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Abstract

In this thesis we estimate the average ground state energy of a spin glass model. Despite

decades of study, there have been no exact explicit calculations for a mean field model of spin

glass with finite ranged interactions. In the first part of the thesis we attempt to estimate

the average ground state energy of the Sherrington Kirkpatrick model and the spin glass

model on a random regular graph by numerical and analytic methods. We attempt to find

the ground state energy by several methods such as Greedy algorithm, using Eigenvector

ansatz, the cluster flip algorithm and subsequently make improvements on it. We also study

the spectral properties of random regular graphs using Random Layered locally Tree like

Lattice (RLTL) and compare the results to the predictions from random matrix theory.
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Chapter 1

Introduction

A lot of materials found around us are examples of disordered systems, in fact very few

materials have a perfect crystal structure, since some amount of impurities are bound to be

present. The spin glass is a prototypical example of a disordered system. In spin glass sys-

tems, below the transition temperature the spin degrees of freedom ‘freeze’ into a disordered

state. This means that the magnetization given by m = 1
N

∑N
i=1⟨Si⟩T , or more generally

the staggered magnetization given by mk = 1
N

∑N
i=1⟨Si⟩T eik·ri = 0, for k ̸= 0, where the

sum runs over all the magnetic moments and ⟨·⟩T represents thermal average. Yet, the local

magnetization at a site given by mi = ⟨Si⟩T is non-zero.

Spin glass states are quite ubiquitous, examples of systems in which spin glass states can

be found include non-magnetic metal hosts doped with magnetic metallic impurities, mag-

netic insulators, amorphous alloys. Spin glass states are also found in systems with the spin

degrees of freedom being electric instead of magnetic such as ferroelectric-antiferroelectric

mixtures. Thus, understanding the physics of such disordered systems is an important prob-

lem.

Historically, the study of spin glass systems began in the 1970s when a series of mea-

surements on the susceptibility of non-magnetic metal hosts doped with magnetic metallic

impurities at different temperatures revealed cusps at particular temperature [1]. Cusps

in susceptibility measurements are indicative of second order phase transition. However,

curiously, magnetization measurements revealed no net magnetization and checking for an-

tiferromagnetic ordering by neutron scattering experiments revealed no such ordering.

These observations can be explained as follows: The magnetic moments due to the im-
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purities in the non-magnetic host metal are coupled to each other via the itinerant electrons

inside the host metal. This indirect exchange interaction is known as the RKKY interaction

(Ruderman-Kittel-Kasuya-Yoshida) [2, 3, 4]. The RKKY interaction goes as:

Jij ∝
cos(2kfrij)

r3ij

Here kf is the momentum at the Fermi level. The sign of the interaction is oscillatory in

nature. Sam Edwards and Paul Anderson guessed that since the spin glass phase can be

observed in many other systems too, the exact details of the interaction Jij and the exact

locations of the spin degrees of freedom in the crystal do not play a role and proposed the

EA model. The Edwards-Anderson (EA) model is a simple model which shows a spin glass

phase with the Hamiltonian:

H = −
∑
⟨ij⟩

JijSiSj (1.1)

where the Ising spins Si lie on a regular lattice and the sum runs over all pairs of neighbouring

spins. Jij is are independent random variables with a fixed probability distribution function

P (Jij).

It is important to define statistical averaging for disordered systems. For instance, since

the set of couplings J = {Jij} will be different for each sample, the partition function

ZN(β,J), β is the inverse temperature, for the EA model would be different for each sample.

But, the physical properties of the system such as the Helmholtz free energy per spin (f)

are nearly same, with small fluctuations for a very large number of particles. Thus,

f = lim
N→∞

− 1

N
· 1
β
[lnZN(β,J)]av = f∞(β) (1.2)

where [·]av is called as disorder averaging defined as

[A]av =

∫
dJP (J)A(J) (1.3)

Quantities which have a well defined average under disorder averaging in the thermody-

namic limit (N → ∞) are called as self averaging quantities. Self averaging requires that the

variance of the distribution for the quantity go to 0 as N → ∞. For example, the internal

energy of the system per particle, the free energy per particle are self averaging whereas

the partition function is not. Thus for disordered models, it is more appropriate to use the

terms average ground state energy/ average free energy rather than simply the ground state
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energy/free energy.

Exact calculation of the thermodynamic quantities such as free energy, internal energy

is a difficult problem for most of the models in statistical physics. Instead one often resorts

to mean-field models which capture the physics correctly away from the critical point and

for models in high enough dimensions, even close to the critical point. Mean-field mod-

els thus serve as a first attempt at a much harder problem. In 1975, David Sherrington

and Scott Kirkpatrick proposed a mean-field model of the EA model, now known as the

Sherrington-Kirkpatrick (SK) model [18]:

H = −1

2

∑
i ̸=j

JijSiSj (1.4)

where Jij is a random variable with a fixed probability distribution P (Jij). The difference

from the EA model is that now the sum runs over all spins and not just neighboring pairs

of spins.

The SK model is not very realistic, since the interaction is independent of the distance be-

tween the spins. A step in the direction to extend our understanding of the EA model would

be by considering a mean-field model with a finite range of interaction. For the ferromagnetic

Ising model, the mean-field solution is identical to the exact solution for the ferromagnetic

Ising model (with only nearest neighbor interactions) on a Bethe lattice. Thus, one can make

a similar attempt at solving the random interaction Ising model on the Bethe lattice in the

hopes of obtaining a more accurate mean-field description of the EA model.

However, the Bethe lattice is not accessible to numerical methods. Furthermore, dealing

with the boundary conditions for the spin glass Ising model is a highly non-trivial problem.

Thus, instead we resort to solving the spin glass Ising model on a random regular graph.

As of date solving the mean-field models for the spin glass model has turned out to be

a hard problem. The best known solution by Parisi [5, 6] attempts to solve the problem by

replica symmetry breaking. While the solution is correct at high temperatures and near the

spin glass transition temperature, at lower temperatures, the validity of the solution is not

known. In particular, it has not been possible to calculate exactly the average ground state

energy of the model. Even numerically, it is not easy to determine the exact average ground

state energy by simulated annealing because the presence of several metastable states. The

system gets stuck in such metastable states.

In this thesis we will try to understand the ground state energy of the SK model and

the spin glass Ising model on a random regular graph (with degree 3) better. The rest of
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the thesis is organized as follows: in Chapter 2, I will attempt to find ground state energy

using methods such as Greedy algorithm, eigenvector ansatz. In particular, in section 2.1 I

will estimate the free energy of SK model by a high temperature expansion, in section 2.2

we discuss the minimised energy obtained by using a Greedy algorithm for the SK model,

section 2.3 discusses an improved attempt at finding the ground state energy for the SK

model using eigenvectors as an ansatz. In section 2.4 we switch to the problem of finding

ground state energy for the the random bond Ising model on random regular graph and dis-

cuss the contruction of Random Layered locally Tree like Lattice (RLTL) which is expected

to behave like the Bethe lattice but does not suffer from strong surface effects. Sections 2.5

and 2.6 discuss ground state energy obtained for spin glass on a random regular graph using

Greedy algorithm, eigenvector ansatz and other methods. In the problem of spin glass on

a random regular graph, the structure of the graph plays an important role in determining

the properties of the model and in fact leads to lower bounds on the ground state energy of

the model. In Chapter 3 we analyze the spectral properties of random regular graphs and

explain the small variance in the density of states using random walks. We also explore the

spectrum of non-backtracking random walks on the graph.
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Chapter 2

Bounds on the ground state energy of

Ising spin glass models

In 1975 Sherrington and Kirkpatrick gave a solution to the SK model, while to solution is

correct for high temperature phase of the model, the solution is incorrect below the spin glass

transition temperature Tsg. This solution is also known as replica symmetric solution. In the

following years several people including Mézard, Thouless, Parisi made significant contribu-

tions to solving the model (calculating the free energy of the model). In 1980 Parisi gave the

solution to the SK model with replica symmetry breaking, which is believed to be correct.

A rigorous proof of the solution was given only as recent as 2006 by Talagrand [23], yet

the calculation of free energy using this method at lower temperatures involves increasingly

complicated patterns of replica symmetry breaking and at 0 temperature requires infinite

step replica symmetry breaking and thus, an exact analytic expression for the ground state

energy of the SK model is not known.

The Hamiltonian for the Sherrington Kirkpatrick model is:

H = −1

2

∑
i,j

JijSiSj (2.1)

where the sum is over all spins, Jij are i.i.d. random variables with the probability density

function P (Jij). For simplicity we will consider the cases:

P (Jij) =
1√
2πσ2

e−
J2
ij

2σ2
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with σ2 = J2

N
where J is a constant. This scaling ensures that the free energy is extensive.

We wish to find the average ground state energy for these models. Note that for different

set of couplings {Jij} we obtain different ground state energies. Thus for disordered averag-

ing, we will calculate the minimized energy for several set of couplings and average over them

to obtain the average minimized energy. We will describe some analytic and computational

approaches to estimate the average ground state energy in the following sections.

2.1 High Temperature expansion for the SK model

We will consider the Hamiltonian

H = −1

2

∑
⟨i,j⟩

JijSiSj (2.2)

with

P (Jij) =
1√
2πσ2

e−
J2
ij

2σ2

and all Jij’s being independently and identically distributed. To have extensive free energy,

we will require that σ2 = J2

N
, where, N is the number of spins and J is a constant. Then the

partition function Z for a particular set of couplings {Jij}

Z =
∑
{Si}

∏
⟨ij⟩

e−βJijSiSj =
∑
{Si}

∏
⟨ij⟩

cosh(βJij)(1 +X(Jij)SiSj) (2.3)

Here X(Jij) = tanh(βJij)

Z =

∏
⟨ij⟩

cosh(βJij)

∑
{Si}

(
1 +

∑
i<j

X(Jij)SiSj +
∑

i<j,k<l

X(Jij)X(Jkl)SiSjSkSl + ...

)
(2.4)

Note that by summing over all possible spin configurations, the only terms that will survive

are those that can form ‘closed loops’. Thus, we will have

Z = 2N ·

∏
⟨ij⟩

cosh(βJij)

 · (1 + T (3) + T (4) + T (5) + T (6) + ...) (2.5)
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where we denote by T (n)

T (n) =
∑

i1<i2···<in

X(Ji1i2)X(Ji2i3)...X(Jin−1in) (2.6)

lnZ = N ln 2 +
N∑
i<j

ln cosh(βJij) + ln(1 + T (3) + T (4) + T (5) + T (6) + ...)

The free energy per spin f is given by:

f = f∞(β) = lim
N→∞

− 1

N
· [lnZ]av

β

where [·]av indicates disorder averaging. Thus,

f = lim
N→∞

− ln 2

β
− 1

Nβ

N∑
i<j

[ln cosh βJij]av−
[ln(1 + T (3) + T (4) + T (5) + T (6) + ...)]av

βN
(2.7)

For rest of the calculation, we will assume β << 1. The terms that will survive in the

thermodynamic limit (N → ∞), for β < 1 are the ones with power of N > 0. First consider

the term with ln cosh(βJij), since all Jij are i.i.d. random variables

N∑
i<j

[ln cosh(βJij)]av =
N(N − 1)

2
[ln cosh(βJ12)]av

Now,

ln cosh(x) =
x2

2
− x4

12
+
x6

45
− ...

Thus,

[ln cosh(βJ ′)]av =
1

2
√
2πσ2

∫ ∞

−∞
β2J ′2e−J ′2/2σ2

dJ ′ − 1

12
√
2πσ2

∫ ∞

−∞
β4J ′4e−J ′2/2σ2

dJ ′ + · · ·

[ln cosh(βJ ′)]av =
β2J2

2N
− β4J4

4N2
+ · · ·
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At higher orders, powers of N > 1 will be in the denominator and thus terms beyond 2nd

order don’t survive the thermodynamic limit. Thus,

lim
N→∞

1

Nβ

N∑
i<j

[ln cosh βJij]av =
βJ2

4
(2.8)

Now, ln(1+ x) = x− x2/2+ · · · and tanh(x) = x− x3/3. Thus for the [ln(1+T (3)+ · · · )]av
term, the ones that survive disorder averaging are smaller than O(N).

lim
N→∞

[ln(1 + T (3) + T (4) + T (5) + T (6) + ...)]av
βN

= 0 (2.9)

Putting together equations 2.7, 2.8 and 2.9

f = − ln 2

β
− βJ2

4
(2.10)

In fact, the free energy obtained is the same as the replica symmetric solution obtained

by Sherrington and Kirkpatrick [18] for the model. However, while the solution is correct for

temperatures above the spin glass transition temperature, the solution is incorrect below it

as T → 0 =⇒ β → ∞ and thus even terms with 1
N

dependence may not go to 0.

2.2 Greedy Algorithm for energy minimization of SK

model

We can try a very simplified computational approach to find the ground state energy in the

following way: For a given set of couplings, initialize the values of the spins {Si} in a random

fashion. Then, calculate the ‘mean-field’
∑

j ̸=i JijSj experienced by a spin Si. Make a list

Lnon−align of all the spins that are not aligned correctly to minimize the energy, i.e. the spin

is not aligned with the local ’mean-field’ experienced by that spin. Randomly choose a spin

from the list L and then flip it to align it with it’s local mean-field. Update the list to include

any new spins whose orientation is not aligned with local field and discard any spins which

are now aligned with their local field. This process is continued until there are no more spins

remaining to flip.
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Repeat the above process for several different initial configurations of spins {Si} and take

the minimum energy Egs min obtained from all the minimum energy configurations obtained.

Then average of these Egs min minimum energies is an upper bound for the average ground

state energy. i.e. [Egs] ≤ [Egs min]. The resulting energies are plotted in figure 2.1

Figure 2.1: Histogram plot of Minimized Energy for random initial configuration of spins for
several different sets of couplings via Greedy algorithm for the SK model. N = 2000 spins.

(a) Average minimized energy per spin using
basic cluster flip algorithm.

(b) Variance in minimized energy as a func-
tion of size. Here the variance σ2 ∼ 1/Nm,
m is the slope of the best fit line.

Figure 2.2: Results for the SK model from the Greedy algorithm. Disordered averaging over
103 systems for each size.

The expectation value from of the energy obtained by the simulation, in the large N

limit, can be estimated analytically to obtain an upper bound on the energy obtained from
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the simulations. The idea is as follows: When the spins are initialized, the mean-field experi-

enced by each spin can be considered as a sum of several random variables with mean µ = 0

and variance σ2 = J2/N as the mean-field is given by
∑

j ̸=i JijSj. Thus in the limit N → ∞,

the mean-field experienced converges in distribution to a Gaussian Random variable with

mean 0 and variance 1.

In the initial state, the mean-field for different spins are uncorrelated random variables.

However, as the spin flips are performed, these variables get correlated in some compli-

cated way, hence the above calculation will only lead to an upper bound on the numerically

obtained value. This (upper bound) is given by:

Ebound = −J
2

1√
2π

∫ ∞

−∞
|h|e−h2/2dh = − J√

2π
≈ −0.398942 J (2.11)

This is much higher from estimated true average ground state energy obtained com-

putationally as we have completely ignored the fact that after performing spin flips, the

mean-field values for different spins become strongly correlated.

Such class of algorithms where the energy of the system is obtained by local minimization

of the energy are called as Greedy Algorithms. In this case the algorithm leads to a state

which is stable to to a single spin flip i.e. the energy cannot be minimized further by flipping

just one spin. For further improvement, instead of minimizing energy for a single spin, we

can consider the minimum energy configuration for larger clusters with 2, 3, · spins. However,
as the cluster size increases, the amount of time required to cycle through all possible states

increases as N cluster size and the program becomes very slow.

2.3 Improvement on the Greedy algorithm: Eigenvec-

tor method

Alternatively, to estimate the ground state energy, we can utilize the eigenvectors of the

coupling matrix obtained by rewriting the SK Hamiltonian in a matrix form:

2E = Ψ†
sHΨs (2.12)
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Where,

Ψs =


S1

S2

...

SN


and

H =


0 −J12 −J13 · · · −J1n

−J21 0 −J23 · · · −J2n
...

...
...

...
...

−JN1 −JN2 −JN3 · · · 0


Suppose for the moment, we allow Si to take any real value (instead of ±1), then we can

find the eigenvectors corresponding of H. Suppose we find the normalized eigenvectors of

H, then as H is real and symmetric, we can find a orthonormal eigenbasis of H, {ψλi
} with

eigenvalues {λi}. Thus we can express any Ψs as

Ψs =
∑
i

ciψλi
(2.13)

Suppose the smallest eigenvalue value is λmin with corresponding eigenvector ψλmin
Then we

have that
Ψ†

sHΨs

Ψ†
sΨs

=
N∑
i=1

c2iλi ≥ λmin (2.14)

A good choice to begin for the search of minimum energy is in the state Ψ with its entries

defined by [Ψ]i = sgn([ψλmin
]i), where sgn(x) is the function defined by sgn(x) = 1 for x > 0

and sgn(x) = −1 for x < 0. We begin in this state and apply the Greedy Algorithm as

before. This also helps us obtain a lower bound for the average ground state energy as we

will have for any Ising spin configuration Ψs :

Ψ†
sHΨs

Ψ†
sΨs

≥ λmin =⇒ 2E

N
≥ λmin

this follows from equation 2.12 and the fact that Ψ†
sΨs = N for an Ising spin configuration.

Thus,

Average ground state energy per spin =
[E]av
N

≥ [λmin]av
2

(2.15)

For the SK model, thus we obtain

Numerical results for the eigenvector method are in figures 2.3 and 2.4
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Figure 2.3: Minimised energy versus eigenvalue for eigenvector method

Figure 2.4: Average minimum energy for different sizes using eigenvector method

Next we analyze the random coupling Ising model in a finite interaction range setting.

In particular we analyze the random coupling Ising model with only nearest neighbor inter-

action on a 3 co-ordinated random regular graph. The Hamiltonian for the model is given by:

H = −
∑
⟨ij⟩

JijSiSj (2.16)

where the sum is over all pairs of nearest neighbors on a random regular graph and for
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simplicity, we consider the case with

P (Jij) =
1

2
[δ(J + Jij) + δ(J − Jij)]

with J a constant.

First, let us note that the average ground state energy per spin for a fully ferromagnetic

model on the same lattice will be −1.5 J . Clearly, for the spin-glass model this quantity

will be greater than −1.5 J because of frustration. The frustration arises because of the

randomness in the couplings and the presence of loops in the lattice. However, random

regular graphs have a locally tree like structure and the probability that a loop of size

smaller than O(logN) passes through a site goes as 1
N
. Thus, there are only O(1) loops

of small size present in a typical random regular graph. More details about properties of

random regular graphs can be found in [19, 20]. Spectral properties of these graphs are

explored in Chapter 3.

The spin glass Ising model on a Bethe lattice has been studied extensively in the past,

however, even after four decades, the model is not well understood at low temperatures.

For instance, [9, 10] estimate the average ground state energy per spin from free energy

calculations to be −1.2778 J which equal to the value given by the replica symmetric solution

to the problem. However in [8] the value is −1.1790 J and in [7] it is −1.3581 J . Using

cavity method upto 1 step replica symmetry breaking (RSB), Parisi [13, 14] has estimated

the average ground state energy per spin to be −1.2723 J . It is conjectured that full replica

symmetry breaking will give the correct solution to the problem, however as of date there

have been no explicit calculations beyond the 1 RSB solution.

In numerical studies, the average ground state energy per spin has been estimated using

extremal optimization heuristic in [21], the energy is estimated as −1.2716 J but note that

this is not an exact calculation of ground state energy. Using simulated annealing, the average

minimum energy for the ferromagnetic Ising model with zero magnetization is calculated to

be −1.26 J in [26, 27]. The exact ground state energy for random regular graphs (of degree

4 and higher) using the branch and cut method has been estimated for small system sizes in

[22].

A particular model of the 3 co-ordinated random regular graph is a Random Layered

Locally Tree like Lattice (RLTL). The construction of the RLTL is explained in the following

section.
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2.4 Construction of RLTL

A random regular graph is a graph where all vertices of the graph have the same degree.

Two methods to construct a random regular graph are given in this section. The spins are

located on the vertices of the graph and the vertices corresponding to nearest neighbor spins

have an edge between them.

2.4.1 Method 1

Consider a graph Gini consisting of 2 rings of n sites each, n ∈ N. Let us call the rings GC1

and GC2 and the vertex sets for these graphs as V1 = {1, 2, . . . , n} and V2 = {1′, 2′, . . . , n′}.
Now add an edge between a vertex in GC1 and a vertex in GC2 as follows: Perform

a random permutation P on V2 and then add an edge between the vertices i and P (i′),

∀ i ∈ V1.

A Random Regular graph with degree 3 at each vertex and order 2n has been generated.

Figure 2.5: An example of Random regular graph generated by Method 1 of size 50
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2.4.2 Method 2

Consider a cycle graph C2n, n ∈ N with vertices V = {1, 2, . . . , 2n}. Clearly the graph is bi-

partite where we can partition the vertices into U = {1, 3, . . . , 2n−1} and W = {2, 4, . . . , 2n}
so that all elements in U have edges connecting with elements in W only.

Now we add an edge between a vertex in W and a vertex in U as follows: Perform a

random permutation P on U. We reject the permutation if |P (i)− i| = 2 for any i ∈ U and

retry till we get a permutation which satisfies |P (i)− i| ≠ 2 ∀ i ∈ U.

Figure 2.6: An example of Random Regular graph of size 40 generated by Method 2.
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2.5 Greedy Algorithm for energy minimization of Ising

spin glass model on a random regular graph

The Hamiltonian for the problem is:

H = −
∑
⟨ij⟩

JijSiSj (2.17)

where P (Jij) =
1
2
[δ(J + Jij) + δ(J − Jij)], J is a constant.

Then, just like for the SK model, we can implement a Greedy algorithm where the spins

are initialised to a random initial condition and then we choose a random spin to flip among

the spins not aligned with their local mean-field. We repeat this procedure till there are no

sites where a single spin flip will lead to a decrease in the energy.

2.5.1 Connection between Greedy algorithm and Dimer problem

We now show that the Greedy algorithm for the Spin Glass on a 3 co-ordinated random

regular graph is similar to the Dimer problem at zero temperature on the same lattice.

For a given configuration of spins and couplings, we introduce the terminology:

A ‘bond’ between two spins is said to be satisfied if the configuration of spins is such that

it is the minimised energy configuration for the two spins, given the coupling between the

spins. We will denote such a bond by a blue bond. Similarly, a bond between two spins is

said to be unsatisfied if the configuration of spins is such that it is not the minimised energy

configuration for the two spins, given the coupling between the spins. We will denote such

a bond by a red bond.

The Hamiltonian is invariant under the following transformation:

Si → σiSi, Jij → σiσjJij (2.18)

where σi ϵ {±1}.

H ′ = −
∑
⟨ij⟩

(σiσjJij)(σiSi)(σjSj) = −
∑
⟨ij⟩

JijSiSj = H (2.19)
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as σ2
i = 1. Thus, the Hamiltonian is gauge invariant under the gauge transformation given

by equation 2.18 and all the information about the energy of the system is fully contained

in the bonds [25].

The red bonds can be thought of as dimers on the lattice formed by the vertices of the

graph. The Greedy algorithm simply ensures that no two dimers ‘touch’ each other. Then

it is possible to estimate the average energy obtained by the Greedy algorithm by assuming:

(i) For every possible dimer configuration there exists a corresponding configuration of spins

which has red bonds in place of dimers and (ii) All possible dimer configurations are sampled

with a weight proportional to their Boltzmann weight (the dimer configuration being the

configuration obtained at the end of the Greedy algorithm), then the Greedy algorithm is

the same as the Dimer problem at T = 0.

The partition function for the Dimer problem is given by:

Ω(z) =
max∑
r=0

Nr · zr (2.20)

where z = e−βEbond is the Boltzmann weight and Nr is the number of configurations with r

red bonds satisfying the condition that no two red bonds have end at a common site. For

our case z = 1. We wish to estimate the average energy obtained by the Greedy algorithm.

As the number of possible dimer tilings W (ND) with ND dimers grows exponentially with

the size of the lattice, the number of dimers (i.e. red bonds) in a typical configuration ND

must be the value that maximizes W . Thus by estimating ND we can obtain the average

energy of a configuration generated by the Greedy algorithm.

Denote by ZN(z; 0) the partition function for the Cayley tree with N layers with the top

site not occupied by a dimer and similarly, by ZN(z; 1) the partition function for the case of

the top site occupied by a dimer. Then we have the recursions:

ZN+1(0) = [ZN(0) + ZN(1)] · [ZN(0) + ZN(1)] (2.21)

and

ZN+1(1) = 2zZN(0)[ZN(0) + ZN(1)] (2.22)

Now, define

fN =
ZN(1)

ZN(0)
(2.23)
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and thus,

fN+1 =
2z

1 + fN
(2.24)

Thus,

lim
N→∞

fN = f ∗, f ∗ =
2z

1 + f ∗

Thus,

f ∗ =
−1 +

√
1 + 8z

2
(2.25)

Now, the average energy of a Dimer configuration is given by

Eavg = −1.5

(
1− 2p

3

)
J (2.26)

where p is the probability of a site being occupied by a dimer. Now,

p =
N(occupied)

N(unoccupied) +N(occupied)

Thus,

p = lim
N→∞

3zZN(0)[ZN(0) + ZN(1)]
2

3zZN(0)[ZN(0) + ZN(1)]2 + [ZN(0) + ZN(1)]3
(2.27)

and hence,

p =
3z

3z + 1 + f ∗ =⇒ Eavg = −0.9 J (2.28)

2.5.2 Numerical results

The results from the numerical approach are in figure 2.7

The results from the simulation disagree with the analytic calculation for Dimer problem

because assumption (i) is invalid as the only Dimer configurations that will be allowed are

the ones which satisfy the frustration constraints due to the large loops of order log N

present in the system. These frustration constraints have a non-trivial effect even in the

thermodynamic limit.
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Figure 2.7: Size relation of the average minimum energy obtained by Greedy Algorithm

2.5.3 3 Spin cluster Calculation

We want to calculate the average energy per spin for the ensemble of dimer configurations

in which 2 blinkers are not adjacent on a Cayley tree, assuming all final configurations are

equally likely. Refer to figure 2.8 for notations. Following similar notation as in previous

section and from the figure 2.8, we have the recursions:

(a) Cayley tree with a node on the top side
(b) Top site configura-
tion for ZN (0)

(c) Top site configura-
tion for ZN (1)

(d) Top site configurations for ZN (2)

Figure 2.8: For the 3 spin cluster calculation Calculation
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ZN+1(0) = 4[ZN(0) + ZN(2)]
2 · [ZN(0) + 2ZN(1) + ZN(2)] (2.29)

ZN+1(1) = z[ZN(0) + ZN(2)]
2 · [(ZN(0) + ZN(2))

2 + 4ZN(1)ZN(0)] (2.30)

ZN+1(2) = 2z[ZN(0) + ZN(2)]
2 · [(ZN(0) + ZN(2))

2 + 2ZN(1)ZN(0)] (2.31)

Define

fN =
ZN(1)

ZN(0)
, gN =

ZN(2)

ZN(0)
(2.32)

Then from the recursions, we have

fN+1 =
z[(1 + gN)

2 + 4fN ]

4(1 + 2fN + gN)2
, gN+1 =

z[(1 + gN)
2 + 2fN ]

2(1 + 2fN + gN)2
(2.33)

Deep inside the Cayley tree let the probability of a site being occupied be p, then,

p =
3zZN(1) · [Z2

N(0) + 2ZN(0)ZN(2)]

3zZN(1) · [Z2
N(0) + 2ZN(0)ZN(2)] + [ZN(0) + ZN(2)]3

= lim
N→∞

3zf ∗[1 + 2g∗]

3zf ∗[1 + 2g∗] + (1 + g∗)3

(2.34)

Where

f ∗ =
z(1 + g∗)2 + 4f ∗

4(1 + 2f ∗ + g∗)2
, g∗ =

z(1 + g∗)2 + 2f ∗

2(1 + 2f ∗ + g∗)2

Solving for f ∗, g∗ numerically to obtain p, we get

Eavg = −1.196315 J (2.35)

for the stability of 3 spin clusters.

2.6 Improvements on the Greedy algorithm

In this section, we will look at a better approach to find the average ground state energy for

the spin glass on a random regular graph. The key idea is to identify clusters of spins that

can be flipped to obtain a lower energy. We will then add on improvements in it. Unless

specified otherwise, all results are for RLTLs generated using method 1.
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2.6.1 Basic cluster flip algorithm

We will discuss the method considering the structure to be the RLTL constructed using the

1st method as it is analytically tractable to some extent. The lattice has two large rings of

size N . It is always possible to set the spins on a ring in a configuration so that at the most

one bond is red: Pick orientation of the first spin at random. Then moving along the ring,

for all the spins that follow, set their orientation so that the bond with the spin just prior is

satisfied. Then only the bond between spins SN and S1 might remain unsatisfied.

In the first step of the algorithm, we set the initial orientation of the spins such that at

most one of the bonds along the ring is unsatisfied. To keep the discussion simple, we will

simply set the coupling between spins SN and S1 so that the bond between them is satisfied

(this introduces a correction of O(1/N)). Thus, all the bonds on the rings are satisfied.

Each inter-ring bond is equally likely to be satisfied or unsatisfied independently of other

inter-ring bonds. Note that this initial state is already stable to single spin flips and the

average energy in this state is −J . We note that even at this level, the ground state energy

estimate is substantially better than the Greedy algorithm estimate.

Now, we identify clusters of spins which can flipped to give a state of a lower energy.

Figure 2.9: Initial configuration of bonds

This is done as follows: Starting from S1 in the upper ring, we note the status of inter-ring

bonds associated with each spin on the upper ring and denote a unsatisfied bond with the

letter R and a satisfied bond with the letter B. In the readout of the inter-ring bonds along

the upper ring, if there are two or more adjacent Rs then the spins corresponding those

bonds can be flipped to get a state equivalent or lower energy. Each such cluster reduced

the number of red bonds by r − 2 where r is the size of the cluster because 2 red bonds are

introduced in the ring at the ends of the cluster by such a process. We flip all such clusters.

For the next step, we note that when we perform the above flips, it is possible that we

introduce adjacent red bonds in the ring. The spin common to the adjacent red bonds can

be flipped to reduce the number of red bonds by 1. We flip all such spins where there are

two adjacent red bonds. The above two steps can be repeated in the same order on the lower
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Figure 2.10: Configuration of bonds after flipping inter-ring bonds

ring. And all these steps can be performed repetitively till the energy cannot be lowered any

further.

Figure 2.11: Configuration of bonds after flipping intra-ring bonds

Theoretical calculation for bound on the Ground State Energy:

In our method, we begin in the configuration where all the bonds in the ring are satisfied.

For the bonds in the inter-ring layer, intially, it is equiprobable that the bonds are Unsatisfied

(R) or Satisfied (B). However, we will still make the calculation for the general case that

the probability of the Unsatisfied bonds in the inter ring layer is p. This will be used later.

Consider the sequence of bonds in the inter ring layer read beginning on a spin in the upper

layer :

BRBBBRRRRBRRBB · · ·

Now probability (or number Nr(p)) of a clusters of length r is

(1− p)pr(1− p) or N(1− p)pr(1− p)

In our first step, we flip all the spins associated with a R bond in a cluster of size greater

than 1. Thus, the number of R bonds in the inter ring layer after the first step is just the

number of clusters of length 1.

N(1) = Np(1− p)[1− p]
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and the number of intra-ring R bonds is

2N × P (r > 1) = Np(1− p)[2p]

The average energy per spin at this step is

E1 = − J

2N
[3N − 2Np(1− p)(1 + p)] = [−1.5 + p(1− p2)]J = −1.125 J

for p = 0.5. This matches with the simulation.

Now we perform the set of flips in the the upper ring. For this, we can have two adjacent R

bonds only if initially there were two clusters of length r > 1 side by side. The probability

for this occurring is given by

S =
∞∑

r1,r2=2

(1− p)pr1(1− p)pr2(1− p) = p(1− p)(p3)

This introduces NS R bonds in the inter-ring layer and reduces the number of intra-ring R

bonds by 2NS. Thus, at the end of this step, the number of inter ring R bonds and the

number of intra ring R bonds is:

Ninter = Np(1− p)[p3 − p+ 1] = NFI1(p) (2.36)

and

Nintra = Np(1− p)[2p− 2p3] = NFR1(p) (2.37)

respectively The average energy per spin at this step is given by

E2 = − J

2N
[3N−2Np(1−p)(1+p−p3)] = [−1.5+p(1−p)(1+p−p3)]J = −1.15625 J (2.38)

for p = 0.5. Again this matches well with the simulation.

If we repeat the above steps for lower ring, this time, we can say that we are in a similar

situation as in the beginning, except that the probability for a R bond now is FI1(p). Thus,

E4 = − J

2N
[3N−2N(FI2(p)+FR2(p)+FR1(p))] = −38942187

325
J = −1.1605676115 J (2.39)
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for p = 0.5 where,

FI2(p) = F2
I1(p) and FR2 = FR1(FI1(p))

Figure 2.12: E4 as a function of probability of antiferromagnetic coupling. Refer to equation
2.39

From simulation, we obtained the following values for the fraction of R bonds considering

a system size of N = 100001 and averaging over 1000 different initializations:

� Nintra

N
= 0.11174441255587443

� NURing

N
= 0.1875352346476535

� NLRing

N
= 0.04018434815651844

� Enumerical = −1.1605746 J

Compare these with the theoretically obtained values:

� FI2(0.5) =
1857893
16627005

= 0.111739486456

� FR1(0.5) =
3
16

= 0.1875
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� FR2(0.5) =
89011

2214595
= 0.0401929020882

� E4 = −1.1605676115 J

Thus, there is agreement in the theoretically obtained and values obtained by simulation

upto 4 digits after decimal.

Numerical simulation results:

1. In the first step on flipping clusters of size 1 too, it lowers the energy further in later

steps if the lattice is generated by using 1st method. If instead the lattice is generated using

the 2nd method, it increases energy. Results in figures 2.13a and 2.13b for graphs generated

using 1st method.

(a) Average minimized energy per spin using
basic cluster flip algorithm.

(b) Variance in minimized energy as a func-
tion of size. Here the variance σ2 ∼ 1/Nm,
m is the slope of the best fit line.

Figure 2.13: Results for basic cluster flip algorithm, with clusters of size 1 also flipped as it
reduces energy further. Disordered averaging over 103 systems for each size.

2.6.2 Improvement estimate of ground state energy by identifying

flippable spin clusters of size 3

In order to identify all spin clusters of size 3 that can be flipped to reduce energy, first we

identify all ‘blinker’ structures. Blinkers are defined as follows: Spin clusters of size 2 that

have 2 red bonds with the bond between the two spins being blue. We will associate the

term ‘blinker bond’ with the bond joining 2 such spins. See figure 2.14 for types of blinkers.
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After performing the spin flips in the algorithm in the previous subsection, we obtain

Figure 2.14: Types of blinker configurations

a state that is stable (neutrally) to 2 spin flips. Thus, all cluster of size 3 configuration

whose energy can be minimized have a similar structure: See figure 2.15. We simply need

to identify all such clusters and flip them to obtain the minimum energy.

Alternatively, if two blinker bonds are adjacent to each other, the spins associated with

the blinker bonds are a cluster of 3 spins that can be flipped to reduce energy. Thus, in our

algorithm we identify all adjacent blinkers and perform the necessary spin flips.Note that

by the structure of random regular graph of co-ordination number 3, if a state is stable to 3

spin flips, then it is also stable (neutrally) to 4 spin flips.

Results for this are presented in figures 2.16a and 2.16b. The average minimized energy

obtained for large sizes this way is about −1.185 J quite close to the energy obtained in the

3 spin cluster stable calculation 2.35, −1.196315 J . Note that the numerical results for this

give a Lower average Ground State energy than in [8], where the average ground state

energy per spin is −1.1790 J .

2.6.3 Improvement: Identifying flippable pairs of blinkers

Let us define the ‘distance’ between blinker bonds as follows: A blinker bond is at a distance

0 from itself, blinker bonds adjacent to each other have a distance of 1 between them, blinker

bonds adjacent to a common bond but not adjacent to each other are at a distance 2 and so

(a) A possible 3 spin cluster which can
be flipped to reduce energy

(b) Configuration of cluster after flip-
ping

Figure 2.15: How 3 spin clusters can be flipped to reduce energy
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(a) Average minimized energy per spin using
with clusters of size 3 relaxed.

(b) Variance in minimized energy as a func-
tion of size. Here the variance σ2 ∼ 1/Nm,
m is the slope of the best fit line.

Figure 2.16: Average minimized energy after basic cluster flip algorithm and relaxing all
spin clusters of size 3. Disordered averaging over 103 systems for each size.

(a) Example of flippable pair
of blinkers

(b) Changing configuration of
blinkers

(c) Final configuration after
all steps

Figure 2.17: Steps to identify and reduce energy using flippable pairs of blinkers

on. Then, if 2 blinker bonds are at a distance 3, then it is possible to identify a cluster of 5

spins that can be flipped to reduce energy. Refer to figure 2.17 for reference.

Since blinkers can flipped with 0 energy cost to another state, it is possible to introduce 2

red bonds at the site connecting the two blinkers. If the spin associated with the site is then

flipped, we reduce the number of red bonds by 1. The numerical results for this algorithm

can be found in figures 2.18a and 2.13b. We obtain average minimized energy of −1.192 J

per spin after this step.

27



(a) Average minimized energy per spin after
relaxing blinkers at distance 3.

(b) Variance in minimized energy as a func-
tion of size. Here the variance σ2 ∼ 1/Nm,
m is the slope of the best fit line.

Figure 2.18: Results after relaxing blinkers at distance 3. Note that more spin clusters of size
3 that can be relaxed after such a procedure, so the algorithm for relaxing spin clusters of
size 3 is called twice: Once before relaxing blinkers at ditance 3 and once after. Disordered
averaging over 103 systems for each size.

2.6.4 Eigenvector ansatz

Just like for the SK model in the previous chapter, we can use the eigenvectors of the

coupling matrix as an ansatz to find the ground state configuration. Once we get the con-

figuration using eigenvector, we can then apply the methods in the previous subsections to

reduce the energy of the configuration even further. The results for this are indicated in 2.19.

From equation 2.15 we have
[E]av
N

≥ [λmin]av
2

From random matrix theory, we know that

[λmin]av = 2
√
2 =⇒ Average ground state energy per spin ≥

√
2 J ≈ −1.4142 J (2.40)

Note that after combining all the methods so far, we obtain an average ground state

energy of about −1.25 J per spin. Parisi solution using Cavity method gives an average

ground state energy per spin of −1.2723 J and previous numerical results using extremal
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optimization gives −1.2716 J . Thus, from the results presented in this thesis so far, we have

−1.25 J ≥ [Emin]av ≥ −1.141 J (2.41)

(a) Average minimized energy per spin using
eigenvector ansatz.

(b) Variance in minimized energy as a func-
tion of size. Here the variance σ2 ∼ 1/Nm,
m is the slope of the best fit line.

Figure 2.19: Results for eigenvector ansatz after performing relaxation of blinkers at distance
3 and obtaining a 4 spin flip stable state on the eigenvector ansatz. Disordered averaging
over 103 systems for each size.
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2.7 Ground state energy for unequal ±J couplings

Numerical estimation of the ground state energy for different proportions of anti-ferromagnetic

coupling in the system indicate that the average minimized energy per spin is locally flat

as a function of probability of anti-ferromagnetic bonds near p = 0.5, where P (Jij) =

pδ(J + Jij) + (1− p)δ(J − Jij).

Figure 2.20: Average minimized energy as a function of probability of anti-ferromagnetic
coupling. Size of system N = 500. For each value of probability, the averaging is performed
over 1000 systems.
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Chapter 3

Spectral properties of Random

Regular Graphs

The structure of the underlying lattice plays an important role in the properties of the spin

glass model. For instance, equation (2.40) was used to give lower bounds on the average

ground state energy per spin. This result actually arises from the properties of the graph. In

this chapter, we will study spectral properties of random regular graphs to gain insight into

the structure of these graphs. The key question we will address is differentiating between

random regular graphs of same size. Since all random regular graphs have a structure that

is locally tree like, it is non-trivial to differentiate between two random regular graphs of the

same size. We will use the following terminology for the rest of the chapter:

1. By the ensemble of random regular graphs (of a fixed size) we refer to the ensemble

of random regular graphs where each graph is sampled with equal probability. However, for

numerical results, we will generate the graphs according to the method described in Section

2.4. The assumption is that the ensemble of RLTL and the ensemble of random regular

graph are equivalent for calculation of thermodynamic quantities.

2. We will denote by V and E the set of vertices of the graph and the set of edges of the

graph respectively.

3. We will denote by A the adjacency matrix of a graph defined by Aij = 1 if ∃ an edge

between the vertices i and j and Aij = 0 otherwise. D denotes the degree matrix of the

graph, which is diagonal with Dii = di, where di is the degree of the vertex i. Thus, D = dI

for random regular graphs, where d is the degree of the graph and I is the Identity matrix.
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The matrix defined by L = D−A is called as the Laplacian of the graph.

4. We define the spectral density of a matrix Q with the list of eigenvalues denoted by

λ(Q) as

ρ(µ) ≡ 1

N

∑
µQ∈λ(Q)

δ(µ− µQ) (3.1)

where N is the number of eigenvalues of Q.

3.1 Spectrum of random regular graphs

Consider the following system: Place a mass m = 1 at each vertex of a random regular

graph. Two masses are connected with a spring of spring constant k = 1 only if an edge

exists between the vertices at which the masses are placed.

The frequencies of the normal modes of such a system can then be found by diagonalizing

the matrix M = 3ωI − ωA, where ω =
√

k
m

= 1 and I,A are the Identity matrix and

Adjacency matrix of the graph respectively.

The eigenvalues of the M matrix will be equal to the square of the frequencies of the

normal modes. The set of eigenvalues of M is called as the ‘spectrum’ of the graph.

Since ω2 ≥ 0, the smallest possible eigenvalue is 0 and this eigenvalue corresponds to the

normal mode in which there is no relative displacement between any of the masses. Thus,

ω2 = 0 is an eigenvalue.

Similarly, the largest possible eigenvalue for a Bipartite graph will correspond to the mode

in which the masses on belonging to different partition sets displace completely out of phase

with each other. This enables us to write the equation of motion as ẍi =
∑

neighbours −2xi ∀ i
where xi is the displacement of the ith mass with respect to it’s equilibrium position =⇒
−ω2 = −6 as each vertex has 3 neighbors. Thus, the largest eigenvalue will be equal to 6.

Thus, the eigenvalues for the M, λ will lie between 0 and 6, with both 0 and 6 as possible

eigenvalues. As M = 3−A, their eigenvalues are related by λ
(i)
A = 3− λ

(i)
M . Furthermore, if

graph is bipartite, the matrix A will have a off-diagonal block structure as follows:

A =

[
0 B

BT 0

]
(3.2)
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Then, the eigenvalue equation can be written as:

det(M− λMI) = 0 =⇒ det((3− λM)2I−BBT ) = 0 (3.3)

Thus, the eigenvalues come in pairs: λM = 3± α, 0 < α ≤ 3.

The spectrum of the graphs looks as follows:

1. For the random regular graph generated using 2nd method (Bipartite): Spectrum of the

M matrix is plotted for 10 graphs in figure 3.1

(a) Size of graphs is 2000. There is a gap
in the spectrum at 0 (and hence at 6 due to
bipartite nature of the graph).

(b) Same figure as on the left but with the x
and y axis inverted and zoomed in to show
the difference in eigenvalues

Figure 3.1: Spectrum of 10 bipartite random regular graphs generated using method 2.

2. For the random regular graphs generated using 1st method: Spectrum is plotted for

10 graphs in figure 3.2.

In non-bipartite graphs, the largest eigenvalue is strictly less than 6 because the graph is

not bipartite.

From the plots, we observe that the eigenvalues for different random graphs are quite

close. This can be explained by considering random walks on random regular graph.

The adjacency matrix can be thought of (upto a constant) as the transition matrix W for

a Markov process in which a particle jumps from a site to any neighbouring site with equal
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Figure 3.2: Spectrum of 10 non-bipartite random regular graphs generated using method 1.
Size of graphs is 2000.

probability for all the neighbouring sites. Thus, Wij = 1/3 (for a 3 co-ordinated random

regular graph) if sites i and j are connected by an edge and Wij = 0 otherwise. Also, let us

denote by |1i⟩ the vector (0, 0, · · ·︸ ︷︷ ︸
i−1 zeros

, 1, 0, · · · )T , which is the initial state of a particle at site i.

Now we can calculate the probability that a particle performing such a Markov process

will return to it’s starting point in 2, 4, 6, ..., 2n steps, n is some natural number. Let us

denote by p
(i)
2k the probability of returning to site i in 2k steps. Then,

p
(i)
2 = ⟨1i|W2 |1i⟩ =

1

3
=⇒ Tr[W2] = N/3 (3.4)

In general we have

N∑
i=1

λ2ni = Tr[M2n] = Tr[(3I−A)2n] =
2n∑
k=0

(
2n

k

)
32n−k(−1)k Tr[Ak]

Where N is the number of sites in the graph and λi’s are the eigenvalues of M. As A = 3W

1

N

N∑
i=1

λ2ni =
1

N

n∑
k=0

(−1)k
(
2n

k

)
32nTr[Wk]

Now,

Tr[Wk] =
N∑
i=1

p
(i)
k =

n
(i)
k

3k
(3.5)
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where n
(i)
k denotes the number of walks beginning at site i that return to site i after k steps.

Thus, for a graph in which no cycles upto order 2n are present

1

N

N∑
i=1

n
(i)
2k = n2k, The number is same for all sites (3.6)

There are no odd length walks (upto length 2n) that return because of the locally tree like

structure. Hence,

1

N

N∑
i=1

λ2ni =
n∑

k=0

(
2n

2k

)
· 32n−2k · n2k (3.7)

Where n2k are the number of walks of length 2k that return to the starting site.

If no cycles of length 4, 6, 8, ..., 2n are present in the graph, then the 2nd, 4th, ... 2nth

moments of the eigenvalues are fixed. This constrains the eigenvalues and in fact with enough

number of constraints, the eigenvalues would be completely determined for a finite graph.

However, in the graphs that are generated, there are small cycles of order 4, 6, ... present in

numbers << N (the number of sites in the graph) and the correction in the moments is only

O(1/N). Thus, one expects the eigenvalues of two typical random regular graphs of same

size to be quite close to each other in value and thus the variance in f(λ), the fraction of

eigenvalues less than λ, is low. Results for numerical investigation of density of states and

variance in f(λ) are in figures 3.3 and 3.4.

It is possible to calculate the density of states for a Bethe lattice [15, 16]. The derivation

given below is identical to the one in [15]:

Define Px,0(N) as the probability of being at site x in N steps starting from site 0. Define

the generating function of P̃x,0(λ) as

P̃x,0(λ) =
∞∑

N=0

λNPx,0(N) (3.8)

Then, P̃x,0(λ) satisfies

P̃0,0(λ) = λP̃1,0(λ) + 1 (3.9)

and

P̃N,0(λ) =
λ

z
P̃n−1,0(λ) +

λ(z − 1)

z
P̃N+1,0(λ) (3.10)

Where z is the co-ordination number of the Bethe Lattice. Now, in deep inside the lattice,
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the ratio

pN =
P̃N+1,0(λ)

P̃N,0(λ)
(3.11)

is independent of N . Thus, we get a quadratic equation in pN from the previous equations.

On solving, we get

P̃0,0(λ) =
2(z − 1)/z

(z − 2)/z +
√

1− (4λ2(z − 1)/z2)
(3.12)

The Laplace transform of the return probability is related to generating function P̃x,0(λ) by

P̃0,0(ω) = λP̃0,0(λ)|λ=1/(1+ω) (3.13)

And the density of states (for M) is given by the analytic continuation of the Laplace

transform

ρM(ϵ) = − 1

π
Im P̃0,0(−ϵ+ i0+) (3.14)

Using this, for z = 3, we have

ρM(ϵ) =
3

2π

√
2ϵ− ϵ2 − 1/9

2ϵ− ϵ2
(3.15)

3.15 gives the density of states for M, thus, the density of states for A is given by

ρA(µ) =
3

2π

√
8− µ2

9− µ2
, |µ| < 2

√
2 (3.16)

In fact, Kesten and McKay (cite Kesten and McKay) showed that for random regular graphs

with degree d the spectral density for

lim
N→∞

⟨ρA(µ)⟩ =
d

2π

√
4(d− 1)− µ2

d2 − µ2
, |µ| < 2

√
(d− 1) (3.17)

where ⟨·⟩ denotes averaging over random regular graph ensemble. This matches well with

the numerical evidence in figure 3.3.

The plots for Variance in fraction of eigenvalues less than the eigenvalue are in figure 3.4
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Figure 3.3: Plot of average density of states as a function of eigenvalue obtained numerically
for 1000 graphs of size 2000. Number of bins = 100.

Figure 3.4: Plot for variance in fraction of eigenvalues less than a given eigennvalue obtained
numerically for 1000 graphs of size 2000. Number of bins = 45

3.2 Variance of Top Eigenvalue

A quantity of interest in Random Matrix Theory is the variance of the extreme eigenvalues

as a function of the size of the matrix [17]. According to random matrix theory prediction37



for the Gaussian Orthogonal Ensemble (GOE), the variance of the largest eigenvalue scales

as N− 2
3 . In the plot in the figure 3.5 we have compared the scaling of variance of largest

non-trivial eigenvalue for a random regular graph with the size. While the random regular

graph ensemble is not completely identical to the GOE, it is expected that some general

properties of the ensemble follow the random matrix theory prediction. The numerical

evidence indicates that the scaling is within the prediction of random matrix theory for the

GOE.

Figure 3.5: Scaling of the standard deviation of largest non-trivial eigenvalue in the spectrum
of a Random Regular graph

3.3 Non-backtracking random walk on RLTL

Next, we will consider the problem of a non-backtracking random walk (NBRW) on the

random regular graph. In NBRW, at each step, a particle has equal probability to hop to

any neighboring site subject to the constraint that it cannot jump to a site visited in the

step just before the current step. This type of random walk problem too can be reformulated
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as a Markov process on the random regular graph. We can think of the each site having 3

states determined by which neighbor the particle arrives from at the present site.

Alternatively, we can consider the edges of the graph to be directed edges e(i, j) with

the origin o(e) = i and terminus t(e) = j. In this notation e(i, j) ̸= ê(j, i). Consider the

3N×3N matrices B (transmission matrix) defined by Be,e′ = δt(e),o(e′) and J (back scattering

matrix) defined by Je,e′ = δê,e′ . Then, NBRW is the Markov process defined by the matrix

Y = B− J.

We wish to find out the spectrum of Y. In fact, it is possible to calculate the eigenvalues

of Y can be expressed as a function of the eigenvalues of A. The derivation closely follows

the papers [30, 31] The Bartholdi Identity applied to random regular graphs of degree 3 gives

det(I3N×3N − s(B− wJ)) = (1− w2s2)N/2 det(IN×N(1 + w(3− w)s2)− sA) (3.18)

Setting w = 1, we get

det(I3N×3N − sY) = (1− s2)N/2 det(IN×N(1 + 2s2)− sA) (3.19)

Thus,
3N∏
i=1

(1− sλYi ) = (1− s2)N/2

N∏
j=1

(1 + 2s2 − sλAj ) (3.20)

Thus, the list of eigenvalues of Y is given by:

� ±2 (−2 for Bipartite graphs only)

� +1, with degeneracy N/2

� −1, with degeneracy N/2

�
√
2e±iϕk , where ϕk = cos−1

(
λA
i

2
√
2

)

Numerically determined eigenvalues for the matrix describing the Markov process of non-

backtracking random walk can be seen in figure 3.6
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Figure 3.6: Spectrum for non-backtracking random walk on a bipartite random regular graph
of size 1206. Note that there is a large degeneracy of eigenvalues at ±1.

3.4 Spherical model on RLTL

It is useful to study some soluble models to study how much thermodynamic quantities are

affected by the sample to sample fluctuations in the RLTL. These thermodynamic quantities

can be used to differentiate between different random regular graphs of same size. The

spherical model is an important example of such a solvable model of ferromagnetism. It

was first solved by Kac and Berlin [32]. This model exhibits a second order transition at

temperature in D > 2, D is the dimension of the lattice. We will follow the procedure from

[33]. The Hamiltonian is given by:

H = −J
∑
⟨ij⟩

SiSj, subject to the constraint
N∑
i=1

S2
i = N (3.21)

where Si are real numbers and the sum is over nearest neighbors. Then the partition function

of the system Z(β), β is the inverse temperature, is given by:

Z =

∫
· · ·
∫
dS1 · · · dSNe

β
2

∑N
i,j SiSjδ[

N∑
i=1

S2
i −N ] (3.22)
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where the sum in the integral is over nearest neighbors and the Dirac delta function δ[
∑N

i=1 S
2
i −

N ] enforces the constraint
∑N

i=1 S
2
i = N . Using the identity

δ(x) =
1

2π

∫ ∞

−∞
eikxdk (3.23)

Thus, rewriting the Dirac delta as an integral over k and exchanging the orders of Si and k

integrals, we can express Z as

Z =

∫ ∞

−∞
dk

∫
· · ·
∫
dSi · · · dSN eikN · e

βJ
2

∑N
i,j SiSj−ik

∑N
i=1 S

2
i (3.24)

Note that the expression in the second exponential is bilinear in Si and thus can be expressed

in the form

−1

2
STVS =

βJ

2

N∑
i,j

SiSj − ik
N∑
i=1

S2
i (3.25)

Thus,

V = 2ikI− βJA (3.26)

If a change of variables is made to the basis so thatV is diagonal, the Si integrals will become

a product of gaussian integrals and since the transformation is an orthogonal transformation,

the Jacobian for the transformation is unity. Thus, we obtain

Z =

(∫ ∞

−∞
dk eikN

)
· (2π)

N
2

(det[V ])
1
2

= (2π)
N
2

∫ i∞

−i∞
du euN

1∏N
i=1(2u− βJλi)

1
2

(3.27)

Where u = ik. And hence,

Z = (2π)
N
2

∫ ∞

−∞
du eN(u− 1

2N

∑N
i=1 ln(2u−βJλi)) = (2π)

N
2

∫ ∞

−∞
du eNϕ(u) (3.28)

In the large N limit, the integral can be approximated by the method of steepest descent.

Note that the free energy per spin is given by f(β) = − 1
Nβ

lnZ. Thus, we expect non-trivial

behavior for the free energy when ϕ′(u) = 0. This is the saddle point equation will allow us

to estimate the critical temperature. Below the critical temperature we see that the order

parameter given by m = 1
N

∑N
1 Si becomes non-zero and we have a second order phase
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transition. The saddle point equation is

N =
N∑
i=1

1

u− βJλi
(3.29)

At the critical point, u = 0. Thus,

kBTc = N ·

(
N∑
i=1

1

Jλi

)−1

(3.30)
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Chapter 4

Summary

Spin glass models are prototypical examples of disordered systems. For most of the models

in Statistical physics, exact analytic calculation of the partition function or thermodynamic

quantities is a hard problem and instead one often resorts to mean-field models of the prob-

lem which capture the essential physics and are easier to solve. However, for the spin glass

models, solving even the mean-field models has proven to be a challenge. While previous

work by Parisi has provided us with a method to solve the problem, an explicit calculation of

thermodynamic quantities at low temperatures involves an increasingly higher step replica

symmetry breaking. In particular, despite being studied for over four decades, an exact

analytic expression for the ground state energy of such models has not been calculated. In

this thesis we have attempted to understand better the average ground state energy for the

Sherrington Kirkpatrick (SK) model and the Ising spin glass model on a Random Layered

locally Tree like Lattice (RLTL), which is a variation of random regular graph, by numerical

and analytic methods.

In Chapter 2 we first attempt to find the average ground state energy for the Sherrington

Kirkpatrick model. We first attempt this by a Greedy algorithm which minimizes energy

based on the mean-field experienced by each spin. We then improve our attempt by mak-

ing a guess for the configuration of spins based on eigenvectors of the coupling matrix that

describes the Hamiltonian of the system. This method gives an average minimized energy

per spin as −0.742 J . For comparison, the solution by Parisi predicts the average minimized

energy per spin as −0.763 J for the SK model.

Next in Chapter 2, we attempt to find the average ground state energy per spin for the
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Ising spin glass model on a random regular graph. Like for the SK model, we first attempt

to minimize energy using a Greedy algorithm and estimate an analytic calculation of the

minimized energy from the Greedy algorithm by relating the algorithm to the Dimer problem

on the lattice. The analytic prediction from this calculation fails to match the numerical

data, indicating that constraints due to presence of loops in the lattice persist even in the

thermodynamic limit. We then improved methods to minimize the energy by identifying

clusters of spins that can flipped to minimize energy and obtain a state stable upto 4 spin

flips. Finally, we use eigenvectors of the coupling matrix in combination with the cluster

flip algorithm to obtain average minimized energy per spin of −1.25 J . For comparison, the

1 step Replica Symmetry Breaking solution gives an average ground state energy per spin

of −1.2723 J and numerical studies of average ground state energy per spin of −1.2716 J

using heuristic optimization. From analysis of the eigenvalues, we obtain a lower bound for

the average ground state energy of −
√
2 J ≈ −1.4142 J .

In Chapter 3 we investigate the spectrum of random regular graph by analyzing random

walks on the graph. We obtain an exact expression for the Density of states on the Bethe

lattice. We also analyze the spectrum of the Markov process by defining non-backtracking

random walks on the random regular graph. We obtain the spectrum of in terms of the eigen-

values of the Adjacency matrix of the graph and find a large degeneracy in the eigenvalues

±1. This analysis allows us to obtain the average smallest eigenvalue for the coupling matrix.

Next, we address the question of using a thermodynamic quantity to differentiate between

different random regular graphs of same size. We show that the critical temperature, related

to the eigenvalues of the Adjacency matrix for the spherical model on the random regular

graph, is a suitable quantity for distinguishing between random regular graphs of same size.
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