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1 Introduction

([Prz07])

The knot theory revolves around studying the problem of distinguishing knots upto
ambient isotopy. The simplest case of differentiating the unknot with the trefoil
knot, was not achieved until some tools from algebraic topology were utilized in
“Analysis Situs” paper ([Poi95]) by Jules Henri Poincaré (1854-1912). Here, in
this project, we are using matrices and graphs related to the links and define the
invariants of links with the help of matrices.

2 Complexity of a graph

The complexity of a circuit was defined by Gustav Robert Kirchhoff (1824-1887)
in his fundamental paper published in 1847 on electrical circuits([Kir47]). This
complexity of a graph H in graph theory is defined as the number of spanning
trees of H, and denoted by τ(D). Let e be an edge of H that is not a loop then

τ(D) = τ(D − e) + τ(D/e),

where H − e is the graph obtained from H by the deletion of the edge e, and H/e
is the graph obtained from H by the contraction of the edge e.
Now we move ahead to define the Kirchoff matrix of a graph, G, the determinant
of which is the complexity τ(D).

Definition 2.1. Let H be a graph with vertices {v0, v1, . . . vk}.

1. Let A(H) be the (k + 1)× (k + 1) matrix whose entries, aij are the number
of edges joining vi to vj when i ̸= j, and aii = 0. Then A(H) is said to be
the adjacency matrix of H.

2. Let ∆(H) be the (k+1)× (k+1) diagonal matrix whose entries, aij are the
degree of the vertex vi when i = j, and aij = 0 when i ̸= j. Then ∆(H) is
said to be The degree matrix of H.

3. Let Q′(H) be the matrix that is defined as ∆(H) − A(H). Then Q′(H) is
said to be the Laplacian matrix of H.

4. If we delete the first row and first column from Q′(H), then the resulting
matrix is said to be the Kirchhoff matrix of H, denoted by Q(H).

Theorem 2.1. det(Q(H)) = τ(H).
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Example 2.1. Consider the graph H given below.

Figure 1: The graph H

For this graph, we have:

A(H) =

0 1 1
1 0 2
1 2 0

 , ∆(H) =

2 0 0
0 3 0
0 0 3



Q′(H) =

 2 −1 −1
−1 3 −2
−1 −2 3

 , Q(H) =

(
3 −2
−2 3

)

det(Q(H)) = det(

(
3 −2
−2 3

)
) = 5 = τ(H).

2.1 Relation between knots and graphs

P.G.Tait was the first one to recognise the relation between planar graphs and
links. The graph he constructed for a given knot was called as Tait’s graph for
the knot. The graph is constructed by checkerboard coloring the regions of knot
diagram, and placing a vertex inside each white region, and then connecting the
vertices by edges going through crossings of the knot diagram.

Example of Tait’s construction of graphs from link diagrams is given below:
Let H be a signed planar graph. For the Tait’s construction from H to a link

diagram D(H), we will replace every signed edge of the graph with a crossing
according to the below convention for over and under crossings depending on the
sign of the edge (see figure below):

7



H

Figure 2: From link diagrams to Tait’s graph
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Figure 3: Knot 819 and it’s Tait graph

Figure 4: link associated with Octahedral graph with all the edges positive.

Proposition 2.1. The diagram D(H) of a connected graph H is alternating if
and only of H is either a positive graph or a negative graph.

2.2 Link Diagram and Reidemeister moves

Definition 2.2 (Polygonal knots and ∆-equivalence).

1. A simple closed polygonal curve in R3 is called a polygonal knot.

2. Let us assume that u is a line segment (edge) in a polygonal knot P in R3. Let
∆ ∈ R3 be a triangle with three line segments u, v, w as the boundary. whose
and such that ∆∩L = u. The polygonal curve defined as P ′ = (P−u)∪u∪w
is a new polygonal knot in R3. The knot P ′ is said to be obtained from P
by a ∆-move. Conversely, say that the knot P was obtained from P ′ by a
∆−1-move. The triangle ∆ can be degenerate, which means the subdivision
of u is allowed.
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3. Two polygonal knots P and P ′ are said to be ∆-equivalent if one can be
obtained from the other by applying a finite number of ∆ and ∆−1 moves.

We present the polygonal link by the projection onto a plane. Let P ⊂ R3 be a
link, and π : R3 → R2 be a projection of P . Then a multiple point m ∈ π(P ) is a
point such that π−1(m) contains more than one point. Moreover, the multiplicity
of m is defined as the number of points in π−1(m).

Definition 2.3. The projection π is said to be regular if:

1. there are only finite number of multiple points of π and all of them have
multiplicity two,

2. the inverse image of a multiple point of p is never a vertex.

The question that when are two projections represent equivalent knots was
first considered by Maxwell. The elementary moves he had considered reminded of
Reidemeister moves in the future, although he never published his findings. Reide-
meister, and Alexander and Briggs did the formal interpretation of ∆-equivalence
of knots using diagrams in 1927.

Theorem 2.2 (Reidemeister theorem). Two link diagrams D1(L) and D2(L) are
∆-equivalent if and only if they are connected by a finite sequence of Reidemeister
moves R±

i , i = 1, 2, 3 as in fig below, and isotopy of the plane of the diagram.
This theorem also holds for oriented links and diagrams.

Figure 5: Reidemeister moves (source: internet)
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3 Some definitions

Definition 3.1 (Simplicial Complex). ([Kaw96]) A set S of simplices in Rn for
some n is called as simplicial complex if it satisfies the following conditions:

1. For each Ai, Aj ∈ S, Ai ∩ Aj is either ϕ or is a face of A1 and A2.

2. Let A ∈ S, then all the faces of A are in S.

3. For each A ∈ S, S ∩ A is finite.

The union of all simplices in S is called the polyhedron of S and denoted by |S|.

Definition 3.2 (Triangulation). For a topological space X, the triangulation of
X is the pair (S, t) where S is a simplicial complex, and t : |S| ∼= X is a homeo-
morphism.

4 Signature of a link and its association to Goeritz

matrix

Definition 4.1. LetD be a diagram of the link P .Checkerboard colour the comple-
ment of the diagramD is such a way that the unbounded region of R2 P is coloured
white and denote it by v0, and denote the other white regions by v1, v2 . . . vn. Let
q be a crossing of D associate η(p) to each such q such that η(q) is either 1 or −1
according to the convention described below:

Figure 6: convention

Define G′ = {aj,k}nj,k=0, where

aj,k =

{
−
∑

q η(q) for j ̸= k, where q is the crossing which connects vj and vk
−
∑

l=0,1,...n;l ̸=k gj,l for j = k

11



This matrix G′ = G′(D) is called as the unreduced Goeritz matrix of the
diagram D of link P . By removing the first row and first column of G′ we obtain
the Goeritz matrix for D.

Theorem 4.1. ([Kaw96]) Let L1 and L2 are two diagrams of a given link. Then
the matrices G(L1) and G(L2) can be obtained from the other by a finite number
of elementary operation on matrices as follows:

1. G⇔ BGBT , where B is a matrix with integer entries and det(B) = ±1.

2.

G⇔
(
G 0
0 ±1

)
3.

G⇔
(
G 0
0 0

)
Moreover, if L is a diagram of knot, then (1) and (2) are sufficient.

Proof. To prove the theorem, we will check how Goeritz matrix varies when Rei-
demeister moves are applied on a link. Consider an oriented link diagram L for
some link. Using Tait’s construction, but with taking vertices in the black region,
we construct a graph corresponding to L.
Let this graph has B(L) number of components, R be a Reidemeister move. We
denote the Goeritz matrix G(L) for L as G1, and R(L) as G2.

Figure 7: Type I and tyoe II crossings

Let µ is defined as µ(L) =
∑
η(q), where q is a crossing of type II according

to the convention given in above figure. Set µ1 = µ(L), µ2 = µ(R(L)); and
β1 = B(L), β2 = B(R(L)). The convention we will be using is G1 ≈ G2 if G1 and
G2 are related by (1), and G1 ∼ G2 if we can obtain G2 from G2 by using finite
sequence of relations from (1), (2) and (3).
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1. R1, the first Reidemeister move.

• Case (i):

From the above figure, we can observe that µ2 = µ1, β2 = β1 and
G2 ≈ G1

• Case (ii):

From the above figure, we can observe that µ2 = µ1+η(p), β2 = β1 and

G2 =

(
G1 0
0 η(p)

)
.

2. R2, the second Reidemeister move.

• Case (i):

In the above figure, let us name the new crossings p1 and p2, we can
observe that both p1 and p2 will either be of type I, or both will be of
type II, and η(p1) = −η(p2), this gives us µ2 = µ1 + η(p1) + η(p2) =
µ1 + η(p1)− η(p1) = µ1 thus µ2 = µ1, β2 = β1 and hence G2 ≈ G1

• Case (ii):
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In the above figure, let us name the new crossings p1 and p2, we can
observe that both p1 and p2 will either be of type I, or both will be of
type II, and η(p1) = −η(p2), this gives us µ2 = µ1+η(p1)+η(p2) = µ1+
η(p1) − η(p1) = µ1 thus µ2 = µ1. There will be 2 subcases considering
this move either keeps the number of components as it is or decreases
it.

(i) Let β2 = β1, then G2 ≈

G1 ⃝
1

⃝ 1


which implies G2 ∼ G1.

(ii) Let β2 = β1 − 1, then G2 ≈
(
G1 ⃝
⃝ 0

)
This is the third relation.

3. R3, the third Reidemeister move.

From the above figure, we can observe clearly that β2 = β1, considering
different orientations of the diagram, and two possible types for the crossing

p0, we will have µ2 = µ1 + η(p0). This will give us G2 ≈
(
G1 0
0 η(p0)

)
Also

we know η(p0) is either +1 and −1. Thus this move clearly corresponds to
the relation (2) in the theorem.

Corollary 4.1. | det(G)| is called the determinant of a knot and it is an invariant
of knots.
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Corollary 4.2. Let K be a link and µ(K) =
∑
η(q), where the summation is

taken over the crossings of type 2.

1. The signature of the link, σ(K) is defined as σ(K) = σ(G(K))−µ(K), where
σ(G(K)) is the signature of Goeritz matrix of K. σ(K) is an invariant of
the link K.

2. The nullity of the link, N(K) is defined as N(L) = N(G(K)) − β(K) − 1,
where N(G(K)) is the nullity of Goeritz matrix of K. N(K) is an invariant
of the link K.

For oriented links, L. Traldi introduced a modified matrix for which the signa-
ture and nullity are invariants of the link.

Definition 4.2. Let K be the diagram of an oriented link. Then we define the
generalized Goeritz matrix.

H(K) =

G 0 0
0 M 0
0 0 Q

 ,

where G is the Goeritz matrix of K, M is the diagonal matrix of dimension equal
to the number of type II crossings, with the diagonal entries equal to −η(q), where
q’s are the crossings of type II, and Q is a zero matrix of dimension β(K)− 1.

Lemma 4.1. ([Kaw96]) If D1 and D2 are diagrams of two isotopic oriented links
then H(D1) can be obtained from H(D2) by sequence of the following elementary
equivalence operations:

1. H ⇔ BHBT , where B is a matrix with integer entries and det(B) = ±1.

2.

H ⇔

H 0 0
0 1 0
0 0 −1


Proof. The proof will follow from the proof of Theorem 3.1.

Corollary 4.3. The determinant the link K, denoted by DetK which is equal
to det(iH(K)) is an isotopy invariant of link. Morever, σ(H(K)) = σ(K) and
N(H(K)) = N(K).

Example 4.1. Consider the Torus link T2,k. For odd k, T2,k is a knot and for even
k, T2,k is a link with 2 components; see Fig below:
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Figure 8: Torus link T2,k

We compute the matrices G′, G and H for T2,k as:

G′(T2,k) =

(
k −k
−k k

)
Thus the Goeritz matrix will be G = [k].
Moreover, β = 1 and µ = k as all the crossings of T2,k are of type II, Thus for
k ̸= 0,

σ(T2,k) = σ(G)− µ = 1− k, and N(T2,k) = N(G) = 0.

This the generalized Goeritz matrix of the knot T2,k will have dimension k+1 and
is equal to

H(T2,k) =


k ⃝

−1
−1

. . .

⃝ −1


Thus DetL = det(iH) = (−1)kik+1k = i1−kk. Note that, iσ(T2,k) =

DetT2,k
|DetT2,k |

If in the checkerboard colouring of diagram of a link , we connect the black
regions by half-twisted bands as shown in below figure, we will get a surface in R3,
for which the boundary will be the given link. We call the surface as Tait surface
of the link and denote it by Fb.

Definition 4.3 (Special diagram). If the constructed surface from the construction
mentioned above has an orientation that results into the given orientation of the

16



link for some checkerboard colouring of the plane, then this oriented diagram is
called a special diagram.

Remark 4.1. An oriented diagram of a link is special if and only if all crossings
of the link are of type I for some checkerboard colouring of the plane. Moreover,
for a special diagram Sd, we have σ(Sd) = σ(G(Sd)).

Remark 4.2. Any oriented link has a special diagram. Also, for any oriented link
K, DetK = iσ(K)|DetK |.

Proposition 4.1. As a result of above corollaries, we get

1. DetK = −1lk(K−K0,K0)DetK .

2. σ(K ′) = σ(K) + 2lk(K −K0, K0).

3. σ(K) + lk(K) is independent on orientation of K.

4.1 n-move on a link

A local change of an unoriented link diagram described as follows is called an
n-move:

Figure 9: n-move on a link; L0, Ln and L∞

For compution the Goeritz matrices of L0, Ln and L∞, we will choose the yellow
regions as in above figure, and the white region X in R2 − L∞ is divided into two
regions X0 and X1 in R2 − L.

Lemma 4.2. G(Ln) =

(
G(L∞) α
αT n+ q

)
Corollary 4.4. 1. DetG(Ln)−DetG(L0) = nDetG(L∞).
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2. σ(G(L0)) + 2 ≥ σ(G(Ln)) ≥ σ(G(L0)), n ≥ 0.

3. |σ(G(Ln)) − σ(G(L∞))| ≤ 1. Moreover, σ(G(L∞)) = σ(G(Ln)) if and only
if r(G(Ln)) = r(G(L∞)) + 2, or r(G(Ln)) = r(G(L∞)), where r(A) denoted
the rank of the matrix A .

Corollary 4.5. 1. Let the orientation of L0 be such that the strings are par-
allel. Let we obtain Ln from L0 by a tn-move (as shown in figure); then

n− 2 ≤ σ(L0)− σ(L∞) ≤ n.

2. Let the orientation of L0 be such that the strings are anti-parallel, and let
n be an even number n = 2m. Let L2m be obtained from L0 by a t̄2m-move
(as shown in figure); then

−2 ≤ σ(L0)− σ(L2m) ≤ 0.

5 Seifert Surfaces

In 1930, P. Frankl and L. Pontrjagin demonstrated ([Prz11]) that every knot is
a bound of some oriented surface. The surface is named Seifert surface after H.
Seifert, as he found a very simple way to construct such a surface, and later several
applications of the surface were developed.

Definition 5.1 (Seifert Surface for a knot). A Seifert surface for a link K in R3,
is a connected, orientable surface embedded in R3 with boundary K.

Theorem 5.1. Every knot admits a Seifert surface.

Example 5.1. Seifert surfaces for a given knot L are not unique. For example,
given below are two non-isotopic Seifert surfaces for the same link:

Figure 10: Two non-isotopic Seifert surfaces with genus 1
∑

0 and
∑

1 for the
same knot L. ([HKM+22])
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5.1 Construction of Seifert surface

Let L be an oriented link in R3, and LD be a fixed diagram of L. The Seifert
surface for the link L is constructed ([Prz11]) as follows:

1. Step 1. In the neighborhood of each crossing of L, we modify as shown in
the figure below:

Figure 11: Smoothing the crossing

This modification of link L is called as smoothing of crossings.

2. Step 2. We get a collection of disjoint and oriented simple closed curves in
the plane after smoothing all the crossings of LD. These closed curves are
denoted by D−→s and called Seifert circles.

3. Step 3. Each curve of D−→s is boundary of a disc in the plane. Note that
these discs are not always disjoint. They might be nested as shown the the
figure below:

Figure 12: Pushing the circle above the projection

We will observe which of the discs are not disjoint and push them above the
projection plane slightly to make them disjoint starting with the innermost
disc first, and proceeding outwards as shown in figure 10 above.
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4. Step 4. Assign signs + and − to discs according to the orientation of their
boundaries as:

Figure 13: Assigning signs to the discs

5. Step 5. We will use half-twisted bands to connect the discs at the original
crossings of the diagram LD as shown in the figure below:

Figure 14: Adding half twists to join the discs
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If the projection of the link is connected, then the resulting surface is also
connected. That means if L is a knot. If L is a link with more than one
component, then we join its components by tubes in such an orientation-
preserving manner as shown below:

Figure 15: Joining components by tubes for constructing Seifert surface

Since we have joined a “+ side” to another “+ side”(see figure 14, and figure
15), the surface is orientable as well. This connected, orientable manifold
will thus have L as its boundary.

Remark 5.1. [Prz11] If the link K has multiple components then the constructed
Seifert surface depends on the orientation of the components of K.
For example, we will have a look at the link T(2,4) with two different orientations.
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Figure 16: The link T(2,4) with two different orientations

Let’s call the link in figure 14(a) as T1 and the link in figure 14(b) as T2. The
Seifert surface of T1 and T2 have genus 1 and 0 respectively.([Ada94])

Corollary 5.1. ([Prz11]) Let K be a knot with nc number of crossings of the
projection ofK, and ns be the number of Seifert circles. Then the resultant surface
from the construction mentioned above, is unknotted. It means its complement
in R3 is a handlebody. The handlebody has genus equal to nc + 1− ns and Euler
characteristic equal to ns − nc.

Corollary 5.2. ([Prz11])([BV10]) Let L be a link having n components and D be
its diagram. Moreover, let c be the number of connected components in D, nc be
the number of crossings in D and ns be the number of Seifert circles. The genus
of the resulting Seifert surface SL is given by:

genus(SL) = c− ns + n− nc

2
.

Definition 5.2. The genus of the minimal genus Seifert surface of knot L is said
to be the genus of knot L.

Corollary 5.3. ([Prz11]) A knot in R3 is trivial if and only if it has genus equal
to 0.

Proposition 5.1. ([Prz11]) For any given link K in R3, the first homology of the
exterior of K is freely generated by meridians of components of K. In particular,

H1(R3 −K) = Zcom(K).
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Theorem 5.2. ([Prz11]) Let S be a Seifert surface of a link K, then H1(R3 − S)
and H1(F ) are isomorphic. Also, there exist a non-singular bilinear form ψ defined
as

ψ : H1(R3 −K)×H1(S) → Z
given by ψ(α, β) = l(α, β), where l(α, β) is defined as the intersection number of
α and a 2-chain with β as its boundary.

6 Connected sum of links

([Prz11]) Let L1 and L2 be oriented knots in R3. Let x1 ∈ L1 and x2 ∈ L2, N1

be the regular neighbourhood of L1 in the pair (R3, L1), and N2 be the regular
neighbourhood of L2 in the pair (R3, L2). Consider an orientation-reversing home-
omorphism Φ: ∂N1 → ∂N2 mapping end of L1 ∩ (R3 − int(N1)) to beggining of
L2 ∩ (R3 − int(N2) and vice versa. Now consider a pair ((R3 − int(N1) ∪Φ R3) −
int(N2)), (L1−int(N1)∪ΦL2)−int(N2))). We see that (R3−int(N1)∪Φ(R3−int(N2))
is a 3-dimensional sphere, and hence L = (L1 − int(N1)∪Φ (L2 − int(N2) is an ori-
ented knot. The knot L obtained from L1 and L2 by above way is called as the
connected sum of knots L1 and L2, and denoted by L = L1#L2.

Lemma 6.1. In the category of oriented knots in R3, the connected sum of knots
is a well-defined, associative, and commutative operation up to ambient isotopy.

Definition 6.1. A prime knot is a knot that can not be presented as the connected
sum of any non-trivial knot.

Theorem 6.1. ([Prz11])([Sch53]) Genus of knots in R3 is additive, i.e.

genus(L1#L2) = genus(L1) + genus(L2).

Corollary 6.1. ([Prz11]) Every knot in R3 can be decomposed into a finite con-
nected sum of prime knots.

Corollary 6.2. ([Prz11]) The trefoil knot is prime.

Proof. We know from the definition of trefoil knot that it is not a trivial knot,
and hence its genus will not be zero (by corollary 3.1.2). Also, using Seifert’s
construction, the Seifert surface of trefoil is double twisted mobius strip, with
genus, g = 1− 2+1−3

2
= 1− 0 = 1. Thus, trefoil knot has genus 1.

Let trefoil knot T is not prime, which means it is a connected sum of atleast two
prime components K1 and K2. This implies that 1 = g(T ) = g(K1) + g(K2).
Thus, either one of K1 or K2 must have genus 0, and hence is unknot. This shows
that Trefoil knot can not be decomposed further into non-trivial knots, as hence
is prime.
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7 Linking number; Seifert forms and matrices

In this section we will introduce the linking number for any pair A and B of disjoint
knots. We will give the topological definition and then further show it’s agreement
with the diagrammatic definition we stated before.

Definition 7.1. Linking number([Prz11]) The linking number lk(A,B) is an in-
teger such that [A] = lk(A,B)[m], where [A] andd [m] are homology classes of the
oriented curve A and the meridian m of the oriented knot B, respectively.

Lemma 7.1. Let K be a knot with Seifert surface F , and F ⊂ R3 − intVK , such
that its orientation determines the orientation of ∂F compatible with that of the
longitude. Then lk(A,K) is equal as the algebraic intersection number of A and
F .

Lemma 7.2. Let DA∪B diagram A ∪ B of a link such that A and B are disjoint
oriented knots. The orientation of S3 = R3 ∪∞ is assumed to be induced by the
orientation of the plane which contains the diagram of A ∪ B and the third axis
directed upwards.

Figure 17: Assigning signs to crossings

Assign the signs “+1” and “− 1” to the crossings as given in the figure below.
Then, the linking number lk(A,B) is equal to the sum of all such numbers assigned
to crossings.

Remark 7.1.

1. lk(A,K) = lk(K,A) = −lk(−K,A), where −K denoted the knot K with
reversed orientation.

2. Let γ and ω are disjoint 1-cycles in S3 then we define lk(γ, ω) as the inter-
section number of γ with a 2-chain in S3 having ω as a boundary. Moreover
lk(γ, ω) does not depend on the 2-chain in S3 having ω as a boundary.
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3. lk(γ, ω) = lk(ω, γ), and lk(γ, nω) = n · lk(γ, ω).
Let ω′ be a cycle disjoint from γ then lk(γ, ω + ω′) = lk(γ, ω) + lk(γ, ω′)

4. Let the cycles ω and ω′ be homologous in the complement of γ, then lk(γ, ω) =
lk(γ, ω′).

After defining the linking number and studying its properties, for a given knot
or a link we can define a Seifert form. The Seifert surface of a knot or a link, S
is a two-sided surface in S3. We select a regular neighbourhood of S in S3. Let
that neighbourhood be S × [−1, 1]. Let γ be a 1-cycle in intS, we can consider
the cycle γ+ (resp. γ−) in S × 1 obtained by pushing γ to S × 1 (resp. S × −1
obtained by pushing γ to S ×−1).

Definition 7.2. Seifert form of a knot([Prz11]) The function f : H1(intS) ×
H1(intS) → Z such that f(γ, ω) = lk(γ+, ω) is called Seifert form of the knot K.
The Seifert form of an oriented link L is defined using an oriented Seifert surface
S of L.

Lemma 7.3. The function f is a well defined bilinear form on the Z-module
H1(intS).

Definition 7.3. ([PBI+23]) Seifert matrixM = {ai,j} in a basis x1, x2, . . . , x2g+com(L)−1

of H1(S) is defined as the matrix of f in this basis, that is

ai,j = lk(x+i , xj).

Then for γ, ω ∈ H1(S), we have f(γ, ω) = γTMω. We will write the coefficients of
a vector as column matrix.

Example 7.1. If we compute the Seifert surface S of the right-handed trefoil knot,
and then compute the Seifert matrix V of S in the basis [γ], [ω] is given as

V =

(
−1 0
1 −1

)
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Figure 18: a right-handed trefoil

Example 7.2. Let Pk1,k2,k3 denote pretzel link of type (k1, k2, k3). For the Seifert
surface of the pretzel knot P2m1+1,2m2+1,2m3+1, the Seifert matrix computed in basis

[γ], [ω] is equal to

(
−m1 −m2 m2

m2 + 1 −m1 −m2

)

Figure 19: P1,3,5

Definition 7.4. Let S be an oriented surface. For two homology classes α, β ∈
H1(S) represented by transversal cycles,the their algebraic intersection number
τ(α, β) is defines as the sum of the signed intersection points where the sign is
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defined in the following if α meets β transversally at a point q, then the sign of
the intersection at point q is +1 if the intersection is as shown in the case(a), and
−1 if the intersection is as shown in case (b) as shown in figure below:

Remark 7.2. τ : H1(S)×H1(S) → Z is bilinear and τ(α, β) = −τ(β, α)

Remark 7.3. Let T of matrix of τ , then

det(T ) =

{
1 if ∂S is either S1 or ϕ.
0 otherwise

Remark 7.4. Let S be a Seifert surface of a link then τ(α, β) = f(α, β)−f(β, α, ).

Corollary 7.1. ([Rol03]) Let M be the Seifert matrix of a knot K in S3. Then
M satisfies the following equation:

det(M −MT ) = 1.

Definition 7.5. Two matrices are said to be S-equivalent if by using the following
modifications for a finite number of times on one, other can be obtained:

1. A⇔ BABT , where B is a matrix with integer entries and detB = ±1.

2.

A⇔

A ζ 0
0 0 0
0 0 0

 and A⇔

A 0 0
η 0 0
0 1 0

 ,

where ζ is a column and η is a row.

Theorem 7.1. Let F1 and F2 be the Seifert surfaces of two isotopic links L1, and
L2 respectively. If M1 and M2 are their Seifert matrices computed in some basis
B1, and respectively B2, then M1 is S-equivalent to M2.
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8 Alexander polynomial from Seifert form, sig-

natures of links

Lemma 8.1. Let K be an oriented link, and M be a Seifert matrix. and define
the potential function ΩK(x) = det(xA− x−1MT ). Then ΩK(x) does not depend
on the choice of a Seifert surface and its Seifert matrix. As a particular example,
if T is the trivial knot then ΩTx = 1.

Theorem 8.1 (Kauffman). ΩK(x) = ∆K(t) = ∇K(z), where x = −
√
t, and

z = x−1 − x =
√
t− 1√

t
.

Definition 8.1. The t̄2k-move on the link L, which means introducing k number
of full-twists given anti-parallel oriented arcs in L, is the elementary operation on
an oriented diagram L resulting in t̄2k(L) as illustrated in figure below:

We see that t̄2-move changes the crossing from positive crossing to negative
crossing. Choose Seifert surfaces S(L), S(t̄2k(L)), and S(L∞). Choose a basis for
H1(S(L∞)), and add one standard element, e∞ to obtain a basis for H1(S(L)),
and et̄2k(L) to get a basis of H1(S(t̄2k(L)). Let ML∞ be the Seifert matrix of L∞ in
the chosen basis.
Thus we have the following lemma:

Lemma 8.2.

ML =

(
ML∞ ζ
ρ p

)
,

Mt̄2k(L) =

(
ML∞ ζ
ρ p+ k

)
,

where ζ is the column given by linking numbers of e+t̄2k(L) with basis elements of

H1(S(L∞)), ρ is the row given by linking numbers of basis elements of H1(S(L∞))
with e−t̄2k(L), and p = lk(e+t̄2k(L), e

−
t̄2k(L)

)
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Corollary 8.1. ([Prz11])

1. If L1 and L2 be two oriented links which are t̄2k equivalent, then the Seifert
matrices of L1 and L2 are S-sequivalent modulo k.

2. Let (a), and (b) be defined as in the below figure.

The potential function satisfies:

Ωt̄2k(L) − Ω(a) = k(x− x−1)Ω(b).

In particular, when k = −1, then ΩL+ − ΩL− = (x−1 − x)ΩL0(x).

3. Ωt̄2k(L) = det(xAt̄2k(L) − x−1AT
t̄2k(L)

) = det

(
AL∞ xζ − x−1ρT

xρ− x−1ζT (x− x−1)(p+ k)

)
,

and Ω(a) = det

(
AL∞ xζ − x−1ρT

xρ− x−1ζT (x− x−1)p

)
Example 8.1. For the pretzel link K = P2m1+1,2m2+1,...,2mk+1 the Alexander-
Conway polynomial can be calculated using the above corollary by applying the
formula from Corollary 7.1 (2), for a given column of the pretzel link.
For z = x−1 − x, we get,
ΩK(x) = ∇K(z) =

∑k−1
i=0 ak,iz

i∇T2,k−i(z)

= zk−1(

(
k − 1

0

)
+ak,1

(
k − 2

0

)
+ak,2

(
k − 3

0

)
+. . .)+zk−3(

(
k − 2

1

)
+ak,1

(
k − 3

1

)
+ak,2

(
k − 4

1

)
+. . .)+. . .

=

⌊ k−1
2

⌋∑
i=0

(k−1−2i∑
j=0

(
k − 1− i− j

i

)
ak,i

)
zk−1−2i

where ak,i is an elementary symmetric polynomial in the variablesm1,m2, . . .mk of

degree i, i.e.
∏k

j=1(z+mj) =
∑k

i=0 ak,iz
k−i and the Alexander-Conway polynomial

of the torus link T2,k−i is given by ∇T2,k−i
(z) = ∇P1,1,...,1(z)

.
This leads us to the observation that the pretzel knot P5,7,−3 (refer figure 17) has
trivial Alexander-Conway polynomial..
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Figure 20: P5,7,−3, i.e. the link P2m1+1,2m2+1,2m3+1 with m1 = 2,m2 = 3,m3 = −2

8.1 Tristram-Levine signature

Definition 8.2. Let K be a link with Seifert matrix VK . Let ζ( ̸= 1) be any
complex number. Consider, for each ζ, a Hermitian matrix HK(ζ) = (1− ζ̄)VK +
(1 − ζ)V T

K . The Tristam-Levine signature of K is defined as the signature of the
matrix HK(ζ). We denote the signature by σK(ζ) if the parameter ζ is considered.
If we consider ρ = 1− ζ as a parameter, then we denote the signature by σρ(K).
Moreover, using this convention σ(K) = σ1(K) = σK(0) = σK(−1), and σK(1) =
0.

Corollary 8.2. Let L be a link, and t̄2m-move be the move as mentioned in
definition 7.1 with k = m,

1. For every t̄2m-move and Re(1− ζ) ≥ 0, we have

0 ≤ σt̄2m(L)(ζ)− σL(ζ) ≤ 2.

In particular, −2 ≤ σL+(ζ)− σL−(ζ) ≤ 0.

2. Moreover, for any m and ζ,

0 ≤ |σL∞(ζ)− σt̄2m(L)| ≤ 1.

In particular, 0 ≤ |σL+(ζ)− σL0(ζ)| ≤ 1

Corollary 8.3. Let K̄ be the mirror image of link K, then VK̄ = −VK , HK(ζ) =
−HK̄(ζ), σK(ζ) = σK̄(ζ), and σρ(K) = −σρ(K̄). Thus when K is amphichiral,
σK(ζ) = 0.
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8.2 The relation between ΩK(x) and σρ(K)

Lemma 8.3. Let the potential function at iρ be non-zero. Then

iσρ(K) =
ΩK(iρ)

|ΩK(iρ)|
=

∆K(t0)

|∆K(t0)|
=

∇K(−i(ρ+ ρ̄))

|∇K(−i(ρ+ ρ̄))|

, where ∆K(t0) is the Alexander-Conway polynomial and t0 = −ρ2 that is
√
t0 =

−iρ.

Corollary 8.4. The classical signature σ(K) = σ1(K) satisfies the following rela-
tion:

iσ(K) = iσ(VK+V T
K ) =

ΩK(i)

|ΩK(i)|
=

DetK
|DetK |

=
∆K(−1)

|∆K(−1)|
=

∇K(−2i)

|∇K(−2i)|

Here, we take
√
t = −i, and thus ∆K(−1) = ∆K(1). We also assume that DetK ̸=

0.

Example 8.2. The smallest non-amphichiral knot whose Jones, Kauffman, and
Homflypt polynomials are symmetric is the knot 942.

Figure 21: The knot 942

Theorem 8.2. For a given knot L,

σL ≡ |DetL| − 1 mod 4

Corollary 8.5. For a given knot L,

DetL = (−1)
|DetL|−1

2 |DetL|.
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Corollary 8.6. Let K be a link with Alexander polynomial ∆K(t). Let ∆K(t) be
non-zero on the unit circle then for any ρ such that |ρ| = 1, then σρ(L) = 0.

Proposition 8.1. Let L be a knot with DetL = 1, then

σ(L) ≡ 0 mod 8

9 Finding the signature of alternating and Quasi-

alternating links

Let L = L0, and L∞ be as defined in definition 7.1.

Theorem 9.1. Given that Det0 ̸= 0 and Det∞ ̸= 0, following conditions are
equivalent:

1. |DetL+| = |DetL0 | = |DetL∞|

2. σ(L+) = σ(L0)− 1 and σ(L+) = σ(L∞)− 1/2(ω(L0)− ω(L∞)).

The similar relations hold for negative crossings too.

Definition 9.1. Let
−→
G be an oriented link diagram. We construct a signed graph

Γ(
−→
G) whose vertices are in correspondence with Seifert circles of

−→
G , and edges are

in correspondence with the crossings of
−→
G . The signs are given to the edges with

respect to the sign of the crossing. This graph is called as Seifert graph of
−→
G and

denoted by Γ(
−→
G).

Definition 9.2. Let G be a link diagram (not necessarily oriented). A function s
from the set of crossings of G to the set {±1} is said to be the Kauffman state of
G. A marker is assigned to each crossing of G according to the convention given
in the figure 22:

We denote the system of circles obtained by smoothing the crossings of the
diagram G by Gs according to the markers of the state s. The number of such
circles in Gs is denoted by |Gs|.
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Figure 22: convention for markers and their respective smoothings

Definition 9.3. ([BV10]) LetK be a link andG be its link diagram with Kauffman
state s.

1. Construct a graph As(G), from G as follows. Vertices of As(G) correspond
to circles of Gs, and the edges correspond to crossings of G. In case of the
Tait graph, As(G) is a signed graph where the edge e(q) is given the sign
s(q), where s(q) is the sign of marker at the crossing q.

2. If the graph As(G) has no loops, then the diagram G is s-adequate.

3. We construct a surface Fs(G) embedded in R3 and ∂Fs(G) = G, for each
Kauffman state s of the diagram G.

• Each of the circles in Gs bound a disc in the projection plane. We push
the discs slightly above the plane to make them disjoint.

• Now connect the discs together at the original crossings of G by half
twisted bands (ignoring the orientation). The obtained 2-manifold had
G as the boundary.

There is another surface associated to graph As(D), called as Turaev surface,
M(s), for which the positive state (s+) or the negative state (s−) of an alternating
diagram is a planar surface. The construction of M(s) for a given state s of G is
as shown in the figure:

33



Figure 23: Construction of Turaev surface

M(s) is obtained from a regular neighbourhood of projection of links by adding
half-twists to modify the neighbourhoods of s-wrong edges. Clearly,M(s) depends
on s and the link projection but not on the over-under information of the diagram.

Definition 9.4. The minimal genus of Turaev surface over diagrams G of a link
K with s+(D) states is called as the Turaev genus of the link K.

Remark 9.1. Turaev genus of an alternating link is 0.

10 Working with Quasi-alternating links

Definition 10.1. ([Ter15]) A family of links, F is said to be the family of quasi-
alternating links if it is the smallest family such that:

1. F contains the trivial knot.

2. If K is a link with crossing such that
(1) both K0 and K∞ are in F .
(2) |DetK | = |DetK0|+ |DetK∞|, then K is in F .
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Example 10.1.

1. A split link can never be quasi-alternating as it has a determinant equal to
0.

2. A no-split alternating link is quasi-alternating.

3. 946 is not quasi-alternating.

4. The knot 13n1659 shown in below figures which shows us 2 different diagrams
of 13n1659 is quasi-alternating with 13 crossings.

Figure 24: (a)

Figure 25: (b)

The characterisation that if a given Pretzel link is quasi-alternating or not is
done by the following theorem.

Theorem 10.1. The Pretzel link P1,...,1,a1,...,ak,−b1,...,−bn with e + k + n ≥ 3, and
ai ≥ 2, bi ≥ 3 is quasi-alternating if and only if one of the conditions below holds:

1. e ≥ n,
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2. e = k − 1 ≥ 0,

3. e = 0, k = 1, and a1 > min(b1, . . . , bn),

4. e = 0, n = 1, and b1 > min(a1, . . . , an)

Definition 10.2. Quasi-alternating computational tree index, QACTI(L) We in-
troduce QACTI(L) to have a measure of complexity of quasi-alternating links. We
define it inductively as:
For the trivial knotK0, QACTI(K0)=0. QACTI(K) is the minimum over all quasi-
alternating crossings q (of any diagram) ofK of maxQACTI(Kq

0), QACTI(Kq
∞)+1.

Corollary 10.1. Let K be a quasi-alternating link, then:

1. |Det(K)| − 1 ≥ QACTI(K) ≥ log2(|Det(K)|).

2. For all orientations of K, QACTI(K) ≥ |σ(K̄)|.

3. Let q be a quasi-alternating crossing, then QACTI(K) ≤ QACTI(Kq
0) + 1,

and QACTI(K) ≤ QACTI(Kq
∞) + 1
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Conclusion

In this project, we have constructed a pathway which starts from the Tait Graph
and Goeritz matrix to define what is the family of quasi-alternating links, and
study some of its important properties. we first constructed a graph H corre-
sponding to a given link. For this graph H, we defined a Goeritz matrix whose
determinant is an invariant of knots upto ambient isotopy. Also, the signature,
and nullity of Goeritz matrix has a direct relation to the signature and nullity of
the link (both of which are invariants of links). The constructed graph H helps us
construct Seifert surface, and we subsequently calculate the Seifert matrix for the
surface, which provides us with the tools of calculating the Alexander polynomial,
and the Conway polynomial. We also calculated the Tristam-Levine signature,
which is a link invariant. Then we defined Quasi-alternating links and then stud-
ied some of the properties of the quasi alternating links. Then we defined QACTI
which is a measure of the depth or complexity of quasi-alternating links.
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