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Abstract

The Direct Current (DC) resistivity method is a classical geophysical method to obtain

subsurface geoelectrical images. This technique is utilized in groundwater, mineral map-

ping, subsurface pollution monitoring, saltwater intrusion and other civil engineering

applications, where a reliable data analysis requires a versatile and robust forward model-

ing algorithm. The present study develops a 2-dimensional (2D) DC resistivity forward

modeling algorithm employing mimetic finite difference methods (MFDM). The MFDM

preserves the valuable properties of the continuum governing partial difference equa-

tion in discrete space, leading to a better representation of actual electrical potential by

simulated potential. This study presents the first application of MFDM for DC resistivity

modeling. The accuracy of the developed scheme is benchmarked utilizing analytical

responses of a dyke model and two-layer anisotropic models. Since there are no analytical

solutions for the variable topography cases, the accuracy of the scheme is demonstrated

by comparing the solution with the published responses. A three-layer model is used to

examine the stability of the devised algorithm by incorporating non-orthogonal grids.

Non-orthogonal grids are produced by randomly varying the nodal coordinate of orthogo-

nal grids. The observed error trends show that the algorithm is highly stable with regard to

grid distortion and can accurately simulate complicated models involving topography and

anisotropic subsurface. Furthermore, the numerical computation time analysis reveals

that the developed algorithm is computationally stable to grid distortion.

To efficiently accommodate the 3D character of the source in a 2D DC resistivity mod-

eling, a new space domain approach is devised in this study. The developed algorithm is

valuable in the case of long current-potential electrode spacing, including the case of high

resistivity contrast and anisotropic subsurface. A half-space model was employed to ex-

amine the limitations of various wavenumber schemes. In the case of wavenumber-based

modeling techniques, these wavenumber schemes are used in inverse cosine transform

needed for space domain computation. It was observed that after a particular offset, all

the wavenumber schemes deviated from the analytical result except the Gauss quadrature

method with 120 wavenumbers, suggesting the long offset data requires simulation of

large wavenumbers. Consequently, the wavenumber scheme becomes computationally



x

expensive in the case of long offset simulation. Motivated by this analysis, a space domain

modeling algorithm that utilizes a new boundary condition applicable to the plane that

passes through the source position is developed. The proposed approach is computa-

tionally competitive with the wavenumber domain approach. It is likely to be even more

efficient in case of large offsets as a small number of grids are sufficient to discretize the

space in the strike direction. Extensive numerical simulations are carried out to demon-

strate that the developed method is reliable and versatile for deep imaging surveys having

variable topography and anisotropic subsurface, including tilted transversely isotropic

cases.

The construction of an algorithm based on a modified boundary condition, which aids

in overcoming the wavenumber problem and gives accurate solutions for huge offsets,

can be used as an essential tool to study responses for geophysical models till large

offsets. Hence, we use the developed algorithm to obtain azimuthal apparent resistivity

curves for various two-layered models, including isotropic, tri-axial anisotropic, and tilted

transversely isotropic (TTI) models. The simulated azimuthal apparent resistivity plots

provide insight into the scenarios when these plots behave like an isotropic case, even in

the case of anisotropic subsurface. Further, the sensitivity curves are generated by taking

the derivatives of apparent resistivity values with respect to the parameters that govern

anisotropy. It is found that for a 2D case, the DC data generally shows sensitivity to all four

parameters governing the anisotropy, which include the three principal resistivity values

and one angle defining the angle of the tilted symmetry of anisotropy. However, when the

azimuthal apparent resistivity plot evolves circularly, the principal resistivity along the

profile direction becomes insensitive to the observed data.



Acknowledgements

I want to express my gratitude to my supervisor, Dr. Rahul Dehiya, an outstanding mentor

who provided me with a dynamic lab environment, invaluable insights, and the oppor-

tunity to grow during my PhD at IISER Pune. I am grateful to have had a mentor who

encouraged me to set high standards for myself and work hard and regularly to achieve

them. He set examples for developing new ideas and to implement them with perfection.

He also taught me to handle failures, step back, reflect, and keep trying until I succeed. He

gave me a lot of motivation and encouraged me to aim for excellence, which helped me

develop both personally and professionally. Being among the first students in the lab and

seeing it grow was a unique experience for me during my doctoral research.

I am also grateful to my research advisory committee members, Prof. Shyam Rai

and Prof. Pravin Gupta, for their insightful comments and viewpoints during my yearly

presentations. They were always readily available, participated in in-depth conversations,

provided valuable information, and made insightful recommendations. I would also like

to thank Prof. Arun Singh for joining one of my RAC seminars and giving me helpful

advice.

Furthermore, the welcoming and supportive lab members provided a stimulating

environment suitable for research advancement. I consider myself fortunate to have these

buddies. Every person in the lab has never failed to go above and beyond to assist me in

solving any problems I have encountered with my work. I want to express my gratitude to

Iktesh, Rashi, Vivek, and Sujith for making the lab a fun place to work.

Together with my PhD batchmates, I had a great time. Attended classes together with

Amrita, Akash, Niyor, Smruti, Prayas, JD, Devesh, Arijeet, and Shubhangi and had endless

conversations about science and life. Special appreciation to Sarang, Kashyap, Devansh,

Niyor, Bhavin, Yogesh, Saurabh bhaiya, Rajat, Nitesh, Ravi, Dhruv, and Suraj for always

supporting me throughout. I share a special bond with my IISER TVM friends Sarang,

Niyor, and Devansh, who have all been a part of my daily life for a very long time. A

special shout out to my school friends Kashyap, Sanjana, Ashish, Sidharth, Narender, and

Rajni for helping me during the difficult times of my PhD. My evening walk buddies in

IISER Pune, Iktesh and Suraj, deserve a special mention. My trekking group with Dipjyoti,



xii

Nitesh, Chitra, Shobhit, Saurabh, and others also played an important role during my PhD

journey.

I am grateful to IISER Pune for giving me a chance to complete my Ph.D. study here

and for the institute fellowship that supported me throughout my time. I also want to

thank IISER Pune’s ECS Department for their resources and assistance. I want to express

my profound appreciation to my ECS office coworkers, Vibhas, Vikrant, and Ruby, for their

support throughout my doctoral journey.

It also makes me happy that I have a battalion of supportive and caring cousins and

relatives who helped me get here by offering guidance and inspiration. I want to express

my heartfelt gratitude to Amit, Akash, Priya didi, and Rajni for never losing faith in me and

always being there.

Above all, none of this would have been possible without my family, including my

grandfather, father, mother, and my wife Neha. My parents have always been a source

of strength and support for me in all of the decisions I have made in life. I cannot even

begin to express how much my parents have given me, but I can tell that they have always

supported me and done everything they could to help me when I was lost. My gratitude

for Neha, my better half, who has supported me through all of my hardships and never

lost trust in me, is beyond words. I can’t help but be grateful for her effort to put a smile on

my face in difficult situations. Neha, thank you so much for everything. She is a wonderful

partner on this exciting journey through life. This dissertation is an expression of the

enduring love, constant inspiration, and support I have received from my family.

Deepak Suryavanshi



Table of contents

List of figures xv

1 Introduction 1

1.1 Fundamental Relations and Mathematical Basis of the DC resistivity Method 1

1.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Survey Setup, Configurations & Data Acquisition . . . . . . . . . . . . 3

1.1.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Forward Modeling of DC resistivity Data . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Source Singularity & Topography . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Electrical Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Mimetic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Wavenumber Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Thesis Objective and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 A mimetic finite-difference method for 2D DC resistivity modeling 17

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 DC Resistivity Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Mimetic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Properties of the operators . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Implementation in discrete space . . . . . . . . . . . . . . . . . . . . . 28

2.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Dyke Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.5 Computational Aspects of Modeling . . . . . . . . . . . . . . . . . . . . 38



xiv Table of contents

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 A versatile 2D DC Resistivity modeling algorithm in the space domain 43

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Algorithm benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 2D block model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.3 Three Layer topography simulations . . . . . . . . . . . . . . . . . . . . 54

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 DC Resistivity data sensitivity to subsurface anisotropic parameters 63

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Subsurface anisotropy and DC resistivity data . . . . . . . . . . . . . . . . . . 64

4.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusion and future possibilities 79

References 83

Appendix A Discretised form of differential operators for mimetic scheme 97

Appendix B Subsurface anisotropy & DC Resistivity data for resistive overburden 101

B.1 Resistive overburden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of figures

2.1 Representation of the cell (i,j), showing the scalar potential at the cell center

and the vector quantity at the cell nodes for a quadrilateral cell . . . . . . . . 27

2.2 Nine-point stencil scheme used in the MFDM . . . . . . . . . . . . . . . . . . 29

2.3 Schematic diagram of a vertical dyke model. The resistivity of the dyke is

ρ2 = 10Ωm and the resistivity of the half space is ρ1 = 100Ωm. The dyke

has a width of 5 m and is placed at a distance of 20 m from the origin . . . . 31

2.4 Dyke model experiment results (a) apparent resistivity obtained from the

MFDM for fine and coarse model, and the analytical solution and (b) plot

shows the relative % error between the simulated responses and the analyti-

cal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 High-contrast dyke experiment results (a) apparent resistivity obtained from

the MFDM and the analytical solution for the high conductivity contrast

dyke model and (b) shows the relative % misfit between the responses from

MFDM and analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Schematic diagram representing the anisotropic model . . . . . . . . . . . . 33

2.7 Anisotropic-model experiment (a) apparent resistivity curves obtained from

MFDM and analytical solution for the pole-pole configuration and (b) the

misfit plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Mountain-valley topography model. The red star indicates the source loca-

tion at -90 m. Potential electrodes are placed on the surface, starting from

-80 m, with a spacing of 10 m between consecutive electrodes . . . . . . . . . 34

2.9 Topography model simulation (a) the apparent resistivity plot obtained for

the mountain-valley model using the MFDM approach and the discretized

solution from the [117]. (b) misfit between the apparent resistivity values . . 35

2.10 Three-layer model overlaid with grid structure used for stability test. This

shows the magnified view for better visualization, (a) low levels of distortion

and (b) highly distorted random grids . . . . . . . . . . . . . . . . . . . . . . . 36



xvi List of figures

2.11 Histogram analysis for the vertex angles for (a) low levels of distorted grids

and (b) highly distorted grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Stability test results (a) apparent resistivity plots for three different cases of

fine grids 1) solid green line corresponds to the orthogonal grids, 2) red dots

corresponds to mild or low levels of distortion, 3) dashed line corresponds to

the high levels of distortion and (b) the relative % error with orthogonal fine

grid response 1) blue dot corresponds to LD (low distortion) fine grids, 2) red

dot corresponds to HD (high distortion) fine grids, 3) green dot corresponds

to Ortho (orthogonal) coarse grids, 4) black dot corresponds to LD (low

distortion) coarse grids, 5) magenta dot corresponds to HD (high distortion)

coarse grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.13 Eigen value plot for low contrast fine dyke for all the wavenumbers . . . . . 39

2.14 Residual plots for two different wavenumbers k1 and k3 with respect to

iteration numbers for the stability analysis model (a) residual plots for four

different cases for wavenumber k1 1) solid black line corresponds to the

orthogonal coarse grids, 2) solid blue line corresponds to high levels of

distorted coarse grids, 3) solid red line corresponds to the orthogonal fine

grids and (4) solid green line corresponds to high distortion tests for fine

grids (b) the same analysis is repeated for wavenumber k3 . . . . . . . . . . . 39

3.1 The electric potential in Volts (log scale) versus the distance plots for a 10

Ωm halfspace obtained using different sets of wavenumbers and weights re-

ported in the literature and computed employing Gauss-quadrature method,

along with the analytical solution. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 General representation of the two-layer model used for numerical experi-

ments. h represents the thickness of the first layer. Subscript 1 and 2 repre-

sent 1st and 2nd layer, respectively whileρx ,ρy andρz denote the resistivities

in the x, y, and z-direction respectively. . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Apparent resistivity curves (log scale) obtained from various wavenumber

techniques, reported in the literature and calculated using the proposed

scheme along with the analytical response [150]; (a) Test 1 (Low Contrast

Isotropic model); (b) Test 2 (High Contrast Isotropic model); (c) Test 3 (High

Contrast Anisotropic model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Apparent resistivity curves (log scale) obtained from various wavenumber

techniques, reported in the literature and calculated using the proposed

scheme along with the analytical response [150] for Test 4 (Low Contrast

Isotropic model). The depth of the first layer is kept at 20 meters. . . . . . . . 54



List of figures xvii

3.5 Plots of absolute errors obtained for a) Test 1 - Low contrast isotropic (thick-

ness of 1st layer = 30 meters); b) Test 4 - Low contrast isotropic (thickness of

1st layer = 20 meters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 2D Block of 10Ωm inserted in homogeneous subsurface of 100Ωm at a

depth of 30 m. The source location, denoted by S, is fixed at -200 m. The

dimensions of the inserted body are given by the parameters a, b, and d.

Three tests are performed by varying the parameters a, b, and d. . . . . . . . 56

3.7 Apparent resistivity curves obtained for the three tests performed on inserted

2D Block of 10Ωm in homogeneous subsurface of 100Ωm at a depth of

30 m. The solid line denotes the solutions obtained from the proposed

algorithm (Mim2.5D), and dashed lines are the solutions obtained from the

wavenumber domain simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Resistivity maps for the topography models for tilted transversely isotropic

(TTI) experiments. a) shows the xx component of the resistivity tensor,

b) shows the zz component of the resistivity tensor, and c) shows the xz

component of the resistivity tensor. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Apparent resistivity curves obtained for the three tests performed on the

variable topography model. The solid black line corresponds to the results

from the developed Mim2.5D algorithm, the dashed black line corresponds

to the wave domain solution for isotropic topography model, the blue line

corresponds to the VTI, and the red line corresponds to the TTI topography

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Two layer isotropic model with resistivity of first layer as 10Ωm and resistivity

of second layer as 100Ωm. The thickness of first layer is 5 m. Rho x, Rho

y and Rho z in the figure denote the values of resistivity in the principal

directions x, y and z respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Azimuthal apparent resistivity curves obtained at varying radial distances

from the source for the isotropic model shown in Fig. 4.1. The ’APRES’ in the

plot is used to denote apparent resistivity curves at the given radial distances. 66

4.3 Tri-axial anisotropic model with first layer isotropic having resistivity value

of 10Ωm and thickness 5 m. The second layer is a half-space with tri-axial

anisotropy bearing resistivity values of 100Ωm, 50Ωm, and 25Ωm in the x,

y and z-directions respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



xviii List of figures

4.4 Azimuthal apparent resistivity curves for the tri-axial anisotropy model that

is shown in Fig. 4.3. The apparent resistivity curves are obtained at varying

radial distances from the source. The APRES used in the legends denote

apparent resistivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 The figure shows the plot of the aspect ratio ( resistivity in the y-direction/resistivity

in the x-direction) vs resistivity in the y-direction (with increasing radial dis-

tance). The numbers in brackets on x-aixs indicate the values taken at

increasing radial distance from the source. . . . . . . . . . . . . . . . . . . . . 68

4.6 The figure shows the plot for azimuthal apparent resistivity curves obtained

for different cases of tri-aixal anisotropic model with varying dip angles (TTI

0o , TTI 22.5o , TTI 45o , TTI 67.5o , and TTI 90o . All the curves are obtained at

a fixed radial distance of 160 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Azimuthal apparent resistivity curves for the case of tri-axial anisotropic

model with dip angle 45o (TTI 45o case), obtained at increasing radial dis-

tances from 5 m to 160 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 The figure shows the plot of aspect ratio vs angles of different TTI models

used (TTI 0o , TTI 22.5o . TTI 45o , TTI 67.5o , TTI 90o). The plots are obtained

at a fixed radial distance of 160 m for different models bearing the principal

resistivity value (σxx = 100Ωm,75Ωm,65Ωm,35Ωm) for the second layer. 71

4.9 The figure shows the models used for sensitivity analysis. On the extreme

left reference model is shown. Further the perturbed models are shown by

varying the resistivity values by 5 % for x, y and z-directions respectively in

the second layer. The above case is shown for TTI 0o (tri-axial anisotropic

model). However we also perform the sensitivity analysis for TTI 22.5o , TTI

45o , TTI 67.5o , and TTI 90o . For all the cases the perturbation factor is kept

constant at 5 %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Sensitivity curves of simulated DC resistivity data along x-direction with

respect to the three principal resistivities (ρxx ,ρy y ,ρzz ) for the reference and

perturbed models shown in Fig. 4.9. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.11 Sensitivity curves of simulated DC resistivity data along x-direction with

respect to the three principal resistivities (ρxx ,ρy y ,ρzz ) for the reference and

perturbed models obtained after the rotation of principal symmetry axis by

22.5o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of figures xix

4.12 Sensitivity curves of simulated DC resistivity data along x-direction with

respect to the three principal resistivities (ρxx ,ρy y ,ρzz ) for the reference and

perturbed models obtained after the rotation of principal symmetry axis by

45o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 Sensitivity curves of simulated DC resistivity data along x-direction with

respect to the three principal resistivities (ρxx ,ρy y ,ρzz ) for the reference and

perturbed models obtained after the rotation of principal symmetry axis by

67.5o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 Sensitivity curves of simulated DC resistivity data along x-direction with

respect to the three principal resistivities (ρxx ,ρy y ,ρzz ) for the reference and

perturbed models obtained after the rotation of principal symmetry axis by

90o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.15 Sensitivity of apparent resistivity data perpendicular to strike direction

(along x-direction) with dip angle for reference model shown in Fig. 4.9. . . 77

B.1 The figure shows a two layer isotropic model with resistive overburden of

100Ωm. The second layer is an isotropic half-space of 10Ωm. The thickness

of the first layer is kept at 30 m. Rho x, Rho y, Rho z denote the resistivity val-

ues along the principal resistivity directions x, y, and z-directions respectively.102

B.2 Azimuthal apparent resistivity curves obtained for the isotropic model shown

in Fig. B.1. The apparent resistivity curves are obtained at increasing radial

distance from the source from 5 m to 110 m. . . . . . . . . . . . . . . . . . . . 103

B.3 The figure shows a tri-axial anisotropic model. The first layer is 30 m thick

isotropic layer with resistivity value of 100Ωm. The second layer is half-

space with resistivity values of 10Ωm, 5Ωm, and 2.5Ωm in the x, y and

z-directions respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.4 The figure shows the azimuthal apparent resistivity curves for tri-axial anisotropic

model shown in Fig. B.3 obtained at varying radial distances from the source.104

B.5 The image shows the various models obtained by the rotation of anisotropy

axis. On the extreme left the anisotropy axis is rotated by 22.5◦ in the x-z

plane and we refer to this model as TTI 22.5◦. Subsequently other models

obtained in order are TTI 45◦, TTI 67.5◦, and TTI 90◦. . . . . . . . . . . . . . . 105

B.6 The figure shows the azimuthal apparent resistivity curves for TTI 0◦, TTI

22.5◦, TTI 45◦, TTI 67.5◦, and TTI 90◦ at 100 m radial distance. . . . . . . . . 106

B.7 The figure shows the model for TTI 45◦ (left). The corresponding azimuthal

apparent resistivity curves obtained are shown on right for increasing radial

distances from 5 m to 110 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106





Chapter 1

Introduction

The Direct Current (DC) resistivity method is a classical geophysical technique used for

subsurface imaging, particularly near-surface investigations. It is employed for decipher-

ing the variations in the electrical resistivity of the subsurface. DC resistivity has a history

of more than a century. Since its inception, it has evolved immensely in instrumentation,

survey design, and data analysis. This chapter presents an overview of the DC resistivity

method with particular emphasis on numerical modeling, which plays a vital role in data

analysis.

1.1 Fundamental Relations and Mathematical Basis of the

DC resistivity Method

The foundational principle governing the DC resistivity method is Ohm’s law, which

describes the relationship between electrical current (I), voltage (V), and resistance (R),

where the resistance is a constant for an object, and it depends on the electrical property

and geometry of the object. Since the shapes of the subsurface anomalies are not known

before geophysical investigations, the resistance is of little use in these studies. Therefore, a

more general form of Ohm’s law, which relates the current density, J, electric field intensity,

E, via the electrical conductivity, σ, is used in DC resistivity data analysis, and this relation

is given as [37],

J =σE. (1.1)

For brevity, the electric field intensity and electrical conductivity are referred to as electric

field and conductivity, hereafter, in this thesis. The current density and electric field are

vector quantities, and the conductivity is a second-order tensor. For operational pur-
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poses, working with potential differences rather than an electric field is more convenient.

Therefore, it is instructive to write the above equation in terms of electric potential. It

is achieved by the relationship that connects electric field to the negative gradient of a

potential, u, and it can be written as,

E =−∇u. (1.2)

Furthermore, using equation of continuity and principle of conservation of charge, we

can write,

∇.J = f , (1.3)

where f depends on the externally applied known electric field, which is measured (con-

sequently known) in terms of applied electric current in the DC resistivity method. The

above three equations can be combined to write a partial differential equation for potential

as,

−∇.σ∇u = f . (1.4)

The equation 1.4 is solved under appropriate boundary conditions. Since the physical laws

state that no current can flow across the earth-air interface (say, Γs), hence the boundary

conditions on Γs are given by,

∂u

∂n
= 0, on Γs , (1.5)

where n is the outward unit normal on the ground surface Γs . The homogeneous Dirichlet

boundary conditions (i.e., the potentials are set to zero) or Neumann boundary condi-

tions can be applied to the other domain boundaries. However, it is observed that these

assumptions result in under or overshooting of potentials, respectively, in the numerically

calculated potentials at a certain distance from the point source [28]. Because of this, [37]

suggested mixed boundary conditions based on the potential’s asymptotic behavior and

gradient at vast distances from the point source. Therefore, the solution of equation 1.4

under appropriate boundary conditions provide the potential distribution, u, in the region

having conductivity given by σ due to an external source expressed by f . An alternative

material property referred to as resistivity is generally used in DC resistivity methods,

which is simply defined as the inverse of conductivity as,

σ= 1

ρ
(1.6)
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The objective of a DC resistivity experiment is to obtain the subsurface resistivity (or

conductivity) image, which is subsequently interpreted in terms of subsurface geology

fluid type/saturation, etc. Next, the section presents a brief summary of its application in

subsurface imaging.

1.1.1 Applications

DC resistivity has a wide range of applications in scientific research and practical domains.

Initial applications were mineral exploration and hydrocarbon investigation, and it led

to the birth of one of the most successful oil and gas service companies, SLB, starting

with the DC resistivity application pioneered by the Schlumberger brothers [33]. With

time, it has extended into environmental studies like aquifer protection studies [20]

and study of waste disposal site and its environments [5, 121], civil engineering studies

[58] like building site investigation [107] and pavement engineering [1], archaeological

investigations like findings of archaeological targets [39], geothermal resource assessment

[133] like exploring geothermal reservoir and physical parameters of the host rock [75],

critical zone study involving the influence of subsurface heterogeneity on critical zone

characterizations [27], and geological hazard monitoring like water inrush in tunnels

and coal mines [84]. The current’s penetration depth in the subsurface increases with

the distance between current injection points [30] and also depends on the conductivity

distribution of the underlying medium. Generally, the depth of investigation is around

one-third to one-fifth of the current injection point separation. The greater the separation

between current source points, the stronger the current must be injected to be recorded

faithfully. Consequently, the applications of DC resistivity methods primarily lie in near-

surface investigations. The subsurface imaging in the DC resistivity method also depends

on the survey design. The following subsection briefly reviews the survey design and data

acquisition.

1.1.2 Survey Setup, Configurations & Data Acquisition

The field measurement of the DC resistivity method involves measuring the potential

differences induced by a controlled electric field [30]. The electric field is generated

by injecting the electric current into the ground by the current electrodes connected

to a battery that supplies the current. The current electrodes are also connected to an

ammeter for measuring the injecting current. The voltmeter is used to estimate the

potential difference between electrodes, referred to as potential electrodes. There are two

types of electrodes, namely polarizing and non-polarizing [78]. Non-polarizing electrodes
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overcome the issue of charge accumulation at the electrode; hence, they are superior.

However, they are costly and delicate to handle. Therefore, most of the time, polarizing

electrodes are used until the survey needs to take care of charge accumulation. Advanced

equipment includes a data logger and multichannel system that significantly speeds up

the data acquisition, which is essential for 2- and 3-dimensional surveys [90, 134].

The current and potential electrodes can be arranged in various configurations. The

electrodes may be placed arbitrarily or in a co-linear fashion. Some of the notable array

configurations are cited here. Wenner Array: This array is widely used for general resistivity

surveys and involves four equally spaced electrodes. The outer electrodes serve as current

sources, while the inner electrodes measure voltage. Schlumberger Array: Suitable for

deep resistivity investigations, this array employs a fixed-spacing configuration with

adjustable electrode spacings, enabling measurements at various depths. Dipole-Dipole

Array: For high-resolution surveys, the dipole-dipole array features a pair of current

electrodes and two pairs of voltage electrodes, facilitating detailed subsurface information.

Pole-Pole Array: One of the potential electrodes and one of the receiver electrodes are

both moved to infinity in a pole-pole survey but in different directions. To put it another

way, a stationary infinity electrode is placed on either side of the survey region in a

pole-pole array. More details on these arrays can be found at [78, 143]. The following

factors influence the survey geometry selection: (1) the desired conductivity structure, the

horizontal and vertical resolution being the most important factor; (2) field limitations for

electrode placement; (3) noise floor in the survey area; (4) depth of investigation; and (5)

time available for acquisition.

Various survey types can be designed, employing the above-mentioned array(s) to

meet the survey objective, such as obtaining 1-, 2- or 3-dimensional resistivity images of

the subsurface. The 1-dimensional (1D) survey is generally referred to as sounding, where

measurement is made of various current/potential electrodes separations around a fixed

center to obtain the resistivity variation with depth [13, 173]. The change in the horizontal

direction is mapped by moving a fixed array along a line, which is known as profiling [3, 8].

A combination of sounding and profiling led to a 2D survey when data is recorded along

a profile, and if measurements are made over a surface area, it leads to a 3D survey [76].

2D data acquisition delivered the subsurface resistivity details below the profile, while 3D

provided the resistivity information in volume below the survey plane. The 3D survey is

generally expensive due to the requirement of equipment and survey time. Generally, for

research purposes, 2D surveys are conducted [2, 9, 147].

DC Resistivity data are presented either as resistance, defined as a ratio of voltage

differences by current, or as apparent resistivity values, ρa , defined as,
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ρa = K .
∆V

I
, (1.7)

where K is a geometric factor that depends on the electrode configuration. The apparent

resistivity has the same unit as resistivity, and it is identical to the true resistivity of the

subsurface in the case of half-space. The apparent resistivity is often represented by

pseudosections for 2D and 3D cases [4, 8, 38]. These measurements are transformed into

subsurface resistivity models using inverse modeling during interpretation.

1.1.3 Interpretation

Once the resistivity surveys are done, the final step is to estimate the true distribution of

intrinsic resistivities [126]. The first step is to analyze the pattern of apparent resistivities

that were measured. It is instructive to plot apparent resistivities as pseudosections. The

pseudosections are helpful in identifying abnormalities in the data, identifying defective

electrodes, and verifying any normalizations that may have been done. However, it has to

be kept in mind that pseudosection is not a true geological cross-section and should not

be interpreted as a subsurface image [48, 69].

Inversion algorithms [23] are employed to estimate subsurface resistivity models using

observed data [50, 96]. It generally delivers a smooth model due to the regularization

needed to stabilize the inversion that attains a pre-assigned misfit tolerance to observed

data [49, 145]. The inverted models are interpreted by building a subsurface geologi-

cal model [131, 149] by utilizing the subsurface resistivity distributions and any other

information available about the study area. The geological models are further used to

prove or falsify the hypothesis that exists of the problem being investigated [104, 162].

Therefore, the final outcome depends heavily on the accuracy of inversion. The DC re-

sistivity inversion [102, 132] is a non-linear optimization problem [50, 123]. This entails

creating a model from raw data and fine-tuning the inversion until measured data and

calculated data agree well. There are various inversion schemes that have been utilized for

DC resistivity studies [18, 120]. Irrespective of the scheme, an inversion involves several

forward modeling computations that involve simulation data for a given model [98, 166].

Furthermore, the efficiency, accuracy, and robustness of the forward modeling algorithm

are the primary factors in a successful inversion algorithm. Consequently, it plays a vital

role in DC resistivity data analysis. The focus of this thesis lies in the development of a

forward modeling algorithm for the DC resistivity problem. Therefore, a detailed review of

DC modeling is presented in the next section.
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1.2 Forward Modeling of DC resistivity Data

The equation 1.4 is the mathematical formulation for the DC resistivity problem, which

has to be solved for the unknown potential u. The analytical solution of this equation

is only possible for some very simple models [11]. For the 1D models, semi-analytical

solutions are preferred [119, 125]. For a general subsurface conductivity distribution and

arbitrarily shaped boundary, numerical methods are adopted to obtain an approximate

solution. Numerical methods try to find an approximate solution of the governing partial

differential equation under the suitable condition applied to the computation domain.

Some of the commonly used numerical methods for DC resistivity modeling are,

• Finite Difference Method (FDM) [135, 168]

• Integral Method [59, 148]

• Finite Element Method (FEM) [136, 160]

• Meshless Method [81, 93]

Some of the chief challenges encountered in DC resistivity modeling are field singu-

larities at the source location, enormous conductivity contrasts, complex geometries of

heterogeneity, rugged topography, and anisotropy. Some of these complications also

affect the choice of numerical methods. Therefore, we first present a discussion on source

singularity, variable topography and electrical anisotropy.

1.2.1 Source Singularity & Topography

The steep gradient of the potential field occurs where the source is placed in the modeling

domain. Furthermore, at the position of the source, the potential is undefined or a

singularity. The occurrence of singularity at the source position poses challenges for

any approximation of source term using discrete points. Therefore, various approaches

have attempted to overcome the problem of representing the Dirac delta function by

discrete points. The modeling scheme where the Dirac delta function is approximated

by discrete points delivers approximate total potential due to the source for the given

model. Therefore, such schemes are also known as the total potential approach or the total

field approach. Such schemes have been used in many studies on DC resistivity forward

modeling [41] and consequently in inverse modeling [47, 47, 170]. These approaches

may result in relatively large errors around the source position because the source is
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not adequately represented on a discrete grid [168]. The accuracy depends on the local

refinement around the source, and accuracy generally demands very fine grids near the

source position. The problem arises when the source location is shifted to multiple

points within the model domain, for example, in the case of 2D/3D inverse modeling

of DC resistivity data. This creates very fine grids at multiple locations in the modeling

domain, thereby increasing unnecessary computational costs. Consequently, in the case of

inversion, using a total filed approach necessitates a source-specific discretization to make

the inversion computationally tractable. In turn, source-specific discretization requires

separate discretization for forward and inverse modeling and interpolation between the

forward grid and the inversion grid of the potential values and conductivities.

An alternative approach to the singularity removal method is called the primary-

secondary decomposition approach, also known as the secondary field approach. In this

technique, the potential term is split into primary and secondary potentials, given by

u = up +us , where up is the primary potential and us is the secondary potential. up is

potential due to the source for a background conductivity σp for which analytical/semi-

analytical solution is possible. The two most common choices for background conduc-

tivity are half-space or a stack of horizontal layers. The secondary potential is computed

by solving the governing equation for subsurface conductivity due to a scattered source

that depends on the primary potential and anomalous conductivity, which is defined as

σ−σp . The background conductivity is chosen such that the anomalous conductivity

vanishes at and around the source location. Such a choice of background conductivity

causes a smooth scattered source term, which can be approximated on relative coarse

discretization compared to one needed total source formulation. This process, known as

the secondary potential approach or singularity removal technique, was given by [91, 168].

This singularity removal technique greatly increases the accuracy of the numerical results

[86, 112, 117, 156]. However, in the case of variable topography, there is no analytical

formula to obtain the primary field.

1.2.2 Electrical Anisotropy

Anisotropy refers to the direction dependency of physical property. Earth material shows

the anisotropic nature of most of its physical properties, including electrical conductivity.

It is frequently seen in rock with prominent lineation, such as slate, shale, and clay, as

well as in platy fabrics. Rock texture and crystal symmetry have an impact on its intrinsic

anisotropy, also known as micro-anisotropy. When a stack of layers of different isotropic

materials senses like a single unit to any geophysical method due to their resolution power,

it manifests a macroscopic anisotropy. Rock cleavage, jointing, and fracture can all cause
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structural anisotropy, which results in anisotropic resistivities in the subsurface (rock and

joint fill).

The true ground resistivities and the geologic structure inferred from the DC resistivity

data may be inaccurate if anisotropy in the ground is present but is disregarded during

data analysis. According to [154], anisotropy’s influence shouldn’t be disregarded even if it

is around 1.1. The assumption of electrical isotropy of the medium has been made in many

of the studies about subsurface heterogeneity mapping. It is erroneous to make such an

assumption when working with stratified, fractured, and jointed rocks. A homogeneous

anisotropic half-space with different electrode arrays and their depth of investigation

was examined by [12]. A few papers that address the impact of anisotropy on surface

resistivity measurements include [53, 54, 97]. The problem of investigating anisotropic

resistivity in boreholes has been examined by [6, 99]. To address anisotropic circumstances

quantitatively, researchers have also created imaging and inversion programs [56, 77, 108].

However, the anisotropic inversion is a challenging task, particularly in the case of the tilted

symmetry axis case. The absence of anisotropic resistivity imaging has been attributed to

several significant factors, including (i) the need to estimate extra parameters during the

inversion of an often under-determined problem, (ii) the difficulty of defining the form of

anisotropy in the initial model, and (iii) the inability to detect anisotropy from surface field

measurements [47]. Nonetheless, the most crucial element of an inversion algorithm is

accurate and efficient forward modeling. In the case of an anisotropic inversion algorithm,

forward modeling should be able to simulate the response of the anisotropic subsurface.

1.2.3 Numerical Methods

Even though many numerical techniques have been implemented for DC resistivity mod-

eling, the FEM [15, 28, 114] and the FDM [37, 91, 135] are two methods that are utilized

extensively. The FDM is straightforward to implement and, therefore, employed most

frequently, particularly in initial studies. However, FDM works with structured (more

specifically orthogonal) grids, severely restricting their ability to handle variable topogra-

phy. Another problem with FDM is that grid refinement can not be limited to a particular

region as the orthogonal grid extends up to the boundaries, which leads to unnecessary

refinement to a bigger subdomain. On the other hand, FEM can be adapted to varying

topography as it allows one to choose various shapes of elements that can have varying

sizes in the modeling domain. This flexibility in discretization allows for problem-specific

refinement of the modeling domain. However, it is not trivial to obtain the optimum

discretization, and it may depend on issues such as current and potential electrodes’

position apart from the topography and the conductivity distribution in the subsurface.
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Therefore, code development and discretization are challenging issues in FEM algorithm

development.

The apparent resistivities derived from DC resistivity studies are significantly influ-

enced by topography. A ridge can result in a high resistivity zone directly beneath the

ridge, and a valley can cause low resistivity anomalies beneath it [42, 144]. These artifacts

have the potential to produce a false interpretation. Therefore, topography needs to be

considered during modeling to prevent artifacts [40]. Since the EFM allows greater flexi-

bility in discretization, the handling of topography is easy to accommodate in the FEM

algorithms. Therefore, FEM has been used by many studies in DC resistivity modeling

when topography is included [40, 42, 86, 89, 144]. On the other hand, in case of FDM,

the topography needs to be represented by a staircase approximation, which may be a

good approximation for gentle topography. Generally, the number of unknowns is much

higher in EEM than in FDM for numerical accuracy acceptable in geophysical modeling,

particularly for flat or mild topography. Thus, the FDM general scores higher in efficiency;

hence, the FDM technique is preferred if the topography is simple [40, 86]. Therefore,

attempts have been made to modify the FDM such that it can handle rugged topography.

[40] employed a triangular discretization with FDM at the air/earth interface instead of

the more popular rectangular discretization. Their method yields slightly less accuracy

than the FEM distorted-mesh, but triangular FDM is still as accurate as triangular FEM.

But compared to both FEM, their triangular FDM algorithm operates much more quickly.

When topography is present, [138] used a coordinate transformation on the FDM mesh to

improve the accuracy of their solutions. Coordinate transformation is a concept that was

previously applied to electromagnetic modeling by [7] to include seafloor topography.

An additional method of incorporating topography is presented by [146]. This study

presents a hybrid finite difference–finite element approach, sometimes known as a hybrid

finite difference - finite element (FD–FE) or, short, HB. Where topography exists, the rect-

angular FD nodes at the air/earth interface are replaced with triangular FE components.

The FDM and FEM systems of equations are combined to form the system of equations

for this hybrid approach. A hybrid system of equations is thus closer to the FD system of

equations since FD is employed inside the model while FE is mostly used at the earth’s sur-

face. As a result, while HB’s computing time is closer to FDM’s, its numerical precision is

identical to FEM’s. Hybrid forms of FDM and FEM methods have also found applications

in practical scenarios such as elastic wave modeling [44, 73] and applications in hydrology

[130]. FDM and FEM are both methods of approximation. It has been demonstrated that

when applied to the same grid, both FE and FD produce comparable discrete approxima-

tions [172]. This information is vital for the hybrid approach. A hybrid approach would
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not work if there were any significant discrepancies between the two approximations. In

this situation, it is necessary to provide a transition zone between FDM and FEM, and vice

versa [44].

As the FEM method allows refinement in a user-defined region during the discretiza-

tion, hence it can be employed more efficiently for total field formulation for source

singularity than FDM because the refinement in a localized region extends to a large

domain in FDM. However, the primary and secondary approaches allow coarser dis-

cretization near the source location; hence, this is a manageable problem for FDM if the

primary field is efficiently computable, therefore, variable topography case is a challenging

problem to be solved using primary and secondary approach. For uneven topography,

a scheme suggested by [51], where the elements whose resistivities need to be found

are defined by a relatively coarser parameter grid. A secondary potential approach is

used for the forward calculations in each inversion step on the secondary field grid. At

the start of the inversion process, a one-time simulation on the highly refined primary

field grid provides the primary fields. An alternate technique to deal with cases involving

topography was given by [112]. In this method, a modified boundary condition is used,

and the primary field is taken as per the half-space.

The handling of electric anisotropy, which has been observed in both field and labora-

tory measurements, is another crucial problem in modeling DC resistivity data. According

to [103], naturally occurring rock can have an anisotropy factor of up to 4.5. Significant er-

rors will occur if these anisotropic structures are regarded as isotropic [6, 165]. Numerical

codes must be able to manage anisotropy to interpret anisotropic structures. Analytical

solutions exist for simple anisotropic models like the anisotropic layered media [150, 164]

and the tilted transversely isotropic (TTI) uniform half-space [54]. For benchmarking,

[82, 83] provided analytical solutions for several basic anisotropic models. Solutions for

simple anisotropic models can be derived by analytical approach [46], however, for arbi-

trary distribution of resistivity numerical methods are used [56, 87, 108, 165, 170]. Electric

anisotropic media were also considered by [57, 151] using FDM techniques and by [14, 87]

employing FEM approach. [87] used a FEM approach for modeling anisotropic resistiv-

ity with structured hexahedral grids. [85] took anisotropy into account using adaptive

finite elements. Other numerical simulation schemes for anisotropic models have been

attempted using volume integral methods [82, 83], the spectral element methods [170].

To calculate the response of anisotropic structures, [170] used the "Gaussian quadrature

grid," a modified version of the spectral element method.

FDM and FEM have been compared by Li and Spitzer [86] for three-dimensional DC

resistivity forward modeling. Also, there has been a comparison study by Osiadacz and
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Yedroudj [106] in the case of a simulation for a gas pipeline. These studies highlight

that although FEM is quite accurate in terms of numerical approximation, it turns out

to be computationally expensive. Also, if there is further refining required of the grid,

the number of variables increases manifold in the case of a FEM approach. In such a

scenario, the computation time and storage space demand for FEM will increase. These

studies also comment upon the robustness of these approaches and clearly state that FDM

is quite robust compared to FEM, especially concerning coarsening of the grid. Hence,

slight changes in parameters would render the FEM scheme more erroneous than FDM.

On comparing the memory requirements, it was observed that space taken by the FEM

scheme is 3.4 times the requirement of the FD scheme [86]. Hence, we examine another

novel numerical scheme known as the mimetic finite difference method (MFDM) that has

the properties of both FDM and FEM.

1.2.4 Mimetic Methods

Numerical modeling problems involving complex physical processes, discontinuities,

and strong nonlinearities must be solved using a numerical method that is robust and

accurate to address these challenges because numerical approximation is a decisive factor

for the simulations’ efficiency, precision, and reliability. The predictions and insights

obtained by the numerical simulation should be a good representation of the physical

processes being examined. When the discrete representative mimics or preserves the

underlying mathematical features of the physical system, the best outcomes are expected

to be achieved. On general meshes, the MFDM aims to produce discrete approximations of

the continuum operators that maintain important characteristics of continuum equations

[26].

The mimetic discretizations started around the middle of the 1970s. The need to

solve complex PDEs with discontinuous coefficients on non-orthogonal meshes was a

major driving factor. The mimetic technique has been used to address various real-world

problems, such as the diffusion equation [61, 62, 100], the gas dynamics equations [24],

the equations of continuum mechanics [95], Maxwell’s first-order curl equations [67],

and the equations of magnetic diffusion [67]. Complexly shaped domains, several linked

physical processes (such as heat conduction, gas dynamics, and electromagnetism), and

the Lagrangian approach in which the mesh moves with fluid are also studied using

mimetic methods.

MFDMs are also known as support-operator methods, basic or reference operators in

literature [129]. The method of support operators is described in detail in [122, 127, 128].

As per the construction of mimetic operators, every discrete operator has an invariant def-
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inition, meaning coordinate invariant values like volumes, areas, and angles are included

in the definitions. It means that the discrete operators can be applied in any coordinate

system by modifying the formulas for these geometric values. After establishing the fun-

damentals of support-operator methods, it is possible to demonstrate that the discretized

problem shares many significant properties with the original continuum problem by using

discrete analogs of continuum operator identities. For the above reasons, the difference

schemes developed are considered to be a family of mimetic methods [63, 128].

Selecting a discrete representation of the scalar, vector, and tensor fields on a compu-

tational mesh using appropriate degrees of freedom is the first step in building a mimetic

discretization [17]. The discrete operators work on the grid functions and match the first-

order continuum operators like the gradient, curl, and divergence. Firstly, the relationships

between a mathematical model’s most critical analytic features and the first-order differen-

tial operators are determined to serve as its formulation [29]. An integral identity typically

expresses a duality relationship between the first-order operators. Depending on the

problem at hand, a discrete form is selected for a few first-order operators, referred to as

the primary operators. The other operators are constructed using the primary operators,

referred to as the secondary or derived operators [60].

The grids used with mimetic methods are produced via smooth mappings; as a result,

every cell is convex and resembles a slightly distorted rectangle [21]. The best rough grids

are produced by moving the node randomly by a tiny amount while maintaining the

convexity of all the cells, starting with a basic uniform grid. No matter how rough the grids

are, the approach works incredibly well for grids with convex cells [79]. The only issue

is that the iterative matrix solution might not converge for grids with nonconvex cells.

However, there are revised algorithms to address this issue that are more reliable for such

cases. Discussion of such algorithms is not within the scope of this thesis.

The conductivity discontinuities in the studies that are taken into consideration are

just straight line jumps across the interface [88]. The theory of interfaces suggests that the

normal flux is continuous at such interfaces. In summary, MFDMs are a special class of

methods that guarantee the scheme to be conservative and second-order accurate; the

system matrix formulated is symmetric and positive-definite for Dirichlet, Neumann, and

Robin boundary conditions. MFDMs rigorously handle the discontinuities in the physical

properties across interfaces. Moreover, the integral identity imposed over the discrete

operators guarantees that the primary and secondary operators are dual to each other

[67].
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1.2.5 Wavenumber Domain

Two-dimensional DC resistivity modeling involves the potential simulation due to the

point source for the subsurface model, where conductivity varies in two dimensions

only, say σ=σ(x, z). However, the 3D nature of the source causes the potential to be the

function of three-dimensional space coordinates. Hence, the problem remains 3D in the

space domain [19, 32]. However, the problem can be transformed in the wavenumber

domain using the Fourier transform in the direction in which the conductivity is invariant

[113, 146]. It leads to a PDE with two space variables, though it depends on the wavenum-

ber. Therefore, the space domain response can be efficiently obtained by first performing

a simulation in the wavenumber domain followed by taking the inverse Fourier transform

of the wavenumber domain responses [31, 109]. A useful characteristic of potential for

the 2D conductivity model is that the potential is symmetric about the plane perpendic-

ular to the strike direction that passes through the source position. Further, the electric

potential is real quantity. The above-mentioned properties of potential lead to further

simplification of the Fourier transform to the cousin transform. The forward and inverse

cosine transform defined is simply given as [36],

F (x,k, z) =
∫ +∞

0
f (x, y, z) cos(k y) d y (1.8)

and

f (x, y, z) = 2

π

∫ +∞

0
F (x,k, z) cos(k y) dk, (1.9)

respectively, where k is the wavenumber. Since the potential in the DC resistivity method

varies smoothly in space, it approaches zero as one increases the wavenumber. Therefore,

the upper limit of the Fourier transform turns out to be a finite value, making numerical

calculation of inverse Fourier transform practical. However, choosing optimum wavenum-

bers is a non-trivial task to perform 2D DC resistivity modeling. Various researchers have

tried to come up with efficient schemes to choose the best schemes for selecting the opti-

mum k values. To select the best values of k, [157] used an optimization approach, where

he used a two-step gradient-based optimization technique to handle discrete wavenum-

bers and associated weights at distinct places. In the first step, the linear least-squares

approach is used to determine the associated weights, followed by the second step, which

uses the non-linear least-squares method to get the optimal k for the acquired weights.

The ideal k and weights that cause the objective function to attain a minimum can be

found after a sufficient number of repetitions.

In order to solve the non-linear optimization problem for estimating the appropriate

Fourier coefficients, [109] introduced the differential evolution algorithm by [110, 137].



14 Introduction

This has been consistently ranked as one of the best search algorithms for solving global

optimization problems in several case studies. This ensures that not only computational

speed increases but that the search is not trapped in a local minimum. [166] modified fur-

ther the optimization approach proposed by [157] for the selection of wavenumbers. [115]

go over a method for selecting the ideal set of logarithmic scale equispaced wavenumbers.

[113] outlines an improved technique for selecting the wavenumbers that builds on [157]

strategy. The optimisation strategy uses a gradient-based search to find the most advanta-

geous coefficients. But this is specific to a given geometry and impacts the computational

cost. In order to provide a precise 2D approximation, [109] proposed a novel solution to

the non-linear optimisation problem of estimating the appropriate Fourier coefficients.

Despite all these efforts there is no single method that guarantees the selection of the best

wavenumbers for the underlying problem.

1.3 Thesis Objective and Layout

The present thesis aims to develop a novel 2D DC resistivity modeling algorithm that

can handle complex topography and anisotropic conductivity with an arbitrarily tilted

symmetry axis. Based on the literature survey, the MFDM is found to be suitable to be

employed as the numerical analysis. We have extensively studied the issue of modeling

large domain sizes, which is essential in the case of mineral exploration as it needs to

be probed deeper. In the energy transition junctures, many scientific and economic

societies and institutions have raised concerns about exploring and exploiting more

mineral resources to make this transition sustainable and achievable. Therefore, a relook

at the classical geophysical methods and their advancement that can aid in mineral

investigation is the need of the hour.

The thesis structure is arranged as follows: Chapter 1 introduces the DC resistivity

method with a brief history and theory of the DC resistivity method, including funda-

mental mathematical relations of the DC resistivity equation. The main emphasis of the

discussion is on the numerical modeling of DC resistivity data, including the challenges

that arise in numerical modeling.

Chapter 2 presents the development of a 2D DC resistivity modeling algorithm based

on MFDM. This chapter discusses the basic principles of mimetic methods and the

derivation of the numerical scheme using underlying principles. Several benchmarking

experiments are included in this study to demonstrate the accuracy of the developed

algorithm, including a comparison with published results for a variable topography case
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for which an analytical response is unavailable. Lastly, the stability of the developed

numerical scheme involving grid distortion is examined.

Chapter 3 presents the development of a novel space-domain algorithm for 2D DC re-

sistivity modeling. It includes motivation for this work by comparing responses simulated

using various wavenumber choices to the analytical response of a uniform half-space for

long offsets data. Subsequently, the concepts of space domain modeling are discussed,

including a new boundary condition at a vertical plane perpendicular to the strike direc-

tion that passes through the source position. Finally, several numerical experiments are

presented to show the versatility of the developed algorithm for large spacing of current

and potential electrodes.

Chapter 4 is based on the insights derived from the developed algorithm concerning

the sensitivity of anisotropy to DC resistivity data to anisotropic subsurface. By comparing

isotropic, tri-axial, and TTI models, we perform simulations to investigate how different

anisotropy elements are scenes by the surface DC resistivity data. Chapter 5 presents the

thesis summary, and possible future extensions of the research carried out during this

thesis.





Chapter 2

A mimetic finite-difference method for 2D

DC resistivity modeling

2.1 Abstract

Nondestructive imaging and monitoring of the earth’s subsurface using the geoelectric

method require reliable and versatile numerical techniques for solving the governing dif-

ferential equation. This work presents the first development of an algorithm for modeling

two-dimensional direct current resistivity data based on the mimetic finite difference

method. The mimetic finite difference method operator encompasses fundamental prop-

erties of the original continuum model and differential operator for a robust numerical

algorithm. The proposed numerical scheme can simulate the response for an anisotropic

model with irregular geometry having discontinuous physical properties. The developed

algorithm’s accuracy is benchmarked using the analytical responses of dyke models and

a two-layer anisotropic model. The simulation result is compared with a published re-

sponse for the variable topography case. The stability of the developed algorithm involving

non-orthogonal grids is analyzed using a three-layer model. Non-orthogonal grids are

generated by randomly perturbing the nodal coordinate of orthogonal grids. For these

examinations, the maximum error in surface potential remains below 1.1% compared to

the orthogonal grid simulation. Hence, the algorithm can simulate an accurate response

of complex models such as rugged topography and anisotropic subsurface, and it is very

stable concerning grid distortion.

Keywords:Two-dimensional DC modeling, Mimetic finite difference method, Dis-

torted grids, Topography, Robin boundary conditions
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2.2 Introduction

The direct current (DC) resistivity method is a classical geophysical technique used to

estimate subsurface conductivity. The measurements can be done on the surface or inside

the borehole. Since DC measurements have a minimal impact on the environment and are

cost-effective, these techniques have been applied to various applications such as mineral

exploration [105, 163], underground archaeological studies, groundwater mapping [10, 80]

and engineering studies [55]. Generally, the acquired DC data is analyzed using inverse

modeling. Apart from ill-posedness, inverse modeling depends heavily on the accuracy

and versatility of the forward modeling algorithm. The inverse operator maps the misfit

between the observed and simulated data to model space. Consequently, the forward

modeling inaccuracy will also be mapped onto the model space by the inversion operator,

where the numerical error may get enhanced considerably due to the singular nature of the

inverse operator. Therefore, considerable efforts have been directed toward developing

forward modeling algorithms that accurately model the response of the subsurface.

The analytical solution of governing equation of the DC problem is only possible for

some elementary models. For arbitrary conductivity distribution, numerical methods

are utilized. The most commonly applied numerical schemes are the finite difference

methods (FDMs), [37, 135], finite element methods (FEMs) [120], surface integral methods

[16, 158], and volume integral methods [169]. The FDM works well for a relatively flat

topography, while the FEM has no such limitations. However, the FDM is effortlessly

extendable to inverse modeling schemes. Generally, the inversion algorithms based on

the FEM require distinct meshes for modeling and inversion to optimize the degree of

freedom in inversion (e.g., [51]). Consequently, the modeling mesh’s nodal field needs to

be interpolated at the inversion mesh for gradient/Hessian computation. The Mimetic

Finite Difference Method (MFDM) is a suitable alternative to both of these modeling

algorithms as it can simulate response for variable topography models and yet does not

require different discretization for inverse modeling.

The MFDM schemes are designed by enforcing properties on discrete operators so that

the numerical operator possesses properties of the continuum operator. [64] showed that

the difference operators obtained using MFDM stand robust for non-orthogonal, unstruc-

tured, and nonsmooth meshes. Besides this, MFDM operators satisfy the conservation

laws, symmetry properties, and fundamental theorems of the differential and integral

operators [128]. Another advantage of MFDM is its suitability to use in trans-dimensional

Bayesian inversion workflow. Because in the trans-dimensional Bayesian scheme, the cell

nodes’ positions are randomly perturbed in space, which is problematic with the FDM

[43]. In contrast, the FEM is flexible regarding node position; however, it is more sensitive
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to grid refinement than the finite-difference (FD) technique [86]. The trans-dimensional

Bayesian scheme requires hundreds of thousands of times to calculate responses of ran-

domly perturbed models (both conductivity and shape of the cells). Consequently, the

FEMs’ sensitivity of grid refinement may require regenerating the mesh, which is not a

trivial step. Therefore, the ability of the MFDM to accommodate the non-orthogonal

grids and to be relatively less sensitive to grid refinement makes the MFDM a potential

candidate for use in trans-dimensional Bayesian inversion.

MFDM schemes have been applied to various geophysical problems, including seis-

mic [34, 124], electromagnetic [155], gravity [71], and shear rupture modeling [118]. For

electromagnetic data modeling, [70], observed that the MFDM is more suitable than the

traditional finite element (FE) or finite volume methods. Therefore, MFDM has a huge

scope of implementation to DC resisitivity modeling, as the DC resistivity technique is

used extensively in investigating near-surface complexities. For example, the critical zone

study has emerged as a new area where more near-surface geophysical methods are being

applied for applications such as imaging the tree root system [111], soil moisture studies,

and so on [72]. Many investigation sites of critical zone study have variable topography.

The irregular topography and the near-surface processes may lead to anisotropic subsur-

face, and anisotropy can be used as a proxy for understanding such processes. Since a

lot of data, especially in the research domain, is acquired along straight lines, 2D data

analysis is done routinely. Even if 3D data is observed, it is reasonable to perform a 2D

inversion. The 2D inverted models can also be used for creating an initial model for 3D

inversion.Hence, developing a robust and versatile 2D DC modeling algorithm is still an

active research area.

In this study, we develop a 2D DC resistivity modeling algorithm employing an MFDM

scheme that can handle irregular topography and anisotropic subsurface. The paper’s

outline is as follows: In Section 2, the basic theory of DC resistivity modeling and a detailed

discussion of the MFDM scheme suitable for the DC resistivity problem is discussed. Sub-

sequently in section 3, the accuracy of the developed algorithm is verified by comparing

the numerical solutions against the analytical results. Finally, the stability of the developed

algorithm involving non-orthogonal grids is analyzed using a three-layer model. The cells

where the angle between cell arms is either less than 25 degrees or more than 155 degrees,

are denoted as highly distorted. The numerical tests are conducted by varying extents of

grid distortion. The highly distorted cells could be as high as 10% of the total cells. For

these tests, the error bar remains below 1.1%, thereby confirming the algorithm’s stability

on distorted, non-orthogonal grids. Section 4 highlights the conclusions derived from this
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study. This study presents the first implementation of MFDM to perform the DC resistivity

modeling.

2.3 DC Resistivity Modeling

The DC resistivity modeling problem in 3D is expressed as,

∇3D · [T3D (x, y, z)∇3D u(x, y, z)] =−Iδ(x −x◦)δ(y − y◦)δ(z − z◦), (2.1)

on V , where V is the computational domain. ∇3D · and∇3D are the divergence and gradient

operators, respectively in the 3D space. T3D (x, y, z) is the conductivity tensor. The right

hand side term denotes the source term, where I is the current intensity, δ() is the Dirac

delta function, and (x◦, y◦, z◦) represents the coordinates of the source. The aim is to solve

Eq. (2.1) for the unknown potential u(x, y, z) under the appropriate boundary conditions

for a given conductivity distribution. The general form of boundary conditions is referred

to as Robin boundary condition [52] and it can be expressed as,

λ(n⃗ .T3D ∇3D u) + ηu = µ on the boundary ∂V , (2.2)

where λ,η and µ are the coefficients which determine different types of boundary condi-

tions, and n⃗ represents the normal component. For the DC problem, the homogeneous

Neumann boundary condition is applicable on the surface of the domain, i.e. ∂Vs , which

can be achieved by setting the value of the coefficients in Eq. (2.2) as,

λ= 1,η= 0 andµ= 0, (2.3)

to ensure that the normal component of the potential is zero. Consequently, the electric

field component perpendicular to the terrain is zero at the surface; hence, the current

at the surface flows along the topography. On the side boundaries, i.e. ∂V∞, the Robin

(mixed) boundary conditions given by [36], are applied, which is equivalent to the case,

λ= 1,η= cosθ

r
andµ= 0, (2.4)

where r is the distance from the source location to the measuring location, and θ is the

angle subtended between the radial vector from the source position to the measuring

position and the normal at the measuring position.
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For anisotropic medium, the conductivity tensor, T3D (x, y, z) is expressed as

T3D =

σxx σx y σxz

σy x σy y σy z

σzx σz y σzz

 .

Let us assume a model where the axis of anisotropy and the coordinate axis in the y-

direction coincide. Consequently, the current density in the y-direction gets decoupled

from the electric field in the x- and z-direction. For example, DC data acquired along a

profile perpendicular to the hinge (here, the hinge is in the y-direction) of an anticline

would exhibit such anisotropy. Under this condition, T3D transforms to,

T̂3D =

σxx 0 σxz

0 σy y 0

σzx 0 σzz

 .

For a two-dimensional model, the conductivity in the strike direction does not change.

Therefore, σy y will be invariant in the y-direction considering the strike along the y-

direction. Under these conditions, the solution for Eq. (2.1) can be simplified considerably

by taking the Fourier transform with respect to the y-variable. It is also convenient to

work with primary/secondary decomposition formulation [91] to address the problem

of source singularity. Consequently, the governing equation for the 2D problem using

primary/secondary decomposition can be expressed in the wavenumber domain as,

∇· [T2D (x, z)∇ ∼
ua(x,k, z)]− k2σy y (x, z)

∼
ua(x,k, z) =

−∇· [T2Da(x, z)∇ ∼
un(x,k, z)]+ k2σy y a(x, z)

∼
un(x,k, z), (2.5)

where σy y and σy y a are the conductivity values in the y-direction for the model and the

anomalous body, respectively. k represents the wavenumber, ∇· and ∇ denotes the 2D

divergence and gradient operator respectively.
∼

un(x,k, z) and
∼

ua(x,k, z) are the potentials

in the Fourier domain for the primary field and the anomalous field, respectively. T2D (x, z)

and T2Da(x, z) are the conductivity tensors of the medium and the anomalous block,

respectively. The conductivity of the anomalous body is simply given by the difference

between the conductivity of the model and the primary/background medium. Here, T3D

transforms to T2D (x, z), which is given by,

T2D =
[
σxx σxz

σzx σzz

]
.
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The construction of right hand side in the Eq. 2.5 requires a known primary potential,
∼

un(x,k, z). Therefore, a simple background medium is used for the primary potential com-

putation for which analytical expressions are available. The equation is then numerically

solved for the unknown potential
∼

ua(x,k, z). The total potential is finally computed by

adding the primary and the anomalous potential [30].

In the wavenumber domain, the Robin boundary conditions given in Eq. (2.2) can be

expressed as, ∼
λ(n⃗ .T2D ∇ ∼

ua) + ∼
η

∼
ua = ∼

µ on the boundary ∂V. (2.6)

Eq. (2.5) is solved with the boundary condition given in Eq. (2.6), where for the top surface,

∂Vs , ∼
λ= 1,

∼
η= 0, and

∼
µ= 0. (2.7)

and for distant boundaries, i.e ∂V∞,

∼
λ= 1,

∼
η= k K1(k r )

K0(k r )
cos θ, and

∼
µ= 0, (2.8)

where K1 and K0 are the modified Bessel functions of second kind, order one and zero,

respectively.

Now, the application to the topography cases is emphasized further. The term
∼

un(x,k, z)

in the Eq. (2.5) is the background potential field of the model. This is easily available for

half-space models as the analytical solution exists. But in the case of topography, there

is no general analytical expression to compute the background field. Hence, the term
∼

un(x,k, z) is unknown. This becomes a constraint to simulate the response for a model

with topography. Researchers have adopted various methods [40, 120] to simulate the

response for a variable topography. [112] proposed a scheme where primary potential

due to halfspace is used, and only the surface boundary condition needs to be modified.

The modified boundary condition in 3D is expressed by taking the following values of the

constants

λ= 1,η= 0, andµ=− I

2π

(x −x0).n̂

r 3
, (2.9)

where x0 is the source location, x is a point on the profile, r is the radial distance from the

source point to the measuring location, and n̂ is the the unit normal to the radial vector

from source to measuring point. Therefore, in the wave-number domain, the surface

boundary condition for topography case can be expressed as

∼
λ= 1,

∼
η= 0, and

∼
µ=− I k K1(k r )cos θ

2 π
. (2.10)
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Consequently, the 2D DC resistivity modeling for an anisotropic and variable topography

model can be achieved by solving Eq. (2.5) under boundary conditions given in Eq. (2.8)

and Eq. (2.10). Various algorithms have been developed so far to deal with the complicated

cases of DC modeling. This novel approach first presented as support operators method

by [128] and [129], is also known as the MFDM approach.

2.3.1 Mimetic Methods

We try to model various physical processes that reproduce natural phenomena as accu-

rately as possible in computational sciences. There are multiple complexities such as

non-linearity in the processes, discontinuity of the coefficients arising in the physical

system, discontinuity in the solution, preservation of the conservation laws, and symmetry

properties of the process that need to be addressed. In addition, complex geometries need

to be incorporated into the modeling to simulate real-world problems. There are numer-

ous techniques to handle simple structures. However, complex geometries, topographies,

and embedded anomalous bodies are not so easy to handle.

Many numerical modeling techniques have been widely implemented and published

in scientific literature. FDMs are relatively simple to implement. However, it is challeng-

ing to accommodate non-orthogonal grids via FDMs. So, implementing topography is

non-trivial. A special class of FDMs called MFDM, has a remarkable ability to address

these requirements. Hence, we work with MFDM and develop a C++ code to model the

DC resistivity problem. There have been different names in the literature for MFDM

like the support-operator method, reference operator, [64, 65, 101] etc. These methods

have been translated from non-English literature and were given names to match the

exact translation closely. The governing differential equation contains the continuous

differential operators. The aim is to design discrete differential operators that are accurate

and preserve the properties of original governing equations. To begin with the process of

discretization, it is important to identify the properties of the governing equation. It has

to be emphasized that the standard FDMs turn out to be the special cases of MFDM on

orthogonal grids. The MFDM can be used in any coordinate system as they work on the

coordinate invariant operators like gradient, divergence, and curl.

The objective is to solve the Eq. (2.5) using the boundary conditions given in Eq. (2.8)

and Eq. (2.10). The terms in the left hand side and right hand side that contain k2 are just

scalar multiplications of wavenumber, conductivity values and the potentials, which is

trivial to implement. Therefore, the emphasis is to design differential operators for the

implementation of the ∇· [T2D (x, z)∇ ∼
ua(x,k, z)] and −∇· [T2Da(x, z)∇ ∼

un(x,k, z)] in the

main equation, using the MFDMs. This study follows the mimetic approach given by [128].
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In order to construct the above differential operators, we pose a simplified equation that

contains the same differential operator as,

−∇·T2D (x, z)∇u = f , (x, z) ∈V , (2.11)

where V is a two-dimensional region. Here, ∇· is the continuous 2D divergence opera-

tor, ∇ is the continuous 2D gradient operator, T2D (x, z) is a symmetric positive-definite

(conductivity) tensor, u(x, z) is the scalar potential and f is the source/sink function.

Consider the space of continuum scalar functions C S and continuum vector functions

CV . Natural operators are defined taking into account Eq. (2.11). Let L1, L2 and L3 be

three different operators, described as,

L1 : C S → CV ,

defined as L1 (u) = A⃗, (2.12)

where L1 mimics the gradient operator and L2 is another operator such that

L2 : CV → CV ,

defined as L2 (A⃗) =−T2D A⃗, (2.13)

where L2 denotes the operation of second rank tensor (dyadic material parameters), T2D ,

on the A⃗, giving back a vector entity to be acted upon by the divergence operator. It

transforms the electric field to the current density. This physical process is expressed

mathematically by the L2 operator. The operator L3, that mimics the divergence operator,

follows as,

L3 : CV → C S,

defined as L3 (−T2D A⃗) = f . (2.14)

The composition operator L = L3 o L2 o L1, is framed as,

L : C S → C S,

L (u) = L3oL2oL1(u) = f . (2.15)

The boundary conditions to be imposed on the governing equations are the Robin bound-

ary conditions. However, the operators involved in the boundary conditions are identical

as defined above. The properties of these continuum operators are briefly discussed here.
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For more details, reader can refer to [60, 62, 66, 68] and citations within. These properties

form the basis of the mimetic formulation. The differential operators that are derived,

are constructed in such a way that they inherit the same properties as that of continuum

operators. The most important formulating property in this class of equations is the

adjointness of the continuum operators.

2.3.2 Properties of the operators

Let us consider the Robin boundary conditions along with the Eq. (2.11)

λ(n⃗ .T2D∇u) + ηu = µ. (2.16)

Along with this boundary conditions, the operator L can be given by,

L : C S →C S,

L u =−∇·T2D ∇u, (x, z) ∈V ,

L u = T2D ∇u.n⃗ +ηu, (x, z) ∈ ∂V. (2.17)

Let us consider the operator R given by

R = f , (x, z) ∈V ,

R =µ, (x, z) ∈ ∂V. (2.18)

The formulation can be finally given as, L u = R. The properties of the operator L are

described briefly. It is important to describe the properties of the continuum operator L

since these properties form the basis of MFDMs. At this stage, it would be necessary to

state that these continuum properties are imbibed into the construction scheme of FD

operators, so that they inherit the characteristics naturally and serve the general purpose

that is desired from the MFDMs.

The inner product for the scalar potentials u and v is defined on the scalar space C S by,

〈 u, v 〉C S =
∫

V
u v dV +

∮
∂V

u v dS, (2.19)

where dV and dS represent the area and length elements respectively, over which the

integration is carried out. From the definition of the operators given in Eq. (2.17) and Eq.

(2.18), and the inner product in Eq. (2.19), it can be proved that the operator L possess the
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following three properties [29, 127].

〈L v , u〉C S = 〈v , L u〉C S ,

〈L v , v〉C S ≥ 0,

〈L v , v〉C S > 0, i f η> 0. (2.20)

Moreover, using the composition form of the operators, i.e L = L1oL2oL3, it can be proved

that the operator L1 is adjoint to the operator L3, i.e

L1 = L∗
3 . (2.21)

It was necessary to introduce the spaces of inner products, to highlight the adjointness

property. The importance of mimetic methods lies in the fact that it takes into account

the continuum properties of the problem. The conductivity tensor T2D is allowed to be

discontinuous and non-diagonal. The method works perfectly fine with the non-smooth

computational grids.

In order to implement DC method numerically, the continuum operators that are

present in the Eq. (2.11) need to be discretized. The process of discretization is described

in the next subsection, which brings out the salient features of this method. The discretiza-

tion is imposed on the operators in such a way that these properties are naturally inherited

in the process 1) Conservation laws are preserved. 2) Discontinuous properties can be

taken into account across interfaces. 3) Preserves the symmetry property. Looking at the

Eq. (2.11), two different operators are taken into account i.e. 1) ∇· and 2) T2D ∇. These are

the continuous 2D differential operators present in the governing equation. The aim is

to discretize these two operators and come up with a FD scheme, which can be used on

non-orthogonal grids. All the steps involved are mentioned concisely.

To begin the discretization procedure, one must choose the scheme for defining vector

and scalar entities on the defined grid. [127] discuss two schemes for solving elliptic

equations using MFDM. In the first scheme, scalar quantities are discretized at the cell

nodes, and vector functions are defined at cell centers; in the second, scalar quantities are

discretized at the cell centers, and vector functions are defined at nodes. They presented

a detailed comparison of both schemes and observed that the second scheme is more

suitable for implementing boundary conditions on corner cells in the case of curvilinear

mesh. Therefore, the scheme of cell-valued discretization of scalar functions and the

nodal discretization of vector functions is implemented. To keep the notation consistent,

a subscript ′d ′ is used to denote the discrete entities. Fig. 2.1 shows a quadrilateral cell

(i , j ) with the potential ud(i , j ) at the center of the cell. The vector quantity ⃗Ad(i , j ) is placed
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Fig. 2.1 Representation of the cell (i,j), showing the scalar potential at the cell center and
the vector quantity at the cell nodes for a quadrilateral cell

at the nodes of the cell (i , j ). The two projections along the coordinate axes Ad x(i , j ) and

Ad z(i , j ) are shown to depict the components of the vector. The conductivity tensor T2d is

defined at the cell centers and coincide with the location of potential scalars ud(i , j ). For

any cell (i , j ), the discretized conductivity tensor can be given as

T2d(i , j ) =
[
σxx(i , j ) σxz(i , j )

σzx(i , j ) σzz(i , j )

]
. (2.22)

The operators L1, L2 and L3 used for the continuum case, need to be discretized. The

approach is as follows: 1) First of all, the operator L3 is taken and the coordinate invariant

definition is followed to construct its discrete analog (L3d ). This can also be termed as

the primary or the main operator that is derived from the definition itself; 2) Since the

conductivity tensor is defined at the cell centers, it is easy to derive the operation of a

tensor on discrete vector components; 3) The last step is to design the operator L1d . It is

important to mention here that the adjointness property is already highlighted in the Eq.

(2.21). The same property has to be imposed on the discrete analogs. Hence, it is forced
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that the adjointness property is also inherited by the discrete operators, using the relation,

L1d = L∗
3d . (2.23)

Using the coordinate invariant definition of the divergence operator, it can be written,

L3(A⃗) = lim
V →0

∮
∂V (A⃗.n⃗)dS

V
. (2.24)

The aim is to express the above definition in the discrete form. It can be done by consider-

ing a cell element,Ω(i , j ), and the boundary of the cell as ∂Ω. The continuum integral in

the Eq. (2.24) can then be translated to a cell integral for a discrete case by,∮
∂Ω

(A⃗ . n⃗)dS =
∫

1
(A⃗ . n⃗)dS +

∫
2
(A⃗ . n⃗)dS +

∫
3
(A⃗ . n⃗)dS +

∫
4
(A⃗ . n⃗)dS, (2.25)

where the subscripts, 1,2, · · · ,4 denote the line integrals on the four different sides of the

cell. Finally, this will give the approximation for L3d . It is trivial to obtain the operation

of L2d on the discretized vector components Ad x(i , j ) and Ad y(i , j ). Following this, the

Eq. (2.23), can be used to obtain the operator L1d that satisfy Eq. (2.23) using algebraic

manipulations.

2.3.3 Implementation in discrete space

This section briefly describes the code development and implementation strategy for the

MFDM. The scheme works on a nine-point stencil. For the sake of completeness, it is

necessary to define inner products on the space of discrete scalar potentials, as well as on

the space of discrete vectors. Let DS be the space of discrete scalar functions and DV be

the space of discrete vector functions. Then the inner products for DS are defined as,

(ud , vd )DS =
M−1,N−1∑

i , j=1
ud(i , j ) vd(i , j )Ωi , j +

M−1∑
i=1

ud(i ,0) vd(i ,0) l xi ,1+

N−1∑
j=1

ud(M , j ) vd(M , j ) l zM , j +
M−1∑
i=1

ud(i ,N ) vd(i ,N ) l xi ,N +

N−1∑
j=1

ud(0, j ) vd(0, j ) l z1, j . (2.26)
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For space DV , it can be written

(A⃗d , B⃗d )DV =
M ,N∑
i , j=1

(AXd(i , j ) B Xd(i , j ) + AZd(i , j ) B Zd(i , j )) NVi , j , (2.27)

Fig. 2.2 Nine-point stencil scheme used in the MFDM

where NVi , j is the nodal volume for the cell (i , j ). For a node, it is defined as the average

area/volume of the four cells that share that particular node. For the cell (i , j ), the equation

to be written has contributions from the nine cells shown in Fig. 2.2. The unknown scalar

potentials are defined at the cell centers and the vector components are on the cell nodes.

On the boundary, fictitious cells are introduced, which makes writing the equations

easier for a computer code. These fictitious cells, naturally take care of the potential field

at the boundary, by placing them at the center of the edges. Finally by using discrete

form of Eq. (2.25) as given in Eq. (2.26) and forming the gradient operator using adjoint

relationship (Eq. (2.23)), one can formulate a linear set of equations as given in Appendix

A. After framing the linear system of equations, the k2 terms present in the Eq. (2.5)

are then added to the diagonal of the resulting system. This completes the formulation

of the linear system to be solved. Since the Robin boundary conditions are used, the

system is structurally symmetric but not symmetric entry wise. Hence, preconditioned
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BiCGSTAB iterative solver is used to solve the obtained system. Finally, inverse Fourier

transformation is performed to transform the solution into the space domain. The five-

point formulation [109] for converting the potential into the space domain is adopted as

shown in Table 2.1. However, for large electrode spacing and complex models, one needs

to use more wavenumber values for accurate computations. Therefore, the maximum

electrode spacing in our numerical experiments is restricted to 200 m.

Table 2.1 Wavenumbers and corresponding weights used from [? ]

Wavenumbers Weights
k1 = 0.0031677 g 1 = 0.0067253
k2 = 0.0301330 g 2 = 0.0314373
k3 = 0.1285886 g 3 = 0.1090454
k4 = 0.4599185 g 4 = 0.3609340
k5 = 1.5842125 g 5 = 1.3039204

2.4 Numerical Experiments

The numerical experiments carried out utilising the created algorithm are presented in this

section. The following tests are performed to show how accurate and adaptable the code is.

An isotropic dyke model is simulated under two different conditions: low contrast and high

contrast. Both these tests show the accuracy of our code and its applicability to simulate

high contrast models. An anisotropic model is simulated to show the applicability of the

developed algorithm to anisotropic subsurface. The performance of the code is tested on

a topographic model that shows the strength of the code for non-orthogonal grids. Finally,

a stability test is performed using a layered model to illustrate the algorithm’s robustness

involving non-orthogonal grids. All the tests mentioned here are done for fine as well as

coarse grids. Since, the grid spacing is nonuniform, these are expressed as [xmi n , xmax]×
[zmi n , zmax] , where xmi n and xmax denote the minimum and maximum grid spacing in

x-direction respectively, and zmi n and zmax are the minimum and maximum grid spacing

in the z-direction respectively. The fine grid spacing is doubled in both x and z-directions

to construct coarse grid discretization for all the experiments. Nonuniform grids required

to be implemented to facilitate arbitrary coarsening and refining of the grids to discretize

the model optimally.
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Fig. 2.3 Schematic diagram of a vertical dyke model. The resistivity of the dyke is ρ2 =
10Ωm and the resistivity of the half space is ρ1 = 100Ωm. The dyke has a width of 5 m
and is placed at a distance of 20 m from the origin

Fig. 2.4 Dyke model experiment results (a) apparent resistivity obtained from the MFDM
for fine and coarse model, and the analytical solution and (b) plot shows the relative %
error between the simulated responses and the analytical solution



32 A mimetic finite-difference method for 2D DC resistivity modeling

Fig. 2.5 High-contrast dyke experiment results (a) apparent resistivity obtained from the
MFDM and the analytical solution for the high conductivity contrast dyke model and (b)
shows the relative % misfit between the responses from MFDM and analytical solution

2.4.1 Dyke Model

To verify the accuracy of the developed algorithm, the first modeling experiment is carried

out on a dyke model. This model is chosen as the analytical solution is available for dyke

model [143]. The dyke model consists of a background with ρ1 = 100 Ωm in which a

perfectly vertical dyke with ρ2 = 10Ωm is present. The width of the dyke is 5 m, and is

located at 20 m from the origin as shown in Fig. 2.3. A pole-pole array experiment is

performed on this model. The test is carried out with fine and coarse grids. The grid

parameters for the fine case are given by ([0.5,5]× [0.5,5]), and the coarse grid parameters

are kept as ([1,10]× [1,10]). Apparent resistivity estimated from the simulated response

and using the analytical formulation along a 100 m profile is shown in Fig. 2.4a. The

relative misfit in percentage is computed between simulated and analytical response,

the misfit plot is shown in Fig. 2.4b. The maximum error for fine model is less than 1%,

whereas for the coarse model the error lies below 1.2%, indicating the accuracy of the

modeled response. To further test the strength and accuracy of the algorithm, a test is

performed for a high conductivity contrast dyke model. A similar model as shown in

Fig. 2.3, is considered, except the resistivity of the half-space is increased by a factor

of 10. Hence, ρ1 = 1000Ωm and ρ2 = 10Ωm. The grid size is kept the same for fine

and coarse case as that of low contrast case. The apparent resistivity curves for the high

conductivity contrast model and the percentage error plots are shown in Fig 2.5a and Fig.

2.5b, respectively. The maximum misfit for the high contrast fine model is around 5%,

which is within the acceptable numerical error limit. For coarse grid discretization, the

maximum misfit is around twice the fine grid case. From both these experiments, it is
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also observed that the impact of grid coarsening is more around dyke. That is because the

dyke is very thin (5 m only), and fine horizontal discretization around dyke is required for

accurate computation.

2.4.2 Anisotropy

Fig. 2.6 Schematic diagram representing the anisotropic model

Fig. 2.7 Anisotropic-model experiment (a) apparent resistivity curves obtained from
MFDM and analytical solution for the pole-pole configuration and (b) the misfit plot

For anisotropic case, a two-layered model as shown in the Fig. 2.6 is considered. In

case of a tri-axial anisotropy, each layer can be explained by three resistivity values. The

resistivity of the layers are, ρx 1 = 100Ωm, ρy 1 = 25Ωm, ρz 1 = 100Ωm. and ρx 2 =
10Ωm, ρy 2 = 2.5Ωm, ρz 2 = 10Ωm, where the subscripts 1 and 2 denote the first layer

and the second layer respectively; the subscripts x, y and z represents the resistivities in
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the direction of co-ordinate axes, x, y and z respectively; where y is the strike direction.

The thickness of the first layer is 20 m and the thickness of the second layer is assumed to

be infinite. The model is simulated for fine ([0.5]× [1,2]) and coarse grids ([1]× [2,4]).The

apparent resistivity curves are calculated using pole-pole array for this model, and the

percent relative error is calculated by comparing it with the analytical solution [150]. The

apparent resistivity curves for fine and coarse grids and the misfit plots are shown in Fig.

2.7. The maximum error is below 0.8% for the fine grids. The error shows an increasing

trend for both the fine as well as coarse grids as the offset increases, which is generally

expected for anisotropic cases [159]. The grid coarsening increases the misfit considerably

in this case. Through tests it is observed that, the error arises due to the grid coarsening

in the z-direction. Generally the choice of optimum grids is considered based on array

configuration, the desired resolution and the available computational resources. However,

this point is not explored further in this study as it requires inverse modeling. In nutshell,

this experiment illustrates the strength of the MFDM scheme to simulate the response for

anisotropic models.

2.4.3 Topography

Fig. 2.8 Mountain-valley topography model. The red star indicates the source location at
-90 m. Potential electrodes are placed on the surface, starting from -80 m, with a spacing
of 10 m between consecutive electrodes

In this experiment a mountain-valley topography model is considered as shown in Fig.

2.8. The model is simulated for fine ([0.5,5]× [0.5,5.6]) and coarse grids ([1,10]× [1,10]).

This test is done to check the performance of the MFDM on the topographic models,
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Fig. 2.9 Topography model simulation (a) the apparent resistivity plot obtained for the
mountain-valley model using the MFDM approach and the discretized solution from the
[117]. (b) misfit between the apparent resistivity values

implementing the secondary potential approach by [112]. The model has a sinusoidal

topography, with an amplitude of 20 meters. The background resistivity of the model is

taken as 100Ωm. A sinusoidal function of wavelength 200 m is considered to simulate this

topography. The source is placed at −90 m on the surface of topography. From the source

location, a total of 17 electrodes are placed and the spacing is kept as 10 meters between

consecutive electrodes. The potential values are computed at the potential electrode

positions and the apparent resistivity is calculated using pole-pole configuration.

There is no analytical solution available to verify the results. Hence the apparent resis-

tivity results published by [117], are discretized and interpolated at the modelled response

positions to compare with the solutions. The plot for the apparent resistivity obtained

from the MFDM approach for fine and coarse models and [117], are shown in the Fig. 2.9a,

and the misfit is illustrated in Fig. 2.9b. It is observed that the maximum relative percent

error is around 3.5% for the fine case and 4.7% for the coarse case. The misfit around the

top of the mountain is relatively more than near the bottom of the valley region. It needs to

emphasis that here the benchmarking is done using numerically simulated results, which

itself contains some amount of error. Furthermore, the error has contributions from three

sources, 1) the discretization error of the apparent resistivity plot, 2) interpolation error,

and 3) the misfit between two responses. However, the numerical error is within the ac-

ceptable level of numerical error as it is less than the typical noise present in the observed

data. The results of all these experiments demonstrate the accuracy and robustness of the

developed algorithm for various models. Modeling complex shaped body or very rugged

topography requires the cells to deviate considerably from the orthogonal grids. In the
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next subsection, the stability test for the developed algorithm with respect to distorted

grids is presented.

2.4.4 Stability analysis

Fig. 2.10 Three-layer model overlaid with grid structure used for stability test. This shows
the magnified view for better visualization, (a) low levels of distortion and (b) highly
distorted random grids

Fig. 2.11 Histogram analysis for the vertex angles for (a) low levels of distorted grids and
(b) highly distorted grids

The ability of a modeling algorithm to simulate the response of complex geometrical

shapes is crucial for practical applications across a whole spectrum of geological scenarios.

To accommodate the complex structures, the discretization needs to be adapted to make

the cell side conformal to the interface of physical property contrasts. Therefore, the

sharply varying interface necessitates a considerable distortion of cells. Here distortion
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Fig. 2.12 Stability test results (a) apparent resistivity plots for three different cases of fine
grids 1) solid green line corresponds to the orthogonal grids, 2) red dots corresponds to
mild or low levels of distortion, 3) dashed line corresponds to the high levels of distortion
and (b) the relative % error with orthogonal fine grid response 1) blue dot corresponds to
LD (low distortion) fine grids, 2) red dot corresponds to HD (high distortion) fine grids, 3)
green dot corresponds to Ortho (orthogonal) coarse grids, 4) black dot corresponds to LD
(low distortion) coarse grids, 5) magenta dot corresponds to HD (high distortion) coarse
grids.

means the degree of deviation of a cell from a rectangle shape. The angles between

adjacent cell sides that meet at a vertex can be used to quantify the degree of distortion.

The cells with angles less than 25 degrees and greater than 155 degrees are defined as

highly distorted cells.

To test the stability of the developed algorithm, a three-layered model having the top

two layers of 10 m laying over 100 Ωm half-space is considered. The resistivity of the

first and second layers are 50 Ωm and 10 Ωm, respectively. The model is discretized in

three different ways. In the first case, orthogonal grids are used and the other two cases

utilized distorted grids. The distorted grids are generated by randomly perturbing the

orthogonal grids. The model, along with distorted girds for both the cases, is shown in Fig.

2.10. The angles formed at all vertexes are computed to ascertain the degree of distortion.

The Fig. 2.11 illustrates these angles by histogram representation. The histogram shown

in Fig. 2.11a corresponds to very few (< 0.5%) highly distorted cells, whereas Fig. 2.11b

corresponds to the large number (> 10%) of highly distorted cells. The gird spacing for fine

and the coarse cases are given by [0.5]× [1,2] and [1]× [2,4] respectively. The response was

simulated using Schlumberger arrays at 25 points for both the distorted discretizations and

compared with the orthogonal grids. The apparent resistivity plots for the fine models are

shown in Fig. 2.12a. The misfit curves for fine and coarse grids are shown in Fig. 2.12b. The

error plots show less than 1.1% error even for the highly distorted case for fine grids. For
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coarse grids, it is seen that the error increases and it is observed that the coarsening in the

z-direction leads to such misfit trends. It was observed that if the coarsening is performed

only in x-direction and not in the z-direction, the error trend does not change significantly

when comapred with the fine model. Interestingly, the misfit of the coarse-orthogonal case

is a little more than the coarse-distorted grid’s response. It is due to a special characteristic

of the MFDM operator, which turns to 9-point stencil formula for a distorted grid; however,

it is a 5-point stencil operator for a square grid. These experiments demonstrates the

versatility and robustness of the developed algorithm in modeling complex geological

scenarios. The stability experiment exhibits that the proposed algorithm is suitable for 2D

trans-dimensional Bayesian inversion workflow, as explained in the introduction, which

is considered a state-of-the-art data analysis scheme in the present times.

2.4.5 Computational Aspects of Modeling

This subsection presents the computational aspects of the simulations done in this study.

Table 2.2 shows the grid spacing information, condition number of system matrices, and

the number of BICGSTAB iterations for convergence to a tolerance of 10−8, for all the

experiments and at all five wavenumbers. From this data, it is observed that the iteration

count decreases with an increase in wavenumber. It is on the expected line because the

wavenumber dependent terms are added to the diagonal, thus, making the matrix rela-

tively diagonally dominant. On the contrary, the condition number shows an increasing

trend with wavenumber. It can be attributed to the absence of the wavenumber term

in the surface boundary condition equation, which influences the smaller eigenvalues.

Consequently, the smallest eigenvalues remain comparable with different wavenumbers.

However, the larger eigenvalues increase with wavenumber to account for the raise in

trace of the system matrices. Therefore, it leads to the increase in condition number with

wavenumber. To examine this behavior, the eigenvalue analysis of all the system matrices

is studied. The eigenvalue plots for the low-contrast dyke model for all five wavenumbers

are illustrated in Fig. 2.13. An eigenvalues clustering is observed with the increase in

wavenumber value. The convergence of a Krylov subspace-based method depends on the

clustering of eigenvalues which explains the faster convergence for higher wavenumbers.

To show the convergence of the iterative solver, Fig. 2.14 displays the residual versus

iteration number plots for the three-layer model used in the stability analysis test for

wavenumber k1 and k3. As expected, the coarsening of the grid reduces the number

of iterations. Furthermore, the number of iterations reduces to approximately half by

doubling the grid spacing. It is observed that the convergence for highly distorted grids

shows a non-smooth behavior, whereas the convergence in the case of orthogonal grids is
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relatively smooth. However, both take roughly the same number of iterations. Therefore,

the MFDM method is both stable and efficient with regard to grid distortions. The same

analysis is carried out for other models and the trends are found to be similar.

Fig. 2.13 Eigen value plot for low contrast fine dyke for all the wavenumbers

Fig. 2.14 Residual plots for two different wavenumbers k1 and k3 with respect to iteration
numbers for the stability analysis model (a) residual plots for four different cases for
wavenumber k1 1) solid black line corresponds to the orthogonal coarse grids, 2) solid
blue line corresponds to high levels of distorted coarse grids, 3) solid red line corresponds
to the orthogonal fine grids and (4) solid green line corresponds to high distortion tests
for fine grids (b) the same analysis is repeated for wavenumber k3
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Models & Cell Size (m)
Type : [xmi n −xmax] Wavenumber
×[zmi n − zmax] meters

Fine Coarse
Cond Cond

Iter No. Iter No.

Dyke (low contrast) k1 180 2.8344e+11 83 1.7789e+10
Fine:[0.5−5]× [0.5−5] k2 69 2.8345e+11 39 1.7793e+10
Coarse:[1−10]×[1−10] k3 33 2.8376e+11 15 1.7873e+10

k4 12 2.8763e+11 7 1.8875e+10
k5 5 1.6533e+12 3 2.1768e+11

Dyke (high contrast) k1 159 2.8334e+12 92 1.6111e+11
Fine:[0.5−5]× [0.5−5] k2 70 2.8336e+12 35 1.6116e+11
Coarse:[1−10]×[1−10] k3 29 2.8366e+12 15 1.6191e+11

k4 12 2.8753e+12 7 1.7131e+11
k5 5 3.3326e+12 4 2.8361e+11

Anisotropy k1 125 9.8139e+11 70 8.4058e+10
Fine:[0.5]× [1−2] k2 49 9.8236e+11 27 8.4408e+10
Coarse:[1]× [2−4] k3 11 9.9937e+11 6 9.0516e+10

k4 3 2.4879e+12 2 8.5188e+11
k5 2 2.9014e+13 1 1.0062e+13

Topography k1 377 8.2712e+12 203 6.5615e+11
Fine:[0.5−5]×[0.5−5.6] k2 234 8.2716e+12 121 6.5628e+11
Coarse:[1−10]×[1−5.6] k3 62 8.2786e+12 31 6.5852e+11

k4 18 1.7569e+13 9 2.7875e+12
k5 6 2.0805e+14 5 3.3009e+13

Ortho Three Layer k1 140 9.2201e+11 81 7.9814e+10
Fine:[0.5]× [1−2] k2 84 9.2224e+11 42 7.9896e+10
Coarse:[1]× [2−4] k3 29 9.2622e+11 11 8.1316e+10

k4 6 9.7598e+11 4 9.9242e+10
k5 2 1.5709e+12 2 3.6124e+11

HD Three Layer k1 145 9.2201e+11 82 7.9814e+10
Fine:[0.5]× [1−2] k2 82 9.2224e+11 41 7.9896e+10
Coarse:[1]× [2−4] k3 30 9.2622e+11 15 8.1316e+10

k4 9 9.7598e+11 6 9.9242e+10
k5 4 1.5709e+12 2 3.6124e+11

Table 2.2 Table shows the discretization parameters for fine and coarse grids for all the
models. The iteration count (Iter) for the convergence of the BICGSTAB (precondition with
incomplete LU with zero filling) to a tolerance of 10−8 is shown for all the wavenumbers
for fine and coarse grids. The corresponding condition numbers (Cond No.) are also
mentioned in the table.



2.5 Conclusions 41

2.5 Conclusions

A robust and versatile algorithm to model the 2D DC resistivity data is developed. The

underlying discretization scheme is derived from the MFDMs (also known in literature

as support-operator methods, reference operator methods). The developed algorithm

is first tested with dyke models and anisotropic model, where the analytical solution

guarantees the accuracy of the developed work. The analysis of the resulting misfit

shows that the maximum error is less than 1% for the low contrast, finely discretized

dyke model, however, for a high contrast model, the maximum error is around 5% for

the fine discretization for large offset. We also show the applicability of our work for

modeling DC resistivity response for a sinusoidal topography (mountain-valley model).

Finally, the stability of the developed algorithm is analysed for non-orthogonal grids.

The numerical tests are conducted with varying degrees of distortions. The cells with

vertex angle less than 25 degrees and greater than 155 degrees are referred to as highly

distorted cells. The numerical error caused by distortion remains below 1.1% for fine

discretization even for the case where 10% of cells are highly distorted. It is also noted

that while convergence for orthogonal grids is generally smooth, it exhibits a non-smooth

behaviour for highly distorted grids. Both require about the same amount of iterations,

though. As a result, in terms of grid distortions, the MFDM approach is both efficient

and stable. For other models, the same analysis is performed, and comparable trends

are discovered. This verifies that the developed algorithm can be implemented to model

complicated geological scenarios where the orthogonality of the grids needs to be violated

to accommodate the complex structures.





Chapter 3

A versatile 2D DC Resistivity modeling

algorithm in the space domain

3.1 Abstract

2D direct-current resistivity modeling is generally done in the wavenumber domain to

efficiently accommodate the 3D character of the source. For faster computation, the

wavenumber domain solutions are calculated at around half a dozen wavenumbers. How-

ever, the collection of wavenumbers and associated weights that are selected has a signifi-

cant impact on the accuracy of the solution that is thus obtained in the space domain. It

has been shown in numerous forward modeling studies that selecting effective wavenum-

bers is difficult, particularly for complex models, including topography, anisotropy, and

high resistivity contrasts. In this study, we develop an optimized strategy to omit the

dependency of the 2D modeling problem on the wavenumbers. Instead of using the

wavenumbers domain approach, the problem is solved in the space domain using a new

boundary condition derived in this study. It requires only a few grids in the direction

perpendicular to the profile. Several numerical experiments are conducted to conclusively

demonstrate that the developed algorithm is robust and versatile concerning subsurface

and survey parameters.

Keywords:Numerical methods, Algorithms, 2D DC resistivity modeling, Mimetic meth-

ods, Boundary conditions



44 A versatile 2D DC Resistivity modeling algorithm in the space domain

3.2 Introduction

The 3D nature of the source in Direct-Current (DC) resistivity modeling prevents us from

representing the governing equation using two-space variables only. Consequently, DC

modeling for 2D models is also referred to as 2.5D modeling, and generally, the 2D DC

problem is solved in the wavenumber domain. Several studies have been done to select

the best possible wavenumbers needed for efficiently transforming the response in the

space domain. [115] discuss a scheme for choosing the best collection of equispaced

wavenumbers in logarithmic scale. [157] presented an optimization approach to calculate

wavenumbers for different modeling experiments. [113] describes a modified method

built upon Xu’s approach for choosing the wavenumbers more optimally. The most

advantageous coefficients are obtained by the optimization strategy using a gradient-

based search. However, this affects the computational cost and is specific to a particular

geometry. [109] offered a new approach to handle the non-linear optimization problem

for estimating the suitable Fourier coefficients to provide a precise 2D approximation.

While [146] and [40] use eight wavenumbers, [74] uses two different sets of wavenumbers

for the forward modeling. Despite these efforts, there is no universal best choice for the

wavenumbers to be applied for space-domain transform.

Studies have reported that complex models require large wavenumbers to simulate

the response for forward modeling. According to [166], when five wavenumbers are

employed for forward modeling, the traditional FEM crosses an inaccuracy of 30 % for

a 2-layer model at an offset of 100 m. [25] uses ten wavenumbers to simulate response

for a four-layered model. They also highlighted that the effectiveness of wavenumbers

can also get affected by electrode spacing, which makes it non trivial to perform an

optimal selection. For efficient computations, the modeling algorithms frequently use

small wavenumbers [170]. However, determining the total number and distribution of

wavenumber are vital in selecting the optimum wavenumbers. Theoretically, the answer

is more accurate when more wavenumbers are utilized. So far, there is no method for

selecting the wavenumbers for a generic inhomogeneous model; all of these approaches

rely on analytical answers of basic models. As a result, the employment of a small number

of wavenumbers, the discretization of the model, and the applicability of the artificial

mixed boundary condition all contribute significantly to the computation errors for 2D

modeling.

[159] emphasize the need to use many wavenumbers for accuracy at higher offset

and for anisotropic models. It was shown that simple isotropic models could be dealt

with roughly around ten wavenumber values, whereas the anisotropic model requires

92 wavenumbers. [140] emphasize using enhanced wavenumbers and weights as the
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model gets more complicated. Having dealt with different studies highly dependent on

wavenumbers; we seek to design a strategy where the 2D DC forward modeling can be

done without the wavenumbers.

In this paper, a space domain DC modeling technique for 2D models is developed to

overcome the challenges posed by the wavenumbers’ selection for 2D modeling. Firstly,

the motivation is presented, and the need to develop the algorithm is highlighted. Next,

a boundary condition is developed for the plane where the source is placed. Then, the

numerical experiments used for bench-marking are presented, along with applications

of the algorithm to complex models with embedded block and topography. Finally, the

discussion and conclusion are presented where the novelty of the algorithm is also pre-

sented.

3.3 Motivation

In this section, we examine the performance of various wavenumbers reported in the

literature using a half-space model of resistivity 10 Ωm. First, the analytical formula

calculates potential values [36] in the wavenumber domain up to 1 km from the current

electrode. Subsequently, the responses are transformed in the space domain employing

wavenumbers and corresponding weights reported in different studies [40, 74, 109, 140,

157].

The space-domain transformation is also performed by the Gauss-quadrature method

to explore the minimum wavenumbers required for accurate estimation for the 1 km

offset range. To obtain accurate responses in both near and far offset, it is observed that

the integration needs to be performed at least over two intervals. We carried out the

integral over 0 to 0.1 and 0.1 to 5 intervals using 64 points abscissas for each interval. The

simulation results, along with the analytical solution, are shown in Fig. 3.1.

The analysis of the obtained response reveals that all methods provide a reasonably

accurate response in the near offset range, almost up to 80 m. None of the methods

is accurate beyond 400 m offset, except the Gauss-quadrature scheme. However, the

Gauss quadrature necessitates calculating response at 128 wavenumbers for accurate

results. We tested the Gauss quadrature with various n-points abscissas and observed

that at least 40-points abscissas Gauss-quadrature integral over two intervals is essential

for good accuracy up to 1 km offset. Therefore, obtaining accurate solutions at long

offset is computationally expensive, even while dealing with a simple case of a half-space

model. Thus, for a reasonably accurate evaluation of the space-domain response for
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Fig. 3.1 The electric potential in Volts (log scale) versus the distance plots for a 10 Ωm
halfspace obtained using different sets of wavenumbers and weights reported in the
literature and computed employing Gauss-quadrature method, along with the analytical
solution.

complex subsurfaces such as variable topography, anisotropic resistivity would increase

the computation cost.

There have been other studies reported in the literature that have applied correction

methods to improve the accuracy of the wavenumber domain simulations. [113] presented

a source singularity correction and optimization technique to obtain accurate results in

the space domain. The study also mentions that the correction technique may not hold

for large conductivity contrasts. [40] & [35] use correction measures for obtaining accurate

results, where they employ a normalization technique using a 1Ωm halfspace responses.

There may be other such techniques that could improve the space-domain results’ ac-

curacy. The above list is not exhaustive but an indicator of improvement techniques

that could be used in modeling studies. This paper presents a versatile unconventional

method that performs 2D DC resistivity modeling directly in the space domain. This

method works on an additional boundary condition derived in this study. Furthermore,

the electrodes need not be perfectly aligned along a straight line as may be required

for many wavenumber-domain schemes; this method can easily handle the resulting

deviations.
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3.4 Method

The governing equation for 3D DC resistivity modeling can be written as,

∇3D · [T3D (x, y, z)∇3D u(x, y, z)] =−Iδ(x −x◦)δ(y − y◦)δ(z − z◦) (3.1)

on V, where V is the computational domain. ∇3D · and ∇3D are the divergence and gradient

operators, respectively in the 3D space. T3D (x, y, z) is the conductivity tensor. The R.H.S

term denotes the source term, where I is the current intensity, δ() is the delta function,

and (x◦, y◦, z◦) represents the coordinates of the source. The equation (3.1) is solved under

the following boundary condition,

∂u(x, y, z)

∂n
= 0 (3.2)

at the surface where n denotes the outward normal to the surface. At other boundaries, the

boundary conditions try to make the domain unbounded and generally a mixed boundary

condition given by [36] provides good results. For general anisotropic media, all nine

elements of the conductivity tensor could be non-zero. However, for 2D medium with a

strike direction in the y-direction, the conductivity tensor for anisotropic subsurface can

be expressed as,

T̂2D =

σxx 0 σxz

0 σy y 0

σzx 0 σzz

 . (3.3)

For the above definition of conductivity tensor, equation (3.1) can be written using 2D

differential operator as,

∇2D · [T2D (x, z)∇2D u(x, y, z)]+σy y
∂2u(x, y, z)

∂y2
=

−Iδ(x −x◦)δ(y − y◦)δ(z − z◦), (3.4)

where subscript 2D denotes the operator in the 2D space and conductivity tensor for 2D

medium can be given as,

T2D =
[
σxx σxz

σzx σzz

]
. (3.5)

In case of a 2D model, the DC problem can be solved in wavenumber domain, therefore,

using the Fourier transform, equation (3.4) in wavenumber domain can be written as,
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∇2D · [T2D (x, z)∇2D û(x, ky , z)]−k2
yσy y û(x, ky , z)] =

−Ie ιky y◦δ(x −x◦)δ(z − z◦). (3.6)

If we consider that the origin of coordinate system lies on the plane y◦ = 0, the R.H.S

of equation (3.6) will not depend on the wavenumber, ky . Under this condition, the

solution, û(x, ky , z), obtained by solving equation (3.6) will be an even function of ky

and it is also real valued. Therefore, using the property that the Fourier transform of a

real-even function will also be a real-even function ensures that the potential in space

domain for 2D model will also be a real valued even function with the symmetry about

y = y◦ plane. Because the first order derivative of even function at the plane of symmetry

vanishes, mathematically, it can be expressed as boundary condition at a plane y = y◦ for

equation (3.4) as,

∂u(x, y, z)

∂y
|y=y◦ = 0 (3.7)

Therefore, we propose a scheme to solve the 2D resistivity problem in space domain

using equation (3.4) under the boundary conditions given in equation (3.2) at surface,

equation (3.7) on y = y◦ plane and the mixed boundary condition on rest of the boundaries.

Even though the problem can be solved using various numerical methods, like finite

element method (FEM) [167, 171], finite-difference method (FDM) [40], we choose to

work with mimetic finite difference method (MFDM). The MFDM can work with non-

orthogonal grids and is very stable with respect to the aspect ratio of cells. The details of

MFDM can be found in [128] and [129]. However, for completeness, a brief discussion on

the MFDM is provided in this paper.

The support-operator approach, reference operator, etc. are some of the terms for

MFDM that have been used in the literature [64, 65, 101]. MFDM are a special class

of finite-difference methods which mimics the properties of the original continuum

differential operators. Their ability to work with non-orthogonal, highly distorted rough

grids has proved remarkable to work with complex topography [88]. It is well-suited to

work with models incorporating highly variable discontinuous physical properties. Since

the MFDM uses coordinate invariant operators like gradient, divergence, and curl, it can

be applied to any system of coordinates. Using the coordinate invariant definition of the
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divergence operator, for any vector A⃗ defined over the edges of a cell, we can write,

∇· A⃗ = lim
V →0

∮
∂V (A⃗.n⃗)dS

V
. (3.8)

The above definition is then translated to an equivalent expression for a discrete case. This

can be done by taking a cellΩ(i , j ) with the boundary given by ∂Ω. The expression for the

integral in equation (3.8) can be given in the form of a cell integral for a particular cell by,

∮
∂Ω

(A⃗ . n⃗)dS =
∫

1
(A⃗ . n⃗)dS +

∫
2
(A⃗ . n⃗)dS

+
∫

3
(A⃗ . n⃗)dS +

∫
4
(A⃗ . n⃗)dS (3.9)

where the subscripts, 1,2, · · · ,4 denote the line integrals on the four different sides of the

cell. The normal vector (n⃗) for any of these lines can be obtained by using the x and y-

coordinates of the cell nodes. The line integrals in the equation (3.9) can be then converted

into a summation formula for the discrete case. This gives us the discrete divergence

operator for a given cell (i,j). Once the discrete divergence operator is in place, it is easy to

construct the discrete gradient operator by following the adjointness property between the

gradient and the divergence operators [29, 60]. The discrete divergence opertaor, gradient

operator and the conductivity/resistivity tensor can then be utilized to obtain the discrete

formulation for the DC resistivity problem (equation (3.4) or (3.6)). For more details,

readers can refer to our previously developed wavenumber-domain 2D DC modeling

algorithm based on MFDM approach [139]. Here, the equation (3.4) is solved using the

proposed scheme, involving the boundary condition at the plane y = yo . By writing the

discrete equation for each cell, we can obtain the linear system of equations for the entire

system. This finishes the short discussion on the implementation part of the MFDM. The

code developed here using the MFDM approach and the boundary condition discussed

above will be termed as Mi m2.5D in the subsequent sections. The following section

presents the numerical experiments and results to show the accuracy and efficiency of the

proposed algorithm.
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Fig. 3.2 General representation of the two-layer model used for numerical experiments.
h represents the thickness of the first layer. Subscript 1 and 2 represent 1st and 2nd

layer, respectively while ρx ,ρy and ρz denote the resistivities in the x, y, and z-direction
respectively.

3.5 Numerical Experiments

3.5.1 Algorithm benchmarking

Extensive simulations were carried out to check the proposed algorithm’s accuracy and ef-

ficiency. This section presents simulation results performed over two-layer models guided

by the availability of an analytical expression for anisotropic two-layered models [150]. For

comparison, responses are also calculated using a wavenumber-domain approach using

the algorithm developed by [139]. In this experiment, the first set of simulations is done

for the isotropic two-layered model, and the second is carried out for the anisotropic case.

The results presented here are for 2D DC simulations using different sets of wavenumbers

available in the literature and the proposed Mi m2.5D scheme. We compare the apparent

resistivity obtained against the analytical results.

A schematic diagram of a two-layered model is shown in Fig. 3.2, where the subscripts

1 and 2 denote the first and second layers, respectively. The thickness of the first layer

is denoted by h meters. The subscripts x, y, and z, denote the horizontal x-direction,

perpendicular to the profile (y-direction) and the depth, respectively. The grid size is

kept at 5 meters in the x-direction. In the z-direction, the grid size is 2 meters for the

first 50 meters, and 5 m is kept till 100 m and 20 m further. The seven extra grids are

padded to the model boundaries, where the grid spacing increase by a factor of 1.75 in

the outward directions. For Mi m2.5D, 12 grids having spacing 5 m at the plane where

the current electrode is kept, and increasing grid spacing away from this plane is used for

discretization in the y-direction. It is to be noted that we only need discretization on one

side of the plane. Using the same discretization, simulations are performed for all three
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Table 3.1 Model parameters for the different two-layer tests per-
formed.

Tests Model / 1st Layer 2nd Layer
Thickness (1st Layer)

Test 1 Low Contrast Isotropic / ρx1 = ρy1 = 100Ωm ρx2 = ρy2 = 10Ωm

30 m ρz1 = 100Ωm ρz2 = 10Ωm

Test 2 High Contrast Isotropic / ρx1 = ρy1 = 1000Ωm ρx2 = ρy2 = 10Ωm

30 m ρz1 = 1000Ωm ρz2 = 10Ωm

Test 3 High Contrast Anisotropic / ρx1 = ρz1 = 1000Ωm ρx2 = ρz2 = 10Ωm

30 m ρy1 = 100Ωm ρy2 = 1Ωm

Test 4 Low Contrast Isotropic / ρx1 = ρz1 = 100Ωm ρx2 = ρz2 = 10Ωm

20 m ρy1 = 100Ωm ρy2 = 10Ωm

models for a pole-pole array. The minimum and maximum electrode spacings are 2.5 m

and 400 m, respectively, with an increment of 5 m. Table 3.1 shows resistivity values for all

four models considered for benchmarking tests. The thickness of the first layer is fixed at

h = 30 m for all Tests 1, 2, and 3, and h = 20 m for Test 4.

For Test 1 (Low Contrast Isotropic, refer to Test 1, Table 3.1), Fig. 3.3(a) shows the

apparent resistivity curves vs. the electrode distance from the source. It is observed

that the response from the 2D code for various wavenumbers from the literature tends

to deviate from the analytical response. The electrode distance at which the curves

deviate from the analytical response depends on the weights and the chosen wavenumber.

However, all methods work well in the near offset up to 40 m electrode distance. On the

other hand, the Mi m2.5D response is in good agreement with the analytical solution and

shows a good match at all offset values. For Test 2 (High Contrast Isotropic, refer to Test 2,

Table 3.1), Fig. 3.3(b) shows that all the simulations using different wavenumbers agree up

to an initial 30 m. Again, the maximum electrode distance up to which the responses are

reasonably accurate varies with wavenumber’s schemes; however, the Mi m2.5D solution

follows the analytical apparent resistivity curves even for large offsets. For Test 3 (High

Contrast Anisotropic two-layer model, refer to Test 3, Table 3.1), Fig. 3.3(c) shows the

apparent resistivity curves. The offset range for which all the wavenumber solutions agree

with the analytical solution is not well defined because the solution [157] deviates from

a very close range. [140] see the maximum agreement by wavenumber solutions. Again,

in this test, the Mi m2.5D solution agrees well with the analytical solution, even for large
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offsets. To test the effect of the thickness of the first layer, a model (Low Contrast Isotropic,

refer to Test 4, Table 3.1) with 20 m thickness of the first layer is experimented with, and the

apparent resistivity curves are shown in Fig. 3.4. It is easy to conclude that the Mi m2.5D

solution agrees well with the analytical solution till a large offset. To illustrate the impact

of first-layer thickness, the absolute error with the analytical result is calculated for all the

simulations done in Test 1 and Test 4. For both the experiments, the misfit plots are shown

in Fig. 3.5(a) and (b). It is observed from these plots that the varying depths do not have a

bearing on the accuracy of the solution, indicating the algorithm’s stability.

3.5.2 2D block model

The previous section concludes the benchmarking exercise. This section simulates the

DC response for an embedded block of 10Ωm in a homogeneous background of 100Ωm.

Fig. 3.6 shows the schematic of the model setup. The depth of the inserted block is kept at

30 m. The dimensions of the inserted block are given by the parameters a, b, and d. Source

(S) is placed at -200 meters. The potentials are calculated on the surface using a minimum

and maximum electrode spacing of 2.5 to 400 m. The minimum x-grid and z-grid sizes

are kept at 5 meters and 2 meters, respectively. Three different experiments are done to

simulate the response by varying the size of the embedded block inside the homogeneous

medium. All simulations are performed using a pole-pole array. Test 1: a = 0, b = 30 m, d =

30 m. This is equivalent to a 30m ×30m block inserted exactly below the origin, 200 m

away from the source. Test 2: a = 150 m, b = 150 m, and d = 30 m. Test 3: a = 150 m, b = 150

m, and d = ∞ (the block runs across the entire depth of the model).

Fig. 3.7 shows the apparent resistivity profiles for all three tests performed. The solid

line corresponds to the apparent resistivity profiles of the developed algorithm in the space

domain, and the dashed line corresponds to the apparent resistivity profiles obtained from

the wavenumber domain simulation. It is observed that the results from the wavenumber

and space domain agree with each other for Test 1 and Test 2, but there is a deviation

in the case of Test 3. It should be emphasized that our algorithm works on primary and

secondary field decomposition where the primary field is known in the space domain.

Hence, a 2D block results in a secondary field around the block which is transformed

into a space domain in the case of the wavenumber-domain algorithm. The horizontal

dimension of models for Test 2 and Test 3 are the same. However, the wavenumber-

domain response for Test 3 shows a significant deviation from the space-domain response

compared to the Test 2 case. The secondary field at large offsets comes from the deeper

parts. Because the response of Test 2 at large offsets is dominated by the primary response,

therefore, it has a good match at all offset values. However, this is not the case for the
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Fig. 3.3 Apparent resistivity curves (log scale) obtained from various wavenumber tech-
niques, reported in the literature and calculated using the proposed scheme along with
the analytical response [150]; (a) Test 1 (Low Contrast Isotropic model); (b) Test 2 (High
Contrast Isotropic model); (c) Test 3 (High Contrast Anisotropic model).
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Fig. 3.4 Apparent resistivity curves (log scale) obtained from various wavenumber tech-
niques, reported in the literature and calculated using the proposed scheme along with
the analytical response [150] for Test 4 (Low Contrast Isotropic model). The depth of the
first layer is kept at 20 meters.

model used for Test 3. Consequently, in the case of primary/secondary decomposition,

the wavenumber-domain schemes would work well for a subsurface where anomalous

bodies are buried in a homogeneous host rock.

3.5.3 Three Layer topography simulations

This section discusses the three-layer variable topography model. The maximum am-

plitude of the sinusoidal topography is kept as 20 meters, and the thickness of the first

and second layers are fixed at 30 meters. The third layer extends to infinity or the entire

depth of the model. The simulations are performed on isotropic, vertically transverse

isotropic (VTI) and tilted transverse isotropic (TTI) models. Table 3.2 shows the different

parameters for the three-layer topography tests. Fig. 3.8 shows the resistivity map for the

TTI topography model where the mesh used for model discretization is overlaid on the

images. The same mesh is used for all the tests done for the topography models. The

position of the current electrode is shown with a red star, and the inverted black triangles

denote the position of potential electrodes. The potential-electrode spacing is 20 m in

the horizontal direction, and they are placed on the surface of the model. The resistivity

tensor for the TTI case is obtained by applying a rotational transform on the VTI tensor as

T2DT T I = R(θ)×T2DV T I ×R(θ)T , where R(θ) is the rotational matrix, T2DV T I is VTI tensor

and T denote matrix transpose. The angle θ used here follows the slope of the topography.
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Fig. 3.5 Plots of absolute errors obtained for a) Test 1 - Low contrast isotropic (thickness of
1st layer = 30 meters); b) Test 4 - Low contrast isotropic (thickness of 1st layer = 20 meters).
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Fig. 3.6 2D Block of 10Ωm inserted in homogeneous subsurface of 100Ωm at a depth of
30 m. The source location, denoted by S, is fixed at -200 m. The dimensions of the inserted
body are given by the parameters a, b, and d. Three tests are performed by varying the
parameters a, b, and d.
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Fig. 3.7 Apparent resistivity curves obtained for the three tests performed on inserted 2D
Block of 10Ωm in homogeneous subsurface of 100Ωm at a depth of 30 m. The solid line
denotes the solutions obtained from the proposed algorithm (Mim2.5D), and dashed lines
are the solutions obtained from the wavenumber domain simulations.
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Fig. 3.8 Resistivity maps for the topography models for tilted transversely isotropic (TTI)
experiments. a) shows the xx component of the resistivity tensor, b) shows the zz compo-
nent of the resistivity tensor, and c) shows the xz component of the resistivity tensor.

Therefore the TTI case follows topography (one component parallel to the topography

and the other perpendicular to it). In Fig. 3.8c, a few white strips in the color map denotes

the infinity resistivity (zero conductivity) values where the angle is zero pertaining to flat

topography.

Fig. 3.9 shows the apparent resistivity curves for all the topography-model experiments

viz. Isotropic, VTI, and TTI models. For comparison, the wavenumber-domain response

for the isotropic case is also shown in this figure, as the accuracy of the algorithm used

for the simulation of the topography model is already established [139]. As expected

for layered models, there is some mismatch between wavenumber and space-domain

responses. However, wavenumber and space-domain algorithms produce comparable

results for the half-space model with topography from [117]. It can be seen from the

apparent resistivity curves (Fig. 3.9) that the red line (TTI) follows topography because of

the channeling of the current along the topography. The anisotropy in the TTI follows the

topography; hence, the effect can be seen in the TTI curve.
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Table 3.2 Model parameters for the three different tests performed on a three-layer vari-
able topography model. Test 1, Test 2, and Test 3 correspond to the isotropic, vertically
transverse isotropic (VTI), and tilted transverse isotropic (TTI) models, respectively.

Tests Model 1st Layer 2nd Layer 3r d Layer
Test 1 Isotropic ρx1 = ρy1 = 100Ωm ρx2 = ρy2 = 10Ωm ρx3 = ρy3 = 50Ωm

ρz1 = 100Ωm ρz2 = 10Ωm ρz3 = 50Ωm

Test 2 VTI ρx1 = ρy1 = 100Ωm ρx2 = ρy2 = 10Ωm ρx3 = ρy3 = 50Ωm

ρz1 = 25Ωm ρz2 = 2.5Ωm ρz3 = 12.5Ωm

Test 3 TTI Resistivity depends on the topography (for all three layers)

Table 3.3 Computation time for Test 1 (Low Contrast Isotropic Model). ∗ denotes the
cumulative iterations and the cumulative time taken by the iterative solver for a five
wavenumber approach [109].

Algorithm BICGSTAB∗ Direct Solver

Iter/Time (s) Time (s)
Wavenumber 152 / 0.115363 0.119097

Mim2.5D 256 / 1.901381 6.237999
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3.6 Discussion

The numerical simulations presented in section 3.5.1 unambiguously highlighted the

advantage of the developed algorithm, Mi m2.5D, and the limitations of working with

few wavenumbers. It was evident from the half-space experiment that we need several

wavenumber domain simulations (of the order of a hundred) for accurate response at large

electrode spacing. The calculations for the two-layered model indicate the fact that as we

increase the conductivity contrast, the maximum workable electrode distance reduces

for all the schemes. Furthermore, for an anisotropic model, the maximum electrode

distance up to which the response could be accurate decreases. In fact, the best-case

scenario starts deviating around 65 m. We also repeated these experiments by reducing

the thickness of the first layer. It was observed that the maximum workable electrode

distance does not show significant dependency on the thickness of the first layer for all

the schemes. It is happening because the thickness of the first layer in the experiments

presented in this study is smaller compared to the offset at which the wavenumber-

domain response deviates from analytical solutions. Overall, this analysis shows that

every scheme starts to fail beyond a particular electrode distance. Unfortunately, the

maximum electrode distance depends on the subsurface model itself, which is known

before inversion. However, inversion depends on the accuracy of the forward modeling

algorithm itself. Inaccurate modeling shall impose a fictitious constraint on the model

parameter estimation. This limitation of modeling can be overcome by employing more

wavenumbers but comes with more computation cost.

The preceding experiment also illustrates that the proposed algorithm, Mi m2.5D,

provides a numerically accurate response for all the models and is versatile with subsur-

face geology and electrode spacing. However, the said robustness comes with some extra

computation costs. For the computation time estimation, we demonstrate the proposed

algorithm’s performance compared to a five-wavenumber scheme [109] for the low con-

trast model (Test 1). The computation time for a preconditioned BICGSTAB and a direct

solver is shown in Table 2. It is observed that the proposed scheme is approximately 16

times more expensive than a five-wavenumber scheme in the case of an iterative solver.

For direct solver, the proposed scheme requires 55 times more time. However, it would

turn out to be efficient, if one has to use wavenumbers of the order of hundred, in the case

of complex models. Section 3.5.2 shows that the apparent resistivity curves for Test 1 and

Test 2 are in agreement with each other. However, for Test 3, where the embedded block

runs across the model’s depth, the contribution of the secondary field dominates at large

electrode separation. As a result, the apparent resistivity curves obtained for Test 3 from
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Fig. 3.9 Apparent resistivity curves obtained for the three tests performed on the variable
topography model. The solid black line corresponds to the results from the developed
Mim2.5D algorithm, the dashed black line corresponds to the wave domain solution
for isotropic topography model, the blue line corresponds to the VTI, and the red line
corresponds to the TTI topography model.

wavenumber domain and the Mim2.5D simulations deviate from each other after some

distance.

Section 3.5.3 deals with three-layer topography simulations. The response obtained for

this model shows that the apparent resistivity curve for TTI tries to mimic the topography

relatively more than isotropic and VTI cases. It is primarily due to the channeling of the

current along the topography for the TTI case, as the resistivity of the model follows the

topography. Therefore, the proposed scheme can be utilized for studying the effect of

topography and the anisotropy of the subsurface.

This paper presents an unconventional method for finding the solution in the space

domain. The developed algorithm can be used to obtain results for large offsets. The

applicability of the algorithm to complex geological structures, including topography,

embedded block, and conductivity contrasts, is depicted using numerical experiments.

A similar concept can be extended to other modeling studies, where the source exhibits

3D nature, and the modeling is to be conducted in a 2D model. It is important to note

that all the wavenumber schemes discussed in the study assume all the electrodes in a

straight profile. However, the proposed scheme can simulate the response for electrodes

deviating from the profile. Therefore, we draw the conclusion that the proposed algorithm

is a versatile and robust DC modeling scheme for 2D subsurface.
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3.7 Conclusion

We developed a new scheme for modeling DC response for a 2D model. The proposed

scheme computes the response in the space domain using a new boundary condition

enforced on the plane where the current electrode is placed. An extensive benchmarking

analysis is presented for comparison of the developed algorithm. The developed algorithm

is also used to simulate response on a 2D block model of varying dimensions of the

embedded block. The experiments of the rugged-topography model with isotropic, VTI,

and TTI resistivity models further illustrate the robustness of the developed algorithm. We

compare the proposed algorithm’s computation time estimation performance to a five-

wavenumber scheme for the low contrast model (Test 1). Comparison is made between the

computation times of a direct solver and a preconditioned BICGSTAB. When considering

an iterative solver, it is found that the suggested scheme costs roughly sixteen times as

much as a five-wavenumber scheme. The suggested scheme takes fifty-five times longer

for a direct solver. If wavenumbers on the order of hundreds are required for complex

models, it would prove to be effective nonetheless. The numerical experiments clearly

illustrate the versatility of the developed algorithm for various complex geological models.





Chapter 4

DC Resistivity data sensitivity to

subsurface anisotropic parameters

4.1 Abstract

This study investigates the sensitivity of DC resistivity data to the anisotropic parameters

of the subsurface. For the analysis, the azimuthal apparent resistivity curves are simulated

and analyzed for various anisotropic models. For sensitivity experiments, numerical

derivatives of apparent resistivity data with respect to parameters determining anisotropy

for the 2D cases are calculated for data simulated along a profile. The outcomes show that

the data is commonly sensitive to all four parameters except for the model with circular

azimuthal apparent resistivity, where the sensitivity to principal resistivity along the profile

direction vanishes.

4.2 Introduction

The direct current (DC) approach is an economically viable method for near subsurface

mapping. However, successfully applying the DC resistivity technique requires data

analysis to consider the complete physics of the DC resistivity modeling. One crucial

characteristic of the resistivity of subsurface rock is the electrical anisotropy. It depicts

a phenomenon of directional dependency of current flow in a piece of homogeneous

rock. Materials with a characteristic lineation or platey fabric, such as clay, slate, and

shale, frequently exhibit this directional dependence. It leads to the property known as

intrinsic anisotropy or micro anisotropy and is contingent upon the material’s texture or

crystal symmetry [45]. The origin of anisotropy can be attributed to many factors, like
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preferentially oriented fracture systems [22]. Studies suggest that limestone structures can

develop anisotropy up to a factor of 4.5 [103]. If these anisotropic structures are considered

isotropic, it can lead to inaccurate interpretation [6, 165]. To examine the subsurface’s

anisotropic characteristics, the utilization of several azimuthal electrode arrays were

suggested [142, 153]. For accuracy benchmarking, [82] provided analytical solutions for

several straightforward anisotropic models. [83, 150] investigated anisotropy’s impact on

multilayer structures.

The anisotropy paradox is a widely studied phenomenon as it provide an insight into

behavior of DC resistivity data in the presence of anisotropic subsurface. Numerical

simulations have also confirmed it [152]. [92] used Coulomb’s law in anisotropic media

to demonstrate the presence of this phenomenon and used surface surveys and electric

logging to explain this seemingly paradoxical behavior. The anisotropy paradox stands

true for borehole measurements as well, and [94] demonstrated that any vertically aligned

electric measurement in a horizontally oriented lamination would only be sensitive to

the horizontal conductivity and totally blind to the vertical conductivity. A surface survey

does not measure the horizontal conductivity on its own; it will only gauge the geometric

mean of the horizontal and vertical conductivity [92]. The polar representation [165] of ap-

parent resistivity is often used to illustrate the anisotropy paradox. [87, 116] analyzed the

polar diagrams by interpreting the anisotropy paradox for horizontal transverse isotropic

(HTI) media. The apparent resistivity polar plots suggest that the case where circular

plots are obtained, cannot resolve the vertical resistivity component. [161] examined

anisotropy employing polar diagrams for generalized anisotropy. Most of these studies

have commented on the insensitivity of DC resistivity data to anisotropic subsurface pa-

rameters. However, they did not investigate the sensitivity plots in their studies. Therefore,

a more rigorous analysis of the sensitivity of DC resistivity data to subsurface anisotropic

parameters is required. Thus, the present study examines it in detail.

In this chapter, we present an exhaustive analysis of the polar diagram for various

cases of subsurface anisotropy using the 2D models. Subsequently, the sensitivity of DC

resistivity data to the anisotropic parameters is discussed utilizing the knowledge gained

from polar diagram analysis.

4.3 Subsurface anisotropy and DC resistivity data

This section examines the azimuthal characteristics of DC resistivity data for the anisotropic

subsurface. It must be stressed that the analysis in this study is limited to 2D TTI media

where the subsurface conductivity maximally depends on four parameters, namely three



4.3 Subsurface anisotropy and DC resistivity data 65

principal conductivities and an angle of symmetry axis. The subsurface model used for

this experiment consists of an isotropic layer of 5 m thickness having a resistivity of 10Ωm

overlaying on an anisotropic half-space. For various scenarios of the second layer resistiv-

ity, the apparent resistivity curves at radial distances of 5 m, 10 m, 25 m, 50 m, 75 m, 100

m, 140 m, and 160 m from the source (for brevity, referred as radial distances hereafter)

for 360 degrees of azimuthal angles are computed and analyzed. For conciseness, these

plots are referred to as azimuthal curves henceforth. We have used the space domain

DC resistivity algorithm discussed in the previous chapter to calculate the response of

all the experiments. For the first model, the lower half-space is taken isotropic media

of resistivity 100Ωm as shown in Fig. 4.1 and the azimuthal curves are shown in Fig. 4.2.

The azimuthal curves are concentric circles with increasing radii with radial distance. It

happens because both the layers are isotropic, and the resistivity of the lower layer is

higher. The radius of azimuthal curves shows very little change beyond radial distances of

140 m, which indicates that beyond this distance, we can assume that the response of the

lower half-space media dominates over the first layer. Therefore, the maximum distance

is considered as 160 m, for this experiment, so that the response is overwhelmed by the

lower half-space. However, it needs to be stressed that the distance beyond which the

lower half-space dominates the response also depends on the conductivity of the upper

and lower layers. These results are expected; nevertheless, this experiment’s results serve

the purpose of a reference that we will use for comparing the anisotropic cases.

Fig. 4.1 Two layer isotropic model with resistivity of first layer as 10Ωm and resistivity of
second layer as 100Ωm. The thickness of first layer is 5 m. Rho x, Rho y and Rho z in the
figure denote the values of resistivity in the principal directions x, y and z respectively.

In the second experiment, the top layer is an isotropic layer with resistivity of 10Ωm,

whereas the lower half-space is taken as triaxial anisotropic media with resistivities in

x-, y- and z-directions as 100 Ωm, 50 Ωm, and 25 Ωm, respectively, and the model is

illustrated in Fig. 4.3. The associated azimuthal curves are shown in Fig. 4.4. For smaller
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Fig. 4.2 Azimuthal apparent resistivity curves obtained at varying radial distances from
the source for the isotropic model shown in Fig. 4.1. The ’APRES’ in the plot is used to
denote apparent resistivity curves at the given radial distances.

radial distances, the curves are concentric circles of increasing radius with radial distance;

however, for large radial distances, the circles are deformed to ellipses with the minor

and major axes in the x- and y-direction, respectively. The behavior of having a large

apparent resistivity value along the direction of the principal axis of lower resistivity is

known and is referred to as the so-called anisotropy paradox [92, 141]. The apparent

resistivity at 5 m and 160 m radial distances are around 20Ωm and 45Ωm, respectively.

Since the resistivity of the first layer is 10Ωm, the response at 5 m is also influenced by the

second layer. However, the azimuthal curve for 5 m is circular. To examine it further, the

variations in the aspect ratio (resistivity in the y-direction/resistivity in the x-direction )

with apparent resistivity along the y-direction for all the radial distances are illustrated

in Fig. 4.5. It displays that the circular nature remains until the apparent resistivity falls

below ≈ 30Ωm, revealing that the azimuthal curves retain the isotropic character of the

upper layer even though the significant current passes through lower anisotropic media as

the apparent resistivity are considerably higher than resistivity of first layer. Furthermore,

beyond the 50 m radial distance, the changes in the apparent resistivity value are not

substantial, as seen from Fig. 4.4, indicating the dominant current flow is mostly in the

lower layer. However, the elliptic nature of azimuthal curves becomes more dominant
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after this distance. Therefore, this experiment indicates that if the top layer is isotropic,

the azimuthal variation in apparent resistivity is first controlled by the top layer till some

distance even though the significant current may be flowing through lower anisotropic

media at the distance. The elliptic nature of azimuthal apparent resistivity predominantly

occurs beyond this distance.

Fig. 4.3 Tri-axial anisotropic model with first layer isotropic having resistivity value of
10Ωm and thickness 5 m. The second layer is a half-space with tri-axial anisotropy bearing
resistivity values of 100Ωm, 50Ωm, and 25Ωm in the x, y and z-directions respectively.
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Fig. 4.4 Azimuthal apparent resistivity curves for the tri-axial anisotropy model that is
shown in Fig. 4.3. The apparent resistivity curves are obtained at varying radial distances
from the source. The APRES used in the legends denote apparent resistivity.
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Fig. 4.5 The figure shows the plot of the aspect ratio ( resistivity in the y-direction/resistivity
in the x-direction) vs resistivity in the y-direction (with increasing radial distance). The
numbers in brackets on x-aixs indicate the values taken at increasing radial distance from
the source.

For the next experiment, the triaxial anisotropic model used in the above experiment

is modified into various tilted transverse isotropic (TTI) models by varying the dip angle

of the anisotropy axis. The test are conducted for 0o (tri-axial anisotropic case), 22.5o , 45o ,

62.5o and 90o dip angles. The azimuthal curves at 160 m radial distance for all five cases

are shown in Fig. 4.6. It is observed for the azimuthal curves that as we move from the 0o to

90o , the ellipse changes its major axis from the y-direction to the x-direction. Furthermore,

it becomes closer to circle around 45o , indicating an isotropic subsurface-like character.

Therefore, we further analyze the behaviors of azimuthal curves for a TTI lower half-space

with a 45o dip angle at different radial distances, and the simulated azimuthal curves for

varying radial distances from 5 m to 160 m are shown in Fig. 4.7. The curves at larger radial

distances show an elliptic character with the major axis in the y-direction; however, the

deviation from the circular nature is very mild. A case in which the curve turns to a circular

nature has very significant consequences in the sensitivity of subsurface anisotropy to

surface DC resistivity data. Furthermore, the 45o is, indeed, not a case of a perfect circle or

a case of lacking anisotropic character.

To invistigate it further, we experimented with three more cases by varying the resis-

tivity component, ρxx , of lower half-space as 35Ωm, 65Ωm, and 75Ωm, while keeping

other resistivity components (ρy y and ρzz) the same. The azimuthal apparent resistivity

curves are also simulated for these three models. The ratio of apparent resistivities along

the x- and y-direction is plotted for various dip angles of the symmetric axis of anisotropy

to investigate the impact of subsurface resistivity on the dip angle. The plots are shown
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Fig. 4.6 The figure shows the plot for azimuthal apparent resistivity curves obtained for
different cases of tri-aixal anisotropic model with varying dip angles (TTI 0o , TTI 22.5o ,
TTI 45o , TTI 67.5o , and TTI 90o . All the curves are obtained at a fixed radial distance of 160
m.

in Fig. 4.8. It is revealed by the plots that for ρxx = 100 Ωm, the dip angle at which the

azimuthal curve will become circular is between 45o and 67.5o as the azimuthal curve

has a major axis in y-direction at 45o and at 67.5o the major axis is in the x-direction. For

ρxx = 75 Ωm, the azimuthal curve is almost circular at 45o , whereas, for ρxx = 65 Ωm,

the circular nature is likely to be between 22.5o and 45o dip angle as the curve cross the

aspect ratio equal to one between these angles. Furthermore, in the case of ρxx = 35Ωm,

the aspect ratio curve remains above one, and it is expected as both ρxx and ρzz are less

than ρy y . Consequently, this experiment reveals that the dip angle at which the azimuthal

apparent resistivity begins behaving like an isotropic case depends on the resistivity of the

subsurface. In case the principal resistivities that belong to the vertical plane below profile

(denoted by ρxx and ρzz in this study) are both smaller than the resistivity perpendicular

to the plane (represented by ρy y in this study), the DC resistivity measurement shows

the sensitivity to subsurface anisotropy. However, in case ρy y is between the ρxx and ρzz ,

around some angle the surface DC resistivity data may not be sensitive to the subsurface

anisotropy. The present experiment suggests that if the ρxx −ρy y > ρy y −ρzz , the angle

where the azimuthal curve becomes circular will be above 45o and for ρxx−ρy y < ρy y −ρzz
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Fig. 4.7 Azimuthal apparent resistivity curves for the case of tri-axial anisotropic model
with dip angle 45o (TTI 45o case), obtained at increasing radial distances from 5 m to 160
m.

it will be below 45o . For ρxx −ρy y ≈ ρy y −ρzz the circular character is attained around 45o .

The present experiment was repeated for resistive overburden as appose to the present

case of conductive overburden. Since, the current prefers least resisitve path, some modi-

fications are made by taking the thickness of first layer as 30 m for resistive overburden.

However, the conclusion remains the same, therefore, the results for these experiments

are given as supplementary (see Appendix B). The present experiment exhibited that the

azimuthal curves show isotropic character in a particular case of anisotropy; therefore, it

is instructive to test whether surface data will be sensitive to the element of conductivity

tensor or not.



4.4 Sensitivity Analysis 71

Fig. 4.8 The figure shows the plot of aspect ratio vs angles of different TTI models used
(TTI 0o , TTI 22.5o . TTI 45o , TTI 67.5o , TTI 90o). The plots are obtained at a fixed
radial distance of 160 m for different models bearing the principal resistivity value
(σxx = 100Ωm,75Ωm,65Ωm,35Ωm) for the second layer.

4.4 Sensitivity Analysis

For any geophysical method to estimate the subsurface property, it is a prerequisite that

the data be adequately sensitive to those parameters, and the sensitivity should be higher

than the noise floor in typical field data of the method. The data may be sensitive to some

of the parameters, like some elements of a conductivity tensor. Consequently, maximally,

the inverse modeling can recover only sensitive parameters. Therefore, knowing the

parameters that are insensitive to particular data is crucial to avoid over-interpreting

the estimated inverse models. This study examines the sensitivity of conductivity tensor

elements to DC resistivity data. The conductivity tensor depends on four parameters at

most, since we are studying the 2D case. Furthermore, the 2D case implies the data that is

being analyzed is recorded along a profile. Therefore, we have simulated the data along

the profile oriented in x-direction. For this experiment, a two-layer model consisting of

the top isotropic layer of 30 m thickness having 100Ωm resistivity is taken. For the second

layer, different cases are examined as TTI medium with principal resistivities as 10Ωm,

5Ωm, and 2.5Ωm in x, y and z-directions, respectively, for varying angles of symmetry

axis. A simple two-layer model is utilized to minimize the impact of the size and geometry

of the body being investigated. Therefore, the observations from this analysis are more

generic, and the effect of the resolution of the DC method, size, geometry, and depth of
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the anomaly are not commented on in this investigation. To estimate the sensitivity, the

derivative of apparent resistivity with respect to the principal resistivities for the constant

angle of the symmetry axis of the second layer is computed numerically using a difference

formula. It can be mathematically expressed as,

∂ρa

∂m
= ∂ρa(m +δm)−∂ρa(m)

δm
, (4.1)

where ρa is the apparent resistivity and m (=ρxx , ρy y , ρzz) corresponds to the model

parameters. We perturb the m by 5% to compute the derivative. The reference model

(depicting the value of the parameter, m) and the perturbed model for all three resistivity

elements (representing the value of the parameter, m +δm) are shown in Fig. 4.9. We use

the pole-pole array for this experiment. The sensitivity plots for ρxx , ρy y , and ρzz up to

300 m distance from the source are shown in Fig. 4.10. Since the resistivity of the first layer

is invariant in this experiment, the sensitivity for small distances are minimal for all three

parameters. The sensitivity of apparent resistivity to ρxx is smaller than other parameters

and increases with distance. It aligns with the anisotropy paradox as the profile is in

the x-direction. However, the sensitivity values are of the same order as the other two

parameters, indicating that the data also senses the ρxx , even though the sensitivity to

ρy y and ρzz parameters being more. The sensitivity of ρy y increases with distance, and at

300 m, it is approximately equivalent to the sensitivity of ρzz . The sensitivity of ρzz first

increases rapidly till around 50 m and then fluctuates around 0.75. It is to be noted that

the first layer influences sensitivity at near offset. Thus, the sensitivity of ρzz indicates a

somewhat constant value with distance. In summary, the experiment shows that all three

parameters show the sensitivity to data simulated along a profile. However, they differ in

magnitude and trends, making the profile length a factor as well.

For the second experiment, the resistivity of the tri-axial anisotropic lower half-space

used in the first experiment is rotated by 22.5o to construct a TTI model. For simulation

of the response of the perturbed model, the perturbation is done in principal resistivity

values of the tri-axial model and is rotated by 22.5o subsequently. The sensitivity plots for

this experiment are shown in Fig. 4.11. Again, the behavior and magnitude of sensitivity

values are similar to the tri-axial case with a change that the sensitivity of ρzz now shows an

increasing trend with distance. Therefore, for a TTI model, all three principle resistivities

show sensitivity to surface DC observations, and therefore, these parameters are likely to

be estimated using such data.

The third experiment is similar to the second experiment with a modification that

the resistivity of the lower half-space of the tri-axial anisotropic is rotated by 45o . The

sensitivity plots for this experiment are shown in Fig. 4.12. The behavior and magnitude
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Fig. 4.9 The figure shows the models used for sensitivity analysis. On the extreme left refer-
ence model is shown. Further the perturbed models are shown by varying the resistivity
values by 5 % for x, y and z-directions respectively in the second layer. The above case is
shown for TTI 0o (tri-axial anisotropic model). However we also perform the sensitivity
analysis for TTI 22.5o , TTI 45o , TTI 67.5o , and TTI 90o . For all the cases the perturbation
factor is kept constant at 5 %.

0 50 100 150 200 250 300
Distance from Source (m) 

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 D
er

iv
at

iv
es

 w
.r.

t 
x,

 y
 &

 z
 

1st Expt : Normalized Derivatives (No Rotation)
Derivative X Derivative Y Derivative Z

Fig. 4.10 Sensitivity curves of simulated DC resistivity data along x-direction with respect
to the three principal resistivities (ρxx ,ρy y ,ρzz) for the reference and perturbed models
shown in Fig. 4.9.
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Fig. 4.11 Sensitivity curves of simulated DC resistivity data along x-direction with respect
to the three principal resistivities (ρxx ,ρy y ,ρzz) for the reference and perturbed models
obtained after the rotation of principal symmetry axis by 22.5o .

of sensitivity values are similar to the 22.5o case; however, if we compare the previous and

this experiment results, the most significant change is in the reduction in sensitivity of

simulated data to ρxx compared to other two parameters. The next experiment is done

with 67.5o rotation of the symmetry axis. The sensitivity plots for this experiment are given

in Fig. 4.13. It indicates the sensitivity of simulated data to the ρxx is almost vanishing

compared to the other previous experiment. However, the sensitivity to the other two

parameters has changed significantly less. In the last experiment, the rotation of the

symmetry axis is performed using 90o , and the sensitivity plots for this experiment are

given in Fig. 4.14. It shows more sensitivity to ρxx than 67.5o . Following our discussion in

the previous section, we expect the circular nature of this model to be between 45o and

67.5o angles. Therefore, we can argue that when the azimuthal curves for a TTI model turn

circular like, as in the case of the isotropic models, the sensitivity of DC resistivity data

observed at the surface to the principle resistivity in the direction of the profile vanishes.

However, the data still have significant constraints on the other two principal resistivities.

Therefore, only two resistivity parameters can be estimated by the observed data in such

scenarios. It needs to be stressed that it happens for a particular combination of relative
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values of principle resistive values relative to each around a specific angle of the symmetry

axis.
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Fig. 4.12 Sensitivity curves of simulated DC resistivity data along x-direction with respect
to the three principal resistivities (ρxx ,ρy y ,ρzz) for the reference and perturbed models
obtained after the rotation of principal symmetry axis by 45o .

We have also analyzed the sensitivity of simulated DC resistivity data to the angle of

the symmetry axis. For this experiment, the numerical derivative of apparent resistivity

concerning the angle of the symmetry axis is computed by perturbing the angle by 5o . The

perturbation by 5o may not be a reasonable choice around those angle values where the

sensitivity changes too sharply with the angle. The sensitivity data are simulated for angles

from 2.5o to 87.50 with a 5o interval, and the experiment results are shown in Fig. 4.15. In

general, the sensitivity to near offset is small because the first layer is not perturbed. The

plot shows varying sensitivity for different values of angles. However, the sensitivity in the

mid-offset ranges is relatively low for an angle around 50o except for other angles. It shows

a correlation to low sensitivity where the azimuthal curves represent an isotropic-like

nature.

This study suggests that DC resistivity data insensitivity generally occurs to the princi-

pal resistivity in the direction of the profile at the particular tilt angle of resistivity for the

TTI case with distinct principal resistivities. If both the principal resistivities in the plane

below the profile are smaller than the principal resistivity perpendicular to the profile, the
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Fig. 4.13 Sensitivity curves of simulated DC resistivity data along x-direction with respect
to the three principal resistivities (ρxx ,ρy y ,ρzz) for the reference and perturbed models
obtained after the rotation of principal symmetry axis by 67.5o .
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Fig. 4.14 Sensitivity curves of simulated DC resistivity data along x-direction with respect
to the three principal resistivities (ρxx ,ρy y ,ρzz) for the reference and perturbed models
obtained after the rotation of principal symmetry axis by 90o .
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Fig. 4.15 Sensitivity of apparent resistivity data perpendicular to strike direction (along
x-direction) with dip angle for reference model shown in Fig. 4.9.

data appears sensitive to all the principal resistivities. Earlier studies have suggested that

in the case of HTI media, the vertical resistivity is insensitive to the DC resistivity data.

In a nutshell, this discussion indicates that which parameter of the anisotropic will be

sensitive (or not) depends on relative values and the tilt of the principal resistivities. Since

estimating these subsurface parameters is an objective of the DC resistivity survey, it is

like a chicken and egg problem. Nonetheless, this study provides valuable information

about the sensitivity of DC resistivity data to the parameters that describe the anisotropy

of the subsurface. Even though the experiment is limited to the 2D TTI subsurface, these

primarily apply to the DC data recorded along a profile over a predominantly 2D subsur-

face resistivity distribution. However, an investigation of general anisotropy for 3D model

can be performed in the future.

4.5 Conclusion

We have analyzed the sensitivity of DC resistivity data to the anisotropic parameters of

the subsurface for a 2D model with a titled symmetry axis of anisotropy. For this case,

there can be a maximum of four parameters for specifying the anisotropy: three principal

resistivity values and one angle defining the angle of the tilted symmetry of anisotropy.

First, the azimuthal apparent resistivity plots for different models with various radial

distances from the source and the tilt angle are analyzed. The investigation revealed that

the azimuthal apparent resistivity plots are generally elliptic; however, they turn circular at

a particular angle, which depends on the relative principle resistivity values. To investigate
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whether the DC data shows the sensitivity to all four anisotropic parameters, sensitivity

experiments are conducted by calculating the derivatives of modeled data with respect

to all four parameters. The results indicate that the data generally shows sensitivity to

all four parameters. However, around the point where the azimuthal apparent resistivity

plots are circular, the sensitivity to principal resistivity along the profile vanishes. These

experiments give some insights into the anisotropic parameter that can be recovered

using DC resistivity data; however, the analysis did not consider the size, geometry, and

depth of the anomaly into account.



Chapter 5

Conclusion and future possibilities

This thesis aimed to develop a forward modeling algorithm for the 2D DC resistivity

problem. The study seeks to address the issues that occur while dealing with real-world

imaging problems, such as topography and arbitrary anisotropy, often encountered as

inevitable in practical scenarios. Literature study suggests that the mimetic finite differ-

ence method is suitable to handle such complexities as it can work with highly distorted,

non-orthogonal, rough grids, leading to a versatile algorithm. The first part of the re-

search focuses on the development of a 2D DC resistivity forward modeling algorithm

using the mimetic finite difference method. The accuracy of the developed algorithm is

demonstrated using dyke model and two-layered anisotropic models utilizing analytical

solutions. The algorithm provides accurate solutions even in high conductivity contrasts,

proving its strength. To further test the accuracy of the scheme for the topography case,

we compared it with published results in the literature because of the unavailability of

the analytical solutions. The obtained results show a good match, illustrating that the

algorithm is capable of working with complex topography. Furthermore, numerical tests

are performed with distorted grids with varying levels of distortion to test the stability

of the algorithm. The results show that the algorithm produces accurate results even in

the case of highly distorted, non-orthogonal grids, highlighting the developed algorithm’s

resilience. To understand the computational aspects of the modelling the convergence be-

havior of the BICGSTAB method is also analysed. It is noted that while the convergence for

orthogonal grids is generally smooth, the convergence for highly distorted grids exhibits a

non-smooth behaviour. Both, though, require about the same amount of iterations. As

a result, in terms of grid distortions, the MFDM technique is both stable and effective.

Other models undergo the same analysis, and similar trends are discovered. Hence, the

developed 2D DC resistivity forward modeling scheme is accurate, robust, and stable to

work with complex topography and anisotropy involving distorted, non-orthogonal grids.



80 Conclusion and future possibilities

The DC resistivity source exhibits a 3D character, leading to the variation in potential

in all three directions, even in the case of a 2D model. Therefore, a wavenumber domain

modeling strategy is adopted for efficient computations. However, an analysis of space do-

main responses calculated using various wavenumber schemes reported in the literature is

found to be erroneous at large current-potential electrode spacing, even for the half-space

model. An accurate simulation for large electrode spacing requires several wavenumber

simulations, making the wavenumber domain approach expensive. Consequently, the

present study develops an efficient and versatile 2D DC resistivity algorithm in space do-

main. A novel boundary condition is devised, utilizing the symmetric nature of potential

about the vertical plane that passes through the source position. The numerical scheme is

extensively tested and benchmarked for isotropic and anisotropic models, including very

high conductivity contrast cases utilizing analytical solutions. The simulated solutions

show an excellent match-up to very long electrode spacing. The numerical results for a

2D block model and a variable topography having tilted transversely isotropic subsurface

are also discussed to demonstrate the versatility of the developed algorithm. We also

present the performance of the proposed algorithm for computation time estimation in

comparison with a five-wavenumber scheme for a low contrast model. We compare the

computation times of a direct solver and a preconditioned BICGSTAB. In the case of an

iterative solver, it is found that the proposed scheme is about 16 times more expensive

than a five-wavenumber scheme. The suggested scheme needs 55 times more time for a

direct solver. In the case of complex models, it would prove to be efficient if wavenumbers

on the order of hundreds were required.

Geophysical investigations aim to estimate subsurface properties; therefore, it is

essential to examine the sensitivity of geophysical data to subsurface parameters. Thus,

the present study explores the sensitivity of subsurface electrical anisotropy parameters

to DC resistivity data. The azimuthal apparent resistivity curves are simulated for two-

layered models including isotropic, tri-axial anisotropic, and tilted transversely isotropic

models with different tilt angles of the symmetry axis. For all anisotropic cases, the curves

are mostly found to be elliptic, except for a few combinations of principal resistivity

values around a particular tilt angle of the symmetry axis where the curves turn out to be

circular. These patterns inspire us to perform a sensitivity study of the 2D DC resistivity

data with respect to model parameters as three principal resistivities and tilt angle of the

anisotropy symmetry axis. It is found that the 2D DC resistivity data is sensitive to all the

four anisotropic parameters mentioned above, except for the case where the azimuthal

apparent resistivity curves turn out to be circular where the sensitivity to the principal

resistivity along the profile direction vanishes.
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As a future work, the developed forward modeling algorithm can be extended to a 2D

DC resistivity inversion algorithm for deterministic and/or stochastic algorithms. Since

the forward modeling part can handle anisotropy and complex topography, it becomes

a suitable candidate for the inversion of DC resistivity data where complex topography

and anisotropic character are present in the subsurface. The applicability of the mimetic

finite difference method in a trans-dimensional Bayesian inversion workflow is also a

valuable aspect. The finite-difference method has an issue with the trans-dimensional

Bayesian scheme because the cell nodes’ locations are randomly disrupted in space

during optimization. It is difficult for the conventional finite-difference methods to

handle such random perturbations. Although finite-element methods are versatile to

handle random grids, but they are more sensitive to grid coarsening/refinement than the

finite-difference approach. Additionally, the trans-dimensional Bayesian approach needs

hundreds of thousands of iterations to compute the responses of models that are randomly

perturbed. As a result, the mesh regeneration becomes necessary. And the finite element

methods’ sensitivity to grid refinement may pose a challenging issue. Consequently, the

mimetic finite difference method is a viable option because of its capacity to handle

non-orthogonal grids and comparatively lower sensitivity to grid refining. Hence, the

developed algorithm can be a good choice for developing a 2D DC resistivity inversion

algorithm. Likewise, 3D modeling and inversion using the mimetic finite difference

method is another area of future extension of the present work.
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[49] Gündoğdu, N. Y. and Candansayar, M. E. (2018). Three-dimensional regularized inver-
sion of DC resistivity data with different stabilizing functionals. Geophysics, 83(6):E399–
E407.

[50] Günther, T. (2004). Inversion methods and resolution analysis for the 2D/3D recon-
struction of resistivity structures from DC measurements. PhD thesis, Freiberg University
of Mining and Technology.

[51] Günther, T., Rücker, C., and Spitzer, K. (2006). Three-dimensional modelling and
inversion of DC resistivity data incorporating topography—II. Inversion. Geophysical
Journal International, 166(2):506–517.

[52] Gustafson, K. and Abe, T. (1998). The third boundary condition—was it robin’s? The
Mathematical Intelligencer, 20:63–71.

[53] Habberjam, G. (1972). The effects of anisotropy on square array resistivity measure-
ments. Geophysical prospecting, 20(2):249–266.

[54] Habberjam, G. (1975). Apparent resistivity, anisotropy and strike measurements.
Geophysical prospecting, 23(2):211–247.

[55] Hauck, C., Mühll, D. V., and Maurer, H. (2003). Using DC resistivity tomography to
detect and characterize mountain permafrost. Geophysical prospecting, 51(4):273–284.

[56] Herwanger, J., Pain, C., Binley, A., De Oliveira, C., and Worthington, M. (2004).
Anisotropic resistivity tomography. Geophysical Journal International, 158(2):409–425.

[57] Hou, J., Mallan, R. K., and Torres-Verdín, C. (2006). Finite-difference simulation
of borehole EM measurements in 3D anisotropic media using coupled scalar-vector
potentials. Geophysics, 71(5):G225–G233.

[58] Hu, D., Tezkan, B., Yue, M., Yang, X., Wu, X., and Zhou, G. (2021). Prediction of
conductive anomalies ahead of the tunnel by the 3D-resitivity forward modeling in the
whole space. Geofluids, 2021:1–12.



References 87

[59] Hvoždara, M. and Kaikkonen, P. (1998). An integral equations solution of the forward
DC geoelectric problem for a 3-D body of inhomogeneous conductivity buried in a
halfspace. Journal of Applied Geophysics, 39(2):95–107.

[60] Hyman, J., Morel, J., Shashkov, M., and Steinberg, S. (2002). Mimetic finite difference
methods for diffusion equations. Computational Geosciences, 6:333–352.

[61] Hyman, J., Shashkov, M., and Steinberg, S. (1997). The numerical solution of diffusion
problems in strongly heterogeneous non-isotropic materials. Journal of Computational
Physics, 132(1):130–148.

[62] Hyman, J., Shashkov, M., and Steinberg, S. (2001). The effect of inner products for
discrete vector fields on the accuracy of mimetic finite difference methods. Computers
& Mathematics with Applications, 42(12):1527–1547.

[63] Hyman, J. M., Knapp, R. J., and Scovel, J. C. (1992). High order finite volume ap-
proximations of differential operators on nonuniform grids. Physica D: Nonlinear
Phenomena, 60(1-4):112–138.

[64] Hyman, J. M. and Shashkov, M. (1997a). Adjoint operators for the natural discretiza-
tions of the divergence, gradient and curl on logically rectangular grids. Applied Nu-
merical Mathematics, 25(4):413–442.

[65] Hyman, J. M. and Shashkov, M. (1997b). Natural discretizations for the divergence,
gradient, and curl on logically rectangular grids. Computers & Mathematics with Appli-
cations, 33(4):81–104.

[66] Hyman, J. M. and Shashkov, M. (1998). Approximation of boundary conditions
for mimetic finite-difference methods. Computers & Mathematics with Applications,
36(5):79–99.

[67] Hyman, J. M. and Shashkov, M. (1999a). Mimetic discretizations for maxwell’s equa-
tions. Journal of Computational Physics, 151(2):881–909.

[68] Hyman, J. M. and Shashkov, M. (1999b). The orthogonal decomposition theorems for
mimetic finite difference methods. SIAM Journal on Numerical Analysis, 36(3):788–818.

[69] Hyodo, D., Goto, T.-n., Mikada, H., and Takekawa, J. (2013). Pseudo resistivity cross
section imaging using VLF-EM data. In Proceedings of the 11th SEGJ International Sym-
posium, Yokohama, Japan, 18-21 November 2013, pages 76–79. Society of Exploration
Geophysicists of Japan.

[70] Jahandari, H. and Bihlo, A. (2021). Forward modelling of geophysical electromag-
netic data on unstructured grids using an adaptive mimetic finite-difference method.
Computational Geosciences, 25:1083–1104.

[71] Jahandari, H., Bihlo, A., and Donzelli, F. (2021). Forward modelling of gravity data
on unstructured grids using an adaptive mimetic finite-difference method. Journal of
Applied Geophysics, 190:104340.



88 References

[72] Jayawickreme, D. H., Van Dam, R. L., and Hyndman, D. W. (2008). Subsurface imaging
of vegetation, climate, and root-zone moisture interactions. Geophysical research letters,
35(18).

[73] Jianfeng, Z. and Tielin, L. (2002). Elastic wave modelling in 3D heterogeneous media:
3D grid method. Geophysical Journal International, 150(3):780–799.

[74] Jing-Tian, T., Wang, F.-Y., and Ren, Z.-Y. (2010). 2.5-d DC resistivity modeling by
adaptive finite-element method with unstructured triangulation. Chinese Journal of
Geophysics, 53(3):708–716.

[75] Kana, J. D., Djongyang, N., Raïdandi, D., Nouck, P. N., and Dadjé, A. (2015). A review
of geophysical methods for geothermal exploration. Renewable and Sustainable Energy
Reviews, 44:87–95.

[76] Karous, M. and Pernu, T. (1985). Combined sounding-profiling resistivity measure-
ments with the three-electrode arrays. Geophysical Prospecting, 33(3):447–459.

[77] Kim, J.-H., Yi, M.-J., Cho, S.-J., Son, J.-S., and Song, W.-K. (2006). Anisotropic crosshole
resistivity tomography for ground safety analysis of a high-storied building over an
abandoned mine. Environmental and Engineering Geophysics, 11(4):225–235.

[78] Knödel, K., Lange, G., Voigt, H.-J., Seidel, K., and Lange, G. (2007). Direct current
resistivity methods. Environmental geology: handbook of field methods and case studies,
pages 205–237.

[79] Kuznetsov, Y., Lipnikov, K., and Shashkov, M. (2004). The mimetic finite difference
method on polygonal meshes for diffusion-type problems. Computational Geosciences,
8:301–324.

[80] Lashkaripour, G. R. (2003). An investigation of groundwater condition by geoelectrical
resistivity method: A case study in korin aquifer, southeast Iran. Journal of Spatial
Hydrology, 3(2).

[81] Li, J.-J., Yan, J.-B., and Huang, X.-Y. (2015a). Precision of meshfree methods and
application to forward modeling of two-dimensional electromagnetic sources. Applied
Geophysics, 12(4):503–515.

[82] Li, P. and Stagnitti, F. (2004). Direct current electric potential in an anisotropic half-
space with vertical contact containing a conductive 3D body. Mathematical Problems
in Engineering, 2004(1):63–77.

[83] Li, P. and Uren, N. (1997). Analytical solution for the point source potential in an
anisotropic 3-D half-space I: two-horizontal-layer case. Mathematical and Computer
Modelling, 26(5):9–27.

[84] Li, S., Liu, B., Nie, L., Liu, Z., Tian, M., Wang, S., Su, M., and Guo, Q. (2015b). Detecting
and monitoring of water inrush in tunnels and coal mines using direct current resistivity
method: a review. Journal of Rock Mechanics and Geotechnical Engineering, 7(4):469–
478.



References 89

[85] Li, Y. and Pek, J. (2008). Adaptive finite element modelling of two-dimensional
magnetotelluric fields in general anisotropic media. Geophysical Journal International,
175(3):942–954.

[86] Li, Y. and Spitzer, K. (2002). Three-dimensional DC resistivity forward modelling using
finite elements in comparison with finite-difference solutions. Geophysical Journal
International, 151(3):924–934.

[87] Li, Y. and Spitzer, K. (2005). Finite element resistivity modelling for three-dimensional
structures with arbitrary anisotropy. Physics of the Earth and Planetary Interiors, 150(1-
3):15–27.

[88] Lipnikov, K., Morel, J., and Shashkov, M. (2004). Mimetic finite difference meth-
ods for diffusion equations on non-orthogonal non-conformal meshes. Journal of
Computational Physics, 199(2):589–597.

[89] Loke, M. (2000). Topographic modelling in electrical imaging inversion. In EAGE
62nd Conf. Tech. Exhib. Glas. Scotland, pages 62–65.

[90] Loke, M., Chambers, J., Rucker, D., Kuras, O., and Wilkinson, P. (2013). Recent
developments in the direct-current geoelectrical imaging method. Journal of Applied
Geophysics, 95:135–156.

[91] Lowry, T., Allen, M., and Shive, P. N. (1989). Singularity removal: A refinement of
resistivity modeling techniques. Geophysics, 54(6):766–774.

[92] Lüling, M. G. (2013). The paradox of anisotropy in electric logging: A simple proof
and extensions to other physics domains. Geophysics, 78(1):W1–W8.

[93] Ma, C., Liu, J., Guo, Z., Guo, R., and Liu, H. (2018). An element-free galerkin method
based on adaptive background cells for 2.5 D DC resistivity modeling. In SEG Interna-
tional Exposition and Annual Meeting, pages SEG–2018. SEG.

[94] Maillet, R. and Doll, H. (1932). Sur un théorème relatif aux milieux électrique-
ment anisotropes et ses applications à la prospection électrique en courant continu.
Ergänzungshefte für angewandte Geophysik, 3:109–124.

[95] Margolin, L. G., Shashkov, M., and Smolarkiewicz, P. K. (2000). A discrete operator
calculus for finite difference approximations. Computer methods in applied mechanics
and engineering, 187(3-4):365–383.

[96] Martínez, J. L. F., Gonzalo, E. G., Álvarez, J. P. F., Kuzma, H. A., and Pérez, C. O. M.
(2010). Pso: A powerful algorithm to solve geophysical inverse problems: Application
to a 1D-DC resistivity case. Journal of Applied Geophysics, 71(1):13–25.

[97] Matias, M. S. (2002). Square array anisotropy measurements and resistivity sounding
interpretation. Journal of Applied Geophysics, 49(3):185–194.

[98] McGillivray, P. R. (1992). Forward modeling and inversion of DC resistivity and MMR
data. PhD thesis, University of British Columbia.



90 References

[99] Moran, J. and Gianzero, S. (1979). Effects of formation anisotropy on resistivity-
logging measurements. Geophysics, 44(7):1266–1286.

[100] Morel, J., Hall, M. L., and Shashkov, M. J. (2001). A local support-operators diffu-
sion discretization scheme for hexahedral meshes. Journal of Computational Physics,
170(1):338–372.

[101] Morel, J., Roberts, R. M., and Shashkov, M. J. (1998). A local support-operators
diffusion discretization scheme for quadrilateralr-zmeshes. Journal of Computational
Physics, 144(1):17–51.

[102] Mukesh, M., Sarkar, K., and Singh, U. (2021). Joint inversion of MT and DC resistivity
using meta-heuristic algorithm with gibb’s sampler. In 82nd EAGE Annual Conference &
Exhibition, volume 2021, pages 1–5. European Association of Geoscientists & Engineers.

[103] Niklas, L. and Pedersen, L. B. (2004). Evidence of electrical anisotropy in limestone
formations using the RMT technique. Geophysics, 69(4):909–916.

[104] Oldenburg, D. and Pratt, D. (2007). Geophysical inversion for mineral exploration:
A decade of progress in theory and practice. In Proceedings of exploration, volume 7,
pages 61–95.

[105] Oldenburg, D. W., Li, Y., and Ellis, R. G. (1997). Inversion of geophysical data over a
copper gold porphyry deposit; a case history for mt. milligan. Geophysics, 62(5):1419–
1431.

[106] Osiadacz, A. J. and Yedroudj, M. (1989). A comparison of a finite element method
and a finite difference method for transient simulation of a gas pipeline. Applied
mathematical modelling, 13(2):79–85.

[107] Ozegin, K., Oseghale, A., Audu, A., and Ofotokun, E. (2013). An application of the
2–D DC resistivity method in building site investigation—a case study: Southsouth
nigeria. Journal of Environment and Earth Science, 3(2):108–112.

[108] Pain, C. C., Herwanger, J. V., Saunders, J. H., Worthington, M. H., and de Oliveira,
C. R. (2003). Anisotropic resistivity inversion. Inverse Problems, 19(5):1081.

[109] Pan, K. and Tang, J. (2014). 2.5-d and 3-D DC resistivity modelling using an extrapo-
lation cascadic multigrid method. Geophysical Journal International, 197(3):1459–1470.

[110] PAN, K.-J., WANG, W.-J., TAN, Y.-J., and CAO, J.-X. (2009). Geophysical linear inver-
sion based on hybrid differential evolution algorithm. Chinese Journal of Geophysics,
52(12):3083–3090.

[111] Pawlik, Ł. and Kasprzak, M. (2018). Regolith properties under trees and the biome-
chanical effects caused by tree root systems as recognized by electrical resistivity to-
mography (ERT). Geomorphology, 300:1–12.

[112] Penz, S., Chauris, H., Donno, D., and Mehl, C. (2013). Resistivity modelling with
topography. Geophysical Journal International, 194(3):1486–1497.



References 91

[113] Pidlisecky, A. and Knight, R. (2008). Fw2_5d: A MATLAB 2.5-D electrical resistivity
modeling code. Computers & Geosciences, 34(12):1645–1654.

[114] Pridmore, D., Hohmann, G., Ward, S., and Sill, W. (1981). An investigation of finite-
element modeling for electrical and electromagnetic data in three dimensions. Geo-
physics, 46(7):1009–1024.

[115] Queralt, P., Pous, J., and Marcuello, A. (1991). 2-D resistivity modeling: An approach
to arrays parallel to the strike direction. Geophysics, 56(7):941–950.

[116] Ren, Z., Qiu, L., Tang, J., Wu, X., Xiao, X., and Zhou, Z. (2018). 3-D direct current
resistivity anisotropic modelling by goal-oriented adaptive finite element methods.
Geophysical Journal International, 212(1):76–87.

[117] Ren, Z. and Tang, J. (2014). A goal-oriented adaptive finite-element approach for
multi-electrode resistivity system. Geophysical Journal International, 199(1):136–145.

[118] Rojas, O., Day, S., Castillo, J., and Dalguer, L. A. (2008). Modelling of rupture propa-
gation using high-order mimetic finite differences. Geophysical Journal International,
172(2):631–650.

[119] Rojas, S., Muga, I., and Pardo, D. (2016). A quadrature-free method for simulation
and inversion of 1.5 D direct current (DC) borehole measurements. Computational
Geosciences, 20:1301–1318.

[120] Rücker, C., Günther, T., and Spitzer, K. (2006). Three-dimensional modelling and
inversion of dc resistivity data incorporating topography—I. Modelling. Geophysical
Journal International, 166(2):495–505.

[121] Rühlow, A., Tezkan, B., and de Lima, O. L. (1998). DC resistivity and time-domain
induced polarization survey for the study of ground-water contamination in bahia,
brazil. In 4th EEGS Meeting, pages cp–43. European Association of Geoscientists &
Engineers.

[122] Samarskii, A., Tishkin, V., Favorskii, A., and Shashkov, M. Y. (1981). Operational
finite-difference schemes. Differential Equations, 17(7):854–862.

[123] Sen, M. K., Bhattacharya, B. B., and Stoffa, P. L. (1993). Nonlinear inversion of
resistivity sounding data. Geophysics, 58(4):496–507.

[124] Sethi, H., Shragge, J., and Tsvankin, I. (2021). Mimetic finite-difference coupled-
domain solver for anisotropic media. Geophysics, 86(1):T45–T59.

[125] Shahriari, M., Rojas, S., Pardo, D., Rodríguez-Rozas, A., Bakr, S. A., Calo, V. M., and
Muga, I. (2018). A numerical 1.5 D method for the rapid simulation of geophysical
resistivity measurements. Geosciences, 8(6):225.

[126] Sharma, S. P. (2012). VFSARES—a very fast simulated annealing FORTRAN program
for interpretation of 1-D DC resistivity sounding data from various electrode arrays.
Computers & Geosciences, 42:177–188.



92 References

[127] Shashkov, M. (2018). Conservative finite-difference methods on general grids. CRC
press.

[128] Shashkov, M. and Steinberg, S. (1995). Support-operator finite-difference algorithms
for general elliptic problems. Journal of Computational Physics, 118(1):131–151.

[129] Shashkov, M. and Steinberg, S. (1996). Solving diffusion equations with rough
coefficients in rough grids. Journal of Computational Physics, 129(2):383–405.

[130] Simpson, M. and Clement, T. (2003). Comparison of finite difference and finite
element solutions to the variably saturated flow equation. Journal of hydrology, 270(1-
2):49–64.

[131] Singh, A., Mishra, P. K., and Sharma, S. (2019). 2D cooperative inversion of di-
rect current resistivity and gravity data: A case study of uranium bearing target rock.
Geophysical Prospecting, 67(3):696–708.

[132] Singh, U., Tiwari, R., and Singh, S. (2010). Inversion of 2-D DC resistivity data using
rapid optimization and minimal complexity neural network. Nonlinear Processes in
Geophysics, 17(1):65–76.

[133] Singh, U. K., Tiwari, R. K., and Singh, S. (2013). Neural network modeling and
prediction of resistivity structures using VES schlumberger data over a geothermal area.
Computers & Geosciences, 52:246–257.

[134] Sirota, D., Shragge, J., Krahenbuhl, R., Swidinsky, A., Yalo, N., and Bradford, J. (2022).
Development and validation of a low-cost direct current resistivity meter for humani-
tarian geophysics applications. Geophysics, 87(1):WA1–WA14.

[135] Spitzer, K. (1995). A 3-D finite-difference algorithm for DC resistivity modelling
using conjugate gradient methods. Geophysical Journal International, 123(3):903–914.

[136] Srigutomo, W., Anwar, H., Agustine, E., and Mahardika, H. (2019). Three-
dimensional DC resistivity modeling using galerkin finite element method composed
by tetrahedral elements. Journal of Engineering & Technological Sciences, 51(4).

[137] Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. Journal of global optimization, 11:341–
359.

[138] Sun, Z., Sun, J., and Zhang, D. (2009). 2D DC electric field numerical modeling
including surface topography using coordinate transformation method. Journal of Jilin
University: Earth Science Edition, 39(3):528–534.

[139] Suryavanshi, D. and Dehiya, R. (2023). A mimetic finite-difference method for
two-dimensional dc resistivity modeling. Mathematical Geosciences, pages 1–28.

[140] Tang, J., Wang, F., Xiao, X., and Zhang, L. (2011). 2.5-D DC resistivity modeling
considering flexibility and accuracy. Journal of Earth Science, 22(1):124–130.

[141] Tao, S., Yun, L., Yun, W., and Bin, L. (2021). Numerical modeling of anisotropy
paradoxes in direct current resistivity and time-domain induced polarization methods.
Applied Geophysics, 18(1):117–127.



References 93

[142] Taylor, R. W. and Fleming, A. H. (1988). Characterizing jointed systems by azimuthal
resistivity surveys. Groundwater, 26(4):464–474.

[143] Telford, W. M., Geldart, L. P., and Sheriff, R. E. (1990). Applied Geophysics. Cambridge
university press.

[144] Tsourlos, P. I., Szymanski, J. E., and Tsokas, G. N. (1999). The effect of terrain
topography on commonly used resistivity arrays. Geophysics, 64(5):1357–1363.

[145] Ulugergerli, E. U. (2011). Two dimensional combined inversion of short-and long-
normal dc resistivity well log data. Journal of Applied Geophysics, 73(2):130–138.

[146] Vachiratienchai, C., Boonchaisuk, S., and Siripunvaraporn, W. (2010). A hybrid finite
difference–finite element method to incorporate topography for 2D direct current (DC)
resistivity modeling. Physics of the Earth and Planetary Interiors, 183(3-4):426–434.

[147] Vachiratienchai, C. and Siripunvaraporn, W. (2013). An efficient inversion for two-
dimensional direct current resistivity surveys based on the hybrid finite difference–
finite element method. Physics of the Earth and Planetary Interiors, 215:1–11.

[148] Varfinezhad, R. and Oskooi, B. (2020). 2D DC resistivity forward modeling based on
the integral equation method and a comparison with the res2dmod results. Journal of
the Earth and Space Physics, 45(4):43.

[149] Verma, S. and Sharma, S. (1993). Resolution of thin layers using joint-inversion of
electromagnetic and direct current resistivity sounding data. Journal of electromagnetic
waves and applications, 7(3):443–479.

[150] Wait, J. R. (1990). Current flow into a three-dimensionally anisotropic conductor.
Radio Science, 25(5):689–694.

[151] Wang, T. and Fang, S. (2001). 3-D electromagnetic anisotropy modeling using finite
differences. Geophysics, 66(5):1386–1398.

[152] Wang, W., Wu, X., and Spitzer, K. (2013). Three-dimensional DC anisotropic re-
sistivity modelling using finite elements on unstructured grids. Geophysical Journal
International, 193(2):734–746.

[153] Watson, K. A. and Barker, R. D. (1999). Differentiating anisotropy and lateral effects
using azimuthal resistivity offset wenner soundings. Geophysics, 64(3):739–745.

[154] Wiese, T., Greenhalgh, S., and Marescot, L. (2009). DC resistivity sensitivity patterns
for tilted transversely isotropic media. Near Surface Geophysics, 7(2):125–139.

[155] Wilhelms, W., Schwarzbach, C., Caudillo-Mata, L. A., and Haber, E. (2018). The
mimetic multiscale method for maxwell’s equations. Geophysics, 83(5):E259–E276.

[156] Wu, X., Xiao, Y., Qi, C., and Wang, T. (2003). Computations of secondary potential for
3D DC resistivity modelling using an incomplete choleski conjugate-gradient method.
Geophysical Prospecting, 51(6):567–577.



94 References

[157] Xu, S.-z., Duan, B.-c., and Zhang, D.-h. (2000). Selection of the wavenumbers k using
an optimization method for the inverse fourier transform in 2.5 D electrical modelling.
Geophysical Prospecting, 48(5):789–796.

[158] Xu, S.-z., Gao, Z., and Zhao, S.-k. (1988). An integral formulation for three-
dimensional terrain modeling for resistivity surveys. Geophysics, 53(4):546–552.

[159] Yan, B., Li, Y., and Liu, Y. (2016). Adaptive finite element modeling of direct cur-
rent resistivity in 2-D generally anisotropic structures. Journal of Applied Geophysics,
130:169–176.

[160] Yang, J., Liu, Y., and Wu, X. (2017). 3-D DC resistivity modelling with arbitrary long
electrode sources using finite element method on unstructured grids. Geophysical
Journal International, 211(2):1162–1176.

[161] Yang, Z., Yin, C., Ren, X., and Cao, C. Q. X. (2018). Research on DC resistivity for
an arbitrarily anisotropic earth using circular scanning measurement. ASEG Extended
Abstracts, 2018(1):1–7.

[162] Yaoguo, L. and Oldenburg, D. W. (1994). Inversion of 3-D DC resistivity data using
an approximate inverse mapping. Geophysical journal international, 116(3):527–537.

[163] Yi, M.-J., Kim, J.-H., and Son, J.-S. (2011). Three-dimensional anisotropic inversion
of resistivity tomography data in an abandoned mine area. Exploration Geophysics,
42(1):7–17.

[164] Yin, C. and Maurer, H.-M. (2001). Electromagnetic induction in a layered earth with
arbitrary anisotropy. Geophysics, 66(5):1405–1416.

[165] Yin, C. and Weidelt, P. (1999). Geoelectrical fields in a layered earth with arbitrary
anisotropy. Geophysics, 64(2):426–434.

[166] Yuan, Y., Qiang, J., Tang, J., Ren, Z., and Xiao, X. (2016). 2.5 D direct-current resistivity
forward modelling and inversion by finite-element–infinite-element coupled method.
Geophysical Prospecting, 64(3):767–779.

[167] Zhan, Q., Fang, Y., Zhuang, M., Yuan, M., and Liu, Q. H. (2020). Stabilized DG-PSTD
method with nonconformal meshes for electromagnetic waves. IEEE Transactions on
Antennas and Propagation, 68(6):4714–4726.

[168] Zhao, S. and Yedlin, M. J. (1996). Some refinements on the finite-difference method
for 3-D dc resistivity modeling. Geophysics, 61(5):1301–1307.

[169] Zhdanov, M. S., Lee, S. K., and Yoshioka, K. (2006). Integral equation method for
3D modeling of electromagnetic fields in complex structures with inhomogeneous
background conductivity. Geophysics, 71(6):G333–G345.

[170] Zhou, B., Greenhalgh, M., and Greenhalgh, S. (2009). 2.5-D/3-D resistivity mod-
elling in anisotropic media using Gaussian quadrature grids. Geophysical Journal
International, 176(1):63–80.



References 95

[171] Zhou, Z. and Keller, S. M. (2019). The application of least-squares finite-element
method to simulate wave propagation in bianisotropic media. IEEE Transactions on
Antennas and Propagation, 67(4):2574–2582.

[172] Zienkiewicz, O. and Cheung, Y. (1965). Finite elements in the solution of field
problems. The Engineer, 220(5722):507–510.

[173] Zohdy, A. A. (1969). A new method for differential resistivity sounding. Geophysics,
34(6):924–943.





Appendix A

Discretised form of differential operators

for mimetic scheme

Without loss of generality and to keep the notations simple, let us consider that we are

trying to discretise a problem of this form : ∇ · [T2D (x, z)∇u(x,k, z)]. The z-direction is

taken positive downwards. The discretised form of the differential operator in Eq. (2.11),

using the mimetic finite difference method can be given as,

∇· [T2D ∇u]i , j =
zi+1, j − zi , j+1

2CVi , j
∗ {σxx (i+1, j+1)[((zi+2, j+1 − zi+1, j+2)ui+1, j+1+

(zi+1, j+2 − zi , j+1)ui , j+1 + (zi , j+1 − zi+1, j )ui , j+
(zi+1, j − zi+2, j+1)ui+1, j )/(2NVi+1, j+1)]−
σxz (i+1, j+1)[((xi+1, j+2 −xi+2, j+1)ui+1, j+1+

(xi , j+1 −xi+1, j+2)ui , j+1 + (xi+1, j −xi , j+1)ui , j+
(xi+2, j+1 −xi+1, j )ui+1, j )/(2NVi+1, j+1)]−

σxx (i , j )[((zi+1, j − zi , j+1)ui , j + (zi , j+1 − zi−1, j )ui−1, j+
(zi−1, j − zi , j−1)ui−1, j−1 + (zi , j−1 − zi+1, j )ui , j−1)/(2NVi , j )]+

σxz (i , j )[((xi , j+1 −xi+1, j )ui , j + (xi−1, j −xi , j+1)ui−1, j+
(xi , j−1 −xi−1, j )ui−1, j−1 + (xi+1, j −xi , j−1)ui , j−1)/(2NVi , j )]}−
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zi , j − zi+1, j+1

2CVi , j
∗ {σxx (i , j+1)[((zi+1, j+1 − zi , j+2)ui , j+1+

(zi , j+2 − zi−1, j+1)ui−1, j+1 + (zi−1, j+1 − zi , j )ui−1, j+
(zi , j − zi+1, j+1)ui , j )/(2NVi , j+1)]−

σxz (i , j+1)[((xi , j+2 −xi+1, j+1)ui , j+1 + (xi−1, j+1 −xi , j+2)ui−1, j+1+
(xi , j −xi−1, j+1)ui−1, j + (xi+1, j+1 −xi , j )ui , j )/(2NVi , j+1)]−
σxx (i+1, j [((zi+2, j − zi+1, j+1)ui+1, j + (zi+1, j+1 − zi , j )ui , j+

(zi , j − zi+1, j−1)ui , j−1 + (zi+1, j−1 − zi+2, j )ui+1, j−1)/(2NVi+1, j )]+
σxz (i+1, j [((xi+1, j+1 −xi+2, j )ui+1, j + (xi , j −xi+1, j+1)ui , j+

(xi+1, j−1 −xi , j )ui , j−1 + (xi+2, j −xi+1, j−1)ui+1, j−1)/(2NVi+1, j )]}−
xi , j+1 −xi+1, j

2CVi , j
∗ {σxz (i+1, j+1)[((zi+2, j+1 − zi+1, j+2)ui+1, j+1+

(zi+1, j+2 − zi , j+1)ui , j+1 + (zi , j+1 − zi+1, j )ui , j+
(zi+1, j − zi+2, j+1)ui+1, j )/(2NVi+1, j+1)]−
σzz (i+1, j+1)[((xi+1, j+2 −xi+2, j+1)ui+1, j+1+

(xi , j+1 −xi+1, j+2)ui , j+1 + (xi+1, j −xi , j+1)ui , j+
(xi+2, j+1 −xi+1, j )ui+1, j )/(2NVi+1, j+1)]−

σxz (i , j )[((zi+1, j − zi , j+1)ui , j + (zi , j+1 − zi−1, j )ui−1, j+
(zi−1, j − zi , j−1)ui−1, j−1 + (zi , j−1 − zi+1, j )ui , j−1)/(2NVi , j )]+

σzz (i , j )[((xi , j+1 −xi+1, j )ui , j + (xi−1, j −xi , j+1)ui−1, j+
(xi , j−1 −xi−1, j )ui−1, j−1 + (xi+1, j −xi , j−1)ui , j−1)/(2NVi , j )]}−

xi+1, j+1 −xi , j

2CVi , j
∗ {σxz (i , j+1)[((zi+1, j+1 − zi , j+2)ui , j+1+

(zi , j+2 − zi−1, j+1)ui−1, j+1 + (zi−1, j+1 − zi , j )ui−1, j+
(zi , j − zi+1, j+1)ui , j )/(2NVi , j+1)]−

σzz (i , j+1)[((xi , j+2 −xi+1, j+1)ui , j+1 + (xi−1, j+1 −xi , j+2)ui−1, j+1+
(xi , j −xi−1, j+1)ui−1, j + (xi+1, j+1 −xi , j )ui , j )/(2NVi , j+1)]−
σxz (i+1, j [((zi+2, j − zi+1, j+1)ui+1, j + (zi+1, j+1 − zi , j )ui , j+

(zi , j − zi+1, j−1)ui , j−1 + (zi+1, j−1 − zi+2, j )ui+1, j−1)/(2NVi+1, j )]+
σzz (i+1, j [((xi+1, j+1 −xi+2, j )ui+1, j + (xi , j −xi+1, j+1)ui , j+

(xi+1, j−1 −xi , j )ui , j−1 + (xi+2, j −xi+1, j−1)ui+1, j−1)/(2NVi+1, j )]}, (A.1)
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where CVi , j is the area of the cell (i , j ) and NVi , j is the nodal volume as described in

the main text.

The Robin boundary conditions as given in Eq. (2.16) can be approximated using the

mimetic finite difference method as follows:

[(σxx (i ,1)(
zi ,2 − zi+1,1

2
ui ,1 +

zi−1,1 − zi ,2

2
ui−1,1+

zi ,1 − zi−1,1

2
ui−1,0 +

zi+1,1 − zi ,1

2
ui ,0)/NVi ,1

−σxz (i ,1)(
xi ,2 −xi+1,1

2
ui ,1 +

xi−1,1 −xi ,2

2
ui−1,1+

xi ,1 −xi−1,1

2
ui−1,0 +

xi+1,1 −xi ,1

2
ui ,0)/NVi ,1

+σxx (i+1,1)(
zi+1,2 − zi+2,1

2
u1+1,1 +

zi ,1 − zi+1,2

2
ui ,1+

z1+1,1 − zi ,1

2
ui ,0 +

zi+2,1 − zi+1,1

2
ui+1,0)/NVi+1,1

−σxz (i+1,1)(
xi+1,2 −xi+2,1

2
ui+1,1 +

xi ,1 −xi+1,1

2
ui ,1+

xi+1,1 −xi ,1

2
ui ,0 +

xi+2,1 −xi+1,1

2
ui+1,0)/NVi+1,1]

zi ,1 − zi+1,1

2l xi ,1

− [(σxz (i ,1)(
zi+1,1 − zi ,2

2
ui ,1 +

zi ,2 − zi−1,1

2
ui−1,1+

zi−1,1 − zi ,1

2
ui−1,0 +

zi ,1 − zi+1,1

2
ui ,0)/NVi ,1

−σzz (i ,1)(
xi ,2 −xi+1,1

2
ui ,1 +

xi−1,1 −xi ,2

2
ui−1,1+

xi ,1 −xi−1,1

2
ui−1,0 +

xi+1,1 −xi ,1

2
ui ,0)/NVi ,1

+σxz (i+1,1)(
zi+2,1 − zi+1,2

2
u1+1,1 +

zi+1,2 − zi ,1

2
ui ,1+

zi ,1 − z1+1,1

2
ui ,0 +

zi+1,1 − zi+2,1

2
ui+1,0)/NVi+1,1

−σzz (i+1,1)(
xi+1,2 −xi+2,1

2
ui+1,1 +

xi ,1 −xi+1,1

2
ui ,1+

xi+1,1 −xi ,1

2
ui ,0 +

xi+2,1 −xi+1,1

2
ui+1,0)/NVi+1,1]

zi ,1 − zi+1,1

2l yi ,1

η(
xi ,1 +xi+1,1

2
,

zi ,1 + zi+1,1

2
) ui ,0 =µ(

xi ,1 +xi+1,1

2
,

zi ,1 + zi+1,1

2
) (A.2)





Appendix B

Subsurface anisotropy & DC Resistivity

data for resistive overburden

B.1 Resistive overburden

This section consists of models where the 2nd layer is more conductive compared to the

overburden layer. The first model shown in Fig. B.1 is an isotropic two-layer model, with

the resistivity of the first layer and second layer given by 100Ωm and 10Ωm respectively.

The thickness of the first layer is kept as 30 m shown in Fig. B.1. The azimuthal apparent

resistivity curves are obtained at varying radial distance from the source location, at radial

distances of 5m,10m,25m,50m,75m,100m, and 110m from the source. The apparent

resistivity curves are shown in Fig. B.2. It is seen that the curves obtained at all the radial

distances are concentric circles with varying radius dependent on the apparent resistivity

that is being detected. Since the medium is isotropic, conductivity/resistivity values

are same in all the directions and hence the curves turn out to be circles, showing no

directional-bias in any particular direction. For the first 10 meters, a considerable amount

of current is flowing through the first layer, that is reflected in the values of apparent

resistivity curves for 5 m, and 10 m. At 25 m radius curve, there is a significant drop in the

apparent resistivity values, thereby indicating the passage of current through the second

layer. As we reach the radius of 100 m and 110 m from the source, it is observed that the

apparent resistivity curves get saturated and there is hardly any change seen in the values.

This is possible when the current is passing entirely through the second layer, thereby

detecting the second layer.

The second simulation is performed on a tri-axial anisotropic model shown in Fig. B.3.

The first layer is isotropic with a resistivity of 100Ωm having a thickness of 30 m, and the
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second layer has a tri-axial anisotropy with vaues 10Ωm, 5Ωm, and 2.5Ωm in the x, y

and z-directions respectively. The azimuthal apparent resistivity curves obtained for this

experiment are shown in Fig. B.4. It is clearly seen that the curves at 5 m and 10 m radius

are drawing the information of the 1st layer; inferred from the high apparent resistivity

values. And also the curves are circular thereby detecting first isotropic layer clearly. At

25 m and 50 m radius the curves are still circular but the apparent resistivity values have

dropped, thereby indicating the influence of the second layer. As we move ahead and

observe the curves at 75 m, 100 m and 110 m,it can be clearly seen that the circular nature

is lost and the curves have become elliptical in nature. This clearly shows the presence of

anisotropy in the second layer. The apparent resistivity values get saturated at 100 m and

110 m radius and there is no further change.

Fig. B.1 The figure shows a two layer isotropic model with resistive overburden of 100Ωm.
The second layer is an isotropic half-space of 10Ωm. The thickness of the first layer is kept
at 30 m. Rho x, Rho y, Rho z denote the resistivity values along the principal resistivity
directions x, y, and z-directions respectively.

The next set of simulations deals with models having varying degree of rotated anisotropy

axis in the x − z plane, referred to as TTI (tilted transverse isotropic) models. The base

case model, that is the tri-axial anisotropic model, is shown in Fig. B.3 which can also be

referred as TTI 0◦ case . Subsequent to this, TTI 22.5◦, TTI 45◦, TTI 67.5◦, and TTI 90◦ are

generated, which are shown in Fig. B.5. The previous experiments clearly suggest that

there is a saturation of current around 100 m and 110 m radial distance and the curves

show the signature of 2nd layer. Hence the apparent resistivity curves for the tri-axial

anisotropy cases (i.e TTI 0◦), and the other cases of rotation (22.5◦, 45◦, 67.5◦, and 90◦)

are obtained at 100 m and the corresponding curves are shown in Fig. B.6. It is clearly

seen that the curves obtained are elliptic in nature except for the one for 45◦, where the

curve is nearly circular. It is expected that as the radius increases, the current percolates

to deeper depths, thereby sensing the second layer of the model, which in this case is

anisotropic. Hence we expect elliptical curves at a radius of 100 m. Another feature that is
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noticed is the reversal in the direction of the major and minor-axis of the ellipses formed.

As the rotation takes place, the values of resistivity along the principal axis of resistivity

also changes. Hence we see a flip in the ellipse at the end-points of rotation, i.e at zero

degree rotation and 90◦ rotation.
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Fig. B.2 Azimuthal apparent resistivity curves obtained for the isotropic model shown in
Fig. B.1. The apparent resistivity curves are obtained at increasing radial distance from
the source from 5 m to 110 m.

Fig. B.3 The figure shows a tri-axial anisotropic model. The first layer is 30 m thick isotropic
layer with resistivity value of 100Ωm. The second layer is half-space with resistivity values
of 10Ωm, 5Ωm, and 2.5Ωm in the x, y and z-directions respectively.

The 45◦ TTI case being a special behaviour case, is further probed to understand the

behaviour of this model at different distances from the source. Hence we analyze the
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azimuthal apparent resistivity curves at varying radial distance from the source. The

model and curves are shown in Fig. B.7 (left) and (right) respectively. The curves obtained

at 5 m and 10 m bearing high values of apparent resistivity indicates the characteristics of

first isotropic layer, and thereby showing the circular nature. There is a decrease in the

apparent resistivity values for 25 m, 50 m and 75 m, which shows that the current is also

flowing through the second layer, but still the circular nature is maintained. At far offset

100 m and 110 m, where the second anisotropic layer dominates there is a slight deviation

from the circular nature of the curves.
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Fig. B.4 The figure shows the azimuthal apparent resistivity curves for tri-axial anisotropic
model shown in Fig. B.3 obtained at varying radial distances from the source.
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Fig. B.5 The image shows the various models obtained by the rotation of anisotropy axis.
On the extreme left the anisotropy axis is rotated by 22.5◦ in the x-z plane and we refer
to this model as TTI 22.5◦. Subsequently other models obtained in order are TTI 45◦, TTI
67.5◦, and TTI 90◦.
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Fig. B.6 The figure shows the azimuthal apparent resistivity curves for TTI 0◦, TTI 22.5◦,
TTI 45◦, TTI 67.5◦, and TTI 90◦ at 100 m radial distance.
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Fig. B.7 The figure shows the model for TTI 45◦ (left). The corresponding azimuthal
apparent resistivity curves obtained are shown on right for increasing radial distances
from 5 m to 110 m.


