
COMPUTATIONS IN CLASSICAL
GROUPS

A thesis

submitted in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

by

Sushil Bhunia
ID: 20123166

INDIAN INSTITUTE OF SCIENCE EDUCATION AND

RESEARCH PUNE

April, 2017





Dedicated to
My Grandmother





Certificate

Certified that the work incorporated in the thesis entitled “Computations

in Classical Groups”, submitted by Sushil Bhunia was carried out by the

candidate, under my supervision. The work presented here or any part of it

has not been included in any other thesis submitted previously for the award

of any degree or diploma from any other university or institution.

Date: April 21, 2017 Dr. Anupam Kumar Singh

Thesis Supervisor

v



vi



Declaration

I declare that this written submission represents my ideas in my own words

and where others’ ideas have been included, I have adequately cited and refer-

enced the original sources. I also declare that I have adhered to all principles

of academic honesty and integrity and have not misrepresented or fabricated

or falsified any idea/data/fact/source in my submission. I understand that

violation of the above will be cause for disciplinary action by the institute

and can also evoke penal action from the sources which have thus not been

properly cited or from whom proper permission has not been taken when

needed.

Date: April 21, 2017 Sushil Bhunia

Roll Number: 20123166

vii



viii



Acknowledgements

To my life-coach, my late grandmother Bishnupriya Bera: because I owe it

all to you.

First and foremost, I would like to express my sincere gratitude to my

thesis supervisor Dr. Anupam Singh for the continuous support, for his

patience, motivation, enthusiasm and encouragement. He was always ready

to discuss with me. He trusted my ability and was patient enough to explain

anything to me. I could not have imagined having a better guide for my

Ph.D. The questions studied in this thesis are formulated by him.

Besides my supervisor, I would like to thank the rest of my research ad-

visory committee: Prof. K. N. Raghavan and Dr. Baskar Balasubramanyam

for their insightful comments and encouragement. I had the opportunity

to talk mathematics with several people. I would like to thank them for

their support and encouragement. In particular, I would like to thank Prof.

Dipendra Prasad, Prof. Amritanshu Prasad, Prof. Maneesh Thakur and

Prof. Benjamin Martin. I had very helpful mathematical discussions with

Dr. Ayan Mahalanobis, Dr. Krishnendu Gongopadhyay, and Dr. Ronnie

Sebastian.

I owe my understanding of mathematics to many mathematicians at

IISER Pune, especially to Dr. Diganta Borah, Dr. Chandrasheel Bhag-

wat, Dr. Rabeya Basu, Dr. A. Raghuram, Dr. Steven Spallone, Dr. Vivek

Mohan Mallick, Dr. Kaneenika Sinha, Dr. Tejas Kalelkar, Dr. Krishna

ix



x Acknowledgements

Kaipa and Dr. Amit Hogadi. I am grateful to all of them. I am thankful

to CSIR for the financial support in the form of the research fellowship. I

would like to acknowledge the support of the institute and its administrative

staff members for their cooperation, special thanks are due to Mrs. Suvarna

Bharadwaj, Mr. Tushar Kurulkar and Mr. Kalpesh Pednekar.

I am grateful to my teachers starting from my school days till date having

faith in me and guiding me in right direction. Especially to Mr. Chittaranjan

Chaudhuri, Mr. Suvendu Dandapat, Mr. Gautambabu in school and Prof

Himadrisekhar Sarkar in Jadavpur University.

I thank all my school friends, batchmates in Jadavpur University and

IISER Pune, with whom I shared good times and bad times as well. Many

of you will recognize yourselves, and I hope that you will forgive me for not

naming you individually. I thank my friends in Jadavpur University. In par-

ticular, Debmalya, Prahlad, Srimoyee, Simi, Mousumi, Barnali, Nirupam,

Chiranjit, Dibakar, Dishari, Ibrahim, Manoranjanda, Biswajitda, and Gau-

tamda. All the students of Mathematics at IISER Pune deserve a note of

appreciation for being enthusiastic about discussing mathematics with me. I

thank Rohit, Yasmeen, Hitesh, Rashmi, Sudhir, Manidipa, Pralhad, Prabhat,

Makarand, Jatin, Neha, Jyotirmoy, Milan, Tathagata, Debangana, Ayesha,

Girish, Advait, Chitrabhanuda, Dilpreet, Uday, Ratna, and others for their

help and discussions. With a special mention to Mr. Rohit Joshi. It was

fantastic to have the opportunity to discuss mathematics with him. A special

acknowledgment goes to my office mate of many years: Ms. Manidipa Pal.

She was a true friend ever since we began to share an office in 2012. I must

thank Mr. Uday Baskar Sharma for correcting my English. I thank all the

security persons in IISER and my special thanks to IISER football team.

Finally, I must express my deepest gratitude to my parents for providing

me with unconditional support and constant encouragement throughout my



xi

years of study and through the process of research and write this thesis and

my life in general, without whom this thesis would not have existed. I am

also grateful to my other family members who have supported me along the

way. Especially to my younger brother Samir, my sisters Swapna, Bandana,

Gangotryi and my nephew Chunai, Munai. Last but not the least to my

Kakima and Sir. Also a mention to Pramita. It is not possible to express

my gratitude towards them in words.

Sushil Bhunia



xii



Contents

Acknowledgements ix

Abstract xv

Notation xvii

1 Introduction 1

2 Classical Groups 7

2.1 Reductive Algebraic Groups . . . . . . . . . . . . . . . . . . . 8

2.2 Symplectic and Orthogonal Groups . . . . . . . . . . . . . . . 9

2.3 Unitary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Chevalley Groups 21

3.1 Construction of Chevalley Groups (adjoint type) . . . . . . . . 21

3.2 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . 25

4 Conjugacy Classes of an Isometry 29

4.1 Wall’s Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Springer-Steinberg Form . . . . . . . . . . . . . . . . . . . . . 34

5 Conjugacy Classes and z-classes 39

5.1 Self-U -reciprocal Polynomials . . . . . . . . . . . . . . . . . . 40

5.2 Space Decomposition with Respect to a Unitary Transformation 41

xiii



xiv Contents

5.3 z-classes in Orthogonal and Symplectic Groups . . . . . . . . 43

6 Gaussian Elimination 47

6.1 Gaussian Elimination in General Linear Groups . . . . . . . . 47

6.2 Elementary Operations . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Gaussian Elimination in Similitude Groups . . . . . . . . . . . 52

6.4 Gaussian Elimination in Unitary Groups . . . . . . . . . . . . 62

7 Computing Spinor Norm and Similitude 63

7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Finiteness of z-classes 65

8.1 Unipotent z-classes . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Semisimple z-classes . . . . . . . . . . . . . . . . . . . . . . . 68

9 Counting z-classes 73

9.1 z-classes in General Linear Groups . . . . . . . . . . . . . . . 73

9.2 z-classes in Unitary Groups . . . . . . . . . . . . . . . . . . . 75

10 Future Plans 83

10.1 Further Questions . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 85



Abstract

In this thesis, we develop algorithms similar to the Gaussian elimination

algorithm in symplectic and split orthogonal similitude groups. As an ap-

plication to this algorithm, we compute the spinor norm for split orthogonal

groups. Also, we get similitude character for symplectic and split orthogonal

similitude groups, as a byproduct of our algorithms.

Consider a perfect field k with char k 6= 2, which has a non-trivial Galois

automorphism of order 2. Further, suppose that the fixed field k0 has the

property that there are only finitely many field extensions of any finite degree.

In this thesis, we prove that the number of z-classes in the unitary group

defined over k0 is finite. Eventually, we count the number of z-classes in the

unitary group over a finite field Fq, and prove that this number is same as

that of the general linear group over Fq (provided q > n).
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Notation

k : a field (char 6= 2)

k× : k \ {0}

k̄ : algebraic closure of k

Z : integers

Q : rational numbers

R : real numbers

C : complex numbers

Qp : p-adic fields

Fq : finite fields with q elements

R : a commutative ring with 1

R× : units of a ring R

(V,B) : bilinear or sesquilinear form on V

β : the matrix of B relative to a basis

dV : discriminant of (V,B)

Q : a quadratic form

⊗ : tensor product

⊕ : direct sum

⊥: orthogonal sum
∼=: isomorphism

ZG(g) : centralizer of g in G

Z(G) : center of G

xvii



xviii

Aut (V ) : set of all automorphisms of V

M(n, k) : matrix algebra over k

GL(V ) or GL(n, k) : general linear group

SL(V ) or SL(n, k) : special linear group

GSp(V,B) or GSp(n, k) : symplectic similitude group

Sp(V,B) or Sp(n, k) : symplectic group

GO(V,B) or GO(n, k) : orthogonal similitude group

O(V,B) or O(n, k) : orthogonal group

U(V,B) or U(n, k) : unitary group

Gal (L/k) : Galois group of a field L over k

det(g) : determinant of a matrix g
tg : transpose of a matrix g
tg−1 : transpose inverse of a matrix g

p(n) : number of partitions of n

diag(λ1, . . . , λn) : diagonal matrix

italic : definition

: end of a proof



Chapter 1

Introduction

This thesis deals with the subject of classical groups. Specifically, we deal

with the Gaussian elimination for some similitude groups, and conjugacy

classes of centralizers for certain classical groups. We give a concrete algo-

rithm for symplectic and split orthogonal similitude groups analogous to the

usual row and column operations to solve the word problem. Also, we give

structure of centralizers and classes of centralizers in unitary groups to com-

plete the story for classical groups, at least as far as the topics we deal with

are concerned.

What is the Gaussian elimination?

Gaussian elimination is a very old technique in Mathematics. It appeared in

print as chapter eight in a Chinese mathematical text called, “The nine chap-

ters of the mathematical art”. It is believed, a part of that book was written

as early as 150 BCE. For a historical perspective on Gaussian elimination,

we refer to a nice work by Grcar [Gc].

In computational group theory, one is always looking for algorithms that

1
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solve the word problem. Algorithms for word problem are useful in other

programs in computational group theory, namely, the group recognition pro-

gram and the membership problems. Extensive work on these programs are

being done by several people Leedham-Green and O’Brien [LO], and Gural-

nick et.al. [GKKL]. Thus, one of the main objectives of this thesis is to give

an algorithm, on similar lines as the row-column operations for general linear

groups, to solve the word problem for similitude groups. In this thesis, we

work with Chevalley generators [Ca1]. Chevalley generators for the special

linear group SL(n, k) are elementary transvections, which are used to do the

Gaussian elimination for GL(n, k). The similitude groups are thought of as

an analog of what GL(n, k) is for SL(n, k). So, for the Gaussian elimination

of symplectic and split orthogonal similitude groups, we use the Chevalley

generators.

These Chevalley generators for classical groups are well-known for a very

long time. However, its use in row-column operations in symplectic and

split orthogonal similitude groups is new. We develop row-column opera-

tions, very similar to the Gaussian elimination algorithm for general linear

groups. We call our algorithms Gaussian elimination in symplectic and

split orthogonal similitude groups respectively.

In a nutshell, Gaussian elimination is nothing but a series of row and col-

umn operations. For details see Chapter 6. The algorithms that we develop

in this thesis work for a split bilinear form B (see (4) in Example 2.2.20).

First, we define elementary matrices (see Section 3.2), which give elementary

operations (see 6.2) for similitude groups. We prove the following result:

Theorem 1.0.1 (Theorem 6.3.11). Every element of the symplectic simil-

itude group GSp(2l, k) or split orthogonal similitude group GO(n, k) (here

n = 2l or 2l + 1), can be written as a product of elementary matrices and a

diagonal matrix. Furthermore, the diagonal matrix is of the following form:
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1. In GSp(2l, k), diag(1, . . . , 1︸ ︷︷ ︸
l

, µ(g), . . . , µ(g)︸ ︷︷ ︸
l

), where µ(g) ∈ k×.

2. In GO(2l, k), diag(1, . . . , 1, λ︸ ︷︷ ︸
l

, µ(g), . . . , µ(g), µ(g)λ−1︸ ︷︷ ︸
l

), where µ(g), λ ∈

k×.

3. In GO(2l + 1, k), diag(α, 1, . . . , 1, λ︸ ︷︷ ︸
l

, µ(g), . . . , µ(g), µ(g)λ−1︸ ︷︷ ︸
l

), where

α2 = µ(g) and µ(g), λ ∈ k×.

What is the spinor norm and why study them?

Let k be a field with char k 6= 2. The spinor norm is a group homo-

morphism Θ : O(n, k) → k×/k×2 defined by Θ(g) =
m∏
i=1

Q(ui)k×2, where

g = σu1σu2 · · · σum using Cartan-Dieudonne theorem (see Section 2.2.3). In

the connection to group recognition project, Scott H. Murray and Colva M.

Roney-Dougal [MR] studied spinor norm earlier. The definition of the spinor

norm is not friendly to compute. Hahn, Wall, and Zassenhaus [Ha,Wa1,Za]

developed a theory to compute the spinor norm. In this thesis, we will give

an efficient algorithm to compute the spinor norm using Gaussian elimina-

tion algorithm. From Gaussian elimination algorithm, one can compute the

spinor norm easily. Since the commutator subgroup of the orthogonal group

is the kernel of the spinor norm restricted to the special orthogonal group,

so the following theorem also gives a membership test for the commutator

subgroup in the orthogonal group. We prove the following result:

Theorem 1.0.2 (Theorem 7.1.2). Let g ∈ O(n, k) (here n = 2l or n = 2l +

1). Suppose Gaussian elimination reduces g to diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

),

where λ ∈ k×. Then the spinor norm Θ(g) = λk×2.
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What are the z-classes and why study them?

Let G be a group. The elements x and y ∈ G are said to be z-equivalent

denoted as x ∼z y if their centralizers in G are conjugate, i.e., ZG(y) =

gZG(x)g−1 for some g ∈ G, where ZG(x) := {g ∈ G | gx = xg} denotes

centralizer of x in G. Clearly ∼z is an equivalence relation on G. The

equivalence classes with respect to this relation are called z-classes. It is easy

to see that if two elements of a group G are conjugate then their centralizers

are conjugate, thus they are also z-equivalent. However, in general, the

converse is not true. In fact, a group may have infinitely many conjugacy

classes but finitely many z-classes (see Example 8.2.7). In this thesis, we

explore the z-classes for classical groups. In [St2], R. Steinberg proved the

following:

Theorem 1.0.3 (Steinberg). Let G be a reductive algebraic group defined

over an algebraically closed field k of good characteristic, then the number of

z-classes in G is finite.

Question 1.0.4. What can we say about the finiteness of z-classes for alge-

braic group G defined over an arbitrary field k?

To study this we assume that the field k satisfies the following property:

Definition 1.0.5 (Property FE). A perfect field k of char k 6= 2 has the

property FE if k has only finitely many field extensions of any finite degree.

Examples of such fields are, algebraically closed fields (for example, C),

real numbers R, local fields (for example, Qp), and finite fields Fq. From now

on we assume that k has property FE unless stated otherwise. In [Si], A.

Singh studied z-classes for real compact groups of type G2. Ravi S. Kulkarni

proved the following (see Theorem 7.4 [Ku]):
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Theorem 1.0.6 (Kulkarni). Let V be an n-dimensional vector space over

a field k with the property FE, then the number of z-classes in GL(n, k) is

finite.

K. Gongopadhyay and Ravi S. Kulkarni proved the following (Theorem

1.1 [GK]):

Theorem 1.0.7 (Gongopadhyay-Kulkarni). Let V be an n-dimensional vec-

tor space over a field k with the property FE, equipped with a non-degenerate

symmetric or skew-symmetric bilinear form B. Then, there are only finitely

many z-classes in orthogonal groups O(V,B) and symplectic groups Sp(V,B).

This result generalizes Steinberg’s result mentioned above (Theorem 1.0.3).

In this thesis, we extend this result to the unitary groups. We prove the fol-

lowing result:

Theorem 1.0.8 (Theorem 8.2.4). Let k be a perfect field of char k 6= 2 with

a non-trivial Galois automorphism of order 2. Let V be a finite dimensional

vector space over k with a non-degenerate hermitian form B. Suppose the

fixed field k0 has the property FE, then the number of z-classes in the unitary

group U(V,B) is finite.

The FE property of the field is necessary for the above theorem. For

example, the field of rationals Q does not have property FE. We show that

the above theorem is no longer true over Q (see Example 8.2.6).

If we look at character table of SL(2, q) (for example see [B] and [Pr]), we

notice conjugacy classes and irreducible characters bunched together. One

observes a similar pattern in the work of Srinivasan [Sr] for Sp(4, q). In [Gr],

Green studied the complex representations of GL(n, q) where he introduced

the function t(n) for the ‘types of characters/classes’ (towards the end of sec-

tion 1 on page 407-408) which is same as the number of z-classes in GL(n, q).
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In Deligne-Lusztig theory, where one studies representation theory of fi-

nite groups of Lie type, z-classes of semisimple elements play an important

role. In [Ca2] Carter and in [Hu2] Humphreys defined genus of an algebraic

group G defined over k. Two semisimple elements have same genus if they

are z-equivalent in G(k). Thus understanding z-classes for finite groups of

Lie type, especially semisimple z-classes, and their counting is of importance

in representation theory (see [Fl,FG,Ca2,DM]). A. Bose, in [Bo], calculated

the genus number for simply connected simple algebraic groups over an alge-

braically closed field, and compact simple Lie groups. In this thesis we prove

the following:

Theorem 1.0.9 (Theorem 9.2.5). The number of z-classes in U(n, q) is

same as the number of z-classes in GL(n, q) if q > n. Thus, the number of

z-classes for either group can be read off by looking at the coefficients of the

function
∞∏
i=1

z(xi), where z(x) =
∞∏
j=1

1
(1− xj)p(j) .

Along the way, we also prove some counting results (see for example,

Proposition 9.1.1, Proposition 9.1.2, Theorem 9.2.3).

A chapter wise description: A conscious effort is made to make this

thesis self-contained and reader-friendly. The results in Chapters 2 to 5 are

all well-known. They are preliminary in nature, and almost all basic results

are recalled in the first four chapters, which are used in this thesis. After

covering the preliminaries in the first four chapters, we report on author’s

research work in the next four chapters. Finally, in the last chapter, we give

some further research problems. That pretty much summarizes the thesis

giving glimpses into the main results proved in the various chapters.



Chapter 2

Classical Groups

This chapter is the most basic and at the same time most essential part of

this thesis. In this chapter, we will discuss the groups that are popularly

known as the classical groups, as they were named by Hermann Weyl. Let

k be a field. Let V be an n-dimensional vector space over k. We denote

the set of all invertible linear transformations of V by GL(V ). The set

GL(V ) is a group under the multiplication defined by the composition of

maps. Let us fix a basis {e1, . . . , en} of V . Then we can identify GL(V )

with GL(n, k) = {g ∈ M(n, k) | det (g) 6= 0}, the set of all n × n invertible

matrices. This group is called the general linear group. All further groups

discussed are subgroups of GL(V ). The special linear group SL(n, k) := {g ∈

GL(n, k) | det (g) = 1}. In Weyl’s words, “each group stands in its own right

and does not deserve to be looked upon merely as a subgroup of something

else, be it even Her All-embracing Majesty GL(n)”. The exposition in this

chapter is mostly based on the book by Larry C. Grove [Gv]. In Section 2.1 we

describe reductive algebraic groups. Section 2.2 covers the basic definitions

and some very basic properties of classical groups, especially for symplectic

and orthogonal groups. Also in this section, we introduce the notion of the

spinor norm. In the last section, we describe the unitary groups and some

7
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important examples, which will be useful later in this thesis.

2.1 Reductive Algebraic Groups

There are several excellent references for this topic, Borel [Br], Springer [Sp]

and Humphreys [Hu1], to name a few. We fix a perfect field k (char k 6= 2) for

this section, and k̄ denotes the algebraic closure of k. An algebraic group G

defined over k̄ is a group as well as an affine variety over k̄ such that the maps

µ : G × G → G, and i : G → G given by µ(g1, g2) = g1g2, and i(g) = g−1

are morphisms of varieties. An algebraic group G is defined over k, if the

polynomials defining the underlying affine variety G are defined over k, with

the maps µ and i defined over k, and the identity element e is a k-rational

point of G. We denote the k-rational points of G by G(k). Any algebraic

group G is a closed subgroup of GL(n) for some n. Hence algebraic groups

are called linear algebraic groups.

An element in GL(n, k) is called semisimple (respectively, unipotent) if it

is diagonalizable over k̄ (respectively, if all its eigenvalues are equal to 1). We

have G ↪→ GL(n). An element g ∈ G is said to be semisimple (respectively,

unipotent) if the image of g, under the above inclusion, is semisimple (respec-

tively, unipotent), being semisimple and unipotent is a functorial property.

An algebraic group G is said to be unipotent if all its elements are unipotent.

The radical of an algebraic group G over k is defined to be the largest closed,

connected, solvable, normal subgroup of G, denoted by R(G). We call G to

be a semisimple algebraic group if R(G) = {e}. The unipotent radical of G

is defined to be the closed, connected, unipotent, normal subgroup of G and

denoted by Ru(G). We call G to be reductive if Ru(G) = {e}. For example,

the group GL(n) is a reductive group, whereas SL(n) is a semisimple group.

A semisimple algebraic group is always a reductive group. In next section,

we see more examples of algebraic groups, namely, classical groups.
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2.1.1 Jordan decomposition

Recall that an element g ∈ GL(n, k) can be written as g = gsgu = gugs, in a

unique way, where gs ∈ GL(n, k) is semisimple, and gu ∈ GL(n, k) is unipo-

tent. This decomposition is called the Jordan decomposition for invertible

matrices. We have the following Jordan decomposition in linear algebraic

groups. We need the following (Theorem 2.4.8 [Sp]),

Theorem 2.1.1 (Jordan decomposition). Let G be a linear algebraic group

defined over a perfect field k and let g ∈ G. Then there exist unique elements

gs, gu ∈ G such that g = gsgu = gugs. Furthermore, if φ : G → H is a

homomorphism of linear algebraic groups, then φ(gs) = φ(g)s and φ(gu) =

φ(g)u.

The elements gs and gu are called the semisimple part and the unipotent

part of g respectively.

2.2 Symplectic and Orthogonal Groups

In this section, we follow Larry C. Grove [Gv], and define two important

classes of groups, which preserve certain bilinear form. Let k be a field of

char k 6= 2. Let V be an n-dimensional vector space over k.

Definition 2.2.1. A bilinear form on V is a function B : V × V → k

satisfying

1. B(u+ v, w) = B(u,w) +B(v, w)

2. B(u, v + w) = B(u, v) +B(u,w)

3. B(au, v) = aB(u, v) = B(u, av)

for all u, v, w ∈ V and all a ∈ k.
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If B is a bilinear form on V and {e1, e2, . . . , en} is a basis for V , set

bij := B(ei, ej) for all 1 ≤ i, j ≤ n. Then β := (bij) is called the matrix of B

relative to {e1, e2, . . . , en}. If u,w ∈ V , write u = ∑
i aiei, and w = ∑

j bjej,

so that u and w are represented by column vectors u = t(a1 · · · an) and

w = t(b1 · · · bn). Then B(u,w) = tuβw for all u,w ∈ V , where u,w are the

column vectors with the entries being the components of u,w with respect

to the given basis {e1, e2, . . . , en} of V . If {f1, f2, . . . , fn} is another basis

for V , write fj = ∑
i pijei, where pij ∈ k, for all j = 1, 2, . . . , n. Then

B(fi, fj) =
∑
k,l

pkiB(ek, el)plj =
∑
k,l

pkibklplj, which is the (i, j)-entry of tPβP ,

where P = (pij) ∈ GL(n, k), is the change of basis matrix. We say two n×n

matrices M,N are congruent if N = tPMP , for some P ∈ GL(n, k). So

detN = detPdetMdetP . Define k×2 := {a2 | a ∈ k×}. Then k×2 is a

subgroup of k×.

Notation 2.2.2. A vector space V having a bilinear form B will be denoted

by (V,B).

Definition 2.2.3. Define the discriminant of (V,B) to be

dV :=

 0 if detβ = 0,

(detβ)k×2 otherwise.

Observe that the discriminant dV is independent of the choice of basis.

Definition 2.2.4. The bilinear form (V,B) is said to be non-degenerate if

dV 6= 0.

Definition 2.2.5. A subspace W of V is said to be non-degenerate if

rad W := W ∩W⊥ = {0}, where W⊥ = {v ∈ V | B(w, v) = 0 ∀w ∈ W}.

Unless otherwise specified, we assume from now on that (V,B) is a non-

degenerate bilinear form.
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Definition 2.2.6. Two bilinear forms (V1, B1) and (V2, B2) are said to be

equivalent, denoted by (V1, B1) ≈ (V2, B2), if there exists a vector space

isomorphism σ : V1 → V2 such that B2(σu, σv) = B1(u, v) for all u, v ∈ V1.

Remark 2.2.7. We call the above σ an isometry with respect to B1 and B2.

2.2.1 Symplectic groups

Definition 2.2.8. A bilinear form B is said to be skew-symmetric or alter-

nating if B(u, v) = −B(v, u) for all u, v ∈ V .

Alternatively, this definition is equivalent to B(u, u) = 0 for all u ∈ V . In

matrix terminology, the bilinear form B is skew-symmetric if and only if any

representing matrix β is skew-symmetric, i.e., tβ = −β.

For the remainder of this section (V,B) will denote a non-degenerate alter-

nating bilinear form.

Definition 2.2.9. A pair {u, v} of vectors is said to be a hyperbolic pair if

B(u, u) = 0 = B(v, v) and B(u, v) = 1 = −B(v, u).

The restriction of B to the subspace generated by u, v has representing

matrix

 0 1

−1 0

 relative to {u, v}.

Proposition 2.2.10 (Theorem 2.10 [Gv]). If B is a non-degenerate alter-

nating bilinear form on V , then there exists a basis {e1, . . . , el, e−1, . . . , e−l}

of V relative to which the representing matrix has the following form β = 0 Il

−Il 0

, where {ei, e−i} is a hyperbolic pair for all i = 1, 2, . . . , l.

Definition 2.2.11 (Symplectic group). The symplectic group is denoted by

Sp(V,B) := {T ∈ GL(V ) | B(Tu, Tv) = B(u, v) ∀u, v ∈ V }.
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In matrix terminology, the symplectic group is defined as:

Sp(n, k) = Sp(2l, k) := {g ∈ GL(n, k) | tgβg = β},

where β =

 0 Il

−Il 0

.

Definition 2.2.12 (Symplectic similitude group). The symplectic similitude

group with respect to the matrix β as in Definition 2.2.11, is defined by

GSp(n, k) = {g ∈ GL(n, k) | tgβg = µ(g)β, for some µ(g) ∈ k×}, where µ :

GSp(n, k)→ k×; g 7→ µ(g), is a group homomorphism with ker µ = Sp(n, k).

2.2.2 Orthogonal groups

Definition 2.2.13. A bilinear form B is said to be symmetric if B(u, v) =

B(v, u) for all u, v ∈ V . In matrix terminology, the bilinear form B is

symmetric if and only if any representing matrix β is symmetric, i.e., tβ = β.

Definition 2.2.14. If B is a symmetric bilinear form on V , then Q : V → k

defined by Q(v) = B(v,v)
2 , is called a quadratic form associated to B.

Thus B(u, v) = Q(u+ v)−Q(u)−Q(v) for all u, v ∈ V . So the bilinear form

B is completely determined by the quadratic form Q and vice-versa.

For the remainder of this section (V,B) will denote a non-degenerate sym-

metric bilinear form.

Definition 2.2.15 (Orthogonal group). The orthogonal group is defined by

O(V,B) : = {T ∈ GL(V ) | B(Tu, Tv) = B(u, v) ∀u, v ∈ V }

= {T ∈ GL(V ) | Q(Tv) = Q(v) ∀v ∈ V }.
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In matrix terminology, the orthogonal group is defined as:

O(n, k) := {g ∈ GL(n, k) | tgβg = β}.

Remark 2.2.16. Equivalent forms give conjugate groups in GL(n, k), i.e.,

if β2 = tgβ1g for some g ∈ GL(n, k) then O(V2, β2) = g−1O(V1, β1)g.

Definition 2.2.17. A vector v ∈ V is called isotropic if Q(v) = 0, and

anisotropic if Q(v) 6= 0. A vector space V is called isotropic if Q(v) = 0 for

some 0 6= v ∈ V .

Let u ∈ V be any non-zero anisotropic vector, and define a linear trans-

formation σu via

σu(v) := v − 2B(u, v)
B(u, u) u

for all v ∈ V . Then σu ∈ O(V,B). We call σu the reflection along u. The

following theorem is well-known, that the orthogonal group is generated by

reflections. We have (see Theorem 6.6 [Gv]):

Theorem 2.2.18 (E. Cartan-Dieudonné). If V is an n-dimensional vector

space, equipped with a non-degenerate symmetric bilinear form B, then every

element of O(V,B) is a product of at most n reflections.

Definition 2.2.19 (Orthogonal similitude group). The orthogonal simil-

itude group with respect to an invertible symmetric matrix β is defined

by GO(n, k) = {g ∈ GL(n, k) | tgβg = µ(g)β, for some µ(g) ∈ k×},

where µ : GO(n, k) → k×; g 7→ µ(g), is a group homomorphism with

ker µ = O(n, k).

Example 2.2.20. 1. Let V be an n-dimensional vector space over C

equipped with a non-degenerate symmetric bilinear form B. It is known

that any two non-degenerate symmetric bilinear forms on V are equiv-

alent, i.e., there is a basis for V relative to which β = In. So the
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corresponding orthogonal group is denoted by

O(n,C) = {g ∈ GL(n,C) | tgg = In}.

2. Let V be an n-dimensional vector space over R equipped with a

non-degenerate symmetric bilinear form B. In this situation, non-

degenerate symmetric bilinear forms are classified by their signature,

i.e., there is a basis for V relative to which β =

Ir 0

0 −Is

. So the

corresponding orthogonal groups are denoted by

O(r, s) := {g ∈ GL(n,R) | tgβg = β},

where r + s = n.

3. Let V be an n-dimensional vector space over Fq equipped with a non-

degenerate symmetric bilinear form B. Then there is a basis for V

relative to which β = diag(1, . . . , 1︸ ︷︷ ︸
n−1

, λ), where λ ∈ F×q . Thus, up to

equivalence, there are two such forms corresponding to a square and

non-square elements of F×q . So the corresponding orthogonal groups

are denoted by

O(n, q) = {g ∈ GL(n, q) | tgβg = β}.

4. Let V be an n-dimensional vector space over k. Up to equivalence,

there is a unique non-degenerate symmetric bilinear form B of max-

imal Witt index over k. This is called the split form. More explic-

itly we can fix a basis {e1, . . . , el, e−1, . . . , e−l} for even dimension, and

{e0, e1, . . . , el, e−1, . . . , e−l} for odd dimension, so that the matrix of B
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is as follows:

β =



0 Il

Il 0

 if n = 2l,


2 0 0

0 0 Il

0 Il 0

 if n = 2l + 1.

The orthogonal group corresponding to this form is called a split orthog-

onal group. In this thesis, we will work with only the split orthogonal

groups, and this group will be denoted by O(n, k).

2.2.3 Spinor norm

For u ∈ V with Q(u) 6= 0, we defined the reflection σu by σu(v) = v −

2B(u,v)
B(u,u)u along u, which is an element of the orthogonal group. We know

from Theorem 2.2.18 that every element of the orthogonal group O(n, k)

can be written as a product of at most n reflections. Let g ∈ O(n, k) then

g = σu1σu2 · · ·σum (m ≤ n), where Q(ui) 6= 0 for all i = 1, 2, . . . ,m. We are

now in a position to define the spinor norm. To show that this is well-defined

map, we need Clifford algebra theory (see Chapter 9 [Gv]).

Definition 2.2.21. The spinor norm is a group homomorphism Θ :

O(n, k)→ k×/k×2 defined by Θ(g) :=
m∏
i=1

Q(ui)k×2, where g = σu1 · · · σum .

Thus for a reflection, we have Θ(σu) = Q(u)k×2. However, for computa-

tional purposes, this definition is difficult to use. In Chapter 4, we will define

the spinor norm using Wall’s theory, and we will give an efficient algorithm

in Chapter 7 to compute the spinor norm.
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2.3 Unitary Groups

For the material covered here, we refer to the books [Kn] and [Gv]. Let

R be a commutative ring with 1. An involution on R is an automorphism

J : a 7→ ā of R of order 2. Thus:

a+ b = ā+ b̄, ab = āb̄, ¯̄a = a,

for all a, b ∈ R. Set R0 := Fix(J) = {a ∈ R | ā = a}. Let V be a free

R-module of rank n. In this section, we discuss the unitary groups which are

also one of the classical groups. The General Linear Group GL(V ) is a group

of all R-linear isomorphism of the module V over R. In matrix terminology

it consists of all n× n invertible matrices and denoted as GL(n,R).

Definition 2.3.1. A sesquilinear form on V , with respect to J , is a function

B : V × V → R satisfying

1. B(u+ v, w) = B(u,w) +B(v, w)

2. B(u, v + w) = B(u, v) +B(u,w)

3. B(au, v) = āB(u, v) = B(u, āv)

for all u, v, w ∈ V and all a ∈ R.

If B is a sesquilinear form on V and {e1, e2, . . . , en} is a free basis for V , set

bij := B(ei, ej) for all 1 ≤ i, j ≤ n. Then β := (bij) is called the matrix of B

relative to {e1, e2, . . . , en}. If u,w ∈ V , write u = ∑
i aiei, and w = ∑

j bjej,

so that u and w are represented by column vectors u = t(a1 · · · an) and

w = t(b1 · · · bn). Then B(u,w) = tūβw for all u,w ∈ V , where u,w are the

column vectors with the entries being the components of u,w with respect

to the given basis {e1, e2, . . . , en} of V . If {f1, f2, . . . , fn} is another free

basis for V , write fj = ∑
i pijei, where pij ∈ R, for all j = 1, 2, . . . , n. Then

B(fi, fj) =
∑
k,l

p̄kiB(ek, el)plj =
∑
k,l

p̄kibklplj, which is the (i, j)-entry of tP̄ βP ,
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where P = (pij) ∈ GL(n,R). We say two n×n matrices M,N are congruent

if N = tP̄MP , for some P ∈ GL(n,R). So det(N) = det(P )det(P )det(M).

Define R1+J := {aā | a ∈ R×} is a subgroup of R×0 .

Notation 2.3.2. A free module V having a sesquilinear form B will be

denoted by (V,B).

Definition 2.3.3. Define the discriminant of (V,B) to be

dV :=

 (detβ)R1+J if (detβ) ∈ R×,

0 otherwise.

Note that dV is independent of the choice of basis. The sesquilinear form B

is said to be non-degenerate if dV ∈ R×.

Another way to look at the sesquilinear form is the following. Denote

the dual of V by V ∗ := HomR(V,R). The form B induces a map hB : V →

V ∗, hB(v)(w) = B(v, w) for all v, w ∈ V , which is R-linear. Conversely,

an R-linear homomorphism h : V → V ∗ defines a sesquilinear form Bh :

V × V → R,Bh(u, v) = h(u)(v) for all u, v ∈ V . We call hB the adjoint of

B. Since hBh = h and BhB = B, a sesquilinear form is determined by its

adjoint and vice-versa. If hB is an R-module isomorphism between V and V ∗

then B is non-degenerate. The above two definitions for non-degeneracy are

equivalent. LetB1 andB2 be two sesquilinear forms on V1 and V2 respectively.

Two forms are said to be equivalent, denoted by (V1, B1) ≈ (V2, B2), if there

exists a R-module isomorphism σ : V1 → V2 such that B2(σu, σv) = B1(u, v)

for all u, v ∈ V1. We call σ an isometry with respect to B1 and B2.

Definition 2.3.4. A sesquilinear form B is said to be hermitian if B(u, v) =

B(v, u) for all u, v ∈ V . In matrix terminology, the sesquilinear form B is

hermitian if and only if any representing matrix β is hermitian, i.e., tβ̄ = β.

Definition 2.3.5. A sesquilinear form B is said to be skew-hermitian if
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B(u, v) = −B(v, u) for all u, v ∈ V . In matrix terminology, the sesquilinear

form B is skew-hermitian if and only if any representing matrix β is skew-

hermitian, i.e., tβ̄ = −β.

Remark 2.3.6. If B is a skew-hermitian form, then B1 := aB is a hermitian

form for some a ∈ R× with ā = −a. So the corresponding isometry group

will be same whether we consider hermitian or skew-hermitian form.

For the remainder of this section (V,B) will denote a non-degenerate hermi-

tian form.

Definition 2.3.7 (Unitary group). The unitary group is defined as follows:

U(V,B) := {T ∈ GL(V ) | B(Tu, Tv) = B(u, v) ∀u, v ∈ V }.

In matrix terminology, the unitary group is defined as:

U(n,R0) := {g ∈ GL(n,R) | tḡβg = β}.

Most of the time we will consider unitary groups over fields.

Example 2.3.8. 1. Let V be an n-dimensional vector space over C with

a+ ib = a − ib. In this situation, hermitian forms are classified by

signature and given by β =

Ir 0

0 −Is

. So the corresponding unitary

groups are denoted by

U(r, s) := {g ∈ GL(n,C) | tḡβg = β},

where ḡ := (ḡij), where ḡij is the usual complex conjugate and r+s = n.

2. Let V be an n-dimensional vector space over a finite field Fq2 with

J : a 7→ aq. It is known that any two hermitian forms on V are

equivalent and thus we may choose β = In. So the corresponding
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unitary group is, unique up to conjugation, and is denoted by

U(n, q) := {g ∈ GL(n, q2) | tḡg = In},

where ḡ := (gqij).

3. Let V be a free module over R = k × k of rank n with J : (a, b) 7→

(a, b) = (b, a). Then R0 = {(a, b) ∈ R | (b, a) = (a, b)} = diag(k × k) ∼=

k. Then the unitary group defined over R0 is

U(n, k) = {g ∈ GL(n,R) | tḡβg = β},

where g = (A,B) ∈ M(n, k) × M(n, k) and tḡ = (tB, tA), and

β = (β1, β2). In particular, if β = (In, In) then U(n, k) = {(A,B) ∈

M(n, k)×M(n, k) | tAB = In} ∼= GL(n, k).

4. Let V be an n-dimensional vector space over k with an involution

J : a 7→ ā. Up to equivalence, there is a unique non-degenerate her-

mitian form B of maximal Witt index over k. This is called the split

form. More explicitly we can fix a basis {e1, . . . , el, e−1, . . . , e−l} for

even dimension, and {e0, e1, . . . , el, e−1, . . . , e−l} for odd dimension, so

that the matrix of B is as follows:

β =



0 Il

Il 0

 if n = 2l,


2 0 0

0 0 Il

0 Il 0

 if n = 2l + 1.

The unitary group corresponding to this form is called a split unitary

group. In Section 6.4 of Chapter 6 we will work with only the split
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unitary groups, and this group will be denoted by U(n, k0), where k0

is the fixed field.



Chapter 3

Chevalley Groups

This is another basic chapter of this thesis. In the present chapter, we will

take another approach to define the split classical groups. For the Gaussian

elimination, which we will develop in Chapter 6, we need an analog of ele-

mentary matrices. These matrices are described in Section 3.2, which come

from the theory of Chevalley groups (of adjoint type). In this theory, one

begins with a complex simple Lie algebra g, a field k, and get a group G(k)

(see Section 3.1). The theory was developed by Chevalley [Ch] himself, and

further generalized by Robert Steinberg [St1]. In our computations, we often

imitate the notation from Carter [Ca1].

3.1 Construction of Chevalley Groups (ad-

joint type)

Let g be a complex simple Lie algebra. Since any two Cartan subalgebras

of g are conjugate, we fix a Cartan subalgebra h. Then there is the adjoint

representation of g,

ad : g→ gl(g)

21
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given by adX(Y ) = [X, Y ]. Since h is Abelian, ad(h) is a commuting family

of semisimple linear transformations of g. Hence ad(h) is simultaneously

diagonalizable. Thus we have (see p.35 [Ca1]):

Theorem 3.1.1 (Cartan decomposition). With this notation, we have,

g = h
⊕∑

α∈Φ
gα,

where gα = {X ∈ g | adH(X) = α(H)X, ∀H ∈ h} are root spaces and Φ is

a root system with respect to h.

We call this decomposition the Cartan decomposition of g with respect to

h. The classification of finite dimensional complex simple Lie algebras gives

four infinite families Al(l ≥ 1), Bl(l ≥ 2), Cl(l ≥ 3) and Dl(l ≥ 4) called clas-

sical types, and five exceptional types G2, F4, E6, E7 and E8. Chevalley proved

that, there exists a basis of g such that all the structure constants, which

define g as a Lie algebra, are integers. The following (Theorem 4.2.1 [Ca1])

is a key theorem to define Chevalley groups.

Theorem 3.1.2 (Chevalley basis theorem). Let g be a simple Lie algebra

over C, h be a Cartan subalgebra, and

g = h
⊕∑

α∈Φ
gα

be a Cartan decomposition of g. Let hα ∈ h be the co-root corresponding to

the root α. Then, for each root α ∈ Φ, an element eα can be chosen in gα

such that

[eα, e−α] = hα,

[eα, eβ] = ±(r + 1)eα+β,
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where r is the greatest integer for which β − rα ∈ Φ.

The elements {hα, α ∈ Π; eα, α ∈ Φ} form a basis for g, called a Cheval-

ley basis. The basis elements multiply together as follows:

[hα, hβ] = 0,

[hα, eβ] = Aαβeβ,

[eα, e−α] = hα,

[eα, eβ] = 0 if α + β /∈ Φ,

[eα, eβ] = ±(r + 1)eα+β if α + β ∈ Φ,



(3.1)

where Aαβ are Cartan integers and Π, a simple root system fixed for Φ.

The structure constants of the algebra with respect to a Chevalley basis

are all integers.

The map adeα is a nilpotent linear map on g. Let t ∈ C, then ad(teα) =

t(adeα) is also nilpotent. Thus exp(t(adeα)) is an automorphism of g. We

denote by gZ the subset of g of all Z-linear combinations of the Chevalley

basis elements of g. By Equation (3.1), a Lie bracket can be defined for

gZ. Thus gZ is a Lie algebra over Z. Now let k be any field. We define

gk := gZ ⊗Z k. Then gk is a Lie algebra over k via the Lie multiplication

[X ⊗ 1k, Y ⊗ 1k] := [X, Y ]⊗ 1k,

where X, Y are Chevalley basis elements of g, and 1k denote the identity

element of k.

Now everything makes sense over an arbitrary field k. So we are in a

position to define the Chevalley groups of adjoint type. The Chevalley group

of type g over the field k, denoted by G(k), is defined to be the subgroup

of automorphisms of the Lie algebra gk generated by exp(t(adeα)) for all

α ∈ Φ, t ∈ k. In fact, the group G(k) over k is determined up to isomorphism



24 3.1. Construction of Chevalley Groups (adjoint type)

by the simple Lie algebra g over C and the field k.

Observe that (see Lemma 4.5.1, p.65 [Ca1]), when g is a linear Lie algebra,

exp(t(adeα))X = exp(teα)Xexp(teα)−1,

for all X ∈ gk, for all α ∈ Φ, and for all t ∈ k. We shall abuse the notation

slightly and denote the matrix of the linear map by exp(teα) itself. Define

xα(t) := exp(teα). We call the xα(t), elementary matrix. Let G̃(k) be the

group of matrices generated by the elements xα(t) for all α ∈ Φ and all t ∈ k.

Thus there is a homomorphism from G̃(k) onto G(k) such that

exp(teα) 7→ exp(t(adeα))

whose kernel is the center of G̃(k). Hence G̃(k)
Z(G̃(k))

∼= G(k). We work with G̃(k)

instead of the Chevalley group G(k). In (see Section 11.2 [Ca1]), the classical

Lie algebras and their Chevalley basis are described explicitly. Usually, row-

column operations are defined by pre and post multiplication by certain

elementary matrices. We are going to define the elementary matrices for

symplectic and orthogonal groups, and more generally, for symplectic and

orthogonal similitude groups.

Example 3.1.3 (Cartan decomposition and Chevalley basis of sp(2l,C)).

Let us consider the Lie algebra of type Cl:

g := sp(2l,C) = {X ∈ gl(2l,C) | tXβ + βX = 0},

where β =

 0 Il

−Il 0

. We can write elements of g in block form. Let

X =

A B

C D

 ∈ g, where A,B,C,D are l× l matrices. We use the condition

that X satisfies tXβ + βX = 0, then we get tB = B, tC = C and D = −tA.
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The set of diagonal matrices in g is a Cartan subalgebra h of g. The elements

of h have form H = diag(λ1, . . . , λl,−λ1, . . . ,−λl). We index the rows and

columns by 1, . . . , l and −1, . . . ,−l. The elements Hi = eii−e−i,−i, 1 ≤ i ≤ l,

form a basis of h. Then by Theorem 3.1.1, we have,

g = h⊕
∑
α∈Φ

Ceα,

where

eα =



eij − e−j,−i, 1 ≤ i 6= j ≤ l,

ei,−j + ej,−i, 1 ≤ i < j ≤ l,

e−i,j + e−j,i, 1 ≤ i < j ≤ l,

ei,−i, 1 ≤ i ≤ l,

e−i,i, 1 ≤ i ≤ l.

(3.2)

The above decomposition is the Cartan decomposition of the Lie algebra

g = sp(2l,C), and a Chevalley basis for this Lie algebra is

{Hi = eii − e−i,−i, 1 ≤ i ≤ l; eα, α ∈ Φ},

where eα as in Equation (3.2). Observe that the above mentioned Chevalley

basis is not unique, in fact, any integral multiple of it is again a Chevalley

basis. Now eα’s are nilpotent endomorphisms of g with e2
α = 0. So xα(t) =

exp (teα) = I + teα, elementary matrix, is an automorphism of g. Similarly,

we can do this, for orthogonal Lie algebras. For details see [Ca1]. In next

section, we define these matrices explicitly.

3.2 Elementary Matrices

First of all, let us describe the elementary matrices for symplectic and split

orthogonal similitude groups. The genesis of these elementary matrices lies
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in the Chevalley basis theorem (Theorem 3.1.2). In what follows, the scalar

t varies over the field k, n = 2l or n = 2l + 1, and 1 ≤ i, j ≤ l. We define

tei,j as the n × n matrix with t in the (i, j) position, and zero everywhere

else. We simply use ei,j to denote 1ei,j. We often use the well-known matrix

identity ei,jek,l = δj,kei,l, where δj,k is the Kronecker delta. For more details

on elementary matrices see [Ca1].

Example 3.2.1. Elementary matrices (or elementary transvections) in

SL(n, k) are xij(t) := I + teij, where t ∈ k; 1 ≤ i 6= j ≤ n.

3.2.1 Elementary matrices for GSp(2l, k) (l ≥ 2)

We index rows and columns by 1, . . . , l,−1, . . . ,−l. The elementary matrices

are as follows:

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j + ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j + e−j,i) for i < j,

xi,−i(t) = I + tei,−i,

x−i,i(t) = I + te−i,i,

and in matrix format they look as follows:

E1 :

R 0

0 tR−1

 ,where R = I + tei,j; i 6= j,

E2 :

I R

0 I

 ,where R = t(ei,j + ej,i); for i < j or tei,i,

E3 :

I 0

R I

 ,where R = t(ei,j + ej,i); for i < j or tei,i.
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3.2.2 Elementary matrices for GO(2l, k) (l ≥ 2)

We index rows and columns by 1, . . . , l,−1, . . . ,−l. The elementary matrices

are as follows:

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j − ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j − e−j,i) for i < j,

wl = I − el,l − e−l,−l − el,−l − e−l,l,

and in matrix format they look as follows:

E1 :

R 0

0 tR−1

 ,whereR = I + tei,j; i 6= j,

E2 :

I R

0 I

 ,whereR = t(ei,j − ej,i); for i < j,

E3 :

I 0

R I

 ,whereR = t(ei,j − ej,i); for i < j.

3.2.3 Elementary matrices for GO(2l + 1, k) (l ≥ 2)

We index rows and columns by 0, 1, . . . , l,−1, . . . ,−l. The elementary ma-

trices are as follows:

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j − ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j − e−j,i) for i < j,

xi,0(t) = I + t(2ei,0 − e0,−i)− t2ei,−i,

x0,i(t) = I + t(−2e−i,0 + e0,i)− t2e−i,i,
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wl = I − el,l − e−l,−l − el,−l − e−l,l,

and in matrix format they look as follows:

E1 :


1 0 0

0 R 0

0 0 tR−1

 ,whereR = I + tei,j; i 6= j,

E2 :


1 0 0

0 I R

0 0 I

 ,whereR = t(ei,j − ej,i); for i < j,

E3 :


1 0 0

0 I 0

0 R I

 ,whereR = t(ei,j − ej,i); for i < j,

E4a :


1 0 −R

2R I −tRR

0 0 I

 ,whereR = tei,

E4b :


1 R 0

0 I 0

−2R −tRR I

 ,whereR = tei.

Here ei is the row vector with 1 at ith place and zero elsewhere.

In [Re], Ree proved that the above defined elementary matrices gener-

ate the symplectic group Sp(2l, k) and the commutator subgroups of the

orthogonal groups O(2l, k) and O(2l + 1, k) respectively. We will give an

algorithmic proof of this fact via our Gaussian elimination algorithm (see

Theorem 6.3.11).



Chapter 4

Conjugacy Classes of an

Isometry

G. E. Wall [Wa2], and Springer-Steinberg [SS] classified isometries up to con-

jugacy. They associated certain forms to an isometry. In this chapter, we

define those forms associated with an element in the isometry group. In Sec-

tion 4.1 we describe the Wall’s form, which is associated with an orthogonal

element, which will be used in Chapter 7 to compute the spinor norm. In

Section 4.2, we describe the other form associated to an element of the uni-

tary group, which will be used in Chapter 8 to prove the finiteness of z-classes

in unitary group. The material in this chapter is based on the work of Wall

and Springer-Steinberg, and is presented here for the sake of completeness.

4.1 Wall’s Form

In [Wa2], Wall classified conjugacy classes in classical groups by associating a

bilinear form and thus reducing the problem of conjugacy to the equivalence

of bilinear forms. Let g ∈ O(n, k) and define the residual space of g by

Vg := (1V − g)(V ), where 1V denotes the identity linear map on V .

29
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Definition 4.1.1. An element g ∈ O(n, k) is said to be regular if the residual

space Vg is non-degenerate.

Example 4.1.2. The reflection σu ∈ O(n, k) is an example of a regular

element, as Vσu = 〈u〉, which is non-degenerate.

If g ∈ O(n, k) then we have,

B((1V − g)x, y) +B(x, (1V − g)y) = B((1V − g)x, (1V − g)y) (4.1)

for all x, y ∈ V . This defines a map

[, ]g : Vg × Vg → k by [u, v]g := B(u, y)

for all u, v ∈ Vg, where v = (1V − g)(y) for some y ∈ V . Thus to g ∈ O(n, k)

we associate (Vg, [, ]g), called Wall’s form. We have (see p.6 [Wa2]):

Proposition 4.1.3. The map [, ]g is a well-defined non-degenerate bilinear

form on Vg, and g is an isometry on Vg with respect to [, ]g. Furthermore, we

have

1. [u, v]g + [v, u]g = B(u, v),

2. [u, v]g = −[v, gu]g

for all u, v ∈ Vg.

Proof. Let u = (1V − g)x = (1V − g)x1 and v = (1V − g)y = (1V − g)y1 be

in Vg for some x, y, x1, y1 ∈ V . Then we have

B((1V − g)x, y) = B((1V − g)x1, y)

= B((1V − g)x1, (1V − g)y)−B(x1, (1V − g)y) (by (4.1))

= B((1V − g)x1, (1V − g)y1)−B(x1, (1V − g)y1)

= B((1v − g)x1, y1) (by (4.1)).
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So the map [, ]g is well-defined. Let u ∈ Vg, and if [u, v]g = 0 for all v ∈ Vg,

then B(u, y) = 0 for all y ∈ V , which implies u = 0, as B is nondegen-

erate. Hence [, ]g is nondegenerate. It follows immediately that [, ]g is a

bilinear form on Vg, as B is so. Now [g|Vgu, g|Vgv] = [g|Vgu, g|Vg(1V − g)y] =

B(g|Vgu, g|Vgy) = B(u, y) = [u, (1V − g)y]g = [u, v]g. Hence g is an isometry

on Vg with respect to the new form [, ]g. Furthermore, let u, v ∈ Vg then

u = (1V − g)x and v = (1V − g)y for some x, y ∈ V . We have

B(u, v) = B(x− gx, y − gy)

= B(x, y)−B(x, gy) +B(x, y)−B(gx, y)

= B(x, (1V − g)y) +B((1V − g)x, y)

= B(v, x) +B(u, y)

= [v, (1V − g)x]g + [u, (1V − g)y]g

= [v, u]g + [u, v]g.

Hence [u, v]g + [v, u]g = B(u, v), which proves (1). Now we have

[(1V − g)x, (1V − g)y]g = B((1V − g)x, y)

= −B((1V − g)y, gx)

= −[(1V − g)y, (1V − g)gx]g.

Therefore [u, v]g = −[v, gu]g, proving (2). Hence the Proposition.

We have seen that the Wall’s form [, ]g is always non-degenerate, but

need not be symmetric. Here we give a criterion for the Wall’s form [, ]g to

be symmetric. We have (see p.116 [Ha]):

Proposition 4.1.4. The Wall’s form [, ]g is symmetric if and only if g2 = Id.

Proof. Suppose [, ]g is symmetric, then [u, v]g = [v, u]g for all u, v ∈ Vg.
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Then by part 2 of the Proposition 4.1.3, we have −[v, gu]g = [v, u]g. So

[v, (1V + g)u]g = 0 for all u, v ∈ Vg, which implies that (1V + g)(1V − g)x = 0

for all x ∈ V , where u = (1V − g)x. Hence g2 = Id.

Conversely, suppose that g2 = Id, then we have

[u, v]g = −[v, gu]g (by (2) of Proposition 4.1.3)

= −[v, g(1V − g)x]g (where u = (1V − g)x for some x ∈ V )

= −B(v, gx)

= −B(gv, x) (since g2 = Id)

= −B(g(1V − g)y, x) (where v = (1V − g)y for some y ∈ V )

= B((1V − g)y, x) (since g2 = Id)

= [(1v − g)y, (1V − g)x]g

= [v, u]g.

Therefore the form [, ]g is symmetric.

Wall developed this to classify the conjugacy class of g. We have (see

Theorem 1.3.1 [Wa2]):

Proposition 4.1.5. Let g, h ∈ O(n, k). Then g is conjugate to h in O(n, k)

if and only if (Vg, [, ]g) ≈ (Vh, [, ]h).

Now the residual space Vg is equipped with two bilinear forms:

1. The Wall’s form (Vg, [, ]g), for this we use the notation Vg.

2. Restriction of the usual form B on Vg is, denoted by (Vg, B).

4.1.1 Spinor norm using Wall’s theory

We will now define the spinor norm using Wall’s theory, which will be useful

for our purpose.
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Definition 4.1.6. The spinor norm is a group homomorphism ΘW :

O(n, k) → k×/k×2 defined by ΘW (g) = (dVg)k×2, where Vg is defined as

above.

Let σu be a reflection in O(n, k). Then the residual space is Vσu = 〈u〉,

therefore dVσu = det([u, u]σu) = Q(u). Hence ΘW (σu) = Q(u)k×2, which is

same as the spinor norm computed in Section 2.2.3. The following Proposi-

tion and its Corollary are due to A. J. Hahn [Ha]. We include the proof for

the sake of completeness.

Proposition 4.1.7. Let g ∈ O(n, k) be regular with residual space Vg. Then

ΘW (g) = (det(1V − g)|Vg)(d(Vg, B))k×2.

Proof. If Vg = {0}, then det((1V − g)|Vg) = 1, since det(g|{0}) = 1, for any

g ∈ Homk(V, V ) and dVg = k×2. Hence, in this case the result follows im-

mediately. Suppose now Vg 6= {0}. Since g is regular, Vg ∩ V ⊥g = {0}, and

ker(1V − g) = V ⊥g . So ker(1V − g)|Vg = Vg ∩ ker(1V − g) = Vg ∩ V ⊥g = {0}.

Hence (1V − g)|Vg ∈ GL(Vg). Therefore [u, v]g = B(u, (1V − g)|−1
Vg v) for

all u, v ∈ Vg. Fix any basis for Vg, say {e1, e2, . . . , er}. Let M,N be the

matrices corresponding to the forms [, ]g and B respectively, and let T be

the matrix corresponding to the linear transformation (1V − g)|Vg with re-

spect to the above mentioned basis. Then using [u, v]g = B(u, (1V − g)|−1
Vg v),

we get M = NT−1. Then detM = detNdetT (det(T−1))2. Therefore

dVg = d(Vg, B)det((1V − g)|Vg)(det(T−1))2. Hence ΘW (g) = (det(1V −

g)|Vg)(d(Vg, B))k×2.

Corollary 4.1.8. Let g ∈ O(n, k) be unipotent. Then ΘW (g) = k×2.

Proof. The fixed space of −g is 0, since −1 is not an eigenvalue of g. Hence,

its residual space V−g = V , which is non-degenerate. Hence −g is regular.

As g is unipotent, there is a basis for V such that the matrix of g is upper
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triangular with diagonal entries equal to 1. Therefore by Proposition 4.1.7 we

have, ΘW (−g) = (2ndV )k×2. Again−1V has no fixed points (except 0), hence

−1V is regular with residual space V . Therefore ΘW (−1V ) = (2n)(dV )k×2.

Hence ΘW (g) = ΘW (−g)ΘW (−1V ) = (2ndV )(2ndV )k×2 = k×2.

4.2 Springer-Steinberg Form

Let us fix some notation and terminology. Let k be a perfect field of char k 6=

2 with an involution σ such that the fixed field of σ is k0. Let V be a vector

space over k, equipped with a non-degenerate hermitian form B. Let T ∈

U(V,B) with minimal polynomial f(x). We define a k-algebra ET := k[x]
<f(x)> .

Clearly, V is an ET -module, denoted by V T . The ET -module structure on

V T determines GL(n)-conjugacy class of T . To determine conjugacy classes

of T within U(V,B), Springer and Steinberg defined a hermitian form HT

on V T , called Springer-Steinberg form, denoted by (HT , V T ) (see 2.6 in [SS]

Chapter IV). Since f(x) is self-U-reciprocal (see 5.1 for definition), there

exists a unique involution α on ET such that α(x) = x−1 and α is an extension

of σ on scalars. Thus (ET , α) is an algebra with involution. They prove that

there exists a k-linear function lT : ET → k such that the symmetric bilinear

form l̄T : ET × ET → k given by l̄T (a, b) := lT (ab) is non-degenerate with

lT (α(e)) = lT (e) for all e ∈ ET . Furthermore the hermitian form HT on

ET -module V T (with respect to α) satisfies B(eu, v) = lT (eHT (u, v)) for all

e ∈ ET , and u, v ∈ V T . Let S, T ∈ U(V,B), then the following commutative

diagrams clarify what we are talking about so far, which will also be useful

in the following proposition (Proposition 4.2.2).

V S × V S ES

k

V T × V T ET

k

ES ET

k

lS
B

HS

lT
B

HT

lT
lS

f
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Definition 4.2.1. Let (V1, H1) and (V2, H2) be two hermitian spaces over

E1 and E2 respectively, where E1 and E2 are isomorphic modules over k and

let f : E1 → E2 be an isomorphism. Then we say (V1, H1) and (V2, H2) are

equivalent, denoted as (V1, H1) ≈ (V2, H2), if there exists a k-isomorphism

ϕ : V1 → V2 such that

1. ϕ(ev) = f(e)ϕ(v) and

2. H2(ϕ(u), ϕ(v)) = f(H1(u, v))

for all u, v ∈ V1 and all e ∈ E1.

We need the following (see 2.7 and 2.8 [SS] Chapter IV):

Proposition 4.2.2. With the notation as above, let S and T ∈ U(V,B).

Then,

1. the elements S and T are conjugate in U(V,B) if and only if (V S, HS)

and (V T , HT ) are equivalent.

2. The centralizer of T in U(V,B) is ZU(V,B)(T ) = U(V T , HT ).

Proof. 1. Suppose S and T are conjugate in U(V,B). Then there exists

a ϕ ∈ U(V,B) such that T = ϕSϕ−1. Then ϕ : V S → V T is a k-

isomorphism. Here also f : ES → ET is a k-isomorphism such that

f(S) = T . Now for v ∈ V S, ϕ(Smv) = ϕ ◦ Sm(v) = Tm ◦ ϕ(v) =

f(Sm)ϕ(v). It then follows that ϕ(ev) = f(e)ϕ(v) for all e ∈ ES

and for all v ∈ V S. Let u, v ∈ V S, then lS(f−1(HT (ϕu, ϕv))) =

lT (HT (ϕu, ϕv)) = B(ϕu, ϕv) = B(u, v) = lS(HS(u, v)). Therefore

HT (ϕu, ϕv) = f(HS(u, v)). Hence (V S, HS) ≈ (V T , HT ).

Conversely, suppose that (V S, HS) and (V T , HT ) are equivalent. Then

there exists a k-isomorphism ϕ : V S → V T such that HT (ϕu, ϕv) =

f(HS(u, v)) for all u, v ∈ V S, where f : ES → ET is a k-isomorphism
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such that f(S) = T and ϕ(Sv) = f(S)ϕ(v) for all v ∈ V S and S ∈ ES.

For v ∈ V S, ϕS(v) = ϕ(Sv) = f(S)ϕ(v) = Tϕ(v) = (Tϕ)(v),

then ϕS = Tϕ, i.e., ϕSϕ−1 = T . Now, look at B(ϕu, ϕv) =

lT (HT (ϕu, ϕv)) = lT (f(HS(u, v))) = lS(HS(u, v)) = B(u, v) for all

u, v ∈ V , then ϕ is an isometry. Hence S and T are conjugate in

U(V,B).

2. Enough to show an isometry ϕ is in ZU(V,B)(T ) if and only if ϕ preserves

HT . Let ϕ ∈ U(V,B) such that ϕT = Tϕ. Then we get HT (ϕu, ϕv) =

HT (u, v) for all u, v ∈ V T (here we replace S by T and f by identity

in part (1)). Conversely, suppose ϕ preserves HT , then B(ϕu, ϕv) =

lT (HT (ϕu, ϕv)) = lT (HT (u, v)) = B(u, v). So ϕ is an isometry. Also

as ϕT (v) = Tϕ(v) for all v ∈ V , then ϕT = Tϕ. Therefore ϕ ∈

ZU(V,B)(T ). Hence ZU(V,B)(T ) = U(V T , HT ).

We can decompose ET = E1⊕E2⊕· · ·⊕Er, where Ei are indecomposable

with respect to α (see section 2.2 Chapter IV of [SS]). The restriction of α

to Ei is an involution on Ei denoted by αi. Clearly, Ei’s, are of one of the

following forms according to the decomposition of f(x) (see Equation (5.1)):

• k[x]
<p(x)d> , where p(x) is an irreducible self-U-reciprocal polynomial.

• k[x]
<q(x)d> ⊕

k[x]
<q̃(x)d> , where q(x) is irreducible and not self-U-reciprocal.

In the second case, the two components k[x]
<q(x)d>) and k[x]

<q̃(x)d> are isomorphic

local rings, and the restriction of α is given by α(a, b) = (b, a) via the isomor-

phism. Using Wall’s approximation theorem (Corollary 4.2.4) it’s easy to see

that all hermitian forms over such rings are equivalent. Thus to determine

equivalence of HT , we need to look at modules over rings of the first kind.
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4.2.1 Wall’s approximation theorem

We recall a theorem of Wall (see Theorem 2.2.1 [Wa2]), which will be useful

for further analysis. Also, see Asai (Proposition 2.5 [As]) for more details.

Let R be a commutative ring with 1, J be its Jacobson radical, and α be

an involution on R. Let (V,B) be a non-degenerate hermitian space of rank

n over R. We define V := V
JV

a module over R := R
J
. Now B induces a

hermitian form B on V with respect to the involution α of R induced by α.

Then we have (Theorem 2.2.1 [Wa2]):

Theorem 4.2.3 (Wall’s approximation theorem). With the notation as

above,

1. any non-degenerate hermitian form over R is induced by some non-

degenerate hermitian form over R.

2. Let (V1, B1) and (V2, B2) be non-degenerate hermitian spaces over R,

and correspondingly, (V1, B1) and (V2, B2) be non-degenerate hermitian

spaces over R. Then (V1, B1) is equivalent to (V2, B2) if and only if

(V1, B1) is equivalent to (V2, B2).

For our purpose, we need the following,

Corollary 4.2.4. Let V be a module over R = k[x]
<q(x)d>⊕

k[x]
<q̃(x)d> , and H1 and

H2 be two non-degenerate hermitian forms on V with respect to the involution

on R given by (b, a) = (a, b). Then H1 and H2 are equivalent.

Proof. We use Wall’s approximation theorem (Theorem 4.2.3). Here the

Jacobson radical of R is J = <q(x)>
<q(x)d> ⊕

<q̃(x)>
<q̃(x)d> . Then R ∼=

k[x]
<q(x)> ⊕

k[x]
<q̃(x)>

∼=

K⊕K, where K ∼= k[x]
<q(x)>

∼= k[x]
<q̃(x)> is a finite extension of k (thus separable).

Now we have hermitian forms Hi : V × V → R defined by Hi(u + JV, v +

JV ) = Hi(u, v)J for all u, v ∈ V . Thus it is enough to show that H1 is

equivalent to H2 on K ⊕K-module V . The norm map N : (K ⊕K)× → K×
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is N(a, b) = (a, b)(a, b) = (b, a)(a, b) = (ab, ab). Clearly, this norm map is

surjective. Thus K×

Im(N) is trivial. Hence the hermitian form is unique up to

equivalence in this case.



Chapter 5

Conjugacy Classes and z-classes

The results in this chapter are part of [BS]. To study the z-classes, it is

important to understand the conjugacy classes because z-classes are union of

conjugacy classes. The problem of classifying conjugacy classes in classical

groups has been studied by many mathematicians, and there is a known

substantial amount of results. See, for example, Asai, Macdonald, Milnor,

Springer-Steinberg, Wall, Williamson [As,Ma,Mi, SS,Wa2,Wi]. When the

field is finite, Wall [Wa2] gave an explicit description of all the conjugacy

classes in the unitary, symplectic and orthogonal groups, and also the order

of centralizers. For some recent accounts in this direction, especially with the

applications in mind, see Thiem-Vinroot [TV], and Burness and Giudici [BG]

etc. The conjugacy classes inGL(n, k) are given by the canonical form theory,

and with the unitary group being its subgroup, one needs to begin there. We

begin with recalling the notation involved in the description of conjugacy

classes and z-classes. In Section 5.1 we define certain kinds of polynomials,

which will be used in Section 5.2 to decompose the space with respect to a

unitary linear transformation. This decomposition may be thought of as a

reduction step, which will be used in Chapter 8 to prove one of the main

theorems of this thesis. In Section 5.3 we describe z-classes in orthogonal

39
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and symplectic groups (for more details see [GK]).

5.1 Self-U-reciprocal Polynomials

Let k be a field with an involution given by ā = a for all a ∈ k. Let

f(x) =
n∑
i=0

aix
i ∈ k[x]. We extend the involution on k to that of k[x] by

f(x) :=
n∑
i=0

āix
i. Let f(x) be a polynomial with f(0) 6= 0. The corresponding

U -reciprocal polynomial of f(x) is defined by

f̃(x) := f(0)−1 xn f(x−1).

A monic polynomial f(x) with a non-zero constant term is said to be self-

U-reciprocal if f(x) = f̃(x). In terms of roots, it means that for a self-

U-reciprocal polynomial, whenever λ is a root, λ̄−1 is also a root with the

same multiplicity. Note that f(x) = ˜̃f(x), and if f(x) = f1(x)f2(x) then

f̃(x) = f̃1(x)f̃2(x). Also, f(x) is irreducible if and only if f̃(x) is irreducible.

In the case of f(x) = (x − λ)n, the polynomial f(x) is self-U-reciprocal if

and only if λλ̄ = 1. A slightly more general polynomial, called self-dual

polynomial will be defined in Section 5.3. Over a finite field, we have the

following result due to Ennola (Lemma 2 [En]):

Proposition 5.1.1. Let f(x) be a monic, irreducible, self-U-reciprocal poly-

nomial over a finite field Fq2. Then the degree of f(x) is odd.

Proof. Let deg f(x) = n. Let α be a root of f(x) in its splitting field L

over Fq2 . Let σ be the Frobenius automorphism of L given by σ(a) = aq
2 .

Then [L : Fq2 ] = deg f(x) = n = order (σ). Since f(x) is self-U-reciprocal,

so if α is a root of f(x), then α−q is also a root of f(x) with the same

multiplicity. Therefore there is an automorphism τ of L over Fq2 such that

τ(α) = α−q. Then τ 2(α) = αq
2 = σ(α), so τ 2 = σ since L = Fq2(α). Now
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τ ∈ 〈σ〉 ∼= Z/nZ ∼= Gal(L/Fq2), so τ = σt for some t. Therefore σ = τ 2 = σ2t,

so σ2t−1 = 1. Hence n is a divisor of 2t− 1, so n is odd.

Lemma 5.1.2. Let T ∈ GL(n, k), and suppose f(x) is the minimal polyno-

mial of T . Then the minimal polynomial of T̄−1 is f̃(x).

Proof. Since f̃(x) = f(0)−1
xdf(x−1), and f(T ) = 0, then f̃(T̄−1) =

f(0)−1(T̄−1)df((T̄−1)−1) = f(0)−1
T̄−df(T̄ ) = f(0)−1

T̄−df(T ) = 0. Thus

we conclude that f̃(x) is the minimal polynomial of T̄−1.

Remark 5.1.3. If g ∈ U(V,B), then tḡβg = β. So βgβ−1 = tḡ−1, which is

conjugate to ḡ−1, as g is conjugate to its transpose in GL(n, k). Hence the

minimal polynomials of g and ḡ−1 are same, i.e., f(x) = f̃(x).

If T ∈ U(V,B) then its minimal polynomial f(x) is monic with a non

zero constant term, and is self-U-reciprocal. We can write it as follows:

f(x) =
k1∏
i=1

pi(x)ri
k2∏
j=1

(qj(x)q̃j(x))sj , (5.1)

where pi(x) and qj(x) are irreducible, and pi(x) is self-U -reciprocal but qj(x)

is not self-U-reciprocal for all i, j.

5.2 Space Decomposition with Respect to a

Unitary Transformation

Let T ∈ U(V,B), and f(x) ∈ k[x] satisfying f(0) 6= 0. Then,

Lemma 5.2.1. For any u, v ∈ V , we have B(u, f(T )v) = B(f(T−1)u, v).

Proof. Let f(x) =
n∑
i=0

aix
i, then f(T ) =

n∑
i=0

aiT
i . Observe that B(T−1u, v) =

B(u, Tv) for all u, v ∈ V . Now B(u,
n∑
i=0

aiT
iv) =

n∑
i=0

aiB(u, T iv) =
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n∑
i=0

aiB(T−iu, v) = B(
n∑
i=0

āiT
−iu, v) for all u, v ∈ V . Hence B(u, f(T )v) =

B(f(T−1)u, v).

Lemma 5.2.2. The subspaces Im(f(T )) and ker(f̃(T )) are mutually orthog-

onal.

Proof. Let u ∈ ker(f̃(T )) and v ∈ Im(f(T )), therefore f̃(T )u = 0

and v = f(T )w for some w ∈ V . Now B(u, v) = B(u, f(T )w) =

B(f(T−1)u,w) = B(T df(T−1)u, T dw) = f(0)B(f(0)−1
T df(T−1)u, T dw) =

f(0)B(f̃(T )u, T dw) = f(0)B(0, T dw) = 0. Hence Im(f(T )) ⊥ ker(f̃(T )).

Let T ∈ U(V,B) with minimal polynomial f(x). Write f(x) = ∏
i fi(x)mi

as in Equation (5.1), where fi(x) = pi(x) or qi(x)q̃i(x). Then,

Proposition 5.2.3. The direct sum decomposition V = ⊕
i

ker(fi(T )mi) is

a decomposition into non-degenerate mutually orthogonal T -invariant sub-

spaces.

Proof. Since fi(x)mi are pairwise relatively prime, then the sum V =⊕
i

ker(fi(T )mi) is a direct sum. Clearly, these subspaces are T -invariant. Ob-

serve that Im(fj(T )mj) = ⊕
i 6=j

ker(fi(T )mi), and ker(fi(T )mi) = ker(f̃i(T )mi),

since fi(x) = f̃i(x) for all i. By Lemma 5.2.2, we have Im(fj(T )mj) ⊥

ker(f̃j(T )mj). So we get ⊕
i 6=j

ker(fi(T )mi) ⊥ ker(fj(T )mj) for all j. Hence in

the sum V = ⊕
i

ker(fi(T )mi), the subspaces are mutually orthogonal. Also

mutual orthogonality implies that the restriction of the form on each sub-

spaces are non-degenerate.

This decomposition helps us reduce the questions about conjugacy classes

and z-classes of a unitary transformation to the unitary transformations with

minimal polynomial of one of the following two kinds:
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Type 1. p(x)m, where p(x) is monic irreducible self-U-reciprocal polynomial

with a non-zero constant term,

Type 2. (q(x)q̃(x))m, where q(x) is monic, irreducible, not self-U-reciprocal

with a non-zero constant term.

Thus Proposition 5.2.3 gives us a primary decomposition of V into T -invariant

B non-degenerate subspaces

V =
 k1⊕
i=1

Vi

⊕ k2⊕
j=1

Vj

 , (5.2)

where Vi = ker(pi(T )ri) corresponds to the polynomials of Type 1, and Vj =

Wj +W ∗
j corresponds to the polynomials of Type 2, whereWj = ker(qj(T )sj)

and W ∗
j = ker(q̃j(T )sj). Denote the restriction of T to each Vr by Tr. Then

the minimal polynomial of Tr is one of the two types. It turns out that the

centralizer of T in U(V,B) is

ZU(V,B)(T ) =
∏
r

ZU(Vr,Br)(Tr),

where Br is a hermitian form obtained by restricting B to Vr. Thus the

conjugacy class and the z-class of T is determined by the restriction of T to

each of the primary subspaces. Hence it is enough to determine the conjugacy

class and the z-class of T ∈ U(V,B), which has the minimal polynomial of

one of the types in 5.2.

5.3 z-classes in Orthogonal and Symplectic

Groups

Let V be an n-dimensional vector space over k with the property FE,

equipped with a non-degenerate symmetric or skew-symmetric bilinear form
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B. The z-classes of orthogonal groups O(V,B) and symplectic groups

Sp(V,B) have been discussed by Gongopadhyay and Ravi S. Kulkarni in [GK]

(see Theorem 1.0.7). We will be very brief in this section to parametrize the

z-classes in orthogonal and symplectic groups. Let f(x) =
n∑
i=0

aix
i be a poly-

nomial in k[x] of degree n such that 0, 1 and −1 are not its roots. The

corresponding dual polynomial of f(x) is defined by

f ∗(x) := f(0)−1xnf(x−1).

A monic polynomial f(x) with 0, 1,−1 are not its roots is said to be self-dual

if f(x) = f ∗(x). In terms of roots, it means that for a self-dual polynomial,

whenever λ is a root, λ−1 is also a root with the same multiplicity. Suppose

T ∈ O(V,B) or Sp(V,B) with the minimal polynomial mT (x). Thus an

irreducible factor says p(x), of the minimal polynomial, can be one of the

following three types:

• x+ 1 or x− 1.

• p(x) is self-dual.

• p(x) is not self-dual. In this case, there is an irreducible factor p∗(x)

will occur in the minimal polynomial.

If T ∈ O(V,B) or Sp(V,B) then its minimal polynomial mT (x) is monic with

a non-zero constant term, and is self-dual. We can write it as follows

mT (x) = (x+ 1)e(x− 1)f
k1∏
i=1

pi(x)ri
k2∏
j=1

(qj(x)q∗j (x))sj , (5.3)

where pi(x) and qj(x) are irreducible, and pi(x) is self-dual but qj(x) is not

self-dual for all i, j. Thus Proposition 5.2.3 gives us a primary decomposition
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of V into T -invariant B non-degenerate subspaces

V =
(
V1
⊕

V−1
)⊕ k1⊕

i=1
Vi

⊕ k2⊕
j=1

Vj

 , (5.4)

where V−1 = ker(T +I)e, V1 = ker(T −I)f , and Vi = ker(pi(T )ri) corresponds

to the self-dual polynomials, and Vj = Wj +W ∗
j corresponds to the not self-

dual polynomials, where Wj = ker(qj(T )sj) and W ∗
j = ker(q∗j (T )sj). Denote

the restriction of T to each Vr by Tr so T = ⊕
r Tr. Then the minimal

polynomial of Tr is one of the three types. It turns out that the centralizer

of T in O(V,B) or Sp(V,B) is

Z(T ) =
∏
r

Z(Tr).

Thus the z-class of T is determined by the restriction of T to each of the

primary subspaces. Then it has been proved that there are only finitely many

z-classes of semisimple and unipotent elements in orthogonal and symplectic

groups respectively. Thus using Jordan decomposition (Theorem 2.1.1), there

are only finitely many z-classes in orthogonal groups O(V,B) and symplectic

groups Sp(V,B).
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Chapter 6

Gaussian Elimination

The results in this chapter are part of [BMS]. We improved the results on

the symplectic and split orthogonal similitude groups. This chapter is one of

the main chapters of this thesis. For instance, in Chapter 7 we use Gaussian

elimination to compute the spinor norm as well as similitude characters.

In dealing with constructive group recognition project, one needs to solve

the word problem in some generating set. Thus, the main objective of this

chapter is to develop a similar algorithm for symplectic and split orthogonal

similitude groups to solve the word problem. In Section 6.1 we describe the

classical Gaussian elimination algorithm for general linear groups. In Section

6.2 we define elementary operations for similitude groups, and describe the

Gaussian elimination in similitude groups in Section 6.3. In Section 6.4 we

record a result [MS] on the Gaussian elimination in the split unitary groups.

6.1 Gaussian Elimination in General Linear

Groups

As we know, in the general linear group GL(n, k), the word problem has an

efficient solution in elementary transvections (or elementary matrices) - the

47
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Gaussian elimination. One observes that the effect of multiplying by elemen-

tary transvections on a matrix from left or right is either a row or column

operation respectively. We have the following classical Gaussian elimination

algorithm for GL(n, k):

Theorem 6.1.1. Every element g ∈ GL(n, k) can be written as a product

of elementary transvections (or elementary matrices) and a diagonal matrix,

the diagonal matrix is of the form diag(1, . . . , 1, det(g)).

Using the above Theorem 6.1.1 one can solve the word problem in

SL(n, k), which can be stated as follows:

Corollary 6.1.2. Every element of the special linear group SL(n, k) can be

written as a product of elementary transvections (or elementary matrices).

Let B be a subgroup of upper triangular matrices andW be the subgroup

of permutation matrices in GL(n, k) respectively. In this case W ∼= Sn,

symmetric group on n letters. Then we have the following (see p.108 [Ca1]):

Theorem 6.1.3 (Bruhat decomposition). With the notation as above,

GL(n, k) = BWB =
⊔
w∈W

BwB.

So the above Theorem 6.1.3 says that any element g ∈ GL(n, k) can be

written as g = b1wb2 for some b1, b2 ∈ B, and w ∈ W (which is unique).

Therefore w = b−1
1 gb−1

2 . Thus, any invertible matrix can be transformed into

a permutation matrix by a series of row and column operations.

6.2 Elementary Operations

Elementary operations can be thought of as usual row-column operations for

matrices. We already described the elementary matrices in Section 3.2 for the
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symplectic and split orthogonal similitude groups. Then multiplications of

those elementary matrices on the left and right to an element of the similitude

groups, for example, symplectic and split orthogonal similitude groups, are

elementary operations, which we are going to describe below case by case.

The Gaussian elimination algorithm is slightly different for matrices of even

and odd size. We first describe it for matrices of even size and then for

matrices of the odd size.

6.2.1 Elementary operations for GSp(2l, k) (l ≥ 2)

Let g =

A B

C D

 be a 2l×2l matrix written in block form of size l× l. Then

the row and column operations are as follows:

ER1 :

R 0

0 tR−1


A B

C D

 =

 RA RB

tR−1C tR−1D



EC1 :

A B

C D


R 0

0 tR−1

 =

AR BtR−1

CR DtR−1



ER2 :

I R

0 I


A B

C D

 =

A+RC B +RD

C D



EC2 :

A B

C D


I R

0 I

 =

A AR +B

C CR +D



ER3 :

I 0

R I


A B

C D

 =

 A B

RA+ C RB +D



EC3 :

A B

C D


I 0

R I

 =

A+BR B

C +DR D

 .
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6.2.2 Elementary operations for GO(2l, k) (l ≥ 2)

Let g =

A B

C D

 be a 2l×2l matrix written in block form of size l× l. Then

the row and column operations are as follows:

ER1 :

R 0

0 tR−1


A B

C D

 =

 RA RB

tR−1C tR−1D



EC1 :

A B

C D


R 0

0 tR−1

 =

AR BtR−1

CR DtR−1



ER2 :

I R

0 I


A B

C D

 =

A+RC B +RD

C D



EC2 :

A B

C D


I R

0 I

 =

A AR +B

C CR +D



ER3 :

I 0

R I


A B

C D

 =

 A B

RA+ C RB +D



EC3 :

A B

C D


I 0

R I

 =

A+BR B

C +DR D

 .

6.2.3 Elementary operations for GO(2l + 1, k) (l ≥ 2)

Let g =


α X Y

E A B

F C D

 be a (2l+1)×(2l+1) matrix, where A,B,C,D are l×l

matrices, and X = (X1X2 · · ·Xl) and Y = (Y1Y2 · · ·Yl) are 1 × l matrices,

and E = t(E1E2 · · ·El) and F = t(F1F2 · · ·Fl) are l× 1 matrices. Let α ∈ k.
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Then the row and column operations are as follows:

ER1 :


1 0 0

0 R 0

0 0 tR−1




α X Y

E A B

F C D

 =


α X Y

RE RA RB

tR−1F tR−1C tR−1D



EC1 :


α X Y

E A B

F C D




1 0 0

0 R 0

0 0 tR−1

 =


α XR Y tR−1

E AR BtR−1

F CR DtR−1

 .

ER2 :


1 0 0

0 I R

0 0 I




α X Y

E A B

F C D

 =


α X Y

E +RF A+RC B +RD

F C D



EC2 :


α X Y

E A B

F C D




1 0 0

0 I R

0 0 I

 =


α X XR + Y

E A AR +B

F C CR +D

 .

ER3 :


1 0 0

0 I 0

0 R I




α X Y

E A B

F C D

 =


α X Y

E A B

RE + F RA+ C RB +D



EC3 :


α X Y

E A B

F C D




1 0 0

0 I 0

0 R I

 =


α X + Y R Y

E A+BR B

F C +DR D

 .

For E4 we only write the equations which we need later.

• Let the matrix g have C = diag(d1, . . . , dl).

ER4 : [(I + t(2ei,0 − e0,−i)− t2ei,−i)g]0,i = Xi − tdi
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• Let the matrix g have A = diag(d1, . . . , dl).

ER4 : [(I + t(−2e−i,0 + e0,i)− t2e−i,i)g]0,i = Xi + tdi

EC4 : [g(I + t(2ei,0 − e0,−i)− t2ei,−i)]i,0 = Ei + 2tdi,

where 1 ≤ i ≤ l.

6.3 Gaussian Elimination in Symplectic and

Orthogonal Similitude Groups

6.3.1 Some useful lemmas

To justify the steps of the Gaussian elimination algorithm we need several

lemmas. So this subsection is devoted to prove these lemmas.

Lemma 6.3.1. Let Y = diag(1, . . . , 1, λ, . . . , λ) be of size l with the number

of 1s equal to m < l. Let X be a matrix of size l such that Y X is symmetric

(resp. skew-symmetric) then X is of the form

X11 λtX21

X21 X22

, where X11 is

symmetric (resp. skew-symmetric), and X12 = λtX21 (resp. X12 = −λtX21).

Furthermore, if λ 6= 0 then X22 is symmetric (resp. skew-symmetric).

Proof. First, observe that the matrix Y X =

 X11 X12

λX21 λX22

. Since the ma-

trix Y X is symmetric (resp. skew-symmetric), then X11 is symmetric (resp.

skew-symmetric), and X12 = λX21 (resp. X12 = −λX21). Also if λ 6= 0 then

X22 is symmetric (resp. skew-symmetric).

Corollary 6.3.2. Let g =

A B

C D

 be either in GSp(2l, k) or GO(2l, k).

1. If A is a diagonal matrix diag(1, . . . , 1, λ), λ ∈ k×, then the matrix
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C is of the form

C11 ±λtC21

C21 cll

, where C11 is an (l − 1) × (l − 1)

symmetric if g ∈ GSp(2l, k), and C11 is skew-symmetric with cll = 0 if

g ∈ GO(2l, k).

2. If A is a diagonal matrix diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
l−m

), then the matrix C is

of the form

C11 0

C21 C22

, where C11 is an m ×m symmetric matrix if

g ∈ GSp(2l, k), and is skew-symmetric if g ∈ GO(2l, k).

Proof. We use the condition that g satisfies tgβg = µ(g)β, and AC is sym-

metric (using tA = A, as A is diagonal), when g ∈ GSp(2l, k), and AC is

skew-symmetric, when g ∈ GO(2l, k). Then Lemma 6.3.1 gives the required

form for C.

Corollary 6.3.3. Let g =

A B

0 µ(g)A−1

 ∈ GSp(2l, k) or GO(2l, k), where

A = diag(1, . . . , 1, λ), then the matrix B is of the form

B11 ±λ−1tB21

B21 bll

,
where B11 is a symmetric matrix of size l − 1 if g ∈ GSp(2l, k), and skew-

symmetric with bll = 0 if g ∈ GO(2l, k).

Proof. We use the condition that g satisfies tgβg = µ(g)β and tA = A to get

A−1B is symmetric if g ∈ GSp(2l, k), and skew-symmetric if g ∈ GO(2l, k).

Again Lemma 6.3.1 gives the required form for B.

Lemma 6.3.4. Let g =

A B

0 D

 ∈ GL(2l, k). Then,

1. g ∈ GSp(2l, k) if and only if D = µ(g)tA−1 and t(A−1B) = (A−1B),

and

2. g ∈ GO(2l, k) if and only if D = µ(g)tA−1 and t(A−1B) = −(A−1B).
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Proof. 1. Let g ∈ GSp(2l, k) then g satisfies tgβg = µ(g)β. Then this

implies D = µ(g)tA−1 and t(A−1B) = (A−1B).

Conversely, if g satisfies the given condition then clearly g ∈ GSp(2l, k).

2. This follows by similar computation.

Lemma 6.3.5. Let Y = diag(1, . . . , 1, λ) be of size l, where λ ∈ k× and

X = (xij) be a matrix such that Y X is symmetric (resp. skew-symmetric).

Then X = (R1 + R2 + . . .)Y , where each Rm is of the form t(ei,j + ej,i) for

some i < j or of the form tei,i for some i (resp. each Rm is of the form

t(ei,j − ej,i) for some i < j).

Proof. Since the matrix Y X is symmetric (resp. skew-symmetric), then the

matrix X is of the form

X11 X12

X21 xll

, where X11 is symmetric (resp. skew-

symmetric), X12 = λtX21 (resp. X12 = −λtX21) and X21 is a row of size l−1.

Clearly, X is a sum of the matrices of the form RmY .

Lemma 6.3.6. For 1 ≤ i ≤ l,

1. The element wi,−i = I + ei,−i − e−i,i − ei,i − e−i,−i ∈ GSp(2l, k) is a

product of elementary matrices.

2. The element wi,−i = I − ei,−i − e−i,i − ei,i − e−i,−i ∈ GO(2l, k) is a

product of elementary matrices.

3. The element wi,−i = I−2e0,0−ei,−i−e−i,i−ei,i−e−i,−i ∈ GO(2l+1, k)

is a product of elementary matrices.

Proof. 1. We have wi,−i = xi,−i(1)x−i,i(−1)xi,−i(1).

2. We produce these elements inductively. First we get wi,−j = (I +

ei,−j− ej,−i)(I+ e−i,j− e−j,i)(I+ ei,−j− ej,−i) = xi,−j(1)x−i,j(1)xi,−j(1),
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and wi,j = (I + ei,j − e−j,−i)(I − ej,i + e−i,−j)(I + ei,j − e−j,−i) =

xi,j(1)xj,i(−1)xi,j(1). Set wl := wl,−l = I − el,l − e−l,−l − el,−l − e−l,l.

Then compute wlwl,l−1wl,−(l−1) = w(l−1),−(l−1). So inductively we get

wi,−i is a product of elementary matrices.

3. We have wi,−i = x0,i(−1)xi,0(1)x0,i(−1).

Lemma 6.3.7. The element diag(1, . . . , 1, λ, 1, . . . , 1, λ−1) ∈ GSp(2l, k) is a

product of elementary matrices.

Proof. First we compute

wl,−l(t) = (I + tel,−l)(I − t−1e−l,l)(I + el,−l)

= I − el,l − e−l,−l + tel,−l − t−1e−l,l

= xl,−l(t)x−l,l(−t−1)xl,−l(t).

Then compute

hl(λ) = wl,−l(λ)wl,−l(−1)

= I − el,l − e−l,−l + λel,l + λ−1e−l,−l,

which is the required element.

Lemma 6.3.8. Let g =


α X Y

E A B

F C D

 ∈ GO(2l + 1, k). Then,

1. If A = diag(1, . . . , 1, λ) and X = 0, then C is of the form

C11 −λtC21

C21 0


with C11 skew-symmetric.
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2. If A = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
l−m

), and X with its first m entries 0, then C

is of the form

C11 0

C21 C22

 with C11 skew-symmetric.

Proof. We use the equation tgβg = µ(g)β, and get 2tXX + tAC + tCA = 0.

In the first case, AC is skew-symmetric (using X = 0 and tA = A). Then

Lemma 6.3.1 and Corollary 6.3.2 give the required form for C. In the second

case, we note that tXX has top-left and top-right blocks 0, and get the

required form for C.

Lemma 6.3.9. Let g =


α X Y

E A B

F 0 D

 ∈ GO(2l + 1, k), then X = 0, and

D = µ(g)tA−1.

Proof. We compute tgβg = µ(g)β, and get 2tXX = 0 and 2tXY + tAD =

µ(g)I. Hence X = 0, and D = µ(g)tA−1.

Lemma 6.3.10. Let g =


α 0 Y

0 A B

F 0 D

, with A an invertible diagonal matrix.

Then g ∈ GO(2l + 1, k) if and only if α2 = µ(g), F = 0 = Y,D = µ(g)A−1

and tDB + tBD = 0, where µ(g) ∈ k× is similitude of g.

Proof. Let g ∈ GO(2l + 1, k) then we have tgβg = µ(g)β. So we get α2 =

µ(g), F = 0 = Y,D = µ(g)A−1 and tDB + tBD = 0.

Conversely, if g satisfies the given condition, then g ∈ GO(2l + 1, k).

6.3.2 Gaussian elimination for GSp(2l, k) and GO(2l, k)

The algorithm is as follows:

Step 1:
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Input: A matrix g =

A B

C D

 ∈ GSp(2l, k) or GO(2l, k).

Output: The matrix g1 =

A1 B1

C1 D1

 is one of the following kind:

a: The matrix A1 is a diagonal matrix diag(1, . . . , 1, λ) with λ 6= 0, and

C1 =

C11 C12

C21 cll

, where C11 is symmetric, when g ∈ GSp(2l, k), and

skew-symmetric, when g ∈ GO(2l, k), and is of size l − 1. Furthermore,

C12 = λtC21, when g ∈ GSp(2l, k), and C12 = −λtC21, cll = 0, when

g ∈ GO(2l, k).

b: The matrix A1 is a diagonal matrix diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
l−m

), and C1 =
C11 0

C21 C22

, where C11 is an m × m symmetric, when g ∈ GSp(2l, k)

and skew-symmetric, when g ∈ GO(2l, k).

Justification: Observe the effect of ER1 and EC1 on the block A. This

amounts to the classical Gaussian elimination (see Theorem 6.1.1) on a l× l

matrix A. Thus we can reduce A to a diagonal matrix, and Corollary 6.3.2

makes sure that C has the required form.

Step 2:

Input: matrix g1 =

A1 B1

C1 D1

.

Output: matrix g2 =

A2 B2

0 µ(g)tA−1
2

 ;A2 = diag(1, . . . , 1, λ).

Justification: Observe the effect of ER3. It changes C1 by RA1 + C1.

Using Lemma 6.3.5 we can make the matrix C1 the zero matrix in the first
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case, and C11 the zero matrix in the second case. Further, in the second

case, we make use of Lemma 6.3.6 to interchange the rows, so that we get

a zero matrix in place of C1. If required, use ER1 and EC1 to make A1 a

diagonal matrix. Lemma 6.3.4 ensures that D1 becomes µ(g)tA−1
2 .

Step 3:

Input: matrix g2 =

A2 B2

0 µ(g)tA−1
2

 ;A2 = diag(1, . . . , 1, λ).

Output: matrix g3 = diag(1, . . . , 1, λ, µ(g), . . . , µ(g), µ(g)λ−1).

Justification: Using Corollary 6.3.3 we see that the matrix B2 has a certain

form. We can use ER2 to make the matrix B2 a zero matrix because of

Lemma 6.3.5.

The algorithm terminates here for GO(2l, k). However for GSp(2l, k) there

is one more step.

Step 4:

Input: matrix g3 = diag(1, . . . , 1, λ, µ(g), . . . , µ(g), µ(g)λ−1).

Output: matrix g4 = diag(1, . . . , 1, µ(g), . . . , µ(g)), where µ(g) ∈ k×.

Justification: Using Lemma 6.3.7.

6.3.3 Gaussian elimination for GO(2l + 1, k)

The algorithm is as follows:

Step 1:

Input: A matrix g =


α X Y

E A B

F C D

 ∈ GO(2l + 1, k).
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Output: The matrix g1 =


α1 X1 Y1

E1 A1 B1

F1 C1 D1

 is one of the following kind:

a: The matrix A1 is a diagonal matrix diag(1, . . . , 1, λ) with λ 6= 0.

b: The matrix A1 is a diagonal matrix diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
l−m

)(m < l).

Justification: Using ER1 and EC1 we do the classical Gaussian elimination

(see Theorem 6.1.1) on a l × l matrix A.

Step 2:

Input: matrix g1 =


α1 X1 Y1

E1 A1 B1

F1 C1 D1

.

Output: matrix g2 =


α2 X2 Y2

E2 A2 B2

F2 C2 D2

 is one of the following kind:

a: The matrix A2 is diag(1, . . . , 1, λ) with λ 6= 0, X2 = 0 = E2, and C2 =C11 −λtC21

C21 0

, where C11 is skew-symmetric of size l − 1.

b: The matrix A2 is diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
l−m

)(m < l); X2, E2 have first m

entries 0, and C2 =

C11 0

C21 C22

, where C11 is an m×m skew-symmetric

matrix.

Justification: Once we have A1 in diagonal form, we use ER4 and EC4

to change X1 and E1 to the required form. Then Lemma 6.3.8 makes sure

that C1 has the required form.

Step 3:
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Input: matrix g2 =


α2 X2 Y2

E2 A2 B2

F2 C2 D2

.

Output:

a: matrix g3 =


α3 0 Y3

0 A3 B3

F3 0 D3

 ;A3 = diag(1, . . . , 1, λ).

b: matrix g3 =


α3 X3 Y3

E3 A3 B3

F3 C3 D3

 ;A3 = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
l−m

); X3, E3 have

first m entries 0, and C3 =

 0 0

C21 C22

.
Justification: Observe the effect of ER3, and Lemma 6.3.5 ensures the

required form.

Step 4:

Input: matrix g3 =


α3 X3 Y3

E3 A3 B3

F3 C3 D3



Output: matrix g4 =


α4 0 0

0 A4 B4

0 0 µ(g)A−1
4

 withA4 = diag(1, . . . , 1, λ), α2
4 =

µ(g), and B4A4 + A4
tB4 = 0.

Justification: In the first case, Lemma 6.3.10 ensures the required form.

In the second case, we interchange i with −i for m + 1 ≤ i ≤ l. This will

make C3 = 0. Then, if needed, we use ER1 and EC1 on A3 to make it

diagonal. Then Lemma 6.3.9 ensures that A3 has full rank. Further, we can
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use ER4 and EC4 to make X3 = 0 = E3. Lemma 6.3.10 gives the required

form.

Step 5:

Input: matrix g4 =


α4 0 0

0 A4 B4

0 0 µ(g)A−1
4

 ;A4 = diag(1, . . . , 1, λ), α2
4 =

µ(g).

Output: matrix g5 = diag(α5, 1, . . . , 1, λ, µ(g), . . . , µ(g), µ(g)λ−1) with

α2
5 = µ(g).

Justification: Lemma 6.3.10 ensures that B4 is of a certain kind. We can

use ER2 to make B4 = 0.

Thus the main result of this chapter is the following theorem:

Theorem 6.3.11. Every element of symplectic similitude group GSp(2l, k)

or split orthogonal similitude group GO(n, k) (here n = 2l or 2l + 1), can be

written as a product of elementary matrices and a diagonal matrix. Further-

more, the diagonal matrix is of the following form:

1. In GSp(2l, k), diag(1, . . . , 1︸ ︷︷ ︸
l

, µ(g), . . . , µ(g)︸ ︷︷ ︸
l

), where µ(g) ∈ k×.

2. In GO(2l, k), diag(1, . . . , 1, λ︸ ︷︷ ︸
l

, µ(g), . . . , µ(g), µ(g)λ−1︸ ︷︷ ︸
l

), where λ, µ(g) ∈

k×.

3. In GO(2l + 1, k), diag(α, 1, . . . , 1, λ︸ ︷︷ ︸
l

, µ(g), . . . , µ(g), µ(g)λ−1︸ ︷︷ ︸
l

), where

α2 = µ(g) and µ(g), λ ∈ k×.

Proof. This follows from the above algorithms 6.3.2 and 6.3.3.

This gives us following:
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Corollary 6.3.12. Every element g ∈ O(n, k) (here n = 2l or 2l + 1) can

be written as a product of elementary matrices and a diagonal matrix. Fur-

thermore, the diagonal matrix is diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

), λ ∈ k×.

Proof. As g ∈ O(n, k) so µ(g) = 1. In the odd dimensional orthogonal group,

α = ±1. In this situation, if needed we use Lemma 6.3.6 to make the first

diagonal entry 1. Hence this follows from Theorem 6.3.11.

Corollary 6.3.13. Every element of the symplectic group Sp(n, k) can be

written as a product of elementary matrices.

Proof. This follows from Theorem 6.3.11, as µ(g) = 1.

Remark 6.3.14. Corollary 6.3.12 and Corollary 6.3.13 solve the word prob-

lem in orthogonal groups O(n, k) and symplectic groups Sp(n, k).

6.4 Gaussian Elimination in Unitary Groups

A similar algorithm has been developed in [MS]. One can define elementary

matrices and elementary operations for split unitary groups, similar to that

of symplectic and split orthogonal groups. Using those elementary matrices

and elementary operations, Mahalanobis and Singh solved the word problem

in split unitary groups. They proved (Theorem A [MS]):

Theorem 6.4.1. Every element of the split unitary group U(n, k0) (here

n = 2l or 2l + 1) can be written as a product of elementary matrices and a

diagonal matrix. Furthermore, the diagonal matrix is of the following form:

1. In U(2l, k0), diag(1, . . . , 1, λ︸ ︷︷ ︸
l

, 1, . . . , 1, λ̄−1︸ ︷︷ ︸
l

), where λ ∈ k×.

2. In U(2l+ 1, k0), diag(α, 1, . . . , 1, λ︸ ︷︷ ︸
l

, 1, . . . , 1, λ̄−1︸ ︷︷ ︸
l

), where λ, α ∈ k× with

αᾱ = 1.



Chapter 7

Computing Spinor Norm and

Similitude

This chapter reports the work done in [BMS]. In this chapter, we show how

we can use Gaussian elimination developed in Chapter 6 to compute the

spinor norm for split orthogonal groups. Also in this chapter, we compute

similitude character for split groups using the Gaussian elimination algo-

rithm. In this chapter, we make use of Wall’s theory developed in Chapter 4.

7.1

To compute the spinor norm, we will use the following lemma.

Lemma 7.1.1. With the notation as earlier for the group O(n, k) (here n =

2l or 2l + 1), we have,

1. Θ(xi,j(t)) = Θ(xi,−j(t)) = Θ(x−i,j(t)) = Θ(xi,0(t)) = Θ(x0,i(t)) = k×2.

2. Θ(wl) = k×2.

3. Θ(diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

)) = λk×2.
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Proof. 1. This follows from Corollary 4.1.8, since the given elements are

all unipotent.

2. Observe that wl is a reflection along el+e−l, and Q(el+e−l) = 1, hence

Θ(wl) = Q(el + e−l)k×2 = k×2.

3. First observe that diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

) = σel+e−lσel+λe−l .

Since {el, e−l} is a hyperbolic pair (see Chapter 2) then Q(el+e−l) = 1,

and Q(el + λe−l) = λ . Hence

Θ(diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

)) = Q(el + e−l)Q(el +λe−l)k×2 = λk×2.

The main result is the following:

Theorem 7.1.2 (Spinor norm). Let g ∈ O(n, k) (here n = 2l or 2l+1). Sup-

pose Gaussian elimination reduces g to diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

), where

λ ∈ k×. Then the spinor norm Θ(g) = λk×2.

Proof. Let g ∈ O(n, k). We write g as a product of elementary matrices

and a diagonal matrix of the form diag(1, . . . , 1, λ︸ ︷︷ ︸
l or l+1

, 1, . . . , 1, λ−1︸ ︷︷ ︸
l

), following

Corollary 6.3.12. Again from Lemma 7.1.1, we get the spinor norm for the

elementary matrices and the diagonal matrix. Hence Θ(g) = λk×2.

Remark 7.1.3. The Gaussian elimination algorithm also gives us how to

compute the similitude character of the symplectic and split orthogonal simil-

itude groups (see Theorem 6.3.11).



Chapter 8

Finiteness of z-classes

The results in this chapter are part of [BS]. This chapter is devoted to

the study of z-classes in unitary groups. A unitary group is an algebraic

group defined over k0. Since we are working with perfect fields, an element

T ∈ U(V,B) has a Jordan decomposition, T = TsTu = TuTs, where Ts is

semisimple and Tu is unipotent (see Theorem 2.1.1). Further one can use

this to compute the centralizer ZU(V,B)(T ) = ZU(V,B)(Ts) ∩ ZU(V,B)(Tu). So

the Jordan decomposition helps us reduce the study of conjugacy and com-

putation of the centralizer of an element to the study of that of its semisimple

and unipotent parts. In Section 8.1 we study the z-classes for unipotent ele-

ments. In Section 8.2 we explore the z-classes for semisimple elements, and

then we prove our main theorem, which states that the number of z-classes

in any unitary group is finite if k0 has the property FE. The preliminaries

for this chapter have been discussed in Chapters 2, 4 and 5.

8.1 Unipotent z-classes

We look at a special case when the minimal polynomial is p(x)d, where p(x)

is an irreducible, self-U -reciprocal polynomial. This includes unipotent ele-
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ments. The rational canonical form theory gives a decomposition of

V =
r⊕
i=1

Vdi

with 1 ≤ d1 ≤ d2 ≤ . . . ≤ dr = d, and each Vdi is a free module over the

k-algebra k[x]
<p(x)di> (see 2.14 Chapter IV [SS]). Thus,

Proposition 8.1.1. Let S and T be in U(V,B). Suppose the minimal poly-

nomial of both S and T are equal, and it equals p(x)d, where p(x) is irreducible

self-U-reciprocal. Then S and T are conjugate in U(V,B) if and only if

1. the elementary divisors p(x)di of S and T are same for 1 ≤ d1 ≤ d2 ≤

. . . ≤ dr = d, and

2. the sequence of hermitian spaces,
{

(V S
d1 , H

S
d1), . . . , (V S

dr , H
S
dr)
}

corre-

sponding to S, and
{

(V T
d1 , H

T
d1), . . . , (V T

dr , H
T
dr)
}

corresponding to T

are equivalent. Here HS
di

and HT
di

take values in the cyclic k-algebra
k[x]

<p(x)di> .

Moreover, the centralizer of T , in this case, is the direct product ZU(V,B)(T ) =
r∏
i=1

U(V T
di
, HT

di
).

Proof. Suppose S and T are conjugate in U(V,B). Since they are conjugate

they have the same set of elementary divisors which proves (1), and (2)

follows from Proposition 4.2.2.

Conversely, the elementary divisors of S and T determine the orthogonal

decomposition of V as follows:

V = V S
d1 ⊕ · · · ⊕ V

S
dr (8.1)

V = V T
d1 ⊕ · · · ⊕ V

T
dr , (8.2)

where 1 ≤ d1 ≤ d2 ≤ . . . ≤ dr = d, and for each i, V S
di

and V T
di

are free
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as ES
di

and ET
di
-module respectively. Since ES

di
and ET

di
are isomorphic as

k-modules. We may write Edi := ES
di
∼= ET

di
∼= k[x]

<p(x)di> . Also by (2) we have

(V S
di
, HS

di
) ≈ (V T

di
, HT

di
) for all i = 1, 2, . . . , r. So by Proposition 4.2.2, we get

S|V S
di

is conjugate to T |V T
di

by ϕi, then ϕ = ϕ1⊕· · ·⊕ϕr conjugates S and T .

Moreover, we have already seen that ZU(V,B)(T ) =
r∏
i=1

ZU(Vi,Bi)(Ti). And

by Proposition 4.2.2, we have ZU(Vdi ,Bi)(Ti) = U(V T
di
, HT

di
) for all i. Hence

ZU(V,B)(T ) =
r∏
i=1

U(V T
di
, HT

di
).

This gives us following:

Corollary 8.1.2. Let k0 have the property FE. Then,

1. the number of conjugacy classes of unipotent elements in U(V,B) is

finite.

2. The number of z-classes of unipotent elements in U(V,B) is finite.

Proof. 1. In view of Proposition 8.1.1, let the minimal polynomial be (x−

1)d. Thus, we have p(x) = x−1. Then the conjugacy classes correspond

to a sequence 1 ≤ d1 ≤ d2 ≤ . . . ≤ dr = d, and hermitian spaces

{(V T
d1 , H

T
d1), . . . , (V T

dr , H
T
dr)} up to equivalence. Now ET

di
= k[T ]

<T−1>
∼=

k. Then, by the Wall’s approximation theorem (Theorem 4.2.3), the

number of non-equivalent hermitian forms (V,B) is exactly equal to the

number of non-equivalent hermitian forms (V ,B). However, we know

that there are only finitely many non-equivalent hermitian forms over

k, as k0 has the property FE. Thus HT
di

has only finitely many choices

for each i. Hence the result.

2. Two elements are conjugate implies that they are also z-conjugate.

Hence it follows from the previous part.
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8.2 Semisimple z-classes

Let T ∈ U(V,B) be a semisimple element. First, we begin with a basic case.

Lemma 8.2.1. Let T ∈ U(V,B) be a semisimple element such that its min-

imal polynomial is either p(x), which is irreducible, self-U-reciprocal of de-

gree ≥ 2, or q(x)q̃(x), where q(x) is irreducible not self-U-reciprocal. Let

E = k[x]
<p(x)> in the first case and k[x]

<q(x)> in the second case. Then the z-class

of T is determined by the following:

1. the algebra E over k, and

2. the equivalence class of the E-valued hermitian form HT on V T .

Proof. Suppose S, T ∈ U(V,B) are in the same z-class, then ZU(V,B)(S) =

gZU(V,B)(T )g−1 for some g ∈ U(V,B). We may replace T by its conjugate

gTg−1, so we get ZU(V,B)(S) = ZU(V,B)(T ), thus U(V S, HS) = U(V T , HT ).

Hence (V S, HS) is equivalent to (V T , HT ). So, in particular, ES and ET are

isomorphic as k-algebras. The converse follows from Proposition 4.2.2.

Now for the general case, let T ∈ U(V,B) be a semisimple element with

minimal polynomial

mT (x) =
k1∏
i=1

pi(x)
k2∏
j=1

(qj(x)q̃j(x)) ,

where the pi(x) are self-U -reciprocal polynomials of degree di, and qj(x) not

self-U -reciprocal of degree ej. Let the characteristic polynomial of T be

χT (x) =
k1∏
i=1

pi(x)ri
k2∏
j=1

(qj(x)q̃j(x))sj .

Let us write the primary decomposition of V with respect to mT into T -
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invariant subspaces as

V =
k1⊕
i=1

Vi

k2⊕
j=1

(
Wj +W ∗

j

)
. (8.3)

Denote Ei = k[x]
<pi(x)> and Kj = k[x]

<qj(x)> , the field extensions of k of degree di
and ej respectively.

Theorem 8.2.2. With notation as above, let T ∈ U(V,B) be a semisimple

element. Then the z-class of T is determined by the following:

1. a finite sequence of integers (d1, . . . , dk1 ; e1, . . . , ek2) each di, ej ≥ 0 and

n =
k1∑
i=1

diri + 2
k2∑
j=1

ejsj.

2. Finite field extensions Ei of k of degree di for 1 ≤ i ≤ k1 and Kj of k

of degree ej, for 1 ≤ j ≤ k2, and

3. equivalence classes of Ei-valued hermitian forms Hi of rank ri, and

Kj ×Kj-valued hermitian forms H ′j of rank sj.

Further with this notation, ZU(V,B)(T ) ∼=
k1∏
i=1

Uri(Hi)×
k2∏
j=1

GLsj(Kj).

Proof. Follows from Lemma 8.2.1 and Proposition 4.2.2.

This gives us following:

Corollary 8.2.3. Let k0 have the property FE. Then the number of semisim-

ple z-classes in U(V,B) is finite.

Proof. This follows if we show that there are only finitely many hermitian

forms up to equivalence of any degree n. We use Jacobson’s theorem (see the

Theorem in [Ja]) that equivalence of hermitian forms B over k is given by

equivalence of corresponding quadratic forms Q(x) = B(x,x)+B(x,x)
2 over k0.

However, because of the FE property of k0 it turns out that k×0 /k×2
0 is finite,
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and hence there are only finitely many quadratic forms of degree n over k0.

This proves the required result.

The main result of this chapter is the following theorem:

Theorem 8.2.4. Let k be a perfect field of char k 6= 2 with a non-trivial

Galois automorphism of order 2. Let V be a finite dimensional vector space

over k with a non-degenerate hermitian form B. Suppose the fixed field k0 has

the property FE, then the number of z-classes in the unitary group U(V,B)

is finite.

Proof. It follows from Corollary 8.2.3 that the number of conjugacy classes

of centralizers of semisimple elements is finite. Hence, up to conjugacy, there

are finitely many possibilities for ZU(V,B)(s) for s semisimple in U(V,B). Let

T ∈ U(V,B), then it has a Jordan decomposition T = TsTu = TuTs. Re-

call ZU(V,B)(T ) = ZU(V,B)(Ts) ∩ ZU(V,B)(Tu), and Tu ∈ ZU(V,B)(Ts)◦. Now

ZU(V,B)(Ts) is a product of certain unitary groups and general linear groups

possibly over a finite extension of k. Corollary 8.1.2 applied on the group

ZU(V,B)(Ts) implies that, up to conjugacy, Tu has finitely many possibilities

in ZU(V,B)(Ts). Hence, up to conjugacy, ZU(V,B)(T ) has finitely many possi-

bilities in U(V,B). Therefore the number of z-classes in U(V,B) is finite.

Remark 8.2.5. The FE property of the field k0 is necessary for the above

theorem. For example, the field of rational numbers Q does not have the FE

property. We show by an example that the above theorem is no longer true

over Q.

Example 8.2.6. Over field Q, there could be infinitely many non-conjugate

maximal tori in GL(n). Since a maximal torus is centralizer of a regular

semisimple element in it, we get an example of infinitely many z-classes. For

the sake of clarity let us write down this concretely when n = 2.
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The group GL(2,Q) has infinitely many semisimple z-classes. For, if we

take f(x) ∈ Q[x] any degree 2 irreducible polynomial, then the centralizer

of the companion matrix Cf ∈ GL(2,Q) is isomorphic to Q×f , where Qf =

Q[x]/ < f(x) >, a field extension. Thus non-isomorphic degree two field

extensions (hence can not be conjugate) give rise to distinct z-classes (these

are maximal tori in GL(2,Q)).

Consider k = Q[
√
d], a quadratic extension. We embed GL(2,Q) in U(4)

with respect to the hermitian form

 0 I2

I2 0

 given by

A 7→

A 0

0 tĀ−1

 .

This embedding describes maximal tori in U(4) starting from that of GL(2).

Yet again, non-isomorphic degree 2 field extensions would give rise to dis-

tinct z-classes. In turn, this gives infinitely many z-classes (of semisimple

elements) in U(4).

Example 8.2.7. For a ∈ k×, consider a unipotent element ua =

1 a

0 1


in SL(2, k). Then ZSL(2,k)(ua) =


x y

0 x

 | x2 = 1, y ∈ k

. Then, ua is

conjugate to ub in SL(2, k) if and only if a ≡ b(mod (k×)2). Let k be a

(perfect or non-perfect) field with k×/(k×2) infinite. Then this would give

an example, where we have infinitely many conjugacy classes of unipotents

but still, they are in a single z-class.
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Chapter 9

Counting z-classes

This chapter reports the work done in [BS]. In this chapter, we investigate

the z-classes for classical groups. Without further ado, we shall now go into

computing z-classes for GL(n, k) and U(n, k) for different k. In Section 9.1

we compute the number of z-classes and their generating functions for general

linear groups, and in Section 9.2 we compute the same for unitary groups.

The main theorem proved here is that the number of z-classes in GL(n, q) is

same as the number of z-classes in U(n, q), when q > n (Theorem 9.2.5).

9.1 z-classes in General Linear Groups

Let n be a positive integer with a partition λ = (1k12k2 . . . nkn), denoted

by λ ` n, i.e., n =
∑
i

iki, and p(n) denote the number of partitions of

n. Let p(x) be the generating function for the partitions of integers so

p(x) =
∞∑
n=0

p(n)xn =
∞∏
i=1

1
1− xi . Let zk(n) denotes the number of z-classes in

GL(n, k). Define zk(x) :=
∞∑
n=0

zk(n)xn be the generating function for the z-

classes in GL(n, k). If k is an algebraically closed field then we will suppress

k, and simply denote them as z(n) and z(x) respectively.

73
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Proposition 9.1.1. Let k be an algebraically closed field. Then,

1. the number of z-classes of semisimple elements in GL(n, k) is p(n),

which is same as the number of z-classes of unipotent elements.

2. The number of z-classes in GL(n, k) is

z(n) =
∑

(1k12k2 ...nkn )`n

n∏
i=1

(
p(i) + ki − 1

ki

)
,

and the generating function is

z(x) =
∞∏
i=1

1
(1− xi)p(i) .

Proof. Since k is an algebraically closed field then for each element g ∈

GL(n, k) has a unique Jordan form. Suppose it has t-distinct eigenval-

ues λ1, λ2, . . . , λt. In each Jordan block corresponding to λi’s, the en-

tries in superdiagonal can be filled with zeros and ones. These possi-

bilities will determine the number of z-classes. These can be said using

the following argument. We know that (1 − x)−m =
∑
r

(
m+ r − 1

r

)
xr.

Therefore the coefficient of xki in (1 − x)−p(i) is
(
p(i)+ki−1

ki

)
. So for

a fixed partition λ = (1k12k2 . . . nkn) of n, the number of z-classes is
n∏
i=1

(
p(i) + ki − 1

ki

)
. Therefore the total number of z-classes in GL(n, k) is

∑
(1k12k2 ...nkn )`n

n∏
i=1

(
p(i) + ki − 1

ki

)
.

Proposition 9.1.2. Let z(x) =
∞∏
i=1

1
(1− xi)p(i) . Then,

1. zC(x) = z(x).

2. zR(x) = z(x)z(x2).

3. If q > n then zFq(x) =
∞∏
n=1

z(xn).
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Proof. 1. Here C can be replaced by any algebraically closed field. Since

an algebraically closed field has no extension at all, zC(x) = z(x).

2. Now R has two extensions, one is R itself of degree 1, and C of degree

2. Clearly the contributions to zR(x) coming from C is zC(x2) = z(x2).

Hence zR(x) = z(x)z(x2).

3. For finite field Fq, for each degree extension n, there is a unique field of

that degree, namely Fqn . So the contributions to zFq(x) coming from

Fqn are zC(xn) = z(xn). Hence zFq(x) =
∞∏
n=1

z(xn), and this product

is well-defined because Fq has the property FE (when q ≤ n, not all

extensions will be available).

To compare these numbers we make a table for small ranks. The last row

of this table is there in the work of Green (see p.408 in [Gr]).

zk(n) z(1) z(2) z(3) z(4) z(5) z(6) z(7) z(8) z(9) z(10)

C 1 3 6 14 27 58 111 223 424 817

R 1 4 7 20 36 87 162 355 666 1367

Fq, q > n 1 4 8 22 42 103 199 441 859 1784

9.2 z-classes in Unitary Groups

The genus number of compact Lie groups has been computed in [Bo]. In

this situation we have a vector space V over C of dimension n + 1. The

hermitian forms are classified by the signature, and the corresponding groups

are denoted by U(r, s) = {g ∈ GL(n + 1,C) | tḡβg = β}, where β =Ir 0

0 −Is

 and r + s = n+ 1 (see (1) of Example 2.3.8).
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9.2.1 z-classes in U(n+ 1, 0)

We record the result (see Theorem 3.1 [Bo]) here as follows:

Proposition 9.2.1. The number of z-classes in U(n+ 1, 0) is p(n+ 1).

Proof. The group U(n + 1, 0) is a compact Lie group. So every ele-

ment is semisimple. Let g ∈ U(n + 1, 0), then g is conjugate to s :=

diag(λ1Ir1 , . . . , λtIrt), where λi’s are distinct complex numbers such that

λiλi = 1 and r1 + · · ·+ rt = n+ 1. Hence

ZU(n+1,0)(s) =
t∏
i=1

U(ri, 0).

So, up to conjugacy, ZU(n+1,0)(s) is determined by the partitions of n + 1.

Hence the number of z-classes in U(n+ 1, 0) is p(n+ 1).

9.2.2 z-classes in U(n, 1)

The z-classes of U(n, 1) have been discussed by Cao and Gongopadhyay

in [CG]. Here we present the number of z-classes in this group using the

parametrization described there. Recall that the hermitian matrix used there

is β =

−1 0

0 In

, and the unitary group is U(n, 1) = {g ∈ GL(n + 1,C) |

tḡβg = β}.

Another way to look at it is the following ball model: Let V be a vector

space of dimension n+ 1 over C, i.e., V ∼= Cn+1 equipped with the hermitian

form of signature (n, 1),

〈v, w〉 = −v̄0w0 + v̄1w1 + · · ·+ v̄nwn,

where v = t(v0v1 · · · vn) and w = t(w0w1 · · ·wn) are column vectors in Cn+1.
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Define

V0 := {v ∈ V | 〈v, v〉 = 0},

V+ := {v ∈ V | 〈v, v〉 > 0},

V− := {v ∈ V | 〈v, v〉 < 0}.

Let P(V ) be the complex projective space, i.e., P(V ) = V r{0}
∼ , where u ∼ v

if there exists λ ∈ C× such that u = λv. Here P(V ) is equipped with the

quotient topology, and the quotient map is π : V r {0} → P(V ). The

n-dimensional complex hyperbolic space is defined to be Hn
C := π(V−). The

boundary ∂Hn
C in P(V ) is π(V0). The isometry group U(n, 1) of the hermitian

space (V, β) acts as the isometries of Hn
C. The actual group of isometries of

Hn
C is PU(n, 1) = U(n,1)

Z(U(n,1)) , where Z(U(n, 1)) = S1 is the center. Thus an

isometry g of Hn
C lifts to a unitary transformation g̃ ∈ U(n, 1). The fixed

points of g correspond to eigenvectors of g̃. However, for convenience, we will

mostly deal with the linear group U(n, 1) rather than the projective group

PU(n, 1). In the following, we shall often forget the lift and use the same

symbol for an isometry as well as its lifts.

Now by Brouwer’s fixed point theorem, it follows that every isometry g

has a fixed point on the closure Hn
C = Hn

C ∪ ∂Hn
C. An isometry g is called

elliptic if it has a fixed point on Hn
C. It is called parabolic if it is not elliptic

and has exactly one fixed point on the boundary ∂Hn
C, and is called hyperbolic

if it is not elliptic and has exactly two fixed points on the boundary ∂Hn
C.

Thus the elements of this group are classified as either elliptic, hyperbolic

or parabolic depending on their fixed points. Using conjugation classifica-

tion [CGb] we know that if an element g ∈ U(n, 1) is elliptic or hyper-

bolic, then they are always semisimple. But a parabolic element need not

be semisimple. However it has a Jordan decomposition g = gsgu, where gs is

elliptic, hence semisimple, and gu is unipotent. In particular if a parabolic
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isometry is unipotent, then it has minimal polynomial (x − 1)2 or (x − 1)3

and is called vertical translation or non-vertical translation respectively.

Definition 9.2.2. An eigenvalue λ (counted with multiplicities) of an el-

ement g ∈ U(n, 1) is called null, positive or negative if the corresponding

λ-eigenvectors belong to V0, V+ or V− respectively.

Accordingly, a similarity class of eigenvalues [λ] is null, positive or negative

according to its representative λ is null, positive or negative respectively.

Theorem 9.2.3. 1. The number of z-classes of hyperbolic elements in

U(n, 1) is p(n− 1).

2. The number of z-classes of elliptic elements in U(n, 1) is

n+1∑
m=1

p(n+ 1−m).

3. The number of z-classes of parabolic elements in U(n, 1) is 2 + p(n −

1) + p(n− 2) (n ≥ 2).

Proof. 1. Now, suppose T ∈ U(n, 1) is hyperbolic. Then V has an or-

thogonal decomposition V = Vr ⊥ (⊥ti=1 Vi), where dim(Vi) = ri,

and Vi is the eigenspace of T corresponding to the similarity class of

positive eigenvalue [λi] with |λi| = 1. The subspace Vr is the two-

dimensional T -invariant subspace spanned by the corresponding sim-

ilarity class of null-eigenvalues [reiθ], [r−1eiθ] for r > 1, respectively.

Then ZU(n,1)(T ) = Z(T |Vr) ×
t∏

j=1
U(rj) = S1 × R ×

t∏
j=1

U(rj). Here

n+ 1 = 2 +
t∑

j=1
rj, i.e.,

t∑
j=1

rj = n− 1. Thus, the number of z-classes of

hyperbolic elements is p(n− 1).

2. Let T ∈ U(n, 1) be an elliptic element. Then T has a negative class of

eigenvalue say [λ]. Let m = dim(Vλ), which is ≥ 1. It follows from the
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conjugacy classification that all the eigenvalues have norm 1 and there

is a negative eigenvalue. All other eigenvalues are of the positive type.

Then V = Vλ ⊥ V ⊥λ = Vλ ⊥ (⊥si=1 Vλi). Suppose dim(Vλi) = ri, then

ZU(n,1)(T ) = ZU(Vλ)(T |Vλ) ×
s∏
i=1

U(ri). Now since T |Vλ is of negative

type, so Z(T |Vλ) = U(m − 1, 1). Here n + 1 = m +
s∑
i=1

ri, therefore
s∑
i=1

ri = n + 1 −m. This gives that the number of z-classes of elliptic

elements is
n+1∑
m=1

p(n+ 1−m).

3. Let T ∈ U(n, 1) be parabolic. First, let T be unipotent. If the

minimal polynomial of T is (x − 1)2, i.e., T is a vertical transla-

tion, then ZU(n,1)(T ) = U(n − 1) n (Cn−1 × R). If the minimal

polynomial of T is (x − 1)3, i.e., T is non-vertical translation, then

ZU(n,1)(T ) = (S1×U(n−2))n((R×Cn−2)nR). Hence there are exactly

two z-classes of unipotents, one corresponds to the vertical translation

and the other to the non-vertical translation. Now assume that T is not

unipotent. Suppose that the similarity class of a null-eigenvalue is [λ].

Then V has a T -invariant orthogonal decomposition V = Vλ ⊥ V ⊥λ ,

where Vλ is a T -indecomposable subspace of dim(Vλ) = m, which

is either 2 or 3. Then ZU(n,1)(T ) = Z(T |Vλ) × Z(T |V ⊥
λ

). For each

choice of λ, there is exactly one choice for the z-classes of T |Vλ in

U(m − 1, 1), i.e., U(1, 1) or U(2, 1). Note that T |V ⊥
λ

can be embed-

ded into U(n + 1 − m). Hence it suffices to find out the number of

z-classes of T |Vλ in U(m − 1, 1). Hence the total number of z-classes

of non-unipotent parabolic is p(n− 1) + p(n− 2). Therefore the total

number of z-classes of parabolic transformations is 2+p(n−1)+p(n−2)

(n ≥ 2).
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9.2.3 z-classes in U(n, q)

Now we will focus on unitary groups over finite field k = Fq2 with σ given by

x̄ = xq and k0 = Fq. It is well-known that over a finite field there is a unique

non-degenerate hermitian form up to equivalence. We denote the unitary

group by U(n, q) := {g ∈ GL(n, q2) | tḡg = In}. The groups GL(n, q) and

U(n, q), both are subgroups of GL(n, q2). We want to count the number of

z-classes, and write its generating function. In view of Ennola duality, the

representation theory of both these groups are closely related. Thus it is

always useful to compare any computation for U(n, q) with that of GL(n, q).

Lemma 9.2.4. 1. The number of z-classes of unipotent elements in

U(n, q) is p(n), which is the number of z-classes of unipotent elements

in GL(n, q).

2. The number of z-classes of semisimple elements in U(n, q) is same as

the number of z-classes of semisimple elements in GL(n, q) if q > n.

Proof. 1. Let u = [Ja1
1 Ja2

2 . . . Jann ] be a unipotent element in GL(n, q2)

written in Jordan block form. Wall proved the following membership

test (see Case(A) on page 34 of [Wa2]): Let A ∈ GL(n, q2) then A

is conjugate to tĀ−1 in GL(n, q2) if and only if A is conjugate to an

element of U(n, q). Since unipotents are conjugate to their own inverse

in GL(n, q2), this implies u is conjugate to tū−1 in GL(n, q2). Hence u is

conjugate to an element of U(n, q). Wall also proved that two elements

of U(n, q) are conjugate in U(n, q) if and only if they are conjugate

in GL(n, q2) (see also 6.1 [Ma]). Thus, up to conjugacy, there is a

one-one correspondence of unipotent elements between GL(n, q2) and

U(n, q). This gives that the number of unipotent conjugacy classes

in U(n, q) is p(n), and it is same as that of GL(n, q). Now, we note
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that ZU(n,q)(u) = N
n∏
i=1

U(ai, q), where N = Ru(ZU(n,q)(u)) unipotent

radical, and

|N | = q
∑n

i=2(i−1)a2
i+2

∑
i<j

iaiaj

(see Lemma 3.3.8 [BG]). Clearly, the centralizers are distinct and hence

can not be conjugate. Thus the number of unipotent z-classes in U(n, q)

is p(n).

2. For semisimple elements, we use Theorem 8.2.2. Over a finite field

(when q > n), we get that semisimple z-classes are characterized by

simply n =
k1∑
i=1

diri +
k2∑
j=1

ljsj, where di is odd (being a degree of a

monic, irreducible, self-U-reciprocal polynomial, see Proposition 5.1.1)

and lj = 2ej is even. This corresponds to the number of ways n can

be written as n =
∑
i

aibi, which is same as the number of semisimple

z-classes in GL(n, q).

The main result of this chapter is the following:

Theorem 9.2.5. The number of z-classes in U(n, q) is same as the number

of z-classes in GL(n, q) if q > n. Thus, the number of z-classes for either

group can be read off by looking at the coefficients of the function
∞∏
i=1

z(xi),

where z(x) =
∞∏
j=1

1
(1− xj)p(j) .

Proof. Recall that if g = gsgu is the Jordan decomposition of g then

ZU(n,q)(g) = ZU(n,q)(gs) ∩ ZU(n,q)(gu) = ZZU(n,q)(gs)(gu), and the structure of

ZU(n,q)(gs) in Theorem 8.2.2 implies that

number of z-classes in U(n, q) =
∑
[s]z

no of unipotent z-classes inZU(n,q)(s),

where the sum runs over semisimple z-classes. Hence the number of z-classes
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in U(n, q) is the same as the number of z-classes in GL(n, q).

However, the above Theorem 9.2.5 need not be true when q ≤ n.

Example 9.2.6. Over a finite field Fq, if q is not large enough we may

not have as many finite extensions available as required in part 2 of Theo-

rem 8.2.2. Thus we expect less number of z-classes. We use GAP [GAP]

to calculate the number of z-classes for small order and present our findings

below:

zFq(2) q = 2 q = 3 q = 4 q = 5 q = 7 q = 9

GL(2, q) 3 4 4 4 4 4

U(2, q) 3 4 4 4 4 4

zFq(3) q = 2 q = 3 q = 4 q = 5 q = 7 q = 9

GL(3, q) 5 7 8 8 8 8

U(3, q) 7 8 8 8 8 8

zFq(4) q = 2 q = 3 q = 4 q = 5 q = 7

GL(4, q) 11 19 21 22 22

U(4, q) 15 22 22 22 22

Thus we demonstrate the following:

1. When q ≤ n the number of z-classes in GL(n, q) and U(n, q) are not

given by the formula in Theorem 9.2.5.

2. When q ≤ n the number of z-classes in GL(n, q) and U(n, q) need not

be equal.



Chapter 10

Future Plans

The groups we study here are fundamental objects in algebraic groups. Given

wide interest and applications in group theory, it is interesting to compute

centralizers and z-classes in algebraic groups.

10.1 Further Questions

We would like to continue our study for other groups, especially for excep-

tional groups. So the precise problem would be the following:

Problem 10.1.1. Is the number of z-classes finite for the exceptional groups

of type E6, E7, E8, F4, G2 defined over k with the property FE?

R. Steinberg proved the result all at once for reductive algebraic groups over

an algebraically closed field. So one can ask the following:

Problem 10.1.2. Is the number of z-classes finite for a reductive algebraic

group defined over k with the property FE?

This problem is hard but will be quite interesting. I believe the answer to

these questions is positive. We have some ideas and preliminary results on

this. Another natural question would be; what is the number of z-classes

83



84 10.1. Further Questions

for a certain group G? We would like to address this question over finite

fields Fq. A more concrete question I would like to address in future is the

following:

Problem 10.1.3. What are the number of z-classes in Sp(n, q) and O(n, q)?

Problem 10.1.4. How does it reflect on the representation theory of these

groups?

We have seen that the Bruhat decomposition (Theorem 6.1.3) for general

linear groups GL(n, k) has a nice connection to the classical Gaussian elim-

ination algorithm. So one would expect the same kind of decomposition for

other groups, namely, similitude groups using our Gaussian elimination al-

gorithms developed in Section 6.3.2 and 6.3.3. So the precise problem would

be the following:

Problem 10.1.5. Do the Bruhat decomposition for the symplectic and or-

thogonal groups using our algorithms.

More generally,

Problem 10.1.6. Do the Bruhat decomposition for the symplectic and or-

thogonal similitude groups using our algorithms.
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