the MLP and CNN network, for which the input was the

combined input of CNN network and MLP network.

Figure 4.1: Comparing signal efficiency vs background rejection plots for different networks
trained on HV3 HQ model, where SIFT clustering was used.
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A comparison of the three approaches can be seen in Figure 4.1. Currently it seems that

the MLP analysis does the best job of providing robust background rejection for given signal

efficiency.
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Chapter 5

Outlook

In this chapter, we will discuss about various short-comings and future plans for this this

study.

� To make the analysis more realistic and robust, detector response simulation softwares

like Delphes [24] will be used. This is especially required in the CNN case as, during

the pre-processing of jet-images, we have rotate input images, but the rotated cells

does not superimpose on the original grid. So we had to consider the calorimetric

tower for each cell to be located at the centre of each cell. To check the robustness of

this step it is essential to test this with detector simulations.

� For this study, the jet radius has been defined as the maximum value of ∆R between

a jet and its constituents. But more accepted quantity is the jet area, which is based

on ghost particles. But as our current implementation of SIFT is O(N2), it is compu-

tationally not viable to look at jet area. Therefore we will be looking at ways to make

the implementation faster, with the goal of making it O(N log(N)).

� For this analysis the value of Zv was set to 800 GeV. This analysis needs to be gener-

alised by considering different mass scales for the mediator particle.

� In each case, the output of the NN was observed to be highly correlated with the input

mass of dark mesons to the event generator. Hence, to search within the parameter

space of HV models, one might need to train a separate NN for each mass hypothesis.
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� Zv couplings to both SM and HV quarks, are assumed to be at maximum value, and

can in principle be constrained by searches in dijets, which would reduce the value of

allowed couplings. But this is not expected to affect the kinematics, and hence the

discrimination potential of the analysis.

� Other ways to extract hidden meson masses will also be explored in the future.
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