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Abstract

A T -variety is an algebraic variety X with an effective torus action T . The number
c(X) = dim(X)−dim(T ) is called complexity of T -variety X. Altmann, Hausen and Süss
have described these spaces in terms of pp-divisor and divisorial fans. This description of
a T -variety involves a variety of dimension c(X) and some combinatorial data encoded in
the form of pp-divisors, i.e., divisors where the coefficients come from the Grothendieck
group associated with the semigroup of polyhedra having a common tail cone. In case of
complete T -variety with c(X) = 1, Ilten and Süss have described these spaces in terms
of marked fancy divisor. Through this combinatorial description of a T -variety, Ustøl
Nødland has provided an description of the Chow group of X.

In the first part of the thesis we study the computation of the equivariant Chow
group of T -variety X with c(X) = 1. This computation involves the following steps. For
a complete complexity 1 T -variety X, we compute combinatorial description of X×EN

T as
a T -variety, where EN

T is Nd-dimensional space approximating the contractible space on
which T acts freely. Subsequently, through the application of a downgrading technique,
we introduce a structure of a T -variety of complexity 1 on the quotient space X×EN

T

T
. By

using combinatorial criterion of completeness of a T -variety, we have proved that if X is
complete then the quotient space X×EN

T

T
is complete. Once it has a complete, complexity

1 T -variety structure, one can use Ustøl’s result to compute Chow group of X×EN
T

T
.

For an affine T -variety X with the action of a torus T , denoted temporarily, by
T ↷ X. Assume that T ′ is a subtorus of T . Then X is a T -variety with respect to the
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action of T ′, T ′ ↷ X. T ′ ↷ X is called a downgrading of T ↷ X. The second part
provides a combinatorial description of T ′ ↷ X, in terms of a T/T ′-invariant pp-divisor.
We also describe the corresponding GIT fan.
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Introduction

The thesis has been divided into two parts. The first part includes Chapter 2 to Chapter
4. In the first part, we study the T -equivariant Chow groups of a complete complexity 1
T -variety. The second part is Chapter 5. In the second part, we describe the GIT fan and
torus invariant pp-divisor of an affine T -variety with respect to a subtorus of the large
torus. Throughout the thesis, by a variety, we mean that integral, separated scheme of
a finite type over the field of complex numbers C. A T -variety is an algebraic variety X

along with an effective action of an algebraic torus T . The complexity of a T -variety is
the number c(X) = dim X − dim T . We are interested in T -varieties, and our approach
follows that of Altmann, Hausen, and Süss [AH, AHS]. This description of a T -variety
involves a variety of dimension c(X) and some combinatorial data encoded in the form
of pp-divisors, i.e., divisors where the coefficients come from the Grothendieck group
associated with the semigroup of polyhedra having a common tail cone. These data
are derived using Geometric Invariant Theory, as developed by Mumford and others
(see [MFK]), applied to the action of the torus on the variety. The general non-affine
T -varieties have been described in terms of divisoral fans, which are a generalization of a
fan. Quite a lot is known about these spaces, especially if the T -variety is of complexity
1.

The article [AIP+] provides a comprehensive summary of what is known about the ge-
ometry of T -varieties including divisors, cohomology of line bundles, intersection theory,
etc. Their topology, including a computation of Hodge-Deligne numbers, cohomology
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ring, and fundamental groups, were studied in [LLM]. Vector bundles over T -varieties
with compatible torus actions have also been studied by Ilten and Suß [IS1]. The algebro-
combinatorial data describing T -varieties make them a natural source of examples where
one can hope to compute various properties.

The natural question is whether one can compute various invariants for these varieties.
One such important invariant is the Chow group which also acts as a natural habitat for
characteristic classes like Chern classes to live in. This is an old question (see, for example,
the work on Chow groups of SL(2) embeddings by Moser-Jauslin [MJ], and Gonzales
[Gon]). Under certain conditions, Nødland computed Chow groups of T -varieties [Nød].
It was further studied by Botero [Bot]. Since we are in an equivariant setting, a natural
question is to ask if we can compute equivariant versions of these invariants. The study
of equivariant invariants of varieties have a rich history; see, for example, Timashev
[Tim1, Tim2]. Equivariant Chow groups, modeled after the equivariant cohomology of
Borel, were defined by Edidin and Graham [EG], extending previous work done by Briney,
Gillet and Vistoli. Note that these Chow groups can be interpreted as the Chow groups
of the quotient stack obtained from the action of the torus on the variety [Kre]. We shall
describe a way to compute these groups.

The first part of the thesis is organized as follows. Chapter 2 is a summary of the
notions we need. The theory of toric variety is reviewed in the section 2.1, followed by a
quick review of T -varieties and gluing of T -varieties in section 2.2 and 2.3, respectively.
We focus on complete complexity 1 T -varieties. Section 2.4 has been dedicated to the
different algebro-combinatorial descriptions of a complete complexity 1 T -variety. In this
section, we briefly recall the notions of marked fansy divisor and divisorial polyhedron.
Projectivization of a toric vector bundle serves as a valuable source of example of T -
variety. In Section 2.5 we briefly recall a combinatorial description of projectivization of
a toric vector bundle.

The Chapter 3 based on the papers [FMSS], [FS], [EG], and [Nød]. Let X be a T -
variety, and Ak(X) be the kth Chow group. The group AT

k (X) defined in the section
3.1(using invariant cycles of X).

Theorem 1.0.1. [FMSS, Theorem 1] If X is a variety with an action of a torus T , then
the canonical map AT

k (X) → Ak(X) is an isomorphism.

The initial definition of the equivariant Chow group of X relied solely on invariant
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cycles. However, it became evident that there is an insufficient number of invariant
cycles on X(See example in [EG, Section 3.5]) that possess desirable properties(homotopy
invariant,intersection product etc). Consequently, Dan Edidin and William Graham
[EG] introduced a novel definition of the equivariant Chow group. The kth-equivariant
Chow group of X is usual kth Chow group of the space (X × U)/T , where U is an
approximate classifying space for a torus T . For a torus T , we denote approximate space
by EN

T (Totaro’s approximation of ET ), where N is large enough integer. In section 3.2,
we study the space EN

T as a toric variety with a dense torus TE. Hence one can think of
(X × EN

T )/T as variety with (T × TE)/T ∼= TE action and use the above theorem;

ATE
k ((X × EN

T )/T ) → Ak((X × EN
T )/T ).

Let ΣE be a fan description of space EN
T . At the end of the Chapter 3 we prove the

following proposition.

Proposition 1.0.2.Suppose Y is a curve, T a torus and EN
T the Nd-dimensional space

approximating the contractible space on which T acts freely.

1. (Affine case) Suppose D = Pn
i=1 ∆i ⊗ {pi} is a pp-divisor on Y and X(D) is the

corresponding affine T -variety. For I ∈ TI (see equation (3.3)), define

DI =
nX

i=1

�
∆i × σI

�
⊗ {pi}

where σI is the cone defined in equation (3.4). Let SD be the divsorial fan generated
by {DI | I ∈ TI}. Then, X(D) × EN

T , considered as a complexity 1 T -variety under
the action of T × TE, is described by SD.

2. (General case) For a T -variety X = X(S), described by a divisorial fan S over a
curve Y , X × EN

T is desribed by the divisorial fan generated by {SD |D ∈ S} where
for each D ∈ S, SD is defined as in the affine case .

In short, the above proposition gives the combinatorial description of T × TE action
on X × EN

T as a complexity 1 T -variety.
Let us fix a few notations for a brief understanding of Chapter 4. Let Y be a smooth

curve, and let S be a divisorial fan. Let X = X(S) be a T -variety of complexity 1 with
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d dimensional torus acting on it. Note that T × TE acts effectively on X(S) × EN
T . The

Chapter 4 gives the main results leading to the computation of the equivariant Chow
groups using Ilten and Vollmert’s technique of downgrading [IV]. Using the downgrading
technique one can construct the base space fYC of X × EN

T as a T -variety, which is
birational to the quotient (X × EN

T )/T .

X̂ × EN
T X × EN

T

fYC

Y,

rE

πC

π

Lemma 1.0.3.The divisorial fan fSC over Y constructed in 4.2, gives us the TE-variety
fYC, which corresponds to the good quotient of X̂ × EN

T by the action of T .

For technical reasons we assumed that Y = P1, and X = X(S) is a complete T -variety
of complexity 1. We have obtained the following result.

Lemma 1.0.4.The T -variety YC constructed in 4.1 is complete and fits into a diagram.

X̂ × EN
T X × EN

T

fYC YC

P1,

rE

πC q

π

where rE is a T -equivariant birational proper morphism, and the maps q and πC are
geometric quotients.

We summarize the part first in the following steps.

1. A combinatorial description of X × EN
T as a complexity 1 T -variety with the torus
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T × TE.

X̂ × EN
T X × EN

T

Y.

rE

π

2. The TE-variety fYC which corresponds to the good quotient of X̂ × EN
T by the action

of T .

X̂ × EN
T X × EN

T

fYC

Y.

rE

πC

π

3. A construction of geometric quotient of X × EN
T by the action of T as a variety

with TE action.

X̂ × EN
T X × EN

T

fYC YC

P1.

rE

πC q

π

The space YC is complete, rational T -variety of complexity 1. The computation of
equivariant Chow groups of X is reduces to the computation of usual Chow groups of
YC . This is done in section 4.2 following Nødland [Nød]. Let X be a complete, rational
T -variety of dimension n+1 and S is associated divisorial fan over P1 with a tail Σ ⊂ NQ.
For each point p ∈ P1, we have a polyhedral complex associated with it(see Section 2.3
for more details), we denote this polyhedral complex by Sp. There are few important
facts about these polyhedral complexes,

• Only finitely many Sp are different from Σ.
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• The tail cone of Sp is Σ.

Let P be the set of all points in P1 with Sp is different from Σ (see Section 3.1 for more
details). For a description of a kth Chow group of X, consider the following sets:

• Rk = Cones of dimension n + 1 − k corresponding to subvarieties not contracted
by r .

• Vk = Non-contracted faces of dimension n−k of polyhedral subdivision correspond-
ing to the fiber of points in P .

• Tk = Cones of dimension n − k corresponding to subvarieties contracted by r.

The Chow group Ak(X) is obtained by the following exact sequence:

V ZVk ⊕ ZRk ⊕ ZTk Ak(X) 0 .

Where V is a lattice described in the Section 3.1. A natural source of T -varieties are
projectivization of a toric vector bundles. Consider a rank two toric vector bundle E on a
toric variety XΣ. Then, the projectivization P(E ) is complete complexity one T -variety.
Altmann, Hausen and Süss [AHS, Proposition 8.4] described P(E ) in terms of divisorial
fan. For X = P(E ), Nødland proved the following result:

|Rk| + |Vk| + |Tk| =




#Σ(n − k + 1) + 2#Σ(d − i), if i < n;
#Σ(1) + #P, if i = n;

i.e |Rk| + |Vk| + |Tk| is constant (right hand side of the above equation depends on Σ and
P ). From above we have proved the following result:

Proposition 1.0.5.For any rank two toric vector bundle E on a smooth toric variety XΣ

we have X = P (E ) and XE = X × EN
T /T ,The numbers |rk|, |vk|, and |tk| are associated

with XE then

|rk| + |vk| + |tk| =
i=kX

i=0
S ′

iSk−i,

where S′
i and Sk−i are define in the Section 4.3.

Let X be a T -variety. As mentioned, Altmann, Hausen and Süss [AH,AHS] described
these spaces in terms of pp-divisors and divisorial fans. For an affine X, Altmann and
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Figure 1.1: T -action

Hausen [AH] was constructed the pp-divisor using Geometric Invariant Theory and called
it GIT constructed pp-divisor ( [AH, Section 9]). Let X be an affine and let T ′ be a
subtorus of the torus T . In [AH, Section 11], Altmann and Hausen was determined
a pp-divisor description of X with the action of T ′, provided that dim(X) = dim(T ).
For dim(X) − dim(T ) = 1, In [IV, Theorem 5.2], Ilten and Vollmert constructed a pp-
divisor description of X with the action of T ′. In the same paper they predict that
such a construction should exist for general case but did not specify details. In Chapter
5 we prove that the GIT constructed pp-divisor is torus invariant. The Chapter has
been organized in the following way. In section 5.1.1, we define poset 5.1.1 for an affine
toric variety. By using the poset, we have described GIT-data for a toric variety and
downgraded affine T -variety. We illustrate this by the example 5.2.3.

Example 1.0.6 (5.2.3).Consider toric variety X = Spec(C[u, v, w, uvw−1]). Let T be
the largest torus and let T ′ be a subtorus of T , the torus inclusion is given by (t1, t2) 7→
(t1, t2, t1). The GIT fan of X with the action of T and X with the action of T ′ are in the
Fig 1.1 and 1.2 respectively.

The above example is a consequence of the following proposition.

Proposition 1.0.7.Let λT (u) be GIT cone associated with u ∈ M ( under the T -action)
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Figure 1.2: T ′-action

and λT ′(v′) be GIT cone associated to v′ ∈ M ′ ( under the T ′-action) then

λT ′(v′) =
\

i(u)=v′
i(λT (u)).

In section 5.3 and 5.3.1, we have proved that the base space Y ′ is T -variety and for
right choice of the section (s′, 5.3.1) there is a torus invariant pp-divisor D′ on Y ′ such
that X(D′) ∼= X. i.e,

Theorem 1.0.8.Consider an affine T -variety X with the action of the torus T , with
weight cone ω ⊂ MQ. Let T ′ be a subtorus of T , and the associated lattice map be
i : M → M ′. Then, there exists T

T ′ -variety Y ′ and a T
T ′ -invariant pp-divisor D′ on

(Y ′, N ′) with tail(D′) = i(ω)∨ such that X(D′) ∼= X.

The findings presented in the thesis correspond to the material covered in preprints
[DMM2] and [DMM1].

Notations and Conventions

Throughout the thesis, we follow the following notations and conventions, if not specified.

• C denotes field of complex number.

• Q denotes field of rational number.

• R denotes field of real number.
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• Z denotes set of integers.

• N denotes set of positive integers.

• for a lattice N , NQ = N ⊗Z Q is associated Q-vector space and NR = N ⊗Z R is
associated R-vector space.

• a variety is integral, separated scheme of finite type over a field C.

• a cone is strongly convex rational polyhedral.

• Σ denotes fan in NQ or NR.

• Σ(d) denotes d dimensional cones in the fan Σ.

• XΣ denotes toric variety associated to Σ.

• we will use same notation for a lattice homomorphism and the corresponding vector
space homomorphism.

• CaDiv(Y ) denotes group of Cartier divisors on Y .

• CaDivQ(Y ) = CaDiv(Y ) ⊗Z Q denotes group of rational Cartier divisors on Y .



2

Varieties with torus action

In this chapter, we briefly discuss normal varieties with a torus action and algebra-
combinatorial data associated with that. To begin, we will provide a concise review of the
fundamental concepts in algebraic geometry essential for comprehending the algebraic-
geometric aspects of algebra-combinatorial data..

Let X be a normal variety. A prime divisor D ⊂ X is an irreducible subvariety of
dimension dim(X) − 1. A Weil divisor is an element of Zdim(X)−1(X), where Zk(X) is a
free abelian group generated by k-dimensional subvarieties of X.

Notation 2.1.The field of rational functions on X denoted by C(X).

Let D be a prime divisor on X. The local ring corresponding to D is a discrete
valuation ring OX,D, with a quotient field C(X). We denote corresponding discrete
valuation by vD. If f ∈ C(X)∗ is a rational function, then the following divisor:

div(f) =
X

vD(f) · D

is called a principal divisor. Let D = P
aiDi be a Weil divisor and U ⊂ X, then the

following Weil divisor on U :
D|U =

X

U∩Di ̸=ϕ

U ∩ Di

is called a restriction of D to U .

10
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Definition 2.0.1. A Cartier divisor is a locally principal Weil divisor.

Two Weil divisors D and E are linearly equivalent if div(f) = D − E, for some
f ∈ C(X)∗. We denote it by D ∼ E.

2.1 Toric Variety

Definition 2.1.1. A normal variety with a torus as a dense open subset and action
extends to the variety is called toric variety.

Example 2.1.2.Let T = C[t1, t2, t3]t1t2t3 be a torus acting on C[x,y,z,w]
<xy−zw>

. The torus action
is given by,

(t1, t2, t3)(x, y, z, w) = (t1x, t2y, t3z, t1t2t
−1
3 w).

For a torus T = (C∗)d, M = Hom(T, C∗) is a character lattice of rank d. For m =
(m1, . . . , md) ∈ M , an associated character is denoted by χm, it is defined as:

χm : T → C∗, (t1, . . . , td) 7→ tm1
1 . . . tmd

d .

We briefly recall a combinatorial description of an affine toric variety. Consider the
following setup. Let M and N be a pair of dual lattices

⟨−, −⟩ : M × N → Z

and MR and NR are the associated R-vector spaces. Let NQ and MQ be the associated
Q-vector space.

Definition 2.1.3. A rational cone in NR is set

σ = Cone(S) =
(X

u∈S

λu · u

����� λu ∈ R≥0

)

where, S is a subset N . We say σ is polyhedral, if S is finite. We say it is strongly convex
or pointed if {0} is only linear space contained in σ.
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Remark 2.1.4.Also note that,

σ ∩ NQ =
(X

u∈S

λu · u

����� λu ∈ Q≥0

)

is strongly convex polyhedral cone in NQ i.e. only linear space contained in σ is {0} and
S is finite.

For this section, by a cone, we mean that strongly convex rational polyhedral cone.
Consider σ∨ ⊂ MR is dual cone of a cone σ ⊂ NR defined as

σ∨ = {m ∈ MR | ⟨m, u⟩ ≥ 0, ∀ u ∈ σ} .

Note that, dual cone of a rational cone is rational.

Definition 2.1.5. An affine semi-group S ⊂ M is saturated, if some positive integer
multiple of m ∈ M is in S then m is in S.

Definition 2.1.6. A face of a cone σ in NR is a set {u ∈ σ | ⟨m, u⟩ = 0} provided that
σ ⊂ {u ∈ NR | ⟨m, u⟩ ≥ 0} for some m ̸= 0 in σ∨. A face of a rational polyhedral cone is
rational polyhedral.

Notation 2.2.If σ′ is a face of σ, we denote it by σ′ ≺ σ or σ ≻ σ′.

Remark 2.1.7.For a rational cone σ, a face of σ is completely determined by m ∈
σ∨ ∩ MQ(cf [CLS, Proposition 1.2.8]).

Let C[Sσ = σ∨ ∩ M ] = L
u∈σ∨∩M

C · χu ⊂ C[M ] = L
u∈M

C · χu be a semi-group algebra
associated to σ. By Gordan’s Lemma ( [CLS, Proposition 1.2.17]), C[Sσ = σ∨ ∩ M ]
is a finitely generated M -graded, C-algebra. The cone σ is a strongly convex, hence
Sσ is a saturated affine semigroup. By [CLS, Theorem 1.3.5], Uσ = Spec(C[Sσ]) is
a normal variety and hence Uσ = Spec(C[Sσ]) is an affine toric variety. Conversely,
every affine toric variety has an associated strongly convex rational polyhedral cone. If
σ1 = {u ∈ σ2 | ⟨m, u⟩ = 0} is a face of a cone σ2 , then Sσ1 = Sσ2 +Z(−m). Thus we have
ring homomorphism

C[Sσ2 = σ∨
2 ∩ M ] → C[Sσ1 = σ∨

1 ∩ M ] = C[Sσ2 ]χm
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such that
χu 7→ χu

then associated morphism Uσ1 → Uσ2 is an open embedding.

Definition 2.1.8 (Fan). A finite collection of cones Σ with following properties:

• If σ2 ∈ Σ, and σ1 ≺ σ2 then σ1 ∈ Σ

• If σ1 and σ2 are elements of Σ then σ1 ∩ σ2 ≺ σ1 and σ1 ∩ σ2 ≺ σ2

is called a fan.

By [CLS, Proposition 3.1.3], if σ1, σ2 ∈ Σ then

Sσ1∩σ2 = Sσ1 + Sσ2 .

Thus,
C[Sσ1 ] C[Sσ1 ]χm = C[Sσ1∩σ2 ] = C[Sσ2 ]χ−m C[Sσ2 ]

Uσ1 (Uσ1)χm = Uσ1∩σ2 = (Uσ2)χ−m Uσ2

where m ∈ relint(σ∨
1 ∩ (−σ2)∨)

Let Σ be a fan. If σ1, σ2, and σ3 are elements of Σ then

σ1 ∩ σ2 ∩ σ3 ≺ σ1 ∩ σ2 ≺ σ1 ≻ σ1 ∩ σ3 ≻ σ1 ∩ σ2 ∩ σ3.

We have the following open embeddings,

Uσ1∩σ2∩σ3

Uσ2 Uσ1∩σ2 Uσ1 Uσ1∩σ3 Uσ3 .

Note that, all cones are strongly convex, hence 0 ∈ Σ. An affine toric variety correspond-
ing to {0} is a torus. Hence U0 → Uσ is an open embedding for all σ ∈ Σ. A variety
associated with Σ is obtained by gluing affine toric varieties Uσ, where σ ∈ Σ. We denote
it by X(Σ). From [CLS, Theorem 3.1.5], X(Σ) is a toric variety. Conversely, every toric
variety is of this form.
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Example 2.1.9.Consider the Example 2.1.2, take σ = Cone({e1, e2, e1 + e3, e2 + e3}).

C[Sσ] =
M

u∈σ∨∩M

C · χu = C[u, v, w, uvw−1] ≡ C[x, y, z, w]
< xy − zw >

where σ∨ = Cone({e1, e2, e3, e1 + e2 − e3}).

σ1

σ3

σ2

Figure 2.1: Fan Description of Projective Plane.

Example 2.1.10.Consider an example of a non-affine toric variety P2 given by
fan description shown in the following figure , where σ1 = Cone({e1, e2)}, σ2 =
Cone({e2, −e1 − e2)}, σ3 = Cone({e1, −e1 − e2}).

2.2 Affine T-varieties with higher complexity

From here on, we will work with the dual vector spaces MQ and NQ over field Q.

Definition 2.2.1. A normal variety X with an effective action of a torus T is called
T -variety of complexity dim(X) − dim(T ).

Example 2.2.2 ( [IV]).Let X be the hypersurface given by the equation x+x2y +z2 +w3

in C4 with C∗-action,
t · (x, y, z, w) = (t6x, t−6y, t3z, t2w).

This is complexity 2 affine T -variety.

Definition 2.2.3 (Morphism of T -varieties). Let X and X ′ be T -varieties with tori
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action T and T ′. A morphism ψ : X → X ′ is called T -equivariant morphism if ψ along
with a morphism ψ̇ : T → T ′ such that ψ(t · x) = ψ̇(t) · ψ(x).

Example 2.2.4.Let ψ1 : N → N ′ be a lattice homomorphism. Consider cones σ ⊂ NQ

and σ′ ⊂ N ′
Q such that ψ1(σ ∩N) ⊂ σ′ ∩N ′. Then we have following ring homomorphism

C[M ′] → C[M ] such that χu′ 7→ χu′◦ψ1

where M and M ′ are dual lattices of N and N ′ respectively. This map restricts to

C[Sσ′ ] → C[Sσ]

hence we have the following morphism of toric variety:

ψ̇ : Spec(C[M ]) → Spec(C[M ′]) and ψ : Uσ → Uσ′ .

In the following step, we will revisit the concept of a proper polyhedral divisor. But
first, let’s examine the following example:

Example 2.2.5.Let A = L
u∈Z≥0

Au be an integral, finitely generated, Z-graded, C-algebra.

Then integral closure of A is completely determined by the Proj(A) and O(1), i.e

Ā =
M

n∈Z≥0

Γ(Proj(A), O(1)⊗n).

Note that, Y := Proj(A) is a semi-projective variety, and the normal variety Spec(Ā)
is completely determined by Y and collection of line bundles on Y .

Definition 2.2.6 (Semi-projective Variety). A variety which is projective over its global
section is called a semi-projective variety.

The line bundle of a Cartier divisor
Let D be a Cartier divisors on a normal variety Y . If U is an open subset of Y , then

OY (U) = {f ∈ C(Y )∗ | div(f)|U ≥ 0} ∪ {0} ,
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and
OY (D)(U) = {f ∈ C(Y )∗ | (div(f) + D)|U ≥ 0} ∪ {0} .

By [CLS, Proposition 8.0.7], a Weil divisor D on Y is Cartier if and only OY (D) is a line
bundle on Y . Conversely, every line bundle is isomorphic to OY (D), for some Cartier
divisor D on Y (See [CLS, Theorem 6.0.20] for more details).

Definition 2.2.7. A half space in NQ is set {u ∈ NQ | ⟨m, u⟩ ≥ 0} for some m ∈ MQ

Definition 2.2.8. A polyhedron in NQ is a intersection of finitely many half spaces in
NQ.

A tail cone, tail(∆), of any polyhedron ∆ ⊂ NQ is defined as

tail(∆) := {v ∈ NQ | v + ∆ ⊆ ∆} .

Given a cone σ ⊂ NQ, a σ-polyhedron is a polyhedron whose tail cone is σ. Let σ be
a pointed cone in NQ and Pol+σ (N) is a collection of σ-polyhedra; with respect to the
Minkowski sum, it is semi-group. The Grothendieck group of Pol+σ (N) is denoted by
Polσ(N).

Definition 2.2.9 (Polyhedral Divisor). A polyhedral divisor with a tail cone σ ⊂ NQ on
a normal variety Y is a formal sum D = P∆Z ⊗ Z with only finitely many ∆Z different
from σ, where P runs over all prime divisors on Y and ∆Z ∈ Polσ(N).

For u ∈ σ∨, there is a map ⟨u, −⟩+ : Pol+σ (N) → Q such that

∆ 7→ minv∈∆⟨u, v⟩.

Then ⟨u, −⟩+ induces a map ⟨u, −⟩ : Polσ(N) → Q. Let D = P∆Z ⊗ Z be a polyhedral
divisor and σ∨ ⊂ MQ be a dual of cone σ ⊂ NQ. For all u ∈ σ∨ we have,

D(u) =
X

⟨u, ∆Z⟩Z

is rational Weil divisor on Y . To a polyhedral divisor D, one can associate an M -graded
OY -algebra and an affine scheme. Consider sheaf of M -graded OY -algebras,

A (−) =
M

u∈σ∨∩M

Γ(−, OY (D(u))).
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Define, the affine scheme associated with D to be:

X(D) = Spec(A (Y )) = Spec
� M

u∈σ∨∩M

Γ(Y, OY (D(u))
�
.

Let D be a Weil divisor on Y and f ∈ Γ(Y, OY (D)), the non-vanishing locus of f is
Yf := Y \ Supp(div(f) + D).

Definition 2.2.10 (Semi-ample Divisor). A Weil divisor D on Y is semi-ample divisor,
if Yf cover Y, where f ∈ Γ(Y, OY (nD)) for some non-negative integer n.

Definition 2.2.11 (Big Divisor). A Weil divisor D is big, if some multiple of D has
non-vanishing locus.

Definition 2.2.12 (Proper Polyhedral Divisor or pp-divisor). Let Y be a normal alge-
braic variety and σ ⊂ NQ be a pointed cone. A proper polyhedral divisor with a tail
cone σ is a formal sum D = P∆i ⊗ Di , where Di are prime divisors of Y and ∆i are
σ-polyhedra with only finitely many ∆i different from σ, such that

1. for each u ∈ σ∨, the evaluation D(u) = P⟨u, ∆i⟩ · Di are semi-ample, rational
Cartier divisors on Y .

2. for each u ∈ relint(σ∨), the evaluation D(u) is a big divisor on Y .

We call D is pp-divisor on (Y, N) with a tail cone σ and denote it by tail(D) = σ.

The pp-divisor D on (Y, N) with tail cone σ corresponds to a convex, piecewise linear
map hD : σ∨ → CaDivQ(Y ) such that hD(u) is strictly semi-ample for u ∈ σ∨ and big for
u ∈ relint(σ∨),

hD(u) = D(u).

By [AH, proposition 2.11], every convex piecewise linear map h : ω → CaDivQ(Y )1, such
that h(u) is strictly semi-ample for u ∈ ω and big for u ∈ relint(ω) corresponds to certain
pp-divisor on (Y, N) with tail cone ω∨.

Definition 2.2.13. Suppose a T -variety is described by D on (Y, N). We call Y the
base space of the pp-divisor.

1A cone ω is a full dimensional cone in the lattice M , and let N be its dual lattice
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Let us recall two important theorems, [AH, Theorem 3.1] and [AH, Theorem 3.4] by
Altmann and Hausen.

Theorem 2.2.14 ( [AH]).Let Y be a normal semi-projective variety and D be a pp-
divisor on (Y, NQ). Consider OY -algebra A defined above 2.2. The algebraic torus T =
Spec(C[M ]), and the relative spectrum X̃ = SpecY (A ). Then the following statements
hold :

1. The scheme X̃ is a normal algebraic variety of dimension dim(Y ) + dim(T ), and
the grading of A defines an effective torus action T × X̃ → X̃ having the canonical
map π : X̃ → Y as a good quotient.

2. The ring of global sections A = Γ(X̃, OX̃) = Γ(Y, A ) is a finitely generated M-
graded normal C-algebra, and we have a proper, birational T -equivariant contraction
morphism X̃ → X with X = Spec(A).

X̃ X

Y.

r

π (2.3)

If r is identity map then we call X contraction-free.

Theorem 2.2.15 ( [AH]).Let X be a normal affine variety and suppose that T =
Spec(C[M ]) acts effectively on X with weight cone ω ⊂ MQ. Then there exist normal
semiprojective variety Y and pp-divisor on (Y, ω∨) such that we have an isomorphism of
graded algebra:

Γ(X, OX) ∼=
M

u∈ω∩M

Γ(Y, OY (D(u)))

We will briefly recall the construction of the base space Y , and a pp-divisor of the
form of a map D : ω → CaDivQ(Y ) in the chapter 5

Example 2.2.16 ( [AH]).Consider the following example of T -variety of complexity 1,

A = C[x, y, z,
x3 + y4

z
] ∼= C[x, y, z, w]

⟨x3 + y4 + zw⟩ .

Consider the following two dimension torus action on A,
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(t1, t2)(x, y, z, w) = (t4
1x, t3

1y, t2z, t12
1 t−1

2 w).

with respect to this action we have the following graded components,

A(4,0) = C · x, A(3,0) = C · y, A(0,1) = C · z, A(12,−1) = C · x3 + y4

z
.

The pp-divisor associated with this T -variety is D on (Y = P1, Z2) with σ =
⟨(1, 0), (1, 12)⟩ is,

D = ∆0 ⊗ {0} + ∆1 × {1} + ∆∞ ⊗ {∞} .

where ∆0 = (1
3 , 0) + σ, ∆1 = (−1

4 , 0) + σ, ∆∞ = ({0} × [0, 1]) + σ. See [AHS, Section 11]
for a construction of this pp-divisor.

Example 2.2.17 ( C∗-surfaces [AH]).Consider X = Spec(A) normal affine surface
with an effective C∗-action. Consider A = L

i∈Z Ai is grading induced by effective C∗-
action.We denote A− = L

i<0 Ai.

1. (Elliptic C∗-surface) A C∗-surface X is called elliptic if the C∗-action has an at-
tractive fixed point. Equivalently A0 = C and A− = 0. A pp-divisor associated with
this is given by projective curve Y and σ = Q≥0 and

D =
X

i

(σ + ui) ⊗ {yi} ,

where ui ∈ Q with finitely many different from 0 such that Pui > 0, yi ∈ Y .

2. (Parabolic C∗-Surface) If C∗-action has infinitely many fixed points. Equivalently
A0 ̸= C and A− = 0. Similarly In this case Y is affine curve, and σ = Q≥0,

D =
X

i

(σ + ui) ⊗ {yi} ,

where ui ∈ Q with finitely many different from 0 and yi ∈ Y .

3. (Hyperbolic C∗-Surface) If C∗-action has finitely many fixed points. Equivalently
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A+ = L
i≥0 Ai ̸= 0 and A− ̸= 0. In this case Y is affine and σ = {0},

D =
X

i

[ui, vi] ⊗ {yi} ,

with yi ∈ Y and ui ≤ vi and only finitely many ui and vi are different from 0.

2.3 Gluing of affine T-varities

First we are going to recall the morphism of pp-divisors, and then we will talk about a
divisorial fan.

Definition 2.3.1 (Plurifunction). Let Y be a normal semi-projective variety and N be a
lattice. A plurifunction with respect to Y and N is an element of C(Y, N)∗ = N ⊗C(Y )∗.

Definition 2.3.2 (Polyhedral Principal Divisor). A polyhedral principle divisor with
respect to σ ⊂ NQ of a plurifunction f = P

vi ⊗ fi is

div(f) =
X

(vi + σ) ⊗ div(fi)

Let Y and Y ′ be normal semiprojective varieties, N and N ′ be lattices. Let σ ⊂ NQ

and σ′ ⊂ N ′
Q be pointed cones. Consider the pp-divisor

D =
X

∆i ⊗ Di , D′ =
X

∆′
i ⊗ D′

i

On (Y, N) and (Y ′, N ′) respectively. Tail cones of D and D′ are σ and σ′ respectively.

Definition 2.3.3 (Polyhedral Pull Back). Let ϕ : Y → Y ′ be a morphism with none of
the supports Supp(D′

i) contains ϕ(Y ), the polyhedral pull back is polyhedral divisor

ϕ∗(D′) =
X

∆′
i ⊗ ϕ∗(D′

i).

Definition 2.3.4 (Polyhedral Push Forward). Let L : N → N ′ a linear map with image
of σ is subset of σ′, the polyhedral push forward is

L∗(D) =
X

(L(∆i) + σ′) ⊗ Di
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Definition 2.3.5 (Morphism of pp-divisors). A morphism D → D′ is a triple (ϕ, L, f)
where ϕ is dominant morphism from Y → Y ′, L is a linear map from N → N ′ and f is
plurifunction f ∈ C(Y, N ′)∗ such that,

ϕ∗(D′) ≤ L∗(D) + div(f).

From [AH, Proposition 8.6], for a morphism of pp-divisors D → D′, we have an
induced homomorphism X(D) → X(D′) of T -varieties is given by

Γ(Y ′, OY ′(D′(v))) → Γ(Y, OY D(L∗(v)))

where L∗ is dual map associated to L,

s → f(v)ϕ∗(s).

Following [AHS, Section 5], for the gluing of affine T -varieties, we will allow the empty
set ϕ as a coefficient to a pp-divisor with

ϕ + ∆ = ϕ , 0 · ϕ = σ.

Consider formal sum D = P∆D ⊗ D with D are prime divisor and we are allowing
empty coefficient to D. then defined locus of D as

Loc(D) = Y \
[

∆D=ϕ

D.

A formal sum D = P∆D ⊗ D is called pp-divisor if D ↾Loc(D) is a pp-divisor on
(Loc(D), N) with tail cone tail(D).

Let D = P∆D ⊗ D be a pp-divisor on (Y, N), with tail(D) = σ ∈ NQ. Consider a
T -variety X(D) = Spec(A), where A = L

u∈σ∨∩M Au induced by effective torus action on
X.

Definition 2.3.6 (Zero set and Principal set). For v ∈ σ∨ ∩ M and h ∈ Av,

Z(h) = Supp(div(h) + D(v)) , Yh = Y \ Z(h).
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For v we have face of ∆D given by set,

∆(D,v) = {u ∈ ∆D | ⟨v, u′ − u⟩ for all u′ ∈ ∆D} , tail(∆(D,v)) = σ ∩ v⊥.

Consider T -invariant open subset Xh = Spec(Ah), pp-divisor for this T -variety is

Dh =
X

∆(D,v) ⊗ D ↾Yh
:= ϕ ⊗ (div(h) + D(v)) +

X
∆(D,v) ⊗ D

Example 2.3.7 (Morphism of a pp divisors).The torus invariant inclusion Xh → X is
given by the morphism (ih, I, 1) : Dh → D, where ih is an inclusion map Yh → Y , I is
an identity of lattice homomorphism and 1 is trivial plurifunction.

Example 2.3.8.Consider a triple (idY , idN ,
P

ei ⊗ ti), where ti ∈ C∗. An automorphism
associated with the above triple is a multiplication automorphism t = (t1 . . . tn) : X(D) →
X(D) .

Consider two pp-divisors D = P∆D ⊗ D and D′ = P∆′
D ⊗ D on (Y, N) with

tail(D) = σ and tail(D′) = σ′ respectively.

Definition 2.3.9 (Intersection of pp-divisors). Intersection is defined as:

D ∩ D′ =
X

(∆D ∩ ∆′
D) ⊗ D.

Definition 2.3.10. We say that D′ is subset of D, i.e. D′ ⊂ D if ∆′
D ⊂ ∆D holds for

every prime divisor D (consequently σ′ ⊂ σ).

Definition 2.3.11 (Face of a pp-divisor D). A pp-divisor D′ is subset of D, we say D′

is face of D, if the morphism X(D′) → X(D) corresponding to an inclusion

M

u∈σ∨∩M

Γ(Y, OY (D(u))) ⊂
M

u∈σ′∨∩M

Γ(Y, OY (D′(u)))

is an open embedding.

Remark 2.3.12 ( [AH]).If D′ ≺ D then associated open embedding X(D′) → X(D) is
torus equivariant open embedding

Definition 2.3.13 (Divisorial Fan). A divisorial fan S is finite collection of pp-divisors,
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such that intersection of two pp-divisors is face for both, i.e., if D,D′ ∈ S then D ≻
D ∩ D′ ≺ D′ and if D ∈ S and D′ is a face of D then D′ ∈ S.

Note that, {tail(D) |D ∈ S} is fan and we say it is tail fan of S. Now we are going
recall [AHS, Theorem 5.3] briefly. Given a divisorial fan S, consider Di ∈ S and associated
affine T -variety Xi = X(Di). By definition of a face we have the following commutative
diagram,

X(D1 ∩ D2 ∩ D3)

X(D1 ∩ D2) X(D1) X(D1 ∩ D3).

hence we have associated variety

X(S) =
G

D∈S

X(D)/ ∼

with an effective torus action. Where ∼ is given by, x ∈ J12(X(D1∩D2)) ∼ J12◦J−1
21 (x) ∈

J21(X(D1 ∩ D2)).

X(D1) X(D1 ∩ D2) X(D2).J12

J21

Consider the following subdivision of a plane.

D1

D2

D3

D5

D4

D6

O

Figure 2.2: 0
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D1

D2

D3

D5

D4

D6

O

Figure 2.3: 1

D1

D2

D3

D5

D4

D6

O

Figure 2.4: ∞

Example 2.3.14 ( [AHS]).Consider the divisorial fan generated by 6 maximal pp-divisor

n
Di = δi

0 ⊗ {0} + δi
1 ⊗ {1} + δi

∞ ⊗ {∞}
��� 0 ≤ i ≤ 6, δi

p is Di component in p subdivision
o

.

Example 2.3.15.Consider A2 − {(0, 0)}, which is union of two hyperbolic C∗-surface.
Let Y = P1 be the base space. Consider the following divisorial fan

{Da,b = a {0} + b {∞} | a, b ∈ {1, ϕ} except a = b = 1} .

X(D1,ϕ) = Spec(C[x, y](x)), X(Dϕ,1) = Spec(C[x, y](y)), X(Dϕ,ϕ) = Spec(C[x, y](xy)).

In this paragraph, we will discuss the criterion for completeness for a T -variety X(S),
where S is a divisorial fan. This criterion contains notion of a slice. Lets recall that.

Definition 2.3.16. 1. A polyhedral complex is a finite collection of polyhedra which
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is closed under faces, and intersection of two polyhedra is a face of both.

2. Support of polyhedral complex is union of all polyhedra.

3. A polyhedral complex with support NQ is called complete subdivision of NQ or
complete.

Definition 2.3.17 (Slice). For each y ∈ Y , we define polyhedral complex

Sy = {Dy |D ∈ S} ,

where, for D = P∆D ⊗ D ∈ S, the polyhedron Dy = P
y∈D

∆D is a slice of D and Sy is a

slice of S.

Definition 2.3.18. A divisorial fan S is complete, if it’s base space Y is complete and
each slice Sy is complete.

From [AHS], we have criterion for completeness.

Theorem 2.3.19.A T -variety X(S) is complete if and only if S is complete.

From the above theorem, for a complete divisorial fan S(or equivalently for a complete
T -variety), we have an associated base space Y and a complete slice for each point of
Y (not necessarily closed). Conversely, if we have Y and for each point in Y we have
an associate complete polyhedral complex; then, can we construct a complete divisorial
fan?(or equivalently a complete T -variety?). Our next section is dedicated to answer
this question. A complete T -variety of complexity one X(S)(or equivalently a complete
divisorial fan) is completely determined by a combinatorial data given by base space and
complete slices.

2.4 Complexity one T -variety.

This section briefly discusses combinatorial data associated with a complexity one T -
variety. For a complete complexity on T -variety, we have a marked fansy divisor descrip-
tion. Before that let us recall some equivalent definitions. A divisor on a curve is big if
and only if it has a positive degree, and semiample if and only if it is big or some multiple
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is a principal divisor. From these equivalent definitions, we have an identical description
of a pp-divisor on a curve.

Definition 2.4.1 ( [AH]). Let D = P
p∈Y

∆p ⊗ p be a polyhedral divisor on (Y, N) with
tail cone σ, D is pp-divisor if the following holds:

1. A polyhedral divisor D = P∆p ⊗ {p}, with p are pairwaise disjoint closed points
and ∆p are polyhedron with tailcone σ and only finitely many different from σ.

2. A polyhedron, deg(D) = P∆p is a proper subset of the cone σ.

3. If evalu(deg(D)) := min⟨u, deg(D)⟩ = 0, then u is in on the boundary of σ∨, and
some multiple of D(u) is principle.

Definition 2.4.2 (Marked Fansy Divisor [IS2]). A marked fansy divisor on a curve Y is
a formal sum Ξ = PΞp · p with a fan Σ and some subset C ⊂ Σ, such that

1. Ξp is complete polyhedral subdivision of NQ and tail(Ξp) = Σ for all p ∈ Y . And
only finitely many Ξp are different from Σ.

2. For full-dimension σ ∈ C the polyhedral divisor Dσ = P∆σ
p ⊗ p is proper, where

∆σ
p is a unique element of Ξp with tail cone σ.

3. For σ ∈ C of a full dimension and τ ≺ σ we have τ ∈ C if and only if degDσ ∩τ ̸= ϕ.

4. If τ ≺ σ and τ ∈ C then σ ∈ C.

Elements of C are call marked or contracted cone. The set P := {p ∈ Y | Ξp ̸= Σ} is
call support of Ξ. For a complete divisorial fan one can associate marked fansy divisor.
For a divisorial fan S and for each p ∈ Y , we have a slice Sp then the associated marked
fansy divisor is Ξ(S) = P

Sp · p. Given a marked fansy divisor (Ξ, C ⊂ Σ), there is a
complete complete divisorial fan S generated by the set

{Dσ | σ ∈ C}
[



∆ ⊗ p +

X

q∈P,q ̸=p

ϕ ⊗ q

������
∆ ∈ Ξp ̸= Σ, and tail(∆) /∈ C



 (2.4)

such that Ξ(S) = Ξ.
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Remark 2.4.3.A complete divisorial fan on a curve is contraction free if and only if the
set of contracted cones is empty.

In the following paragraph, we briefly recall the construction of a divisorial fan from
a divisorial polyhedron ( [IV, Section 4]).

Definition 2.4.4. Let Y be a smooth curve, a divisorial polyhedron consists of a pair
(L,□), where □ is a polyhedron in MQ, and L is piecewise affine concave map from □ to
CaDivQY taking values in samiample divisors.

Let’s recall the construction of a complexity one T -variety from a divisorial polyhe-
dron. For any u ∈ □ and P ∈ Y prime, LinP : tail(□) → Q is defined by

LinP (v) = lim
λ→∞

LP (u + λ.v)/λ

and we set

□∗
P = {v ∈ NQ | (v, w) ≥ LinP (w) ∀w ∈ □}; and L∗

P : □∗
P → Q

L∗
P (v) = min

u∈□

 
⟨u, v⟩ − LP (u)

!

Then, for any P , Ξ(L∗
P ) is subdivision of □∗

P consisting of pointed polyhedra. Now
from the above construction, we can associate a divisorial fan. Define a set K = {P ∈
Y | LP ̸≡ 0} and E = P

P ∈K
P . Then the divisorial fan S is generated by

CL = {∆P ⊗ P + ϕ ⊗ (E − P )| P ∈ K, ∆P ∈ Ξ(L∗
P )}.

From remark 2.4.3 and equation 2.4:

Remark 2.4.5 ( [IV]).The divisorial fan S is a contraction free.

Definition 2.4.6 (Inner Normal fan). A inner normal fan of a polyhedron ∆ with a tail
cone σ ⊂ NQ is the linearity regions of the function

min ⟨−, ∆⟩ : σ∨ → Q.

Let us recall the definition of toric bouquets before ending this chapter. Let ∆ be a
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σ-polyhedron in NQ. The map

min ⟨−, ∆⟩ : σ∨ → Q

gives the inner normal fan which is a subdivision of σ∨. Define the C-algebra C[σ∨ ∩ M ],
note that the multiplication is given by

χu · χv =




χu+v, if u and v are in the same cone of inner normal fan
0, otherwise.

(2.5)

A toric bouquets is a scheme of the form TB(∆) := Spec(C[σ∨ ∩ M ]. Similarly toric
bouquets associated with a polyhedral complex S is TB(S) := F

∼
TB(∆), where ∼ is

given by the following diagram

TB(∆1 ∩ ∆2 ∩ ∆3)

TB(∆1 ∩ ∆2) TB(∆1)) TB(∆1 ∩ ∆3).

.

2.5 Projectivization of a toric vector bundle

Definition 2.5.1. A toric vector bundle on XΣ is a vector bundle π : E → XΣ, such
that the torus of XΣ acts on E such that the projection map π is torus equivariant and
action is linear on fiber.

Torus invariant divisor of a character
Let XΣ be a toric variety of the fan Σ in NQ. By [CLS, Theorem 3.2.6], there is one-

to-one correspondence between k dimensional cones in Σ and dim(X) − k dimensional
orbits in XΣ. Let us consider 1 dimensional cone ρ in Σ. The orbit closure corresponding
to ρ is a torus invariant prime divisor, and we denote it by Dρ. A minimal generator of
ρ is denoted uρ. A torus invariant Weil divisor is an element of ZT

dim(XΣ)−1(XΣ), Where
ZT

k (XΣ) is a free abelian group generated by k-dimensional torus invariant subvarieties
of XΣ. Similarly, torus invariant Cartier divisor is locally torus invariant Weil divisor.
Every Weil divisor on XΣ is linearly equivalent to torus invariant Weil divisor. The
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character χm is a rational function on XΣ, then divisor of a character is:

div(χm) =
X

ρ∈Σ(1)
⟨m, uρ⟩ Dρ.

By [CLS, Proposition 4.2.2], every torus invariant Cartier divisor on Uσ is the divisor of
a character.

Let π : V → X be a vector bundle of rank k. Then X has an open cover {Ui}
with isomorphism ϕi : π−1(Ui) → Ui × Ck. Furthermore, the transition map: tij ∈
GLn(Γ(Ui ∩ Uj, OX)) such that:

ϕi|π−1(Ui∩Uj) = (1 × tij) ◦ ϕj|π−1(Ui∩Uj),

where 1 × tij : (Ui ∩ Uj) × Ck → (Ui ∩ Uj) × Ck is gluing data. The map 1 × tij induces:

1 × t̄ij : (Ui ∩ Uj) × Pk−1 → (Ui ∩ Uj) × Pk−1.

This gluing data induces projective vector bundle π̄ : P(V ) → X.

Definition 2.5.2. A projectivization of a vector bundle π : F → X is:

P(F ) = P(F∨),

where F is the sheaf of sections of vector bundle π and F∨ is the dual of a vector bundle
F.

Note that, we are employing the concepts vector bundle of rank r and locally free
sheaf of rank r interchangeably. Given a rank r + 1 toric vector bundle F the variety
P(F ) can be consider as a complexity r T -variety. Let’s review the following findings for
future reference.

If a toric vector bundle F on X = XΣ split as sum of line bundle then P(F ) is a
toric variety. As our focus lies on the T-variety of complexity one, we shall now explore
the realm of rank two toric vector bundles. Let F be a rank two toric vector bundle on
XΣ. Given that each toric vector bundle on an affine toric variety splits into toric line
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bundles then we can express:

F |Uσ = OX(div(χu1
σ)) ⊕ OX(div(χu2

σ)).

In [AHS, Example 8.3], authors provides a combinatorial description of P(F ). Define
the following polyhedra:

∆1 =
n
v ∈ NQ

��� ⟨u1
σ − u2

σ, v⟩ ≥ 1
o

∆2 =
n
v ∈ NQ

��� ⟨u2
σ − u1

σ, v⟩ ≥ 1
o

∇1 =
n
v ∈ NQ

��� ⟨u1
σ − u2

σ, v⟩ ≤ 1
o

∇2 =
n
v ∈ NQ

��� ⟨u2
σ − u1

σ, v⟩ ≤ 1
o

.

Then the following polyhedral divisors are describing P(F |Uσ)

D1 = ∆1 ⊗ v1 + ∇2 ⊗ v2

D2 = ∇1 ⊗ v1 + ∆2 ⊗ v2.

where v1 and v2 are one dimensional vectors sub-spaces of fiber of a vector bundle which
appears in the Klyachko’S filtration for F on σ. Note that, vi is considered as a point
in projective line P1.
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Equivariant Chow groups and Approximate space

In this chapter, we recall the combinatorial description of Chow groups of toric variety
and Chow group of complete rational T -variety of complexity one. The main purpose of
this chapter is to construct a fan for approximate space with canonical torus action.

3.1 Chow groups

Let X be a variety, and let Zk(X) be a free abelian group generated by k-dimensional
subvarieties of X. Consider the subgroup of Zk(X) generated by div(f), where f is a
rational function on k + 1 dimensional subvariety of X, and we denote it by Rk(X). The
kth Chow group of X is denoted by Ak(X) and it is defined as

Ak(X) = Zk(X)
Rk(X) .

For a variety X, with a torus action T , the group AT
k (X) is defined as follows:

AT
k (X) = ZT

k (X)
RT

k (X) ,

where ZT
k (X) is a free abelian group generated by the torus invariant subvarieties of X,

and subgroup of ZT
k (X) generated by div(f), where f is a semi-invariant rational function

31
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on k + 1 dimensional torus invariant subvariety of X is denoted by RT
k (X) . Since T is

connected solvable linear algebraic group, the canonical map AT
k (X) → Ak(X) is a group

isomorphism(see [FMSS]). The generators of AT
k (X) are orbit closures. Suppose V is a

torus invariant subvariety of dimension k, then T · x = V , where x is generic point of V .

By [FS, Proposition 2.1], the Chow group AT
k (X) of a toric variety X = X(Σ) is

generated by all k-dimensional torus invariant subvarieties V (σ). Where V (σ) is a orbit
closure corresponding to the cone σ in Σ of codimension k. Hence we have the following
canonical surjective map

J :
M

codim(σ)=k

Z[V (σ)] → AT
k (X).

The kernel of map J is given the divisors div(χu), where χu is a semi-invariant rational
function on k + 1 dimensional torus invariant subvariety. Consider the following set;

S = {τ | τ ⊂ σ, codim(τ) = k + 1 , codim(σ) = k} .

For τ ∈ S, we denote M(τ) = τ⊥ ∩ M . Note that dim(σ) = dim(τ) + 1. Let N(σ) be a
lattice generated by the cone σ. For u ∈ M(τ);

div(χu) =
X

τ⊂σ

⟨u, vσ,τ ⟩ [V (σ)],

where vσ,τ is a lattice element of σ such that it’s image generates the one dimensional
lattice N(σ)

N(τ) . The Chow group AT
k (X) is completely determine by the following exact

sequence;
L

τ∈S
M(τ) L

codim(σ)=k
Z[V (σ)] AT

k (X) 0J ,

where u 7→ [div(χu)] is the definition of first arrow. See [CLS, Chapter 2] for more details.

The torus invariant subvarieties of a toric variety are of the form V (σ). Now we
will recall a description of torus invariant subvarieties for a complete complexity one
T -variety. Let X = X(Ξ) be a complete complexity one T -variety of dimension d + 1.
Let Σ be the tail fan of Ξ, and C be a set of contracted cone. Consider the following
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diagram;
X̃ X

P1.

r

π (3.1)

Consider the set P = {p ∈ P1 | Ξp ̸= Σ}. For p ∈ Loc(S) ⊂ P1, the fiber π−1(p) equals the
toric variety X(Σ) if p /∈ P , otherwise it is toric bouquet associated to Ξp. Let orb(p, F )
be the orbit of π−1(p) corresponding to F ∈ Ξp. The Chow group AT

k (X̃) is generated
by the class of k dimensional torus invariant subvarieties of the form orb(p, F ), and

dim(orb(p, F )) = dim(p) + codim(F ).

For any torus invariant subvarieties Z ⊂ X̃;

dim(r(Z)) =




dim(Z), if dim(π(Z)) = 0;
dim(Z) − 1, if dim(π(Z)) = 1 and Z is contracted.

(3.2)

Let us consider the following notations;

1. For any p and F ∈ Ξp, Wp,F = r(orb(p, F )).

2. For p /∈ P , and σ ∈ C, Wσ = r(orb(p, σ)).

3. For p /∈ P , the non contracted orbit closures are denoted by Bσ = r(orb(p, σ)).

We shall ensure that the size of P is at least 2 by appending extra points, if necessary.
For a non-negative integer k ≤ d + 1, we obtain the kth Chow group of a T -variety of
complexity one, consider the following sets

• Rk = Cones of dimension d + 1 − k corresponding to subvarieties not contracted by
r (i.e Bσ).

• Vk = Non-contracted faces of dimension d−k of polyhedral subdivision correspond-
ing to the fiber of points in P (i.e Wp,F , for p ∈ P , and tail(F ) /∈ C).

• Tk = Cones of dimension d − k corresponding to subvarieties contracted by r.
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Theorem 3.1.1. [Nød, Theorem 4.1] For a T -variety X = X(Ξ), the Chow group Ak(X)
is obtained by the following exact sequence;

L
F ∈Vk+1

M(F ) L
τ∈Rk+1

(M(τ) ⊕ ZP /Z) L
τ∈Tk+1

M(τ) → ZVk ⊕ ZRk ⊕ ZVk → Ak(X) → 0 .

Where M(τ) = τ⊥ ∩M , and M(F ) is the character lattice of a toric bouquets correspond-
ing to F .

First arrow is given by the following assignments;

1. If τ ∈ Tk+1,

u ∈ M(τ) 7→
X

dim(σ)=n−k,τ⊂σ

⟨u, vσ,τ ⟩ Wσ,

where σ ∈ Σ, with dim(σ) = dim(τ) + 1. And vσ,τ is a lattice element of σ such
that it’s image generates the one dimensional lattice N(σ)

N(τ) .

2. An element m ∈ M(F ) maps to the cycle

X

dim(G)=n−k,
F ⊂G, tail(G)/∈C

⟨m, vF,G⟩ Wp,G +
X

dim(G)=n−k,
F ⊂G, tail(G)∈C

⟨m, vF,G⟩ ttail(G)Wtail(G),

where vF,G generates N(F )
N(G) . The rational number tG is explained in the following

paragraph.

For tail(G) ∈ C, by [Nød, Lemma 3.4], the stabilizer of r(orb(p, tail(G))) is group
generated by the stabilizers of all orb(q, F ) such that tail(F ) = tail(G). We denote
the difference between the ranks of the stabilizer of r(orb(p, tail(G))) and stabilizer
of orb(p, tail(G)) by stail(G)(Please refer to [Nød, Section 3] for more details). For
tail(G) ∈ C, vtail(G) is the vertex of G corresponding to Btail(G) (contracted), and
µ(G) is the smallest integer such that vtail(G) is a lattice point. The number tG is
equal to stail(G)

µ(G) .

3. A generator of ZP

Z corresponds to [p] − [∞] maps to

X

F,tail(F )=τ

µ(vF )Wp,F −
X

F,tail(F )=τ

µ(vF )W∞,F
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where τ ∈ Rk+1 and vF is the vertex of F corresponding to Bτ (non contracted), and
µ(vF ) is the smallest integer such that vF is a lattice point. The divisor [p] − [∞]
is corresponding to a generator of ZP

Z .

4. For τ ∈ Rk+1, a point m ∈ M(τ) maps to

X

F ∈Vk,tail(F )=τ

µ(vF ) ⟨m, vF ⟩ Wp,F +
X

σ∈Rk,τ⊂σ

⟨m, σ̄⟩ Bσ

where the image of σ in N(τ) = N
Nτ

is σ̄.

For a schemes with an action of a group G, Totaro [Tot] and Edidin and Graham [EG]
define an equivariant Chow group, which we recall now. For an arbitrary group G, we have
the construction of a ∆-complex EG on which G acts freely on the left multiplication. We
denote BG = EG/G. The spaces EG and BG are usually infinite dimensional spaces.
For G = C∗, we have EG = C∞ \ {0} on which G acts freely and BG = P∞. But these
spaces are inexplicable in algebraic geometry. Nonetheless, we have algebraic varieties
Em = Cm \ {0} and Bm = Pm−1 which provide approximations to C∞ \ {0} → Pm−1.
For two groups G and H, E(G × H) ≡ EG × EH. For an algebraic torus of dimension
d we have ET = (A∞ \ {0})d and EN

T = (AN \ {0})d. Thus we denote quotient variety
(X × (AN \ {0})d)/T by XT .

Definition 3.1.2 (EN
T ). For T , an n dimensional torus ET = (A∞ \ {0})d is a space on

which T acts freely, we define Nd-dimensional space EN
T = (AN \ {0})d approximating

the contractible space ET on which T acts freely.

Definition 3.1.3 (kth-equivariant Chow group). For X, an d + 1 dimensional T -variety
of complexity one, and for k ≤ d + 1, the kth-equivariant Chow group is defined as the
usual kth Chow group of space XT i.e Ak(XT ).

3.2 A description of EN
T

.
In our case, we are lucky that the approximate space for a torus T of dimension d,

given by (AN \ {0})d is a toric variety. The next lemma will give a description of this
variety in terms of a fan. The cones of this fan are constructed as follows.
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Note that for a d-dimensional torus T , a finite dimensional approximation of the
classifying space is given by

EN
T =

 
AN \ {0}

!d

.

EN
T is a toric variety of dimension Nd, whose dense torus will be denoted by TE. The

fan describing EN
T as a toric variety can be constructed as follows.

Consider the Q-vector space QN with the standard basis e1, . . . , eN . Let θ be the cone
generated by {e1, . . . , eN}. Let TI be the set of tuples of numbers between 1 and N :

TI =
n
(i1, . . . , id) ∈ Nd

��� 1 ≤ ij ≤ N, for each 1 ≤ j ≤ d
o

. (3.3)

For each i ∈ {1, 2, . . . , N}, define σi to be the face θ ∩ ρ⊥
i where ρi is the ray generated

by ei. The cone σi is generated by e1, . . . , bei, . . . , eN , all the basis vectors except ei. For
I = {i1, . . . , ir} ⊂ {1, . . . , N}, let

σI = σi1,...,ir = δ1 × · · · × δd; (3.4)

where δi = σi if i ∈ {i1, . . . , ir}; and δi = 0 otherwise. Let ΣE be the fan generated by
these cones in QNd. The following lemma is evident.

Lemma 3.2.1.With notation, as described above, the toric variety corresponding to ΣE

is exactly EN
T =

�
AN \ {0}

�d
.

Suppose Y is a curve and S be a divisorial fan on Y . Suppose X = X(S) be the
corresponding affine T -variety (of complexity 1). We wish to describe X(S) × EN

T as a
T -variety. Observe that EN

T is a toric variety under the action of the torus TE. Being an
approximation of the classifying space, EN

T comes with a natural action of T . Thus we
get a diagonal action of T on X(S) × EN

T . We wish to compute the geometric quotient

(X(S) × EN
T )/T

Our idea is that the geometric quotient will be birational to the space of any pp-divisor
(see definition 2.2.13) representing X(S) × EN

T is considered as a T -variety under the
action of T . We end this chapter by describing X(S) × EN

T as a complexity 1 T -variety
under the action of T × TE.
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Lemma 3.2.2. [AIP+, Propositon 5] For two pp-divisors D′ = P∆′
i ⊗ D′

i on (Y ′, σ′ ⊂
N ′) and D = P∆i ⊗ Di on (Y, σ ⊂ N), define D×D′ = P(∆i × σ′) ⊗ (Di × Y ′) +P(σ ×
∆′

i) ⊗ (Y × D′
i) as a pp-divisor on (Y × Y ′, N ⊕ N ′). Then X(D×D′) = X(D) × X(D′).

Proposition 3.2.3.Suppose Y is a curve, T a torus and EN
T the space defined in the

definition 3.1.2.

1. (Affine case) Suppose D = Pn
i=1 ∆i ⊗ {pi} is a pp-divisor on Y and X(D) is the

corresponding affine T -variety. For I ∈ TI (see equation (3.3)) define

DI =
nX

i=1

�
∆i × σI

�
⊗ {pi}

where σI is the cone defined in equation (3.4). Let SD be the divsorial fan generated
by {DI | I ∈ TI}. Then, X(D) × EN

T , considered as a complexity 1 T -variety under
the action of T × TE, is described by SD.

2. (General case) For a T -variety X = X(S), described by a divisorial fan S over a
curve Y , X × EN

T is desribed by the divisorial fan generated by {SD |D ∈ S} where
for each D ∈ S, SD is defined as in the affine case (item 1).

Proof. This is an easy consequence of the description of product of T -varieties as a
T -variety (see, for example, [AIP+, Section 2.4]) which in turn follows from Künneth
formula [Gro, 6.7.8].



4
Main Theorem

In chapter 3, we described the combinatorial description of X(S) × EN
T as a complexity

one T -variety with T ×TE action. In the first few sections of this chapter we will describe
a combinatorial description of (X(S)×EN

T )/T as a complexity 1 T -variety and it’s Chow
group. In the last section we will see results on rank 2 vector bundles on toric variety in
the equivariant setup.

4.1 Computing the downgrade

Let Y be a smooth curve, and S be a divisorial fan. Let X = X(S) be a T -variety
of codimension 1. Note that T × TE acts effectively on X(S) × EN

T . By proposition
3.2.2, one can write down the following description of this T -variety. To compute the
torus-equivariant Chow group, we study

�
X(S) × EN

T

�
// T . We know that the base of

the pp-divisor in the description of X(S) × EN
T as a T -variety under the action of T is

birational to this quotient i.e. (X(S) × EN
T

�
// T birational to fYC .

X̂ × EN
T X × EN

T

fYC

Y,

rE

πC

π

38
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We compute this using downgrading following [IV]. For X = X(S) a T -variety with
a d-dimensional torus acting on it as above, let M be the lattice of characters for T and
N be the dual of M . Let ME and its dual NE correspond to the torus TE acting on EN

T .
We mention a few maps to make the description of the downgraded T -variety easier.
Consider the short exact sequence

0 ME M ⊕ ME M 0ι π

t

where ι and π are described in terms of the map I : ME −→ M which is given by the
matrix (with respect to the standard basis)

I =
�
I1 · · · Id

�

where each Ii for i = 1, . . . , d is a d × N matrix given by

Ii =
�
ei · · · ei

�
, i ∈ {1, . . . , d}

where ei is the i-th vector in the standard basis of Zd with 1 at the i-th position and 0
elsewhere. Now,

ι(b) = (−I(b), b) and π(a, b) = a + I(b).

Dualizing this, we also get a short exact sequence

0 N N ⊕ NE NE 0α ρ (4.1)

where the maps are described in terms of J : N −→ NE which is defined as

J =




J1
...

Jd


 .
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Here each Ji, i ∈ {1, . . . , d} is an N × d matrix of the form

JT
i =

�
ei · · · ei

�

where ei as above is the i-th element of the standard basis for Zd. With this notation,
we have

α(a) = (a, J(a)) and ρ(a, b) = b − J(a).

As before, let Y be a curve, T a torus, EN
T the corresponding approximate space and

X = X(S) be a complexity 1 T -variety, where the divisorial fan S is defined over the
curve Y . Let the divisorial fan describing X̃ := X × EN

T , computed in proposition 3.2.3,
be denoted by SX̃ . In this section, we aim to describe X̃ = X(SX̃) as a T -variety under
the action of T in terms of a semiprojective variety fYC and a divisorial fan SfYC

defined
over fYC . The construction follows [IV, section 5.1] closely. Recall that TE was the dense
open torus in EN

T (see 3.2). Denote T ×TE be T̃ . The inclusion T ,→ T̃ = T ×TE induces
a surjective homomorphism π : M̃ −→ M of the corresponding lattices of characters. Let
ME ≡ ker π and let us define the choices of sections and cosections of the short exact
sequences of lattices using the following diagram.

0 ME M̃ M 0

0 NE Ñ N 0

ι π

τ σ∗

τ∗

ρ

σ

Consider a pp-divisor D = P∆p ⊗ p ∈ S. Let ωD × σ∨
I ⊂ M̃Q be the weight cone of

the invariant open subset X(D) × UσI
of X̃ described as a T̃ -variety and observe that

π(ωD × σ∨
I ) = M . For u = 0 ∈ M , define (compare [IV, section 5.1]).

□u = τ
�
π−1(u) ∩ ω̃

�
and Ψu : □u −→ CaDivQ(Y )

by Ψu(u′) = D(u′ + σ∗(u)). Each Ψu is a divisorial polyhedron. For each domain of
linearity ω̃i = ωDi × σI ⊂ ωD × σI of D × σI , choose ui = 0 ∈ rel int π(ω̃i) = M in
the relative interior of the image. Suppose SD×σI

be the divisorial fan corresponding to
PΨui

. Let ỸD×σI
be the T -variety X(SD×σI

), See [IV, theroem 5.2]. we take Ξp to be
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the coarsest polyhedral subdivision of ρ(∆p × σI) containing subdivision of π(∆) for any
face ∆ ≺ ∆p × σI .

Proposition 4.1.1.( [IV, Propositon 5.1]) Ξp = SD×σI p

Before we proceed, let us recall some results from [Zie]. Given a polyhedron ∆, we
denote the collection of faces of a polyhedron by L(∆).

Lemma 4.1.2.For polyhedron ∆ and cone σ, L(∆ × σ) = L(∆) × L(σ), where L(∆) ×
L(σ) = {∆′ × σ′ | ∆′ ≺ ∆ and σ′ ≺ σ} .

Proof. Let F be a face of ∆ × σ ⊂ NQ ⊕ N ′
Q. Consider the canonical projection maps

P : NQ ⊕ N ′
Q → NQ and P ′ : NQ ⊕ N ′

Q → N ′
Q. Then F = P (F ) × P ′(F ) and P (F ) ≺ ∆,

P ′(F ) ≺ σ is evident.

Lemma 4.1.3.For ∆p ∈ Sp and σI ∈ ΣE, L(ρ(∆p × σI)) = {ρ(∆) | ∆ ≺ ∆p × σI)}

Proof. The map ρ|N×σI
: N × σI −→ NE is injective. The projection of polyhedra

ρ|∆p×σI
: ∆p × σI −→ ρ(∆p × σI) is bijective and ρ is linear. From [Zie, Lemma 7.10],

inverse image of a face is a face.

Lemma 4.1.4.If Sp is complete polyhedral complex then

{ρ(∆p × σI) | ∆p ∈ Sp and σI ∈ ΣE}

is complete polyhedral complex.

Proof. Suppose (a, b) ∈ Ñ , where a = (a1, a2 . . . ad) ∈ N and b = (b1, . . . bNd) then
(a, b) 7→ b − J(a). Given a element z = (z1 . . . zN , zN+1, . . . z2N . . . zNd) ∈ NE we choose
ai minimum in the N -tuple (z(i−1)N+1,...ziN

), for 0 ≤ i ≤ d. There is b ∈ σI for some I,
such that (−a, b) 7→ z (or z = b − J(−a))) and choose appropriate ∆p ∈ Sp, such that
−a ∈ ∆p.

We are going to glue X(SD×σI
) for D ∈ S and σI ∈ ΣI to construct fYC . The map ρ

is a linear and injective on each ∆p × σI , and faces map to faces (4.1.3). Consider set
PD×σI

= {p ∈ Y | ∆p ̸= 0, ϕ} and ED×σI
= P

p∈PD×σI

p. Then, SD×σI
is divisorial fan given
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by the set of intersections of elements of following set

CD×σI
= {ρ(∆p × σI) ⊗ p + ϕ ⊗ (ED×σI

− p) | p ∈ PD×σI
} .

From [IV, Section 4], SD×σI
is contraction free. Consider divisorial fan fSC set of

intersection of elements of set

CS×ΣE
=

[

D×σI∈S×ΣE

CD×σI

and

Notation 4.2.Let fYC = X(fSC), and πC : X̂ × EN
T → fYC be the canonical good quotient

map.

X̂ × EN
T X × EN

T

fYC

Y.

rE

πC

π

From the discussion above, we get the following lemma.

Lemma 4.1.5.The divisorial fan fSC over Y constructed above, gives us the TE-variety
fYC which corresponds to the good quotient of X̂ × EN

T by the action of T .

Consider the following setup. Let Ξ be a marked fansy divisor over P1, and C denotes
a collection of marked or contracted cones. For Ξ there is a complete divisorial fan S such
that Ξp = Sp for all p ∈ P1. Consider complete complexity one T -variety, X = X(S) =
X(Ξ). Consider the divisorial fan

S × ΣE = {D × σI |D ∈ S and σI ∈ ΣE}
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where D = P∆p ⊗ p ∈ S, we defined pp-divisor,

ρ(D × σI) =
X

ρ(∆p × σI) ⊗ p.

Lemma 4.1.6.The collection SYC
= {ρ(D × σI) |D ∈ S and σI ∈ ΣE} is a divisorial fan,

Moreover it is complete.

Proof. First, we are going to prove that ρ(D×σI) is pp-divisor on the curve P1. Observe
that D × σI is pp-divisor. For the complexity one case we have an equivalent definition
of pp-divisor from [AH, Section 2], and we have deg(ρ(D × σI) = ρ(deg(D × σI)). The
following conditions hold.

• ρ(D×σI) = P
ρ(∆p ×σI)⊗p, with ∆p ×σI is polyhedron with tail cone tail(D)×σI

and the sum runs over all disjoint p’s.

• Since deg(D×σI) is proper subset of tail(D)×σI , deg(ρ(D×σI)) is a proper subset
of ρ(tail(D) × σI).

• For u ∈ (tail(D) × σI)∨, we have evalu(deg(ρ(D× σI))) = evalu◦ρ(deg(D× σI)) and
some multiple of ρ(D × σI)(u) = (D × σI)(u ◦ ρ) is principal.

To prove SYC
is a divisorial fan, we take two pp-divisors ρ(D× σI) and ρ(D′ × σJ). Since

σJ ≻ σJ ∩ σI ≺ σI , D′ ≻ D′ ∩ D ≺ D and from 4.1.2, 4.1.3 and 4.1.4, we can conclude
that

ρ(D × σI) ≻ ρ(D × σI) ∩ ρ(D′ × σJ) ≺ ρ(D′ × σJ).

From the criterion of completeness and the above lemma, SYC
is complete.

Now consider the description of SYC
as a marked fansy divisor ΞYC

= P
SYC ,p · p

where, SYC ,p = {ρ(∆p × σI) | ∆p ∈ Sp and σI ∈ ΣE} and marked cones are CYC
=

{σ × σI | σ ∈ C} .

Lemma 4.1.7.From above lemma, we have the following diagram

X̂(SYC
) X(SYC

)

P1

r

π
,
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where X̂(SYC
) = fYC .

Proof. Observe that X̂(SYC
) and fYC both are contraction free with SYC p = fSCp. Here the

varieties are contraction free, means that the corresponding divisorial fans are contraction
free. Then, it is enough to prove that they have the same slices. Hence, by [AHS,
Proposition 1.6], X̂(SYC

) = fYC .

Notation 4.3.YC := X(SYC
)

Remark 4.1.8.Note that X × EN
T is a complexity one T -variety under the action of

T × TE, but not complete. But fYC is complete complexity one T -variety.

Let G be a reductive group acting on an affine variety X = Spec(A). Then the ring
of G-invariant AG is finitely generated C-algebra. In our case G = T , and action is free
hence separated. Therefore the canonical map

X → Spec(AT )

is geometric quotient, where AT is the ring of T invariants.

Proposition 4.1.9.Consider the morphism of pp-divisors D× σI → ρ(D× σI) given by
the triple (i, ρ, 1) where i is the identity morphism on P1, and 1 is the unit plurifunction.
The map q : X × EN

T → YC induced by the morphism of pp-divisors is a geometric
quotient.

Proof. The morphism (i, ρ, 1) gives the following ring homomorphism

q#
D×σI

:
M

u∈ρ(σ×σI)∨
Γ(P1,O(ρ(D × σI)(u))) →

M

v∈(σ×σI)∨
Γ(P1,O(D × σI)(v)).

where
Γ(P1,O(ρ(D))(u)) → Γ(P1,O(D(u ◦ ρ)))

is the identity map, because min⟨ρ(∆P × σI), u⟩ = min⟨∆p × σI , u ◦ ρ⟩. The map q#
D×σI
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is the inclusion map, in fact

M

u∈ρ(σ×σI)∨
Γ(P1,O(ρ(D × σI)(u)) =

M

v∈(σ×σI)∨
Γ(P1,O(D × σI)(v))T .

As T acts freely on X × EN
T , the induced map qD×σI

: X(D × σI) → X(ρ(D × σI)) is a
geometric quotient; hence the map q is a geometric quotient.

Summarizing the above, we get the following lemma.

Lemma 4.1.10.The T -variety YC constructed above is complete and fits into a diagram.

X̂ × EN
T X × EN

T

fYC YC

P1,

rE

πC q

π

where rE is a T -equivariant birational proper morphism, and the maps q and πC are
geometric quotients.

4.2 Torus equivariant Chow groups of T -varieties

We continue with the above setup, with tail(S) = Σ. Lets us recall the set P of points
p ∈ P1, such that slice Sp ̸= Σ. We also ensured that the size of P is at least 2 by
appending extra points. For a non-negative integer k ≤ d + 1, let us recall the following
sets

• Rk = Cones of dimension d + 1 − k corresponding to subvarieties not contracted by
r.

• Vk = Faces of dimension d − k of polyhedral subdivision corresponding to the fiber
of points in P .

• Tk = Cones of dimension d − k corresponding to subvarieties contracted by r.
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We obtain the kth Chow group of a rational complete T -variety of complexity one
from the following exact sequence

K ZVk ⊕ ZRk ⊕ ZVk Ak(X) 0 .

where arrows and lattice K are defined in Theorem 3.1.1. Note that in our case, YC is
a T -variety defined by a pp-divisor over P1. Thus it contains an open subset, which is a
product of an open subset of P1 with a torus, and hence YC is rational. Using the above
result, we will give a presentation of the equivariant Chow group of X(S) or, equivalently
Chow group of YC . For non negative integer k ≤ Nd + 1, we define the following sets:

• R′
k = # Faces of dimension k in ΣE.

• rk = Cones of dimension Nd + 1 − k corresponding to subvarities not contracted
by r.

• vk = Faces of dimension Nd − k of polyhedral subdivision corresponding to the
fiber of points in P .

• tk = Cones of dimension Nd − k corresponding to subvarities contracted by r.

The cardinalities of sets rk, vk, tk are given by following numbers:

• |rk| = R′
Nd−d.|Rk| + R′

Nd−d−1.|Rk−1| . . . R′
Nd−d−(k−1).|R1| + R′

Nd−d−k.|R0|.

• |vk| = R′
Nd−d.|Vk| + R′

Nd−d−1.|Vk−1| . . . R′
Nd−d−(k−1).|V1| + R′

Nd−d−k.|V0|.

• |tk| = R′
Nd−d.|Tk| + R′

Nd−d−1.|Tk−1| + . . . R′
Nd−d−(k−1).|T1| + R′

Nd−d−k.|T0|.

4.3 |rk| + |vk| + |tk| is constant

For a rank two toric vector bundle E on a smooth toric variety XΣ of dimension d. If
σ ∈ Σ then E |Uσ = O(u1

σ) ⊕ O(u2
σ). Consider the following partition of Σ. If u1

σ = u2
σ

then we say σ ∈ H. If σ intersects both u1
σ − u2

σ > 0 u1
σ − u2

σ < 0 then σ ∈ I. Lastly, if
u1

σ − u2
σ ≥ 0 or u1

σ − u2
σ ≤ 0 on σ then σ ∈ J . From [Nød, Proposition 6.3], for X = P(E )

the cycles Ri, Vi, Ti corresponds bijectively to the following sets
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• Ri ↔ Σ(d − i + 1) ∩ H

• Vi ↔ (Σ(d − i + 1) ∩ J) ∪ (Σ(d − i) ∩ J) ∪ 2(Σ(d − i) ∩ H)

• Ti ↔ (Σ(d − i + 1) ∩ I) ∪ (Σ(d − i) ∩ J) ∪ 2(Σ(d − i) ∩ I)

. Particularly,

Si = |Ri| + |Vi| + |Ti| =





#Σ(d − i + 1) + 2#Σ(d − i), if i < d;
#Σ(1) + #P, if i = d;
0, if i > d;

(4.4)

and

S ′
i =





R′
Nd−d−i = ΣT (Nd − d − i), if i ≤ Nd − d;

0, if i > Nd − d.
(4.5)

From above calculation, we can state the following result.

Proposition 4.3.1.For any rank two toric vector bundle E on a smooth toric variety XΣ

we have X = P (E ) and XE = X × EN
T /T ,The numbers |rk|, |vk|, and |tk| are associated

with XE then

|rk| + |vk| + |tk| =
i=kX

i=0
S ′

iSk−i.

Proof. Follows from 4.4 and 4.5 and [Nød, Proposition 6.3]

Example 4.3.2.Consider the example [Nød, Example 5.3], for vector bundles E and
F from [Nød, Remark 6.5] Sj are independent of E or F . We also fix a large enough
value of N , then we have an integer |rk| + |vk| + |tk| is independent of E or F . Note
that corresponding to E , we have space P(E ) × (AN \ {0})d/T , and for F , we have
P(F )× (AN \{0})d/T . Consider P2 with the torus action induced by the fan given by the
rays ρ1 = (1, 0),ρ2 = (0, 1), and ρ0 = (−1, −1) and denote the associated divisors by Di,
for i = 1, 2, 0, respectively. Consider rank two vector bundles given by E = D1 ⊕ 0 and
F = (D1 + D2) ⊕ D0. Then we have that P(E ) and P(F ) are complexity one T -varieties
of dimension 3. Also N = 3, d = 2. By [Nød, Proposition 6.3], we have the following
table for P(E )(See Section 2.5).
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u1
σ0 = (1, 0) u2

σ0 = (0, 0) u1
σ0 − u2

σ0 ∈ J

u1
σ1 = (0, 0) u2

σ1 = (0, 0) u1
σ1 − u2

σ1 ∈ H

u1
σ2 = (1, −1) u2

σ2 = (0, 0) u1
σ2 − u2

σ2 ∈ J

u1
ρ1 = (1, 0) u2

ρ1 = (0, 0) u1
ρ1 − u2

ρ1 ∈ J

u1
ρ2 = (0, 0) u2

ρ2 = (0, 0) u1
ρ2 − u2

ρ2 ∈ H

u1
ρ0 = (0, 0) u2

ρ0 = (0, 0) u1
ρ0 − u2

ρ0 ∈ H

Similarly, for P(F )

u1
σ0 = (1, 1) u2

σ0 = (0, 0) u1
σ0 − u2

σ0 ∈ J

u1
σ1 = (−1, 1) u2

σ1 = (−1, 0) u1
σ1 − u2

σ1 ∈ J

u1
σ2 = (1, −1) u2

σ2 = (0, −1) u1
σ2 − u2

σ2 ∈ I

u1
ρ1 = (1, 0) u2

ρ1 = (0, 0) u1
ρ1 − u2

ρ1 ∈ J

u1
ρ2 = (0, 1) u2

ρ2 = (0, 0) u1
ρ2 − u2

ρ2 ∈ J

u1
ρ0 = (0, 0) u2

ρ0 = (−1, 0) u1
ρ0 − u2

ρ0 ∈ J

Consider the following tables for E and F , the numbers |Rk|, |Vk|, |Tk| are given below.

|R2| |V2| |T2| |R1| |V1| |T1| |R0| |V0| |T0|
P(E ) 2 3 0 1 7 1 0 4 2
P(F ) 0 5 0 0 5 4 0 2 4

|R2| + |V2| + |T2| |R1| + |V1| + |T1| |R0| + |V0| + |T0|
P(E ) 5 9 6
P(F ) 5 9 6

To obtain the table that demonstrates the values of |r1|, |v1|, |t1|, |r2|, |v2| and |t2| consider
the following table for E3

2 . The following table demonstrates the values of R′
i, for i =

0, 1, 2, 3, 4

R′
4 R′

3 R′
2 R′

1 R′
0

E3
2 9 18 15 6 1

Consider the following formulas
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• |r2| = R′
4|R2| + R′

3|R1| + R′
2|R0|

• |v2| = R′
4|v2| + R′

3|v1| + R′
2|v0|

• |t2| = R′
4|T2| + R′

3|T1| + R′
2|T0|

and

• |r2|+ |v2|+ |t2| = R′
4(|R2|+ |V2|+ |T2|)+R′

3(|R1|+ |V1 + |T1|)+R′
2(|R0|+ |V0|+ |T0|).

Also we have

• |r1| = R′
4|R1| + R′

3|R0|

• |v1| = R′
4|V1| + R′

3|V0|

• |t1| = R′
4|T1| + R′

3|T0|

and

• |r1| + |v1| + |t1| = R′
4(|R1| + |V1| + |T1|) + R′

3(|R0| + |V0| + |T0|).

Similarly,

• |r0| = R′
4|R0|

• |v0| = R′
4|V0|

• |t0| = R′
4|T0|

and

|r0| + |v0| + |t0| = R′
4(|R0| + |V0| + |T0|)

From above formulas and tables, we have the following table for (P(E ) × E3
2)/T and

(P(F ) × E3
2)/T

|r2| |v2| |t2| |r1| |v1| |t1| |r0| |v0| |t0|
(P(E ) × E3

2)/T 36 213 48 9 135 45 0 36 18
(P(F ) × E3

2)/T 0 165 132 0 81 108 0 18 36
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|r2| + |v2| + |t2| |r1| + |v1| + |t1| |r0| + |v0| + |t0|
(P(E ) × E3

2)/T 36+ 213+ 48=297 9+ 135 + 45=189 0+ 36 +18=54
(P(F ) × E3

2)/T 0+ 165 + 132=297 0+81 + 108=189 0+ 18 +36=54
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GIT constructed pp-divisor

In this chapter, we prove that, given an affine T -variety X and T ′ subtorus of T the
(GIT constructed) pp-divisor constructed by Altmann and Hausen is T/T ′-invariant. In
short there exist a T/T ′-variety Y ′ and torus invariant pp-divisor D′ on Y ′ such that
X(D′) ∼= X. We also describe GIT data associated to X with T ′ action.

5.1 GIT quotients

This section will provide a recapitulation of key findings in the Geometric Invariant
Theory of T-varieties, drawing from the works of [AH] and [BH], which we need later.
Consider the following setup. Let M be a finite rank lattice, and let A be an integral,
finitely generated, M -graded C-algebra

A =
M

u∈M

Au.

Consider an affine variety X = Spec(A) with an action of the algebraic torus T =
Spec(C[M ]), induced by the M -grading on A. Let L be the trivial line bundle on X with
the following torus action:

t · (x, c) = (t · x, χu(t) · c),

51
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where χu is the character corresponding to u ∈ M . Now consider the canonical projection
L → X. This map is a torus equivariant map, and is the T -linearization of the trivial
line bundle on X with respect to χu.

Definition 5.1.1 ( [MFK]). A T -linearization of a line bundle on X is a line bundle
L → X along with a fiberwise linear T -action on L such that the projection map is a
torus equivariant.

Remark 5.1.2 ( [Bri]).Any T -linearization of a trivial line bundle over X is the lin-
earization corresponding to the unique character, described above.

Remark 5.1.3.An invariant section of the linearization of a trivial line bundle with
respect to χu is precisely an element of some Anu for n > 0.

Definition 5.1.4 (Semistable Points). The set of semistable points associated to a lin-
earization of a trivial line bundle is denoted by Xss(u) and defined as:

Xss(u) :=
[

f∈Anu, n∈Z>0

Xf .

If two linearized line bundles have same set of semistable points, we say that they
are GIT-equivalent. We recall the description of the GIT-equivalence classes given by a
linearization of the trivial line bundle in terms of the orbit cones. We will illustrate this
by an example of an affine toric variety. The following definitions are from [BH].

Definition 5.1.5. Consider a point x ∈ X. The orbit monoid associated to x ∈ X is
a submonoid ST (x) ⊂ M consisting of all u ∈ M that admit an f ∈ Au with f(x) ̸= 0.
A convex cone generated by ST (x) is called the orbit cone, denote it by ωT (x). The
sublattice generated by the orbit cone ωT (x) is called the orbit lattice, denote it by
M(x).

Definition 5.1.6. The weight cone ω ⊂ MQ is a cone generated by u ∈ M with Au ̸= {0}

Definition 5.1.7 (GIT-cone). The GIT-cone associated to an element u ∈ ω ∩ M is the
intersection of all orbit cones containing u, and is denoted by λ(u). The collection of
GIT-cones forms a fan and called a GIT-fan.
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For the sake of brevity, we summarized all this data associated with a torus action
on an affine variety as follows.

Definition 5.1.8. Suppose X is a T -variety with the action of a torus T . The GIT-data
associated with (X, T ) consists of orbit monoids, orbit cones, orbit lattices, GIT-cones,
and set of semistable points.

From [BH, Proposition 2.9], we have an order-reversing one-to-one correspondence
between the possible sets of semistable points induced by a linearization of the trivial
line bundle and GIT-cones. Consider an affine toric variety X = Spec(A) with a character
lattice M , and dual lattice N . Note :

A =
M

u∈σ∨∩M

C · χu

where σ is the polyhedral cone in N , and σ∨ is its dual. An element u ∈ M is saturated if
A(u) = L

n∈Z≥0 Anu generated by degree one elements. The cone σ∨ is a full dimensional
cone, and each u ∈ σ∨ is saturated. Using 5.1.4, we will compute the Xss(u) . Consider
a minimal generating set {u1, u2 . . . uk} of a semi-group σ∨ ∩ M . For u ∈ σ∨ ∩ M ,

Xss(u) = Spec(Aχu)

. If u = α1 · u1 + α2 · u2 · · · + αk · uk with αi ≥ 0 then

Xss(u) = Spec(Aχu) =
\

αi ̸=0
Spec(Aχui ).

5.1.1 Description of GIT-fan and Semistable points.

Lemma 5.1.9 (Collection of all semistable points).Let {u1, u2 . . . uk} be a minimal
generating set of a semi-group σ∨ ∩ M . The collection of a semistable points is
{Xss(u) | u = α1 · u1 + α2 · u2 · · · + αk · uk, αi = 0, 1}.

Proof. First observe that above collection is a finite set. If u = α1 ·u1 +α2 ·u2 · · ·+αk ·uk

then
Xss(u) = Xss(

X

αi ̸=0
ui) =

\

αi ̸=0
Xss(ui)
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.

From [BH, Proposition 2.9], we are going to compute GIT-cone for each Xss(u). To
do this we are going to compute Xss(ui) for each i ∈ {1, 2 . . . , k}. Consider the following
poset, 

S =
(

kX

i=1
αi · ui

����� αi = 0, 1
)

, ≥



where, for v, w ∈ S, v ≥ w if Xss(v) ⊂ Xss(w).

Lemma 5.1.10 (Collection of all GIT-cones).With the above notations continuing, for
v ∈ S, GIT-cone λT (v) is generated by the subset {ui | v ≥ ui} of {ui | 1 ≤ i ≤ k}.

Proof. The cone generated by set {ui | v ≥ ui} is denoted by σT (v). First, observe that
if Xss(v) ⊂ Xss(ui), then for x ∈ X, χv(x) ̸= 0 if and only if ∀ ui ≤ v, χui(x) ̸= 0.
Hence ui ∈ ωT (x) for all x such that χv(x) ̸= 0 hence ui ∈ λT (v), so σT (v) ⊂ λT (v). If
u ∈ λT (v), then Xss(v) ⊂ Xss(u) ⊂ Xss(ui) where ui is a summand of u hence v ≥ ui

hence u ∈ σT (v).

5.2 Description of a GIT-fan with respect to the ac-
tion of a subtorus

Consider the following setup. Let X be a normal affine variety with an effective T -action.
Consider a subtorus T ′ of the torus T with canonical action on X. First, we have the
following exact sequence from the torus inclusion,

0 M ′′ M M ′ 0i ,

where M and M ′ are the character lattices corresponding to the tori torus T and T ′,
respectively. The lattice M ′′ is the kernel of the lattice homomorphism i. If X = Spec(A),
then we have a grading A = L

u∈M Au with respect to T and, similarly, for the T ′ action
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we have an induced grading A = L
v′∈M ′ Av′ . In addition we have,

Av′ =
M

i(u)=v′
Au.

We wish to compute the GIT-data associated with (X, T ′) from the GIT-data associated
with (X, T ) and above exact sequence.

Notation 5.1.We are using the same notation i for lattice homomorphism and vector
space homomorphism.

Notation 5.2.We denote the elements of M by letters u, v etc. Elements of M ′ will be
denoted by letters with a ′: e.g. u′, v′ etc.

Proposition 5.2.1. 1. Let ωT and ωT ′ be the weight cones associated with the T action
and the T ′ respectively, then i(ωT ) = ωT ′.

Consider a point x ∈ X.

2. Let ωT (x) and ωT ′(x) be the orbit cones associated with the T and T ′ action respec-
tively, then i(ωT (x)) = ωT ′(x).

3. Let ST (x) and S ′
T (x) be the orbit monoid associated with the T and T ′ action

respectively, then i(ST (x)) = S ′
T (x).

Proof. Note, Av′ = L
i(u)=v′

Au then Au ̸= 0 for some u if and only if Av′ ̸= 0. Now the

results follows from linearity of i and definition of ωT (resp. ωT ′). The statements for
orbit monoids and orbit cones follows similarly

Proposition 5.2.2. 1. Let Xss
T (u) be the semistable point associated with u ∈ M and

let Xss
T ′(v′) be the semistable point associated with v′ ∈ M ′, then

Xss
T ′(v′) =

[

i(u)=nv′,
n∈Z>0

Xss
T (u).

Because of the correspondence between the GIT-cones and sets of semistable points,
we have the following result.
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2. Let λT (u) be GIT-cone associated with u ∈ M ( under the T -action) and λT ′(v′) be
GIT-cone associated to v′ ∈ M ′ ( under the T ′-action) then

λ′(v′) = λT ′(v′) =
\

i(u)=v′
i(λT (u)).

Proof. The set Xss
T ′(v′) = {x ∈ X | f(x) ̸= 0 for some f ∈ Anv′}, but Anv′ = L

i(u)=nv′
Au.

If f(x) ̸= 0 for x ∈ X and for some f ∈ Anv′ then there is f1 ∈ Au summand of f for
some u such that i(u) = nv′ and f1(x) ̸= 0. Hence

Xss
T ′(v′) ⊂

[

i(u)=nv′ n∈Z>0

Xss
T (u).

Similarly, one can prove Xss
T ′(v′) ⊃ S

i(u)=nv′ n∈Z>0

Xss
T (u).

We have i(ωT (x)) = ωT ′(x), hence from definition of GIT-cone the statement 2 is
evident.

Example 5.2.3.Lets take σ = Cone({ē1, ē2, ē1 + ē3, ē2 + ē3}) ⊂ Z3, then

C[Sσ] =
M

u∈σ∨∩M

C · χu = C[u, v, w, uvw−1] ≡ C[x, y, z, w]
⟨xy − zw⟩

where σ∨ = Cone({e1, e2, e3, e1 + e2 − e3}) ⊂ HomZ(Z3, Z). For this example we have
GIT-fans shown in the figure 5.1 and semistable points correspondence,
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Figure 5.1: (C∗)3 action

Xss(e1) ←→ Cone({e1})

Xss(e2) ←→ Cone({e2})

Xss(e3) ←→ Cone({e3})

Xss(e1 + e2) = Xss(e1 + e2 + e3 + e1 + e2 − e3) ←→ Cone({e1, e2})

Xss(e1 + e2 − e3) = Xss(e1 + e2 + e1 + e2 − e3) ←→ Cone({e1, e2, e1 + e2 − e3})

Xss(e1 + e1 + e2 − e3) ←→ Cone({e1, e1 + e2 − e3})

Xss(e2 + e1 + e2 − e3) ←→ Cone({e2, e1 + e2 − e3})

Xss(e1 + e3) ←→ Cone({e1, e3})

Xss(e2 + e3) ←→ Cone({e2, e3}).

Consider the above, the torus inclusion map (C∗)2 → (C∗)3 is given by the following
map

(t1, t2) 7→ (t1, t2, t1).

The lattice homomorphism associated with this inclusion is the map HomZ(Z3, Z) →
HomZ(Z2, Z) is

(a, b, c) 7→ (a + c, b).

From Proposition 5.2.2, The GIT-cones are shown in the figure 5.2 and semistable points
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Figure 5.2: (C∗)2 action

correspondence, e′
1 = (1, 0) and e′

2 = (0, 1) are in HomZ(Z2, Z)

Xss(e′
1) = Xss(e1) ∪ Xss(e1 + e3) ∪ Xss(e3) ←→ Cone({e′

1})

Xss(e′
2) = Xss(e2) ∪ Xss(e1 + e2 − e3) ∪ Xss(e2 + e1 + e2 − e3) ←→ Cone({e′

2})

Xss(e′
1 + e′

2) = Xss(e1 + e2) ∪ Xss(e1 + e1 + e2 − e3) ∪ Xss(e1 + e3) ←→ Cone({e′
1, e′

2}).

Now, we shall briefly recall the proof of the Theorem 2.2.15. Let X be an affine T -
variety, let Wλ be the set of semistable points corresponding to the GIT cone λ. Let Yλ

be the good qoutiont of Wλ is by the action of T . The quotient space Yλ is given by,

Yλ = Proj(
M

n∈Z≥0

Anu), where u ∈ relint(λ).

Let Σ be the GIT fan, and λ, γ ∈ Σ, from [AH, Theorem 5.4], if γ ⊂ λ then Wλ ⊂ Wγ,
and the converse is also true. Hence we have the following commutative diagram,

W Wλ Wγ X = W0

Y Yλ Yγ

Y0

jλ

q

jλγ

qλ

jλ0

qγ

q0

pλ

p0

pλγ

pλ0 pγ0
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The maps j−− are inclusion maps, and W := lim←−Wλ = ∩
λ∈Γ

Wλ. The maps q− are quotient
maps. Let Y ′ be the inverse limit of the induced maps pλγ between the quotients space.
and let q′ : W → Y ′ be the inverse limit of the quotient maps(qλ). Let Y be the normal-
ization of q′(W ), and q is an induced morphism. If T acts effectively on X = Spec(A)
the weight cone ω is a full dimensional cone. Hence we have a choice of homomorphism

s : M → Q(A)∗, such that s(u) is degree u element.

For each saturated u ∈ ω ∩ M , let us consider a GIT-cone λ ∈ Σ such that u ∈
relint(λ). Consider an open cover {Yλ,f = Spec([Af ]0) | f ∈ Au} for Yλ, hence we have
an open cover

n
Yf = p−1

λ (Yλ,f )
��� f ∈ Au

o
for Y . Now for each u. Consider the Cartier

divisor D(u) defined by the local equation (Yf , s(u)/f). if u ∈ ω then there is saturated
multiple nu and

D(u) = 1
n
D(nu).

We have the following pp-divisor D,

ω → CaDivQ(Y ), u 7→ D(u)

such that X(D) ∼= X.

5.3 Description of the space associated to a T - vari-
ety with respect to the action of a subtorus

By [AH], we have a proper polyhedral divisor associated with a normal affine variety
with an effective torus action. Let X be an affine T -variety, with a torus T . Let D be
a pp-divisor on (Y, N), where N is a dual lattice of the lattice M = Hom(T, C∗), such
that X ∼= X(D) = Spec(A). We assume that D is a minimal pp-divisor( [AH, Definition
8.7]). For a subtorus T ′ of the torus T , we prove that their exist a base space Y ′ with
an effective T/T ′ action and a T

T ′ -invariant pp-divisor on (Y ′, N ′), where N ′ is a dual of
a lattice M ′ = Hom(T ′, C∗).

Theorem 5.3.1.Consider an affine T -variety X with the action of the torus T , with
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weight cone ω ⊂ MQ. Let T ′ be a subtorus of T , and the associated lattice map be
i : M → M ′. Then, there exists T

T ′ -variety Y ′ and a T
T ′ -invariant pp-divisor D′ on

(Y ′, N ′) with tail(D′) = i(ω)∨ such that X(D′) ∼= X.

The next part of this paper is about the proof of the Theorem 5.3.1. Consider the
semistable point Xss

T ′(v′), from [AH, Section 5], the quotient space
Yv′ = Xss

T ′(v′) // T ′ is given by
Yv′ = Proj(A(v′)),

where A(v′) = L
n∈Z≥0 Anv′ .

Proposition 5.3.2.There is effective T
T ′ action on Yv′

Proof. The set of semistable points Xss
T ′(v′) is a T ′-invariant open subset of X. Moreover

from Proposition 5.2.2, it is T -invariant. On basic open subsets of Yv′ , the torus T
T ′

acts effectively. Consider f ∈ A(v′), in particular, we choose f ∈ Au for u ∈ M such
that i(u) = nv′, for some n ∈ Z≥0. The sets Spec([Af ]0) (0 ∈ M ′) covers Yv′ and it is
enough to prove that T

T ′ acts effectively on each Spec([Af ]0), or equivalently, that [Af ]0
(0 ∈ M ′) admits an M ′′ grading such that the weight cone is full dimension. Note that
A0 = L

u∈M ′′ Au, which induces an M ′′ grading on [Af ]0 . Since A0 = L
u∈M i(u)=0

Au ⊂
[Af ]0, and T acts effectively on X, (the dimension of Cone({u ∈ M | i(u) = 0} is rank
of M ′′). Then, the T

T ′ action is effective on Spec([A0]), and hence T
T ′ acts effectively on

Spec([Af ]0).

Using proposition 5.3.2, we are going to prove that there is a T
T ′ action on Y ′. From

[BH, Proposition 2.9, Definition 2.8], the collection of all GIT-cones define the GIT-fan,
which we denote by ΣT ′ . The map v′ → Xss

T ′(v′) is constant on relint(λT ′(v′)). So for
λ′ ∈ ΣT ′ and w′ ∈ relint(λ′) if we write Wλ′ = Xss

T ′(w′), Yλ′ = Yw′ , we have the following
commutative diagram
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WT ′ Wλ′ Wγ′ X = W0

Y ′ Yλ′ Yγ′

Y0

j′
λ′

q′

j′
λ′γ′

q′
λ′

j′
λ′0

q′
γ′

q′
0

p′
λ′

p′
0

p′
λ′γ′

p′
λ′0

p′
γ′0

All the j′
−− are inclusion maps, so the inverse limit, WT ′ , is the intersection of sets

of semistable points. The Y ′ is normalization of a canonical component. Let Y1 is limit
{YλT ′ }′s and

Y ′ = Norm(q(WT ′)),

where Norm(-) denote the normalization. we have the following commutative diagram

Wλ′ Wγ′

Yλ′ Yγ′

j′
λ′γ′

q′
λ′ q′

γ′
p′

λ′γ′

from the Proj construction, q′
λ′ and q′

γ′ are torus equivariant maps with respect to the
canonical torus map T → T

T ′ . Also the map p′
λ′γ′ is a T

T ′ -equivariant map. Now we shall
demonstrate that Y ′ admits canonical T

T ′ action. To prove T
T ′ acts effectively on Y ′, we

required some evident statements which are given below.

Lemma 5.3.3.Let Y and T ′ be are two varieties with T actions, the map v : Y → Y ′

is a T -equivariant birational map with T acts effectively on Y ′ then T acts effectively on
Y .

Lemma 5.3.4.Let Y be a topological space, and ψ : Y → Y be a continuous map with
A ⊂ X such that ψ(A) ⊂ A, then ψ(A) ⊂ A.

Lemma 5.3.5.Let X be a T -variety, and Norm(X) be its normalization, then Norm(X)
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has a torus action, satisfying the following commutative diagram,

Norm(X) Norm(X)

X X

t

g g

t

.

Lemma 5.3.6.Consider q1 : WT ′ → Y1 the induced by the commutative diagram 5.3.
Then, q1 is a torus equivariant map, and it defines T

T ′ action on Y ′.

Proof. From Lemma 5.3.4 and 5.3.5

The map p′
λ′ is given by,

Norma(q(WT ′)) → q(WT ′) ,→ Y1 → Yλ′

and each arrow is a torus equivariant map.

Proposition 5.3.7.Y ′ is a T -variety.

Proof. We have to prove that Y ′ is a normal variety and action of T
T ′ -effective. From

construction, it is a normal variety and from Lemma 5.3.3 and above arrows 5.3, the
action is effective.

5.3.1 The torus invariant proper polyhedral divisors.

Let M ′′ be a character lattice associated to T
T ′ . Consider the exact sequence 5.2. Con-

struction of the pp-divisor requires a homomorphism s′ : M ′ → Q(A)∗. Note that i(ω)
is a full dimensional cone, and given a v′ ∈ i(ω) ∩ M ′, there is a k ∈ N, such that kv′

is saturated. For each v′ ∈ i(ω) saturated, we will define a Cartier divisor D(v′). For
v′ ∈ int(λT ′) saturated,

n
YλT ′ ,f

��� f ∈ Au, where i(u) = v′
o

is an open cover for YλT ′ . Con-
sider the open cover Y ′

f = p′
λ′

−1(YλT ′ ,f ). Since T acts effectively on X, we have a section
s : M → Q(A)∗ such that s(u) is u-homogeneous. Consider the section s′ : M ′ → Q(A)∗

defined:
s′(v′) = s(u), For fix u ∈ M such that i(u) = v′.
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Now consider the Cartier divisor

D′(v′) = (Y ′
f ,

s′(i(u))
f

).

Since p′
λT ′ are torus equivariant maps, so Y ′

f are torus invariant open subsets. s′((i(u))
f

is homogeneous of degree deg(s′(i(u))) − deg(f) ∈ M ′′ (Note that degree of an element
s′(i(u))

f
) is equal to 0 in M ′ ). This defines a torus invariant pp-divisor on Y ′,

D′ : i(ω) → CaDivQ(Y ′), D′(v′) = 1
k

· D′(kv′).

where kv′ is a saturated multiple of v′.
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