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Abstract

Mutually inhibiting neurons is a common motif across many systems like Hip-

pocampus, CPGs(Central Pattern Generators) and Olfaction. Their synaptic interac-

tion ensures that they show alternating activity. The frequency of switching from an

active to a quiescent period is a function of the biophysical properties of ion channels

present in the neurons, synaptic interaction timescales, network properties, the stim-

ulus and possibly channel fluctuations from a small number of channels. Switching

allows neurons to associate with different networks and coordinate patterns of activity

that may be relevant for function. The frequency of switching dictates the sequential

order of activity of neurons required for locomotion, for example in Lamprey. In this

context, reliable switching might be a critical functional requirement. How do net-

works of mutually inhibiting neurons, a simple most functional module of switching,

achieve this reliability despite a noisy framework and environment? We have devel-

oped a conductance-based model of two mutually inhibiting neurons wherein inherent

switching takes place via a potassium current, sAHP that is triggered by calcium ions.

We systematically study the effect of various sources of noise including channel con-

ductance noise, and input noise on switching and robust generation of sequences. Our

results show that switching frequency can be tuned with noise amplitude of the ex-

trinsic noise. It has been previously shown that calcium channel fluctuations are the

largest contributors of stochasticity at the synapse. As a control simulation experi-

ment, we isolate contributions of calcium channel fluctuations. In this framework, only

the calcium dynamics is modeled with a Markovian scheme, and other components are

deterministic. Our results suggest that an optimal number of calcium channels help

achieve precise switching. This study sheds light on how channel fluctuations affect

the network activity and cannot be ignored a priori when slow decay time scales are

involved in the neuronal dynamics. Our understanding of the effects of various sources

of noise in this illustrative network motif is likely to be applicable to a wide variety of

systems.
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1 Introduction

Natural systems are inherently noisy. In the case of neuronal networks, the noise arising

from various sources could affect the reliability of neural activity. The motivation to under-

take this study results from regular and reliable patterns activity seen in neuronal networks

in spite of the noisy frameworks the neurons operate in. To study how neuronal networks

achieve robustness to noise and maintain regular activity, we look at the simplest network

motif which generates regular patterns of activity: a biophysically detailed model of two

mutually inhibiting neurons(Fig. 1). Mutually inhibiting neurons is a common motif across

many systems like Hippocampus, CPGs(Central Pattern Generators)(Otto Friesen, 1994)

and Olfaction (Daun et al., 2009). This network motif is implicated in keeping up regu-

lar activity in networks underlying REM sleep cycle (Lu et al., 2006) and working memory

(Myre and Woodward, 1993). We are trying to investigate how does a network motif of

two mutually inhibiting neurons maintain regular activity in presence noise from different

sources? How noise modulates the network activity of the network motif? Do these neurons

achieve robust switching via a mechanism akin to coherence resonance?

Figure 1: Ion channels present in the neurons.

The synaptic interaction between these two neurons ensures that they show alternating

activity. The frequency of switching from an active to a quiescent period is a function of the

biophysical properties of ion channels present in the neurons, synaptic interaction timescales,

network properties, the stimulus and possibly channel fluctuations from a small number of

channels. Switching allows neurons to associate with different networks and coordinate

patterns of activity that may be relevant for function. Switching of activity between two

neurons dictates the sequential order of activity of neurons required for locomotion, for

example in Lamprey (Cangiano and Grillner, 2004) and regularity in switching could be a

functional requirement for many systems.

In a network motif of mutually inhibiting neurons, due to the inhibitory coupling, neu-

rons alternate in their activity. The calcium influx from the voltage-gated calcium channels
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(VGCC s) mediates the calcium-mediated potassium channels which give rise to a slow after-

hyperpolarization ( sAHP) current. The slowly deactivating AHP current builds over mul-

tiple action potentials and terminates the burst after a characteristic time interval (Manira

et al., 2013)(Fig. 2 (a)) which leads to the firing of the other neuron as it is released from

inhibition.(Fig. 2 (b)) The slow time-scales of the sAHP current ensure that the switching

in the activity takes place after a characteristic time interval (Fig. 2 (a)).

(a) (b)

Figure 2: Switching mechanism: (a) Build-up of AHP current over multiple action potentials in
neuron 1. (b) Escape from inhibition and burst of the neuron 2.

Noise could disrupt the reliability of neuronal activity, but in many cases, noise can have

a co-operative effect on the networks. In neurons, the addition of noise can increase the signal

detection and transduction via stochastic resonance (McDonnell and Abbott, 2009; Schmid

et al., 2001). Another interesting phenomenon which arises due to the presence of noise and

leads to regularity in activity for an optimal level of noise is coherence resonance. Intrin-

sic channel fluctuations also play an important role in stochastic and coherence resonance

and thus cannot be neglected a priori (Schmid et al., 2001). Noise from the voltage-gated

channels is crucial to study as it can make subthreshold neuron more excitable and cause

suprathreshold activity (White et al., 2000). The low-voltage activated channels which are

present in the neurons being studied have been known to have a post-inhibitory rebound

effect (Tegnér et al., 1997). Thus it is important to study the effect of noise arising from the

stochastic opening of calcium channels on the dynamics of the motif. Due to the slow decay

timescales of AHP; each calcium fluctuation is noted and integrated with consecutive cal-

cium fluctuations. This integration property of AHP channels makes the activity of neurons

very sensitive to the calcium channel fluctuations.
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On the other hand, we investigate how the slow time scales associated with the AHP

current can help the network to be robust to the calcium fluctuations and produce regular

activity. AHP gating variable due to its slow decay timescales integrates over these fluc-

tuations and generates a less variable AHP current compared to the calcium signal. This

integration would help in maintaining regularity in the activity in spite of the noise present.

It has been seen that in neurons driven by noisy inputs, multi-scale adaption current can help

achieve regularity in oscillations (Nesse et al., 2008b,a). Due to the differences in timescales

associated with the calcium and AHP channels, the integration of AHP current over calcium

fluctuations would help the neurons achieve regular activity.

We systematically study various sources of noise including channel conductance noise and

input noise and its effects on reliability of the network activity. Noise from voltage-gated cal-

cium channels (VGCCs) is one of the largest contributors to the stochasticity at the synapse

(Modchang et al., 2010). Our investigations use Markovian framework for simulating chan-

nel kinetics dynamics using Gillespie algorithm (Gillespie, 1976) for a realistic description of

calcium channel noise. We develop a general framework that includes biophysically detailed,

physiological description of channel kinetics to study the effect of noise in transforming ac-

tivity. Our insight from these studies on various sources of noise in this illustrative network

motif is likely to be applicable to a wide variety of systems.

2 Methods

To study the effct of noise on the swtiching dynamics and how neurons achieve robust-

ness to noise, we have developed a conductance-based model of two mutually inhibiting

neurons wherein inherent switching in the activity of neurons takes place via a potassium

current, sAHP(slow afterhyperpolarization) current which is mediated by calcium ions. We

investigate the role of slow decay time scales associated with the sAHP current in integrat-

ing calcium signal generated by the stochastic opening of Voltage-Gated Calcium Channels

(VGCCs). Extrinsic noise can be interpreted as the noise arising independently of the state

of the neuron, such as background noise. The extrinsic current noise is implemented as an

additive term to the differential equation of the voltage. Intrinsic noise can be interpreted

as the noise arising from the stochasticity associated with a small number of ion channels

and stochastic channel opening. To model realistic intrinsic noise we simulate a Markovian

description of the calcium channels using Gillespie algorithm.
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2.1 Network model

The neurons have voltage-gated calcium channels and sAHP channels along with voltage-

gated sodium and potassium channels and leak current.

C
dV1
dt

= Iexternal − INa − IK − ILeak − Isynapse − IV GCC − IsAHP

C
dV2
dt

= Iexternal − INa − IK − ILeak − Isynapse − IV GCC − IsAHP

2.2 Hodgkin-Huxley Neuron Model

The classical Hodgkin-Huxley neuron model describes how action potentials are generated

(Hodgkin and Huxley, 1990). It has Na+, K+ and leak channels. The currently accepted

model for generation of action potential is given by

C
dV

dt
= −ḡNam3h(V − ENa)I − ḡKn4(V − EK)− gL(V − EL)− I

dx

dt
= αx(1− x)− βxx where, x = n,m, h

Where,

V: membrane potential

n,m,h: gating variables which represent the open fraction of channels of sodium(m,h) and

potassium(n)

C = 1 µF/cm2: the capacitance of the cell membrane

ENa = 50 mV, EK = -77 mV, and EL = -54.4 mV: reversal potentials of sodium, potassium

and leak channels respectively

ḡNa = 120 mS/cm2 and ḡK = 36 mS/cm2: maximal conductances of sodium and potassium

currents respectively

gL = 0.3 mS/cm2: leak conductance

αm =
.1(V + 40)

1− exp(−.1(V + 40))

βm = 4.0exp(−(V + 65)/18.0)

αh = .07exp((V + 65)/20.0)

βh =
1

1 + exp((V + 35)/10)

αn =
.01

1− exp(−(V + 55)/10)
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βn = 0.125exp(−(V + 65)/80.0)

INa = gNam
3h(V − ENa)

IK = gKn
4(V − EK)

ILeak = gleak(V − ELeak)

(a) (b)

Figure 3: Hodgkin Huxley neuron: (a) The activity of n, m, h gating variables leading to action
potentials. (b) Gating variable m,h,n activation as a function of voltage is shown.

2.3 sAHP channels

The sAHP channel model used is a calcium-mediated potassium channel. This model is

sAHP channels of CA1 pyramidal neurons (Sah and Clements, 1999) (Stanley et al., 2011).

R
4rb


ru
CaR

3rb


2ru

2CaR
2rb


3ru

3CaR
rb


4ru

4CaR
ro


rc
O

Where rb = 4 µ M/sec, ru = 0.5/sec, ro = 600/sec , and rc = 400/sec. Here R, CA1R, CA2R,

CA3R, CA4R and O are the states of the channel. R is the closed state and O is the open

state. The total conductance of the channel is dependent on the fraction of open channels.

The rates are calculated with the following assumptions:“

1. The steady-state dose response curve has a steep activation above the resting [Ca2+]i

of 50 nM and has an EC50 of 150 nM so that it is efficiently activated by small increases

in [Ca2+]i.

2. When [Ca2+]i falls rapidly, the decay of sIAHP is limited by the channel closing and

Ca dissociation rates to give a time constant of 1.5 sec, and
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3. The peak open probability of the channel is 0.6, and its mean open time is 2.5 msec

based on estimates from noise analysis of sIAHP .”

IsAHP = gsAHP (V − EsAHP )

Where gsAHP = 0.4 µS/cm2 and EsAHP = EK = -77 mV

(a) (b)

Figure 4: sAHP activation: (a) Slow build-up of AHP open fraction over multiple action potential.
(b) Gating variable of the AHP actication as a function of intracellular calcium concentration.

2.4 Synapse

Inhibitory synapses are modelled using a tan hyperbolic function.

ρ =
tanh(V

4
)

2

ds

dt
=

ρ

τr
(1− s)− 1

τd
s

Isyn = ḡsyn(V − Esyn)

Where ḡsyn = 2.2 mS/cm2 and Esyn = - 80 mV.
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(a) (b)

Figure 5: Synaptic activation: (a) The synapse is activated at suprathreshold voltages and follows
the voltage trajectory. (b) Gating variable of the synapse activation curve.

2.5 Voltage gated calcium channels

The model used is of L-type Cav1.3 calcium channels which open at low voltages (Stanley

et al., 2011).

S0

2α(V )


β(V )

S1

α(V )



2β(V )
S2

α(V ) =

√
x∞
τ

β(V ) =
1−√x∞

τ

x∞(V [mV ]) =
1

1 + e−
(V +30)

6

Here α, β are voltage dependent probablities of transitions of states Si . The condunctance

is dependent on the fraction of open state.

ICav = gCav(V − ECav)

Where gcav = 0.15 mS/cm2 and Ecav = ECa = 25 mV
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(a) (b)

Figure 6: VGCC activation: (a) The opening of VGCCs due to action potentials (b) Gating variable
of VGCC activation as a function of voltage.

2.6 Modelling calcium dynamics

The intracellular calcium concentration dynamics is modeled as a leaky integrator (Stanley

et al., 2011) (Wang, 1998).

d[Ca2+]

dt
= (−αICav)−

([Ca2+])

τCa

Where α = 2.10−4[mM(msµA)−1cm2] and τCa = 14 ms. α depends on area to volume

ratio of the neuron, intracellular buffering of calcium, and stochasticity factor, and converts

calcium current into units of calcium concentration per unit time. The resting calcium

concentration is 100 nM and goes upto 2.5 µM per spike.

2.7 Modelling channel noise

When the number of ion channels from which the neuron reads the ionic currents increases,

the fluctuations in the current becomes smaller, and at a very large number of ion channels

the ionic currents can be modeled deterministically. In neurons, a small number of ion

channels dictate the neuronal dynamics, making it imperative to study how the stochastic

ion currents coming in from a small number of ion channels affects the neuronal and network

activity. Channel noise has been extensively studied, and various methods to model channel

noise have been explored (reviewed in (Goldwyn and Shea-Brown, 2011)), the stochastic

dynamics simulated using Gillespie algorithm is considered to be the closest to the real

fluctuations observed in neuronal recordings. As a control experiment to study the effect
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of noise arising from ion channel fluctuations we implement Markovian description only

for calcium or AHP channels using Gillespie algorithm (Gillespie, 1976) whereas the other

components of the model are modeled deterministically. We developed a Gillespie-Euler

Hybrid Algorithm: Tandem Progression Gillespie (TPG) to simulate realistic time scales

and amplitudes of channel noise. Previous algorithms such as the algorithm suggested in the

model code from (Goldwyn and Shea-Brown, 2011) updates the voltages when time is an

integral multiple of the step size. This algorithm is correct under the assumption that the

rates for transitions do not change between two time-steps and there are no slow time-scales

involved which could keep track of all the fluctuations, as the fluctuations between the fixed

time steps are not seen by the voltage and other currents in the neuron.

Algorithm 1 Goldwyn and Shea-Brown Gillespie Modification

1: ts ← time of the next transition
2: tw ← time to the next transition
3: t← current time
4: dt← fixed time step
5: Initialize the state vector for ion channels
6: While (ts < t + dt):
7: procedure Gillespie update
8: Calculate rates and total rate for the transtions
9: Calculate tw

10: ts ← ts + tw
11: If (ts < t+ dt):
12: update the states return open fraction of channels

13: current = g(Gillespie Update)(V-E)
14: Integrate at t = [0, ttotal, dt]

Another hybrid algorithm suggested by (Chow and White, 1996) integrates the deter-

ministic system till the waiting time given by Gillespie algorithm and updates the stochastic

system only after Gillespie waiting times. When the Gillespie waiting times are smaller than

the deterministic time step, the system is integrated at the waiting times. This algorithm

assumes that the rate constants do not change during the time step and the rate and waiting

time calculations take into account the dynamics and time-scales from all the ion channels

present in the neuron.
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Algorithm 2 Chow and White Gillespie Modification

1: ts ← time of the next transition

2: tw ← time to the next transition

3: t← current time

4: dt← fixed time step

5: Initialize the state vector for ion channels

6: procedure Gillespie update

7: if (t == ts):

8: Calculate rates and total rate for the transtions

9: Update the states return open fraction of channels

10: Recalculate the rates

11: Calculate tw

12: ts ← ts + tw

13: current = g(Gillespie Update)(V-E)

14: dett = min(t+ dt, ts)− t
15: Integrate dX

dt
∗ dett

16: t← t+ dett

In our case where we wanted to study the effect of the channel noise arising from one

type of ion channels, we could not use any of the previous hybrid algorithms as integrating at

fixed time steps will lead to missing channel fluctuations that take place between two time-

steps. From our simulations where we had added white noise to the current, it was seen

that calcium fluctuations caused by voltage fluctuations are noted by the AHP current and

change the switching dynamics significantly. The fast activation and slow decay timescales

associated with the AHP current will cause these fluctuations to add up in the AHP current

and lead to faster build-up up to the threshold AHP current. Thus it is important not to

miss these fluctuations and to achieve this; we update the whole system deterministic as well

as the stochastic system at the Gillespie time-steps.
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While integrating at these waiting times, which could be very long for small channel

numbers, the dynamics of the other components of the model neuron may not be captured

correctly and could lead to errors when the waiting times are very long. To model the

neuronal dynamics correctly, when the waiting times are larger than a fixed time step (0.01

msec used in simulations) we integrate the system at the fixed time step and also update the

stochastic channel states at every integration step to take into account the changed voltage

and current values. Thus by updating the whole system together, we believe that we are

modeling the stochastic channel dynamics as well as the neuronal and network dynamics

accurately.

Another approach taken to model channel fluctuations is the system size expansion ap-

proach used by (Fox and Lu, 1994) which involves solving the drift-diffusion equation to

accurately model the stochastic dynamics simulated using the Gillespie algorithm as the

Gillespie algorithm is computationally expensive. Using this approach was not necessary as

the system is not large and also would have lead to missing out on accurate time scales of

noise. The method we developed is called as Tandem Progression Gillespie as every compo-

nent of the model is updated at the same time and is described below:

17



Algorithm 3 Tandem Progression Gillespie

1: ts ← time of the next transition

2: tw ← time to the next transition

3: t← current time

4: dt← fixed time step

5: Initialize the state vector for ion channels

6: procedure Gillespie update

7: Calculate rates and total rate for the transtions

8: Update the states return open fraction of channels

9: if (t == ts):

10: Recalculate the rates

11: Calculate tw

12: ts ← ts + tw

13: current = g(Gillespie Update)(V-E)

14: dett = min(t+ dt, ts)− t
15: Integrate dX

dt
∗ dett

16: t← t+ dett

2.8 Calcium channel opening failures

To test how AHP integrates over irregular and unreliable calcium signal we induce calcium

channel opening failures with a given probability. Calcium failures are modeled as individual

channel failures and as ensemble level or pulse failures.

Modelling calcium pulse failures

18



Ensemble level failures are calcium pulse failure. Each calcium pulse can be invisible

to the neuron and thus AHP current with a certain probability (failure rate). The calcium

current comes up again after the failed calcium pulse, and the failure is limited to the

duration of calcium pulse and is carried out by multiplying a voltage-dependent block on

the calcium current. In this case, all channels fail to open during the block. In the case

of an individual channel failure, each channel opening transitions fail with a certain failure

probability (failure rate), and thus only one channel fails to open.

2.9 insilico

insilico is a C++ based computational tool specifically designed developed to simulate neu-

rons. The deterministic model is implemented using insilico-0.25. Following is the illustration

of the structure and flow of simulations in insilico.

19



Figure 7: insilico execution and flow. Adapted from
http://www.iiserpune.ac.in/∼collins/insilico/.
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2.10 Analysis

To study the effect of various parameter on the switching dynamics, we look at the burst

length and the switching frequency of the neurons which is the primary functional read-out

of the motif.

Inter-spike interval and Firing frequency : The time difference between peaks of two consec-

utive action potentials is the inter-spike interval, and multiplicative inverse of the inter-spike

gives us the firing frequency of the neuron.

Inter-burst interval and switching frequency : When the burst terminates because of AHP

current, and other neuron takes over and inhibits the first neuron, the interval between the

last action potential from the last burst to the first action potential of the next burst of the

neuron is called interburst interval(IBI). The inverse of IBI is called switching frequency or

burst frequency. The action potential is detected if the voltage goes higher than 15 mV and

if such a detection happens after minimum of time difference of 15 msec after the last detec-

tion. A burst is detected when interspike intervals greater than twice of the last inter-burst

interval. To calculate the switching frequency, mean of a fixed number of burst lengths are

calculated.

Figure 8: Analysis: Peak detection and burst detection.

As a measure of regularity of bursts coefficient of variation is calculated where T is the

interburst interval, is given by

CV =

√
〈T 2〉 − 〈T 〉2

〈T 〉
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3 Results

The intrinsic timescales of the ion channels and synaptic connections interact to produce

regular network activity. In our context, the slow build of AHP current over multiple ac-

tion potentials when the network module is driven by external current along with synaptic

interaction betweens two neurons leads to alternation in activity between two neurons (Fig.

2). The characteristic length of the burst is determined by various neuronal and network

parameters such as the external current, AHP-calcium binding and unbinding rates, noise

levels and synaptic coupling between the neurons. Noise arising from different sources can

affect the network dynamics distinctly, and thus effect of each noise source needs to be in-

vestigated separately. We investigate the effect of current noise and channel noise on the

switching dynamics. It has been shown that the main source of stochasticity at the synapse

is calcium channel noise (Modchang et al., 2010). sAHP current which is calcium-mediated

potassium current determines the termination of the burst, making it crucial to study cal-

cium channel noise and how AHP current integrates over these stochastic calcium pulses to

achieve regular switching. Study of intrinsic noise arising from calcium channel fluctuations

involves how changing the level of stochasticity changes the network dynamics, the regular-

ity of switchings and the excitability of the neuron. We study the integrative properties of

the AHP by varying the number of calcium pulses the current integrates over by inducing

calcium pulse failures. The following sections describe the investigations about extrinsic and

intrinsic modulation of the switching dynamics in detail.

3.1 Characterisation of neuronal and network dynamics

Unconnected neuron fires over a large range of values of external current. We look at the

bifurcation properties of a biophysically detailed unconnected neuron where the external

current is the bifurcation parameter. The neuron undergoes subcritical and supercritical

Hopf bifurcation at current ∼ 10 muA/cm2 and current ∼ 150 muA/cm2 respectively. The

amplitude of oscillations decrease on increasing the current, and the firing frequency increases

on increasing the current.
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(a) (b)

Figure 9: Neuron bifurcation (a) The minima and maxima of voltage observed for varying external
current (b) The range of inter-spike interval for the corresponding neuron in (a).

Neurons which are part of the motif of two mutually inhibiting neurons due to the

synaptic coupling and characteristic properties of the ion channels present in the neurons

show alternating bursting activity for a given range of external current(13 muA/cm2 to 18.4

muA/cm2 ).

(a) (b)

Figure 10: : Network bifurcation (a) The voltage range for varying external current (b) The range
of inter-spike and inter-burst interval for varying external current for a neuron from the motif of
mutually inhibiting neurons. Range of activity of our interest is enclosed in red boundaries
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Dependence of switching frequencies on the AHP-calcium binding rate rb

(a) (b)

Figure 11: Switching frequency dependence on rb: (a) The switching frequency increases on in-
creasing rb (b) The AHP current builds up faster as rb is increased.

The switching frequency increases on increasing rb as the AHP is more sensitive to the

calcium pulses, which leads to faster build-up for the same level of calcium concentration.

The faster build-up of AHP causes the burst to terminate sooner, increasing the switching

frequency. For current value of 14 muA/cm2 the rb value for which switching is seen is

∼ 1(mMmsec)−1 to ∼ 9(mMmsec)−1

3.2 Extrinsic modulation

Modulation of switching frequency by driving current

The neurons we model are not inherent firing neurons and need to be driven by an excitatory

input to fire action potentials. For the given set of parameters described in the methods, on

increasing the external current, the firing frequency increases (Fig. 12 (b)). The switching

frequency shows a non-monotonic trend with increasing current (Fig. 12 (a)) due to two

opposite effects increasing current has on the neuronal dynamics. Increasing firing frequency

increases the calcium spike frequency (Fig. 12 (c)) which leads to a faster build-up of AHP

current. The AHP current has to achieve a higher threshold current to terminate the burst

due to increased external current and decreases the switching frequency (Fig. 12 (a)) as

it takes longer to reach a higher threshold current (Fig. 12 (a)). When the current is

further increased, the increased calcium spike frequency causing a faster build-up of AHP,

even though AHP current has to reach a higher threshold value and causes the switching

frequency to further increase by increasing the driving current (Fig. 12 (a)).
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Frequency modulation by current: (a) The switching frequency shows a non-monotonic
dependence on the external current (b) The firing frequency increases on increasing the current.
(c) The peak AHP open fraction reached increases monotonically on increasing the current. (d)
The difference in AHP open fraction during the burst is a read-out of the inter-burst interval of the
neuron. (e) The change in the open fraction of sAHP current shows a minimum at an intermediate
current value which indicates after which increasing current would increase the switching frequency.
(f) The change in AHP open fraction fraction per msec shows a minimum at an intermediate calcium
spike frequency. 25



Intermediate current values show the least change in open fraction per msec or rate of

AHP build-up(Fig 12 (e)). For an optimal range of calcium pulse frequency, the change in

open fraction per msec or rate of AHP build-up is minimum, suggesting that for a range of

optimal frequencies of calcium pulses over which AHP integration could be less to sensitive

to fluctuations (Fig 12 (f)). This minimum in AHP build-up rate also suggests that AHP

current could also be less sensitive to fluctuations at intermediate current values. To test this,

we add a zero mean white noise to the current. A minimum in CV is seen for intermediate

currents indicating a range of calcium spike frequencies for which the switchings are robust

to noise (Fig 13 (b)). Also for a higher noise amplitude, the switching frequency is higher

(Fig 13 (a)).

(a) (b)

Figure 13: Effect of noise on switching frequency modulation by current: (a) The switching fre-
quency is higher for higher noise levels and even in the presence of different noise levels a non-
monotonic dependence on current is seen. (b) The CV shows a minimum at intermediate current
values.
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Frequency modulation by external noise

(a) (b)

Frequency modulation by noise (a) The AHP build-up rate increases on increasing the noise am-
plitude (b) The swtiching frequency increases with increase in noise amplitude.

On increasing the noise amplitude, there are larger voltage fluctuations leading to larger

fluctuations in the calcium concentration. These larger fluctuations in calcium concentration

are noted by the sAHP current due to its fast rise timescale. But as the decay time scales

of the AHP current are long (Fig. 4 (a) ), the rise in AHP due to calcium fluctuations

accumulates over time and leads to a faster build-up of AHP current terminating the burst

earlier (Fig. 14 (a)). The CV monotonically increases as the noise amplitude is increased

without showing any stochastic resonance-like phenomenon (Fig. 14 (b)) and is not equal

to zero at zero noise because of the sampling error.
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(c) (d)

Figure 14: Frequency modulation by noise (a) The switching frequency increases as noise amplitude
is increased. (b) The coefficient of variation increases with increase in noise amplitude.

With a small loss of regularity, the addition of noise increases the range of switching

frequencies which the network motif can achieve by ∼ 400 % (Fig. 14 (a)). In this case,

noise is serving as a feature rather than the bug by helping the neurons to achieve switching

frequencies which were not possible with only changing the current.

3.3 Intrinsic modulation of switching dynamics

Studies have shown the stochasticity arising from channel fluctuations can change the neu-

ronal excitability, firing thresholds and reliability of neuronal activity (White et al., 2000).

It is known that when the number of channels the current is recorded from is increased,

the fluctuations in the current from the ion channels become smaller and for very large

channel numbers the current can be modeled deterministically (Fig (25)). In neurons, a

small number of ion channels dictate the neuronal dynamics, and it is essential to study

how the stochastic current from these small number of ion channels determine the switching

dynamics. We study the effect of channel noise by systematically varying the number of

ion channels present in the neuron by keeping the total flux through all the ion channels

constant. Due to the slow time scales associated with the AHP current which is a calcium-

mediated potassium current, it is sensitive to the calcium fluctuations which arise due to

VGCCs channel fluctuations and has a long memory of these fluctuations. We study the

effect of calcium channel noise and AHP channel noise separately. To study the effect of

the stochastic opening of calcium channels which known to be the biggest contributor to the

stochasticity in neurons, we first implement VGCC’s Markovian description using Tandem
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Progression Gillespie algorithm as described in methods.

Effect of calcium channel noise on the switching dynamics

For an unconnected neuron at a current constant of 14 µA/cm2 and constant calcium

channel conductance of 0.15 mS/cm2 increasing the number of calcium channels decreases

the stochasticity in calcium channel opening (Fig. 26). With TGP we see that the open

fraction reaches higher open fraction than the deterministic case for a small number of

channels (Fig. 28).

(a) (b)

Figure 15: Dynamics at different numbers of calcium channels. (a) Variation in switching frequency
due to changing the number of calcium channels (b) CV of inter-burst intervals for varying the
number of calcium channels.

For a connected neuron, we see that the switching frequency follows a non-monotonic

trend with increasing VGCCs (Fig. 15 (a)). The CV of switching decreases with increasing

channel numbers (Fig 15 (b)). The switching frequencies are proportional to the peak open

fraction achieved during calcium pulse (Fig. 15 (a)) and (Fig. 28 (a)). The fluctuations

become smaller, and the switching frequency decreases as the number of VGCCs is increased

(after 100 channels). The waiting times from the Gillespie algorithm become shorter as the

number of VGCCs are increased. When the number of VGCCs is further increased the fluc-

tuations become smaller but happen more often. Due to the slow time-scales of the AHP

current, these closely spaced fluctuations add up in AHP current leading to a faster build-up

of AHP current. Due to increasing frequency and decreasing amplitude of fluctuations with

increasing the number of VGCCs, which have opposing effects on the switching frequency,

this non-monotonic trend is observed in the switching frequency.
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Effect of calcium pulse failures on switching dynamics

To study the rate-coding properties of the AHP current, we induce calcium pulse failure

with a given probability of failure. Higher the failure rate causes fewer calcium pulses, and

less regular calcium pulses being integrated by the AHP current. Increasing calcium pulse

failure rate decreases the switching frequency as fewer calcium pulses are noted by the AHP

open fraction, leading to a slower build-up of AHP current(Fig. 16 (a)) and AHP current

has to integrate over more calcium pulses to achieve the threshold current to terminate the

burst. Increasing the rate of failures increases the CV of switching increases due to more

irregular calcium spikes (Fig. 16 (b)).

(a) (b)

Figure 16: Effect of calcium failures on switching dynamics: (a) The switching frequency decreases
on increasing the calcium pulse rates for different channel numbers. (b) The CV of IBI for changing
failure rates.

There is a linear decrease in switching frequency with increasing the failure rate, and a

similar trend is seen for various random instantiations of the calcium pulse failures occurring

anywhere during the epoch of the burst. This indicates that AHP current is counting the

number of calcium pulses and can be insensitive to the temporal order of the calcium pulses.

This result needs to be further rigorously tested.
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(a) (b)

Switching dynamics at three trials of calcium pulse failures. (a) The mean switching frequency
for changing three different trials of calcium pulse failures for various failure rate.. (b) The CV of
interburst intervals for different failure rates.

Changing external current with the stochastic calcium has the same effect (Fig. 17)

as changing the external current with the deterministic model (Fig 12, 13). The switching

frequency is non-monotonically dependent on the external current and higher the failure rate

lower the switching frequency. (Fig 17 (a,c,e)). The CVs of switchings show a minimum at

intermediate current values for different numbers of ion channels and failure rates.
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(c) 1000 channels (d) 1000 channels

(e) 300 channels (f) 300 channels

(g) 50 channels (h) 50 channels

Figure 17: Effect of increasing current on switching dynamics with different failure rates: (a),(c),(d)
show the effect of increasing current on the switching frequency for different numbers of calcium
channels. (b),(d),(f) show how CV changes with increasing current for different failure rates and
numbers of calcium channels.
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For a fixed failure rate of 0.3, the CV of switching decreases with increasing channel

numbers (Fig. 18 (b)) . The switching frequencies change non-monotonically with increasing

calcium numbers.(Fig. 18 (a))

(a) (b)

Figure 18: Dynamics at different numbers of calcium channels for a failure rate 0.3 (a) The mean
switching frequency for changing the number of calcium channels. (b) The CV of interburst intervals
for different numbers of calcium channels.

Effect of calcium channel opening failures on switching dynamics

Inducing individual channel failures decreases the peak calcium coming in through the

VGCCs as fewer channels open when an action potential takes place(Fig. 19 (d)). The

switching frequency decreases on increasing the per channel failure rate(Fig. 19 (a)). The

CV of the inter-burst intervals also decreases with increasing per channel failure rate(Fig. 19

(b) ). The peak of the AHP open fraction which terminates the burst reduces on increasing

the failure rate (Fig. 19 (c) ). The change in open fraction during burst increases as the rate

of failure increases. The CV of IBI is proportional to the peak calcium concentration(peak

of the open fraction of VGCCs ). (Fig. 19 (d)), suggesting and reconfirming that amplitude

of pulses and fluctuations is proportional to the CV of IBI. (Fig. 19 (d)) and (Fig. 14 (b)).

The decrease in the CV with increasing per channel failure rate remains to be explored, and

further study would be done to investigate it.
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(a) (b)

(c) (d)

Figure 19: Effect of calcium channel failures on switching dynamics (a) Variation of switching
frequency as failure rate is varied. (b) CV of interburst interval for different failure rates. (c)
The peak AHP open fraction achieved with changing failure rate. (d) The representative calcium
concentration decreases with increasing failure rate.

At a fixed per channel failure rate of 0.3, we see similar switching frequency trend (Fig.

20 (a)) on changing calcium number as seen for no failure (Fig. 15 (a)). The switching

frequency is lower because of the lower calcium concentration (Fig. 19 (d)). The CV of

switching decreases with increasing channel numbers

34



(a) (b)

Figure 20: Dynamics at different numbers of calcium channels for a per channel failure rate of 0.3
(a) The mean switching frequency for changing the number of calcium channels. (b) The CV of
interburst intervals for different number of calcium channels.

Effect of AHP channel noise on switching dynamics

(a) (b)

Figure 21: Dynamics at different numbers of AHP channels. (a) The mean switching frequency for
changing the number of AHP channels. (b) The CV of interburst intervals for different number of
AHP channels.

The switching frequency decreases with increasing the number of AHP channels. There

are larger fluctuations which could lead to reaching the threshold current with a small num-

ber of random fluctuations when the number of AHP channels are small. As we increase the

number of AHP channels the fluctuations in AHP current become smaller and the switching
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frequency and the CV decrease on increasing the number of AHP channels.

4 Discussion

In this study, we investigate the effect of different sources of noise on the regularity of the

switching of activity in two mutually inhibiting neurons. Previous studies have looked at

the regularity of the neuronal firing, oscillations and bursting in the presence of extrinsic

noise and in some cases intrinsic noise (McDonnell and Abbott, 2009; Schmid et al., 2001;

Wang, 1998; Nesse et al., 2008b,a). We look at both extrinsic and intrinsic noise using a

very detailed and accurate implementation of intrinsic channel noise and how it affects the

reliable neuronal and network activity. In order to do so, we developed a new algorithm TPG,

which we believe accurately captures and simulates the channel fluctuations and different

timescales associated with the fluctuations and currents in the neuron.

We show that for the same mean current value, different frequencies and amplitudes of

fluctuations affect the mean read-out of the network activity, i.e., switching frequency when

slow time-scales are involved. What we hypothesized and now show in this study is that

slow decay timescales associated with AHP current integrate over calcium fluctuations to

produce regular network activity.

4.1 Extrinsic modulation of switching dynamics

It has been previously shown that various extrinsic factors modulate the switching frequency

of two mutually inhibiting neurons (Skinner et al., 1994). Our results show that increasing

external current can either increase or decrease the switching frequency (Fig. 12) due to two

competing effects of increasing the external current depending on the properties of the AHP

current. These biophysical properties such as the channel conductance and calcium binding

rates are modulated by neuromodulators (Schwartz et al., 2005). The neurons can achieve

different switching dynamics of the network for the same driving current due to the action

of neuromodulators. Thus it would be interesting to study the role of 5-HT in maintaining

the reliability of the switching (Kozlov et al., 2001).

We see that noise enhances the dynamic range of the network (Fig. 14 (a)) which is in

accordance with the previous study(Nesse et al., 2008a) where noise increases the range of

switching frequencies by increasing the parameter range which shows switching. In our case

widening of the switching frequency happens even without increasing the parameter range

over which switching is seen. Thus noise serves as a feature in this system rather than a bug.

36



We study the effect of changing the driving current, and current noise amplitude on the

switching dynamics and find that for certain frequencies of calcium spikes, the network is

more robust to current noise, and the switching is more regular (Fig. 13). Robust switch-

ings in the presence of noise over certain frequencies of calcium pulses indicate a match

between the calcium spike frequencies, fluctuation time scales, and AHP integration time-

scales. These insights suggest that the frequency of calcium spikes and amplitude of calcium

fluctuation dictate the reliability of the switching in neurons and AHP current integrates over

fluctuations more robustly at certain frequencies to help neurons achieve reliable switching.

A similar mechanism via match in timescales of fluctuations and AHP current and slow

integrative properties of AHP current could explain the regular switching seen in many sys-

tems such as the Lamprey locomotion CPG and pre-Botzinger complex (Nesse et al., 2008b;

Cangiano and Grillner, 2004).

4.2 Effect of intrinsic noise

We studied the effect of channel noise from calcium channels and AHP channels on the

switching dynamics. With varying calcium channel numbers we saw that the switching

frequency is higher (Fig. 15 (a)) for a small number of ion channels due to large channel

fluctuations. The higher switching frequency is seen for a range number of calcium channels

( ∼ 50 - 300), which also is a realistic estimate for the number of L-type calcium channels

present in the neuron. Such higher switching frequencies could indicate optimal activation

the CPGs by noisy calcium currents and could explain why the rat spinal cord locomotor

CPG is optimally activated by noisy waveforms (Taccola, 2011). The dependence of the

switching frequency on the frequency and amplitude of fluctuations (Fig 15) gives a novel

insight that even for a very large number of ion channels when the current fluctuations are

smaller, fluctuations cannot be ignored as they change the switching dynamics significantly.

Even for very large number of ion channels, the switching frequency is still higher than the

deterministic switching frequency due to the highly frequent small fluctuations in the calcium

current.

The linear dependence of switching frequency on the failure rate over multiple random

instantiations of the pulse failures (Fig. 16), suggests that AHP current can be a pattern

insensitive integrator of spike number. It has been shown that slow afterhyperpolarization

which arises from Na+1/K+1 pump dynamics can act as an integrator of spike number

and serve as cellular memory on the time scales of the cycle periods of the locomotion

rhythms (Pulver and Griffith, 2010). Also, studies have shown that a short-term memory

in the form of changed excitability arises from potassium currents with slow inactivation
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(Turrigiano et al., 1996; Marder et al., 1996). It is interesting to investigate if sAHP arising

from calcium-mediated potassium channel would give rise to cellular short term memory and

pattern insensitive integration of spikes as these channels are implicated in modulating the

synaptic plasticity and memory encoding by changing the excitability in hippocampal CA1

Pyramidal cells (Stackman et al., 2002).

We induced single or per calcium channel failures and by varying the per channel failure

rate we see that the switching frequency and CV of switchings decreased with increasing

failure rate(Fig 19). Increasing the failure rate results in fewer channels being employed and

open which results in lower open fraction and lower calcium peak values (Fig 19). Varying

the number of channels being employed can change excitability and the spiking threshold

of the neuron (White et al., 2000). Thus varying the rate of per channel failure could be

changing the excitability of the neuron, and it would be interesting to study it further how

changing excitability of neurons could modulate the regularity of the switchings.

It is also interesting to note that the AHP and calcium channel noise affect the switching

dynamics differently (Figs. 15, 21). The calcium channel noise does not modulate the

switching frequency range as much as the AHP channel noise which suggests that the neurons

due to the slow time-scales of AHP current can achieve robustness to the calcium channel

noise, which is the biggest source of stochasticity in the neuron to maintain regular switching.

4.3 Tandem Progression Gillespie Algorithm

For stochastic simulations, we used the TPG algorithm to account for all calcium channel

fluctuations. Though qualitatively the three algorithms (algorithm no. 1, 2, and 3, as

discussed before) show similar switching CV (Fig. 21, 22, 23), in a stochastic-deterministic

simulation paradigm it is important to look at the assumptions underlying the accuracy

of the method being used. When only one type of channels is modeled using Markovian

description, the waiting times given by the Gillespie algorithm will not capture the whole

neuronal dynamics, which could lead to missing out on accurately capturing the fluctuations.

Previously described methods are valid under the assumption that rates do not change

significantly during the waiting time. From unpublished data Mahajan et. al, for a small

number of channels, the waiting times are long, and many events take place in the meantime,

which would not be taken into account by the channel being modeled using standard Gillespie

algorithm. Such a paradigm would not accurately model the effect of stochasticity on the

neuronal dynamics. From the external noise simulations, we know that when slow temporal

dynamics of ion channels are involved, the fluctuations cannot be ignored as they change the

dynamics significantly. Thus to take into account every fluctuation and to evolve the system
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at reasonable time intervals so as to not miss the fast neuronal dynamics we use the TPG

algorithm.

(a) (b)

Figure 22: Tandem Progression Gillespie Algorithm: (a) Variation in switching frequency due to
changing number of calcium channels (b) CV of inter-burst intervals for different number of calcium
channels.

(a) (b)

Figure 23: White and Chow Gillespie Algorithm: (a) Variation in switching frequency due to
changing number of calcium channels (b) CV of inter-burst intervals for different number of calcium
channels.
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(a) (b)

Figure 24: Goldwyn and Shea-Brown Gillespie Algorithm: (a) Variation in switching frequency due
to changing the number of calcium channels (b) CV of inter-burst intervals for varying the number
of calcium channels.

It is interesting to note though multiple algorithms show lower CV with increasing num-

ber of calcium channels, the switching frequency dynamics are different for TPG (when all

fluctuations are taken into account) compared to the other algorithms(Fig 22,23,24 (a)). The

CVs of switching are lower for small channel numbers for simulations using TPG compared

to other methods (Fig 22,23,24 (b)). We believe that TPG algorithm simulates the stochastic

dynamics accurately and we are testing the accuracy of the algorithm rigorously. The lower

CV for a small number of ion channels (Fig 22,23,24 (b)) seen in the case of TPG compared

to other algorithms, i.e. when fluctuations are taken into accurately, further strengthens our

result that indeed the slow timescales of AHP are able to integrate over stochastic current

signals coming in from small number of ion channels in order to achieve reliable switching.

In conclusion, we see that for optimal frequencies of calcium current and fluctuations,

the slow decay time scales of AHP current enable the neurons to produce regular switching

behavior. The new insights that we gained from this study would help in understanding how

neuronal networks achieve robustness to noise and help in understanding effects of noise and

accurately modeling noise in a wide variety of systems.

4.4 Future directions

We want to expand our model into the Lamprey locomotion CPG to study the effect of in-

trinsic and extrinsic noise on the locomotion dynamics using insights from the present study

(Kozlov et al., 2001).
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Our preliminary simulations suggest cumulative recruitment of open sAHP channels for

a range of intrinsic noise amplitudes driven by stochastic fast timescales of opening relative

to a slower closing rate. We want to explore if this could be a competitive mechanism that

could lead to eventual faster motion instead of recruiting more neurons.

We want to investigate if sAHP arising from calcium-mediated potassium channel would

give rise to cellular short term memory by changing the excitability for the neuron. We want

to study how noise modulates the information content in the burst (Izhikevich et al., 2003).

As our results suggest that AHP can act as a pattern insensitive integrator of spikes, we

want to explore the rate coding properties of this AHP current.
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6 Appendix

Effect of varying rb at different noise amplitudes.

(a) (b)

Figure 25: rb and noise: (a) Switching frequency as a function of rb for different noise levels. (b)
CV of IBI for different rb values.

At resting membrane potential the fluctuations in the open fractions die down as number

of calcium channels are increased.

(a) (b)

Figure 26: Resting voltage dynamics: (a) The open fraction of VGCCs at V = - 65 mV for different
numbers of calcium channels (b) CV of open fraction decreases as number of calcium channels
increase.

VGCC dynamics of unconnected neuron at different channel numbers.
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(a) (b)

Figure 27: Unconnected neuron stochastic dynamics: (a) The mean open fraction of VGCCs for
different numbers of calcium channels (b)CV of open fraction decreases as number of calcium
channels increase.

VGCC dynamics of connected neuron at different channel numbers.

(a) (b)

Figure 28: Connected neuron stochastic VGCC dynamics: (a) The peak of open fraction of VGCCs
for different numbers of calcium channels (b) CV of open fraction peak decreases as number of
calcium channels increase.
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