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Abstract

In this thesis, we investigate gravitation in light-cone gauge. There are various moti-
vations to study pure gravity, in four dimensions, as a field theory in light-cone gauge.
These include recent results pertaining to scattering amplitudes, KLT relations and MHV
Lagrangians. Further, recent analysis of the finiteness properties of N = 8 supergravity
strongly suggests that we must revisit pure gravity as a field theory.

Although some work has gone into understanding light-cone gravity in flat spacetime,
there are no findings as far as light-cone gravity on curved backgrounds is concerned.
This is one of the gaps, in the literature, that the present thesis aims to address. Ad-
ditionally, this thesis investigates some of the mathematical structures of the light-cone
Hamiltonians describing gravity theories (both without and with supersymmetry). We
find unique "quadratic form" structures in these Hamiltonians and comment on the pos-
sible significance of these structures.
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Chapter 1

Introduction

Complex processes in nature, ranging from planetary motion, photosynthesis and radioac-
tivity to high energy experiments at the LHC, can be described by the four fundamental
forces of nature. The fundamental forces are : the Strong force, the Weak force, the
Electromagnetic force and the Gravitational force. By fundamental, we mean that any
force we experience is of one of these four types (for example, friction is electromagnetic
in origin). Our current understanding of these forces is based on quantum mechanics
and general relativity. The former helps in studying the physics of particles and their
interactions and plays an important role in describing short distance physics. The latter
explains the motion of celestial objects (such as stars and galaxies) and is used as a tool
to study the physics of large objects.

We appear to live in a world with three space dimensions and one time dimension. The
group that describes the symmetries of our world is the Poincaré group. All content in
the world can be classified into two types: matter and forces. Matter is made up of
fermions (half integer spin particles) while forces are mediated by bosons (integer spin
particles). The recently discovered Higgs particle which has spin 0 plays a crucial role in
generating mass for various fermions and bosons.

Three of the four fundamental forces - the Strong, the Weak and the Electromagnetic -
are mediated by spin-1 gauge bosons and described by quantum Yang-Mills theory [1].
We seem to understand fairly well the mechanism of these three forces (ie. how they
operate). In fact, quantum Yang-Mills theories describe these three forces with great
accuracy and the predictions of these theories have been verified experimentally to ten
parts in a billion 10−8.

Gravity, although discovered the earliest, is the force we understand least. The weakness
of the gravitational force makes it almost impossible for us to learn more about this force
from simple experiments. Unfortunately, all attempts to formulate a quantum theory
of gravity have proven unsuccessful thus far. Such a theory is needed to explain the
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fundamental mechanism behind the gravitational force and also to understand what the
detailed structure of spacetime is.

Classically, gravity is very successfully explained by the General Theory of Relativity. In
fact, experimental checks have been so successful that a quantum theory of gravity may
very likely be only an “extension” of General Relativity.
All of this motivates the need to further investigate our understanding of gravity and
spacetime geometry through the General Theory of Relativity).

There has been over a century of study devoted to General Relativity. More recently,
many decades have focused on understanding gravity as a (quantum) field theory, in the
usual covariant gauges (a gauge choice is our freedom to choose some metric components
to be zero based on the symmetries of the theory). However, there is not much literature
on gravity, as a field theory, in light-cone gauge. The light-cone gauge has various ad-
vantages over covariant gauges and has led to some rather remarkable results (in string
theory [2] and the proof of ultra-violet finiteness of the N = 4 Yang-Mills theory [3, 4]).
Key advantages in the light-cone gauge formulation of field theories [5] include: (a) only
the physical degrees of freedom appear and this is achieved by eliminating redundant
degrees of freedom using algebraic gauge fixing condition(s), thus avoiding the need to
deal with ghost fields when quantizing the theory (b) on-shell results are easy to read off
in this formalism, making it closely tied to physics and (c) convenient to look for hidden
structures, making it an ideal formulation to look for new/hidden symmetries.

Gravitation, in light-cone gauge, has been studied to some extent on flat
spacetime backgrounds [6–11]. However, it is very surprising that despite
the considerable interest in anti-de Sitter spacetimes (in the context of string
theory), and curved spacetime backgrounds in general, light-cone gravity has
not been formulated in any background other than flat space. This is one of
the gaps in the literature that this Ph.D. thesis aims to address.

This thesis is based primarily on my papers with collaborators: [12–15].

Having provided the big-picture motivation for investigating gravity in light-cone gauge,
we highlight below, three of the most interesting recent developments in the field that
have relevance to or motivate the work presented in this thesis.

(i) In the usual approach to calculating scattering amplitudes, we start with the covariant
formalism and compute Feynman diagrams to arrive at the physical amplitudes. The
issue with this approach is that each individual Feynman diagram is not gauge invariant
(although the sum of diagrams is) and hence this approach does not use the power of
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symmetry entirely. Instead, working in light-cone gauge we find that only the physical
degrees of freedom propagate. In this gauge, scattering amplitudes can be factorized and
represented in very simple forms. For instance, the n-gluon tree-level amplitudes in QCD
take the following simple form [16]:

A[1+,2+, . . . , i−, . . . , j−, . . . ,n+] = 〈i j〉4

〈12〉〈23〉 . . .〈n1〉 . (1.1)

We define the angular brackets later in the thesis but the key point to note here is the
simplicity of the answer/result for any number of gluons. This simplicity stems from
the result depending only on the helicity states in the theory and since the light-cone
formalism only works with these states, it is ideally suited for the study of scattering
amplitudes.

(ii) Yang-Mills theory and gravity differ at the level of their building blocks (dynamical
fields) and can show quite different dynamical behavior. Both the theories differ even at
the level of Lagrangians: The Lagrangian of non-Abelian Yang-Mills theory contains only
up to four-point interactions whereas gravity Lagrangian contains infinitely many inter-
action terms. Still, there are quite a few striking relations between Yang-Mills theory and
gravity. One such relation stems from string perturbation theory, the Kawai-Lewellen-
Tye (KLT) [17] relations show that at tree-level closed string amplitudes can be expressed
as sums of products of open string amplitudes. The low energy limit of sting theory is
quantum field theory. Therefore, the KLT relations imply that similar relations must ex-
ist between tree-level gravity amplitudes and tree-level amplitudes in Yang-Mills theory.
We can heuristically write

(Gravity) ∼ (Yang-Mills) × (Yang-Mills)

In field theory limit, the KLT relations for cubic and quartic interactions can be written
as

M tree
3 (1,2,3) = Atree3 (1,2,3)Atree3 (1,2,3)

M tree
4 (1,2,3,4) = −is12A

tree
4 (1,2,3,4)Atree4 (1,2,3,4) (1.2)

where Mn is tree-level coupling-stripped gravity amplitude and An represents color-
coupling-stripped tree-level amplitude of Yang-Mills theory [sij ≡−(pi+pj)2] .
The KLT relations can be exploited to obtain the quantum loops of from semi-classical
tree-level amplitudes by using D-dimensional unitarity [18].

The KLT relations are semi-classical and have been proved to be true on four-dimensional
flat Minkowski space-time background.
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We know that our universe is not flat instead it is believed to be a four dimensional de
Sitter space-time [19]. Therefore it will be very interesting to see if these KLT relations
or KLT-like relations are valid even on curved spacetime backgrounds. This is one of
the long-term aims of the work in this thesis: to have the perturbative Lagrangians for
light-cone gravity up to cubic order on curved backgrounds such as AdS4, dS4 and other
conformally flat backgrounds (we consider conformally flat backgrounds because of sim-
plicity of light-cone formulation on these backgrounds). This is the primary motivation
for chapters 3 and 4 in this thesis.

(iii) N = 8 supergravity and hidden symmetries.
Supersymmetry relates fermions to bosons. The (N = 8,d= 4) supergravity is the gravity
theory in four dimensions with maximal supersymmetry. One of the most striking aspects
of supersymmetry is how it improves the ultra-violet (high energy) behaviour in quantum
field theories. Accordingly, the N = 8 theory has the best ultraviolet properties of any
field theory of gravity. It has been found to be divergence free up to four loops [20,21] and
it is believed to be finite up to seven loops [22] and perhaps beyond [23]. The presence of
supersymmetry only partially explains this degree of finiteness. The question is “What
else can account for this improved behavior?”. It has been suggested repeatedly that the
improved behavior at the loop levels is due to pure gravity itself (and such improved
unexpected ultra-violet behavior usually points to a hidden symmetry). Another long-
term goal for the work in this thesis, is to produce a bare-bones formalism of gravity
(which the light-cone helps us achieve) wherein any such hidden symmetries or structures
might appear.
Finally, having outlined three of the results that motivate our work, we comment on other
aspect of this thesis: the aim to identify simple algebraic structures in theories of gravity.
Simple structures usually indicate or stem from a symmetry principle.
The maximally supersymmetric N = 4 Yang-Mills theory and N = 8 supergravity Hamil-
tonians can be written as quadratic forms, involving the dynamical supersymmetry gen-
erator [24, 25]. In this thesis, we show that such structures (quadratic forms) extend
even to the pure Yang-Mills and gravity theories. The exact physical significance of the
quadratic form is still unclear to us but the fact that it appears only in the pure and
maximally supersymmetric cases is clearly an important sign.

Overview

In chapter 2 we review light-cone coordinates and the Poincaré algebra in this language.
The formalism developed in [6, 7] provides a closed form expression for the light-cone
gravity Lagrangian which can then be used to obtain the perturbative Lagrangian order
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by order. Chapter 3 contains a review of Yang-Mills theory in light-cone gauge followed
by derivation of the closed form expression of gravity. We have also derived perturbative
expansion up to quartic interactions in field. Finally, we illustrate the KLT relation where
cubic coupling-stripped helicity amplitude of gravity can be written as the “square” of
cubic color-coupling stripped helicity amplitude of the Yang-Mills theory.
The major content of this thesis focuses on formulation of gravity on curved backgrounds
in light-cone gauge. This is done is chapter 4 and chapter 5. In chapter 4 we take con-
formally flat Poincaré Patch of AdS4 as background metric. After making suitable gauge
choices, the constraint equations can be solved to fix redundant degrees of freedom. We
have obtained a closed form expression of the action on AdS4 . We have also derived
perturbative expansion of the action up to first order in coupling constant in light-cone
gauge [12]. Similarly in chapter 5, The conformally flat Poincaré Patch of dS4 is taken
as the dynamical background metric. We make similar gauge choices as in the case of
AdS4 . The conformal factor in this case is time dependent, therefore integrating factors
are essential to solve constraint relations. We have obtained the closed form expression
of action followed by perturbative expansion up to first order in coupling constant [13].
I would like to mention that the results in this thesis were derived by hand without help
of any symbolic computation package.
Chapter 6 comprises of review on quadratic forms in supersymmetric and non-
supersymmetric Yang-Mills theory and gravity.
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Chapter 2

Light-cone coordinates and Poincaré
algebra

We work in light-cone coordinates throughout this dissertation.

Light-cone coordinates

The light-cone coordinates were first introduced by Dirac in 1949 [5]. It was shown that
the maximum number of Poincaré generators become independent of dynamics in the
“front-form” or “light-cone ” formulation, including some of the Lorentz boosts. For
example, in four dimensions, seven of the Poincaré generators are independent of dynam-
ics and only three contain dynamical information. In this formulation, the Hamiltonian
which usually satsifies an eigenvalue relation of the form

H |ψ〉 =
√−→
P 2 + M2 |ψ〉

no longer contains square roots, implying that negative energy solutions can be avoided
by suitable choices of dynamical variables.

We work in four dimensional Minkowski spacetime with coordinates (x0,x1,x2,x3) and
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metric

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.
Consider a massless particle moving in the x3-direction with momentum p3 and 4-
momentum pµ = (p0,0,0,p3). For massless particles, we have pµpµ = 0 implying that
p0 = |p3|. The light-front (henceforth referred as light-cone) is a three-dimensional sur-
face defined by x0 + x3 = constant.

In high energy collision processes particle trajectories lie near a plane, which can be taken
as x0−x3 plane. The trajectories of right moving particles cluster about a light-like line
x0 − x3 = 0 while trajectories of left moving particles cluster about the light-like line
x0 + x3 = 0 in the x0− x3 plane. Therefore, for studying high energy properties of
amplitudes, the formulation of theories with these lines as the coordinate axes becomes
extremely useful.

The light-cone coordinates are defined as

x+ = 1√
2

(x0 +x3)

x− = 1√
2

(x0 −x3) (2.1)

To write the theory in terms of fields which are in helicity eigenstates, the remaining two
coordinate axes are combined to give

x = 1√
2

(x1 + ix2)

x̄ = 1√
2

(x1 − ix2) (2.2)

With the corresponding derivatives defined by

7



∂+ = ∂

∂x+ = 1√
2

(∂0 +∂3) = −∂−,

∂− = ∂

∂x−
= 1√

2
(∂0 −∂3) = −∂+,

∂ = ∂

∂x
= 1√

2
(∂1 + i∂2),

∂̄ = ∂

∂x̄
= 1√

2
(∂1 − i∂2).

(2.3)

Conventionally, we choose x+ as the time coordinate and the corresponding momentum
p+ = −p− = − i ∂

∂ x+ is the light-cone Hamiltonian. After coordinate transformations of
(2.1) and (2.2), the Minkowski metric reads

ηµν =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0



The invariant interval becomes

ds2 = −2dx+ dx− + 2dxdx̄ (2.4)

Poincaré algebra in light-cone gauge

A generic Lorentz transformation to leading order in parameter (ωµν) is

δJ φ = iωµν J
µν φ = iωµν (Mµν + Sµν)φ (2.5)
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where Mµν are generators of Lorentz group and Sµν are representation matrices.

The Poincaré generators in light-cone coordinates are obtained from the following covari-
ant results

Pµ = − i∂µ, Mµν = − i(xµ∂ν − xν ∂µ),

[Pµ,Pν ] = 0, [Mµν ,Pρ] = i(ηµρPν − ηνρPµ), (2.6)

[Mµν , Mρσ] = i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ).

with Mµν = −Mνµ. The light-cone form of the Poincaré generators is as follows

M+− = i(x+∂− − x−∂+), M = x∂̄ − x̄∂,

M+ = i(x∂+ − x+∂), M̄+ = i(x̄∂+ − x+∂̄), (2.7)

M− = i(x∂− − x−∂), M̄− = i(x̄∂− − x− ∂̄).

The generators P, P̄ , P−, M, M̄, M+−, M+ and M̄+ are non-dynamical whereas P+, M−

and M̄− are dynamical generators.

and the corresponding Poincaré algebra is given by
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[M+−, P+] = iP+, [M+−, P−] = −iP−,

[M+, P−] = −iP, [M̄+, P−] = −iP−,

[M−, P+] = −iP, [M̄−, P+] = −iP−, (2.8)

[M+−, M+] = iM+, [M+−, M̄+] = iM̄+,

[M+−, M−] = −iM−, [M+−, M̄−] = −iM̄−,

[M−, P̄ ] = −iP−, [M̄−, P ] = −iP−

[M+, P̄ ] = −iP+, [M̄+, P ] = −iP+.
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Chapter 3

Gravity and Yang-Mills theory in
light-cone gauge

This chapter is primarily a review of the work in [7].

In this chapter we formulate gravity in light-cone gauge. We present Yang-Mills theory
as a toy model to illustrate our formalism.

Yang-Mills theory

Brief note on group theory

This section is not intended to be a review. Instead, we briefly highlight a few points and
results from group theory that are relevant to the material presented in this thesis.

Special orthogonal group :SO(N)

The group formed by rotations in N-dimensional Euclidean space is: SO(N). The group
SO(N) consists of N × N real matrices R which are orthogonal

RT R = 1 (3.1)
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and have detR = 1. The fundamental representation of the group is given by N-
dimensional vector ~v = {vi}= {v1,v2,v3, . . . ,vN}. Under the action of the group element
R a vector transforms as

vi → v′ i = Rij vj (3.2)

The members of SO(N) are represented as R = eθ
ij Jij , where J ij are N(N−1)

2 antisymmet-
ric matrices. For example, rotations in two dimensions form SO(2) which are generated
by σ2 - one of the Pauli matrices. The group of rotations (Lorentz group) in four space-
time dimensions is SO(3,1) which is locally isomorphic to SO(3) ×SO(3).

Special unitary group: SU(N)

The special unitary group SU(N) consists of all N ×N matrices which are unitary

U †U = 1 (3.3)

and have detU = 1. The fundamental representation of SU(N) consists of N objects
ψj , j = 1,2,3, . . . ,N which under the action of a group element transforms as

ψi → ψ′ i = U ij ψ
j (3.4)

Whereas in the adjoint representation the group element is represented by a traceless
tensor ψij and it transforms as

ψ → ψ′ = U ψU † (3.5)

The SU(N) generators are N ×N Hermitian and traceless matrices T a, where (a =
1,2, . . . ,N2−1). Using this we write

U = eiω
aTa

(3.6)

where ωa are real parameters. The commutation relations of generators
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[T a,T b] = ifabcT c (3.7)

form the Lie algebra of SU(N), where fabc is the structure constant. The Lie algebra of
group SO(3) is isomorphic to that of SU(2), implying that SO(3,1) ∼= SU(2)×SU(2).
Therefore, we can associate a rotations with any given U . Quantum chromodynamics
and electroweak interactions, for example, are governed by an SU(3) and SU(2) ×U(1)
symmetry.

Review of Yang-Mills theory

Field theories which have been very successful in describing the real world are all gauge
theories. These theories are based on the principle of gauge (“gauging” → “making lo-
cal”) invariance and in general refer to larger symmetry groups than the U(1) group gauge
invariance of quantum electrodynamics (QED). Yang-Mills theories are locally invariant
under the internal symmetry transformations. A brief discussion on the non-Abelian
gauge theories can be found in [26,27].

Consider a classical action invariant under the local symmetry group G. We consider this
to be non-Abelian, simple and compact, this allows us to choose G = SU(N). Let ψ be
the field with Lagrangian :

L = ψ†a γ
µ∂µψa. (3.8)

where a = 1, 2, 3...N is color index and the field ψ is a N component vector. ψ transforms
as the fundamental representation, viz.

ψ → ψ′(x) = exp(iωATA)ψ ≡ U(x)ψ(x), (3.9)

where, TA are the N2−1 traceless Hermitian matrices which generate N-dimensional rep-
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resentations of the su(N) Lie algebra. The group structure function is defined through
the commutator

[TA, TB] = ifABC TC (3.10)

To introduce invariance under local transformations in the Lagrangian (3.8), we need
covariant derivatives Dµ such that Dµψ transforms in the same way as the field ψ in
(3.9) i.e. obeys the following transformation law :

Dµψ(x) → U(x)Dµψ(x) (3.11)

or in operator form

Dµ → D′µ = U(x)DµU †(x) (3.12)

The covariant derivative Dµ is supposed to generalize the partial derivative ∂µ so we
define

Dµψ = (∂µ − ig Aµ)ψ. (3.13)

where Aµ = ACµ T
C is the gauge field (which has been introduced to ensure the correct

transformation law) and g is a dimensionless coupling constant. Note that Dµ is a N×N
matrix. Explicitly, with all indices shown

[Dµψ]a → [U(x)]ba (Dµ)cbψc(x) (3.14)

Imposing the transformation law of Dµ in (3.11) or (3.12) we obtain the transformation
law for the gauge field.
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Aµ(x) → A′µ(x) = U(x)Aµ(x)U †(x) + i

g
U(x) [∂µU †(x)] (3.15)

The variation in the gauge field under infinitesimal gauge transformations can be found
using (3.9) and (3.15).

δACµ = 1
g
∂µω

C(x) − fBDC ωB(x)ADµ (x) + O(ω2) (3.16)

where ω is the gauge parameter. It is remarkable that the gauge transformations are
represented in a way that the transformations of gauge fields does not depend on the rep-
resentation of fermion fields we started with. To understand the dynamics of the gauge
fields we need an action which describes their dynamics and is invariant under the SU(N)
transformations. This is achieved by introducing the field strength as

Fµν ≡ i

g
[Dµ,Dν ]

= ∂µAν − ∂νAµ − ig [Aµ, Aν ]. (3.17)

where Fµν = FCµν T
C . From (3.12) and (3.17) we see that

Fµν(x) → U(x)Fµν(x)U †(x) (3.18)

Therefore, the trace of the quadratic Lorentz scalar of the field strength is invariant under
the gauge transformation. The gauge invariant Lagrangian for the gauge field is

L = − 1
4 F

µν cF cµν . (3.19)
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The above Lagrangian is invariant under the gauge transformation

Aµa → A′µa = Aµa +DµΛa (3.20)

where Λa(xµ) is a scalar function of spacetime. This implies that we can eliminate one
degree of freedom from the gauge field, by simply choosing a suitable Λa(xµ). The light-
cone version of this gauge freedom will be discussed shortly.
The gauge invariant Lagrangian for the Dirac spinor ψ corresponding to the fundamental
representation of SU(N) and interacting with the gauge field Aµ can be written as

L = − 1
4 F

cµν F cµν + ψ†a ( /D −m)ψa (3.21)

This would represent the Lagrangian for a gauge theory like QCD, with the gauge field
referring to the gluons and the relevant group being SU(3).

Yang-Mills theory in light-cone gauge

We study the gauge field action in four dimensional Minkowski space-time in light-cone
coordinates. The action for just the gauge fields is

S = − 1
4

∫
d4x Tr(Fµν Fµν) (3.22)

with the corresponding Lagrangian defined in (3.19) and µ, ν = 0,1,2,3. Fµν is the Yang-
Mills generalization of the field strength (of electromagnetism) defined in (3.17). The
extremum of the actionabove yields the equations of motion,

∂µF
aµν + g fabcAbµF

cµν = 0 (3.23)

where a = 1,2, ... ,N2− 1, is the SU(N) index1. The gauge fields in the light-cone coor-
dinates are defined as

1We have changed SU(N) index from “A” → “a” for calculation convenience.
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Aa+ = 1√
2

(Aa0 + Aa3)

Aa− = 1√
2

(Aa0 − Aa3) (3.24)

We now choose to work in light-cone gauge by setting Aa0 = Aa3 or :

Aa+ = 1√
2

(Aa0 + Aa3) = 0 ⇒ Aa− = 0 (3.25)

The gauge invariance of Yang-Mills theory allows us to make this one gauge choice. Any
equations of motion (3.23) that do not explicitly contain time derivatives (meaning ∂+)
are constraint relations (since they must be valid at all values of light-cone time). We
now examine the ν = + component of (3.23) while imposing our gauge choice (3.25).
This yields

Aa+ = ∂i
∂−

Aai + g fabc
1
∂2
−

(Abi ∂−Aci) (3.26)

The above equation shows us that the field component Aa+ can be expressed in terms of
the transverse fields Aai , for i = 1,2.

The operator 1
∂−

is a non-local indefinite integration operator. It can be thought of as
the Green function which satisfies

∂−G(x− ,y−) = δ(x−−y−). (3.27)

With the help of suitable boundary conditions G can be determined up to a vanishing
zero mode of the operator ∂−. For additional details regarding 1

∂−
, we refer the reader

to [3, 28].
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The Yang-Mills Lagrangian (3.19) can now written entirely in light-cone gauge using
(3.25) and (3.26). After dropping the boundary terms, we get

L = − 1
2A

a
i2A

a
i + 2g fabc 1

∂−
Aai ∂iA

b
j ∂−A

c
j + 1

4 g
2 fabc fadeAbiA

c
jA

d
i A

e
j

+ 1
2 g

2 fabc fade
1
∂−

(Abi ∂−Aci)
1
∂−

(Adj ∂−Aej). (3.28)

The above Lagrangian can now be rewritten in a helicity basis by the following change
of variables in (3.28) :

Aa = 1√
2

(Aa1 + iAa2)

Āa = 1√
2

(Aa1 − iAa2) (3.29)

Under the Lorentz little group SO(2), Aa, ∂ have helicity of +1 while Āa, ∂̄ have helicity
of −1. The helicity neutral Yang-Mills Lagrangian reads

L = Āa2Aa − 2g fabc
(
∂

∂−
Āa∂−A

b Āc + ∂̄

∂−
Aa∂−Ā

bAc
)

−2g2 fabc fade
1
∂−

(
∂−A

b Āc
) 1
∂−

(
∂− Ā

dAe
)
. (3.30)

The light-cone Lagrangian of Yang-Mills theory in (3.30) contains only the physical (trans-
verse) fields. The price we pay here is that the Lagrangian lacks manifest covariance and
locality.

18



Yang-Mills helicity vertex

On-shell amplitudes for multi-gluon processes can be written as remarkably simple expres-
sions. The recently developed techniques to evaluate Feynman diagrams more elegantly
has been discussed in a number of references [27, 29, 30]. This has been very helpful in
providing new insights into gauge theories.

We calculate the cubic vertex of the Yang-Mills Lagrangian (3.30) in the spinor-helicity
formalism. In this formalism a four vector is represented as a bi-spinor using the Pauli
matrices as pȧ b = pµ (σ̄µ)ȧ b.

where σµ = (1,σi) and σ̄µ = (1,−σi) with σi (i= 1,2,3) the usual Pauli-matrices.

σ1 =
 0 1

1 0

 , σ2 =
 0 −i
i 0

 , σ3 =
 1 0

0 −1



We define the following spinor products :

〈k l〉 =
√

2 k l− − l k−√
k− l−

[k l] =
√

2 k̄ l− − l̄ k−√
k− l−

(3.31)

where,

k = k1 + ik2√
2

, k̄ = k1 − ik2√
2

, k+ = k0 +k3√
2

, k− = k0−k3√
2

(3.32)

We now start with the light-cone Lagrangian for Yang-Mills derived in the previous sub-
section. We first Fourier transform the Lagrangian to momentum space. We then examine
the first cubic vertex which now reads
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−2g fabc
∫

d4 p

(2π)4
d4 k

(2π)4
d4 l

(2π)4 (2π)4 δ4(p +k + l) 〈k l〉3

〈l p〉〈pk〉
Āa(p)Ab(k) Āc(l)

To get the above expression we have used the spinor products that we introduced and
explicitly anti-symmetrized the momentum factors. The color and coupling stripped ver-
tex is then

A(p,k, l) = 〈k l〉3

〈l p〉〈pk〉
(3.33)

Similarly, the tree-level quartic amplitude can be calculated. There have been remarkable
methods to calculate higher order scattering amplitudes efficiently. A tree-level n-gluon
process in which exactly two external legs carry negative helicity i.e, An(−,−,+ + ...+)
is called a maximum helicity violating (MHV a.k.a. CSW) amplitude. In [31] Cachazo,
Svrcek and Witten conjectured that tree level amplitudes of arbitrary helicities can be
obtained by gluing together certain combination of these MHV amplitudes with propa-
gators. A recursion relation for the n-gluon MHV tree-level amplitudes was given in [16].
An entirely MHV Lagrangian can then been obtained from the light-cone Yang-Mills
Lagrangian using suitable field redefinitions [32, 33].

Another recent development in this regard is the work in [34]. It is an expansion of
the color ordered diagrams involving both MHV and non-MHV amplitudes. This idea
has been applied and extended at the tree-level in both, the Yang-Mills theory [35] and
gravity [36]. Also, the prescription of BCFW and MHV amplitudes has been generalized
to calculate one loop amplitudes [37].

Although very interesting, these ideas (CSW, MHV and BCFW) are, at present, outside
the scope of this thesis.
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General relativity

The action principle is our starting point for the study of General Relativity. It allows
us to derive the equations of motion (field equations) and to identify conservation laws.
The Lagrangian is invariant under symmetry transformations (like general coordinate
transformations). In General Relativity, the metric is the dynamical variable and char-
acterizes the geometric and gravitational properties of spacetime. The Einstein-Hilbert
action reads

SEH =
∫
d4x
√
−g

[
1

16πG(R − 2Λ) + Lm
]
. (3.34)

where

• G is Newton’s constant.

•
√
−g makes the volume element invariant under general coordinate transformations.

• R is the Ricci scalar (related to the Ricci tensor) and defined below.

• Λ is the cosmological constant corresponding to the spacetime metric.

• Lm is the Lagrangian for matter fields present in the theory.

The Ricci tensor is obtained by contracting two indices of Riemann tensor and is sym-
metric under the exchange of its two indices.

Rµν = Rαµαν (3.35)

and Ricci scalar is the metric contracted Ricci tensor

R = gµνRµν (3.36)

The Riemann tensor is given by
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Rαµνρ ≡ ∂ρΓαµν − ∂ν Γαµρ + Γσµν Γαρσ − ΓσµρΓανσ (3.37)

and its fully covariant form is Rλµνρ = gλαRαµνρ. The Riemann tensor is unique in being
the only tensor that can be constructed using the metric gµν , its first and second deriva-
tives and remaining linear in the derivatives. It has the following algebraic properties:

• Symmetry:

Rλµνρ = Rνρλµ

• Anti-symmetry:

Rλµνρ = −Rµλνρ = −Rλµρν = +Rµλρν

• Cyclicity:

Rλµνρ +Rλρµν + Rλνρµ = 0

The first derivative structure present in the Riemann tensor is the Christoffel symbol or
affine connection (which is not a tensor) defined by

Γαµν ≡
1
2 g

αρ (∂µ gρν + ∂ν gρµ − ∂ρ gµν) (3.38)

We can see that Christoffel symbol is symmetric in its covariant indices.

Einstein field equation and Bianchi identities

The equations of motion corresponding to (3.34) are the Einstein field equation and can
be obtained using the variational principle.

Rµν −
1
2 gµνR + Λgµν = 8πGTµν (3.39)

Here Tµν is the stress-energy-momentum tensor and depends on the matter Lagrangian
present in the Einstein-Hilbert action. Covariant differentials of the Riemann tensor
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satisfy a tensor equation, known as the Bianchi identity.

∇αRλµνρ + ∇ρRλµαν + ∇νRλµρα = 0 (3.40)

The doubly contracted Bianchi identity can be written as

∇µGµν = 0. (3.41)

where Gµν = Rµν − 1
2 gµνR is the symmetric Einstein tensor. As we know the covariant

derivative of the metric tensor vanishes i.e. ∇µ gµν = 0. Using this in (3.39) we get

∇µTµν = 0. (3.42)

The above relation shows the local conservation of the stress-energy tensor.

Linearized gravity and diffeomorphism

Pure Einstein field equations in flat spacetimes where the cosmological constant vanishes
are

Rµν −
1
2 gµνR = 0 (3.43)

A flat Minkowski spacetime implies the absence of a gravitational field. In the presence of
a weak gravitational field the flat background remains “nearly” flat. A “small” deviation
in the flat spactime metric is introduced

gµν(x) = ηµν + hµν(x) where |hµν | < 1. (3.44)

The expansion of the equations of motion to linear order in hµν yields the linearized
Einstein field equations. General Relativity is invariant under a symmetry group of
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coordinate transformations. Under a coordinate transformation of the type (called a
diffeomorphism)

x′µ = xµ + ξµ(x) and |∂µξν | << 1 (3.45)

the fields transform as

h′µν(x′) = hµν(x) − (∂µξν + ∂νξµ) (3.46)

This shows that we can find a coordinate system which is nearly flat even after adding an
arbitrary vector ξµ(x). Therefore we can in principle choose components of ξµ to make
the perturbative Einstein field equations as simple as possible. This process of choosing
suitable coordinate transformations is known as gauge transformation.

Since ξµ has four components, we are allowed to make four gauge choices. In four dimen-
sions, the symmetric field hµν has 10 independent components. The four gauge choices
reduce this to six independent components. In the following, we will illustrate how the
choice of light-cone gauge permits us to use four of the non-dynamical Einstein field
equations as constraints to determine four more components of hµν . Thus we are left
with 10− 4− 4 = 2 independent components. These are the two degrees of freedom or
polarization states of the graviton in four spacetime dimensions.

Gravity in light-cone gauge

Having formulated Yang-Mills theory in light-cone gauge, we now turn our attention to
Gravity. Before formulating pure gravity in light-cone gauge, we start with a brief review
of the structure of linearized gravity in light-cone gauge.
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Linearized Einstein equation in light-cone gauge

The linearized Einstein field equation (3.43) is obtained by expanding the vacuum Ein-
stein equation in terms of the metric perturbation (3.44).

Rµν = 0 (3.47)

yields

∂σ∂µhνσ + ∂σ∂ν hµσ − 2hµν − ∂µ∂ν hσσ = 0 (3.48)

where 2 = ∂µ∂µ is the flat space d’ Alembert operator.

We see that the the above equation is invariant under the field transformations in (3.46)
- invariance under infinitesimal diffeomorphisms.

Our aim is to formulate gravity in light-cone gauge. We start by recalling, as explained
below (3.46), that we are allowed to make four gauge choices. We make the following
four gauge choices:

h+µ = 0 ⇒ h−µ = 0 µ = +,−, i, and i = 1,2. (3.49)

Linearized equations can be divided into two groups, the ones which contain time deriva-
tives provide dynamical information. The remaining equations do not contain time deriva-
tives and are therefore constraint relations. These constraints may be solved to eliminate
redundant degrees of freedom (in terms of physical degrees of freedom). This procedure
generates higher order interaction terms containing only physical fields. The ten compo-
nents of Rµν can be expanded in light-cone gauge.

R−− = 0 ⇒ ∂2
−h

ρ
ρ = 0 (3.50)

Since hρρ is an arbitrary function of spacetime, therefore the above relation shows that
Tr(hµν ) = 0. This shows that the last term in (3.48) vanishes. The other components of
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Rµν = 0 are

I. R−i = 0 ⇒ h+i = ∂j

∂−
hij ,

II. R+− = 0 ⇒ h++ = ∂i ∂j

∂2
−
hij ,

III. R++ = 0 ⇒ −2 ∂i ∂j

∂2
−
hij = 0,

IV. R+i = 0 ⇒ − ∂j

∂−
2hij = 0,

V. Rij = 0 ⇒ −2hij = 0,

We see that relations I and II (constraints) allow us to express h+i and h++ in terms of
hij . The next three (dynamical) components III,IV and V are proportional to hij . Trace-
lessness and symmetry of the metric thus leaves only two components of hij independent
and these are the two physical degrees of freedom.

Closed form expression

Having reviewed linearized gravity in light-cone gauge we now turn to the full theory of
pure gravity in four spacetime dimensions. We essentially review how to derive a closed
form expression for the Einstein-Hilbert action, in light-cone gauge, using the formalism
of [6,7]. The closed form expression can then be used to extract interaction vertices/terms
of the Lagrangian and here we present terms upto order κ2 terms [7]. Using similar tech-
niques, the quintic interaction terms have been calculated in [38].

The Einstein-Hilbert action (3.34) on a Minkowski background is

SEH =
∫
d4xL = 1

2κ2

∫
d4x
√
−gR, (3.51)
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where κ2 = 8πG is the coupling constant. The equations of motion corresponding to the
above action (3.51) are

Rµν −
1
2 gµνR= 0. (3.52)

The dynamical variable of General Relativity is the metric ‘gµν ’. We start by making the
following three gauge choices consistent with (3.49) [6, 7]

g−− = g−i = 0 , i= 1,2 . (3.53)

The above gauge choices reduce correctly to the flat spacetime metric components
η−− = η−i = 0 in absence of the perturbations. The fourth and final gauge choice will be
made shortly (and will differ a little from the linearized case). The metric is parametrized
as

g+− = −eφ ,

gij = eψ γij .

(3.54)

The parameters φ and ψ are real while γij is 2× 2 real, symmetric matrix with unit
determinant. As in section 3.4.1 the components of the Einstein field equation which do
not contain ∂+ are constraint relations. The constraint R−− = 0 yields

2∂−φ∂−ψ − 2∂2
−ψ − (∂−ψ)2 + 1

2∂−γ
ij ∂−γij = 0 (3.55)

This equation becomes completely solvable if we make the fourth and last gauge choice
to be

φ = ψ

2 . (3.56)

This solves equation (3.55) and gives
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ψ = 1
4

1
∂2
−

(∂−γij ∂−γij) (3.57)

From the parameters in (3.54), we have thus successfully eliminated both φ and ψ.

The constraint R−i = 0 can also be solved to obtain

g−i = e−φ 1
∂−

[
γij eφ−2ψ 1

∂−

{
eψ
( 1

2 ∂− γ
kl ∂j γkl − ∂−∂j φ

−∂−∂j ψ + ∂jφ∂−ψ
)

+ ∂l

(
eψ γkl ∂− γjk

)}]
(3.58)

Now using (3.53),(3.54),(3.57) and (3.58) We obtain the Einstein-Hilbert action (3.51) in
light-cone gauge as a closed form

S = 1
2κ2

∫
d4xeψ

(
2∂+∂−φ + ∂+∂−ψ−

1
2 ∂+γ

ij∂−γij

)

−eφγij
(
∂i∂jφ+ 1

2∂iφ∂jφ−∂iφ∂jψ−
1
4∂iγ

kl∂jγkl+
1
2∂iγ

kl∂kγjl

)

−1
2e

φ−2ψγij
1
∂−
Ri

1
∂−
Rj , (3.59)

where

Ri = eψ
(1

2∂−γ
jk∂iγjk−∂−∂iφ−∂−∂iψ+∂iφ∂−ψ

)
+∂k(eψ γjk∂−γij)

Note the both φ and ψ have been retained in the expression above to make it easier to
identify the origin of each term. While obtaining the result above, some total derivative
terms have been dropped (since we assume the fields vanish at infinity).
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Perturbative expansion

We will now expand the Lagrangian around flat spacetime to first order in the gravita-
tional coupling constant κ. We now parametrize the matrix γij as

γij = (eH)ij , (3.60)

where

H =
h11 h12

h12 h22

 , (3.61)

det(γij) = 1 implies that H is traceless i.e. h22 = −h11. The two remaining components
can be combined to form a complex field (as in Yang-Mills theory).

h = (h11 + ih12)√
2

, h̄ = (h11− ih12)√
2

(3.62)

Under the Lorentz little group SO(2), h have helicity of +2 while h̄ have helicity of −2.
In terms of these complex fields we find that the helicity neutral variable ψ reads

ψ = − 1
∂2
−

(∂−h∂−h̄) + O(h4) (3.63)

We redefine the field as

h → h

κ
(3.64)

The Lagrangian is expanded around flat spacetime as

L = L2 + L3 + L4 + . . .

Note that the interaction vertices of arbitrarily higher order in coupling (κ) are present
unlike in Yang-Mills theory. We are now ready to expand the closed form Lagrangian for
gravity, in terms of complex fields defined above.
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L2 = 1
2 h2h̄ (3.65)

The Lagrangian at κ order is

L3 = 2κh̄∂2
−

[
−h ∂̄

2

∂2
−
h + ∂̄

∂−
h
∂̄

∂−
h

]
+ 2κh∂2

−

[
− h̄ ∂

2

∂2
−
h̄ + ∂

∂−
h̄
∂

∂−
h̄

]
(3.66)

The ∂+ (which is time derivative) does appear in the quartic interaction vertex. However
it can be removed by as suitable field redefinition [7] and we at κ2 get

L4 = 4κ2

−2 1
∂2
−

(
∂̄

∂−
h∂3
−h̄ − h∂2

−∂̄h̄

)
1
∂2
−

(
∂

∂−
h̄∂3
−h − h̄∂2

−∂h

)

+ 1
∂2
−

(∂̄h∂2
−h̄ − ∂−h∂−∂̄h̄) 1

∂2
−

(∂h̄∂2
−h − ∂−h̄∂−∂h) − 3 1

∂−
(∂̄h∂−h̄) 1

∂−
(∂−h∂h̄)

+ 1
∂−

(∂̄h∂−h̄ − ∂−h∂̄h̄) 1
∂−

(∂h̄∂−h − ∂−h̄∂h) + 3 1
∂−

(∂−h∂−h̄) 1
∂−

(∂̄h∂h̄)

+
[

1
∂2
−

(∂−h∂−h̄) − hh̄
]
(∂̄h∂h̄ + ∂h∂̄ h̄ − ∂−h

∂ ∂̄

∂−
h̄ − ∂−h

∂ ∂̄

∂−
h̄)

 (3.67)

KLT relations

The tree-level vertex of gravity can be calculated in a similar way to Yang-Mills theory.
The amplitude at order κ in the coupling constant can be written in terms of spinor
products defined in (3.31).
The tree-level three-point vertex of the cubic term in (3.66) can be obtained by sym-
metrizing the momentum factors.

+2κ
∫

d4 p

(2π)4
d4k

(2π)4
d4 l

(2π)4 (2π)4 δ4(p +k + l) 〈k l〉6

〈l p〉2〈pk〉2
h(p) h̄(k) h̄(l) (3.68)

The coupling-stripped vertex can be written as
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M(p, k, l) = 〈k l〉6

〈l p〉2〈pk〉2
(3.69)

We see that the coupling-stripped cubic vertex (3.69) of gravity can be written as square
of the color-coupling-stripped cubic vertex of the Yang-Mills theory(3.33). A similar
relation can be checked for higher order terms.
If we represent momentum states of external legs of tree-level diagram by numbers, the
KLT relation in field theory for four-point amplitude is given by

M3(1,2,3,4) = −is12A4(1,2,3,4)A4(1,2,3,4) (3.70)

where sij ≡ −(pi+pj)2 andMn represents the coupling-stripped gravity amplitude and
An represents the color-coupling-stripped amplitude of the Yang-Mills theory. The gener-
alization to higher order amplitudes can be seen in [39]. In a remarkable paper Berends,
Giele and Kujif have exploited the KLT relation to calculate the gravity tree-level ampli-
tudes from the gauge theory [40]. They obtained a formula for the n-graviton scattering
amplitude using MHV amplitudes of the gauge theory.
The quantum loop correction in the theory are required to construct the complete scat-
tering matrix. The KLT relations can be exploited to obtain quantum loop amplitudes
directly from semi-classical tree-level amplitudes by using D-dimensional unitarity (this
is outside the scope of this thesis and we refer the reader to [18]).
One of the major aim of the next two chapters is to check the existence of KLT relations
on the curved backgrounds. For which we have developed perturbative Lagrangian of the
gravity up to cubic order in field on various backgrounds such as AdS4, dS4.
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Chapter 4

Light-cone gravity in AdS4

This chapter is entirely based on [12].

In this chapter we start by reviewing the four dimensional Poincaré patch of the Anti-de
Sitter hyper-surface embeded in five-dimensional flat spacetime. We derive a closed form
expression for the Einstein-Hilbert action on AdS4 using the same formalism described in
chapter 3. We provide a perturbative expansion starting from the closed form Lagrangian,
to order κ.

Anti-de Sitter Space-time

AdSd is a maximally symmetric solution of the Einstein equations with negative curvature
and a negative cosmological constant. By maximally symmetric we mean that AdSd has
the maximum number of spacetime symmetries, which is 1

2 d(d+ 1). This is the same as
the symmetries of d+ 1 dimensional flat spacetime, where we have d translations, d−1
number of boosts and 1

2 (d−1)(d−2) rotations.

Anti-de Sitter spacetime is defined as the quadric hypersurface

−(ξ0)2 + (ξ1)2 + (ξ2)2 + ...+ (ξd−1)2 + (ξd)2 − (ξd)2 = R2 (4.1)

embedded in d+ 1 dimensional flat spacetime with the metric
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ds2 = −(dξ0)2 + (dξ1)2 + (dξ2)2 + ...+ (dξd)2 − (dξd)2 (4.2)

We work in the Poincaré Patch (PP) which does not cover the entire AdS spacetime but
makes the d-dimensional Poincaré subgroup of the conformal group manifest.
We consider a five-dimensional flat spacetime with metric signature ηMN ≡ (−1,1,1,1,−1)
and co-ordinates ξM , M = 0 . . .4. On this spacetime, AdS4 is defined by the hypersurface

−(ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2− (ξ4)2 = R2 , (4.3)

with radius R. We now introduce Poincaré coordinates xµ ≡ (x0,x1, z,x3) on AdS4

ξ0 = R

z
x0 ξ1 = R

z
x1 ξ3 = R

z
x3 , (4.4)

ξ2 = 1
2z

[
R2−{−(x0)2 + (x1)2 + (x3)2− z2}

]
, (4.5)

ξ4 = 1
2z

[
R2 +{−(x0)2 + (x1)2 + (x3)2− z2}

]
. (4.6)

These coordinates satisfy (4.3) where z plays the role of a radial coordinate and divides
the spacetime into two regions. These regions are 0 < z < +∞ and 0 > z > −∞. We
work in the ‘patch’ z > 0 where z = 0 is part of the AdS boundary. The following metric
is induced on this spacetime

g(0)
µν = ∂µξ

M∂νξ
NηMN = R2

z2 ηµν , (4.7)

where ηµν is the Minkowski metric. We now introduce light-cone coordinates as xµ ≡
(x+,x−,x1, z). The cosmological constant for AdS4 is

Λ =− 3
R2 . (4.8)

33



Preliminaries

The Einstein-Hilbert action reads

SEH =
∫
d4xL = 1

2κ2

∫
d4x
√
−g (R −2Λ) , (4.9)

The Einstein-Hilbert action on manifold M with boundary ∂M can be divided in two
parts: contributions from the bulk and contributions from the boundary. In general the
form of the action on such manifolds can be written as

SEH =
∫
M
d4xLM +

∫
∂M

d3xL∂M (4.10)

As boundary terms do not contribute to the equations of motion, we focus only on the
bulk contributions and drop the boundary terms [41]. Though the boundary terms can
affect the quantum theory, we do not address such issues as they are outside the scope of
this thesis.

Einstein-Hilbert action on AdS4

Our aim is to study pertubative gravity on the AdS4background in light-cone gauge. The
metric gµν must reduce to the background metric g(0)

µν in absence of perturbations. We
start by making the following three gauge choices

g−− = g−i = 0 , i= 1, z . (4.11)

Note that these gauge choices are consistent with background metric in absence of fluctu-
ations, since in light-cone coordinates, η−− = η−i = 0. We will make fourth gauge choice
shortly,
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The metric is parametrized as

g+− = −eφ ,

gij = eψ γij .

(4.12)

Closed form expression

The equations of motion corresponding to the Einstein-Hilbert action read

Rµν−
1
2gµνR =−Λgµν . (4.13)

As mentioned before, the equations of motion which contain time derivative ∂+ possess
dynamical information and should not be touched. The ones which do not contain time
derivatives ∂+ are the constraint equations [11].

The first constraint equation R−− = 0 reads

2∂−φ∂−ψ − 2∂−2ψ − (∂−ψ)2 + 1
2 ∂− γ

kl ∂− γkl = 0 . (4.14)

This constraint equation may be solved by making our fourth gauge choice as

φ = 1
2 ψ . (4.15)

This permits us to solve equation (4.14) and we obtain

ψ = 1
4

1
∂−

2

[
∂−γ

ij∂−γij

]
+ 2 ln R

2

z2 . (4.16)
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The second term, in ψ, is required to make sure that the metric components gij and g+−

reduce correctly to g(0)
ij and g

(0)
+− respectively. Notice that this result differs from that

in [7] where this term does not appear.
We now calculate the determinant of γij by using the second relation in (4.12), which
implies that

detg(0)
ij =

(
R2

z2

)4
detγ(0)

ij , (4.17)

Here {}(0) superscripts implies the absence of fluctuations and in that case the metric
must reduce to the background metric. In this limit, the AdS4metric reduces to R2

z2 times

the Minkowski metric so the L.H.S of (4.17) is (R
2

z2 )
2
this constrains the determinant of

γij .

detγ(0)
ij = ( z

2

R2 )2 . (4.18)

Note that the above result is distinct from the flat background result. On flat background
γij is unimodular [6, 7]. Here we will choose the full γij (including the fluctuations) to
have the same determinant as in (4.18). Since this choice will ensure that our fluctuation-
field (introduced in next section) in γij remain traceless thereby making computations
simpler.
The second constraint relation R−i = 0 yields

g−i = e−φ 1
∂−

[
γij eφ−2ψ 1

∂−

{
eψ
( 1

2 ∂− γ
kl ∂j γkl − ∂−∂j φ

− ∂−∂j ψ + ∂jφ∂−ψ
)

+ ∂l

(
eψ γkl ∂− γjk

)}]
.

(4.19)

The Einstein-Hilbert action in light-cone gauge is
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S =
∫
d4xL= 1

2κ2

∫
d4x
√
−g

(
2g+−R+−+gijRij−2Λ

)
. (4.20)

We now calculate components of Ricci tensor in above expression with the help of results
listed above. We derive the closed form expression for the action in AdS4 in terms of the
dimensionless parameters of metric, φ,ψ ans γij .

S = 1
2κ2

∫
d3x

∫
dz

 z2

R2 e
ψ
(

2∂+∂−φ+∂+∂−ψ−
1
2∂+γ

ij∂−γij

)

− z
2

R2 e
φγij

(
∂i∂jφ+ 1

2∂iφ∂jφ−∂iφ∂jψ−
1
4∂iγ

kl∂jγkl+
1
2∂iγ

kl∂kγjl

)

− z2

2R2 e
φ−2ψγij

1
∂−
Ri

1
∂−
Rj + 2

R2 e
φγzz−2 z

2

R2 e
ψ eφΛ

 , (4.21)

with

Ri = eψ
(

1
2∂−γ

jk∂iγjk−∂−∂iφ−∂i∂−ψ+∂iφ∂−ψ

)

+∂k
(

eψγjk∂−γij
)
.

While obtaining the above result, we have dropped several boundary terms because of
the arguments outlined in Section 4.2. This then is the entire action for pure gravity in
AdS4written purely in terms of the physical degrees of freedom.

Comparison with flat space result

There three main differences between our result (4.21) and the result obtained on flat
background [6, 7]: the presence of conformal factor of z2

R2 , the penultimate term propor-
tional to γzz and a term proportional to the cosmological constant.
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Perturbative expansion

In this section we do the perturbative expansion of the action in (4.21) to cubic order in
the fields. We do this by choosing the following infinite series expansion.

γij = z2

R2

(
eH
)
ij
,

H =
h11 h1z

h1z hzz

 . (4.22)

where hzz = −h11 can be inferred from the explanation given below equation (4.18). In
terms of these perturbation fields equation (4.16) becomes

ψ =−1
4

1
∂−

2

[
∂−hij∂−hij

]
+ 2 ln R

2

z2 + O(h4) . (4.23)

We now redefine the field as

h→ 1√
2κ

h (4.24)

In terms of these fields the action at O(h2) reads

S2 =
∫
d3x

∫
dzL2 , (4.25)

with

L2 = +R2

2z2∂+hij∂−hij−
R2

4z2∂ihkl∂ihkl−2R
2

z3 hik∂khiz + R2

z4 hzkhkz .
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In the above equation we have used cosmological constant (4.8) and fact that Tr(h = 0).
Note that from (4.21) we can deduce that contributions from the cosmological term ap-
pears only in the interaction vertices involving even number of fields.
The computation of action at O(h3) reads

S3 =
∫
d3x

∫
dz

1√
2
L3 , (4.26)

where

L3 = κ

{
−1

2
R2

z2 ∂khik∂lhijhjl+ 2R
2

z3 hiz∂khijhjk + R2

4z2hij∂ihkl∂jhkl

−R
2

2z2hij∂ihkl∂khjl−2R
2

z3 hiz
1
∂−

(∂−hlm∂ihlm)

+4R
2

z4 hiz
1
∂−

(hlz∂−hil) + 4R
2

z3 ∂khiz
1
∂−

(hlk∂−hil)

+1
2
R2

z2 ∂khik
1
∂−

(∂−hlm∂ihlm)−4R
2

z3 ∂khik
1
∂−

(hlz∂−hil)

+R
2

z2 ∂khik
∂l
∂−

(hml∂−him)

−2R
2

z2 hij∂i∂jB−6R
2

z3 hiz∂iB−4R
2

z4 hzzB

}
,

with

B =−1
8

1
∂−

2

[
∂−hij∂−hij

]
. (4.27)

We see that the kinetic and cubic vertices in AdS4 are more complicated than their flat
background counterparts. The unique feature of the KLT relations will most likely change
as we move away from flat spacetime (this is because open and closed string correlation
functions are likely to change differently on curved backgrounds). The Lagrangian derived
above is an ideal starting point to verify the KLT relations on AdS4 .
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The following is a list of the formulae used extensively in our computations.

g+− =−e−φ

gij = e−ψγij

γij = R2

z2 (e−H)ij

gµνgµρ = δνρ =⇒ g++ = g+i = 0

g+i =−g+−gijg
−j

g++ =−eψg−−+ eφg−ig+i

γijγij = 2

γij∂kγij = 4
z
δkz

√
−g = z2

R2 e
ψeφ

det(γij) = z4

R4 =⇒ Tr(H) = 0 . (4.28)
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Γ+
++ = 1

2g
+−[2∂+g+−−∂−g++]

Γ+
+− = 0

Γ+
−− = 0

Γ+
i− = 0

Γ+
i+ = 1

2g
+−[∂ig+−−∂−gi+]

Γ+
ij = −1

2g
+−∂−gij

Γ−−− = g+−∂−g+−

Γ−+− = 1
2{g

+−∂−g++ +g−i[∂−gi+−∂ig+−]}

Γ−++ = 1
2{g

+−∂+g++ +g−−[2∂+g+−−∂−g++]

+g−i[2∂+gi+−∂ig++]}

Γ−+i = 1
2{g

+−∂ig++ +g−−[∂ig+−−∂−gi+]

+g−j [∂ig+j +∂+gij−∂jg+i]}

Γ−−i = 1
2{g

+−[∂ig+−+∂−g+i] +g−j∂−gij}

Γ−ij = 1
2{g

+−[∂ig+j +∂jg+i−∂+gij ]−g−−∂−gij

+g−k[∂igkj +∂jgik−∂kgij ]}

Γijk = 1
2{−g

−i∂−gjk +gim[∂jgmk +∂kgmj−∂mgjk]}

Γi−j = 1
2g

ik∂−gkj

Γi+− = 1
2g

ij [∂−gj+−∂jg+−]

(4.29)
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Γi+j = 1
2{g

−i[∂jg+−−∂−g+j ] +gik[∂jg+k +∂+gkj−∂kg+j ]}

Γi++ = 1
2{g

−i[2∂+g+−−∂−g++] +gij [2∂+g+j−∂jg++]}

Γi−− = 0

Γjij = 1
2{−g

−j∂−gij +gjl[∂jgli+∂iglj−∂lgij ]}
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Chapter 5

Light-cone gravity in dS4

This chapter is based on [13].

Here, we formulate pure gravity on a four dimensional conformally flat de Sitter back-
ground using light-cone gauge.

de Sitter Space

The de Sitter spacetime is the maximally symmetric Lorentzian space with positive (con-
stant) scalar curvature. d-dimensional de Sitter space is a vacuum solution of the Einstein
field equations with positive cosmological constant Λ [42].

Rµν−
1
2gµνR = − (d−1)(d−2)

2 H2 gµν (5.1)

where H is the Hubble constant. It appears in the above expression through the definition
of the cosmological constant

Λ = (d−1)(d−2)
2 H2. (5.2)
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d-dimensional de Sitter space is defined as a hyperboloid

−(ξ0)2 + (ξ1)2 + ... + (ξd−2)2 + (ξd−1)2 + (ξd)2 ≡ gAB ξ
A ξB = l2 =H−2 (5.3)

embedded in (d+1)-dimensional ambient space which in this case is the Minkowski back-
ground with signature ηAB = (−,+,+, ...,+) and metric ds2 = gAB dξ

A dξB,

A,B = 0,1, ...d. The radius of the de Sitter space, l , is related to the Hubble constant
by H = l−1.

Global coordinate of de Sitter Metric

The dS metric induced from ambient spacetime can be defined by solving (5.3). One of
the solutions is

ξ0 = sinh(Ht)
H

, ξi = ai cosh(Ht)
H

, i = 1, ...,d. (5.4)

where ai is d-dimensional unit vector with a2
i = 1. Now, one can choose

a1 = cosθ1, −
π

2 ≤ θ1 ≤
π

2

a2 = sinθ1 cosθ2, −
π

2 ≤ θ1 ≤
π

2
... (5.5)

ad−2 = sinθ1 sinθ2...sinθd−3 cosθd−2, −
π

2 ≤ θd−2 ≤
π

2
ad−1 = sinθ1 sinθ2...sinθd−2 cosθd−1, −π ≤ θd−1 ≤ π

ad = sinθ1 sinθ2 ... sinθd−2 sinθd−1.
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Using the above coordinate system (5.5), the metric becomes

ds2 = −dt2 + cosh2(Ht)
H2 dΩ2

d−1, (5.6)

where

dΩ2
d−1 =

d−1∑
j=1

 j−1∏
i=1

sin2 θi

 dθ2
j (5.7)

is the line element of the (d−1)-dimensional sphere. This metric in (5.6) covers the full
de Sitter spacetime and is termed as global.

Note that the topology of de Sitter spacetime is R×Sd. Its spatial slices are compact
d-dimensional spheres which evolve in time. From the embedding definition in (5.3) we
see that the time evolution proceeds as follows : in the past the d-sphere is large and
its radius diverges as ξ0→ −∞. The radius shrinks as time evolves forward and reaches
a minimum radius of H−1 at ξo = 0. This shrinking is followed by an expanding phase
which again leads to the diverging radius of the d-sphere at ξ0 → +∞.

Poincaré patches

Another solution of (5.3) can be found by choosing,

−(H ξ0)2 + (H ξd)2 = 1 − (Hxi)2 e2Ht

(H ξ1)2 + ... + (H ξd−1)2 = (Hxi)2 e2Ht (5.8)

One can see that the above equations are satisfied by by the following coordinate choices:
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H ξ0 = sinh(H t) + (Hxi)2

2 eHt

H ξi = Hxi eH t i = 1,2, ...(d−1)

H ξd = − cosh(H t) + (Hxi)2

2 eHt (5.9)

With these coordinates the induced metric becomes

ds2 = −dt2 + e2Ht (dxi)2 (5.10)

Note that the coordinate choice in (5.9) imposes the following restriction :

−ξ0 + ξd = − 1
H
eHt ≤ 0 (5.11)

which suggests that this coordinate system covers only half, ξ0 ≥ ξd, of the entire dS
spacetime. It is called the Expanding Poincaré patch (EPP) of de Sitter space. The
formulation in this chapter has been done on the expanding Poincré patch of dS4 .

The other half, ξ0 ≤ ξd, of the dS spacetime is referred to as Contracting Poincaré patch
(CPP) and is covered by the metric

ds2 = −dt2 + e−2Ht (dxi)2 (5.12)

Expanding Poincaré patch in four dimensions

The four dimensional de Sitter spacetime is a hyperboloid embedded in five dimen-
sional Minkowski spacetime. Consider a five-dimensional flat spacetime with metric
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ηMN ≡ diag(−1,1,1,1,1) then the invariant interval reads

ds2 =−(dξ0)2 + (dξ1)2 + (dξ2)2 + (dξ3)2 + (dξ4)2 (5.13)

with ξM ∈ (−∞,+∞),M = 0 . . .4. de Sitter spacetime is defined by the hypersurface,

−(ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2 + (ξ4)2 = H−2 (5.14)

The above equation (5.14) has a similar solution to that in (5.9).

−(H ξ0)2 + (H ξ4)2 = 1 − (Hxi)2 e2Ht

(H ξ1)2 + (H ξ2)2 + (H ξ3)2 = (Hxi)2 e2Ht (5.15)

For which, we can define

H ξ0 = sinh(H t) + (Hxi)2

2 eHt

H ξi = Hxi eH t

H ξ4 = − cosh(H t) + (Hxi)2

2 eHt (5.16)

Here, xi ∈ (−∞,+∞), i = 1,2,3 and t ∈ (−∞,+∞). Using these coordinates, induced
metric can be written as

ds2 =−(dt)2 + e2Ht{(dx1)2 + (dx2)2 + (dx3)2} (5.17)
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As discussed in the section 5.1.2, the choice of coordinates in (5.16) imposes following
constraint:

−ξ0 + ξ4 = − 1
H
eHt ≤ 0 =⇒ ξ0 ≥ ξ4 (5.18)

Therefore, metric in (5.17) covers only half of the de Sitter space-time: the expanding
Poincaré patch. In this patch, we define conformal time by

Hη = e−H t, (5.19)

which modifies the metric (5.17) to

ds2 = 1
H2η2 (−dη2 + (dx1)2 + (dx2)2 + (dx3)2) (5.20)

In the expanding Poincaré patch, conformal time changes from η = +∞ (which is at past
infinity i.e. t = −∞) to η = 0 (which is at future infinity i.e. t = ∞).

Gravity on dS4

Preliminaries

The Einstein-Hilbert action of pure gravity on curved background reads

SEH =
∫
d4xL = 1

2κ2

∫
d4x
√
−g (R −2Λ) , (5.21)
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In this chapter, we derive the pure gravity Lagrangian, in light-cone gauge, on a dS4

spacetime characterized by cosmological constant Λ.

Consider metric of expanding Poincaré patch in (5.20),

g(0)
µν = 1

H2η2ηµν (5.22)

where ηµν = (−1,1,1,1,) is Minkowski metric in four dimensions . The light cone coor-
dinates are introduced as xµ ≡ (x+,x−,xi) where

x± = η±x3
√

2
. (5.23)

We define

X = x+ + x−, (5.24)

Metric now becomes

g(0)
µν = 2

H2X2η
L.C.
µν (5.25)

The cosmological constant(positive) of dS4 is

Λ = 3H2 (5.26)
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Closed form expression

We now proceed to derive closed form expression of the gravity action in light-cone gauge
by making the following gauge choices.

g−− = g−i = 0 , i= 1,2 . (5.27)

Again, these choices are consistent with g(0)
µν . The fourth (and last) gauge choice will be

made shortly. Other components of the metric are parametrized as

g+− = − 2
H2X2 e

φ ,

gij = 2
H2X2 e

ψ γij .

(5.28)

The key difference in solving constraint relations in dS4 stems from the fact that X de-
pends on∂−, as opposed to the case of both flat spacetime and AdS4. Therefore we will
need integrating factors to solve these constraint equations. The first constraint relation
R−− = 0 with the use of (5.28) reads

∂−φ∂−ψ − ∂−2ψ − 1
2 (∂−ψ)2 − 2

X
∂−φ + 1

4 ∂− γ
kl ∂− γkl = 0 (5.29)

This constraint equation is solvable if we make the fourth and the last gauge choice as

φ = 1
2 ψ (5.30)

This reduces (5.29) to

1
4 ∂− γ

kl ∂− γkl − ∂−2ψ − 2
X
∂−φ = 0 (5.31)
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which after multiplication with integrating factor (X) yields

ψ = 1
4

1
∂−

[
1
X

1
∂−

(X∂− γkl ∂− γkl)
]

(5.32)

Note that the structure of ψ in (5.32) is different from the analogous result on flat space
and AdS4 [7, 12]. The second constraint relation independent of ∂+ is R−i = 0. Which
with the use of (5.27) and (5.28) yields

g−i = H2X2e−φ 1
∂−

[
X2 γij eφ−2ψ 1

∂−

{
1
X2 eψ

(
1
4 ∂− γ

kl ∂j γkl − 1
2 ∂−∂j φ

− 1
2 ∂−∂j ψ + 1

2∂jφ∂−ψ −
2
X ∂j φ

)
+ 1

2X2 ∂l

(
eψ γkl ∂− γjk

)}]
(5.33)

To get the above expression and solve for g−i, an integrating factor, 1
X2 has been multi-

plied. Having determined these components, now we can proceed to calculate Einstein-
Hilbert action

S =
∫
d4xL= 1

2κ2

∫
d4x
√
−g

(
2g+−R+−+gijRij−2Λ

)
(5.34)

which explicitly exactly yields

S =
∫
d4x

1
H2X2 e

ψ
( 24
X2 + 4∂+∂−φ−2∂+ψ∂−ψ−∂+γ

ij∂−γij

)

− 1
H2X2 e

φγij
(

2∂i∂jφ+∂iφ∂jφ−2∂iφ∂jψ−
1
2∂iγ

kl∂jγkl+∂iγ
kl∂kγjl

)

− 4
H2X2 e

φ−2ψγij
1
∂−
Ri

1
∂−
Rj−

8
H4X4 e

ψ eφΛ (5.35)

where
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Ri = 1
X2 eψ

( 1
4 ∂− γ

kl ∂i γkl −
1
2 ∂−∂iφ −

1
2 ∂−∂iψ + 1

2∂iφ∂−ψ −
2
X
∂iφ

)

+ 1
2X2 ∂l

(
eψ γkl ∂− γik

)

While obtaining this expression some boundary terms have been dropped. This closed
form of action (5.35) is valid on both patches of de Sitter.

Perturbative expansion

Now we obtain perturbative expansion of action in (5.35) to first order in gravitational
coupling constant (κ). We parametrize γij as

γij = (eH)ij

with

H =
h11 h12

h12 h22

 , (5.36)

h22 = −h11 makes the above matrix traceless. ψ in terms of fluctuation fields is expanded
as

ψ = − 1
4

1
∂−

[
1
X

1
∂−

(X∂−hij ∂−hij)
]

+ O(h4) (5.37)

We now rescale the field h as
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h → 1√
2κ

h (5.38)

Now kinetic and cubic interaction vertices of action (5.35) can be expanded.

S2 =
∫
d4xL2 (5.39)

where

L2 = 1
2H2X4

1
∂−

(X∂−hij∂−hij) −
1

2H2X3
∂+
∂−

(X∂−hij∂−hij)

+ 1
H2X2 ∂+hij∂−hij + 1

2H2X2
∂i∂i
∂−

[
1
X

1
∂−

(X∂−hjk∂−hjk)
]

− 1
2H2X2 ∂ihjk∂ihjk + 1

H2X2 ∂ihjk∂jhik

+ 3
H2X4

1
∂−

[
1
X

1
∂−

(X∂−hij∂−hij)
]

− 1
H2X2

1
∂−

( 1
X2 ∂j∂−hij

) 1
∂−

( 1
X2 ∂k∂−hik

)
(5.40)

Note that (5.30) and the last term of (5.35) implies that the cosmological constant is
always accompanied by ψ. Therefore from (5.37) we can infer that the term containing
cosmological term contributes to interaction vertices involving even number of fields.
Now, action at O(h3) is

S3 =
∫
d4x

1√
2
L3 (5.41)

with
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L3 = κ

 1
H2X2

1
∂−

( 1
X2 ∂−hjk∂ihjk

) 1
∂−

( 1
X2 ∂l∂−hil

)

− 3
H2X2

1
∂−

[
1
X

∂i
∂−

(X∂−hjk∂−hjk)
]

1
∂−

( 1
X2 ∂l∂−hil

)

− 1
H2X2

1
∂−

(
1
X

∂i
∂−

[
1
X

1
∂−

(X∂−hjk∂−hjk)
])

1
∂−

( 1
X2 ∂l∂−hil

)
+ 2
H2X2

1
∂−

( 1
X2 ∂jhjk∂−hik

) 1
∂−

( 1
X2 ∂l∂−hil

)
− 1
H2X2

1
∂−

( 1
X2 ∂j∂−h

2
ij

) 1
∂−

( 1
X2 ∂l∂−hil

)

+ 1
H2X2 hij

1
∂−

( 1
X2 ∂k∂−hik

) 1
∂−

( 1
X2 ∂l∂−hil

) (5.42)

As expected, closed form and eventually interaction terms of perturbative expansion are
very much tangled compared to their counterparts on flat spacetime [7] and four dimen-
sional Anti-de Sitter background [12]. The differences can be seen in terms of coordinate
dependent conformal like factors along with additional terms appearing in closed form
expression.
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The following is a list of frequently used identities in this chapter.

g+− = −H
2X2

2 e−φ

gij = H2X2

2 e−ψγij

γij = (e−H)ij
gµνgµρ = δνρ =⇒ g++ = g+i = 0

g+i = −g+−gijg
−j

g++ = − 4
H4X4 e

ψg−−+ 2
H2X2 e

φg−ig+i

γijγij = 2

γij∂kγij = γij∂−γij = 0
√
−g = 4

H4X4 e
ψeφ (5.43)
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Chapter 6

Quadratic forms in light-cone gauge

This chapter is a review based on the series of publications [14, 15, 24, 25, 43] in which
the authors have investigated the algebraic properties of both the pure and the maximally
supersymmetric theories of gravity and Yang-Mills theory.

Thus far, in this thesis, we have shown how to formulate pure gravity, in light-cone gauge,
on a variety of four-dimensional backgrounds. In each of these cases, we obtained a closed
form expression for the light-cone Lagrangian. From this, we performed a perturbative
expansion and thus derived a range of light-cone interaction vertices. In this chapter, we
will discuss the structure of the Hamiltonian in pure gravity.

However, before we discuss pure gravity, we will take a detour to discuss the occurence
of quadratic forms (QF) in light-cone field theories. The best way to illustrate these
structures is again using Yang-Mills theories.

Pure Yang-Mills theory

In the following, we prove that the Hamiltonian of pure Yang-Mills theory, in light-cone
gauge, can be written as a quadratic form [14]. The key point of interest will be that this
simple and elegant structure only appears in the pure and maximally supersymmetric
Yang-Mills theories. We start our study of these quadratic forms by showing that pure
Yang-Mills theory may be written as a quadratic form.
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Four spacetime dimensions

The Lagrangian for pure Yang-Mills theory was derived in the third chapter - equa-
tion (3.30)

L = Āa2Aa − 2g fabc
( ∂̄
∂−

Aa∂−Ā
bAc + ∂

∂−
Āa∂−A

b Āc
)

−2g2 fabc fade
1
∂−

(
∂−A

b Āc) 1
∂−

(∂− ĀdAe) . (6.1)

The Hamiltonian corresponding to (3.30) reads

H = Āa ∂̄∂Aa + g fabc
( ∂̄
∂−

Aa∂−Ā
bAc + ∂

∂−
Āa∂−A

b Āc
)

+g2 fabc fade
1
∂−

(
∂−A

b Āc
) 1
∂−

(∂− ĀdAe) . (6.2)

We now define the following operator

D̄Aa ≡ ∂̄Aa − g fabc 1
∂−

(
Āb∂−A

c
)
, (6.3)

using which we can write the Hamiltonian (6.2) as

H = −
∫
d3xDĀa D̄Aa . (6.4)

Thus providing a quadratic form for pure Yang-Mills theory in four dimensions.

A note on gauge invariance

It is know that even after making gauge choices in non-covariant gauges a residual gauge
invariance is left. We can then ask if the form (6.4) is due to presence of some such
residual gauge symmetry.
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As discussed earlier in chapter 3, Yang-Mills theory remains invariant under the transfor-
mation Aµa→ Aµa +DµΛa. Therefore in light-cone gauge, our choice A+a = 0 implies
that there ought to be a remaining gauge invariance with gauge parameter satisfying
∂+Λa = 0. So there is still an infinitesimal symmetry that satisfies ∂+Λa = 0 as well as
∂̄∂Λa = 0 (necessary for invariance of the Yang-Mills Lagrangian). These facts allow us
to determine that a derivative structure, if introduced as in (6.3), must be of the form

D̄Aa ≡ ∂̄Aa − g fabc 1
∂n−

(Āb∂n−Ac), (6.5)

We can determine that n = 1 in the above Ansatz by requiring Poincaré invariance. In
fact the operator D̄ may be regarded as a covariant derivative and we see that the ex-
pression for the Hamiltonian is invariant under the remaining gauge invariance. There
can various forms of second term in operator D̄Aa which may appear different from (6.3),
however we can prove that all such terms converge to the second terms of (6.3). Therefore
we can say that D̄Aa defined in (6.3) is unique.

Non-helicity basis

All the work in this thesis has been done in a helicity basis. However, we could have
equally chosen to work in a non-helicity basis. For example, we could start with the
Lagrangian from (3.28)).

L = 1
2A

a
i2A

a
i − 2g fabc 1

∂−
Aai ∂iA

b
j ∂−A

c
j −

1
4 g

2 fabc fadeAbiA
c
jA

d
i A

e
j

− 1
2 g

2 fabc fade
1
∂−

(
Abi ∂−A

c
i

) 1
∂−

(
Adj ∂−A

e
j) (6.6)

If we were to introduce an suitable covariant derivative, we could start with

D̄Aa = 1
2(∂iAia−gfabc

1
∂−

(Aib∂−Aic)) + i

4ε
ijFij

a (6.7)
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where

Fij
a = ∂iAj

a−∂jAia−gfabc
1
∂−

n (Aib∂−nAjc) + gfabc
1
∂−

n (Ajb∂−nAic) (6.8)

However, it is easy to verify that the Hamiltonian cannot be expressed as the square
of such a covariant derivative (as we did when in a helicity basis). This is because we
encounter additional terms that do not cancel when the Hamiltonian is written in terms
of F aij . Hence it is only in a helicity base that the Hamiltonian is a quadratic form.

Ten spacetime dimensions

Although seemingly outside the purview of this thesis, we will discuss the maximally
supersymmetricN = 4 Yang-Mills theory in the next section. This supersymmetric theory
may be obtained from its ten-dimensional parent theory, N = 1 Yang-Mills. Thus we
briefly discuss quadratic forms in higher dimensions as well, in the present chapter.

In ten dimensions, there is no helicity basis. The structure of the Lagrangian (and the
Hamiltonian) of pure Yang-Mills theory in d = 10 is the same as that of the d = 4 the-
ory (6.6) with i, j = 1...8. The arguments presented above are therefore valid in d = 10
as well and show that the pure Yang-Mills Hamiltonian in d= 10 cannot be expressed as
a quadratic form.

(N = 4,d = 4) Maximally supersymmetric Yang-Mills
theory

TheN = 1 super Yang-Mills theory was constructed in ten dimensions and its four dimen-
sional N = 4 theory was obtained by dimensional reduction in light-cone superspace [44].
In reference [45] the authors obtained the action for the N = 4 theory in terms of a highly
constrained scalar superfield which captures all the degrees of freedom. The action was
obtained by requiring SuperPoincaré invariance in four dimensions. A brief review of re-
sults in [44,45] is presented below since it is a prerequisite for the material in this chapter.
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We start with describing N = 4 Yang-Mills light-cone superspace action followed by a
derivation of its Hamiltonian as a quadratic form.

The constituents of theN = 4 theory are: one complex bosonic field (the gauge field), four
complex Grassmann fields and six scalar fields. The form of the theory described here
can be obtained in two ways. The first one involves making the usual light-cone gauge
choice as A+ = 0 and then eliminating the unphysical field A− by solving the constraint
equation. The other way is to start with the superfield (described below) and verify
that the superPoincaré algebra closes on it. The non-linear contribution to dynamical
generators will introduce interaction terms in the Hamiltonian (as it is one of the gener-
ators itself: P−. Thus closing the superPoincaré algebra will allow us to determine the
full Hamiltonian. To write all physical fields of N = 4 in a compact form we introduce
anticommuting Grassmann variables θm and θ̄m,

{θm, θn} = {θm, θ̄n} = {θ̄m, θ̄n} = 0 (6.9)

where m,n, . . . = 1,2,3,4, denote SU(4) spinor indices. With their derivatives defined as

∂̄m ≡
∂

∂ θm
; ∂m ≡ ∂

∂ θ̄m
, (6.10)

These satisfy

{∂m, θ̄n} = δmn; {∂̄m, θn} = δ n
m . (6.11)

All the physical degrees of freedom of N = 4 super Yang-Mills theory can be captured
in a single complex superfield as described in [44].

φ(y) = − 1
∂−

A(y) + i√
2
θm θn C̄mn (y) − 1

12 θ
m θn θp θq εmnpq ∂− Ā(y)
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− i

∂−
θm χ̄m(y) +

√
2

6 θm θn θp εmnpqχ
q(y) . (6.12)

In the above superfield, all fields carry adjoint indices (not shown here) and are local in
the following modified light-cone coordinates

y = (x, x̄, x+, y− ≡ x−− i√
2
θm θ̄m ) . (6.13)

The fields A and Ā are the two gauge fields defined in (3.29). The six scalar fields are
written as antisymmetric SU(4) bi-spinors

Cm4 = 1√
2

(Am+3 + iAm+6); C̄m4 = 1√
2

(Am+3 − iAm+6), (6.14)

for m 6= 4; and satisfy

C̄mn = 1
2 εmnpqC

pq . (6.15)

The fermion fields are χm and χ̄m.
We introduce the chiral derivatives

dm =−∂m + i√
2
θm∂− ; d̄n = ∂̄n −

i√
2
θ̄n∂− , (6.16)

which satisfy

{dm , d̄n } = −i
√

2δmn∂+ . (6.17)
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The superfield φ and its complex conjugate φ̄ satisfy chiral constraints

dmφ = 0 ; d̄m φ̄ = 0 , (6.18)

and the “inside-out” constraints

d̄m d̄nφ = 1
2 εmnpq d

p dq φ̄ ,

dm dn φ̄ = 1
2 ε

mnpq d̄p d̄q φ . (6.19)

The (N = 4,d= 4) action in light-cone superspace is

∫
d4x

∫
d4θd4θ̄L , (6.20)

where Lagrangian in terms of superfield is written as

L = −φ̄ 2

∂2
−
φ − 4g

3 fabc
( 1
∂−

φ̄aφb ∂̄ φc+ complex conjugate
)

−g2fabc fade
( 1
∂−

(φb∂+φc) 1
∂−

(φ̄d∂− φ̄e) + 1
2 φ

bφ̄cφd φ̄e
)
. (6.21)

Grassmann integrations are normalized:
∫
d4θ θ1θ2θ3θ4 = 1. and fabc are structure func-

tions of the Lie algebra.

The kinematical supersymmetries are

qm+ =−∂m − i√
2
θm∂− ; q̄+n = ∂̄n + i√

2
θ̄n∂− , (6.22)

and they satisfy
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{qm+ , q̄+n } = i
√

2δmn∂+ , (6.23)

The dynamical boosts are

j− = −ix ∂ ∂̄
∂−
− ix−∂ − i

(
θp ∂̄p −

i

4
√

2∂−
(dp d̄P − d̄p dp)

) ∂

∂−
(6.24)

j̄− = −i x̄ ∂ ∂̄
∂−
− ix− ∂̄ − i

(
θ̄p∂

p − i

4
√

2∂−
(dp d̄P − d̄p dp)

) ∂̄

∂−
(6.25)

Dynamical supersymmetries are obtained from the kinematical supersymmetries

qm− ≡ i [ j̄− , qm+ ] = − ∂

∂−
qm+ , q̄−m ≡ i [j− , q̄+m ] = − ∂̄

∂−
q̄+m , (6.26)

and satisfy the free N = 4 supersymmetry algebra

{qm− , q̄−n } = − i
√

2δmn
∂∂̄

∂−
. (6.27)

In the free (linear) theory the generators act straight on the superfield.

δOφ=Oφ. (6.28)

The dynamical generators transform the system forward in time. The action of these
generators on fields will produce non-linear terms since their canonical expressions are
modified by interaction terms. Therefore, we have to find the non-linear terms such that
the algebra closes. For the dynamical supersymmetry the result is

δq̄−m
φa = − 1

∂−

{
(∂̄ δab + gfabc∂− φ

c )δq̄+m
φb
}
, (6.29)

Consider now the Hamiltonian that we get from (6.20)
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H =
∫
d3xd4θd4θ̄

{
φ̄a

2∂∂̄
∂2
−
φa + 4

3 g f
abc
( 1
∂−

φ̄aφb ∂̄ φc+ 1
∂−

φa φ̄b∂ φ̄c
)

+g2fabc fade
( 1
∂−

(φb∂−φc)
1
∂−

(φ̄d∂− φ̄e) + 1
2 φ

bφ̄cφd φ̄e
)}

, (6.30)

With the help of the form (6.29) it can be written as [24]

H = − i√
2

∫
d3xd4θd4θ̄ δqmφ̄a

1
∂−

δq̄mφ
a. (6.31)

This result was obtained by making use of the "inside-out constraint" (6.19). Note that,
this point is important since it implies that other supersymmetric Yang-Mills theories
cannot be written as such simple quadratic forms since for those theories there is no
equivalent constraint.

(N = 1,d= 10) Maximally supersymmetric Yang-Mills theory

This theory is the “parent” theory of (N = 4,d = 4) Yang-Mills theory. In [43] it was
shown that the action for the N = 1 theory in d = 10 could be obtained by simply
‘oxidizing’ the action for the N = 4 theory (6.20).
This can be done in three steps. Initially, two of the transverse light-cone directions of
the four dimensional theory are generalized to eight. This is achieved by introducing
six extra coordinates and their derivatives without changing the superfield (6.12) of the
(N = 4, d = 4) theory . These extra coordinates are represented as antisymmetric bi-
spinors

xm4 = 1√
2

(xm+3 + ixm+6 ) , ∂m4 = 1√
2

(∂m+3 + i∂m+6 ) , (6.32)

for m 6= 4, and their complex conjugates defined as
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x̄pq = 1
2 εpqmnx

mn ; ∂̄pq = 1
2 εpqmn∂

mn, (6.33)

Their derivatives satisfy

∂̄mnx
pq = (δ p

m δ q
n − δ q

m δ p
n ); ∂mn x̄pq = (δmp δnq − δmq δnp), (6.34)

and

∂mnxpq = 1
2 ε

pqrs∂mn x̄rs = εmnpq. (6.35)

Second, all fields are made dependent on the extra coordinates

φ(y) = φ(x, x̄,xmn, x̄mn,x+,y−) (6.36)

The four supersymmetries in four dimensions become one supersymmetry in ten dimen-
sions. The kinematical supersymmetries qn+ and q̄+n, are fabricated into one SO(8) spinor.
The dynamical supersymmetries are obtained by boosting the kinematical ones.

i [ J̄− , qm+ ] ≡ Qm ; i [J− , q̄+m ] ≡ Q̄m , (6.37)

where the linear part of the dynamical boosts are

J− = − ix
∂∂̄ + 1

4 ∂̄pq ∂
pq

∂−
− ix−∂ − i ∂

∂−

{
θm ∂̄m −

i

4
√

2∂−
(dp d̄p− d̄p dp)

}
−

+ 1
2
∂̄pq
∂−

{
− ∂−√

2
θp θq +

√
2

∂−
∂p∂q − 1√

2∂−
dp dq

}
, (6.38)
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and its conjugate [43]. These yield the linear parts of the dynamical supersymmetry
generators.

Qm = − ∂̄

∂−
q+

m − ∂mn

∂−
q̄+n ,

Q̄m = − ∂

∂−
q̄+m −

∂̄mn
∂−

q n
+ , (6.39)

which satisfy

{Qm , Q̄n } = − i
√

2 1
∂−

(
δmn∂ ∂̄ + ∂̄mp∂

np
)
, (6.40)

Third, the introduction of a ‘generalized’ derivative

∇̄ ≡ ∂̄ − iα

4
√

2∂−
d̄p d̄q ∂

pq , (6.41)

and its conjugate.
The action constructed using the above operators in ten dimensions is invariant under
SO(8) group [43].
The take home message of [43] was that the covariance in ten dimensions can be achieved
by simply replacing the transverse derivatives of four dimensions ∂ and ∂̄ by ∇ and ∇̄,
respectively in ten dimensions. Therefore, the action of (N = 1,d = 10) super Yang-Mills
can be written as

∫
d10x

∫
d4θd4θ̄L10 , (6.42)

with Lagrangian

L10 = −φ̄210
∂2
−
φ − 4g

3 fabc
( 1
∂−

φ̄aφb ∇̄φc+ complex conjugate
)
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−g2fabc fade
( 1
∂−

(φb∂−φc)
1
∂−

(φ̄d∂− φ̄e) + 1
2 φ

bφ̄cφd φ̄e
)
. (6.43)

where 210 is d’Alembertian operator in ten dimensions.

Quadratic forms

We have seen that the (N = 4,d = 4) Hamiltonian is a quadratic form (6.31). In this
section we will show that the Hamiltonian for the ten-dimensional theory described above
is also a quadratic form.

The kinetic term

We start from the free dynamical supersymmetry generators in (6.39) and after adding
the non-linear term in (6.39) the resulting full non-linear dynamical supersymmetry gen-
erators are

δq−mφ̄a =Qm φ̄a − gfabc 1
∂−

(qm+ φ̄b∂−φ̄c) ,

δq̄−mφ
a = Q̄mφ

a − gfabc 1
∂−

(q̄+mφ
b∂−φ

c) , (6.44)

Note that this superfield depends on all ten coordinates.
We claim that the ten-dimensional Hamiltonian is again simply

H = − i√
2

∫
d9xd4θd4θ̄ δqmφ̄a

1
∂−

δq̄mφ
a. (6.45)

Now we verify this claim, at the free level
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δqmφ̄a
1
∂−

δq̄mφ
a. = {( ∂̄

∂−
qm+ + ∂mn

∂−
q̄+n) φ̄a 1

∂−
( ∂
∂−
q̄+m + ∂̄mp

∂−
qp+)φa}

= −{ ∂̄
∂−
qm+ φ̄a

∂

∂2
−
q̄+mφ

a + ∂mn

∂−
q̄+nφ̄

a ∂

∂2
−
q̄+mφ

a

+ ∂̄

∂−
qm+ φ̄a

∂̄mp
∂2
−
qp+φ

a + ∂mn

∂−
q̄+n φ̄

a ∂̄mp
∂2
−
qp+φ

a}

= {A+B+C+D} (6.46)

At first we focus on term B and after some integration by parts and use of the ‘inside-out’
constraint in (6.19) yields

B = 1
2 φ̄

a ∂
mn∂

∂3
−
{q̄+n, q̄+m}φa = 0 (6.47)

The term C vanishes in the similar way. The terms A and D are non-zero. After similar
simplification the term A becomes

A = 1
2 φ̄a

∂∂̄

∂3
−
{qm+ , q̄+m} φa = − i2

√
2 φ̄a ∂∂̄

∂2
−
φa , (6.48)

while D reads

D = − i√
2
φ̄a

∂mn∂̄mn
∂2
−

φa (6.49)

Therefore, the free ten-dimensional Hamiltonian reads

H = 2 φ̄a ∂∂̄
∂2
−
φa+ 1

2 φ̄a
∂mn∂̄mn
∂2
−

φa , (6.50)

which is consistent with (6.42).
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The cubic interaction vertex

After proving above that the free Hamiltonian is a quadratic form, we will now examine
the cubic interaction vertex. We take a relevant piece from (6.45)

δqmφ̄a
1
∂−

δq̄mφ
a|g =−fabc 1

∂−
(qm+ φ̄b∂−φ̄c)

1
∂−
Q̄mφ

a . (6.51)

Now we only need to focus on the term involving the new transverse derivatives. This
can be written as

fabc
∫ ∂̄mn

∂2
−
qn+φ

a 1
∂−

(qm+ φ̄b∂−φ̄c)

= 1
3f

abc
∫ ( 1

∂−
φaφ̄b

dmdn∂̄mn
∂−

φ̄c − 1
2φ

aφ̄b
dmdn∂̄mn

∂2
−

φ̄c
)

(6.52)

We are going to briefly review the derivation of the above result. We use explicit form of
q+ to write the L.H.S of (6.52) as

+i
√

2fabc
∫ ∂̄mn

∂2
−
φaθm∂nφ̄b∂−φ̄

c (6.53)

The partial integration with respect to ∂n (fabc and the integral sign are suppressed)
gives

− i
√

2θm∂n ∂̄mn
∂2
−
φaφ̄b∂−φ̄

c − i
√

2 ∂̄mn
∂2
−
φaφ̄b∂−θ

m∂nφ̄c ≡ I+ II (6.54)

By making use of ‘inside out’ constraint and partial integration of the d̄′s, the first term
of (6.54) gives
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I = − i
√

2
2 ·4!(ε

ijkld̄id̄j d̄kd̄l)θm∂n
∂̄mn
∂2
−
φaφ̄b

1
∂−
φc

= −1
2
dmdn∂̄mn

∂−
φ̄aφ̄b

1
∂−
φc− i

√
2θm∂n∂̄mnφ̄aφ̄b

1
∂−
φc (6.55)

The similar manipulation of the second term in (6.54) yields

II = i
√

2 ∂̄mn
∂−

φaφ̄bθm∂nφ̄c+ i
√

2 ∂̄mn
∂2
−
φa∂−φ̄

bθm∂nφ̄c (6.56)

Integrating by parts with respect to ∂̄mn, first term of (6.56) gives

− i
√

2 1
∂−
φa∂̄mnφ̄bθm∂nφ̄c− i

√
2 1
∂−
φaφ̄b∂̄mnθ

m∂nφ̄c (6.57)

We see that the second term of (6.57) cancels with second term of (6.55). The first term
of (6.57) after using ‘inside out’ constraint on φ̄b, becomes

− i
√

2∂−φ̄a
∂̄mn
∂2
−
φbθm∂nφ̄c+ 1

2φ
aφ̄c

∂̄mn
∂2
−
dmdnφ̄b− 1

2
1
∂−
φaφ̄c

∂̄mn
∂−

dmdnφ̄b (6.58)

and finally

I+ II = − i2
√

2 ∂̄mn
∂2
−
φaθm∂nφ̄b∂−φ̄

c

+ 1
∂−
φaφ̄b

dmdn∂̄mn
∂−

φ̄c − 1
2φ

aφ̄b
dmdn∂̄mn

∂2
−

φ̄c (6.59)

As we can see that the R.H.S. above is equal to (6.53) (from which we started) and this
lead to (6.52).

The conjugate of (6.52) can be obtained by following the same procedure,
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fabc
∫ ∂mn

∂−
q̄+nφ̄

a 1
∂2
−

(q̄+mφ
b∂−φ

c)

= 1
3f

abc
∫ ( 1

∂−
φ̄aφb

d̄md̄n∂
mn

∂−
φc− 1

2 φ̄
aφb

d̄md̄n∂
mn

∂2
−

φc
)

(6.60)

Now we use the inside-out constraint on φc in the second term of (6.60) and the anti-
symmetry of the structure functions allows us to write

fabcφ̄aφb
d̄md̄n∂

mn

∂2
−

φc =−fabcφaφ̄bd
mdn∂̄mn
∂2
−

φ̄c (6.61)

Therefore, the sum of (6.52) and (6.60) becomes

fabc
∫ { ∂̄mn

∂2
−
qn+φ

a 1
∂−

(qm+ φ̄b∂−φ̄c) + ∂mn

∂−
q̄+nφ̄

a 1
∂2
−

(q̄+mφ
b∂−φ

c)
}

= 1
3f

abc
∫ ( 1

∂−
φaφ̄b

dmdn∂̄mn
∂−

φ̄c + 1
∂−
φ̄aφb

d̄md̄n∂
mn

∂−
φc
)
. (6.62)

which exactly matches with expected Hamiltonian in (6.42). Note that we used inside-out
constraint repeatedly in the above computation which suggest that maximal supersymme-
try is essential for many of the simplifications presented above. Therefore the quadratic
forms can be observed only in maximally supersymmetric theories, as mentioned earlier.

As superfield φa involves both Aa and Āa, one might ask about the the covariance of
(6.29) under the remaining gauge invariance (discussed in subsection 6.1.2). It can be
answered, as the superfield δq̄+m φ

a involves only Āa and (6.29) can be regarded as the
covariant derivative of the superfield.
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The quartic interaction vertex

The quartic interaction vertex does not contain any transverse derivatives, therefore we
do not need to check it. This implies that the results in [24] for the quartic vertex holds
true to our case with just two standard modifications used in this section : the fields now
depend on all ten directions and the spacetime integration is over all ten directions.

Gravity

Having explained, in great detail, the concept of quadratic forms in the Yang-Mills system
we now turn our attention to gravity. However, in this case, we start with the maximally
supersymmetric theory of gravity. This is because the case of pure gravity remains work
in progress and will be discussed after the supersymmetric case.

N = 8 maximal supergravity

We review here the light-cone superspace formulation of (N = 8,d= 4) supergravity and
the quadratic form structure of its Hamiltonian. It was shown in [44] that all physical
degrees of freedom of N = 8 maximally supersymmetric gravity can be captured in a
scalar superfield.

The superfield containing all physical degrees of freedom and in terms of Grassmann
variables θm(m = 1, ...,8) is defined by
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φ(y) = 1
∂2
−
h(y) + iθm

1
∂2
−
ψ̄m (y) − i

2 θ
m θn

1
∂−

Āmn(y),

+ 1
3!θ

m θn θp
1
∂−
χ̄mnp(y) − 1

4!θ
m θn θp θq C̄mnpq(y)

+ i

5! θ
m θn θp θq θr εmnpqrstuχ

stu(y),

− i

6! θ
m θn θp θq θr θs εmnpqrstu∂−A

tu(y), (6.63)

− 1
7! θ

m θn θp θq θr θs θt εmnpqrstu∂−ψ
u(y),

+ 4
8! θ

m θn θp θq θr θs θt θu εmnpqrstu∂
2
− h̄(y)

The scalar superfield contains

• h, h̄ → Two-component of graviton

• ψ̄m → spin−3
2 gravitinos

• Āmn → 28 gauge fields

• χ̄mnp → gauginos corresponding to gauge field

• C̄mnpq → 70 scalar fields

The superfield φ and its complex conjugate φ̄ satisfy chiral constraints,

dmφ(y) = 0; d̄p φ̄(y) = 0 (6.64)

where chiral derivatives are
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dm = − ∂

∂ θ̄m
+ i√

2
θm∂− ; d̄p = ∂

∂ θp
− i√

2
θ̄p∂− (6.65)

Again, the superfield and its conjugate are related (“inside-out” constraint)

φ = 1
4

(d)8

∂−
4 φ̄ (6.66)

Action to O(κ)

The N = 8 supergravity action to order κ in terms of superfields reads [45]

− 1
64

∫
d4x

∫
d8θd8θ̄L , (6.67)

where Lagrangian is,

L = −φ̄ 2

∂4
−
φ − 2κ( 1

∂2
−
φ ∂̄ φ ∂̄ φ+ 1

∂2
−
φ∂φ∂φ) . (6.68)

κ =
√

8πG and Grassmann integration is normalized such that
∫
d8θ (θ)8 = 1. At this

order, the dynamical supersymmetry generator is

Q̄m
(κ)φ= 1

∂−
(∂̄q̄mφ∂2

−φ−∂−q̄mφ∂−∂̄φ). (6.69)

Note that we have suppressed the + index on q+ to make things easier to read. The
complex conjugate yields Qm(κ)φ̄. The “inside-out" constraints determine Qm(κ)φ and
Q̄m

(κ)φ̄. The anticommutator of the dynamical supersymmetry generators, yields the
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light-cone Hamiltonian.

Hamiltonian as a quadratic form

It was shown in [25] that the light-cone Hamiltonian is indeed a quadratic form (at order
κ).

H = 1
4
√

2
(Wm ,Wm ) , (6.70)

with

Wm = Q̄−mφ , (6.71)

where the inner product is defined as

(φ, ξ ) ≡ − 2i
∫
d4xd8θd8 θ̄ φ̄

1
∂3
−
ξ . (6.72)

d = 4 pure gravity

In this section we report briefly on work in progress. The pure gravity Hamiltonian cor-
responding to the Lagrangian (3.66) and (3.67) is
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H = ∂h̄ ∂̄h −2κ∂̄h
{

1
∂2
−

(
∂̄h∂2

−h̄ + h∂̄∂2
−h̄
)
− 1
∂−

( ∂̄
∂−
h∂2
−h̄
)}

−2κ∂h̄
{

1
∂2
−

(
∂h̄∂2

−h + h̄∂∂2
−h
)
− 1
∂−

( ∂
∂−
h̄∂2
−h
)}

−4κ2

−2 1
∂2
−

(
∂̄

∂−
h∂3
−h̄ − h∂2

−∂̄h̄

)
1
∂2
−

(
∂

∂−
h̄∂3
−h − h̄∂2

−∂h

)

+ 1
∂2
−

(∂̄h∂2
−h̄ − ∂−h∂−∂̄h̄) 1

∂2
−

(∂h̄∂2
−h − ∂−h̄∂−∂h) − 3 1

∂−
(∂̄h∂−h̄) 1

∂−
(∂−h∂h̄)

+ 1
∂−

(∂̄h∂−h̄ − ∂−h∂̄h̄) 1
∂−

(∂h̄∂−h − ∂−h̄∂h) + 3 1
∂−

(∂−h∂−h̄) 1
∂−

(∂̄h∂h̄)

+
[

1
∂2
−

(∂−h∂−h̄) − hh̄
]
(∂̄h∂h̄ + ∂h∂̄ h̄ − ∂−h

∂ ∂̄

∂−
h̄ − ∂−h

∂ ∂̄

∂−
h̄)

 , (6.73)

Residual reparametrization invariance

Now we examine the effect of residual reparametrizations. To lowest order in κ, these
take the form

x→ x + ξ(x̄) , x̄→ x̄ + ξ̄(x) , (6.74)

We know that in the covariant formulation under general coordinate transformation field
h transforms as in (3.46). We find that in light-cone gauge h transforms as

δh = 1
2κ∂ξ + ξ∂̄h + ξ̄∂h (6.75)

where ξ satisfies

∂−ξ = 0 , ∂̄ ξ = 0 . (6.76)
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Therefore to order κ−1 we have

∂−(δh) = 0 , ∂̄(δh) = 0 (6.77)

The variation of the Hamiltonian to order κ0 gives

δH(κ0) = δ (∂h̄ ∂̄h) + 2κ δκ
−1

{
h̄ ∂−

2
(
h
∂̄2

∂−
2h −

∂̄

∂−
h
∂̄

∂−
h

)
+ c.c.

}
, (6.78)

The first term in (6.78) yields

− ∂ξ h̄ ∂̄2h − ∂̄ξ̄ h ∂2h̄ . (6.79)

We find that the variation of the second term in (6.78) with contribution from its complex
conjugate exactly cancel the terms above, proving that

δH(κ0) = 0 . (6.80)

The Hamiltonian upto order κ in (6.73) is therefore invariant under the following residual
reparametrization transformations

δh = 1
2κ∂ξ + ξ∂̄h + ξ̄∂h , (6.81)

and

δh̄ = 1
2κ∂̄ξ̄ + ξ∂̄h̄ + ξ̄∂h̄ . (6.82)

Also we observe that after some simplifications, the Hamiltonian (6.73) , to order κ, may
be written as
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H =
∫
d3x Dh̄ D̄h , (6.83)

where

Dh̄ = ∂h̄ + 2κ 1
∂2
−

( ∂̄
∂−
h∂3
−h̄ − h∂2

−∂̄h̄
)
, (6.84)

and D̄h is its complex conjugate.

The derivative introduced in (6.84) transforms “covariantly". That is

δ(D̄h) = (ξ∂̄+ ξ̄∂ )D̄h . (6.85)

This is in keeping with similar analysis of pure Yang-Mills theory in section 6.1.2.

Once quartic interaction vertices are considered, Hamiltonian in (6.73) is no longer in-
variant under the infinitesimal symmetry transformations. To illustrate, we start by
considering contributions from the cubic and quartic vertices.

δH(κ)
c,q = δκ

0
(cubic terms) + δκ

−1
(quartic terms) (6.86)

We start by varying the cubic terms.
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δκ
0
(cubic terms) = 2κ(ξ̄∂h̄ + ξ∂̄h̄)∂−2

(
h
∂̄2

∂−
2h −

∂̄

∂−
h
∂̄

∂−
h

)

+ 2κh̄ ∂−2
(

(ξ∂̄h + ξ̄∂h) ∂̄
2

∂−
2h + h

∂̄2

∂−
2 (ξ∂̄h + ξ̄∂h) − 2 ∂̄

∂−
(ξ∂̄h + ξ̄∂h) ∂̄

∂−
h

)
,

= 2κ ξ̄ ∂h̄ ∂−2
(
h
∂̄2

∂−
2h −

∂̄

∂−
h
∂̄

∂−
h

)

+ 2κh̄ ∂−2
(
ξ̄∂h

∂̄2

∂−
2h + h

∂̄2

∂−
2 (ξ̄∂h) − 2 ∂̄

∂−
(ξ̄∂h) ∂̄

∂−
h

)
+W (ξ) ,

= X + Y + W (ξ) ,
(6.87)

and

W = 2κ ξ∂̄h̄ ∂2
−

(
h
∂̄2

∂2
−
h − ∂̄

∂−
h
∂̄

∂−
h

)

+ 2κ h̄ ∂2
−

(
ξ∂̄h

∂̄2

∂2
−
h + h

∂̄2

∂2
−

(ξ∂̄h) −2 ∂̄

∂−
(ξ∂̄h) ∂̄

∂−
h

)
,

= 0 ,

(6.88)

by partial integrations. Similarly, from the variation of the other cubic term we do not
get any ξ̄ terms. We further simplify X and Y using partial integrations. The results are

X = −2κ ξ̄ h̄ ∂−2∂

(
h
∂̄2

∂−
2h

)
+ 2κ ξ̄ h̄ ∂−2∂

(
∂̄

∂−
h
∂̄

∂−
h

)
, (6.89)

and
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Y = 2κh̄ ξ̄∂−2 ∂

(
h
∂̄2

∂−
2h

)
− 2κh̄ξ̄∂−2 ∂

(
∂̄

∂−
h
∂̄

∂−
h

)

− 4κ ∂̄ξ̄ ∂

∂−
h

∂̄

∂−
h ∂2
−h̄ + 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ + 4κ ∂̄ξ̄ ∂∂̄
∂2
−
h h ∂2

−h̄ .

(6.90)

The first two terms in (6.90) cancel (6.89) and we retrieve

δκ
0
(cubic terms) = −4κ ∂̄ξ̄ ∂

∂−
h

∂̄

∂−
h ∂2
−h̄ + 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ + 4κ ∂̄ξ̄ ∂∂̄
∂2
−
h h ∂2

−h̄

(6.91)

For quartic vertex, we focus on the relevant κ−1 variation. We consider the ξ̄ terms as
the ξ−dependent terms can be obtained by complex conjugation.

δκ
−1

(quartic terms) =A + B + C + D , (6.92)

where

A = − 4κ ∂̄ξ̄ ∂h 1
∂−

2

(
∂̄

∂−
h ∂−

3 h̄ − h ∂−
2∂̄h̄

)

= 4κ ∂̄ξ̄ ∂

∂−
h

∂̄

∂−
h ∂2
−h̄ − 4κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ − 4κ ∂̄ξ̄ ∂∂̄
∂2
−
h h ∂2

−h̄ ,

(6.93)

D = − 2κ2 ∂h ∂̄2ξ̄

(
1
∂−

2 (∂−h ∂−h̄) − h h̄

)

= − 2κ ∂̄2ξ̄
∂

∂−
h ∂−h h̄ + 2κ ∂̄2ξ̄

∂

∂2
−
h h ∂2

−h̄ .

(6.94)

Note that the terms in (6.93) along with the second term in (6.94) cancel the entire
contribution from the cubic vertex. Now moving on to
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B = + 2κ ∂̄2ξ̄ h
1
∂−

(∂h̄ ∂−h − ∂−h̄ ∂h) , (6.95)

and find that

B− 2κ ∂̄2ξ̄
∂

∂−
h ∂−h h̄= +κ∂̄2ξ̄ hh∂h̄ . (6.96)

Now we turn to the third term

C = +2κh ∂̄ξ̄
(
∂̄h ∂h̄ + ∂h ∂̄h̄ − ∂−h̄

∂∂̄

∂−
h − ∂−h

∂∂̄

∂−
h̄

)

= +2κ∂̄ξ̄ h∂h∂̄h̄ −κ∂̄2ξ̄ hh∂h̄− 2κh ∂̄ξ̄ ∂−h̄
∂∂̄

∂−
h .

(6.97)

Finally we obtain the net contribution, from the cubic and quartic vertices, at κ order
reads

δH(κ)
c,q =

(
+2κ ∂̄ξ̄ h ∂h ∂̄h̄ − 2κh ∂̄ξ̄ ∂−h̄

∂∂̄

∂−
h

)
+ c.c. (6.98)

Therefore we deduce that the existing transformations in (6.75) do not leave the Hamilto-
nian invariant at order κ. In order to make the Hamiltonian invariant, we now introduce
new terms of order κ to the r.h.s of (6.75). After substituting these new terms the con-
tribution in the kinetic term of (6.73), are clearly at the same order as those in (6.98).
We find

δh = 1
2κ∂ξ + ξ∂̄h + ξ̄∂h − κ ∂̄ξ̄ hh + 2κ ∂ξ 1

∂−
(h̄ ∂−h) , (6.99)

and

δh̄ = 1
2κ∂̄ξ̄ + ξ∂̄h̄ + ξ̄∂h̄ − κ ∂ξ h̄h̄ + 2κ ∂̄ξ̄ 1

∂−
(h ∂−h̄) . (6.100)

The variation of the kinetic term δκ(∂h̄ ∂̄h) cancels exactly against the terms in (6.98),
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confirming that

δH(κ) = 0 , (6.101)

This proves that that the light-cone Hamiltonian to order κ2 is invariant under the resid-
ual reparametrizations (6.99) and (6.100).

Quadratic form structure

We show that the Hamiltonian in (6.73), to order κ2, can also be written as a quadratic
form. We already know Dh̄ to order κ. The product Dh̄(κ) D̄h(κ) gives one-half of the
third line in (6.73). We now show that (the remaining) half of the third line and all other
terms at order κ2, in (6.73) can be written in the form

Dh̄(κ2) ∂̄h + ∂h̄D̄h(κ2) . (6.102)

Where at order κ2, Dh̄ reads

+2κ2 1
∂−
{∂2
−h̄

1
∂3
−

(∂3
−h

∂

∂−
h̄−∂2

−∂hh̄)}+ 2κ2 1
∂−
{ ∂
∂4
−

(h̄∂2
−h)∂3

−h̄}

−2κ2∂2
−h̄

1
∂4
−

(∂2
−h∂h̄−2∂−∂h∂−h̄) + 2κ2∂−h̄

1
∂2
−

(∂−h∂h̄−2∂h∂−h̄)

+6κ2 1
∂2
−

(∂−h∂−h̄)∂h̄−6κ2∂−h̄
1
∂2
−

(∂−h∂h̄)−2κ2 1
∂2
−

(∂−h∂−h̄)∂h̄

+4κ2hh̄∂h̄+ 4κ2 ∂

∂−
{∂−h̄( 1

∂2
−

(∂−h∂−h̄)−hh̄)}+ 2κ2∂2
−h̄

1
∂4
−

(∂2
−∂hh̄)

−2κ2∂−{∂−h̄
1
∂2
−

(h̄∂h)}−2κ2∂{h̄ 1
∂2
−

(∂−h̄∂−h)}−2κ2∂2
−h̄

1
∂3
−

(∂−∂hh̄)

+2κ2∂−∂{h̄
1
∂3
−

(h∂2
−h̄)}+ 2κ2∂{∂−h̄

1
∂3
−

(h̄∂2
−h)}+ 2κ2∂2

−{h̄
1
∂3
−

(∂−h̄∂h)}(6.103)

Therefore the Hamiltonian for pure gravity in d= 4 flat spacetime in light-cone gauge can
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be expressed as a quadratic form up to order κ2. It can be shown that any other form
derived for Dh̄ is equivalent to the one above (this involves substituting Dh̄ back in the
Hamiltonian and using multiple partial integration). We do not offer proof of uniqueness
here. However it is straightforward to verify that the Dh̄ defined above is unique. This
is similar to what we observed in d = 4 pure Yang-Mills theory, where D̄Aa defined in
(6.3) is unique.

As at order κ, one would expect Dh̄ in (6.103) to transform “covariantly". Unfortunately,
at this order, the Dh̄ does not transform like the field. The variation of (6.103) yields

δ (Dh̄)κ = +κ∂ξ ∂{∂−h̄
1
∂−
h̄}

+2κ∂̄ξ̄ h∂ h̄ + κ∂̄ ξ̄ ∂ ∂− h̄
1
∂−

h − κ∂̄ ξ̄ 1
∂−
{∂−∂ h̄h} , (6.104)

and it can be simply verified verified that

δHκ =
∫
d3x [δ(Dh̄)D̄h + Dh̄ δ(D̄h) ]κ = 0 . (6.105)

In the next section we explain why this transformation property in (6.105) is not unex-
pected.

Transformation properties of Dh̄

We consider the following ansatz for δ(D̄h) and δ(Dh̄) from (6.99) and (6.100),ignoring
all the ξ-dependent terms

δ(D̄h) = 0 + (ξ∂̄ + ξ̄∂ )D̄h − κ∂̄ξ̄
∑
i

αi Âi (B̂ih Ĉih) + 2κ∂ξ
∑
j

βj P̂j(Q̂j h̄ R̂jh)

(6.106)
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and

δ(Dh̄) = 0 + (ξ∂̄ + ξ̄∂ )Dh̄ − κ∂ξ
∑
i

αi
¯̂
Ai ( ¯̂

Bih̄
¯̂
Cih̄) + 2κ ∂̄ξ̄

∑
j

βj
¯̂
Pj( ¯̂

Qjh
¯̂
Rj h̄) .

(6.107)

Where, the Âi, . . . are operators that need to be determined later while α and β are con-
stants. Note that the above ansatz transforms “covariantly" (like the field) if we choose

α = 1 , Â = ∂̄ , B̂ = Ĉ = 1 ,

β = 1 , P̂ = 1
∂−

, Q̂ = 1 , R̂ = ∂−∂̄ . (6.108)

As the Hamiltonian is invariant under (6.99) and (6.100), therefore we have

δH = 0 =⇒
∫
d3x [δ(Dh̄)D̄h + Dh̄ δ(D̄h) ] . (6.109)

Now we check (6.109) at order κ0

δH =
∫
d3x [ (δ(Dh̄))κ

0
∂̄h +∂h̄(δ(D̄h))κ

0
] , (6.110)

=
∫
d3x [ ξ̄∂2h̄∂̄h + ∂h̄ξ̄∂∂̄h ] . (6.111)

After integrating a ∂ from the h̄ in the first term, we get

δH)κ
0

= 0 (6.112)

At order O(κ), we have
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(δH)κ =
∫
d3x [ (δ(Dh̄))κ∂̄h + (δ(Dh̄))κ

0
(D̄h)κ + (Dh̄)κ(δ(D̄h))κ

0
+∂h̄(δ(D̄h))κ ]

= κ
∫
d3x { [ ξ̄∂(Dh̄)κ+ 2∂̄ξ̄

∑
j

βj
¯̂
Pj( ¯̂

Qjh
¯̂
Rj h̄) ]∂̄h + ξ̄∂2h̄(D̄h)κ (6.113)

+ [ξ̄∂(D̄h)κ− ∂̄ξ̄
∑
i

αi Âi (B̂ih Ĉih)] ∂h̄ + (Dh̄)κξ̄∂∂̄h} (6.114)

Now we integrate a ∂ from h̄ in the last term of (6.113) and cancel it against the first
term in (6.114). Later we cancel last term of (6.114) with the first term of (6.113) by
integrating a ∂. Finally we get

(δH)κ = κ
∫
d3x [ 2∂̄ξ̄

∑
j

βj
¯̂
Pj( ¯̂

Qjh
¯̂
Rj h̄)∂̄h − ∂̄ξ̄

∑
i

αi Âi (B̂ih Ĉih)∂h̄](6.115)

Substituting (6.108) into (6.115) , gives us

(δH)κ = +2κ
∫
d3x ∂̄ξ̄

1
∂−

(∂−h∂h̄) ∂̄h + c.c. 6= 0 (6.116)

Therefore we deduce that the Hamiltonian for gravity is not the “square” of a “covariant
derivative”. Instead, if we substitute (6.104) into (6.115), we find

(δH)κ = 0 . (6.117)

This is in contrast to Yang-Mills theory where both, the pure and maximally supersym-
metric theories may be described by covariant derivatives. Also from the MHV liter-
ature [16, 31–33], we know that all tree-level amplitudes in Yang-Mills theory may be
expressed entirely in terms of the “square" or “angular" brackets as shown in (3.33) .
However in the case of gravity, the cubic amplitude does indeed have the same property
but the quartic and higher vertices involve a mixture of both brackets. Therefore, the
lesson from the amplitude structures may be the another way of looking at the fact that
the (Dh̄) introduced in gravity does not transform as expected ( like the field) beyond
order κ2.
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Chapter 7

Discussion and outlook

The kinetic and cubic vertices of the Einstein-Hilbert action on AdS4 are more com-
plicated than their flat spacetime counterparts. This deviation is observed even more
significantly in the case of the four dimensional de Sitter background. However, as ex-
pected, if we strip-off coordinate-dependent conformal factors and ignore cosmological
contributions, the closed form expression for the gravity Lagrangian in light-cone gauge
on these curved backgrounds is structurally similar to that on flat spacetime. Thus the
closed form expression is an ideal starting point for any further studies involving light-
cone gravity on any background.

We wish to extend our analysis and obtain quartic interaction vertices but this seems
to be trickier because time derivatives begin to appear. On flat backgrounds, the time
derivatives are eliminated by field redefinitions which appears to be quite complicated to
perform in the case of AdS4. In the case of dS4, this may become even more complicated
or simply impractical to do due to the presence of the time-dependent conformal factors.

We are also, at present, extending the results presented in this thesis to more general
conformal background spacetimes. Once this work is completed, we hope to show that
the AdS4 and dS4 results are special cases of this more general result [46].

We hope to return to many of these issues in the future.
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Amplitudes on curved backgrounds

The KLT relations are observed at tree-level in flat spacetime. One important and inter-
esting future direction is ask whether such relations (or some similar version of them) are
valid on curved backgrounds. The tree-level amplitudes or interaction vertices are com-
puted by Fourier transforming the vertices in the light-cone Lagrangian. Unfortunately,
the usual technique of Fourier transform does not work on curved backgrounds (such as
AdS4) due to the presence of coordinate-dependant conformal factors. This could prove
to be a serious road-block to further progress. One hope we have is that integral trans-
forms, like the Mellin transform [47] for example, could prove to be extremely useful in
this context.

Quadratic forms

In the below table I summarize the status of theories which can be expressed as quadratic
forms.

Theories Quadratic form

N = 4,d= 4 SYM Yes

d= 4 Pure YM Yes

N = 8,d= 4 SUGRA Yes (upto order κ)

d= 4 Pure gravity Yes (upto order κ2)

d= 4 Pure gravity in curved
backgrounds

Don’t Know, in progress.

Non-maximally supersym-
metric theories

No

There are a number of open questions as far as these quadratic forms are concerned.
Firstly, what is the physical significance of these forms? In particular, can we connect
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them to some physical symmetry in the theory (infinitesimal or otherwise). Secondly,
why do these quadratic form structures appear only in the pure and maximally super-
symmetric cases (as shown in the table)? Thirdly, in the context of N = 8 supergravity
in d= 4, can we relate this quadratic form strcutre to the improved ultra-violet behavior
observed in the theory? And finally, do these quadratic form structures persist/appear
in curved spacetime backgrounds such as AdS4 and dS4? It would be wonderful if these
elegant and interesting algebraic structures in the Hamiltonians describing gravity theo-
ries could somehow lead us to some new and hidden symmetries in the theory.
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