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Abstract

We solve the question: which finite-dimensional irreducible orthogonal repre-

sentations of connected reductive complex Lie groups lift to the spin group?

We have found a criterion in terms of the highest weight of the representation,

essentially a polynomial in the highest weight, whose value is even if and only

if the corresponding representation lifts. The criterion is closely related to

the Dynkin Index of the representation. We deduce that the highest weights

of the lifting representations are periodic with a finite fundamental domain.

Further, we calculate these periods explicitly for a few low-rank groups.

xiii



Chapter 1

Introduction

1.1 General Method

Let (φ, V ) be an irreducible self-dual finite-dimensional complex representa-

tion of a connected reductive Lie group G. Then V admits a G-invariant

non-degenerate bilinear form B, unique up to scalars. In the case, when B

is symmetric, φ can be regarded as a homomorphism φ : G→ SO(V ). Such

a φ is called an orthogonal representation. Further, if this representation of

G lifts to the spin group Spin(V ) then it is called spinorial.

Here we restrict our study to complex reductive Lie groups. Consider

three basic questions:

1) Which irreducible representations of G are self-dual?

2) Which of those self-dual representations are orthogonal?

3) Which of those orthogonal representations are spinorial?

1



2 1.1. General Method

The spinoriality question is equivalent to completing the follwing diagram:

Spin(n,C)
ρ

��

G
φ
//

ψ
::

SO(n,C).

If we restrict our study to semi-simple complex Lie groups, we can get

answers in terms of the highest weight of the representation. A good refer-

ence for highest weight theory is [Serre(2001)]. The answer to the first two

questions are well-known. (See Sections 2.2 and 2.3 )

Spinoriality: The third question was posed by Dipendra Prasad and Di-

nakar Ramakrishnan in their paper [Prasad and Ramakrishnan(1995)]. We

present a solution to the third question for the case of general reductive

complex Lie groups.

Any irreducible orthogonal representation of a complex reductive group

G factors through G/(Z(G)◦). The question of spinoriality in the case of the

reductive group G is the same as that for the semi-simple group G/(Z(G)◦)

(see Section 7.1). Here we can use highest weight theory. We would like an

answer to the spinoriality question in terms of highest weights.

General Strategy: We focus on a complex semi-simple Lie group G.

Let φ : G → SO(N,C) be an orthogonal irreducible representation of G

of highest weight λ. Let φ∗ denote the map induced by φ between their

fundamental groups. The lift exists if and only if the map φ∗ is trivial. Thus

for simply connected groups all irreducible orthogonal representations are

spinorial.

Let TG be a maximal torus of G. The map induced at the level of funda-

mental groups by the canonical injection of TG into G is surjective. Thus, it

is enough to check whether the map φ|TG∗ is trivial.

Let Q denote the additive subgroup of X∗(TG) (see 2.1) generated by co-
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roots of TG. We know that Q < X∗(TG), and π1(G) ∼= X∗(TG)/Q. The map

φ|TG∗ takes ν ∈ X∗(TG) to φ◦ ν ∈ X∗(TSO(N,C)). Since TG is a complex torus,

due to topological reasons, φ|TG∗ is trivial if and only if (φ ◦ ν)∗ is trivial

for every co-character ν of TG. The map (φ ◦ ν)∗ is trivial if and only if the

co-character φ ◦ ν lifts to Spin(N,C).

Thus the co-character φ ◦ ν lifts to the spin group, for every ν, if the

representation φλ is a spinorial. Thus we need a criterion for a given co-

character ν, when the co-character φ ◦ ν lifts to the Spin group.

We have shown that φ ◦ ν is a lifting co-character if and only if

Fν(λ) =
∑

{µ∈P (φ)|〈µ,ν〉>0}
mλ(µ)〈µ, ν〉,

is an even integer, where P (φ) is the set of weights appearing in the represen-

tation φ, and mλ(µ) is the multiplicity of µ in φ. This is similar to Lemma

3 in [Prasad and Ramakrishnan(1995)].

Now if we take an irreducible φ with highest weight λ, we have proved

Fν(λ) ≡ Q′′ν(1)/2 mod 2,

where

Qν(a) =
∑
µ∈Pφ

mλ(µ)a〈µ,ν〉,

and mλ(µ) is as above. It is easy to see that, for a self-dual representation

φλ, we have

Q′′ν(1) =
∑
µ∈Pφ

mλ(µ)〈µ, ν〉2. (1.1)

Now the whole task is to find out a nice expression for the RHS of Equa-

tion (1.1). For that, let h be a Cartan subalgebra of g. As in [Goodman and

Wallach(2009)] we work with the C-algebra C[h∗]. A typical element of this
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algebra is of the form ∑
µ∈h∗

aµe
µ,

where the sum is finite. We define

A(µ) =
∑
w∈W

sgn(w)(ew(µ)) ∈ C[h∗],

where W is the Weyl group of G. Let ∂
∂ν

be the derivation of this algebra

defined by ∂
∂ν

(eµ) = (µ, ν)eµ. Let us define the augmentation map ε by

ε(∑β∈S cβe
β) = ∑

β∈S cβ, where S ⊂ h∗ is a finite set. We put Ch(V λ) =∑
µ∈Pφmλ(µ)eµ. We have

∑
µ∈Pφ

mλ(µ)(µ, ν)2 = ε

(
∂2

(∂ν)2 Ch(V λ)
)
. (1.2)

It remains to compute the RHS. To do this, we use the Weyl character

formula, which in the above notation is

A(λ+ ρ) = Ch(V λ)A(ρ).

Now we apply the derivation m+2 times to both sides of the Weyl character

formula, where m is the number of positive roots of h in g. Suppose g is

simple, after some work we arrive at the satisfying answer

Q′′ν(1) = (dim V λ)(|ν|2)(|λ+ ρ|2 − |ρ|2)
dim g

. (1.3)

To summarize, we have :

Theorem 1.1.1. Let G be a connected complex Lie group having a simple

Lie algebra g. Let TG be its maximal torus. Then φλ is spinorial if and only
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if the integer
(dim V λ)(|ν|2)(|λ+ ρ|2 − |ρ|2)

2 · dim g

is even for every co-character ν of TG, where the norms correspond to the

Killing form on h and h∗.

Observe that the terms other than |ν|2 in the theorem do not change

when we keep Lie algebra same and change the group, however observe that

|ν|2 = |dν(1)|2, and dν(1) which is a member of infinitesimal co-character

lattice which changes with the group. For example if m : G1 → G2 is an

isogeny and suppose a maximal torus of G1 is T1 which maps to that of

G2 is say T2 under m, then the set S1 = {dν(1) | ν ∈ X∗(T1)} is a subset

of S2 = {dν(1) | ν ∈ X∗(T2)}. Thus a representation of G1 which factors

through G2 is spinorial for G1 if it is spinorial for G2, but converse is not

true. For example take G1 = SL(2,C) and G2 = PGL(2,C) and m(A) = A

mod Z(GL(2,C)). Then

S1 = {

 n 0

0 −n

 , n ∈ Z}

, while

S2 = {

 n/2 0

0 −n/2

 , n ∈ Z}

and

inf
v∈S1

ord2(|v|2) = 2

while that for S2 is 1. According to the Theorem 1.1.1 of the thesis, if we

take the highest weight j then according to section 6.2.1 of the thesis the

rest part is
j(j + 1)(2j + 1)

6 ∈ Z.
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So for SL(2,C) we have to check parity of

22 · j(j + 1)(2j + 1)
2 · 6

which is always even hence it is always spinorial. For PGL(2,C) the parity

of
21 · j(j + 1)(2j + 1)

2 · 6

matters which can be odd for example if j = 2 it is 5.

With some more work for general case i.e., for connected complex

semisimple Lie groups G whose Lie algebra g may not be simple, we have

the following theorem.

Theorem 1.1.2. Let G be a connected complex semisimple Lie groups whose

Lie algebra is g. Let g = ⊕gi, where each gi is simple. Then the Cartan

subalgebra h of g is the direct sum of the Cartan subalgebras hi of gi, and

we have h∗ ∼= ⊕h∗i . Therefore we can write λ = ⊕λi, ρ = ⊕ρi and for an

infinitesimal cocharacter ν = ⊕νi.

Then the representation φλ is spinorial if and only if the integer

Q′′ν(1)
2 = dimV λ

k∑
i=1

|νi|2(|λi + ρi|2 − |ρi|2)
2 dim gi

is even for every co-character ν of TG, where the norms correspond to the

Killing forms of gi.

Scholium 1.1.3. To determine the spinoriality of φ it is enough to deter-

mine the parity of Q′′ν(1)/2 for the co-characters ν which represent the gen-

erators of π1(G) = X∗(T )/Q which is finite, where X∗(T ) is the co-character

lattice and Q is the co-root lattice of G. Thus problem reduces to checking

this criterion for finite number of co-characters.
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An important point is to note that the Q′′ν(1)/2 is a polynomial in λ.

There is a nice relation with the Dynkin invariant of the representation φλ.

The Dynkin invariant of a morphism between simple Lie algebras, is defined

to be the ratio, (φλ(x),φλ(y))d
(x,y)d

, where (, )d denotes the normalized Killing form

such that (α, α)d = 2, where α is any long root in the corresponding simple

Lie algebra. In fact, the Dynkin invariant is an non-negative integer. A good

reference for Dynkin Index is [Vinberg(1994)].

In our case, we assume that g is simple. We have the map φλ : g→ so(V ).

The corresponding Dynkin invariant is

dyn(φλ) = dim V λ · (|λ+ ρ|2 − |ρ|2)
dim g · (α, α) ,

where (, ) is the Killing form.

Thus our criterion reduces to

Theorem 1.1.4. In the case where g is simple, the representation φλ is

spinorial if and only if

(α, α)(ν, ν) dyn(φλ)
2 ≡ 0 mod 2,

for every co-character ν.

Thus

Fν(λ) ≡ (α, α)(ν, ν) dyn(φλ)
2 mod 2.

Here we obtain an integer valued function Fν(λ), whose parity determiness

whether φ ◦ ν is a lifting co-character. Hence we obtain φ∗ : ν 7→ (Fν(λ)

mod 2). Since π1(G) is finite, our problem reduces to a finite problem of

determining whether the representative co-characters for the generators of

π1(G) lift.

For n odd, it is easy to see that all of the irreducible orthogonal repre-
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sentations of GL(n,C) are spinorial.

For the reductive group G = GL(n,C), the associated semisimple group

is PGL(n,C). We have made some explicit calculation for the expression in

Equation (1.3) for PGL(n,C) for n even.

We have also calculated the expression in Equation (1.3) for the case

SO(m,C), which exhausts the case of classical groups.

We prove here that the adjoint representation is spinorial if and only if

half the sum of positive roots is an integral weight.

To treat compact Lie groups we simply complexify. There is a correspond-

ing compact Spin group which is the double cover of real orthogonal group.

We denote it by Spin(n,R). We have φ : G → SO(n,R) lifts to Spin(n,R)

⇔ its complexification is spinorial (see Chapter 9 ).

A cone lattice is the intersection of a lattice and a cone with 0 as its vertex.

The highest weights corresponding to irreducible self-dual representations

and orthogonal representations form a cone lattice. We call them by Psd(G)

or Psd(g) and Porth(G) or Porth(g) respectively depending upon the context.

See Chapter 5.

It is observed that the spinorial representations in general may not form

a cone lattice. But they are periodic in the sense that there are suitable

vectors p such that the representation corresponding to $ is spinorial if and

only if the representation corresponding to $ + p is spinorial.

This leads us to define:

P ′Spin(G) = {λ ∈ Porth | Fν(λ) ≡ 0 mod 2∀ν ∈ X∗(T )}

PSpin(G) = {p ∈ Porth(G) | λ ∈ P ′Spin(G)⇔ λ+ p ∈ P ′Spin(G)}

Thus we have a chain PSpin(G) ⊆ Porth(G) ⊆ Psd(G) ⊆ Psd(g).

PSpin(G) gives a kind of periodicity of the spinorial weights inside Porth(G).

Theorem 1.1.5. Periodicity Theorem The index [Porth(G) : PSpin(G)] is
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finite.

Thus we only have to determine the spinoriality for a finite set, the funda-

mental domain. And by periodicity we obtain the spinoriality for all the other

weights. Thus we have converted an infinite problem into a finite algorithm.

1.2 Determinantal Identity Method

Theorem (1.1.1) solves in principle our spinoriality question, but our Period-

icity Theorem leads to further questions

1) Determine precisely PSpin(G).

2) What proportion of othogonal irreducible representations of G are spino-

rial?

We pursue these questions for PGL(n,C) and SO(n,C), and have com-

plete answers for PGL(4), SO(3), SO(4) and SO(5). Our method is to use

determinantal identities such as the Jacobi-Trudy identity for the character

of the representations.

Using the "Determinantal Identity Method", we have determined PSpin(G)

and found the proportion of spinorial weights explicitly for the groups

PGL(4), SO(3), SO(4), SO(5). By use of this method we have also found

explicit polynomials, whose variables are parameters of highest weight. If

the polynomial value at certain weight is even it is spinorial otherwise not.

For example GL(2,C) corresponds to the semi-simple group

SL(2,C)/Z ∼= SO(3,C). The highest weight for SO(3,C) is parametrized by

a single integer n. All of the representations of SO(3,C) are self-dual and

orthogonal.

Here F turns out to be Fν(n) = n(n− 1)
2 , which is a polynomial in
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n. Hence, F is even, which is the criterion for spinoriality is given by the

equation

n ≡ 0 or 3 mod 4.

So, for example here, we can see that the representation with highest

weight n is spinorial if and only if the representation with highest weight

n+ 4 is spinorial. Thus we have PSpin(SO(3,C)) = 4Porth(SO(3,C)).

Now we discuss the "Determinantal Identity Method" for GL(n,C).

Strategy for GL(n)

The Weyl character formula for GL(n,C) gives

Trace(φλ((x1, x2, . . . , xn))) = Sλ(x1, x2, . . . , xn).

Here Sλ is the Schur polynomial and λ is the highest weight of the repre-

sentation.

We have the Jacobi-Trudy identity which says

Sλ(x1, x2, . . . , xn) = |Hλi+j−i|,

where the matrix in RHS has (i, j)th entry Hλi+j−i. Here Hn are complete

symmetric polynomials. See page 455 [Fulton and Harris(1991)].

We have used here a slightly modified version of the same identity men-

tioned in page 131 [Prasad(2015)].

Here are a few results which we obtain by using the "Determinantal Iden-

tity Method". The group GL(2n,C) corresponds to the semi-simple group

PGL(2n,C).
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Theorem 1.2.1. We have

PSpin(PGL(2n)) ⊇ 〈2k($1 +$2n−1), 2k($2 +$2n−2), . . . ,

2k($n−1 +$n+1), 2k+1$n〉,

where $i are the fundamental weights of sl2n.

We have PSpin(SO(3,C)) = 4Porth(so(3,C)).

The representation of SO(4,C) of highest weight (x, y) is spinorial if and

only if

(1/6)(1 + x+ y)(2x+ x2 − y − xy + y2) ≡ 0 mod 2.

We have PSpin(SO(4)) = 〈(4, 0), (0, 4)〉 = 4 · Porth(so(4,C)).

The representation of SO(5,C) with highest weight λ = (λ1, λ2) is spino-

rial if and only if

(
λ1 + 3

4

)
−
(
λ2 + 2

4

)
≡ 0 mod 2.

We have PSpin(SO(5,C)) = 〈(4, 4), (4,−4)〉 = 8 · Porth(so(5,C)).

Here is the summary of the thesis. Throughout the thesis the group un-

der consideration is a connected reductive complex Lie group. The second

chapter contains the definitions and the criteria for an irreducible represen-

tation of being self-dual and orthogonal in terms of their highest weight. The

third chapter starts with few lemmas useful for the strategy. It contains the

strategy for determining whether the orthogonal representation is spinorial.

The fourth chapter is the heart of the thesis. In this chapter we discuss the

method to obtain general criterion for the spinoriality of a representation.

The criterion is clearly in terms of the highest weight of the representation.

Also we discuss the relation of this criterion with the Dynkin index of the rep-

resentation. Chapter five contains definitions of certain free abelian groups
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that we associate to the Lie group under consideration or its Lie algebra. We

denote them by Psd(G), Porth(G), PSpin(G) and similarly for Lie algebra of G.

Then we have the periodicity theorem which tells that the highest weights

of the spinorial representations are periodic in the orthogonal weights and

the fundamental domain Porth(G)/PSpin(G) is finite. In the sixth chapter

we discuss how representations of compact groups are related to their corre-

sponding complexification. We prove here that the question of spinoriality

of the representation of compact group G and its complexification are same.

Hence we have the answer for the compact groups also. The seventh chapter

contains the actual expression for the criterion of spinoriality for the classi-

cal groups. Here we also relate it to the Dynkin index of the representation.

This much is the first part of the thesis.

We give the name "Determinantal Identity Method" to the second part of

the thesis. In the tenth and eleventh chapter we use the determinantal iden-

tities for the Weyl character formula. In this part we deduce a determinantal

polynomial expression in the highest weight as the criterion for the spino-

riality for the groups GL(2n,C), SO(3,C), SO(4,C), SO(5,C). Using this

expression we have deduced some lower bounds for PSpin(GL(2n,C)), also

we have calculated PSpin(SO(3)), PSpin(SO(4)), PSpin(SO(5)) and PSpin(GL(4))

exactly. The twelfth chapter is the summary of the entire thesis. The Last

chapter is Appendix which has some useful combinatorial lemmas.



Chapter 2

Preliminaries

Notation Throughout the thesis we denote the k × k diagonal matrix with

diagonal entries a1, a2, · · · , ak by a1 ⊕ a2 ⊕ · · · ⊕ ak.

2.1 Definitions

Let G be a complex reductive Lie group with Lie algebra g.

We write a maximal Torus and a Cartan subalgebra of g by T and h

respectively. We write Ad for the adjoint Representation of G. Furthermore

we write α or β for the roots, R+ for the set of positive roots, and R for the

root system. Next we write Hα and R∨ for the co-roots and the inverse root

system. The weights of a representation and the fundamental weights we

denote by µ and $i respectively. Let φ be the irreducible representation and

λ be its highest weight. The positive Weyl chamber we denote by C0. Let W

be the Weyl group of T with respect to G. Let w0 be its longest element with

respect to C0. We denote the characters and the co-characters of maximal

torus by µ and by ν respectively and the set of characters by X∗(T ) and the

13
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set of co-characters by X∗(T ).

We insist that reader should see any standard book on Lie group repre-

sentation theory for example [Goodman and Wallach(2009)] for definitions

of the above mentioned concepts.

Let φ : G→ GL(V ) be a finite dimensional complex representation.

Definition 2.1.1. We call φ an orthogonal (symplectic represen) rep-

resentation if it preserves a non-degenerate symmetric (alternating) bilinear

form B, i.e, B(φ(g)v, φ(g)w) = B(v, w) for all v, w ∈ V and for all g ∈ G.

Since all the non-degenerate symmetric bilinear forms are equivalent for

the complex field, the complex orthogonal Lie group O(V ) is unique up to

isomorphism. Further if G is connected, then φ can be realized as a map

from G to SO(V ), i.e. , φ : G→ SO(V ).

Definition 2.1.2. The universal covering Lie group of SO(N,C) (N ≥ 1)

is called the complex spin group. We denote it by Spin(N,C) and the

covering map by ρ, i.e., ρ : Spin(N,C)→ SO(N,C).

It is well-known that the fundamental group of SO(N,C) is Z/2Z. Hence,

the group Spin(N,C) is the double cover of the group SO(N,C) and its fun-

damental group is trivial. We can give a constructive definition of Spin(n,C)

as follows.

For this definition we refer [Jacobson(1980)].

Let C be the complex field. Let V be a finite dimensional vector space over C.

Let T (V ) be the tensor algebra of V . Let Q0 be a non-degenerate quadratic

form on V . Define Clifford algebra C(V,Q0) = T (V )
< v ⊗ v −Q0(v) > . Let

C+(V,Q) be the sub-algebra of C(V,Q0) generated by elements of the form

u ·v, where u, v ∈ V . Define Γ(V ) = {x ∈ C(V,Q0) | x is invertible and x ·v ·

x−1 ∈ V ∀v ∈ V }. We define χ : Γ(V )→ GL(V ) by putting χ(x)(v) = x · v ·

x−1. Let Γ+(V ) = Γ(V ) ∩ C+(V,Q0). Let x ∈ Γ+(V ) then x = v1 · v2 · · · v2r,
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where vi ∈ V . We define map N : Γ+ → F× by N(x) = ∏2r
i=1Q0(vi). Now

Spin group Spin(V,Q0) is defined as kernel of N .

Take V = Cn with a non-degenerate quadratic form

Q(x1, . . . , xn) = −(x2
1 + · · ·+ x2

n)

on it. Since all the non-degenerate quadratic forms on Cn are equivalent, the

Clifford algebra is unique up to isomorphism.

According to page 309 Equation (20.31) of [Fulton and Harris(1991)]

Spin(V,Q) = {±w1 · w2 · · ·w2k | k ∈ Z≥0, wi ∈ Cm, Q(wi, wi) = −1}.

Definition 2.1.3. An orthogonal representation is called spinorial if it lifts

to Spin(N,C). That is, if there exists a homomorphism of complex Lie groups

ψ : G→ Spin(N,C) such that ρ ◦ ψ = φ.

Equivalently, the following diagram should commute :

Spin(N,C)
ρ

��

G
φ
//

ψ
::

SO(N,C).

Let us denote the dual complex vector space of V by V ∗.

Definition 2.1.4. Let φ : G→ GL(V ) be a complex representation of group

G. Then φ∗ : G→ GL(V ∗) defined as φ∗(g)(f)(x) = f(φ(g−1)x) for f ∈ V ∗

is called the dual representation of φ.

Definition 2.1.5. A representation of G which is isomorphic to its dual, is

called self-dual.

Definition 2.1.6. A polynomial f ∈ Z[x, x−1] satisfying the condition

f(x) = f(x−1) is called Laurent-palindromic polynomial. The ring of
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Laurent palindromic polynomials is denoted by Z[x, x−1]sym.

Equivalently the coefficient of xi in f is the same as the coefficient of x−i

for every i, for f to be a Laurent palindromic polynomial.

We define the degree of f ∈ Z[x, x−1]sym to be the largest of the degrees

of monomials appearing in f . We denote by Z[x, x−1]sym
d the set of Laurent

polynomials of degree d.

Definition 2.1.7. Given a degree n Laurent-palindromic polynomial

f(t) = an(tn + t−n) + · · ·+ a1(t+ t−1) + a0,

we define an operator Ψ : Z[t, t−1]sym → Z/2Z, by

Ψ(f) =
n∑
i=1

iai mod 2.

Observe that Ψ is a Z linear operator.

Definition 2.1.8. A polynomial of the form

a0 + a1 · x+ a2 · x2 + · · ·+ an · xn

is called palindromic if ai = an−i for 0 ≤ i ≤ n. We denote such polyno-

mials by Z[x]pal.

We denote the set of palindromic polynomials of degree d by Z[x]pal
d .

Definition 2.1.9. For f ∈ Z[x], such that

f(t) = a0 + a1t+ · · ·+ ant
n,

where ai ∈ Z, we define Ψ̃d : Z[x]→ Z/2Z by

Ψ̃d(f) =
d∑
i=1

iad−i mod 2.
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Observe that Ψ̃d is also a Z- linear operator and the diagram :

Z[t, t−1]sym
d

×td
//

Ψ
��

Z[t]pal
2d

Ψ̃dxx

Z/2Z

(2.1)

commutes, where the horizontal arrow is the multiplication by td.

2.2 Self-dual Representations

Let G be a connected complex Lie group. Let φ : G→ GL(V ) be a self-dual

representation. If after fixing a basis, φ(g) = A, where A is a matrix, then

A is conjugate to tA−1.

Theorem 2.2.1. (Criterion for self-duality of an irreducible representation)

Let (φ, V ) be an irreducible representation of a complex semi-simple Lie group

G with highest weight $. Let (φ∗, V ∗) be its dual representation. Let ω0 be

the longest element of the Weyl group of G. Then φ∗ has highest weight

−ω0($). Hence φ is self-dual, if and only if, $ = −ω0($).

Proof. See Page 134 Chapter VIII section 7.5 Proposition 11 [Bourbaki(2005)].

Theorem 2.2.2. Let (φ, V ) be an irreducible self-dual representation of a

complex Lie group G. Then it is either orthogonal or symplectic but not

both.

Proof. See Page 135 Chapter VIII section 7.5 Proposition 12 [Bourbaki(2005)].
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2.3 Orthogonal Representations

Let G be a connected complex semi-simple Lie group and let g be its Lie

algebra.

Theorem 2.3.1. Criterion for an irreducible self-dual representation to be

orthogonal : Let (φ, V ) be a self-dual irreducible representation of G with

highest weight $. Let Hα denote the co-root to root α. Then let m be the

integer ∑α∈R+〈$,Hα〉, where R+ denotes the set of positive roots.

1) If m is even then φ is orthogonal.

2) If m is odd then φ is symplectic.

Proof. See Page 135 Chapter VIII section 7.5 Proposition 12 [Bourbaki(2005)].



Chapter 3

Determining Spinoriality

For setting up a strategy to determining spinoriality we first see the general

criterion for lifting any group homomorphism φ : H → G to a cover of

G. Next we observe that inclusion of maximal torus induces surjection at

the level of the fundamental groups. Thirdly we quote the isomorphism of

fundamental group and the quotient of co-character lattice by co-root lattice.

3.1 Structural Lemmas

Let G be a complex Lie group. Let T be a maximal torus of G. Let t ⊂ g

be the Lie algebra of T . Let exp : g → G denote the exponential map.

Let us denote Hom(T,C×) by X∗(T ), and Hom(C×, T ) by X∗(T ). For a

homomorphism f between two topological groups, let f∗ denote the map

between the fundamental groups, induced by f .

Lemma 3.1.1. Let G, G′, H be connected complex Lie groups and φ : H →

G be a homomorphism. Let α : G′ → G be a cover. Then φ can be lifted to

G′ if and only if the image of φ∗ in π1(G) is contained in the image of α∗.

19
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Equivalently the following diagram should exist

G′

α
��

H
φ
//

>>

G.

Proof. It follows from the lifting theorem in algebraic topology, that there is

a unique continuous topological lift ψ, which takes identity of H to identity

of G′. We will prove that ψ is a group homomorphism. Let ∗ denote the

multiplication in any group. We have φ(g1 ∗ g2) = φ(g1) ∗ φ(g2). So we get

α◦ψ(g1∗g2) = αψ(g1)∗αψ(g2). Hence α(ψ(g1∗g2)ψ(g1)−1ψ(g2)−1) = 1. The

image of the map p : H×H → G′ given by (g1, g2)→ ψ(g1∗g2)ψ(g1)−1ψ(g2)−1

is connected, since H is connected. The kernel of α is discrete, as it is a

covering map. Thus, we get (ψ(g1 ∗ g2)ψ(g1)−1ψ(g2)−1) = 1. Hence ψ(g1 ∗

g2) = ψ(g1)ψ(g2). Thus ψ is, in fact, a group homomorphism.

Theorem 3.1.2. Let ι the inclusion map ι : T ↪→ G, then ι∗ is surjective.

Proof. See page 67 Theorem 2 c) in [Serre(2001)]. Let G be a complex

reductive Lie group and TG be a maximal complex torus of G. Let K be

a maximal compact subgroup of G and TK be its maximal compact torus

which is also contained in TG.

TG
i1 // G

TK

i2

OO

i3 // K

i4

OO

According to page 257 Theorem 2.2 part 3 of [Helgason(1978)], G is dif-

feomorphic to Rd × K for some positive integer d. Hence i4∗ is surjective.

According to page 223 Theorem (7.1) of [Bröcker and tom Dieck(2013)] the
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injection of compact maximal torus in a compact group induces a surjection

between fundamental groups. Thus i3∗ is surjective. We have i4 ◦ i3 = i1 ◦ i2,

thus i4∗ ◦ i3∗ = i1∗ ◦ i2∗. Thus i1∗ is surjective and hence the proof.

Theorem 3.1.3. We have π1(G) ∼= X∗(T )/Q, where Q is the sublattice of

X∗(T ) generated by the co-roots of T .

Proof. See page 67 Theorem 2 c) in [Serre(2001)]. It says that π1(G) is

isomorphic to Γ/Q, where Γ is the kernel of the map exp|t : t → T , which

takes x ∈ t to exp(2πix) ∈ T . Now X∗(T ) ∼= Γ via the map ν → dν(1),

where dν is the derivative of the map ν : C× → T . From the commutativity

of following diagram we get that dν(1) ∈ Γ.

C× ν // T

C
e2πiz

OO

dν // t

exp|t

OO
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3.2 Strategy

Let f∗ denote the induced map at the level of π1 by f . Theorem 3.1.2

states that if i : T ↪→ G is the inclusion of a maximal complex torus T

into G then i∗ is surjective. Lemma 3.1.1 says a lift exists if and only if

image of φ∗ ⊆ image of ρ∗.

Spin(N,C)
ρ

��

G
φ
//

::

SO(N,C)

.

Since Spin(V ) is simply connected, the image of ρ∗ is trivial. Hence the

lift exists if and only if the image of φ∗ is trivial, which is true if and only if

the map φ|T ∗ is trivial.

Now φ∗ : π1(G) → π1(SO(N,C)) is trivial if and only if φ|T ∗ : π1(T ) →

π1(SO(N,C)) is trivial. We know that π1(G) ∼= X∗(T )/Q,by Lemma 3.1.3,

where Q is the lattice generated by co-root. The map φ|T ∗ takes ν ∈ X∗(T ) to

φ ◦ ν ∈ X∗(TSO(N,C)). Since T is a complex torus, due to topological reasons,

φ|T ∗ is trivial if and only if (φ ◦ ν)∗ is trivial for every co-character ν of T .

(φ ◦ ν)∗ is trivial if and only if the co-character φ ◦ ν lifts to a co-character

of Spin(N,C) by Lemma 3.1.1.

Thus φ ◦ ν should be a lifting co-character for every ν if φ is a lifting

representation. Thus we need a criterion for given ν, when is φ ◦ ν a lifting

co-character.

Here we obtain an integer valued function Fν(λ) (see 3.2.3 ), if whose

parity is even then φ ◦ ν is lifting co-character and non-lifting otherwise.

Since π1(SO(N,C)) is Z/2Z, if the image φ ◦ ν is non-lifting, it corresponds

to the non-trivial element in Z/2Z. Hence we obtain φ∗ which takes ν to

Fν(λ) mod 2. Since the fundamental group is finite, our problem becomes



Chapter 3. Determining Spinoriality 23

a finite problem of checking whether the representative co-characters for the

generators of π1, are lifting.

Lemma 3.2.1. Let V = Cm. Then take the maximal torus of SO(V )

TV = x1⊕x2⊕· · ·⊕xk⊕x−1
1 ⊕x−1

2 ⊕· · ·⊕x−1
k−1⊕


x−1
k if m = 2k,

x−1
k ⊕ 1 if m = 2k + 1,

where each xi ∈ C×. Then V = ⊕ki=1Vi⊕ki=1 V
′
i ⊕ V0, where Vi, V ′i and V0 are

the common eigenspaces of TV corresponding to xi, x
−1
i and 1 respectively.

Let ν be a co-character of TV . If

ν(z) = zθ1⊕zθ2⊕· · ·⊕zθk⊕z−θ1⊕z−θ2⊕· · ·⊕z−θk−1⊕


z−θk if m = 2k,

z−θk ⊕ 1 if m = 2k + 1,

put S+ = {i | θi > 0}, S0 = {i | θi = 0}, and S− = {i | θi < 0}. Then

∑
i∈S+

θi +
∑
i∈S−

(−θi) ≡ 0 mod 2,

if and only if ν lifts to Spin(V ).

Proof. Here our main reference will be Section 6.3 in the revised edition

of [Goodman andWallach(2009)] . Lemma 6.3.4 says that we can parametrize

the maximal torus of Spin(V ) by w1, w2, . . . , wl, where wi are a set of coor-

dinate functions. Then Theorem 6.3.5 says that

ρ(w1, w2, . . . , wl) =


z2

1 ⊕ z2
2 ⊕ · · · ⊕ z2

k ⊕ z−2
k ⊕ z−2

k−1 ⊕ · · · ⊕ z−2
1 , if dimV = 2k,

z2
1 ⊕ z2

2 ⊕ · · · ⊕ z2
k ⊕ 1⊕ z−2

k ⊕ z−2
k−1 ⊕ · · · ⊕ z−2

1 , if dimV = 2k + 1,
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where

z2
1 = w1w2 . . . wl−1

wl−3
l

,

and

z2
i = wl

wi−1
,

for 2 ≤ i ≤ l.

Let us assume that m = 2l. Now suppose

ν(z) = zθ1 ⊕ · · · ⊕ zθl ⊕ z−θl ⊕ · · · ⊕ z−θ1 .

Then we have to solve the system

zθ1 = w1w2 . . . wl−1

wl−3
l

, (3.1)

and

zθi = wl
wi−1

,

for 2 ≤ i ≤ l.

So we get

wj = wlz
−θj+1 , (3.2)

for 1 ≤ j ≤ l − 1.

Finally putting (3.2) in the expression (3.1) for zθ1 we get

zθ1 = w2
l z
−
∑l

i=2 θi .

Thus we have

z
∑l

i=1 θi = w2
l .
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Therefore wl is an integer power of z if and only if

l∑
i=1

θi

is even.

Now it is easy to see that

l∑
i=1

θi ≡
∑
i∈S+

θi +
∑
i∈S0

θi +
∑
i∈S−

θi ≡
∑
i∈S+

θi +
∑
i∈S−

(−θi) mod 2.

Hence ∑
i∈S+

θi +
∑
i∈S−

(−θi) ≡ 0 mod 2,

if and only if ν lifts to Spin(V ).

A similar proof holds when m is odd.

Lemma 3.2.2. Let T be a maximal torus of G. Let ν : C× → T be a

co-character. Let φ be an orthogonal irreducible finite-dimensional represen-

tation of G. Then

Trace(φ ◦ ν(t)) = ad(t−d + td) + ad−1(t−d+1 + td−1) + · · ·+ a1(t−1 + t) + a0,

where ti occur as the weights of the representation φ ◦ ν of C× with multi-

plicities ai. We define Ψφ(ν) = Ψ(Trace(φ ◦ ν)) (see Definition 2.1.7). The

co-character φ ◦ ν lifts to the spin group if and only if

Ψφ(ν) =
d∑

k=1
k · ak ≡ 0 mod 2.

Proof. First we will prove that the Trace(φ ◦ ν(t)) has the form given above.

Let A = φ(t1, t2, . . . , tn) = χ1 ⊕ χ2 ⊕ · · · ⊕ χN be the matrix of repre-

sentation, where χi are the weights of T under φ. Since φ is self-dual, A is
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conjugate to TA−1. Then TA−1 = χ−1
1 ⊕χ−1

2 ⊕ · · ·⊕χ−1
N . Thus if a character

χ occurs k times, as one of the χis, then χ−1 should also occur k times. Ob-

serve that Trace(φ ◦ ν(t)) = ∑N
j=1 χj ◦ ν(t). The character χj ◦ ν(t) = te for

some e ∈ Z. So te and t−e occur the same number of times in trace(φ ◦ ν(t)),

which proves the first claim.

Now we prove the second assertion. From the above, it follows that tj

occurs the same number of times as t−j in the trace. Hence it follows that

Trace(φ ◦ ν(t)) = ad(td + t−d) + ad−1(td−1 + t−d+1) + · · ·+ a1(t+ t−1) + a0,

where ai is the multiplicity of ti in the trace polynomial. Thus we have

φ(ν(t)) = (td ⊕ t−d)⊕ad ⊕ (td−1 ⊕ t−(d−1))⊕ad−1 ⊕ · · · ⊕ (t⊕ t−1)⊕a1 ⊕ 1⊕a0 .

With reference to Lemma 3.2.1,

∑
i∈S+

θi +
∑
i∈S−

(−θi)

is the sum of positive numbers occurring as powers of t. Since ai are non-

negative, we have

∑
i∈S+

θi +
∑
i∈S−

(−θi) = d · ad + (d− 1) · ad−1 + · · ·+ 1 · a1.

Therefore by Lemma 3.2.1, ν is spinorial if and only if

d∑
i=1

i · ai ≡ 0 mod 2.
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Proposition 3.2.3. Let G be a complex semi-simple Lie group with maximal

torus T . Let (φ, V ) be a finite-dimensional holomorphic irreducible orthog-

onal representation of G of highest weight λ. Let ν be a co-character of T .

Then φ ◦ ν lifts to the spin group if and only if

Fν(λ) =
∑

{µ∈P (φ)|〈µ,ν〉>0}
m(µ, λ)〈µ, ν〉,

is even. Here P (φ) denotes the set of weights appearing in φ and m(µ, λ)

is the multiplicity of the weight µ in φ, and 〈, 〉 is the pairing between the

characters and the co-characters.

Proof. The representation φ is spinorial if and only if ∀ν : C× → T , φ◦ν lifts

to Spin(N,C). We can assume that φ(T ) ⊆ TV , where TV is the maximal

torus mentioned in the Lemma 3.2.1.

Let ν be a co-character of T . Since φ is self-dual, m(µ, λ) = m(−µ, λ).

Let us denote the set {µ ∈ P (φ) | 〈µ, ν〉 > 0} by B and the set {µ ∈ P (φ) |

〈µ, ν〉 = 0} by B0. Furthermore

φ(ν(t)) = ⊕µ∈B
(

(t〈µ,ν〉)⊕m(µ,λ) ⊕ (t〈−µ,ν〉)⊕m(µ,λ)
)
⊕µ∈B0 1.

Then by Lemma 3.2.1 the sum of the positive indices of t in the co-character

φ ◦ ν of TV is ∑
i∈S+

θi −
∑
i∈S−

θi =
∑
{µ∈B}

m(µ, λ)〈µ, ν〉.

Hence the proof.

Proposition 3.2.4. Let Fν(λ) be as in Proposition 3.2.3. Then

Fw(ν)(λ) = Fν(λ).
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Proof. Now

Fw(ν)(λ) =
∑

{µ∈P (φ)|〈µ,w(ν)〉>0}
m(µ, λ)〈µ,w(ν)〉

=
∑

µ∈P (φ)
m(µ, λ)〈µ,w(ν)〉δw(ν)(µ),

(where δν(µ) = 1 if 〈µ, ν〉 > 0 and 0 otherwise)

=
∑

µ∈P (φ)
m(w−1(µ), λ)〈w−1(µ), ν〉δw(ν)µ, (since 〈w(µ), w(ν)〉 = 〈µ, ν〉)

(put µ′ = w−1(µ))

=
∑

µ′∈P (φ)
m(µ′, λ)〈µ′, ν〉δw(ν)(w(µ′))

=
∑

µ′∈P (φ)
m(µ′, λ)〈µ′, ν〉δ(ν)((µ′)), (since 〈w(µ), w(ν)〉 = 〈µ, ν〉)

= Fν(λ).

Lemma 3.2.5. Let G be a complex semisimple group. Let T be a maximal

torus and ν be a co-character of T . Let φ be an irreducible orthogonal repre-

sentation of G with highest weight λ. Let Ψφ(ν) and Fν(λ) be defined as in

Lemma 3.2.2 and Lemma 3.2.3. Then

Ψφ(ν) ≡ Fν(λ) mod 2.

Proof. The co-character φ ◦ ν lifts if and only if Ψφ(ν) ≡ 0 mod 2. And a

similar statement for Ψφ(ν) replaced with Fν(λ) holds. Hence Ψφ(ν) ≡ Fν(λ)

mod 2.
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The Main Theorem

Let G be a connected complex Lie group having a semi-simple Lie algebra

g. Let TG be a maximal torus of G. In this chapter, we derive a formula

for determining the spinoriality of an irreducible orthogonal representation

of G. That formula gives an integer which is when even, we can say that the

representation is spinorial, otherwise not.

4.1 Discussion

Let φλ be an irreducible orthogonal finite-dimensional representation of G,

with highest weight λ. Let T be a maximal torus of G. Let us denote the

Lie algebra of T by h and its dual by h∗. Let ν be a co-character of T .

Notation: We use (, ) for the Killing form and the same for the canonical

pairing between characters and co-characters depending on the context.

Let Qν = Θ ◦ ν, where Θ is the Weyl character formula. It is clear that

Qν : C× → C and Qν(t) ∈ Z[t, t−1]. The reason is that, the Weyl character

formula is the sum of the characters of T and the co-domain of the pairing

between the characters and the co-characters of T is Z. More concretely

Qν(a) = ∑
µ∈Pλmλ(µ)a(µ,ν), where mλ(µ) is the multiplicity of weight µ in

29
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φλ and Pλ is the set of weights appearing in φλ. From Lemma 3.2.2, Qν is

palindromic. Thus, Qν(t) = ad(td+t−d)+ad−1(td−1+t1−d)+· · ·+a1(t+t−1)+

a0. Hence Qν ∈ Z[t, t−1]sym. From the discussion above the same lemma, we

can conclude that φλ is spinorial if and only if Ψφ(ν) = ∑d
k=1 k · ak ≡ 0

mod 2, for every ν.

Lemma 4.1.1. The polynomial Qν(t) can be uniquely written in the form

P (t)+P (t−1), where P ∈ Z[t] up to a constant term which may lie in (1/2)Z.

Proof. Since Qν(t) is palindromic, it is of the form ad(td + t−d) + ad−1(td−1 +

t−d−1 + · · ·+ a1(t+ t−1)) + a0 where ai ∈ Z. We can choose P (t) uniquely as

adt
d + ad−1t

d−1 + · · ·+ a1t+ (a0/2).

Lemma 4.1.2. We have Q′′ν(1)/2 ≡ Ψφ(ν) mod 2, where Ψφ is as in Lemma

3.2.2. Hence φλ is spinorial if and only if Q′′ν(1)/2 ≡ 0 mod 2 for every co-

character ν.

Proof. Using Lemma 4.1.1 we can write Qν(t) = P (t) + P (t−1) uniquely.

Thus we are interested in P ′(1) = Ψφλ(ν) = ∑d
i=1 i ·ai mod 2, where d is the

degree of Qν(see Definition 2.1.6).

Q′ν(t) = P ′(t)− P ′(t−1)t−2. (4.1)

Differentiating again we get

Q′′ν(t) = P ′′(t)− ((−2)t−3P ′(t−1)− t−4P ′′(t−1)).

Hence we have

Q′′ν(1) = 2(P ′(1) + P ′′(1)).
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Since P ∈ Z[t] up to a constant, P ′′(1) is always an even integer. Hence

Q′′ν(1)/2 ≡ P ′(1) ≡ Ψφλ(ν) mod 2.

Proposition 4.1.3. The polynomial Q′′ν attains the following value at 1:

Q′′ν(1) =
∑
µ∈Pλ

mλ(µ)(µ, ν)2,

where Pλ denotes the set of weights appearing in φλ and mλ(µ) is the multi-

plicity of the weight µ in φλ.

Proof. Observe that

Qν(t) =
∑
µ∈Pλ

mλ(µ)t(µ,ν),

and

Q′ν(t) =
∑
µ∈Pλ

mλ(µ)(µ, ν)t(µ,ν)−1. (4.2)

Moreover we have

Q′′ν(t) =
∑
µ∈Pλ

mλ(µ)(µ, ν)((µ, ν)− 1)t(µ,ν)−2,

and

Q′ν(1) =
∑
µ∈Pλ

mλ(µ)(µ, ν). (4.3)

By Equation (4.1)

Q′ν(1) = P ′(1)− P ′(1) = 0, (4.4)
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thus we get

Q′′ν(1) =
∑
µ∈Pλ

mλ(µ)(µ, ν)2 +Q′ν(1) =
∑
µ∈Pλ

mλ(µ)(µ, ν)2.

Now let C[h∗] denote the vector space whose basis is the set of weights,

where we denote an element β ∈ h∗ by eβ. We define eβ1 · eβ2 = eβ1+β2 , it

becomes a C-algebra. We define an operator ∂
∂ν

: C[h∗]→ C[h∗], by defining

it on eβ by ∂
∂ν

(eβ) = (β, ν)eβ, and extending it linearly on C[h∗]. It is easy

to check that ∂
∂ν

is a derivation on C[h∗].

We define

Ch(V λ) =
∑
µ∈Pλ

mλ(µ)eµ.

We define ε : C[h∗]→ C[h∗] by

ε

∑
β∈h∗

cβe
β

 =
∑
β∈h∗

cβ,

where the sum is finite. It is easy to see that ε : C[h∗] → C is a ring

homomorphism.

Now the expression we would like to calculate is

Q′′ν(1) =
∑
µ∈Pλ

mλ(µ)(µ, ν)2 = ε

(
∂2

(∂ν)2 Ch(V λ)
)
.

By the Weyl character formula we know that

A(λ+ ρ) = Ch(V λ)A(ρ),
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where

A(µ) =
∑
w∈W

sgn(w)(ew(µ)),

and ρ is half the sum of positive roots.

It is well-known that A(ρ) = ∏
β∈R+(eβ/2 − e−β/2).

We discuss a method of obtaining an expression for Q′′ν(1) which is same

as

Q′′ν(1) =
∑
µ∈Pλ

mλ(µ)(µ, ν)2 = ε

(
∂2

(∂ν)2 Ch(V λ)
)
. (4.5)

4.2 Calculation of Q′′ν(1)

Let m = |R+|, where R+ denotes the set of positive roots in the root system

corresponding to g.

Observe that
∂

∂ν
(f · g) = ∂f

∂ν
· g + f · ∂g

∂ν
,

for all f, g ∈ C[h∗], i.e., ∂
∂ν

is a derivation on C[h∗].

Now we have the Liebniz rule

∂n

(∂ν)n (f · g) =
n∑
i=0

(
n

i

)
∂if

(∂ν)i ·
∂n−ig

(∂ν)n−i . (4.6)

Theorem 4.2.1.

Q′′ν(1) = ε(∂
2 Ch(V λ)
(∂ν)2 )

= 2∑w∈W sgn(w)(w(λ+ ρ), ν)m+2

(m+ 2)!(∏m
i=1(βi, ν)) − (1

3)(dim(V λ))(
m∑
i=1

(βi, ν)2

4 ),

where m is as above, and βi ∈ R+.
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Proof. We have

A(λ+ ρ) = Ch(V λ)A(ρ). (4.7)

If we apply operator ε ◦ ∂m+2

(∂ν)m+2 on LHS of (4.7), we obtain

∑
w∈W

sgn(w)(w(λ+ ρ), ν)m+2.

On the other hand, if we apply ε ◦ ∂m+2

(∂ν)m+2 on the RHS of (4.7), and apply

(4.6), we get

m+2∑
i=0

(
m+ 2
i

)
· ε(∂

iA(ρ)
(∂ν)i ) · ε(∂

m+2−i Ch(V λ)
(∂ν)m+2−i ). (4.8)

Now we concentrate on finding ε(∂
iA(ρ)
(∂ν)i ).

Lemma 4.2.2. Let R be a complex algebra. Let D be a derivation on R (i.e.

D is linear and satisfies D(f · g) = f · D(g) + D(f) · g). Let f : R → C

be an algebra homomorphism on R and r1, r2, . . . , rm be some m elements

satisfying f(ri) = 0. Then

f(Di(r1 · r2 · · · rm)) =


0, 0 ≤ i ≤ m− 1

m!∏m
i=1 f(D(ri)), i = m.

Proof. We proceed by induction on m. If m = 1, then f(D0(r1)) = f(r1) = 0

and the second assertion is trivial.

Let us assume the statement for m and prove it for m + 1. Since D is a

derivation, the Liebniz product rule (4.6) is true for D. Also f is an algebra

homomorphism. Hence

f(Di(r1 · r2 · · · rm+1)) =
i∑

j=0

(
i

j

)
f(Dj(r1 · r2 · · · rm))f(Di−j(rm+1)).
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If i ≤ m−1, then j ≤ m−1, and then all the terms in the summation of the

form f(Dj(r1·r2 · · · rm)) are 0, by induction. Hence f(Di(r1·r2 · · · rm+1)) = 0.

If i = m, then for 0 ≤ j < m, f(Dj(r1 · r2 · · · rm)), which are the terms

in the summation, are 0, and when j = m⇒ i− j = 0, thus the last term in

the summation is f(Dm(r1 · r2 · · · rm))f(rm+1), which is 0, as f(rm+1) = 0.

Hence f(Dm(r1 · r2 · · · rm+1)) = 0. Hence we have the first assertion.

We would like to prove

f(Dm+1(r1 · r2 · · · rm+1)) = (m+ 1)!
m+1∏
i=1

f(D(ri)),

and we have

f(Dm+1(r1 ·r2 · · · rm+1)) =
m+1∑
i=0

(
m+ 1
i

)
f(Di(r1 ·r2 · · · rm))f(Dm+1−i(rm+1)).

Thus by induction,

f(Di(r1 ·r2 · · · rm)) = 0, for 0 ≤ i ≤ m−1. If i = m+1 then m+1−i = 0

which implies f(Dm+1−i(rm+1)) = 0. For i = m, we get

(
m+ 1
m

)
f(Dm(r1 · r2 · · · rm)f(D(rm+1)),

which by induction equals

(m+ 1)!
m+1∏
i=1

f(D(ri)).

Hence the proof.

Lemma 4.2.3. In the setting of Lemma 4.2.2, if D2(ri) = ci · ri, for some
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ci ∈ C, for each i, then we have the following recurrence relation

f(Dm+2(r1 · r2 · · · rm)) =
(
m+ 2

3

)
f(Dm−1(r1 · r2 · · · rm−1))f(D3(rm))

+ (m+ 2)f(Dm+1(r1 · r2 · · · rm−1))f(D(rm)).

Thus we get a formula f(Dm+2(r1 · r2 · · · rm)) equals

m∑
i=1

(m+ 2)!
6(m− i)!f(Dm−i(r1 · r2 · · · rm−i))f(D3(rm−i+1))f(D(rm−i+2)) · · · f(D(rm)),

which is the same as f(Dm+2(r1 · r2 · · · rm)) equals

(m+ 2)!
6

m∑
i=1

f(D(r1))f(D(r2)) · · · f(D(rm−i))f(D3(rm−i+1))f(D(rm−i+2)) · · · f(D(rm)),

(4.9)

using Lemma 4.2.2.

Proof. We have

f(Dm+2(r1 · r2 · · · rm)) =f(Dm+2(r1 · r2 · · · rm−1))f(rm)

+
(
m+ 2

1

)
f(Dm+1(r1 · r2 · · · rm−1))f(D(rm))

+
(
m+ 2

2

)
f(Dm(r1 · r2 · rm−1))f(D2(rm))

+
(
m+ 2

3

)
f(Dm−1(r1 · r2 · rm−1))f(D3(rm)),

as f(Dj(r1 · r2 · · · rm−1)) = 0 for 0 ≤ j ≤ m − 2 from the lemma above. As

f(rm) = 0 and f(D2(rm)) = f(c · rm) = c · f(rm) = 0. Thus the first and

the third sum vanish in the above summation. Hence we get our recurrence

relation.
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Assuming the following induction formula for l = m− 1

f(Dl+2(r1 · r2 · · · rl)) equals

l∑
i=1

(l + 2)!
6(l − i)!f(Dl−i(r1 · r2 · · · rl−i))f(D3(rl−i+1))f(D(rl−i+2)) · · · f(D(rl)).

(4.10)

We want to prove f(Dm+2(r1 · · · rm)) equals

m∑
i=1

(m+ 2)!
6(m− i)!f(Dm−i(r1 · · · rm−i))f(D3(rm−i+1))f(D(rm−i+2)) · · · f(D(rm)).

Writing terms for i = 1 and i = 2 to n, we want to prove

f(Dm+2(r1 · · · rm)) is equal to

(
m+ 2

3

)
f(Dm−1(r1 · r2 · · · rm−1))f(D3(rm)) + (m+ 2)f(D(rm))×

(
m∑
i=2

(m+ 1)!
6(m− i)!f(Dm−i(r1 · r2 · · · rm−i))f(D3(rm−i+1))f(D(rm−i+2)) · · · f(D(rm−1))

)
.

Now taking j = i− 1, we want to prove f(Dm+2(r1 · · · rm)) is equal to

(
m+ 2

3

)
f(Dm−1(r1 · r2 · · · rm−1))f(D3(rm)) + (m+ 2)f(D(rm))×

m−1∑
j=1

(m+ 1)!
6(m− j − 1)!f(Dm−j−1(r1 · r2 · · · rm−j−1))f(D3(rm−j) · f(D(rm−j+1)) · · · f(D(rm−1))

 .
By putting l = m− 1 in the Equation (4.10), we get

f(Dm+2(r1 · r2, · · · rm)) =
(
m+ 2

3

)
f(Dm−1(r1 · r2 · · · rm−1))f(D3(rm))

+ (m+ 2)f(Dm+1(r1 · r2 · · · rm−1))f(D(rm)),

which is the recurrence relation that we got earlier.
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For m = 1, it is trivial to check that the formula holds. Hence by induc-

tion the proof follows.

Lemma 4.2.4.

ε

(
∂iA(ρ)
(∂ν)i

)
= 0,

for 0 ≤ i ≤ m− 1, and

ε

(
∂mA(ρ)
(∂ν)m

)
= m!

m∏
i=1

(βi, ν),

where βi runs over the set of positive roots.

Moreover

ε

(
∂m+2A(ρ)

(∂ν)m

)
= (m+ 2)!

6

m∏
i=1

(βi, ν)(
m∑
i=1

(βi, ν)2

4 ).

Proof. Let us define

B(β) = eβ/2 − e−β/2,

and define

C(β) = eβ/2 + e−β/2.

Observe that
∂B(βi)
∂ν

= (βi, ν)
2 C(βi),

and
∂C(βi)
∂ν

= (βi, ν)
2 B(βi),

also we have

A(ρ) =
m∏
i=1

B(βi).

Now in the setting of Lemma 4.2.2, we put D = ∂
∂ν
, which is a derivation,

ri = B(βi) and f = ε. Thus the first assertion is obvious from Lemma 4.2.2.
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The second part of Lemma 4.2.2 says

ε

(
∂mA(ρ)
(∂ν)m

)
= m!

m∏
i=1

ε

(
∂B(βi)
∂ν

)

= m!
m∏
i=1

(βi, ν)
2 ε(C(βi))

= m!
m∏
i=1

(βi, ν),

as ε(C(βi)) = 2 for every i.

Now in the same setting of Lemma 4.2.2, we observe that ∂2B(βi)
(∂ν)2 =

(βi,ν)2

4 B(βi).

Thus we can apply Lemma 4.2.3. For applying this lemma we observe

that

ε

(
∂3B(βi)
(∂ν)3

)
= (βi, ν)3

4 ,

and

ε

(
∂B(βi)
(∂ν)

)
= (βi, ν).

By plugging in this data in Equation 4.9, we get

ε

(
∂m+2A(ρ)

(∂ν)m

)
= (m+ 2)!

6 (
m∏
i=1

(βi, ν))(
m∑
i=1

(βi, ν)2

4 ).

From Lemma 4.2.4, (4.8) reduces to

(
m+ 2
m

)
ε

(
∂mA(ρ)
(∂ν)m

)
ε

(
∂2 Ch(V λ)

(∂ν)2

)
+
(
m+ 2
m+ 1

)
ε

(
∂m+1A(ρ)
(∂ν)m+1

)
ε

(
∂ Ch(V λ)

(∂ν)

)

+
(
m+ 2
m+ 2

)
ε

(
∂m+2A(ρ)
(∂ν)m+2

)
ε
(
Ch(V λ)

)
.
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Here observe that ε
(
∂2 Ch(V λ)

(∂ν)2

)
is the thing we would like to know. We

have proved

ε

(
∂mA(ρ)
(∂ν)m

)
= m!

m∏
i=1

(βi, ν).

We know that

ε(Ch(V λ)) = dim(V λ).

We also have

ε

(
∂ Ch(V λ)

(∂ν)

)
= ε

( ∂

(∂ν)

)
(
∑
µ∈Pλ

mλ(µ)eµ)
 =

∑
µ∈Pλ

mλ(µ)(µ, ν) = Q′ν(1) = 0,

from equation (4.3) and (4.4).

Thus we have

∑
w∈W

sgn(w)(w(λ+ ρ), ν)m+2 =
(
m+ 2
m

)
ε

(
∂2 Ch(V λ)

(∂ν)2

)
m!

m∏
i=1

(βi, ν)

+ (m+ 2)!
6

m∏
i=1

(βi, ν)
(

m∑
i=1

(βi, ν)2

4

)
dim(V λ).

Therefore we have Q′′ν(1) = ε
(
∂2 Ch(V λ)

(∂ν)2

)
=

∑
w∈W sgn(w)(w(λ+ ρ), ν)m+2(

m+2
2

)
m!(∏m

i=1(βi, ν))
− (1/3) dim(V λ)

(
m∑
i=1

(βi, ν)2

4

)
.

Hence the proof.

Here on-wards, we take the bilinear form on the Cartan sub-algebra h to

be the Killing form, which is the bilinear form 〈X, Y 〉 = ∑
α∈R〈α,X〉 · 〈α, Y 〉

by Page 226 of [Bourbaki(2005)]. The form induced by the Killing form on h∗,

is denoted by ΦR in chapter VI section 1 no. 12 page 184 of [Bourbaki(2002)].

Proposition 4.2.5. Let g be a semi-simple Lie algebra with a Cartan

subalgebra h and Weyl group W . For each positive integer k we define
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gk(µ, ν) = ∑
w∈W sgn(w)〈w(µ), ν〉k, for µ ∈ h∗ and ν ∈ h.

Let g be simple. Then

(1) gk(µ, ν) = 0 for 0 ≤ k ≤ m− 1 or k = m+ 1

(2) gm(µ, ν) = m!∏
β∈R+(β, ρ)

∏
β∈R+(β, µ)∏β∈R+(β, ν).

(3) gm+2(µ, ν) = cg
∏
β∈R+(µ, β)∏β∈R+(β, ν)(µ, µ)(∑β∈R(β, ν)2),

where (,) is according to the notation introduced in the section 4.1. We

calculate cg in the next lemma.

Proof. If the Weyl group W acts on a vector space V , then a function f ∈

sym(V ∗) is called anti-W -invariant if f(w(v)) = sgn(w)f(v) ∀v ∈ V ∀w ∈ W .

Taking V = h∗ or h, and by Section 3.13 page 69 of [Humphreys(1990)] we

know that if a function f ∈ sym(V ∗) is anti-W -invariant then it is divisible

by ∏β∈R+ B
′(β, x) in sym(V ∗), where B′ is a non-zero W -invariant bilinear

form. Furthermore the quotient is a W -invariant polynomial. If g is simple

then by Theorem 14.31 of [Fulton and Harris(1991)] h and h∗ is a irreducible

representation ofW . Now B′ is a scalar multiple of the Killing form, because

the W -invariant bilinear forms corresponds to the set HomW (V, V ∗). It is

one dimensional if V is irreducible. Now the polynomial gk for each positive

integer k, is anti-W -invariant in both the variables. Hence it is divisible

by ∏β∈R+(µ, β∨). As (µ, β∨) = 2(µ, β)/(β, β), the expression is divisible by∏
β∈R+(µ, β), and also by ∏β∈R+(β, ν). Since gk(µ, ν) is anti-W-invariant in

both the variables µ and ν, we get

gk(µ, ν) = fk(µ, ν) ·
∏
β∈R+

(µ, β) ·
∏
β∈R+

(β, ν),

where (,) is the Killing form or the pairing between characters and co-

characters depending upon the context, and where fk is a W -invariant poly-

nomial in both the variables.
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When 0 ≤ k ≤ m− 1 the degrees of both sides cannot match unless fk is

identically 0, Hence gk(µ, ν) = 0.

For k = m + 1, since each entry 〈w(µ), ν〉m+1 is a degree m + 1 homo-

geneous polynomial in µ and ν, the degree of gm+1 is either m + 1 in each

varaible otherwise it is identically 0. If gm+1 = 0 we are through. Otherwise

we have the following argument. If we fix the variable ν, then fm+1(µ, ν)

should be a degree one W -invariant polynomial in the variable µ. By the

table of degrees of the basic invariants on page 59 of [Humphreys(1990)],

we know that there is no degree one W -invariant polynomial for simple Lie

algebras. Thus gm+1 is identically 0.

For (3), we have the following argument.

Lemma 4.2.6. The polynomial gm+2 has degree m+ 2 in both the variables.

Proof. The LHS is a homogeneous polynomial in both µ and ν, hence it

is either of degree m + 2 or it is identically 0. If it is 0 then the LHS in

Theorem 4.2.1 is non-negative as it is sum m(µ, λ)(µ, ν)2 while the RHS is

strictly negative as one of (βi, ν) 6= 0 as βi spans the space and the pairing

is non-degenerate. This leads to a contradiction.

Hence fm+2 is a degree 2 W -invariant polynomial in both the variables.

As both the polynomials are homogeneous, fm+2 will be homogeneous. Any

quadratic invariant homogeneous polynomial is a quadratic form correspond-

ing to a symmetric bilinear form on h or h∗. We know that a quadratic W -

invariant homogeneous polynomial corresponds to a W -invariant quadratic

form which in turn corresponds to a W invariant bilinear form. Again by

Theorem 14.31 of [Fulton and Harris(1991)] it should be the Killing form up

to scalars. Hence it is divisible by (µ, µ) and |ν|2 = (∑β∈R(β, ν)2). Therefore

we conclude

gm+2(µ, ν) = cg
∏
β∈R+(µ, β)∏β∈R+(β, ν)(µ, µ)(∑β∈R(β, ν)2).



Chapter 4. The Main Theorem 43

For (2), by a degree argument, it is clear that fm should be a scalar c.

To find c we again use the Weyl character formula, i.e.,

A(λ+ ρ) = Ch(V λ)A(ρ),

where A(µ) = ∑
w∈W sgn(w)ew(µ).

This time we apply ε( ∂m

∂νm
) to both sides of above equation. Again apply-

ing the Leibniz rule to the RHS and using Lemma 4.2.4 we get

gm(λ+ ρ, ν) = ε(Ch(V λ))ε
(
∂m(A(ρ))

(∂ν)m

)

= dim(V λ) ·m! ·
∏
β∈R+

(β, ν).

By using the Weyl dimension formula we get

gm(λ+ ρ, ν) =
∏
β∈R+(β, λ+ ρ)∏
β∈R+(β, ρ) ·m! ·

∏
β∈R+

(β, ν).

Hence we get fm = c = m!∏
β∈R+(β, ρ) and (2) follows.

Therefore, we conclude the proof of Proposition 4.2.5.

We calculate cg in the next lemma.

Lemma 4.2.7. We have

cg = (m+ 2)!
48(∏β∈R+(ρ, β)) · (ρ, ρ) .

Proof. Let us denote∏β∈R+(µ, β) by dµ and
∏
β∈R+(β, ν) by dν . Let us denote

(µ, µ) by |µ|2 and ∑β∈R+(β, ν)2 by |ν|2.
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Now we will use Exercise 7 c) on page 257 of [Bourbaki(2005)] which says

∑
µ∈P

((µ, ρ))2(mλ(µ)) = (1/24)(dim V λ)(λ, λ+ 2ρ), (4.11)

where P is the weight lattice of g. Let

F (µ, ν) =
∑
w∈W

sgn(w)(w(µ), ν)m+2.

Since (, ) is non-degenerate, for every co-character ν, we can define a weight

µν satisfying (µ′, ν) = (µ′, µν) ∀µ′ ∈ h∗. Similarly for every weight µ, we

can define a co-character νµ satisfying (µ′, νµ) = (µ′, µ) ∀µ′ ∈ h∗. With this

notation, if we substitute νρ in place of ν in (4.5), we get

Q′′νρ(1) =
∑
µ∈Pλ

mλ(µ)(µ, νρ)2 =
∑
µ∈Pλ

(µ, ρ)2(mλ(µ)),

which equals

= (1/24) dim(V λ)(λ, λ+ 2ρ),

by (4.11).

On the other hand, by Theorem 4.2.1

Q′′νρ(1) = 2F (λ+ ρ, νρ)
((m+ 2)!dνρ)

− (1/3)(dim V λ)(1/4)( |νρ|
2

2 ).

From the lemma above, we get

F (λ+ ρ, νρ) = cgdλ+ρdνρ|λ+ ρ|2|νρ|2.

Using the dimension formula we get

= cg(dim V λ)dρdνρ|λ+ ρ|2|νρ|2.
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Here

dνρ =
∏
β∈R+

(β, νρ)

=
∏
β∈R+

(β, ρ)

= dρ,

and

|νρ|2 =
∑
β∈R

(β, νρ)2

=
∑
β∈R

(β, ρ)2

= (ρ, ρ)

= |ρ|2.

See Equation (16) on page 184, of [Bourbaki(2002)] for the third equality.

Combining all this we have

Q′′νρ(1) = 2cg(dim V λ)dρdν |λ+ ρ|2|νρ|2

(m+ 2)!dν
− (1/24)(dim V λ)|νρ|2,

= (dimV λ)|ρ|2
(

2cgdρ|λ+ ρ|2

(m+ 2)! − 1/24
)
.

Equating this with

= (1/24) dim(V λ)(λ, λ+ 2ρ),

we get

cg = (m+ 2)!
48dρ(ρ, ρ) .
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Theorem 4.2.8. If g is simple then

Q′′ν(1) = (dim V λ)(|ν|2)(|λ+ ρ|2 − |ρ|2)
dim g

.

Proof. For the formula, plug in the value of cg in Theorem 4.2.1 and use the

Weyl dimension formula. We get

Q′′ν(1) = cgdλ+ρdν |λ+ ρ|2|ν|2

((m+ 2)!/2)dν
− dim V λ|ν|2

24

= (1/24)(dim V λ)(|ν|2)
(
|λ+ ρ|2

|ρ|2
− 1

)

= (dim V λ)|ν|2(|λ+ ρ|2 − |ρ|2)
24|ρ|2 .

See page 257 exercise 7 d) of [Bourbaki(2005)] which says dim g = 24(ρ, ρ) if

g is simple.

Hence we get the following theorem.

Theorem 4.2.9. Let φλ be an irreducible orthogonal finite-dimensional rep-

resentation with highest weight λ of a connected Lie group G having a simple

Lie algebra g. Then φλ is spinorial if and only if the integer

Q′′ν(1)
2 = (dim V λ)(|ν|2)(|λ+ ρ|2 − |ρ|2)

2(dim g)

is even for all co-characters ν of TG , where || is the killing norm and ρ is

half the sum of positive roots.

Now let g be semi-simple. Hence g = ⊕ki=1gi, where each gi is simple.

Then h = ⊕ki=1hi, where h is the Cartan subalgebra of g, and hi is a Cartan

subalgebra of gi. Let φλ be a orthogonal irreducible representation of a

group G with Lie algebra g with highest weight λ. Let λ = ⊕ki=1λi, where
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λi ∈ h∗i . Let µ ∈ h∗, so µ = ⊕ki=1µi, where µi ∈ h∗i . Let ρ be half the sum

of the positive roots of g. Then ρ = ⊕ki=1ρi, where ρi ∈ h∗i be half the sum

of positive roots of gi. Let ν be a co-character of the maximal torus of G

corresponding to h. Then ν = ⊕ki=1νi where νi ∈ hi. Let m be the number

of positive roots of g. Let mi be the number of positive roots of gi. Thus

m = ∑k
i=1mi. Let Ri+ = {βi1, βi2, . . . , βimi} be the positive roots of gi and

R+ = ∪ki=1Ri+ is the set of positive roots of g. Let the Weyl group of h in g

be W . Then W = W1 × · · · ×Wk, where Wi is the Weyl group of hi in gi.

Proposition 4.2.10. Let g, λ, ρ, µ, ν,m and gi, λi, ρi, µi, νi,mi be as above.

Let gk be the functions described in Proposition 4.2.5. Then we have

gm+2(µ, ν) =
k∑
i=1

(
m+ 2

m1, . . . ,mi + 2, . . . ,mk

)
gm1(µ1, ν1) · · · gmi+2(µi, νi) · · · gmk(µk, νk).
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Proof. By definition we have gm+2(µ, ν) is equal to

=
∑
w∈W

sgn(w)〈w(µ), ν〉m+2,

=
∑
w∈W

sgn(w)〈⊕ki=1wi(µi),⊕ki=1νi〉m+2,

=
∑
w∈W

sgn(w)(
k∑
i=1
〈wi(µi), νi〉)m+2,

=
∑
w∈W

sgn(w)

 k∑
i=1

∑
{(ni)∈Zk≥0|

∑
ni=m+2}

(
m+ 2

n1, . . . , nk

)
k∏
i=1
〈wi(µi), νi〉ni

 .
Now interchanging summations we get

=
k∑
i=1

∑
{(ni)∈Zk≥0|

∑
ni=m+2}

(
m+ 2

n1, . . . , nk

) ∑
w∈W

sgn(w)
k∏
i=1
〈wi(µi), νi〉ni ,

=
k∑
i=1

∑
{(ni)∈Zk≥0|

∑
ni=m+2}

(
m+ 2

n1, . . . , nk

)
×

 ∑
w1∈W1

∑
w2∈W2

· · ·
∑

wk∈Wk

k∏
i=1

(sgn(wi)〈wi(µi), νi〉ni)
 ,

=
k∑
i=1

∑
{(ni)∈Zk≥0|

∑
ni=m+2}

(
m+ 2

n1, . . . , nk

)
×

 ∑
w1∈W1

sgn(w1)〈w1(µ1), ν1〉n1 · · ·
∑

wk∈Wk

sgn(wk)〈wk(µk), νk〉nk
 ,

=
k∑
i=1

∑
{(ni)∈Zk≥0|

∑
ni=m+2}

(
m+ 2

n1, . . . , nk

)
k∏
i=1

gni(µi, νi).

Now since each gi is simple, we can apply Proposition 4.2.5 to say that

gni(µi, νi) = 0 if 0 ≤ ni ≤ mi − 1 or ni = mi + 1. Thus the k-tuples

(ni) ∈ Zk≥0 which contribute to the sum satisfy ni /∈ {0, 1, . . . ,mi−1,mi+ 1}

and ∑ni = m + 2 = (∑mi) + 2. It is easy to see that this will happen if

and only if exactly one of ni = mi + 2 and nj = mj for j 6= i. Hence the
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proposition.

Proposition 4.2.11. If g, λ, ρ, ν and gi, λi, ρi, νi be as above, then

Q′′ν(1) = dim(V λ)
k∑
i=1

((|νi|2)(|λi + ρi|2 − |ρi|2)
dim gi

.

Proof. By Theorem 4.2.1

Q′′ν(1) = ε

(
∂2 Ch(V λ)

(∂ν)2

)

= 2∑w∈W sgn(w)(w(λ+ ρ), ν)m+2

(m+ 2)!(∏m
i=1(βi, ν)) − (1

3)(dim(V λ))
(

m∑
i=1

(βi, ν)2

4

)

= 2gm+2(λ+ ρ, ν)
(m+ 2)!(∏m

i=1(βi, ν)) − (1
3)(dim(V λ))

(
m∑
i=1

(βi, ν)2

4

)
(4.12)

By Proposition 4.2.10, we have

gm+2(µ, ν) =
k∑
i=1

(
m+ 2

m1, . . . ,mi + 2, . . . ,mk

)
gm1(µ1, ν1) · · · gmi+2(µi, νi) · · · gmk(µk, νk).

Since each gi is simple, we can apply Proposition 4.2.5 to obtain

gmj(µj, νj) = mj!∏mj
l=1(βjl, ρi)

mj∏
l=1

(µj, βjl)
mj∏
l=1

(βjl, νj),

and

gmj+2(µj, νj) = (mj + 2)!
48∏mj

l=1(βjl, ρi) · (ρi, ρi)

mj∏
l=1

(βjl, µj)
mj∏
l=1

(βjl, νj)(µj, µj)(νj, νj).

Let us define dj(µj) = ∏mj
l=1(βjl, µj) and dj(νj) = ∏mj

l=1(βjl, νj) and d(µ) =∏
β∈R+(β, µ) and d(ν) = ∏

β∈R+(β, ν). Observe that d(µ) = ∏k
i=1 dj(µj) and
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d(ν) = ∏k
i=1 dj(νj).

Then we get gm+2(µ, ν)

=
k∑
i=1

(
m+ 2

m1, . . . ,mi + 2, . . . ,mk

)∏
l 6=i
ml!

 (mi + 2)!
 k∏
j=1

dj(µj)
dj(ρj)

dj(νj)
 |µi|2|νi|2

48|ρi|2

=
k∑
i=1

(m+ 2)!
2

 k∏
j=1

dj(µj)
dj(ρj)

dj(νj)
 |µi|2|νi|2

24|ρi|2
.

Now we put µ = λ + ρ and use the Weyl dimension formula. Thus we get

gm+2(λ+ ρ)

=
k∑
i=1

(m+ 2)!
2

 k∏
j=1

dj(λj + ρj)
dj(ρj)

dj(νj)
 |λi + ρi|2|νi|2

24|ρi|2

=
k∑
i=1

(m+ 2)!
2

 k∏
j=1

dim V λj

 d(ν) |λi + ρi|2|νi|2

24|ρi|2
.

The representation V λ is the external tensor product, i.e, V λ = �k
j=1V

λj ,

where V λj is the irreducible representation of gi of highest weight λj. Thus

dim V λ = ∏k
j=1 dim V λj . Hence we get

gm+2(λ+ ρ) = (m+ 2)!
2 dim V λd(ν)

k∑
i=1

|λi + ρi|2|νi|2

24|ρi|2
.

Putting this expression in Equation (4.12), we get Q′′ν(1)
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=
2(m+ 2)! dimV λd(ν)∑k

i=1
|λi+ρi|2|νi|2

24|ρi|2

2(m+ 2)!d(ν) −
dim(V λ)(∑β∈R(β, ν)2)

24

= dim V λ

24 ·

 k∑
i=1

|λi + ρi|2|νi|2

|ρi|2
− (

k∑
i=1

∑
β∈Ri+

(β, ν)2)
 .

observe that
∑
β∈Ri

(β, ν)2 = |νi|2. Hence we get

Q′′ν(1) = dim V λ

24

k∑
i=1
|νi|2
|λi + ρi|2 − |ρi|2

|ρi|2

Since gi is simple we have. 24|ρi|2 = dim gi, So this equals

= dimV λ
k∑
i=1

|νi|2(|λi + ρi|2 − |ρi|2)
dim gi

.

Hence the proof.

Theorem 4.2.12. Let G be a connected complex semi-simple group with

complex Lie algebra g. Let TG be a maximal torus of G. Let φλ be an

irreducible orthogonal holomorphic representation with the highest weight λ.

Then let g = ⊕gi, where gi is simple, λ = ⊕λi, ρ = ⊕ρi and ν = ⊕νi, where

ν ∈ h. The representation φλ is spinorial if and only if the integer

Q′′ν(1)
2 = dim V λ

k∑
i=1

|νi|2(|λi + ρi|2 − |ρi|2)
2 dim gi

is even for every co-character ν of TG.

Proof. It follows from the Lemma 4.1.2 and Proposition 4.2.11.

Scholium 4.2.13. To determine the spinoriality of φ, it is enough to deter-

mine the parity of Q′′ν(1)/2 for the co-characters ν which represent the gen-

erators of π1(G) ∼= X∗(T )/Q which is finite, where X∗(T ) is the co-character

lattice and Q is the co-root lattice of G. Thus problem reduces to checking
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this criterion for finite number of co-characters.

Proof. The map X∗(T ) → π1(G) φ∗−→ π1(SO(V )) is simply given by ν 7→

Q′′ν(1)/2. Because whenever ν is such that φ ◦ ν is lifting then it maps under

above map to 0 otherwise not, and the map ν 7→ Q′′ν(1)/2 does exactly

the same job. Now to check φ∗ is trivial, we just have to check it on the

representative co-characters of generators of π1(G). Hence the proof.



Chapter 4. The Main Theorem 53

4.3 Relation with the Dynkin Index

Let g be a simple Lie algebra with a long root α. We define a bilinear form

on g by

(x, y)d = 2(x, y)
(α, α) ,

where (, ) is the Killing form. In other words we normalize the Killing form

so that (α, α)d = 2. Let φ : g1 → g2 be a morphism of simple Lie algebras.

Then there exists a number dyn(φ) called Dynkin invariant, so that

(φ(x), φ(y))d = dyn(φ)(x, y)d.

Definition 4.3.1. Dynkin Index: Let φ : g → sl(V ) be a representation of

simple Lie algebra g, then the Dynkin invariant of φ is called the Dynkin

index of representation φ. It is denoted by jφ.

By Proposition 2.5 Page 101 of [Vinberg(1994)] we can say that Dynkin

invariant is a non-negative integer. It is 0 if and only if φ is trivial.

Properties of Dynkin invariant

1) For two representations φ1 and φ2 of the same Lie algebra g, we have

dyn(φ1 ⊕ φ2) = dyn(φ1) + dyn(φ2).

2)For three simple Lie algebras g1, g2, g3 and the morphisms ψ : g1 → g2 and

φ : g2 → g3, we have dyn(φ ◦ ψ) = dyn(φ) · dyn(ψ).

Lemma 4.3.2. Let ι : so(V )→ sl(V ) be the standard inclusion, then jι = 2.

Proof. A Cartan subalgebra of so(V ) is

hso =


x1 ⊕ · · · ⊕ xn ⊕ (−x1)⊕ · · · ⊕ (−xn) if dim V is even ,

x1 ⊕ · · · ⊕ xn ⊕ (−x1)⊕ · · · ⊕ (−xn)⊕ 0 if dim V is odd,
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where xi ∈ C. Under the map ι, it maps to the same matrix in sl(V ).

The Killing form for hsl is Ksl(X, Y ) = 2mTrace(X · Y ). The long root is

e1 − e2, so if we normalize the Killing form as K ′sl(X, Y ) = Trace(X · Y ) =∑2n
j=1 xjyj, then K ′sl(e1 − e2, e1 − e2) = 2. Similarly for hso, the Killing form

is Kso(X, Y ) = (m− 2) ·Trace(X, Y ). Here the long root is again e1 − e2, so

if we take the normalized Killing form to be

K ′so(X, Y ) = (1/2) Trace(X · Y )

= (1/2)(
n∑
i=1

xiyi +
n∑
i=1

(−xi)(−yi))

=
n∑
i=1

xiyi,

then K ′so(e1 − e2, e1 − e2) = 2. Since K ′sl restricted to so(V ) is 2K ′so, the

Dynkin index of ι is 2.

Let πλ : g → sl(V ) be an orthogonal representation. We may write

πλ = i◦π′λ, where π′λ : g→ so(V ). Thus dyn(π) = 2 dyn(π′) if dim V 6= 1, 2, 4,

as in these cases so(V ) is not simple.

Theorem 4.3.3. Let φλ be the irreducible representation of g with highest

weight λ with g simple. Then

jφλ = dim V λ · 2 · (λ, λ+ 2ρ)
dim g · (α, α) ,

where (, ) is the Killing form and α is the longest root of g.

Proof. By Theorem 2.19 page 101 of [Vinberg(1994)], we have

jφλ = dim V λ(λ, λ+ 2ρ)d
dim g

.

Thus by definition of (, )d the theorem follows.
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Corollary 4.3.4. In the setting of the theorem above we have

Q′′ν(1)
2 = (α, α)(ν, ν) dyn(φ′λ)

2 ,

where (, ) denotes the Killing form and α is the longest root.

Proof. By Theorem 4.2.9, we have

Q′′ν(1)
2 = (dim V λ)|ν|2(|λ+ ρ|2 − |ρ|2)

2 dim g
.

By the theorem above, we have

dim V λ(λ, λ+ 2ρ)
dim g

= (α, α) · jφλ
2 .

Note that (λ, λ + 2ρ) = |λ + ρ|2 − |ρ|2. Furthermore dyn(φ′λ) = (1/2)jφλ .

Combining all the three statements we get the above result.
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4.4 Spinoriality of the Adjoint Representa-

tion

Let G be a complex Lie group having a simple Lie algebra g. Let Ad be the

adjoint representation of G. Let T be a maximal torus of G and X∗(T ) be

the character group of T . Let ρ be half the sum of roots. We are proving

it for complex groups having a simple Lie algebra using our method in this

section.

Theorem 4.4.1. Ad is spinorial if and only if ρ ∈ X∗(T ).

Proof. From Theorem 4.2.9, it is clear that Ad is spinorial if and only if

dim V λ(|λ+ ρ|2 − |ρ|2)|ν|2
2 dim g

≡ 0 mod 2,

for every ν, where λ is the highest weight of Ad, i.e, the highest root. Since

for the adjoint representation V λ = g, we deduce that Ad is spinorial if and

only if
(|λ+ ρ|2 − |ρ|2)|ν|2

2 ≡ 0 mod 2.

By Exercise 8.7 (4) on page 195 of [Kirillov(2009)], we deduce that (λ, λ+

2ρ) = |λ+ ρ|2 − |ρ|2 = 1, since λ is the highest root.

Thus the condition for the spinoriality becomes |ν|
2

2 ≡ 0 mod 2 for every

ν.

Lemma 4.4.2. |ν|
2

2 is even for every co-character ν if and only if ρ ∈ X∗(T ).
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Proof.

|ν|2

2 = (1/2)
∑
β∈R

(β, ν)2

=
∑
β∈R+

(β, ν)2

≡
∑
β∈R+

(β, ν)2 + 2
∑

{βi,βj}⊂R+

(βi, ν)(βj, ν) mod 2

≡ (
∑
β∈R+

β, ν)2 mod 2

≡ (2ρ, ν)2 mod 2

≡ 4(ρ, ν)2 mod 2 (4.13)

If ρ ∈ X∗(T ) then (ρ, ν) ∈ Z for all co-characters ν, which means |ν|
2

2 ∈

2Z.

For the converse, we suppose that |ν|
2

2 is even for all co-characters of T .

Since (2ρ, ν) ∈ Z then either (ρ, ν) ∈ Z or (ρ, ν) = a
2 , where a is an odd

integer. If (ρ, ν) ∈ Z for every co-character ν of T , which means ρ ∈ X∗(T )

due to perfect pairing of characters and co-characters. If (ρ, ν) /∈ Z for some

ν, then (ρ, ν) = a
2 where a is an odd integer. Due to Equation (4.13) |ν|

2

2 ≡

4(a/2)2 mod 2. Hence we get |ν|
2

2 ≡ a2 mod 2, which is a contradiction

since a is odd and we assumed that the LHS is even. Therefore the second

case cannot occur and we get ρ ∈ X∗(T ).

Hence we conclude the proof of the Theorem 4.4.1.

This reproves page 416 exercise 7b in [Bourbaki(2005)] for real compact

Lie groups after complexifying.
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Chapter 5

Highest weight Lattices

In this section, we will study lattices of highest weights associated with the

representations of a semisimple Lie group or a Lie algebra. After definition

we study the relation amongst them. Let g be a semisimple Lie algebra. Now

fix a Cartan subalgebra h of g.

Definition 5.0.1. We define the weight lattice of a semisimple Lie algebra

g as

P (g) = {p ∈ h∗ | 〈p,Hα〉 ∈ Z,∀α ∈ R},

where R is the set of roots and {Hα, α ∈ R} is the set of co-roots.

Let G be a group having Lie algebra g.

Definition 5.0.2. We define

P (G) = {p ∈ P (g) | p = dλ for some λ ∈ X∗(T )},

where T is the maximal torus corresponding to h, X∗(T ) = Hom(T,C×) and

dλ ∈ h∗ is the derivative of λ.

The weight lattice for a semi-simple Lie algebra g is the set of weights

whose intersection with with each Weyl chamber gives the highest weights

59
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of irreducible finite dimensional representation of g. After fixing a positive

Weyl chamber C0, we can define three lattices.

Definition 5.0.3. For a semisimple Lie algebra g we define

Psd(g) = {p ∈ P | w0(p) = −p},

where w0 is the longest element of the Weyl group. Similarly for G we put

Psd(G) = Psd(g) ∩ P (G)

We know from Lemma 2.2.1 that an irreducible representation of a

semisimple Lie group G or a semisimple Lie algebra g of highest weight

$ is self-dual if and only if $ = −ω0($) where ω0 is the longest element of

the Weyl group of G or g. This means that Psd (Psd(G)) is the set of $ in

P (P (G)) satisfying the linear equation (ω0 + I)($) = 0. So Psd(Psd(G)) is

a free abelian group because it is the intersection of the weight lattice and

the kernel of (ω0 + I). Note that Psd(G) depends on the choice of w0, which

depends on the choice of a positive Weyl chamber.

Definition 5.0.4. For a semisimple Lie algebra g we define

Porth(g) =

$ ∈ Psd |
∑
α∈R+

〈$,Hα〉 ≡ 0 mod 2

 ,
where R+ denotes the set of positive roots. For a semisimple group G, put

Porth(G) = Porth(g) ∩ P (G).

From Theorem 2.3.1 we know that a self-dual irreducible representation

with highest weight$ is real if and only if∑α∈R+〈$,Hα〉 is even, where R+ is

the set of positive roots. We can think of $ 7→ (∑α∈R+〈$,Hα〉 mod 2) as a
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group homomorphism from Psd(g) or Psd(G) to Z/2Z. The kernel of this map

is denoted by Porth(g) or Porth(G). The intersection of Psd (Porth(G)) with C0

are precisely the highest weights of the irreducible orthogonal representations

of g or G.

Definition 5.0.5. We define

P ′Spin(G) = {λ ∈ Porth | Fν(λ) ≡ 0 mod 2∀ν ∈ X∗(T )}.

Note that λ ∈ (P ′Spin(G)∩Weyl chamber⇔ the representation with high-

est weight λ is spinorial. Unlike the highest weights of self-dual represen-

tations or orthogonal representations, highest weights of spinorial represen-

tations need not form a subgroup. By which we mean P ′Spin(G) may not

a subgroup of Porth(G). Although the spinorial weights are in some sense

periodic.

Definition 5.0.6. We define

PSpin(G) = {p ∈ Porth(G) | λ ∈ P ′Spin(G)⇔ λ+ p ∈ P ′Spin(G).}

By this definition we mean that we collect the set of vectors p ∈ Porth(G)

such that whenever λ ∈ P ′Spin(G) then λ+p ∈ P ′Spin(G). This means that if p

is such a vector and if λ and λ+ p are elements of Porth(G)∩ Weyl chamber,

then whenever λ is spinorial, λ + p is also spinorial. We show further that

such non-zero vectors p always exist. By definition, PSpin(G) is a lattice and

the Theorem 5.0.13 shows that the index [Porth(G) : PSpin(G)] is finite. In

this sense PSpin(G) captures the periodicity of the spinorial weights.

For any complex variable x and natural number i we define a polynomial

(
x

i

)
= x(x− 1) · · · (x− i+ 1)

i! .



62

Let S = Porth(G)⊗Q. Let P∨orth(G) ⊂ S∗ be its dual lattice.

Write
(
P∨orth(G)

Z

)
for the Z-algebra of polynomial maps from S to Q that

take integer values on Porth(G). For example, let α ∈ P∨orth(G), and define(
α
n

)
∈
(
P∨orth(G)

Z

)
by the prescription

(
α
n

)
: λ→

(
〈α,λ〉
n

)
for λ ∈ S.

Proposition 5.0.7. The Z-algebra
(
P∨orth(G)

Z

)
is generated as an algebra by(

αi
n

)
, where αi is a set of generators of P∨orth(G) and n ≥ 1.

Proof. See Proposition 2 in [Bourbaki(2005)] page 177.

Proposition 5.0.8. Let f : S → Q be a polynomial map in
(
P∨orth(G)

Z

)
. Then

there is a subgroup L < Porth(G) of finite index so that for all λ ∈ Porth(G)

and all ` ∈ L we have f(λ+ `) ≡ f(λ) mod 2.

Proof. From the proposition above, we have generators α1, α2, . . . , αr of

P∨orth(G) and integers n1, n2, . . . , nr, and a polynomial g ∈ Z[x1, x2, · · · , xr] so

that f = g
((

α1
n1

)
, . . . ,

(
αr
nr

))
. Put k = max(k1, . . . , kr) where ki = [log2ni]+1.

Note that
(
αi
ni

)
(λ + 2kµ) ≡

(
αi
ni

)
(λ) mod 2 for all λ, µ ∈ Porth(G) by Lemma

12.1.2. Thus we can take L = 2k · Porth(G).

Lemma 5.0.9. Let A(x) be a polynomial in one variable with real coeffi-

cients. if A(Z≥0) ⊆ Z, then A(Z) ⊆ Z.

Proof. Observe that
(
x
i

)
forms a basis of vector space of real polynomials.

Hence

A(x) =
m∑
i=0

ci

(
x

i

)
,

where ci ∈ R and m is some natural number. Observe that
(
x
i

)
takes integer

values on integer input. Hence if we prove ci ∈ Z then we are done.

Lemma 5.0.10. The numbers ci are integers.

Proof. We will proceed by induction. The base case is easy, i.e., A(0) = c0 is
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an integer. Let us assume c0, c1, · · · , cj−1 are integers. Observe that A(j) =∑j−1
i=0 ci

(
j
i

)
+ cj

(
j
j

)
is an integer. Thus cj = A(j) −∑j−1

i=0 ci
(
j
i

)
is an integer.

Hence the proof.

Therefore we conclude the proof of Lemma 5.0.9.

Lemma 5.0.11. Let C be a polyhedral cone in Rn with vertex 0, such that

Span(C) = Rn. Let L ⊂ Rn be a lattice and let P ∈ L. Then the intersection

of C and P +C is again a cone of the form P ′+C for some point P ′. Since

Span(C) = Rn, (P ′ + C) ∩ L is nonempty. We join P to a point P ′′ in

(P ′ + C) ∩ L. Then P ′′ − P and P + Z≥1 · (P ′′ − P ) ∈ C ∩ L .

Proof. A polyhedral cone C, such that Span(C) = Rn can be defined in

two ways. Either C = {x = (x1, x2, . . . , xn) | B · x ≥ d}, where B is

a rank-n m × n real matrix, where m ≥ n and d is a vector in Rn, or

C = {v0 +∑r
i=1 αivi | αi ≥ 0}, where the set {vi | 1 ≤ i ≤ r} spans Rn.

To prove that C and P + C have non-empty intersection we use the

second version of the definition. Let C = {∑r
i=1 αivi | αi ∈ R≥0}, then

P + C = {P + ∑r
i=1 αivi | αi ∈ R≥0}. We can write P = ∑r

i=1 βivi. Choose

αi > −βi so that ∑r
i=1(αi + βi)vi ∈ C ∩ (P + C). Thus the intersection is

nonempty.

To prove that the intersection is a cone, we use the first definition.

For both C and P + C the matrix B is the same. For C, d = 0,

while for P + C, d = B · P . Let Y = B · P = (y1, y2, . . . , yn). Let

Y ′ = (max{0, y1},max{0, y2}, . . . ,max{0, yn}). Then the intersection is

given by the equation B · x ≥ Y ′. Hence it is a cone. Therefore it is equal to

P ′ + C ′ for some point P ′, and C ′ = C since B is the same.

Since Span(C ∩ (P + C)) = Rn, the intersection of L with C ∩ (P + C)

is non empty.

Take a point P ′′ in L ∩ (P ′ + C). Here we will use the second version
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of the definition. Since P ′′ ∈ P ′ + C, we have P ′′ ∈ C and P ′′ − P ∈ C

Thus both P ′′ and P ′′−P are of the form ∑r
i=1 αivi, where αi ∈ R≥0. Hence

P +Z≥0(P ′′−P ) ∈ C. Therefore P +Z≥1 · (P ′′−P ) ∈ C ∩ (P +C)∩L.

Proposition 5.0.12. Let C be a polyhedral cone such that Span(C) = Rn,

and L be a lattice in Rn. If f ∈ R[x1, x2, . . . , xn] takes integer values on

C ∩ L, then f takes integer values on the whole of L.

Proof. Let P ∈ L. We will show that f(P ) ∈ Z. By the lemma above, there

exists a point P ′′ in C ∩L such that P ′′−P and P +Z≥1 · (P ′′−P ) ∈ C ∩L.

Now we define a polynomial g ∈ R[t] by g(t) = f(P ′′ + t · (P ′′ − P )). Since

P ′′ and P ′′ − P both belong to C ∩ L, it is clear that g(Z≥0) ⊆ Z. Hence by

Lemma 5.0.9 we have g(Z) ⊆ Z. Thus g(−1) = f(P ) ∈ Z. Since the choice

of P was arbitrary, we conclude that f takes integer values on the whole of

L.

Theorem 5.0.13. [Periodicity Theorem] The index [Porth(G) : PSpin(G)]

is finite.

Proof. Now observe that the expression

fν(λ) = dim V λ|ν|2(|λ+ ρ|2 − |ρ|2)
2 dim g

,

is a real polynomial in the variable λ using the Weyl dimension formula.

From Theorem 4.2.9 we can say that this polynomial takes integer values on

Porth(G) ∩ C0, where C0 is the Weyl chamber.

We have |ν|2/2 = ∑
β∈R+(β, ν)2. Thus |ν|2/2 is an integer valued func-

tion on X∗(T ). Since we are interested in only parity of fν , we may only

concentrate on minν∈X∗(T ) ord2(|ν|2/2). The function ord2(|ν|2/2) achieves

its minimum for some ν let us say for ν0. So we have φλ is spinorial if and

only if fν0(λ) is even.
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Applying the proposition above we deduce that the polynomial fν0 takes

integer values on the whole of Porth(G). We can identify S ⊗ R with a real

subspace say K of h∗ such that Porth(G) maps identically to Porth(G). Note

that since fν0 is a polynomial on h∗, fν0|K is a polynomial in co-ordinates of

K and Porth(G) is a lattice in K. Thus f |K ∈
(
P∨orth(G)

Z

)
. Thus by Proposition

5.0.8 there exists a subgroup L of Porth(G) of finite index such that f(λ+`) ≡

f(λ) mod 2 for every λ ∈ Porth(G) and ` ∈ L. Thus L ⊆ PSpin(G). Hence

Porth(G)/PSpin(G) is finite.

Thus in order to determine the spinoriality of the representation of highest

weight λ we only need to check it on the coset representatives of PSpin(G) in

Porth(G), which are finite in number.
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Applications

6.1 Preliminaries

6.1.1 Orthogonal Representations of GL(n)

In this section, we determine, which of the irreducible representations of

GL(n,C) are orthogonal. From page 268 Section (5.2) (vii) of [Bröcker and

tom Dieck(2013)] we deduce that the self dual irreducible representations of

U(n) are real or orthogonal. Therefore all of the irreducible self-dual rep-

resentations of GL(n,C) are orthogonal, by complexification. Let Z denote

the centre of GL(n,C). Let T be the maximal torus of invertible diagonal

matrices in GL(n,C). Let T ′ = T ∩SL(n,C). Let W be the Weyl group of T

in GL(n,C). Now for the rest of the discussion we will use the conventions

and results of Section 5.5.4 of [Goodman and Wallach(2009)].

For a = a1 ⊕ a2 ⊕ · · · ⊕ an ∈ T , define εi ∈ X∗(T ) as εi(a) = ai.

67
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We start from the irreducible representation (π, V ) of highest weight

µ =
n∑
i=1

miεi,

where mi ∈ Z,mi ≥ mi+1.

Then

$i =
i∑

j=1
εj,

are the fundamental weights of sl(n,C) for 1 ≤ i ≤ n− 1.

First let us restrict π to Z. We have π(zI) = z
∑n

i=1 miI by page 274

Theorem 5.5.22 [Goodman and Wallach(2009)]. As the representation is

self-dual, π(zI) should be conjugate to T (π(zI))−1. So Z acts trivially on V .

This forces
n∑
i=1

mi = 0.

Now we restrict π to SL(n,C). It is still irreducible because GL(n,C) =

Z · SL(n,C), and Z acts trivially. By Section 5.5.4 of [Goodman and Wal-

lach(2009)], the corresponding highest weight is

µ0 =
n−1∑
i=1

(mi −mi+1)$i.

Recall from Theorem 2.2.1 π is self dual if its highest weight $ satisfies

$ = −w0($), where w0 is the longest element of its Weyl group. Now the

Weyl group of SL(n,C) is the symmetric group Sn and the longest element

in cycle notation is

w0 =


(1, n)(2, n− 1)(3, n− 2) · · · (n2 ,

n
2 + 1), if n is even,

(1, n)(2, n− 1) · · · (n+1
2 − 1, n+1

2 + 1), if n is odd.

See [Bourbaki(2002)] Chapter VI section 4 no. 7 XI. Hence w0(εj) = εn+1−j.
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Observe that

w0($j) = w0

 j∑
i=1

εi


= w0(ε1) + w0(ε2) + · · ·+ w0(εj)

= εn + εn−1 + · · ·+ εn+1−j

= −(ε1 + ε2 + · · ·+ εn−1) + εn−1 + εn−2 + · · ·+ εn+1−j

= −ε1 − ε2 − · · · − εn−j

= −$n−j,

since ∑n
i=1 εi = 0, as we are now in SL(n,C).

Now if π is self-dual then µ0 should satisfy µ0 = −w0(µ0). Thus we get

µ0 =
n−1∑
i=1

(mi −mi+1)$i = −w0(µ0) =
n−1∑
j=1

(mj −mj+1)$n−j.

Since $i are linearly independant, we get

mi −mi+1 = mn−i −mn−i+1 ∀ i < n.

Let n = 2k. Thus we put

m1 −m2 = mn−1 −mn = rk,

m2 −m3 = mn−2 −mn−1 = rk−1,

...

mk−1 −mk = mk+1 −mk+2 = r2.

Note the condition ∑n
i mi = 0 forces mk + mk+1 = 0. Hence we set

mk = −mk+1 = r1. Thus the highest weight corresponding to our orthogonal
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representation of GL(n,C) is of the form

(rk + rk−1 + · · ·+ r1, rk−1 + rk−2 + · · ·+ r1, . . . , r1,−r1,−r1 − r2,

. . . ,−r1 − r2 − · · · − rk),

where r1, r2, . . . , rk are nonnegative integer parameters.

6.1.2 Orthogonal Representations of SO(2n+ 1)

Theorem 6.1.1. All of the irreducible representations of SO(2n+ 1,C) are

orthogonal.

Proof. From Proposition 26.26 of [Fulton and Harris(1991)] which says the

representation of highest weight a1$1 + · · · + an−1$n−1 + an$n/2, where

ai ∈ Z and $j are fundamental weights of so(2n + 1,C), is orthogonal if

either an is even or n ≡ 0 or 3 mod 4. Here $j = ∑j
i=1 εi for 1 ≤ j ≤ n− 1

and $n = (1/2)(∑n
i=1 εi). Moreover 23.13 of [Fulton and Harris(1991)] says

that for representation of Lie algebra so(2n+ 1,C) to be the differential of a

representation of the group SO(2n+ 1), the highest weight vector should be

integral i.e. of the form ∑
biεi , where bi ∈ Z. For that to happen 4 should

divide an, then the representation is orthogonal since an is even. Thus all

the irreducible representations of SO(2n+ 1,C) are orthogonal.

6.1.3 Orthogonal Representations of SO(2n)

The fundamental representations here are $k = ∑k
i=1 εi, for 1 ≤ k ≤ n − 2.

The fundamental weight $n−1 = (1/2)(ε1 + · · · + εn−1 − εn), furthermore

$n = (1/2)(ε1 + · · ·+ εn−1 + εn).
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Theorem 6.1.2. A representation of SO(2n,C) of highest weight $ =∑n−2
i=1 ai$i + an−1$n−1 + an$n is orthogonal if and only if either n is odd

and an−1 = an or n is even and an−1 + an is even.

Proof. See Proposition 26.27 and Proposition 23.13 (iii) of [Fulton and Har-

ris(1991)].
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6.2 Examples

6.2.1 Case PGL(2)

In this section we will determine the spinoriality of irreducible orthogonal

representations of G = PGL(2,C). The Lie algebra of PGL(2,C) is isomor-

phic to gl(2,C)/(Scalars) ∼= sl(2,C). It is simple, and we denote it by g.

Hence cartan subalgebra of g is a⊕ b
x⊕ x

, where a, b, x ∈ C. We denote it by

h. Define α ∈ h∗ by α
(
a⊕ b
x⊕ x

)
= a− b, note that it is well defined. In fact

α is the single positive root as it is weight of the adjoint representation with

eigenvector

 0 1

0 0

 .
Hence ρ = (1/2)α. Any integral weight of h will be of the form nα, where

n ∈ Z. Now we choose the co-character ν : y → y ⊕ 0
x⊕ x

.

Since g is simple, our formula is

Q′′ν(1)
2 = (dimEλ)(|ν|2)(|λ+ ρ|2 − |ρ|2)

2 dim g
.

For sl(2,C) the Killing form on h is 4 Trace(X · Y ) = 4(x1y1 + x2y2)

where X = x1⊕ x2, Y = y1⊕ y2. Hence on h∗ it is (1/4)(x∗1y∗1 + x∗2y
∗
2), where

X∗ = x∗1ε1 + x∗2ε2, Y ∗ = y∗1ε1 + y∗2ε2. Here εi are projections on i’th factor.

Therefore we get
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|λ+ ρ|2 − |ρ|2 = (nα + (1/2)α, nα + (1/2)α)− ((1/2)α, (1/2)α)

= ((n+ (1/2))2 − (1/2)2)(α, α)

= (n2 + n)(α, α)

= (n2 + n)(ε1 − ε2, ε1 − ε2)

= (n2 + n)(1/4)(12 + (−1)2)

= (1/2)(n2 + n).

Using the dimension formula,

dim(E) = (nα + (1/2)α, α)
((1/2)α, α)

= 2n+ 1.

By definition of the Killing form, we get,

|ν|2 = (α, ν)2 + (−α, ν)2

= ((1,−1) · (1, 0))2 + ((−1, 1) · (1, 0))2

= 2.

Substituting in the formula we get

Q′′(1,0)(1)
2 = (2n+ 1) · 2 · (1/2)(n2 + n)

2 · dim(pgl2(C)) = n(n+ 1)(2n+ 1)
6 .

Since 2n+ 1 is odd, φ is spinorial if and only if

n(n+ 1)
2 ≡ 0 mod 2.
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6.2.2 Case PGL(n)

The group SL(n,C) is a finite cover of PGL(n,C), hence it has the same Lie

algebra as SL(n,C), which is simple. Therefore we can apply Theorem 4.2.9

here. Let φλ be an orthogonal irreducible finite-dimensional representation

of PGL(n,C) of highest weight λ. For PGL(n,C), the Cartan subalgebra h

is x1 ⊕ x2 ⊕ · · · ⊕ xn such that ∑xi = 0. This is a subspace of hgl(n,C).

Hence h∗ is hgl(n,C))
C·(1,1,...,1) . Recall that we want to calculate

(dim V λ)(|ν|2)(|λ+ ρ|2 − |ρ|2)
2 dim g

.

Lemma 6.2.1. If n is an odd natural number, then all of the irreducible

orthogonal finite-dimensional representations of PGL(n,C) are spinorial.

Proof. As π1(PGL(n,C))) is Z/nZ, and π1(SO(N,C)) is Z/2Z. The map

at the level of π1 is trivial. Hence by Lemma 3.1.1 all the corresponding

representations are spinorial.

So the groups of interest are PGL(2n,C). The highest weight of an or-

thogonal irreducible representation is of the form

λ = (
n∑
i=1

ri,
n−1∑
i=1

ri, . . . , r1 + r2, r1,−r1,−r1 − r2, . . . ,−
n∑
i=1

ri) (6.1)

from Subsection 6.1.1.

From page 218 of (vi) of proposition 6.2 of [Bröcker and tom Dieck(2013)]

we get that half of sum of roots for PGL(2n,C) is

ρ =
(2n− 1

2 ,
2n− 3

2 , . . . ,
1
2 ,
−1
2 , . . . ,

1− 2n
2

)
.
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Now we calculate

|λ+ ρ|2 − |ρ|2.

It is well-known that the Killing form for hsl2n is 2(2n) Trace(X, Y ), i.e.,

4n∑n
i=1 xiyi. We induce the Killing form on h∗. It is easy to see that if

we choose representatives µ = (µ1, µ2, . . . , µ2n) + C · (1, 1, . . . , 1) and γ =

(γ1, γ2, . . . , γ2n) + C · (1, 1, . . . , 1) of the space h∗, such that ∑µi = 0 and∑
γi = 0, then the induced Killing form will be just 1/(4n)∑µiγi.

Hence we have,

|λ+ ρ|2 − |ρ|2 = (1/(4n)) · 2 ·

 n∑
i=1

 i∑
j=1

rj

+ 2i− 1
2

2

−
(2i− 1

2

)2
 .

The following is the calculation for dim(V λ). The positive roots for

PGL(n,C) are εi − εj where i < j. We will use the Weyl dimension for-

mula. Suppose µ = (µ1, µ2, . . . , µ2n) ∈ h∗.

We refer to page 337 section 7.1.2 examples [Goodman and Wal-

lach(2009)].

dim V λ =
∏

1≤i<j≤n

µi − µj + j − i
j − i

.

For calculating |ν|2 , we choose ν to be,

ν : z 7→ (z ⊕ 0⊕ 0⊕ · · · ⊕ 0) + C · (1, 1, · · · , 1).
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So basically ν = (1, 0, 0, . . . , 0), hence

|ν|2 =
∑
α∈R

(α, ν)2

=
∑

1≤i 6=j≤2n
(εi − εj, ν)2

= 2(2n− 1).

It is easy to see that the lattice spanned by the Weyl conjugates of ν form a

spanning set for the co-character lattice. At the level of π1 the image of a co-

character is trivial if and only if the image of its Weyl conjugates are trivial.

Hence it is enough to check the formula for this particular co-character ν.

Of course dim(sl2n(C)) = (2n)2 − 1.

Recall Equation 6.1 for definition of λi.

Theorem 6.2.2. φ is spinorial, if and only if,

Q′′ν(1)
2 = 1

2 ·
∏

1≤i<j≤n

(
λi − λj + j − i

j − i

)
· 2(2n− 1)

1 · 1
4n2 − 1 ·

∑n
i=1(((∑i

j=1 rj) + 2i−1
2 )2 − (2i−1

2 )2)
2n

=
∏

1≤i<j≤n

(
λi − λj + j − i

j − i

) ∑n
i=1(((∑i

j=1 rj) + 2i−1
2 )2 − (2i−1

2 )2)
2n(2n+ 1)

is even.

Relation with the Dynkin index

Since we are considering Am−1, we have that π1(G) ∼= Z/mZ.

Here all the roots have same length. Let us denote the Killing form on h or

h∗ by (, ). Let

nG = (1/2)(α, α)(ν, ν),

where α is the longest root and ν is a co-character that corresponds to a
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generator of π1(G). Here both the lattices, the co-character lattice and the

co-root lattice, are free abelian groups. Let β∨i , 1 ≤ i ≤ n − 1 be the

simple co-roots. Then ν = (1/m)∑n−1
i=1 aiβ

∨
i , for some ai ∈ Z and where

gcd(a1, a2, , · · · , an−1,m) = 1. Note that, here we are not saying that we can

choose ai arbitary. The choice of ai depends on G. Let β∨i be the co-root

corresponding to the root βi. By the usual identification

(β∨i , β∨j ) =
(

2βi
(βi, βi)

,
2βj

(βj, βj)

)
= 4(βi, βj)

(βi, βi)(βj, βj)
. (6.2)

Note that (α, α) = (βi, βi) for 1 ≤ i ≤ n− 1.

Now

(ν, ν) =((1/m)
n−1∑
i=1

aiβ
∨
i , (1/m)

n−1∑
i=1

aiβ
∨
i )

=( 1
m2 )

n−1∑
i=1

a2
i (β∨i , β∨i ) + 2

 ∑
1≤i<j≤n−1

aiaj(β∨i , β∨j )


=( 1
m2 )

(n−1∑
i=1

a2
i

4
(βi, βi)

)
+ 2

 ∑
1≤i<j≤n−1

aiaj
4(βi, βj)

(βi, βi)(βj, βj)

 (by equation 6.2)).

Hence,

nG = 1
m2

(n−1∑
i=1

2a2
i

)
+ 2

 ∑
1≤i<j≤n−1

aiaj
2(βi, βj)
(βj, βj)

 , (6.3)

as (α, α) = (βi, βi) for 1 ≤ i ≤ n− 1.

Since 2(βi,βj)
(βj ,βj) is the (i, j)th entry of the Cartan matrix, clearly

nG = 1
m2a

tCa,

where a is the (n − 1) × (1) column matrix with ith entry ai and C is the

Cartan matrix of the root system An−1.
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Calculation of nG for PGL(n,C)

Here we calculate nG for PGL(n,C) and π1(PGL(n,C)) ∼= Z/nZ and m = n.

The Cartan subalgebra for PGL(n,C) is

C⊕ C⊕ · · · ⊕ C
C(1⊕ 1⊕ · · · ⊕ 1) .

Here the co-character lattice is

Z⊕ Z⊕ · · · ⊕ Z + (C(1⊕ 1⊕ · · · ⊕ 1)).

Let

εi = 0⊕ 0⊕ · · · ⊕ 1︸︷︷︸
ith place

⊕ · · · ⊕ 0 + C(1⊕ 1⊕ · · · ⊕ 1).

The co-roots are εi − εj. We claim that ε1 is the co-character corresponding

to a generator π1(PGL(n,C))). It is easy to see that

ε1 = n− 1
n

(ε1 − ε2) + n− 2
n

(ε2 − ε3) + · · ·+ 1
n

(εn−1 − εn).

Thus ai = n − i. Since gcd(1, 2, . . . , n − 1, n) = 1, ε1 corresponds to a

generator of π1(PGL(n,C)). If C is the Cartan matrix for An−1, then it is

well known that C(i,i) = 2 and C(i,i+1) = C(i+1,i) = −1 and the rest of the

entries are 0. Hence from Equation (6.3) the calculation of nG is as follows :
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nG = 2
n2

(
n−1∑
i=1

(n− i)2 −
n−2∑
i=1

(n− i− 1)(n− i)
)

= 2
n2

(
n−1∑
i=1

i2 −
n−2∑
i=1

i(i+ 1)
)

= 2
n2

(
n−1∑
i=1

i2 −
n−2∑
i=1

(i2 + i)
)

= 2
n2

(
n−1∑
i=1

i2 −
n−2∑
i=1

i2 +
n−2∑
i=1

i

)

= 2
n2

(
(n− 1)2 − (1/2)(n− 2)(n− 1)

)
=2(n− 1)

n2 ((n− 1)− (1/2)(n− 2))

=n− 1
n

.

Thus nG = (n−1)/n for PGL(n,C)). Thus we have prooved the following

theorem.

Theorem 6.2.3. For the group PGL(n,C), the irreducible representation φ

is spinorial if and only if

n− 1
n
· dyn(φ) ≡ 0 mod 2.

6.2.3 Case SO(2n+ 1)

Here we discuss only cases n ≥ 2. Let φλ be the representation SO(2n+1,C)

of highest weight λ. From Subsection 6.1.2, we know that all the irreducible

finite-dimensional representations are orthogonal. The Cartan subalgebra h

is the subalgebra x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ (−x1)⊕ (−x2)⊕ · · · ⊕ (−xn)⊕ 0. We

refer to page 337, Section 7.1.2, examples [Goodman and Wallach(2009)] for
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the formula of dim V λ. Here ρ = ∑n
i=1 ρiεi, where ρi = n − i + (1/2). Let

λ = ∑
λiεi, where λi ≥ λi+1 ≥ 0. Then

dim V λ =
∏

1≤i≤j≤n

(
(λi + ρi)2 − (λj + ρj)2

ρ2
i − ρ2

j

) ∏
1≤i≤n

(
λi + ρi
ρi

)
.

The Killing form on the Lie algebra so(2n+ 1,C) is

K(X, Y ) = (2n+ 1− 2) Trace(XY )

= (2n− 1) Trace(XY ),

where X, Y ∈ so(2n+ 1,C). So on h,

(X,X) = 2(2n− 1)(
∑

x2
i ).

Hence the gcd of all |ν|2 is 2(2n− 1).

dim(so(2n+ 1,C)) = (2n+ 1)2 − (2n+ 1)

= (2n)(2n+ 1).

Let µ ∈ h∗ such that µ = ∑
µiεi. Then the induced Killing norm is exactly

1
2(2n− 1)

∑
µ2
i .

Theorem 6.2.4. φ is spinorial if and only if

Q′′ν(1)
2 =

 ∏
1≤i≤j≤n

(
(λi + ρi)2 − (λj + ρj)2

ρ2
i − ρ2

j

) ∏
1≤i≤n

(
λi + ρi
ρi

)((∑n
i=1(λi + ρi)2 − (ρi)2)
2 · (2n)(2n+ 1)

)
,

is even.

Relation with the Dynkin index
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From Corollary 4.3.4 we know that

Q′′ν(1)
2 = (α, α)(ν, ν) dyn(φ)

2 ,

where (, ) is the Killing form. If

dν(t) = (x1t)⊕ · · · ⊕ (xnt)⊕ (−x1t)⊕ · · · ⊕ (−xnt)⊕ 0,

where xi ∈ Z, then

(ν, ν) = (dν(1), dν(1))

= 2(2n− 1)
(

n∑
i=1

x2
i

)
,

and

(α, α) = (ε1 − ε2, ε1 − ε2)

= 1
2(2n− 1)(12 + (−1)2)

= 1
(2n− 1) .

It is easy to see now that

Q′′ν(1)
2 = dyn(φ)

(
n∑
i=1

x2
i

)
,

where dyn(φ) is the Dynkin invariant of φ : g→ so(dim V,C).

This expression is even for all ν if and only if dyn(φ) is even. Thus

Theorem 6.2.5. The irreducible representation φ of SO(2n+1,C) is spino-

rial if and only if dyn(φ) is even.
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6.2.4 Case SO(2n)

We know from subsection 6.1.3 that the irreducible representation of

SO(2n,C) of highest weight $ = ∑n−2
i=1 ai$i + an−1$n−1 + an$n (where

ai ∈ Z) is orthogonal if and only if either n is odd and an−1 = an or n

is even and an−1 + an is even. The Cartan subalgebra h is the subalgebra

x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ (−x1) ⊕ (−x2) ⊕ · · · ⊕ (−xn). Here the fundamen-

tal weights are $k = ∑k
i=1 εi, for 1 ≤ k ≤ n − 2. The fundamental weight

$n−1 = (1/2)(ε1+· · ·+εn−1−εn), furthermore$n = (1/2)(ε1+· · ·+εn−1+εn).

We refer to page 337 section 7.1.2 examples [Goodman and Wallach(2009)]

for dim V λ. Here ρ = ∑n
i=1 ρiεi with ρi = n− i. Let

λ =(λ1, λ2, . . . , λn)

=(a1 + a2 + · · · an−2 + (1/2)(an−1 + an), a2 + a3 + · · ·+ an−2 + (1/2)(an−1 + an),

· · · , an−2 + (1/2)(an−1 + an), (1/2)(an−1 + an), (1/2)(an − an−1)).

Then

dim V λ =
∏

1≤i<j≤n

(λi + ρi)2 − (λj + ρj)2

ρ2
i − ρ2

j

.

It is well-known that the Killing norm on the Lie algebra so(2n,C) is (2n−

2) Trace(XY ), for X, Y ∈ so(2n,C). Thus on h,

(X,X) = 2(2n− 2)
(

n∑
i=1

x2
i

)
.

Hence the gcd of all |ν|2 is 2(2n− 2).

dim(so(2n,C)) = (2n)2 − 2n

= (2n)(2n− 1).
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Let µ ∈ h∗ such that µ = ∑n
i=1 µiεi. Then the Killing form is exactly

1
2(2n−2)

∑n
i=1 µ

2
i .

Theorem 6.2.6. φ is spinorial, if and only if,

Q′′ν(1)
2 =

 ∏
1≤i<j≤n

(λi + ρi)2 − (λj + ρj)2

ρ2
i − ρ2

j

(∑n
i=1((λi + ρi)2 − ρ2

i )
2(2n)(2n− 1)

)

is even.

Relation with the Dynkin index

From Corollary 4.3.4 we know that

Q′′ν(1)
2 = (α, α)(ν, ν) dyn(φ)

2 ,

where (, ) is the Killing form. If

dν(t) = (x1t)⊕ · · · ⊕ (xnt)⊕ (−x1t)⊕ · · · ⊕ (−xnt),

where xi ∈ Z, then

(ν, ν) = (dν(1), dν(1))

= 2(2n− 2)
(

n∑
i=1

x2
i

)
,

and

(α, α) = (ε1 − ε2, ε1 − ε2)

= 1
2(2n− 2)(12 + (−1)2)

= 1
(2n− 2) .
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It is easy to see now that

Q′′ν(1)
2 = dyn(φ)

(
n∑
i=1

x2
i

)
,

where dyn(φ) is the Dynkin invariant for φ : g→ so(dim V,C). This expres-

sion is even for all ν if and only if dyn(φ) is even.

Theorem 6.2.7. The irreducible representation φ of SO(2n,C) is spinorial

if and only if dyn(φ) is even.



Chapter 7

Reductive Lie Groups

7.1 Reductive case

Lemma 7.1.1. Let G be a complex reductive Lie group and let φ be an

orthogonal irreducible representation of G i.e. φ : G → SO(N,C). Then

φ factors through G/Z(G)◦(which is semi-simple), where Z(G)◦ is the con-

nected component of the center of G containing the identity. Let us denote

this representation of G/Z(G)◦ by φ′. Then φ is spinorial if and only if φ′ is

spinorial. The following diagram sheds more light on this lemma.

Spin(N,C)
ρ

��

G // G/Z(G)◦ φ
//

ψ
77

SO(N,C)

.

Proof. Since the representation is irreducible, by Schur’s lemma, the center

of G maps to the scalar matrices in SO(N), which are ±I. Since Z(G)◦ is

connected, its image is the identity, so φ factors through G/Z(G)◦.

For the second statement, denote the natural map G→ G/Z(G)◦ by m. One

direction is clear: if φ′ lifts to ψ′, then φ lifts to ψ′ ◦m. For the converse, if φ

85
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lifts to ψ then observe that if a ∈ Z(G)◦, then φ(a) = 1. Thus ψ(a) maps to

the fiber above 1 which is 2 points, because the spin group is a double cover

of SO(N,C). Since this is true for every a ∈ Z(G)◦ and Z(G)◦ is connected,

ψ(a) = 1 for ∀a ∈ Z(G)◦. Hence ψ factors through G/Z(G)◦.

If we have a reductive Lie group G then G/Z(G)◦ is semisimple hence the

problem reduces to solving semisimple case.

For example determining spinorial representations of GL(n,C) is equiva-

lent to determining spinorial representations of PGL(n,C).



Chapter 8

Determinantal Identity Method

Theorem (1.1.1) solves in principle our spinoriality question, but our Period-

icity Theorem leads to further questions :

1) Determine precisely PSpin(G).

2) What proportion of othogonal irreducible representations of G are spino-

rial?

We pursue these questions for PGL(n,C) and SO(n,C), and have com-

plete answers for PGL(4), SO(3), SO(4), SO(5). Our method is to apply de-

terminantal identities such as the Jacobi-Trudy identity to the character of

the representations. This method is useful because the expressions appearing

in the determinantal formula are binomial coefficients, and so the periodicity

of their parities is well-known.

In this section we describe our alternative method which is especially

useful for finding PSpin(G). Here we use the determinantal identities for

calculating the Weyl character formula which involve complete symmetric

polynomials.

87
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Definition 8.0.1. The polynomial of the form∑
(w1,w2,...wk)|

∑
wi=n, x

w1
1 xw2

2 · · · xwkk
where the wi are non-negative integers is called the complete symmetric poly-

nomial of degree n in k variables . We denote it by Hn(x1, . . . , xk).

We use the fact that the Weyl character formula is the Schur Polynomial

for the series of groups GL(n,C). The Schur polynomial can be expressed as

a determinant of a matrix whose entries are complete symmetric polynomials

in the variable λ, i.e., the highest weight. This determinantal identity is called

the Jacobi-Trudy identity. We have made extensive use of this identity to

arrive at some polynomial expressions which establish the relation between

PSpin(PGL(n)) and Porth(PGL(n)).

For SO(3), SO(5) we use similar determinantal Weyl character formulas

for doing the same job. For SO(4) the method is different.
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8.1 Case GL(n,C)

8.1.1 Notation

Recall that we choose the maximal torus of GL(n,C) to be the set of diagonal

matrices in GL(n,C) i.e. t = t1 ⊕ t2 ⊕ · · · ⊕ tn, where ti ∈ C×. We denote it

by TGL(n,C).

Let νi be the co-character of TGL(n,C), defined as

νi(t) = 1⊕ · · · 1⊕ t︸︷︷︸
i’th place

⊕1 ⊕ · · · ⊕ 1.

8.1.2 Preliminaries

From Section 6.1.1 the highest weight of an orthogonal irreducible represen-

tation of GL(2n,C) is of the form

λ0 =(rn + rn−1 + · · ·+ r1, rn−1 + rn−2 + · · ·+ r1, . . . , r1,−r1,−r1 − r2,

. . . ,−r1 − r2 − · · · − rn),

where r1, r2, . . . , rn are non negative integer parameters. Put d = ∑n
i=1 ri.

From the Weyl character formula we find that, the trace of the image of

the diagonal matrix t = t1⊕ t2⊕ · · · ⊕ t2n in GL(2n,C) of the representation

having highest weight λ = (λ1, λ2, . . . , λ2n) is the Schur polynomial:

Sλ(t1, t2, . . . , t2n) =
|tλi+2n−i
j |
|t2n−ij |

∈ C[t1, . . . , t2n], (8.1)

where |a(i, j)| denotes the determinant of the 2n × 2n matrix having entry

a(i, j) at the (i, j)th place. See page 399 and page 77 Theorem 6.3(3) of [Ful-



90 8.1. Case GL(n,C)

ton and Harris(1991)].

The jth column of the matrix in the numerator of Equation (8.1) is

tλ1+2n−1
j

tλ2+2n−2
j

· · ·

tλ2n
j


.

By factoring t−dj common from the jth column for each j, we obtain

Sλ(t1, t2, . . . , t2n) = (t1t2 · · · t2n)−d · Sλnew(t1, t2, . . . , t2n),

where

λnew = (2(rn + rn−1 + · · ·+ r1), rn + 2(rn−1 + · · ·+ r1),

rn + rn−1 + 2(rn−2 + · · ·+ r1), . . . , rn + rn−1 + · · ·+ r2 + 2r1,

rn + rn−1 + · · ·+ r2, rn + rn−1 + · · ·+ r3, . . . , 0).

Henceforth we will write λ1, λ2, . . . , λ2n for the components of λnew. Note

that

λnew = rn($2n−1 +$1)+rn−1($2n−2 +$2)+ · · ·+r2($n+1 +$n−1)+2r1($n),

where the $i’s are the fundamental weights of sl2n i.e.,

$i = (1, 1, . . . , 1︸ ︷︷ ︸
i times

, 0, 0, . . . , 0︸ ︷︷ ︸
2n− i times

),

for 1 ≤ i ≤ 2n− 1.
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8.1.3 Case GL(4,C) and GL(2n,C)

We will state the theorems first and give their proofs later.

Theorem 8.1.1. The orthogonal irreducible representation φ of GL(2n,C)

(or PGL(2n,C) ) of highest weight

(rn + rn−1 + · · ·+ r1, rn−1 + rn−2 + · · ·+ r1, . . . , r1,−r1,−r1 − r2,

. . . ,−r1 − r2 − · · · − rn),

is spinorial if and only if

det



d1
(
λ1+2n−1

2n−2

) (
λ1+2n−1

2n−3

)
· · · 1

d2
(
λ2+2n−2

2n−2

) (
λ2+2n−2

2n−3

)
· · · 1

· · · · · · · · · · · · · · ·

d2n
(
λ2n

2n−2

) (
λ2n

2n−3

)
· · · 1


≡ 0 mod 2.

Here

di = (d+ 1)
(
λi − i+ 2n

2n− 1

)
+
(

(λi − d)− i+ 2n
2n

)
−
(
λi − i+ 2n+ 1

2n

)
,

where d = ∑n
i=1 ri and recall that λi for 1 ≤ i ≤ 2n are components of λnew.

Theorem 8.1.2. The spinoriality of the representation of GL(2n,C) corre-

sponding to the above mentioned highest weight λ is periodic in each ri of

period 2k, where k = [log2 2n] + 1. Hence,

〈2k($1+$2n−1), 2k($2+$2n−2), . . . , 2k($n−1+$n+1), 2k+1$n〉 ⊆ PSpin(PGL(2n,C)).

Theorem 8.1.3. The irreducible representation of GL(4,C) with the highest

weight (r + s, r,−r,−r − s) (where r and s are non-negative integers) is
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spinorial if and only if

c1 · b1 + c2 · b2 + c3 · b3 ≡ 0 mod 2.

Here

c1 = (2r + s+ 2)(s+ 1)(2r + 1)
2 ,

c2 = c3 = (2r + s+ 2)(s+ 1)(2r + 2s+ 3)
2 ,

and

b1 = (r + s+ 1)
(

2r + 2s+ 3
3

)
+
(
r + s+ 3

4

)
−
(

2r + 2s+ 4
4

)
,

b2 = (r + s+ 1)
(

2r + s+ 2
3

)
+
(
r + 2

4

)
−
(

2r + s+ 3
4

)
,

b3 = (r + s+ 1)
(
s+ 1

3

)
+
(
−r + 1

4

)
−
(
s+ 2

4

)
.

Theorem 8.1.4. The spinoriality of the irreducible representation of GL(4,C)

of highest weight (r+s, r,−r,−r−s) is periodic in r with period 4 and periodic

in s with period 8, where r, s ∈ Z≥0. Thus

PSpin(PGL(4,C)) = 〈8$2, 8($1 +$3)〉 = 8Porth(sl(4,C)).

The proportion of non-spinorial weights is 1/4.

Proof of Theorem 8.1.1 : The co-characters νi represent the generators of

π1(GL(2n,C)). Let φλ be the representation with highest weight λ. Now

by Scholium 4.2.13, in order to determine the spinoriality of the represen-

tation φλ it is enough to check the parity of Q′′νi(1)/2 for each i. Moreover
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Q′′ν(1)/2 ≡ Ψφ(ν) ≡ Fν(λ) mod 2, from Lemma 3.2.5 and Lemma 4.1.2.

Since Fw(ν)(λ) = Fν(λ) by Proposition 3.2.4 and all of the co-characters νi
are Weyl conjugate, it is enough to check the parity for only one of the

co-characters νi, let us say the parity of Ψφ(ν2n).

Let

Bλ(t) = Sλ(1, 1, . . . , 1︸ ︷︷ ︸
2n−1 times

, t) = Trace(φ(ν2n(t))). (8.2)

and

Aλ(t) = Sλnew(1, 1, . . . , 1︸ ︷︷ ︸
2n− 1 times

, t) = tdSλ(1, 1, . . . , 1︸ ︷︷ ︸
2n− 1 times

, t) = tdBλ(t). (8.3)

We will make use of the Jacobi-Trudy identity page 455 [Fulton and

Harris(1991)], which says that in the 2n× 2n case

Sλ(x1, x2, . . . , x2n) = det



Hλ1(x2n) Hλ1+1(x2n) · · · Hλ1+2n−1(x2n)

Hλ2−1(x2n) Hλ2(x2n) · · · Hλ2+2n−2(x2n)

· · · · · · · · · · · ·

Hλ2n−2n+1(x2n) Hλ2n−2n+2(x2n) · · · Hλ2n(x2n)


,

where λ = (λ1, λ2, . . . , λ2n) and xi = (x1, x2, . . . , xi).

We will use a slightly modified identity, see page 131 of [Prasad(2015)].

The polynomial Sλ(x1, x2, . . . , x2n) equals

det



Hλ1(x2n) Hλ1+1(x2n−1) · · · Hλ1+2n−1(x1)

Hλ2−1(x2n) Hλ2(x2n−1) · · · Hλ2+2n−2(x1)

· · · · · · · · · · · ·

Hλ2n−2n+1(x2n) Hλ2n−2n+2(x2n−1) · · · Hλ2n(x1)


. (8.4)
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Since Aλ(t) = Sλnew(1, 1, . . . , 1, t), we set (x1, x2, . . . , x2n−1, x2n) =

(1, 1, . . . , 1, t) in Equation (8.4).

Aλ(t) = det



Hλ1(1, 1, . . . , 1, t) Hλ1+1(1, 1, . . . , 1) · · · Hλ1+2n−1(1)

Hλ2−1(1, 1, . . . , 1, t) Hλ2(1, 1, . . . , 1) · · · Hλ2+2n−2(1)

· · · · · · · · · · · ·

Hλ2n−2n+1(1, 1, . . . , 1, t) Hλ2n−2n+2(1, 1, . . . , 1) · · · Hλ2n(1)


Hn = 0 for n < 0.

H0 = 1.

The proof of the following is elementary combinatorics.

Lemma 8.1.5. (1) Hn(1, 1, . . . , 1︸ ︷︷ ︸
p−1 times

, t) = ∑n
a=0

(
n−a+p−2

p−2

)
ta.

(2) Hn(1, 1, . . . , 1, 1︸ ︷︷ ︸
p times

) =
(
n+p−1
p−1

)
.

Thus, Aλ(t) is equal to

det



Hλ1(1, 1, . . . , 1, t)
(
λ1+1+2n−2

2n−2

) (
λ1+2+2n−3

2n−3

)
· · · 1

Hλ2−1(1, 1, . . . , 1, t)
(
λ2+2n−2

2n−2

) (
λ2+1+2n−3

2n−3

)
· · · 1

· · · · · · · · · · · · · · ·

Hλ2n−2n+1(1, 1, . . . , 1, t)
(
λ2n−2n+2+2n−2

2n−2

) (
λ2n−2n+3+2n−3

2n−3

)
· · · 1


.

(8.5)

Our convention is

(
a

b

)
= 0 for a < b and

(
0
0

)
= 1. (8.6)

Lemma 8.1.6. The degree of Aλ(t) is 2(∑n
i=1 ri) = 2d.

Proof. Observe here that among all λ1, λ2−1, λ3−2, . . . , λ2n−2n+1, λ1 is the

largest integer as λi is a non-increasing sequence. Hence Hλ1(1, 1, . . . , 1, t)
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has the highest degree which is λ1 = 2(∑ ri) = 2d among the first column

entries, if we expand this determinant along the first column. Therefore if the

coefficient of Hλ1(1, 1, . . . , 1, t) is nonzero then the degree of Aλ(t) is 2d. The

coefficient of Hλ1 is of the form mentioned in Lemma 12.1.3 in the Appendix.

By using this Lemma, the coefficient equals

1∏2n−1
i=1 i!

(
2n−1∏
j=1

aj)
∏

1≤i<j≤2n−1
(ai − aj)

with ai = λi+1 − i + 2n − 1 for 1 ≤ i ≤ 2n − 1. Since the sequence λi is

non-increasing, the sequence ai is strictly decreasing, hence all ai are distinct.

Thus, the determinant which is the coefficient of Hλ1 is nonzero. Therefore,

the degree of Aλ(t) is 2d.

Let P2d = Z[t]2d be the abelian group of polynomials of degree ≤ 2d with

integer coefficients. For f(t) = a0 + a1t + · · · + ant
n, we define Ψ̃d(f) =∑d

i=1 iad−i mod 2. Observe that Ψ̃d : P2d → Z/2Z is Z-linear. Recall that

we have commutative digaram.

Z[t, t−1]sym
d

×td
//

Ψ
��

Z[t]pal
2d

Ψ̃dxx

Z/2Z

(8.7)

see Definition 2.1.6 and 2.1.8.

Proposition 8.1.7. The polynomial Aλ(t) is palindromic with degree 2d.

Further φλ is spinorial if and only if

Ψ̃d(Aλ) ≡ 0 mod 2.

Proof. From Equation (8.3) and Lemma 8.1.6 it is clear that degree of Bλ is

d.
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By Lemma 3.2.2 and Equation (8.2) it is clear that

Bλ(t) = bd(td + t−d) + bd−1(td−1 + t−(d−1)) + · · ·+ b0,

where bj is the multiplicity of weight tj in the representation φ ◦ ν2n of C×.

Hence

Aλ(t) = tdBλ(t) = bd + bd−1t+ · · ·+ b1t
d−1 + b0t

d + b1t
d+1 + · · ·+ bdt

2d,

is palindromic. Suppose Aλ(t) = a0 + a1t+ · · ·+ a2dt
2d, then

ai = bd−i for 0 ≤ i ≤ d, (8.8)

ad+i = bi for 0 ≤ i ≤ d. (8.9)

From Lemma 3.2.2, Ψφ(ν2n) = Ψ(Bλ) = ∑d
i=1 i · bi. From Equation (8.8)

we conclude that Ψφ(ν2n) = Ψ(Bλ) = ∑d
i=1 i · ad−i = Ψ̃d(Aλ). The diagram

(8.7) sheds more light on the last equation, because Bλ ∈ Z[t, t−1]sym
d and

Aλ ∈ Z[t]pal
2d and Aλ(t) = td ·Bλ(t).

We saw earlier that φ is spinorial if and only if Ψφ(ν2n) is even. In this

case Ψφ(ν2n) = Ψ̃d(Aλ(t)). Hence φ is spinorial if and only if Ψ̃d(Aλ(t)) is

even.

Lemma 8.1.8. We have

Ψ̃d


det



f1(t) a12 · · · a1n

f2(t) a22 · · · a2n

· · · · · · · · · · · ·

fn(t) a2n · · · ann




= det



Ψ̃d(f1) a12 · · · a1n

Ψ̃d(f2) a22 · · · a2n

· · · · · · · · · · · ·

Ψ̃d(fn) a2n · · · ann


(8.10)

for polynomials fi ∈ P2d and aij ∈ Z.
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Proof. Since Ψ̃d is Z-linear the lemma follows.

By Lemma 8.1.8 Ψ̃d(A(t)) is equal to

det



Ψ̃d(Hλ1(1, 1, . . . , 1, t))
(
λ1+2n−1

2n−2

) (
λ1++2n−1

2n−3

)
· · · 1

Ψ̃d(Hλ2−1(1, 1, . . . , 1, t))
(
λ2+2n−2

2n−2

) (
λ2+2n−2

2n−3

)
· · · 1

· · · · · · · · · · · · · · ·

Ψ̃d(Hλ2n−2n+1(1, 1, . . . , 1, t))
(
λ2n

2n−2

) (
λ2n

2n−3

)
· · · 1


.

Lemma 8.1.9. We have

Ψ̃d(Hq(1, 1, . . . , 1︸ ︷︷ ︸
p−1 times

, t)) = (d+1)
(
q + p− 1
p− 1

)
+
(
q − d+ p− 1

p

)
−
(
q + p

p

)
∈ Z/2Z,

for d, q ∈ Z≥0 and for p ∈ N.

Proof. This is clear from 8.1.5 (1), 12.1.4 in the Appendix, and the definition

of Ψ̃d.

Thus,

Ψ̃d(Hλi−i+1(1, 1, . . . , 1, t)) = (d+1)
(
λi − i+ 2n

2n− 1

)
+
(

(λi − d)− i+ 2n
2n

)
−
(
λi − i+ 2n+ 1

2n

)
.

Hence we conclude the proof of 8.1.1

Proof of Theorem 8.1.2. It is enough to prove that ci mod 2, where ci
are cofactors corresponding to Hλi−i+1 in the matrix in Equation (8.5) and di
mod 2, where di in the Theorem 8.1.1, are periodic in rj for 1 ≤ j ≤ n with

period 2k where k is the least integer such that 2n < 2k, i.e., k = [log2 n] + 2.

Periodicity of ci mod 2.

Recall that ci is the determinant of the (n − 1) × (n − 1) matrix whose

entries are of the form
(
λi−i+2n

2n−j

)
with suitable 1 ≤ i, j ≤ 2n. Consider them
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as functions of the rl. Observe that each λi is a linear function in rl with a

non-negative integer coefficient. Thus by Lemma 12.1.2 in the Appendix, we

can say that parity of each of the matrix entries is periodic in each rl with

period 2k. Hence each ci is periodic with period 2k.

Periodicity of di mod 2.

di = (d+ 1)
(
λi−i+2n

2n−1

)
+
(

(λi−d)−i+2n
2n

)
−
(
λi−i+2n+1

2n

)
mod 2

The first term involves (d+ 1) = ∑
ri + 1 whose parity is periodic in each

ri of period 2k.

For the binomial coefficient, the upper index is λi + (2n − i). Since

2n − i ≥ 0, and since the ri take non-negative values, the upper index in

the first term is a natural number. Hence we can apply Lemma 12.1.2 in the

Appendix to the first term and see that it is periodic in each ri of period 2k.

Let us now consider the second term. Observe here that if i > n then

λi − d is negative and is a degree one polynomial in each ri with coefficient

−1 or 0. The upper index in the second term here is (λi − d)− i+ 2n which

is always strictly less than 2n. Hence the second term
(

(λi−d)−i+2n
2n

)
is 0 when

i > n. It is obviously periodic in each ri with period 2k.

If instead i ≤ n then λi−d will be a degree one polynomial in each ri with

coefficient either 0 or 1. Since 2n− i ≥ 0, and since the ri take non-negative

values, the upper index in the second term is a nonnegative. Hence we can

apply the Lucas theorem to the second term and say that it is periodic in

each ri of period 2k.

For the third term, we can argue exactly the same way as in the first

term. Here we draw the same conclusion as in the case of the first term.
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Case GL(4,C)

We take r1 = r and r2 = s. Thus here d = r+s. Here Aλ(t) = Sλnew(1, 1, 1, t),

where λ = (r+ s, r,−r,−r− s), and hence λnew = (2r+ 2s, 2r+ s, s, 0). Here

we prove Theorem 8.1.3 and 8.1.4.

Proof of Theorem 8.1.3. We have

λnew = (2r + 2s, 2r + s, s, 0)

= s($1 +$3) + 2r$2,

where $i are fundamental weights of sl(4,C) and d = r + s.

By Theorem 8.1.1, putting in the values our determinant becomes

det



d1
(

2r+2s+3
2

)
2r + 2s+ 3 1

d2
(

2r+s+2
2

)
2r + s+ 2 1

d3
(
s+1

2

)
s+ 1 1

0 0 0 1


.

So the determinant equals

Ψr+s(Aλ) = c1d1 − c2d2 + c3d3,

where

c1 = (s+ 1)
(

2r + s+ 2
2

)
− (2r + s+ 2)

(
s+ 1

2

)

= (s+ 1)(2r + s+ 2)(2r + s+ 1)
2 − (2r + s+ 2)(s+ 1)s

2

= (2r + s+ 2)(s+ 1)(2r + 1)
2 ,
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similarly

c2 = c3 = (2r + s+ 2)(s+ 1)(2r + 2s+ 3)
2 .

By Theorem 8.1.1

d1 = (r + s+ 1)
(

2r + 2s+ 3
3

)
+
(
r + s+ 3

4

)
−
(

2r + 2s+ 4
4

)
,

d2 = (r + s+ 1)
(

2r + s+ 2
3

)
+
(
r + 2

4

)
−
(

2r + s+ 3
4

)
,

and

d3 = (r + s+ 1)
(
s+ 1

3

)
+
(
−r + 1

4

)
−
(
s+ 2

4

)
mod 2.

So the final expression becomes

h(r, s) =

c1

(
(r + s+ 1)

(
2r + 2s+ 3

3

)
+
(
r + s+ 3

4

)
−
(

2r + 2s+ 4
4

))

−c2

(
(r + s+ 1)

(
2r + s+ 2

3

)
+
(
r + 2

4

)
−
(

2r + s+ 3
4

))

+c3

(
(r + s+ 1)

(
s+ 1

3

)
+
(
−r + 1

4

)
−
(
s+ 2

4

))
mod 2.

Proof of Theorem 8.1.4. Let

h(r, s) = c1

(
(r + s+ 1)

(
2r + 2s+ 3

3

)
+
(
r + s+ 3

4

)
−
(

2r + 2s+ 4
4

))

−c2

(
(r + s+ 1)

(
2r + s+ 2

3

)
+
(
r + 2

4

)
−
(

2r + s+ 3
4

))
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+c3

(
(r + s+ 1)

(
s+ 1

3

)
+
(
−r + 1

4

)
−
(
s+ 2

4

))
.

where

c1 = (2r + s+ 2)(s+ 1)(2r + 1)
2 ,

and

c2 = c3 = (2r + s+ 2)(s+ 1)(2r + 2s+ 3)
2 .

Proposition 8.1.10. The spinoriality of an orthogonal irreducible represen-

tation of GL(4,C) of highest weight (r+ s, r,−r,−r− s) is periodic in r with

period 4 and periodic in s with period 8, i.e.,

1) h(r + 4, s) = h(r, s) mod 2,

2) h(r, s+ 8) = h(r, s) mod 2.

Proof. By Lemma 12.1.2 in the Appendix and the lemma above, we deduce

that the expression h(r, s) is periodic in both s and r of period 8 since each

single term is such.

Some extra work is required in order to prove that it is periodic in r with

exact period 4.

To do that observe that the only problematic terms are
(
r+s+3

4

)
,
(
r+2

4

)
and

(
−r+1

4

)
. Other terms have 2r in the upper index so if we increase r by 4

then 2r increases by 8 which gives the same number mod 2 by Lemma 12.1.2

in the Appendix. Observe that
(
−r+1

4

)
is 0 as r is a non-negative number.

So the term we should concentrate on is c1
(
r+s+3

4

)
+−c2

(
r+2

4

)
mod 2. Since

it is easy to observe that c1 = c2 = c3 mod 2, We can concentrate on(
r+s+3

4

)
−
(
r+2

4

)
mod 2.

By Lemma 12.1.5 in the Appendix,

(
(r + 4) + s+ 3

4

)
−
(

(r + 4) + 2
4

)
mod 2 = 1+

(
r + s+ 3

4

)
−1−

(
r + 2

4

)
mod 2,
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which equals (
r + s+ 3

4

)
−
(
r + 2

4

)
mod 2.

Hence the expression h(r, s) is periodic in r with period 4 and periodic

in s with period 8. Hence the spinoriality of the representation of GL(4,C)

(or PGL(4,C)) with highest weight (r+ s, r,−r,−r− s) is periodic in r with

period 4 and periodic in s with period 8, due to Theorem 8.1.3.

Thus now we have proved PSpin(PGL(4,C)) ⊇ 〈8$2, 8($1 + $3)〉. Now

we will prove that they are equal.

Lemma 8.1.11. We have PSpin(PGL(4,C)) = 〈8$2, 8($1 +$3)〉.

Proof. Recall that λnew = (2r + 2s, 2r + s, s, 0) = 2r$2 + s($1 +$3). Thus

we get

Psd(PGL(4,C)) ⊇ PSpin(PGL(4,C)) ⊇ 〈8$2, 8($1 +$3)〉.

The group Psd(PGL(4,C)) = 〈($1+$3), 2$2〉. Hence, PSpin(PGL(4,C))/〈8$2, 8($1+

$3)〉 is a subgroup of Psd(PGL(4,C))/〈8$2, 8($1 + $3)〉, with the second

group isomorphic to Z/4Z⊕ Z/8Z.

Now we concentrate on the group A = Z/8Z ⊕ Z/4Z. In this group,

(4, 0) = 4x or 2x or x where x can be one of the elements in S1, where

S1 = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (1, 1), (3, 1), (5, 1),

(7, 1), (1, 2), (3, 2), (5, 2), (7, 2), (2, 2), (6, 2), (1, 3), (3, 3), (5, 3), (7, 3)}.

Furthermore (0, 2) = x or 2x for every x ∈ S2, where

S2 = {(0, 1), (4, 1), (0, 2), (0, 3), (4, 3)}.
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Moreover (4, 2) = x or 2x for every x ∈ S3, where

S3 = {(2, 1), (6, 1), (4, 2), (2, 3), (6, 3)}.

Now supposeH is a subgroup of A. Then it is easy to see that if (4, 0) /∈ H

then none of the members of S1 belong to H. A similar argument holds for

(0, 2) and S2 and (4, 2) and S3. Thus, if none of the members (4, 0), (0, 2)

and (4, 2) belong to H then H ∩ (S1 ∪ S2 ∪ S3) = ∅. But observe that

A− (S1 ∪ S2 ∪ S3) = {(0, 0)}. Hence H will be the trivial subgroup.

Thus r corresponds to Z/4Z and s corresponds to Z/8Z in A which is

isomorphic to Z/8Z⊕ Z/4Z. So in order to prove

PSpin(PGL(4,C))/〈8$2, 8($1 +$3)〉

is trivial, we only need to show that none of (4, 0), (0, 2), (4, 2) belong to this

group.

That is the same as proving (r, s) = (0, 4), (2, 0) and (2, 4) do not belong

to PSpin(PGL(4,C)). Let h(r, s) be the expression which gives the spinoriality

of the representation of PGL(4,C) of highest weight (2r + 2s, 2r + s, s, 0).

Observe that h(1, 1) is odd, while h(1, 5) is even, hence (0, 4) does not belong

to PSpin(PGL(4,C)). Also h(1, 1) is odd, while h(3, 1) is even, therefore (2, 0)

does not belong to PSpin(PGL(4,C)). Moreover h(1, 2) is odd, while h(3, 6)

is even, thus (2, 4) does not belong to PSpin(PGL(4,C)).

Hence we conclude the proof of the lemma.

Therefore we conclude the proof of Theorem 8.1.4.
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8.1.4 The Adjoint Representation of GL(2n,C)

Introduction

In this subsection we prove that the adjoint representation of GL(2n,C) is

not spinorial for every n.

Discussion

By adjoint representation we mean the action of GL(2n,C) on the Lie algebra

sl(2n,C) by conjugation. This representation is irreducible as GL(2n,C) =

Z(GL(2n,C))·SL(2n,C) and scalars act trivially on sl(2n,C) and the adjoint

representation of SL(2n,C) on sl(2n,C) is irreducible. Since the Killing form

is invariant under this action, the representation is orthogonal. From Lemma

7.1.1 it follows that all self-dual representations, hence this representation

factors through PGL(2n,C).

A Short Proof

We would like to put a short proof of the fact that the adjoint representation

of GL(n,C) is spinorial if and only if n is odd.

Theorem 8.1.12. The adjoint representation of PGL(n,C) is spinorial if

and only if n is odd.

Proof. Let us denote the diagonal torus of SL(n,C) by T̃n. Let us denote the

maximal torus of PGL(n,C) by Tn which is isomorphic to T̃n/µn, where by

µn we denote the group of nth roots of unity.

By Theorem 4.4.1 for spinoriality of adjoint representation of a semi-

simple group, we have to just check whether ρ, which is half of sum of positive

roots belongs to Hom(Tn,C×). If it belongs, then the adjoint representation
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is spinorial otherwise not. The roots of SL(n,C) belong to Hom(T̃n,C×),

while the roots of PGL(n,C) belong to Hom(Tn,C×).

We have an exact sequence of abelian algebraic groups

1→ µn → T̃n → Tn → 1.

Applying the contra-variant functor Hom(−,C×), we get an exact se-

quence

1→ Hom(Tn,C×)→ Hom(T̃n,C×)→ Hom(µn,C×)→ 1. (8.11)

Exactness of this sequence is easy to see. It is obviously exact at

Hom(Tn,C×). To see the exactness at Hom(T̃n,C×), observe that f ∈

Hom(Tn,C×) if and only if f ∈ T̃n and f vanishes on µn by definition of Tn.

Let us denote the projection on the first coordinate of T̃n by e1. The map

e1 : T̃n → C× induces the identity on µn which is a generator of Hom(µn,C×)

and hence the second map is surjective. Hence the sequence (8.11) is exact

at Hom(µn,C×).

The Lie algebra for SL(n,C) is the same as the Lie algebra for PGL(n,C).

The roots of the PGL(n,C) are obtained by applying the map m :

Hom(Tn,C×) → Hom(T̃n,C×) to the roots of SL(n,C). The map m is ob-

tained by applying the functor Hom(−,C×) to the sequence T̃n → Tn.

Let us denote the root x1 ⊕ · · · ⊕ xn → xix
−1
j by α̃ij. Since this root is

trivial on µn, it descends to a root of PGL(n,C). We denote it by αij.

By page 218 Proposition 6.2 vi of [Bröcker and tom Dieck(2013)] the sum
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(here product) of positive roots is

ρ̃2 =
n∏
i=1

xn−2i+1
i

=
n−1∏
i=1

x2n−2i
i

(
Since

n∏
i=1

xi = 1
)
.

Hence ρ̃ = ∏n−1
i=1 x

n−i
i , and so ρ̃ ∈ Hom(T̃n,C×).

Since the sequence 8.11 is exact, we only need to check whether the image

of ρ̃ in Hom(µn,C×) is trivial.

It is easy to see that

The image of ρ̃ is trivial⇔ ζ
(
∑n−1

i=1 (n−i))
n = 1

⇔ n divides (
n−1∑
i=1

(n− i))

⇔ n divides (n(n− 1)/2)

⇔ n is odd.

Jacobi-Trudy proof

Here is another proof using the Jacobi-Trudy identity.

We may view the above given representation of PGL(n,C) as a represen-

tation of SL(2n,C). Thus the weights for this representation are simply the

roots of SL(n,C) namely εi − εj. The simple roots are εi − εi+1. Hence the

highest weight is ε1 − ε2n.

But since ∑2n
i=1 εi = 0 we get
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ε1 − ε2n = 2ε1 + ε2 + · · ·+ ε2n−1.

So the corresponding highest weight denoted by λnew = $ = (2, 1, 1, . . . , 1︸ ︷︷ ︸
2n−2 times

, 0).

Here ∑1
i=1 i · a1−i = a0 mod 2, where the Schur polynomial with highest

weight $ is S$(1, 1, . . . , 1︸ ︷︷ ︸
2n−1 times

, t) = a0 + a1t+ a2t
2.

Theorem 8.1.13.

S$(1, 1, 1, . . . , 1︸ ︷︷ ︸
2n−1 times

, t) = (2n− 1) + (2n− 1)2t+ (2n− 1)t2.

Proof. Using the following data

1)the Jacobi-Trudy identity ( [Fulton and Harris(1991)] page 455)

2)a slightly modified version of the Jacobi-Trudy identity ( [Prasad(2015)]

page 131)

3) the identity Hn(1, 1, . . . , 1︸ ︷︷ ︸
p times

) =
(
n+p−1
p−1

)

we see that S$(1, 1, . . . , 1, t) is the determinant of the 2n× 2n matrix:



H2(1, 1, . . . , 1, t)
(

2n+1
2n−2

) (
2n+1
2n−3

)
· · ·

(
2n+1

0

)
1

(
2n−1
2n−2

) (
2n−1
2n−3

)
· · ·

(
2n−1

0

)
0

(
2n−2
2n−2

) (
2n−2
2n−3

)
· · ·

(
2n−2

0

)
0

(
2n−3
2n−2

) (
2n−3
2n−3

)
· · ·

(
2n−3

0

)
· · · · · · · · · · · · · · ·

0
(

2
2n−2

) (
2

2n−3

)
· · ·

(
2
0

)
0 0 · · · 0 1



(8.12)



108 8.1. Case GL(n,C)

Let

A = det



(
2n−1
2n−2

) (
2n−1
2n−3

)
· · ·

(
2n−1

1

)
(

2n−2
2n−2

) (
2n−2
2n−3

)
· · ·

(
2n−2

1

)
· · · · · · · · · · · ·(

2
2n−2

) (
2

2n−2

)
· · ·

(
2
1

)


,

and let

B = det



(
2n+1
2n−2

) (
2n+1
2n−3

)
· · ·

(
2n+1

1

)
(

2n−2
2n−2

) (
2n−2
2n−3

)
· · ·

(
2n−2

1

)
(

2n−3
2n−2

) (
2n−3
2n−3

)
· · ·

(
2n−3

1

)
· · · · · · · · · · · ·(

2
2n−2

) (
2

2n−3

)
· · ·

(
2
1

)


.

Then S$(1, 1, . . . , 1, t) = H2(1, 1, . . . , 1, t)A−B.

We use Lemma 12.1.3 to calculate the A and B by putting appropriate

values in ai.

A = [(2n− 1)(2n− 2) · · · 2][(2n− 1− 2)(2n− 1− 3) · · · 1](2n− 4)!(2n− 5)! · · · 1!
(2n− 2)!(2n− 3)!(2n− 4)! · · · 1!

= (2n− 1)!(2n− 3)!(2n− 4)! · · · 1!
(2n− 2)!(2n− 3)!(2n− 4)! · · · 1!

= 2n− 1,

and B = C/D, where

C = [(2n+ 1)(2n− 2)(2n− 3) · · · 1][(2n+ 1− 2)(2n+ 1− 3) · · · 3]

[(2n− 2− 2)(2n− 2− 3) · · · 1](2n− 5)! · · · 1!

D = (2n− 2)!(2n− 3)! · · · 1!,
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and

B = C/D = [(2n+ 1)(2n− 2)!][(2n− 1)(2n− 2) · · · 3](2n− 4)!(2n− 5)! · · · 2!
(2n− 2)!(2n− 3)!(2n− 4)! · · · 2!

= (2n+ 1)(2n− 1)(2n− 2)
2 .

Using the formula Hn(1, 1, · · · , 1︸ ︷︷ ︸
p−1 times

, t) = ∑n
a=0

(
n−a+p−2

p−2

)
ta

We get

H2(1, 1 . . . , 1, t) =
(

2n
2n− 2

)
+
(

2n− 1
2n− 2

)
t+

(
2n− 2
2n− 2

)
t2,

where H2 takes 2n variables.

Thus

S$(1, 1, . . . , 1, t)

= A(H2(1, 1, . . . 1, t))−B

= (2n− 1)
(

2n(2n− 2)
2 + (2n− 1)t+ t2

)
− (2n+ 1)(2n− 1)(2n− 2)

2

= (2n− 1)
(

4n2 − 2n− (4n2 − 2n− 2)
2

)
+ (2n− 1)2t+ (2n− 1)t2

= (2n− 1) + (2n− 1)2t+ (2n− 1)t2.

Now we want a0 mod 2 where S$ = a0 + a1t+ a2t
2.
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Clearly a0 = 2n − 1 ≡ 1 mod 2. Hence the adjoint representation of

GL(2n,C) is not spinorial for any n.



Chapter 8. Determinantal Identity Method 111

8.2 Orthogonal Groups of Low Rank

8.2.1 Case SO(3)

From Section 6.1.2 we know that all the irreducible representations of

SO(3,C) are orthogonal.

The Main Proof

Theorem 8.2.1. An orthogonal irreducible representation of SO(3,C) of

highest weight n is spinorial if and only if n ≡ 3 or 0 mod 4. Hence the

proportion of non-spinorial weights is 1/2.

Proof. The highest weight of a finite dimensional irreducible representation

of the group SO(3,C) is given by a single non-negative integer n. Let φn be

the irreducible representation with highest weight n. Let Θn be its character.

We select the maximal torus in SO(3,C) to be x ⊕ x−1 ⊕ 1, where x ∈ C×.

We take the cocharacter ν : x→ x⊕ x−1 ⊕ 1.

By page 409 Proposition 24.33 in [Fulton and Harris(1991)], we get

Θn(ν(x)) = Kn(x, x−1, 1), where

Kn(x, x−1, 1) = Hn(x, x−1, 1)−Hn−2(x, x−1, 1).
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Observe that

Kn(x, x−1, 1) =
∑

e1+e2≤n
xe1x−e2 −

∑
e1+e2≤n−2

xe1x−e2

=
∑

e1+e2=n
xe1−e2 +

∑
e1+e2=n−1

xe1−e2

=
∑

(e1,e2)=(0,n),(1,n−1),...,(n,0)
xe1−e2 +

∑
(e1,e2)=(0,n−1),(1,n−2),...,(n−1,0)

xe1−e2

= (x−n + x−n+2 + · · ·+ xn) + (x−n+1 + x−n+3 + · · ·+ xn−1)

= x−n + x−n+1 + · · ·+ xn−1 + xn.

Now we apply Lemma 3.2.2 to ν. So the φn is spinorial if and only if

Ψφn(ν) =
n∑
i=1

i · 1 ≡ 0 mod 2.

We deduce that φn is spinorial if and only if

(n+ 1)n
2 ≡ 0 mod 2,

Equivalently

n ≡ 0 or 3 mod 4.

8.2.2 Case SO(4)

Notation

We write φ̃k for the representation of SL(2,C) which is on the space SymkV ,

where we have the standard representation on the space V ∼= C2. We write

φ̃(m,n) for the representation φ̃m ⊗ φ̃n of the group SL(2,C)× SL(2,C). It
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is a standard fact that SL(2,C)×SL(2,C) is a double cover of SO(4,C). Let

B denote the non-degenerate bilinear form on M(2,C) defined as B(X, Y ) =

Trace(X ·w · Y t ·w−1), where w =

 0 −1

1 0

. The map m from SL(2,C)×

SL(2,C) to SO(4,C), given by action on M(2,C),

m(g, h) : X → g ·X · h−1

preserves B. It is easy to see that the representations φ̃(m,n) which fac-

tor through SO(4,C) have to satisfy the condition that m+ n is even. We

denote the factored representation by φ(m,n).

We take the maximal torus T̃ in SL(2,C)× SL(2,C) to be

T̃ =

 a 0

0 a−1

×
 b 0

0 b−1

 ,

where a, b ∈ C×. We take the maximal torus T in SO(4,C) to be

T =



x1 0 0 0

0 x2 0 0

0 0 x−1
2 0

0 0 0 x−1
1


,

where xi ∈ C× with basis of M(2,C) as

X1 =

 1 0

0 0

 , X2 =

 0 1

0 0

 , X3 =

 0 0

1 0

 , X4 =

 0 0

0 1

 ,
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and

B =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


.

The Main Theorems

From Section 6.1.3 and Proposition 23.13 (iii) of [Fulton and Harris(1991)]

we infer that all the irreducible representations of SO(4,C) are orthogonal.

Theorem 8.2.2. The representation φ(m,n) of SO(4) i.e., of highest weight

(x,y) such that x = m+n
2 , and y = n−m

2 , where m + n is even, as referred

above is spinorial if and only if

(1/24)(n+ 1)(3m2 + 6m+ n2 + 2n) ≡ 0 mod 2,

i.e.,

(1/6)(1 + x+ y)(2x+ x2 − y − xy + y2) ≡ 0 mod 2

Theorem 8.2.3. PSpin(SO(4)) = 〈(4, 4), (4,−4)〉 in variables (m,n), and

〈(4, 0), (0,−4)〉 in variables (x, y). Hence PSpin(SO(4)) = 4 · Porth(so(4)).

The proportion of non-spinorial representations is 3/8.

proof of Theorem 8.2.2. The action of T̃ on M(2,C) w.r.t. X1, X2, X3, X4 is



ab−1 0 0 0

0 ab 0 0

0 0 a−1b−1 0

0 0 0 ba−1


.

Thus m(T̃ ) lies in T .
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Let ν1 the co-character of SL(2,C)× SL(2,C) defined as

ν1(a) =

 a 0

0 a−1

×
 a−1 0

0 a

 .
Put L1 = m ◦ ν1, i.e.,

L1(a) =



a2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 a−2


.

Observe that L1 is a co-character of T.

Similarly for the co-character

ν2(a) =

 a 0

0 a−1

×
 a 0

0 a−1

 ,
put L2 = m ◦ ν2, i.e.,

L2(a) =



1 0 0 0

0 a2 0 0

0 0 a−2 0

0 0 0 1


.

Observe that L2 is a co-character of T .

Let us also define the co-characters of T
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L′1(a) =



a 0 0 0

0 1 0 0

0 0 1 0

0 0 0 a−1


,

and

L′2(a) =



1 0 0 0

0 a 0 0

0 0 a−1 0

0 0 0 1


.

Let φ be an irreducible orthogonal representation of SO(4,C). The rep-

resentation φ̃ = φ ◦m is an irreducible representation of SL(2,C)×SL(2,C).

Observe that L′i for i = 1, 2 are representatives of generators of π1(SO(4,C)).

By Scholium 4.2.13 it is enough to check Ψφ(L′i) is even for i = 1 and 2. But

L′1 and L′2 are Weyl conjugate. Also Ψφ(ν) ≡ Fν(λ) mod 2 by Lemma 3.2.5.

Moreover by Proposition 3.2.4, Fw(ν)(λ) = Fν(λ), it is enough to check the

parity of one of them say Ψφ(L′2). Observe that Li(a) = L′i(a2) for i = 1, 2.

Thus we have φ ◦ Li(a) = φ ◦ L′i(a2). Therefore if we put z = a2, then

φ ◦Li(a) = φ ◦L′i(z). Observe that φ(L2) = φ(m(ν2)) = φ̃(ν2). So we are in-

terested in φ̃(ν2). In SL(2,C)×SL(2,C), ν2(a) = (a⊕a−1)×(a⊕a−1). Let the

underlying space for the standard representation of SL(2,C) be V = 〈u, v〉.

Then a basis for Symk(V ) is (uk, uk−1v, uk−2v2, . . . , uvk−1, vk). The basis for

SymmV ⊗ Symn is {uivj ⊗ urvs|1 ≤ i, j ≤ m, 1 ≤ r, s ≤ n}. We write the

basis of SymmV ⊗ Symn in a array or matrix form
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

um ⊗ un um−1v ⊗ un um−2v2 ⊗ un · · · vm ⊗ un

um ⊗ un−1v um−1v ⊗ un−1v · · · · · · vm ⊗ un−1v

um ⊗ un−2v2 · · · · · · · · · vm ⊗ un−2v2

· · · · · · · · · · · · · · ·

um ⊗ vn um−1v ⊗ vn · · · · · · vm ⊗ vn


.

The vectors u and v are eigenvectors of the maximal torus which is

ν0(a) = a⊕ a−1,

for the standard representation of SL(2,C). Their actions are given by

(a⊕ a−1) · u = au,

and

(a⊕ a−1) · v = a−1v.

It is clear from above that uivj, where i + j = k, is a basis of eigenvectors

for the maximal torus a⊕ a−1 for the representation Symk(V ), where action

of a⊕ a−1 is given by

(a⊕ a−1) · uivj = ai−juivj.

The maximal torus of SL(2,C) × SL(2,C) is (a ⊕ a−1) × (b ⊕ b−1). Here a

basis of common eigenvectors is uivj ⊗ urvs, where i+ j = m and r+ s = n.

The action of element of maximal torus of the form

ν(a, b) = (a⊕ a−1)× (b⊕ b−1),

is given by

ν(a, b) · uivj ⊗ urvs = ai−jbr−suivj ⊗ urvs.
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Consider φ̃(m,n)(ν(a, a)) i.e φ̃(m,n)(ν2(a)). We can see its action on the

basis of common eigenvectors in array form as follows.



am+num ⊗ un am+n−2um−1v ⊗ un · · · an−mvm ⊗ un

am+n−2um ⊗ un−1v am+n−4um−1v ⊗ un−1v · · · an−2−mvm ⊗ un−1v

am+n−4um ⊗ un−2v2 · · · · · · an−4−mvm ⊗ un−2v2

· · · · · · · · · · · ·

am−num ⊗ vn am−2−num−1v ⊗ vn · · · a−m−nvm ⊗ vn


(8.13)

Now assume n ≤ m. It is clear from the above that

φ(m,n)(L2(a)) =φ̃(m,n)(ν2(a))

=am+n ⊕ {am+n−2}⊕2 ⊕ {am+n−4}⊕3 ⊕ {am+n−6}⊕4 ⊕ · · ·⊕

{am−n}⊕n+1 ⊕ {am−n−2}⊕n+1 ⊕ · · · ⊕ {an−m}⊕n+1 ⊕ {an−m−2}⊕n

⊕ {an−m−4}⊕n−1 ⊕ · · · ⊕ a−n−m.

Here A⊕k = A ⊕ A ⊕ · · · ⊕ A, where A appears k times on the diagonal. If

we put z = a2, we get

φ(m,n)(L′2(z)) =z(m+n)/2 ⊕ (z(m+n)/2−1)⊕2 ⊕ (z(m+n)/2−2)⊕3 ⊕ (z(m+n)/2−3)⊕4

⊕ · · · ⊕ (z(m−n)/2)⊕n+1 ⊕ (z(m−n)/2−1)⊕n+1 ⊕ · · · ⊕ (z(n−m)/2)⊕n+1

⊕ (z(n−m)/2−1)⊕n ⊕ (z(n−m)/2−2)⊕n−1 ⊕ · · · ⊕ z(−n−m)/2.

Θφ(m,n)(L′2(z)) =z(m+n)/2 + 2z(m+n)/2−1 + 3z(m+n)/2−2 + · · ·+ (n)z(m−n)/2+1

+ (n+ 1)
[
z(m−n)/2 + z(m−n)/2−1 + · · · z

]
+ (n+ 1)

+ (n+ 1)
[
z−1 + z−2 + · · ·+ z(n−m)/2

]
+ nz(n−m)/2−1 + · · ·+ 3z−(m+n)/2+2 + 2z−(m+n)/2+1 + z−(m+n)/2.
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This is a Laurent-palindromic polynomial (see Definition 2.1.6). Recall

Definition 2.1.7 for the operator denoted by Ψ : Z[t]pal → Z on Laurent-

palindromic polynomials.

By Lemma 3.2.2 we know that φ(m,n) is spinorial if and only if

Ψφ(m,n)(L′2) = Ψ(Θφ(m,n)) ≡ 0 mod 2.

We now calculate Ψ(Θφ(m,n)).

Lemma 8.2.4. Let n ≤ m, then we have

Ψ(Chφ(m,n)) = (1/24)(1 + n)(6m+ 3m2 + n2 + 2n).
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Proof.

Chφ(m,n)(z) =z(m+n)/2 + 2z(m+n)/2−1 + 3z(m+n)/2−2 + · · ·+ (n)z(m−n)/2+1

+ (n+ 1)
[
z(m−n)/2 + z(m−n)/2−1 + · · ·+ z

]
+ (n+ 1)

+ (n+ 1)
[
z−1 + z−2 + · · ·+ z(n−m)/2

]
+ nz(n−m)/2−1 + · · ·

+ 3z−(m+n)/2+2 + z−(m+n)/2+1 + z−(m+n)/2.

Ψ(Chφ(m,n)) = (m+ n)/2 + 2((m+ n)/2− 1) + 3((m+ n)/2− 2) + · · ·

+ n((m+ n)/2− (n− 1))+

(n+ 1) [(m− n)/2 + ((m+ n)/2− 1) + · · ·+ 1]

=
(

n∑
i=1

i((m+ n)/2− (i− 1))
)

+

(n+ 1)(1/2)((m− n)/2 + 1)((m− n)/2)

= ((m+ n)/2)(1/2)(n)(n+ 1)− 2
n∑
i=1

(
i

2

)
+

(n+ 1)(1/2)((m− n)/2 + 1)((m− n)/2)(
since

n∑
i=1

i = (1/2)n(n+ 1)
)

= ((m+ n)/2)(1/2)(n)(n+ 1)− 2
(
n+ 1

3

)
+

(n+ 1)(1/2)((m− n)/2 + 1)((m− n)/2)(
since

n∑
i=1

(
i

2

)
=
(
n+ 1

3

))

= (1/24)(n+ 1)(3m2 + 6m+ n2 + 2n).

Hence the proof.

For the case m < n, by symmetry, we just have to swap n and m in the

lemma above. So we deduce that φ(m,n) (where m+ n is even) is spinorial
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if and only if

(1/24)(n+ 1)(3m2 + 6m+ n2 + 2n) ≡ 0 mod 2 if n ≤ m,

(1/24)(m+ 1)(3n2 + 6n+m2 + 2m) ≡ 0 mod 2 otherwise.

Observe that

g(n,m) = (1/24)(n+ 1)(3m2 + 6m+ n2 + 2n)− (1/24)(m+ 1)(3n2 + 6n+m2 + 2m)

= (1/24)((n−m)2 − 4)(n−m).

Since n + m is even , n − m will also be even. Let n − m = 2k for some

integer k. Then

g(n,m) = (1/24)(4k2 − 4)(2k)

= (1/24)8(k − 1)k(k + 1)

= ((k − 1)k(k + 1))/3,

which is obviously an integer, moreover it is even since one of k − 1, k and

k + 1 has to be even. Hence g(m,n) ≡ 0 mod 2, therefore

(1/24)(n+1)(3m2+6m+n2+2n) ≡ (1/24)(m+1)(3n2+6n+m2+2m) mod 2,

for all (m,n) such that m+ n is even. Thus it is enough to use the equation

in Lemma 8.2.4.

In fact so(4,C) ∼= sl(2,C)×sl(2,C). The highest weight (x, y) in the Weyl

chamber 〈(1, 1), (1,−1)〉 of so(4) is related to (m,n) by relations x = m+n
2

and y = n−m
2 . Since m + n is even, both x and y are integers. Hence

m = (x− y), and n = (x+ y). Thus our formula becomes
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(1/6)(1 + x+ y)(2x+ x2 − y − xy + y2).

This concludes the proof of Theorem 8.2.2.

Proof of Theorem 8.2.3. For the calculation of PSpin, we show that

Lemma 8.2.5. The spinoriality of the representation of SO(4) is periodic

in its highest weight (m,n) with periods (4, 4) and (4,−4).

Proof. Let f(m,n) = (1/24)(n + 1)(3m2 + 6m + n2 + 2n). Observe that

f(m+ 4, n+ 4)− f(m,n) = (1/2)((m+n)2 + 12(m+n) + 40). Since (m+n)

is even, this is an even number and therefore f(m + 4, n + 4) ≡ f(m,n)

mod 2. Therefore, it is (4, 4) periodic.

Also observe that f(m+4, n−4)−f(m,n) = −(m−n)2/2−4(m−n)−10.

Since (m − n) is even, this is an even number and thus f(m + 4, n − 4) ≡

f(m,n) mod 2. Hence, it is (4, -4) periodic.

Lemma 8.2.6. We have PSpin(SO(4)) = 〈(4, 4), (4,−4)〉.

Proof. It is clear from the above lemma that 〈(4, 4), (4,−4)〉 ≤ PSpin(SO(4)).

We would like to prove equality in this case. Let P be the weight lattice of

SO(4), which is the same as the (m,n) such that m + n is even. It is the

same as 〈(1, 1), (1,−1)〉. So we have 〈(4, 4), (4,−4)〉 ≤ PSpin(SO(4)) ≤ P.

Let A = P/〈(4, 4), (4,−4)〉. Let A′ = PSpin(SO(4))/〈(4, 4), (4,−4)〉. Observe

that A′ ≤ A. We are done if we prove A′ is trivial. Observe that A =

Z/4Z ⊕ Z/4Z. Suppose A′ is not trivial in A, it will contain some element

(a, b) 6= (0, 0). Since it is a subgroup, it will contain (2a, 2b), which can be

either (0, 2) or (2, 0) or (2, 2) or (0, 0). If (2a, 2b) = (0, 0) then (a, b) has to

be one of the four options above. Therefore if we prove that (0, 2), (2, 0) and

(2, 2) does not belong to A′ then we are done.
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The elements (2, 0), (0, 2), (2, 2) correspond to (2, 2), (2,−2) and (2, 0) in P .

Observe that f(1, 1) ≡ 1 mod 2 and f(3, 3) ≡ 0 mod 2. Thus (2, 2) /∈

PSpin(SO(4)). Furthermore f(3, 3) ≡ 0 mod 2 and f(5, 1) ≡ 1 mod 2, Thus

(2,−2) /∈ PSpin(SO(4)). Similarly f(1, 1) ≡ 1 mod 2 and f(3, 1) ≡ 0 mod 2,

therefore (2, 0) /∈ PSpin(SO(4)). Hence the proof.

Thus we conclude the proof of Theorem 8.2.3.

8.2.3 Case SO(5)

In this subsection we determine the spinorial irreducible orthogonal repre-

sentations of SO(5,C) in terms of their highest weight. From Section 6.1.2

we know that all the irreducible representations of SO(5,C) are orthogonal.

Theorem 8.2.7. The representation with highest weight λ = (λ1, λ2) is

spinorial if and only if (
λ1 + 3

4

)
−
(
λ2 + 2

4

)

is even.

Theorem 8.2.8. PSpin(SO(5,C)) = 〈(4, 4), (4,−4)〉 = 8Porth(so(5,C)). The

proportion of non-spinorial weights is 1/2.

Proof of Theorem 8.2.7. Here we apply the general strategy to group

SO(5,C). We take the bilinear form to be


0 I2 0

I2 0 0

0 0 1

, where I2 denotes

the 2× 2 identity matrix.

We fix our maximal torus of SO(5,C) to be x1⊕x2⊕x−1
1 ⊕x−1

2 ⊕1, where

xi ∈ C×. Let us denote this torus by T .
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Let ν1 be the co-character ν1 : C× → T defined as ν1(t) = t⊕1⊕t−1⊕1⊕1.

Let ν2 be the co-character ν2 : C× → T defined as ν2(t) = 1⊕ t⊕ 1⊕ t−1⊕ 1.

The co-characters ν1 and ν2 are representatives of generators of π1(SO(5,C)).

By Scholium 4.2.13 to determine spinoriality of φ, it is enough to check parity

of Q′′ν(1)/2 for ν = ν1 and ν2. Moreover Q′′ν(1)/2 ≡ Ψφ(ν) ≡ Fν(λ) mod 2,

from Lemma 3.2.5 and Lemma 4.1.2. Since ν1 and ν2 are Weyl conjugate and

Fν(λ) = Fw(ν)(λ) by Lemma 3.2.4, we just want the parity of one of them,

let us say the parity of Ψφ(ν1).

Let us denote the irreducible representation with highest weight (λ1, λ2)

by φ. We use the determinantal Weyl character formula here (see page 409

Proposition 24.33 of [Fulton and Harris(1991)]). Let Θ denote the character

of the representation. Then

Θ(x) = f(x1, x2) = det

 Kλ1(x) Kλ1+1(x) +Kλ1−1(x)

Kλ2−1(x) Kλ2(x) +Kλ2−2(x)

 ,

where x = (x1, x2, x
−1
1 , x−1

2 , 1) andKd(x) = Hd(x)−Hd−2(x). (See Definition

8.0.1.)

Since we are only interested in Ψφ(ν1) which equals Ψ(Θ(ν1(t))). We

would like an expression for Θ(ν1(t)) = (t, 1) which equals

det

 Kλ1(t, 1, t−1, 1, 1) Kλ1+1(t, 1, t−1, 1, 1) +Kλ1−1(t, 1, t−1, 1, 1)

Kλ2−1(t, 1, t−1, 1, 1) Kλ2(t, 1, t−1, 1, 1) +Kλ2−2(t, 1, t−1, 1, 1)


= (Kλ1)(Kλ2 +Kλ2−2)− (Kλ2−1)(Kλ1+1 +Kλ1−1).
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Lemma 8.2.9. We have

Kd(t, 1, t−1, 1, 1) =
(

2
2

)
(td + t−d) +

(
3
2

)
(td−1 + t1−d) + · · ·+

(
d+ 1

2

)
(t+ t−1) +

(
d+ 2

2

)
.

Proof. By definition we have

Kd(t, 1, t−1, 1, 1) = Hd(t, 1, t−1, 1, 1)−Hd−2(t, 1, t−1, 1, 1).

Also by definition we have

Hd(x1, x2, x3, x4, x5) =
∑
α

xα1
1 x

α2
2 x

α3
3 x

α4
4 x

α5
5 ,

where α runs over the set = {(α1, α2, α3, α4, α5) ∈ Z5
≥0 |

∑
αi = d}. Let

α1 = r and α1 + α3 = s then α2 + α4 + α5 = d− s. The number of ways to

solve α2 +α4 +α5 = d−s for ordered triple of non-negative integers α2, α4, α5

is
(
d−s+2

2

)
. Thus

Hd(t, 1, t−1, 1, 1) =
d∑
s=0

s∑
r=0

trt−(s−r)
(
d− s+ 2

2

)

=
d∑
s=0

s∑
r=0

t2r−s
(
d− s+ 2

2

)
.

Similarly

Hd−2(t, 1, t−1, 1, 1) =
d−2∑
s=0

s∑
r=0

t2r−s
(
d− s

2

)
.
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So,

Kd(t, 1, t−1, 1, 1) =
d−2∑
s=0

s∑
r=0

t2r−s
((

d− s+ 2
2

)
−
(
d− s

2

))

+
d−1∑
r=0

t2r−d+1
(

3
2

)
+

d∑
r=0

t2r−d
(

2
2

)
.

This equals the sum

=
(

2
2

)
(t−d + t−d+2 + · · ·+ td−2 + td)

+
(

3
2

)
(t−d+1 + t−d+3 + · · ·+ td−3 + td−1)

+
((

4
2

)
−
(

2
2

))
(t−d+2 + t−d+4 + · · ·+ td−4 + td−2)

+
((

5
2

)
−
(

3
2

))
(t−d+3 + t−d+5 + · · ·+ td−5 + td−3)

+
((

6
2

)
−
(

4
2

))
(t−d+4 + t−d+6 + · · ·+ td−6 + td−4)

+
((

7
2

)
−
(

5
2

))
(t−d+5 + t−d+7 + · · ·+ td−7 + td−5)

· · ·

+
((

d+ 1
2

)
−
(
d− 1

2

))
(t+ t−1)

+
((

d+ 2
2

)
−
(
d

2

))
.
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The terms in between cancel, and it follows that

Kd(t, 1, t−1, 1, 1) =
(

2
2

)
(t−d + td) +

(
3
2

)
(t−d+1 + td−1) +

(
4
2

)
(t−d+2 + td−2)

+ · · ·+
(
d+ 1

2

)
(t−1 + t) +

(
d+ 2

2

)
,

as desired.

Lemma 8.2.10. We have

Kd(t, 1, t−1, 1, 1)+Kd−2(t, 1, t−1, 1, 1) ≡ td+td−1+· · ·+t−d+1+t−d ∈ (Z/2Z)[t].

Proof. From the lemma above, we have

Kd(t, 1, t−1, 1, 1) =
(

2
2

)
t−d +

(
3
2

)
t−d+1 + · · ·+

(
3
2

)
td−1 +

(
2
2

)
td,

and

Kd−2(t, 1, t−1, 1, 1) =
(

2
2

)
t−d+2 +

(
3
2

)
t−d+3 + · · ·+

(
3
2

)
td−3 +

(
2
2

)
td−2.

Adding we get

t−d + 3t−d+1 +
((

4
2

)
+
(

2
2

))
t−d+2 +

((
5
2

)
+
(

3
2

))
t−d+3

+ · · ·
((

5
2

)
+
(

3
2

))
td−3 +

((
4
2

)
+
(

2
2

))
td−2 + 3td−1 + td.

From the fact that
(
l+2
2

)
+
(
l
2

)
= l2 + l + 1 is odd, the lemma follows.

Write Θ(ν1(t))) = f(t, 1) = ant
n+an−1t

n−1 + · · ·+a1t+a0 +a1t
−1 + · · ·+

an−1t
−n+1 + ant

−n for ai ∈ Z≥0. From Lemma 3.2.2, we can conclude that

the representation φ with highest weight λ = (λ1, λ2) is spinorial if and only

if Ψφ(ν1) = ∑n
i=1 ai · i ≡ 0 mod 2.
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Recall from Definitions 2.1.6 and 2.1.7, the definition of Ψ : Z[x, x−1]sym →

Z/2Z is a Z-linear operator on the abelian group of Laurent-palindromic

polynomials.

Now we are interested in calculating Ψφ(ν1) = Ψ(f(t, 1)), where

f(t, 1) = (Kλ1)(Kλ2 +Kλ2−2)− (Kλ2−1)(Kλ1+1 +Kλ1−1). (8.14)

Lemma 8.2.11. We get

Ψ((tn + t−n)(tk + tk−1 + · · ·+ t1−k + t−k)) = n ∈ Z/2Z.

Proof. Let E(t) = (tn+ t−n)(tk + tk−1 + · · ·+ t1−k + t−k). We will make cases.

In the first case, let n > k. Then we have

E = tn+k + tn+k−1 + · · ·+ tn−k+1 + tn−k + t−n+k + t−n+k−1 + · · ·+ t−n−k.

Ψ(E) =
n+k∑
i=n−k

i =
n+k∑
i=1

i−
n−k−1∑
i=1

i

= (1/2)(n+ k)(n+ k + 1)− (1/2)(n− k)(n− k − 1)

= n(2k + 1)

= n ∈ Z/2Z.

In second case, let n = k. Then

E(t) = t2n + t2n−1 + · · ·+ t+ 2 + t−1 + · · ·+ t1−2n + t−2n.

Ψ(E) =
2n∑
i=1

i = (1/2)(2n)(2n+ 1) = n(2n+ 1) = n(2k + 1) = n ∈ Z/2Z.
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In the third case, let n < k. Then

E = tn+k+tn+k−1+· · ·+tk−n+1+2tk−n+2tk−n−1+· · ·+2tn−k+tn−k−1+· · ·+t−n−k.

Moreover

Ψ(E) =
n+k∑

i=k−n+1
i mod 2

=
n+k∑
i=1

i−
k−n∑
i=1

i

= (1/2)(n+ k + 1)(n+ k)− (1/2)(k − n)(k − n+ 1)

= n(2k + 1) ∈ Z/2Z

= n ∈ Z/2Z.

Lemma 8.2.12. For d ∈ Z≥0 and d′ ∈ Z≥2, we have

Ψ(Kd(t, 1, t−1, 1, 1) · (Kd′(t, 1, t−1, 1, 1) +Kd′−2(t, 1, t−1, 1, 1)))

=
(
d+ 3

4

)
+
(
d+ 2

2

)(
d′ + 1

2

)
∈ Z/2Z.

Proof. From Lemma 8.2.10

Kd′(t, 1, t−1, 1, 1)+Kd′−2(t, 1, t−1, 1, 1) = td
′+td′−1+· · ·+t1−d′+t−d′ ∈ (Z/2Z)[t].

From Lemma 8.2.9

Kd(t, 1, t−1, 1, 1) =
(

2
2

)
(td + t−d) +

(
3
2

)
(td−1 + t1−d) + · · ·

+
(
d+ 1

2

)
(t+ t−1) +

(
d+ 2

2

)
.
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So

Ψ((Kd(t, 1, t−1, 1, 1))(Kd′(t, 1, t−1, 1, 1) +Kd′−2(t, 1, t−1, 1, 1)))

=
(

2
2

)
Ψ((td + t−d)(td′ + td

′−1 + · · ·+ t1−d
′ + t−d

′))

+
(

3
2

)
Ψ((td−1 + t1−d)(td′ + td

′−1 + · · ·+ t1−d
′ + t−d

′))

+
(

4
2

)
Ψ((td−2 + t2−d)(td′ + td

′−1 + · · ·+ t1−d
′ + t−d

′))

...

+
(
d+ 1

2

)
Ψ((t+ t−1)(td′ + td

′−1 + · · ·+ t1−d
′ + t−d

′))

+
(
d+ 2

2

)
Ψ((1)(td′ + td

′−1 + · · ·+ t1−d
′ + t−d

′)).
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By using Lemma 8.2.11 we get

=
(

2
2

)
d+

(
3
2

)
(d− 1) + · · ·+

(
d+ 1

2

)
(1) +

(
d+ 2

2

)(
d′ + 1

2

)

=
(
d+1∑
i=2

(
i

2

)
(d+ 2− i)

)
+
(
d+ 2

2

)(
d′ + 1

2

)

=
(

(d+ 3)
d+1∑
i=2

(
i

2

)
−

d+1∑
i=2

(i+ 1)
(
i

2

))
+
(
d+ 2

2

)(
d′ + 1

2

)

=
(

(d+ 3)
(
d+ 2

3

)
− 3

d+1∑
i=2

(
i+ 1

3

))
+
(
d+ 2

2

)(
d′ + 1

2

)

=
(

4
(
d+ 3

4

)
− 3

(
d+ 3

4

))
+
(
d+ 2

2

)(
d′ + 1

2

)

=
(
d+ 3

4

)
+
(
d+ 2

2

)(
d′ + 1

2

)

=
(
d+ 3

4

)
+
(
d+ 2

2

)(
d′ + 1

2

)
∈ Z/2Z.

Lemma 8.2.13. We have

Ψ(f(t, 1)) ≡
(
λ1 + 3

4

)
−
(
λ2 + 2

4

)
∈ Z/2Z.

Proof. Apply Ψ to both sides of Equation (8.14), to obtain

Ψ(f(t, 1)) = Ψ(Kλ1(t, 1, t−1, 1, 1)(Kλ2(t, 1, t−1, 1, 1) +Kλ2−2(t, 1, t−1, 1, 1)))

−Ψ(Kλ2−1(t, 1, t−1, 1, 1)(Kλ1+1(t, 1, t−1, 1, 1) +Kλ1−1(t, 1, t−1, 1, 1))).
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Using Lemma 8.2.12 we get

Ψ(f(t, 1)) =
((

λ1 + 3
4

)
+
(
λ2 + 1

2

)(
λ1 + 2

2

))

−
(
λ2 + 2

4

)
−
(
λ2 + 1

2

)(
λ1 + 2

2

)

=
(
λ1 + 3

4

)
−
(
λ2 + 2

4

)
mod 2.

We already know that

Ψ(f(t, 1)) = 0 ∈ Z/2Z

if and only if the representation with the highest weight λ is spinorial. Hence

the representation with highest weight λ = (λ1, λ2) is spinorial if and only if

(
λ1 + 3

4

)
−
(
λ2 + 2

4

)
≡ 0 ∈ Z/2Z.

Hence we conclude the proof of Theorem 8.2.7.

Proof of Theorem 8.2.8.

Lemma 8.2.14. We have 〈(4, 4), (4,−4)〉 ≤ PSpin(SO(5,C)).

Proof. This is an easy application of Lemma 12.1.5 in the Appendix.

Let us denote the weight lattice of SO(5,C) by P . We know from the

lemma above that 〈(4, 4), (4,−4)〉 ≤ PSpin(SO(5,C)) ≤ P . Here P ∼= Z × Z

since it has rank 2. Let us denote the quotient group P/〈(4, 4), (4,−4)〉 by

A and PSpin(SO(5,C))/〈(4, 4), (4,−4)〉 by A′. Note that A′ is a subgroup of

A. If we prove that A′ is trivial we are done. Observe that A is isomorphic

to Z/8Z ⊕ Z/4Z by identifying a representative as a(1, 0) + b(1, 1), where
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a ∈ Z/8Z and b ∈ Z/4Z. Now we concentrate on the groupA = Z/8Z⊕Z/4Z.

In this group, (4, 0) = 4x or 2x or x, where x can be one of the elements in

S1, where

S1 = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (1, 1), (3, 1), (5, 1),

(7, 1), (1, 2), (3, 2), (5, 2), (7, 2), (2, 2), (6, 2), (1, 3), (3, 3), (5, 3), (7, 3)}.

Furthermore (0, 2) = x or 2x for every x ∈ S2, where

S2 = {(0, 1), (4, 1), (0, 2), (0, 3), (4, 3)}.

Moreover (4, 2) = x or 2x for every x ∈ S3, where

S3 = {(2, 1), (6, 1), (4, 2), (2, 3), (6, 3)}.

IfH is a subgroup of A then (4, 0) /∈ H which implies none of the members

of S1 belong to H. A similar argument holds for (0, 2) and S2 and (4, 2) and

S3. Thus, if none of the members (4, 0), (0, 2) and (4, 2) belong to H then

H ∩ (S1∪S2∪S3) = ∅. But observe that A\ (S1∪S2∪S3) = {(0, 0)}. Hence

H will be the trivial subgroup.

Hence, for proving A′ is trivial it is enough to prove that

{(4, 0), (0, 2), (4, 2)} ∩ A′ = ∅

.

The element (4, 0) corresponds to 4(1, 0) + 0(1, 1) = (4, 0) in P . The

element (0, 2) corresponds to 0(1, 0) + 2(1, 1) = (2, 2) in P . The element

(4, 2) corresponds to 4(1, 0) + 2(1, 1) = (6, 2) in P . Let g(x, y) =
(
x+3

4

)
−(

y+2
4

)
mod 2. Observe that g(2, 1) = 1, while g(6, 1) = 0, hence (4, 0) /∈

PSpin(SO(5,C)). Moreover g(8, 2) = 1, while g(10, 4) = 0, hence (2, 2) /∈
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PSpin(SO(5,C)). In addition g(35, 5) = 0, while g(41, 7) = 1, hence (6, 2) /∈

PSpin(SO(5,C)).

Hence PSpin(SO(5,C)) = 〈(4, 4), (4,−4)〉.



Chapter 9

Complexification of Compact

Lie Groups

Definition 9.0.1. complexification of a real Lie algebra g, is the com-

plex Lie algebra gC := g⊗R C.

Definition 9.0.2. A continuous function f : G→ C is called a represen-

tative function if f generates a finite dimensional G-subspace of continous

complex valued functions under the action (g · f)(x) = f(g−1x). Representa-

tive functions form a ring and it is denoted by A(G,C).

(see chapter 3 section 1 of [Bröcker and tom Dieck(2013)]).

Definition 9.0.3. Let G be a real Lie group. Then consider the group GC

of all C-algebra homomorphisms A(G,C) → C and let i : G → GC be the

evaluation map (i(g))(f) = f(g). Then GC is a complex analytic Lie group

and is called the complexification of G. It has a universal property that,

given any complex finite dimensional representation φ, there exists a unique

holomorphic representation ψ of GC such that φ = ψ ◦ i.

(see chapter 3 section 8 of [Bröcker and tom Dieck(2013)]).
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It is well-known that the complexification of the unitary group U(n) is

GL(n,C), and that of SO(N) is SO(N,C), and that of Spin(N) is Spin(N,C).

The group Spin(N,C) is also a double cover of SO(N,C). Hence, for complex

analytic groups an analogous question can be raised as follows : Which fi-

nite dimensional irreducible complex orthogonal representations of a complex

group G lift to Spin(N,C)?

Lemma 9.0.4. Suppose we have a commutative diagram of semi-simple

complex groups C1, C2, C3

C3

γ

��

C1
α //

β
>>

C2

which are complexifications of real compact semisimple groups K1, K2, K3

with the maps ij : Kj → Cj for j ∈ {1, 2, 3}. Then we have a corresponding

commutative diagram

K ′3

γ1
��

K ′1
α1 //

β1
>>

K ′2

such that K ′i ⊂ Ci, K ′i ∼= Ki, and α1C = α, β1C = β, γ1C = γ.

Proof. Since Cj is the complexification of Kj, ij(Kj) is a maximal compact

subgroup of Cj (See Chapter 3 section 8 of [Bröcker and tom Dieck(2013)]

). All maximal compact subgroups of a semisimple complex Lie group are

conjugate. Take K ′1 = i1(K1). Since the image of K ′1 under map α is a

compact subgroup of C2, it will land inside some conjugate of i2(K2), which

is a maximal compact subgroup of C2. Call that conjugate subgroup K ′2.

Similarly we can define K ′3 inside C3. Define γ1 = γ|K′3 . Observe that, since

the Ci are semisimple, they are the complexifications of the K ′i. Furthermore

α1, β1, γ1 are restrictions of α, β, γ. Hence α1C = α, β1C = β, γ1C = γ.
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Lemma 9.0.5. Let K be a connected real compact Lie group. Let φ be an

orthogonal representation of K. Let KC be the complexification of K. As

complexification is a functor, let φC be the induced map between KC and

SO(N,C). Then, φ is spinorial if and only if φC is spinorial, i.e., lifts to

Spin(n,C).

Proof. If ψ is a lift of φ to Spin(n,R), i.e., if we have the following commu-

tative diagram:

Spin(n,R)
ρ

��

K
φ
//

ψ
::

SO(n,R)

then we have the commutative diagram:

Spin(n,C)
ρC
��

KC
φC //

ψC
99

SO(n,C).

Hence we have ψC, which is a lift of φC.

For the other way around, let ψC be the lift of φC. Let ρ and its com-

plexification ρC be the covering maps for SO(N) and SO(N,C) respectively.

Consider the commutative diagram:

Spin(N,R) i1 //

ρ

��

Spin(N,C)
ρC
��

SO(N,R) i2 // SO(N,C).

The map i1 is the standard injection of the real spin group into the complex

spin group. The map i2 is the standard injection of real special orthogonal

group into the complex special orthogonal group. By the definition of ρC,

the above diagram shows that the restriction of ρC to the real spin group is
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the map ρ.

Observe that ρC and ρ, both are double covers. Since one is the restriction

of the other, their kernels are the same, i.e., Ker (ρC) = Ker (ρ) ⊂ Spin(N,R).

Hence, ρ−1
C (SO(N,R)) = Spin(N,R).

Since ρC ◦ ψC|K = φC|K = φ, the map ψC|K is a lift of φ.

There is a close relation between the finite-dimensional holomorphic rep-

resentations of compact groups and finite-dimensional representations of their

complexification. From Lemma 9.0.4 it is clear that the complexification is a

functor from category of compact Lie groups to category of complex reduc-

tive Lie groups. Furthermore taking maximal compact subgroup is functor

in the reverse direction.

In fact the complexification of Lie algebra of compact group in the Lie

algebra sense is the complex Lie algebra of its complexification in the Lie

group sense. There is a one-one correspondence between finite-dimensional

representations of real Lie algebras and their complexification. Moreover it

takes irreducible representations to irreducible representations.

GL(n,C) is the complexification U(n). Thus from Lemma 9.0.5 there

is one-one correspondence between the spinorial representations of GL(n,C)

and U(n). Similarly there is a one-one correspondence between spinorial

representations of SO(n,R) and SO(n,C). Furthermore self-dual represen-

tations of compact groups correspond to self-dual representations of their

complexification. Moreover there is a one-one correspondence between real

representations of compact groups and orthogonal representations of their

complexification.

We have basically figured out the spinoriality for complex groups, which

in turn gives the spinoriality for compact groups.

However we have some alternative methods to figure out the spinoriality
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for U(n) and SO(3,R), SO(4,R), SO(5,R), which we will present in the next

chapters.
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Chapter 10

Miscellaneous

10.1 Spinoriality of Representations restricted

to Sn < GL(n,C)

In this chapter, we discuss the spinoriality of an orthogonal representation

of GL(n,C) restricted to the subgroup of permutation matrices, i.e. to Sn.

Spin(m,C)
ρ

��

Sn // GL(n,C) φ
//

ψ
77

SO(m,C)

.

Theorem 10.1.1. An orthogonal representation φ of GL(n,C) is spinorial

if and only if its restriction to Sn is spinorial.

Proof. It is trivial to see that if φ is spinorial then its restriction is spinorial.

Conversely suppose φ is non-spinorial. We shall prove that restriction of

φ to Sn is non-spinorial.

Let Q be the quadratic form defined as Q(x1, . . . , xm) = −(x2
1 + · · ·+x2

m).
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See Chapter 2 for the definition of

Spin(m,C) = {±w1 · w2 · · ·w2k | wi ∈ Cm, Q(wi, wi) = −1}.

We choose an orthogonal basis (e1, . . . , em) of Cm w.r.t. Q. Thus we get

relations in Spin(m,C) as ei · ej = −ej · ei and e2
i = −1.

From these relations it is easy to see that the image of ei ·ej ∈ Spin(m,C)

in SO(m,C) is

1⊕ 1⊕ · · · ⊕ −1︸︷︷︸
i’th place

⊕ · · · ⊕ −1︸︷︷︸
j’th place

⊕ · · · ⊕ 1.

Now choose the transposition (1,2) in Sn. It corresponds to the matrix

A =


0 1 0

1 0 0

0 0 In−2


where In−2 is the (n− 2)× (n− 2) identity matrix. Note that A is conjugate

to the matrix 1⊕ · · · ⊕ 1⊕−1.

Let us define a co-character ν(t) = 1 ⊕ · · · ⊕ 1 ⊕ t. Let B(t) =

Trace(φ(ν(t))). From arguments in Section 8.1.3 it is easy to see that φ is

spinorial if and only if Ψ(B(t)) ≡ 0 mod 2.

By Lemma 3.2.2 B(t) = ∑d
i=1 ai(ti + t−i) + a0 and Ψ(B) = ∑d

i=1 ai · i,

where ai is the multiplicity of ti as weight of representation φ ◦ ν of C×.

Since A is conjugate to ν(−1), it is easy to see that the multiplicity of

−1 as an eigenvalue in φ(ν(−1)) is m = 2a1 + 2a3 + · · · . Thus m
2 ≡ Ψ(B)

mod 2. Since φ is non-spinorial, Ψ(B) is odd. Hence m/2 is odd.

Let the lift of φ(ν(−1)) in Spin(m,C) be y = ±ei1 · · · eim , because the

multiplicity of −1 ism. For the lift to be a homomorphism we require y2 = 1,
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but by relations in the spin group it is easy to observe that y2 = (−1)m(m+1)/2.

Since m/2 is odd and m is even y2 = −1 which is a contradiction. Hence the

image of the transposition (1, 2) cannot be lifted to the spin group under the

representation π.

Hence φ |Sn= π is also non-spinorial.
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Chapter 11

Summary

In this section we summarize all the results.

(1) LetG be a connected complex semi-simple group with complex lie algebra

g. Let φλ be an irreducible orthogonal holomorphic representation with

highest weight λ. Then with the notation that g = ⊕gi, where gi is

simple, λ = ⊕λi, ρ = ⊕ρi and for an infinitesimal cocharacter ν = ⊕νi
of the maximal torus of G, the representation φλ is spinorial if and only

if
Q′′ν(1)

2 = dimV λ
k∑
i=1

|νi|2(|λi + ρi|2 − |ρi|2)
2 dim gi

≡ 0 mod 2,

for a set of co-characters ν, which represent the generators of π1(G). (See

Theorem 4.2.12 and Scholium 4.2.13.)

(2) As a special case of above theorem in the above setting if g is simple

then φλ is spinorial if and only if

(dim V λ)(|ν|2)(|λ+ ρ|2 − |ρ|2)
2(dim g) ≡ 0 mod 2,

for a set of co-characters ν which represent generators of π1(G). (See

Theorem 4.2.9 and Scholium 4.2.13.)
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(3) The adjoint representation is spinorial if and only if half the sum of

positive roots is integral.(See Theorem 4.4.1.)

(4) When n is odd, all of the irreducible orthogonal finite-dimensional rep-

resentations of PGL(n,C) are spinorial. (See Lemma 6.2.1.)

(5) For G = PGL(2n,C), the orthogonal irreducible finite-dimensional rep-

resentation of highest weight

λ = (
n∑
i=1

ri,
n−1∑
i=1

ri, . . . , r1 + r2, r1,−r1,−r1 − r2, . . . ,−
n∑
i=1

ri),

is spinorial if and only if

∏
1≤i<j≤n

(
λi − λj + j − i

j − i

)
·
(∑n

i=1(((∑i
j=1 rj) + 2i−1

2 )2 − (2i−1
2 )2))

2n(2n+ 1) ≡ 0 mod 2,

(see Theorem 6.2.2)

or
dyn(φ)

2n ≡ 0 mod 2.

(See Theorem 6.2.3.)

(6) For G = SO(2n+ 1,C), φλ is spinorial if and only if

 ∏
1≤i≤j≤n

((λi + ρi)2 − (λj + ρj)2

ρ2
i − ρ2

j

)
∏

1≤i≤n
(λi + ρi

ρi
)
((∑n

i=1((λi + ρi)2 − (ρi)2))
2 · (2n)(2n+ 1)

)
≡ 0 mod 2,

(see Theorem 6.2.4) or,

dyn(φ) is even.

(See Theorem 6.2.5.)
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(7) For G = SO(2n,C), φλ is spinorial if and only if

 ∏
1≤i<j≤n

(λi + ρi)2 − (λj + ρj)2

ρ2
i − ρ2

j

(∑n
i=1((λi + ρi)2 − ρ2

i )
2(2n)(2n− 1)

)
≡ 0 mod 2,

(see Theorem 6.2.6 ), or

dyn(φ) is even,

(see Theorem 6.2.7), where

λ =(λ1, λ2, . . . , λn)

=(a1 + a2 + · · · an−2 + (1/2)(an−1 + an), a2 + a3 + · · ·+ an−2 + (1/2)(an−1 + an),

· · · , an−2 + (1/2)(an−1 + an), (1/2)(an−1 + an), (1/2)(an − an−1)),

and the condition is an−1 = an when n is odd and an−1 +an is even when

n is even.

(8) For any connected complex reductive group, |Porth(G)/PSpin(G)| is finite.

(See Theorem 5.0.13. )

This is the summary of Determinantal identity method

(1) The representation of PGL(2n,C) of highest weight

λ = rn($2n−1 +$1)+rn−1($2n−2 +$2)+ · · ·+r2($n+1 +$n−1)+2r1($n)

, where $i = (1, 1, . . . , 1︸ ︷︷ ︸
itimes

, 0, 0, . . . , 0) are fundamental weights of its Lie

algebra sl(2n,C)(where ri are non negative integers) is spinorial if and

only if
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det



d1
(
λ1+2n−1

2n−2

) (
λ1+2n−1

2n−3

)
· · · 1

d2
(
λ2+2n−2

2n−2

) (
λ2+2n−2

2n−3

)
· · · 1

· · · · · · · · · · · · · · ·

d2n
(
λ2n

2n−2

) (
λ2n

2n−3

)
· · · 1


is even.

Here

di = (d+1)
(
λi − i+ 2n

2n− 1

)
+
(

(λi − d)− i+ 2n
2n

)
−
(
λi − i+ 2n+ 1

2n

)
mod 2,

where d = ∑n
i=1 ri. (See Theorem 8.1.1.)

(2) The lattice PSpin(PGL(2n,C)) contains

〈2k($1 +$2n−1), 2k($2 +$2n−2), . . . ,

2k($n−1 +$n+1), 2k+1$n〉,

where k is the smallest non-negative integer such that 2k > 2n (see

Theorem 8.1.2).

(3) An orthogonal irreducible representation of SO(3,C) landing in SO(2n+

1,C) is spinorial if and only if n ≡ 3 or 0 mod 4 (see Subsection 8.2.1).

(4) We have PSpin(SO(3,C)) = 4Porth(so(3,C)) (clear from the above theo-

rem).

(5) The representation of SO(4,C)) having highest weight (x, y) is spinorial

if and only if (1/6)(1 + x + y)(2x + x2 − y − xy + y2) ≡ 0 mod 2 (see

Theorem 8.2.2).

(6) We have PSpin(SO(4)) = 〈(4, 0), (0,−4)〉 = 4Porth(so(4,C)) (see Theorem

8.2.3).
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(7) The representation of SO(5,C) with the highest weight λ = (λ1, λ2) is

spinorial if and only if

(
λ1 + 3

4

)
−
(
λ2 + 2

4

)
≡ 0 mod 2,

(see Theorem8.2.7 ).

(8) PSpin(SO(5,C)) = 〈(4, 4), (4,−4)〉 = 8 Porth(so(5,C)) (see Theorem

8.2.8).

Group g P (g) w0 Psd(g)

PGL(2) sl2(C) 〈$1 = ε1〉 (1, 2) w0(ε1) = ε2 = −ε1
so 〈ε1〉

PGL(4) sl4(C) 〈$1 = ε1, (1, 4)(2, 3) 〈ε1 + ε2,

$2 = ε1 + ε2 ε3 + ε1〉 =

, $3 = ε1 + ε2 + ε3〉 〈$2, $1 +$3〉

= 〈ε1, ε2, ε3〉

SO4(C) so4(C) 〈$1 = (1/2)(ε1 − ε2) -I same as

$2 = (1/2)(ε1 + ε2)〉 weight lattice

SO5(C) so5(C) 〈$1 = ε1 -I same as

$2 = (1/2)(ε1 + ε2)〉 weight lattice
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Porth(g) P ′Spin PSpin

〈2ε1〉 2nε1 〈8$1〉

n ≡ 0 or 3 mod 4

same as See the expression above 〈8($1 +$3),

self-dual lattice 8$2〉

aε1 + bε2 {x · ε1 + y · ε2 | 〈4ε1,

(1/6)(1 + x+ y)(2x+ x2 − y − xy + y2) ≡ 0 mod 2} 4ε2〉

same as {(λ1, λ2) |
(
λ1+3

4

)
−
(
λ2+2

4

)
≡ 0 mod 2} 〈8$1,

weight lattice 8$2〉

relation

PSpin(G) = 4Porth(g)

PSpin(G) = 8Porth(g)

PSpin(G) = 4Porth(g)

PSpin(G) = 8Porth(g)

Here the notations are as follows.

Group = The group under the consideration.

g = The Lie algebra of the group.

P(g) = The weight lattice corresponding to g.

w0 = The longest element of the Weyl group.

Psd(g) = The lattice of highest weights corresponding to self-dual irre-

ducible representation of g.

Porth(g) = The lattice of highest weights corresponding to orthogonal

irreducible representations of g.

P ′Spin(G) = {λ ∈ Porth | Fν(λ) ≡ 0 mod 2∀ν}

PSpin(G) = {p ∈ Porth(G) | λ ∈ P ′Spin(G)⇔ λ+ p ∈ P ′Spin(G)}

relation = The relation between PSpin(G) and Porth(g).
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Appendix

12.1 Combinatorial Lemmas

Lemma 12.1.1. (Lucas Theorem)(see [Fine(1947)]) Let n = a0 + 2a1 +

22a2 + · · ·+ 2mam and r = b0 + 2b1 + · · ·+ 2mbm, then

(
n

r

)
≡
(
am
bm

)
·
(
am−1

bm−1

)
·
(
am−2

bm−2

)
· · ·

(
a0

b0

)
mod 2,

where 0 ≤ ai, bi ≤ 1.

Observe that Lucas theorem is valid also when 0 ≤ n < r.

Lemma 12.1.2. Fix a natural number r.

1) Then
(
n+2k
r

)
≡
(
n
r

)
mod 2 for every natural number n, where k is the

least integer such that 2k > r.

2) If for all n,
(
n+p
r

)
≡
(
n
r

)
mod 2, then 2k divides p, where k is as above.

Hence if we fix r, then the sequence
(
n
r

)
mod 2 is periodic in n with exact

period 2k, where k is as above.
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Proof. The first part follows from the Lucas theorem. Let n and r be the

natural numbers and let ai and bi be as stated in the Lucas theorem. Let m

be the largest integer such that bm = 1. Now observe that if we add 2j to n

where j is the smallest integer such that 2j is strictly greater than r, then it

will not affect a0, a1, . . . , am. That is, the first (m + 1) digits in the binary

code of n will be exactly the same as the last (m+ 1) digits of 2j + n. Since

bl = 0 for m + 1 ≤ l ≤ k adding 2j will not affect the answer. Hence the

answer is periodic in n with period 2j where j is as above.

Furthermore for proving (2) using Lucas theorem it is easy to see that(
r
r

)
6=
(
r+2j−1

r

)
mod 2. Hence 2j−1 can not be a period of the sequence

(
n
r

)
mod 2. Hence 2j is the exact period of the sequence

(
n
r

)
mod 2.

Lemma 12.1.3. Let a1, . . . , an be non-negative integers. Then we have

det



(
a1
n

) (
a1
n−1

)
· · ·

(
a1
1

)
(
a2
n

) (
a2
n−1

)
· · ·

(
a2
1

)
· · · · · · · · · · · ·(
an
n

) (
an
n−1

)
· · ·

(
an
1

)


=

(∏n
j=1 aj)(

∏
1≤i<j≤n(ai − aj))∏n
i=1 i!

.

Proof. The left hand side is a polynomial D = D(a1, . . . , an) ∈ Q[a1, . . . , an]

of degree of n(n+ 1)
2 . Since D(a1, . . . ai−1, 0, ai+1, . . . , an) = 0 each ai|D.

Similarly, if we put ai = aj in D we get 0, so (ai − aj) divides D. Therefore

the product

P =
 n∏
j=1

aj

 ∏
1≤i<j≤n

(ai − aj),

divides the determinant. Its degree is also n(n+ 1)
2 .

Thus D = c · P for some c ∈ Q. It only remains to calculate the ratio c.
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Furthermore we get D(n, n− 1, . . . , 1) = 1. On the other side

P (n, n− 1, . . . , 1) = n!(n− 1)! · · · 1!,

hence

c = 1∏n
i=1 i!

.

Lemma 12.1.4. Let n and k be positive integers and c be any integer then

n∑
i=0

i ·
(
i+ c

k

)
= (n+ 1)

(
n+ c+ 1
k + 1

)
+
(
c+ 1
k + 2

)
−
(
n+ c+ 2
k + 2

)
.

Proof. The reader may verify this by induction, Otherwise we have the fol-

lowing proof:

LHS =
n∑
i=0

(i+ c+ 1)
(
i+ c

k

)
−

n∑
i=0

(c+ 1)
(
i+ c

k

)

=
n∑
i=0

(k + 1)
(
i+ c+ 1
k + 1

)
− (c+ 1)

n∑
i=0

(
i+ c

k

)

= (k + 1)
n+c+1∑
l=c+1

(
l

k + 1

)
− (c+ 1)

n+c∑
l′=c

(
l′

k

)

= (k + 1)
[
n+c+1∑
l=0

(
l

k + 1

)
−

c∑
l=0

(
l

k + 1

)]
− (c+ 1)

[
n+c∑
l=0

(
l

k

)
−

c−1∑
l=0

(
l

k

)]

= (k + 1)
[(
n+ c+ 2
k + 2

)
−
(
c+ 1
k + 2

)]
− (c+ 1)

[(
n+ c+ 1
k + 1

)
−
(

c

k + 1

)]
(

since
n∑
i=0

(
i

k

)
=
(
n+ 1
k + 1

))
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= (k + 1)
(
n+ c+ 2
k + 2

)
− (c+ 1)

(
n+ c+ 1
k + 1

)
− [(k + 1)− (k + 2)]

(
c+ 1
k + 2

)
(

since (c+ 1)
(

c

k + 1

)
= (k + 2)

(
c+ 1
k + 2

))

= [(k + 1)− (k + 2)]
(
n+ c+ 2
k + 2

)
+
(
c+ 1
k + 2

)
+ (n+ 1)

(
n+ c+ 1
k + 1

)
(

since − (c+ 1)
(
n+ c+ 1
k + 1

)
= −(n+ c+ 2)

(
n+ c+ 1
k + 1

)
+ (n+ 1)

(
n+ c+ 1
k + 1

))
(

and since (n+ c+ 2)
(
n+ c+ 1
k + 1

)
= (k + 2)

(
n+ c+ 2
k + 2

))

= RHS.

Lemma 12.1.5. Let t be a natural number then

(
t+ 4

4

)
≡
(
t

4

)
+ 1 mod 2.

Proof. We apply Chu-Vandermonde’s identity (see page 156 Ex. 25 of

[Brualdi(1977)]) which is

(
x+ y

r

)
=

r∑
k=0

(
x

k

)(
y

r − k

)
.

Here x, y, r are positive integers.

On applying this we get

(
t+ 4

4

)
mod 2 =

(
t

0

)(
4
4

)
+
(
t

1

)(
4
3

)
+
(
t

2

)(
4
2

)
+
(
t

3

)(
4
1

)
+
(
t

4

)(
4
0

)
mod 2.
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Since
(

4
3

)
,
(

4
2

)
,
(

4
1

)
are even, the lemma follows.
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