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Abstract

In 2001, Paeng, Ha, Kim, Chee, and Park presented a new public key encryp-

tion scheme based on the difficulty of the discrete logarithm problem in an

inner automorphism group of a non-abelian group G called MOR cryptosys-

tem. It is an elementary generalization of the Classical ElGamal cryptosys-

tem. In this case, the discrete logarithm problem works in an automorphism

group of the group G, rather than G itself.

Automorphisms used for MOR cryptosystem are presented as an action on

generators of G, so in a practical implementation of the MOR cryptosystem,

there are two things that matter the most.

• Any automorphism of the group can be determined by its action on

the group’s generators. Hence, the size of public-key depends on the

number of generators.

• If one has to compute φ(g), then the word problem must be solved.

Thus, we need an efficient algorithm to solve the word problem in G.

Hence the natural question arises: what are the right groups for the MOR

cryptosystem?

Since its inception, several people have tried to provide different candi-

dates for G and have analyzed the security of corresponding MOR cryp-

tosystem. Paeng, et al. proposed the MOR cryptosystem using group

SL(2,Zp) o Zp and later Tobias showed that MOR using SL(2,Zp) o Zp
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is not harder than MOR using SL(2,Zp). Mahalanobis [27] used the group of

unitriangular matrices for the MOR cryptosystem and showed that the MOR

cryptosystem with the group of unitriangular matrices over Fq is as secure

as the ElGamal cryptosystem over the finite field Fq. Further, Mahalanobis

[28] studied the MOR cryptosystem over SL(d, q) and showed that if one

assumes that the only way to break the proposed MOR cryptosystem is to

solve the discrete logarithm problem in the automorphism group, then MOR

cryptosystem over SL(d, q) is as secure as the ElGamal cryptosystem over

Fqd . This d is called the security advantage, or the embedding degree.

In this thesis, we have studied the MOR cryptosystem with finite or-

thogonal groups and analyzed its security. We have addressed both of the

above-mentioned questions about the key size and word problem. We present

an algorithm similar to Gaussian elimination algorithm for twisted orthog-

onal group O−(d,K) and orthogonal groups over a field of characteristics 2

to solve the world problem. Our algorithms works in any orthogonal group

O(d,K) for particular non-degenerate symmetric bilinear form and any field

K. Further, we have shown that security advantage (embedding degree) of

the MOR cryptosystem using O(d, q) with q even and d odd is d − 1 and

we have conjectured that the security advantage of the MOR cryptosystem

using other orthogonal groups is d2 − 1. Further, as an application of algo-

rithm developed to solve the word problem we computes the spinor norm of

elements of O−(d,K).
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Chapter 1

Introduction

Cryptography has a significant impact on our day-to-day life. Every time one

makes a mobile phone call, send an email, buy something with a credit card

in a shop or on the web, or even get cash from an ATM, cryptography en-

sures the confidentiality of the transaction and provides the security to make

it possible. There are two types of cryptography: symmetric key cryptogra-

phy and public-key cryptography. Symmetric key cryptosystems provide the

perfect security, but there is a problem that receiver and sender need to agree

on the shared secret key ahead of time. This requires either both of them to

meet in person or agree on the key through an insecure channel. However,

none of these is acceptable if one wants to encrypt his credit card information

for online shopping from a distant vendor. This problem was solved in 1976

by Diffie-Hellman [15] using public-key cryptography. The security of most

of the public-key cryptosystems that are currently used in practice is based,

either directly or indirectly, on either the difficulty of factoring large numbers

or the difficulty of finding discrete logarithms in a finite group.

One-way functions form the basis of public-key cryptography. Although

we have computationally hard problems that are believed to be one-way, none

has been proven to be so. Therefore the security of the corresponding cryp-

1



2 Chapter 1. Introduction

tographic schemes depends on the intractability assumptions of these prob-

lems. Two major species of such problems, factoring and discrete logarithm,

are widely believed to be intractable and serve as the basis of many popular

schemes. However, once a general purpose quantum computer is built, then

people will be able to run Shor’s algorithm [52] and solve factoring, DLP in

any finite field Fps in polynomial time. This is the most worrisome long-term

threat to current public-key cryptosystems. So the biggest challenge for cryp-

tography community is to build more secure and alternative cryptographic

primitives.

At present, RSA and discrete logarithm problem over elliptic curves [24,

38] are believed to be more secure. One can raise the question: Why do we

care about elliptic curves if RSA works well? The obvious answer is the key

size because ECC with a key size of 160 bits can achieve the same level of

security as RSA with a key size 1024 bits. This shows that not only ECC

uses less memory, but also that key generation and signing (signature scheme)

are considerably faster. However, in light of MOV attack [34], one needs to

be more careful about the choices of elliptic curves in practice. The MOV

attack uses a bilinear pairing, which is a bilinear map from E(Fq) × E(Fq)

to the finite field Fqk , where k is the embedding degree associated with the

curve. The bilinearity means that e(rP, sQ) = e(P,Q)rs for points P,Q. By

computing u = e(P,Q) and v = e(rP,Q) for any Q and using the bilinearity,

we have v = e(P,Q)r = ur. Now one can solve the discrete logarithm in

Fqk in order to solve the discrete logarithm in the elliptic curve. So in order

to avoid the MOV attack, one needs to choose those elliptic curves whose

embedding degree is high. Though the security in elliptic curves is considered

much better than that of finite fields because of the non-existence of sub-

exponential algorithms in most cases of elliptic curves [5,54]; However, there

are only a few practically used elliptic curves recommended by NIST and
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the recent article issued by NSA [1] gives emphasis on to find alternative

cryptosystems which are more secure.

Cryptographers have begun to pay more attention towards non-Abelian

cryptography based on non-Abelian structures, and several attempts were

made in that direction. To name a few, Maze et.al [31] proposed a semigroup

action problem (SAP), Shilrain and Zapata developed CAKE [53], both works

with non-abelian structures. There is an interesting cryptosystem in the work

of Climent et.al [12].

Another line of research in cryptography is to generalize the well-

established cryptosystems with the hope that something practical and useful

will come out of the generalization. Keeping this fact in mind, we have

studied MOR cryptosystem which is a natural generalization of ElGamal

cryptosystem which uses discrete logarithm as the cryptographic primitive.

It is well known that the security of such cryptosystem depends on the dif-

ficulty of finding discrete logarithms in a platform group. In this case, the

discrete logarithm problem works in the automorphism group of a group G,

rather than G itself. This shows that one can use almost any group for the

MOR cryptosystem. Thus, the natural question arises what are groups for

which we get a secure MOR cryptosystem? In light of Joux’s attack on the

discrete logarithm problem in finite fields of small characteristics [6,20], one

must look for a non-Abelian group(s) G in the hope that discrete logarithm

problem in G is hard. Several attempts were made to propose MOR cryp-

tosystem with different non-Abelian groups [27–29, 45]. In this thesis, we

propose a MOR cryptosystem using orthogonal groups over finite fields and

analyze its security.



4 Chapter 1. Introduction

1.1 Our contribution and overview

This thesis is organized as follows: In chapter 2, we give a description of

MOR cryptosystem and discuss the motivation for our work. In chapter 3,

we briefly describe the theory of Chevalley groups which will be used in later

chapters.

Chapters 4, 5 and Appendix A are our contributions to this thesis. In

chapter 4, we develop algorithms to solve the word problem in twisted orthog-

onal groups and orthogonal groups over field of even characteristics. Also,

we describe the algorithm developed in [8] for the split orthogonal groups

over finite fields of odd characteristics. At the end of this chapter we discuss

some applications of our algorithms.

In chapter 5, we have analyzed the security of MOR cryptosystem with

orthogonal groups and addressed the issues with the public-key size. We also

discuss how to choose right automorphisms for the MOR cryptosystem with

orthogonal groups and showed that the security of MOR cryptosystem with

O(d, q), where d-odd and q-even is same as security of ElGamal cryptosystem

over Fqd . Further, we have given enough evidence and conjectured that

security of the MOR cryptosystem with other orthogonal groups is same as

the security of ElGamal cryptosystem over Fqd2−1 . At the end of this chapter,

we discuss the implementation of MOR cryptosystem with orthogonal groups.

In appendix A, as an application to our algorithms developed in chapter

4, we compute the spinor norm of elements in twisted orthogonal groups,

which is of great importance in computational group theory.



Chapter 2

MOR cryptosystem

This chapter contains some basic definitions and known results that serve as

a prerequisite material for this thesis and motivates to our work. In Section

2.1, we describe the discrete logarithm problem which is a basis for the MOR

cryptosystem. In Section 2.2, we describe the Diffie-Hellman problem which

is used as a security measure in ElGamal cryptosystem [Section 2.3]. In

Section 2.4, we describe MOR cryptosystem and give some examples of MOR

cryptosystems.

2.1 Discrete logarithm problem

The discrete logarithm problem is a frequently used cryptographic primitive

which works in any cyclic group but need not be secure over it. If G is a

multiplicative cyclic group and g is a generator of G, then from the definition

of cyclic groups, we know every element h in G can be written as gx for some

integer x. The discrete logarithm of h to the base g in the group G is defined

to be x. For example, if the group is Z×11, and the generator is 2, then the

discrete logarithm of 9 to the base 2 is 6 because 26 ≡ 9 mod 11.

Definition 2.1.1. The discrete logarithm problem is defined as: given

5



6 Chapter 2. Preliminaries for MOR cryptosystem

a cyclic group G, a generator g of the group and an element gx of G, the

problem is to compute x.

Discrete logarithm problem is not always difficult to solve. The hardness

of the discrete logarithm problem depends on the structure of the groups.

For example, an obvious and popular choice of groups for discrete logarithm

based cryptosystems is Z×p , where p is a prime number. However, one can

use Chinese remainder theorem to reduce the DLP in smaller groups. If

p − 1 is a product of small primes, then the Pohlig-Hellman algorithm [47]

can solve the discrete logarithm problem in this group very efficiently. This

is the reason we always want p to be a large and safe prime when using

Z×p as an underlined group for discrete logarithm based crypto-systems. A

safe prime is a prime number which equals 2q + 1, where q is a large prime

number. This guarantees that p−1 = 2q has a large prime factor so that the

Pohlig-Hellman algorithm cannot solve the discrete logarithm problem easily.

The only condition that p is a safe prime is not sufficient because there is

a sub-exponential algorithm which is called the index calculus [51]. Thus,

p must be very large (usually at least 1024-bit) to make the cryptosystems

secure.

Consider another example, let N be a positive integer and consider the

case when G = ZN the additive group of integers modulo N . Here the

generators of the group are precisely the x ∈ G such that gcd(x,N) = 1 and

the equation dx ≡ y (mod N) can be solved by finding the multiplicative

inverse of x modulo N with the extended Euclidean algorithm. Thus for this

group, the DLP can be solved in polynomial time O(log2N). Note that if G

is a finite cyclic group of order N then G is isomorphic to ZN in which the

DLP is easy. It is interesting to note that though any two finite cyclic groups

of the same order are isomorphic, computing the image of an element gx in G

under this isomorphism entails solving the DLP. Thus, it is not the structure
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of a group, but its representation, which can make its DLP difficult.

2.2 Diffie-Hellman problem

A more important cryptographic primitive, related to the discrete logarithm

problem is the Diffie-Hellman problem, which states that if g, gx1 and gx2

are given then find gx1x2 . It’s easy to see that if one solves discrete logarithm

problem, then Diffie-Hellman problem can be solved, the other way is not

known to be true for general groups.

The very important and very first cryptosystem based on the discrete

logarithm problem is the ElGamal cryptosystem. It works in any cyclic

subgroup of a group G, however, it need not be secure. Here we describe the

ElGamal cryptosystem. Suppose Alice wishes to send a message m to Bob

over an insecure channel. We assume that Alice’s message, m, is encoded as

an element in the cyclic group G =< g >.

2.3 Description of the ElGamal cryptosystem

Let the integer x be Bob’s private key and g and h = gx are of public

knowledge.

• Alice generates a random integer r ∈ [1, |G|] and computes c1 = gr,

c2 = hrm.

• Alice sends the cipher text (c1, c2) to Bob.

• Bob can recover the message by computing c−x1 c2.

Note that the hardness of the ElGamal cryptosystem is equivalent to the

Diffie-Hellman problem [19, Proposition 2.10]. Most commonly groups used

for the ElGamal cryptosystem are: Z×p , F×pn , the group of rational points on

elliptic curves over a finite field, etc.
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2.4 Description of MOR cryptosystem

The concept of MOR cryptosystem was first proposed by Paeng, Ha, Kim,

Chee and Park [45]. It is a public key encryption scheme which is based on the

difficulty of the discrete logarithm problem in the inner automorphism group

of a non-abelian group G. The MOR cryptosystem is a natural generalization

of the ElGamal cryptosystem. In this case, the discrete logarithm problem

works in the automorphism group of a group G, rather than G itself. This

shows that one can use almost any group for the MOR cryptosystem. The

description of MOR cryptosystem is as follows: Let G =< g1, g2, ..., gk > be

a finite group, and φ be a non-identity automorphism of G. Suppose Alice

wishes to send a message m ∈ G to Bob. Let the integer x be a Bob’s private

key and {φ(gi)}ki=1, {φx(gi)}ki=1 are public.

• Alice generates a random integer r ∈ [1, |G|] and computes c1 = φr,

c2 = φrx(m).

• Alice sends the ciphertext (c1, c2) to Bob.

• Bob can recover the message by computing c−x1 ◦ c2.

Alice knows the order of the automorphism φ; she can use the identity φt−1 =

φ−1 whenever φt = 1 to compute φ−xr. Note that if one can solve the

Diffie-Hellman problem in 〈φ〉, he can break the MOR cryptosystem. This

follows from the fact that φr and φx are public. If one can solve the Diffie-

Hellman problem, one can compute φrx and get the plaintext. The following

theorem proves the converse, thus the hardness to break MOR cryptosystem

is equivalent to the Diffie-Hellman problem in the group < φ >.

Theorem 2.4.1. [29, Theorem 3.1]. If there is an oracle that can decrypt

arbitrary ciphertext for the MOR cryptosystem, one can solve the Diffie-

Hellman problem in 〈φ〉.
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In a practical implementation of MOR cryptosystem, there are two things

that matter the most.

• Note that the public key used in MOR cryptosystem is presented as

an action of automorphism on generators of group G. So the size of

public-key depends on the number of generators and, also depends on

the size of their representations.

• Efficient algorithm to solve the word problem. This means, given

G =< g1, g2, ..., gk > and g ∈ G, is there an efficient algorithm to write

g as a word in g1, g2, ..., gk ? The reason of this importance is immediate

- the automorphisms are presented as action on generators and if one

has to compute φ(g), then the word problem must be solved.

The obvious question is: what are the right groups for the MOR cryptosys-

tem? Since its inception several people have tried to provide different candi-

date for G and have analyzed the security of corresponding MOR cryptosys-

tem. To get the flavor, one can use a d-dimensional vector space (V,+) over

Fq as an underlying group for MOR cryptosystem.

2.4.1 MOR cryptosystem using (V,+)

To build the MOR cryptosystem using (V,+) we need to understand its

automorphisms. Note that the automorphism group of V is GL(d, q), hence

the MOR cryptosystem on V is equivalent to the ElGamal cryptosystem

over GL(d, q). Therefore the security of MOR cryptosystem depends on the

hardness of DLP in GL(d, q). Now, we can ask ourself how hard is DLP in

GL(d, q)? Menezes and Wu [35] studied this problem and proved that DLP

in GL(d, q) is no more difficult than the DLP in Fqd . Their approach is as

follows: Let A and B = Ax are the elements of GL(d, q), we can find the

value of x as follows: Factorize the characteristic polynomial of A into its
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irreducible factors over Fq and go to the splitting field of each irreducible

factor. Then the discrete logarithm problem in GL(d, q) can be reduced to

the discrete logarithm problem in the splitting fields Fqt , where 1 ≤ t ≤ d.

If the characteristic polynomial is irreducible, then the discrete logarithm

problem in A reduces to the discrete logarithm problem in Fqd . Thus the

DLP in GL(d, q) is no harder than the DLP in Fqd . This d is called the

security advantage, or the embedding degree.

Now, the natural question arises: can we do better in terms of embedding

degree than the case of MOR with V ? Paeng, et al. proposed the MOR cryp-

tosystem using group SL(2,Zp) o Zp. Later, Tobias [60], Paeng [44] showed

that MOR using SL(2,Zp)oZp is not harder than MOR using SL(2,Zp) and

as a consequence of Mahalanobis work [28] we can see that this has embedding

degree 2. In an attempt to study the MOR cryptosystem using the finite p-

groups Mahalanobis [29] used the p′-automorphisms (an automorphism φ of a

p-group G is a p-automorphism if its order is power of p and p′-automorphism

if its order is co-prime to p.), and showed that there are secure MOR cryp-

tosystems on a p-group. However, they offer no advantage than working with

matrices over the finite field Fp. This fact motivated Mahalanobis to use the

matrix groups for the study of MOR cryptosystem in the hope of achieving

higher embedding degree. So, in that direction Mahalanobis [27] used the

group of unitriangular matrices for the MOR cryptosystem and showed that

the MOR cryptosystem over the group of unitriangular matrices over Fq is

as secure as the ElGamal cryptosystem over the finite field Fq. Further, Ma-

halanobis [28] studied the MOR cryptosystem over SL(d, q) and showed that

if one assumes that the only way to break the proposed MOR cryptosystem

is to solve the discrete logarithm problem in the automorphism group, then

MOR cryptosystem over SL(d, q) is as secure as the ElGamal cryptosystem

over Fqd . Thus, has the embedding degree equal to d. Here we describe the
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approach used by Mahalanobis for the study of MOR cryptosystem using

SL(d, q).

2.4.2 MOR cryptosystem using SL(d, q)

To build a MOR cryptosystem using any group G one needs to understand

the automorphism group of G. Let φ be an automorphism of SL(d, q), it is

well-known [11,14,56] that φ = cχιδγθ, where cχ is a central automorphism,

ι is an inner automorphism, δ is a diagonal automorphism, γ is a graph

automorphism and θ is a field automorphism. The group of central automor-

phisms are too small and DLP in field automorphisms reduces to a discrete

logarithm in the field Fq. So there is no benefit of using these in a MOR

cryptosystem. The graph automorphism is just a transpose inverse map.

Thus, the only automorphisms which show a potential to be a right candi-

date for MOR cryptosystem with SL(d, q) are conjugation automorphisms.

Note that, our automorphisms are presented as action on generators. An in-

ner automorphism can be thought as a linear operator on a d2−dimensional

algebra of matrices. Thus for a fixed basis, DLP in < φ > can be reduced

to DLP in GL(d2, q). Thus, if we can recover the conjugating matrix from

the action on generators, then the security is Fqd , if not then the security is

Fqd2−1 because characteristics polynomial of φ can have an irreducible factor

of degree at most d2 − 1 (φ(1) = 1 implies 1 is always an eigenvalue). So

from these, we conclude that for a secure MOR cryptosystem we must look at

automorphisms that act by conjugation, as the inner automorphisms. Inner

automorphisms form a normal subgroup of Aut(G) and usually constitute

the bulk of automorphisms.

If φ is an inner automorphism, say ιg : X 7→ gXg−1, we are interested in

determinng the conjugating element g. Note that the group homomorphism

G → Inn(G) given by g 7→ ιg is surjective. Thus if G is generated by
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g1, g2, . . . , gs then Inn(G) is generated by ιg1 , . . . , ιgs . Let φ be an inner

automorphism and if we can find gj, j = 1, 2, . . . , r, generators, such that

φ =
r∏
j=1

ιgj
then φ = ιg, where g =

r∏
j=1

gj. This implies that our problem is

equivalent to solving the word problem in Inn(G). Note that solving word

problem depends on how the group is represented and it is not invariant

under group homomorphisms. Thus the Gaussian elimination algorithm used

to solve the word problem in the special linear group does not help us in the

above situation.

Suppose we have given φ and φx, want to find x. Without loss of gener-

ality, we can assume that φ is an inner automorphism. To find the value of

x, the standard trick used is to recover the conjugating matrix up to scalar

multiple and then solved DLP problem in matrices using the Menezes and

Wu’s idea [35]. Here we briefly describe the procedure of recovering the

conjugating matrix.

Recovering the conjugating matrix

As we discussed earlier inner automorphisms φ : X 7→ gXg−1, for some ma-

trix g, are the best candidates for MOR cryptosystem with SL(d, q). Recall

that the automorphisms used for MOR cryptosystem are presented as an ac-

tion on generators. So, the strategy to recover the conjugating matrix g is to

use the action of automorphisms on elementary matrices xi,j = I + tei,j

for i 6= j. Let g = [C1, C2, . . . , Cd], where Ci for i = 1, . . . , d are the

columns of the matrix g. Consider the action of φ on the elementary ma-

trices: φ(xi,j(t)) = g(I + tei,j)g−1 = I + tgei,jg
−1. Observe that the effect

of multiplying ei,j on left with g−1 gives us a matrix whose all rows are zero

except the ith row, which is nothing but the jth row of g−1. Since g is non-

singular implies that at least one of the entry in each row has to be non-zero.

Now if we compute gei,jg−1 then we can observe that each of the column is
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a constant multiple of the ith column of g and one of these columns must

be non-zero. Next, we compute g(I + ei,i+1)g−1 − I for each 1 ≤ i ≤ d − 1

and choose a non-zero column C ′i. From these C ′i construct a d × d matrix

B whose first d − 1 columns are C ′i, 1 ≤ i ≤ d − 1 and the dth column is

a non-zero column of g(I + ed,1)g−1 − I. As each column of this matrix is

a constant multiple of ith column of g, we can decompose B as B = gD,

where D = diag(a1, . . . , ad) is a diagonal matrix with each diagonal entry is

equal to the constant multiple in the respective column of B. Thus, we have

recovered the matrix g up to a diagonal matrix. Further, we can see that

B−1φ(X)B = D−1XD and hence B−1(I + ei,j)B− I = a−1
i ajei,j. In particu-

lar, compute B−1(I + ei,j)B − I for j = 1, i = 1, 2, . . . , d and form a matrix

D′ = diag(1, a1a
−1
2 , a1a

−1
3 , . . . , a1a

−1
d ). Finally, we observe that BD′ = a1g

and hence we have found g up to a scalar multiple. That means from φ we

can recover g up to scalar multiple.

Similarly, we can recover gx up to scalar multiple from φx say bgx. Thus

from a1g and bgx we compute (ag)q−1 = gq−1 and (bgx)q−1 = gx(q−1). Once

we get rid of the scalar multiples, we recover the value of x by solving DLP

in a matrix group < gq−1 >. Thus the DLP in 〈φ〉, where φ is conjugation

automorphism reduces to the DLP in 〈gq−1〉. Observe that if we choose g

nicely such that gq−1 = 1 one can avoid the above attack.

However, one could use the eigenvalues of g to bypass that argument and

recover the value of x by solving the DLP in a finite field Fqd as follows:

Suppose λ1, λ2, · · · , λd are the eigenvalues of g. Then λx1 , λx2 , . . . , λxd becomes

the eigenvalues of gx and thus ag has eigenvalues aλ1, aλ2, . . . , aλd; bgx has

eigenvalues bλx1 , bλx2 , . . . , bλxd. Next, compute λi

λj
and ( λi

λj
)x, by taking quo-

tients. Notice that these quotients belong to Fqd . As there is no unique way

to order the eigenvalues, one might not be able to match a quotient with its

power. Then we might have to deal with several quotients. If we choose d
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moderately large then one need to do a significant number of computations

to get a match. However, in most of practical applications we choose d small

and so this search is not going to cost much; moreover one can do this in

parallel. Once we get a match, we can solve the DLP in Fqd and recover the

value of x. Thus, the DLP in 〈φ〉 reduces in DLP in Fqd .

For the implementation of MOR cryptosystem, it is very important to

have an efficient algorithm to solve the world problem; one can use the Gaus-

sian elimination algorithm to take care of that part. The public key depends

on the number of generators of the group. Thus, the less number of gener-

ators of the group, the better the cryptosystem. To settle this problem one

can use two generators due to Albert and Thompson [3], C = 1+ed−1,2 +ed,1

and D = (−1)d(e1,2−e2,3 +
d∑
i=1

ei,i+1). One can recover the elementary matri-

ces from these two generators constructively [29, Theorem 8.1] thus one can

use them effectively to publish the public key.

In this thesis, we have studied the MOR cryptosystem using finite orthog-

onal groups. We will address both of the above-mentioned questions about

the key size and word problem.



Chapter 3

Chevalley groups

This chapter contains some basic definitions, terminology, notation and

known theory that serve as a prerequisite for this thesis. We will describe the

elementary matrices which we have used later in our algorithms. In section

3.1, we briefly describe the construction of Chevalley groups, we also describe

several subgroups of Chevalley groups which we need in the construction of

twisted Chevalley groups [section 3.2]. In section 3.3, we give the definitions

of various automorphisms of Chevalley groups which will be used in later

chapters, and we finally state Theorem 3.4.1 of Dieudonne which helps us to

choose the right automorphisms of finite orthogonal groups to build a secure

MOR cryptosystem.

To perform the row-column operations, our algorithm in chapter 4 uses

the set of elementary matrices which are nothing but the Chevalley genera-

tors which comes from the theory of Chevalley groups. For the sake of com-

pleteness of this thesis, we briefly describe the theory of Chevalley groups.

Throughout this chapter, we follow the notations from [11] and [17]. The

reason we are taking this route, is to handle all the orthogonal groups of our

interest uniformly.

15
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3.1 Chevalley groups

A Lie algebra is called simple if it is non-Abelian and has no non-zero proper

ideals. To define the Chevalley groups, we first describe the construction of

Chevalley basis.

Chevalley basis

Let L be a simple Lie algebra over C. It is well known that a simple Lie

algebra can be decomposed as L = H ⊕ ∑
r∈Φ Lr, where H is a Cartan

subalgebra of L, Φ is a root system of L and for r ∈ Φ ⊆ H∗, H∗ is a dual

of H and Lr = {x ∈ L | [x, h] = r(h)x, ∀h ∈ H}. For r ∈ Φ, hr := 2r
(r,r) is

called the co-root of r. Here the scalar product ( , ) : Rn × Rn → R is the

usual inner product on the Euclidean space containing the roots. Thus we

have:

(r, s) = ||r|| ||s||cos(θ),

where θ is the angle between the roots r and s. Define the reflection in the

hyperplane orthogonal to r,

wr(x) = x− 2(r, x)
(r, r) r.

The group generated by the reflections wr , r ∈ Φ, is called the Weyl group of

Φ. Let L be a simple Lie algebra over C. We are interested in constructing

the Chevalley group over an arbitrary field K, so in order to do that one

needs to pass by a basis of L, called Chevalley basis. By fixing an order in

the Euclidean space, we get a system of positive roots Φ+ and negative roots

Φ− so that Φ = Φ+⋃Φ−. Let er ∈ Lr for r ∈ Φ+ be a non-zero element

of Lr then there exists unique elements e−r ∈ L−r for r ∈ Φ+, such that

[er, e−r] = hr. Let Π = {p1, p2, . . . , pl} be a system of simple roots, i.e.,

any root is either non-positive or non-negative integer linear combination

of simple roots. We state the Chevalley basis theorem which helps in the

construction of Chevalley groups over an arbitrary field.



3.1. Chevalley groups 17

Theorem 3.1.1. [11, Theorem 4.2.1] Let L be a simple Lie algebra over C
and L = H ⊕∑r∈Φ Lr be a Cartan decomposition of L. Let hr be a co-root
corresponding to the root r. Then, for each root r ∈ Φ, an element er can
be chosen in Lr such that

[er, e−r] = hr,

[er, es] = ±(p+ 1)er+s,
where p is the greatest integer for which s− pr ∈ Φ.

The elements {hr, r ∈ Π; er, r ∈ Φ} form a basis for L, called a Chevalley
basis. The elements multiply together as follows:

[hr, hs] = 0,
[hr, es] = Arses,

[er, e−r] = hr,

[er, es] = 0 if r + s /∈ Φ,
[er, es] = Nr,ser+s if r + s ∈ Φ,

where Ars := 2(r,s)
(r,r) , Nr,s = ±(p+1) and −pr+s, · · · ,−r+s, s, r+s, · · · , qr+s

is a r-chain passing through s. The multiplication constants of the algebra
with respect to Chevalley basis are all integers.

Chevalley group is a subgroup of the automorphism group of the simple

Lie algebra L. Chevalley groups over an arbitrary field can be constructed by

generalizing the construction of the Chevalley group of a simple Lie algebra

defined over the complex numbers. The generators of the Chevalley group

over a given field K are constructed with the help of a Chevalley basis of the

Lie algebra, the ad-functor and the exponential map.

The Exponential Map

The generators for Chevalley group are obtained by applying the exponential

map on the functions ad(er), r ∈ Φ, where ad is the Lie algebra homomor-

phism ad : L→ End(L) given by ad(x).y = [x, y].

Definition 3.1.1. Let L be a Lie algebra defined over a field of characteristic
0. Then define the exponential map by, exp : Der(L)→ Aut(L),

δ → exp δ : = 1 + δ + δ2

2! + · · ·+ δn−1

(n− 1)! , if δn = 0.

Note that the map exp δ is, in fact, an automorphism of L [11, section 4.3].
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Since ad(er) are nilpotent derivations, the elements xr(ξ) := exp(ξad(er)) are

therefore automorphisms of L for ξ ∈ C, r ∈ Φ. Action of these automor-

phisms on the Chevalley basis is given as follows, if r and s are linearly

independent:

xr(ξ)er = er,

xr(ξ)e−r = e−r + ξhr − ξ2er,

xr(ξ)hr = hr − 2ξer,

xr(ξ)hs = hs − Asrξer,

xr(ξ)es = Σq
i=0Mr,s,iξ

ieir+s,

with Mr,s,i := 1
i!Nr,sNr,r+s · · ·Nr,(i−1)r+s = ±

(
p+i
i

)
, where p is defined by the

r-chain through s. Observe that the automorphisms xr(ξ), r ∈ Φ, ξ ∈ C

transform the basis elements into linear combinations of basis elements. The

coefficients are integral multiples of positive powers of ξ [11, section 4.3].

Now, we are ready to define the Chevalley group of type L over C. The

group L(C) := 〈xr(ξ) | r ∈ Φ, ξ ∈ C〉 is called Chevalley group of type L over

C. The property of the automorphisms xr(ξ) transforming the basis elements

into a linear combinations of basis elements with the coefficients which are

integral multiples of positive powers of ξ enables us to define automorphisms

of this type over an arbitrary field.

Let L be a simple Lie algebra defined over C and let {hr, r ∈ Π; er, r ∈

Φ} be a Chevalley basis of L. Furthermore, let LZ be the subset of L consist-

ing of all integer linear combinations of the Chevalley basis elements. Note

that LZ becomes a Lie algebra over Z. Let K be an arbitrary field and define

LK := K
⊗
LZ. Since LZ and K are additive abelian groups, LK , is also an

additive abelian group. Every element a of LK can be written as follows:

a =
∑
r∈Π

λr(1K ⊗ hr) +
∑
r∈Φ

µr(1K ⊗ er),

where 1K is the unit element of K and λr, µr ∈ K. Define scalar multiplica-



3.1. Chevalley groups 19

tion as

ka =
∑
r∈Π

kλr(1K ⊗ hr) +
∑
r∈Φ

kµr(1K ⊗ er),

with this scalar multiplication, LK becomes a K-vector space. If we write

h
′
r := 1K ⊗ hr and e

′
r := 1K ⊗ er then {h

′
r, r ∈ Π; e′r, r ∈ Φ} is a basis of the

vector space LK , called a Chevalley basis of LK . Then one can define a Lie

algebra structure on LK as follows:

[1⊗ x, 1⊗ y] : = 1⊗ [x, y],

for basis elements x, y and extended by linearity.

Thus LK is a Lie algebra over K. Moreover, the multiplication constants of

LK with respect to {h′r, r ∈ Π; e′r, r ∈ Φ} are the same as the multiplication

constants of L with respect to the basis {hr, r ∈ Π; er, r ∈ Φ} [11, page 63]

reduced to the field K.

Let Ar(ξ) denote the matrix corresponding to xr(ξ) with respect to the

Chevalley basis {hr, r ∈ Π; er, r ∈ Φ} of L. The entries of Ar(ξ) have the

form aξi, where a and i are integers, i ≥ 0. Obtain the matrix A′r(t) from

Ar(ξ) by replacing each coefficient aξi by a′ti, where a′ is the element of the

prime field of K corresponding to a ∈ Z and t ∈ K. Without loss of anything

we can suppress dash from the notation.

Let xr(t) : LK → LK be the linear map corresponding to the matrix Ar(t)

with respect to the basis {hr, r ∈ Π; er, r ∈ Φ}. In fact, xr(t) is an

automorphism of LK , ∀ r ∈ Φ, t ∈ K [11, proposition 4.4.2]. The elements

xr(t) act on the Chevalley basis of LK in the same way as the elements xr(ξ)

on the Chevalley basis of L.

Chevalley group

The Chevalley group of type L over the field K is the following group of

Lie algebra automorphisms of LK :

L(K) : = 〈xr(t) | r ∈ Φ, t ∈ K〉.



20 Chapter 3. Preliminaries for Chevalley groups

The Chevalley group L(K) is determined up to isomorphism by the simple

Lie algebra L over C and the field K [11, proposition 4.4.3].

It is well known that there are four infinite families of simple lie algebras

(of classical type) over C and denoted as Al(l ≥ 1), Bl(l ≥ 2), Cl(l ≥ 3) and

Dl(l ≥ 4). The main tool used in the classification of these algebras is Dynkin

diagram. Let Al(K), Bl(K), Cl(K) and Dl(K) be the Chevalley groups cor-

responding to the simple Lie algebras Al, Bl, Cl and Dl respectively. In the

following section, we show that the Chevalley groups Al(K), Bl(K), Cl(K)

and Dl(K) are isomorphic to certain classical groups [11, section 11.2].

3.2 Identification of Chevalley groups with
classical groups

Let G = L(K) be the Chevalley group of type L over K and denote Ḡ be

the group of matrices generated by the elements exp(ter) for all r ∈ Φ and

all t ∈ K. By [11, theorem 4.5.1] we have

exp(t ad er) · x = exp(ter) · x · exp(ter)−1, for all x ∈ LK .

Thus there is a homomorphism σ of Ḡ onto G = L(K) such that kernel of σ

is the center Z of Ḡ [11, Lemma 11.3.1]. The group Ḡ is close to groups of our

interest. In the later section, we will abuse the notation slightly and denote

the generators of Ḡ as xr(t). To understand the diagonal automorphisms of

Chevalley groups G = L(K) let’s define some subgroups of it.

3.2.1 Subgroups of Chevalley groups
Definition 3.2.1. For r ∈ Φ, the subgroups Xr := 〈xr(t) | t ∈ K〉 are called
root subgroups of G.

Now for a fixed simple root system Π of the root system Φ define U to

be a subgroup of G generated by the root subgroups Xr, r ∈ Φ+ and define

V to be the subgroup of G generated by the root subgroups Xr, r ∈ Φ−.
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For every r ∈ Φ there is a surjective homomorphism [11, Theorem 6.3.1]

φr : SL(2, K) → 〈Xr, X−r〉, which maps

1 t

0 1

 to xr(t) and

1 0

t 1

 to

x−r(t). Let us define hr(λ) as φr(

λ 0

0 λ−1

) and nr(t) as φr(

 0 t

t−1 0

).

Set nr = nr(1) for notational convenience. We now define some important

subgroups, H := 〈hr(t) | r ∈ Φ, t ∈ K∗〉 and N := 〈H, nr | r ∈ Φ〉.

In order to identify the Chevalley groups with classical groups, we will

first describe a matrix representation of each of the simple Lie algebras Al,

Bl, Cl and Dl.

3.2.2 Type Al

The Al type complex Lie algebra is sll+1(C) consisting of trace 0 matrices of

size l+1. The set of all diagonal matrices in sll+1(C) is a Cartan subalgebra,

and the Cartan decomposition with respect to this gives a Chevalley basis.

The roots (eigenvectors for non-zero eigenvalues) which are part of Chevalley

basis is given by Φ = {ei,j | 1 ≤ i 6= j ≤ l}, where ei,j is the elementary

matrix with (i, j)-coefficient 1 and other coefficient 0. A Chevalley basis is

obtained from taking union of Φ with the set {[ei,i+1, ei+1,i] | 1 ≤ i ≤ l}

where the bracket operation is given by [X, Y ] = XY − Y X. Thus the

generators for Ḡ of type Al over the field K are xi,j(t) = I+ tei,j, where i 6= j

and t ∈ K. Hence Ḡ = SL(l + 1, K) and Al(K) ∼= PSL(l + 1, K).

It can be checked that the set of n×n matrices X satisfying TXA+AX =

0, where A is an n×n matrix over C form a Lie algebra [11, Lemma 11.2.2].

Moreover, if X is nilpotent matrix satisfying this condition then
T (expX)A(expX) = A.
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3.2.3 Type Bl

The Bl type Lie algebra is o2l+1(C) = {X ∈M(2l + 1,C) | TXβ + βX = 0},

where β is given by


2 0 0

0 0 Il

0 Il 0

.

Following the theory of Lie algebra, we index rows by 0, 1, · · · , l,−1, · · · ,−l.

The set of diagonal matrices gives a Cartan subalgebra and the Cartan

decomposition gives us a Chevalley basis. Thus the roots in this case

are Φ = {ei,j − e−j,−i,−e−i,−j + ej,i, ei,−j − ej,−i, −e−i,j + e−j,i, 2ei,0 −

e0,−i, −2e−i,0 + e0,i | 1 ≤ i < j ≤ l}. The simple roots are Π =

{ei,i+1 − e−(i+1),−i, 2el,0 + e0,−l | 1 ≤ i ≤ l − 1}.

Let G = Bl(K), then Ḡ is a group of matrices generated by elements X

satisfying TXβX = β. Such matrices represent isometries of the quadratic

form Q(x) = x2
0 + x1x−1 + x2x−2 + · · · + xlx−l and Ḡ is a subgroup of

O2l+1(K,Q) generated by the matrices

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j − ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j − e−j,i) for i < j,

xi,0(t) = I + t(2ei,0 − e0,−i)− t2ei,−i,

x0,i(t) = I + t(−2e−i,0 + e0,i)− t2e−i,i,

where 1 ≤ i, j ≤ l and t ∈ K. Thus, in this case Ḡ = Ω2l+1(K) and the

Chevalley group Bl(K) is isomorphic to PΩ2l+1(K). With the above men-

tioned generators, the elements d(ξ) =diag(1, 1, . . . , 1, ξ︸ ︷︷ ︸
l

, 1, . . . , 1, ξ−1︸ ︷︷ ︸
l

) and

wl = I−el,l−e−l,−l−el,−l−e−l,l generate the orthogonal group O(2l+1, K).
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3.2.4 Type Cl

The Cl type Lie algebra is sp2l(C) = {X ∈ M(2l,C) | TXβ+βX = 0}, where

β is given by

 0 Il

−Il 0

. Following the theory of Lie algebra, we index

rows by 1, . . . , l,−1, . . . ,−l. The set of diagonal matrices gives a Cartan

subalgebra and the Cartan decomposition gives us a Chevalley basis. Thus

the roots in this case are Φ = {ei,j− e−j,−i,−e−i,−j + ej,i, ei,−j + ej,−i, e−i,j +

e−j,i, ei,−i, e−i,i | 1 ≤ i < j ≤ l}. The simple roots are Π = {ei,i+1 −

e−(i+1),−i, el,−l | 1 ≤ i ≤ l − 1}.

Thus the generators for Ḡ of type Cl over the field K are: For 1 ≤ i, j ≤ l,

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j + ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j + e−j,i) for i < j,

xi,−i(t) = I + tei,−i,

x−i,i(t) = I + te−i,i,

where t ∈ K. Thus, in this case Ḡ = Sp(2l,K) and the Chevalley group

Cl(K) is isomorphic to PSp(2l,K).

3.2.5 Type Dl

The Dl type Lie algebra is o2l(C) = {X ∈ M(2l,C) | TXβ + βX = 0}, where

β is given by

0 Il

Il 0

. Following the theory of Lie algebra, we index rows by

1, . . . , l, −1, . . . ,−l. The set of diagonal matrices gives a Cartan subalgebra

and the Cartan decomposition gives us a Chevalley basis. Thus the roots in

this case are Φ = {ei,j−e−j,−i,−e−i,−j+ej,i, ei,−j−ej,−i, e−i,j+e−j,i, | 1 ≤ i <

j ≤ l}. The simple roots are Π = {ei,i+1 − e−(i+1),−i, e(l−1),−l − el,−(l−1) | 1 ≤

i ≤ l − 1}.
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Let G = Dl(K), then Ḡ is a group of matrices generated by elements X

satisfying TXβX = β. Such matrices represent isometries of the quadratic

form Q(x) = x1x−1 + x2x−2 + · · ·+ xlx−l and Ḡ is a subgroup of O2l(K,Q).

Thus the generators for Ḡ of type Dl over the field K are: For 1 ≤ i, j ≤ l,

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j − ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j − e−j,i) for i < j.

where t ∈ K. Thus in this case Ḡ = Ω2l(K) and the Chevalley group Bl(K) is

isomorphic to PΩ2l(K). With the above mentioned generators, the elements

d(ξ) =diag(1, . . . , 1, ξ︸ ︷︷ ︸
l

, 1, . . . , 1, ξ−1︸ ︷︷ ︸
l

) and wl = I − el,l − e−l,−l − el,−l − e−l,l

generate the orthogonal group O(2l,K).

Let us summarize the above groups in the following table:

Table 3.1: Identification of Chevalley groups

Type Group of our interest Ḡ G = L(K)
Al SL(l + 1, K) SL(l + 1, K) PSL(l + 1, K)
Bl O(2l + 1, K) Ω2l+1(K) PΩ2l+1(K)
Cl Sp(2l,K) Sp(2l,K) PSp(2l,K)
Dl O(2l,K) Ω2l(K) PΩ2l(K)

3.3 Twisted Chevalley groups

We have seen that the Chevalley groups of type Al, Bl, Cl, Dl can be identi-

fied with certain classical groups, but only some of the classical groups can be

interpreted as Chevalley groups as described in the previous section. There

are classical groups which are not Chevalley groups, for example the unitary

groups and the second class of orthogonal groups in even dimension. Stein-

berg [55] generalized the idea of Chevalley and introduced twisted Chevalley
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groups to produce even more new classical groups. These groups are now

called Steinberg groups. These groups can be constructed in those cases

where the Dynkin diagram has symmetry. We are interested in the group

of the type 2Dl(K). The exposition here follows [11, Chapters 13 &14] and

serves as a motivation for choosing the set of generators described below. Let

L be a simple Lie algebra of classical type, and G = L(K) be a Chevalley

group of type L over K. Suppose the Dynkin diagram of L has a non-trivial

symmetry ρ. Then there is a graph automorphism γ of L(K) correspond-

ing to ρ. We can choose a field automorphism θ such that σ = γθ satisfies

σn = 1, where n is the order of ρ. Then by [11, Proposition 13.4.1], we have

σ(U) = U , σ(V ) = V , σ(H) = H and σ(N) = N where U , V , H and N are

subgroups of L(K) described as before. Denote U1 = {x ∈ U | σ(x) = x}

and V1 = {x ∈ V | σ(x) = x}. Consider the group G1 generated by U1 and

V1. These are called the twisted groups. We describe the twisted orthogonal

groups in the following section.

3.3.1 Twisted orthogonal group

For the purpose of computations in chapter 4, we choose a bilinear form β

as


β0 0 0

0 0 Il−1

0 Il−1 0

, where β0 is

1 0

0 ε

, ε is a fixed non-square element of

K and Il−1 is the identity matrix of size l− 1 over K. Note that the twisted

orthogonal group obtained using Steinberg’s construction is with respect to a

different basis [11, Theorem, 14.5.2]. Suppose the characteristics of the field

is odd and ε is a non-square element then the twisted orthogonal group is

the set of matrices X satisfying TXβX = β. As one of the consequences of

our algorithm, we can prove that the following elementary matrices generate

the group G1.
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The generators for the group G1 are:

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j − ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j − e−j,i) for i < j,

xi,1(t) = I + t(e1,i − 2e−i,1)− t2e−i,i,

x1,i(t) = I + t(−e1,−i + 2ei,1)− t2ei,−i,

xi,−1(t) = I + t(e−1,i − 2εe−i,−1)− εt2e−i,i,

x−1,i(t) = I + t(−e−1,−i + 2εei,−1)− εt2ei,−i,

x1(t, s) = I + t(e1,1 − e−1,−1)− (e1,1 + e−1,−1) + s(e−1,1 + εe1,−1),

x2 = I − 2e−1,−1, where s2 + εt2 = 1.

If the characteristics of field is 2 then the twisted orthogonal group is a group

of matrices which represents the isometries of the quadratic form Q(x) =

α(x2
1 + x2

−1) + x1x−1 + x2x−2 + · · ·+ xlx−l, where αt2 + t+ α is irreducible.

In this case the generators for the group G1 are:

xi,j(t) = I + t(ei,j − e−j,−i) for i 6= j,

xi,−j(t) = I + t(ei,−j − ej,−i) for i < j,

x−i,j(t) = I + t(e−i,j − e−j,i) for i < j,

x1,−i(t) = I + te1,−i + tei,−1 + αt2ei,−i,

x−1,−i(t) = I + te−1,−i + tei,1 + αt2ei,−i,

x0 = I + (t− 1)e1,1 + (s− 1)e−1,−1 + pe1,−1 + re−1,1,

where ts+ pr = 1.

3.4 Description of automorphisms of classical
groups

For a discussion of diagonal automorphisms of Chevalley groups we need the

diagonal subgroups of the similitude groups.
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Definition 3.4.1. (Diagonal group). The diagonal groups are defined to be
the group of non-singular diagonal matrices in the corresponding similitude
group and are as follows: in the case of GO(2l + 1, K) it is

{diag (α, λ1, . . . , λl, µλ
−1
1 , . . . , µλ−1

l ) |λ1, . . . , λl, α
2 = µ ∈ K×},

and in the case of GO(2l,K) and GSp(2l,K) it is

{diag (λ1, . . . , λl, µλ
−1
1 , . . . , µλ−1

l ) |λ1, . . . , λl, µ ∈ K×}.

Conjugation by these diagonal elements produce diagonal automorphisms

in the respective Chevalley groups.

Definition 3.4.2. (Orthogonal similitude groups). The orthogonal simili-
tude group is defined as the set of matrices X of size d as follows:

GO(d,K) = {X ∈ GL(d,K) | TXβX = µβ, µ ∈ K×},

where d = 2l + 1 or 2l and β is a non-degenerate symmetric bilinear form.

Definition 3.4.3. (Symplectic similitude group). The symplectic similitude
group is denoted by GSp(2l,K) = {X ∈ GL(2l,K) | TXβX = µβ, µ ∈ K×},
where β is a non-degenerate symplectic form.

Here µ is called similitude factor which depends on the matrix X. It

is easy to see that the similitude factor µ defines a group homomorphism

from the similitude group to K× and the kernel is the orthogonal group

O(d,K) ,when β is symmetric and symplectic group Sp(2l,K), when β is

skew-symmetric respectively [23, Section 12]. Note that scalar matrices λI

for λ ∈ K× belong to the center of similitude groups. The similitude groups

are thought of analog of what GL(d,K) is for SL(d,K).

To build a MOR cryptosystem we need to work with the automorphism

group of Chevalley groups. In this section, we describe the automorphism

group of classical groups following Dieudonne [14].

Conjugation Automorphisms: For t ∈ G the map given by g 7→ tgt−1 is

an automorphism of G, called an inner automorphism. More generally, if G

is a normal subgroup of N then the conjugation maps g 7→ ngn−1 for n ∈ N
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are called conjugation automorphisms of G.

Central Automorphisms: Let χ : G → Z(G) be a group homomorphism

to the center of the group. Then the map g 7→ χ(g)g is an automorphism

of G, known as the central automorphism. There are no non-trivial central

automorphisms for perfect groups, for example, the adjoint Chevalley groups

SL(l + 1, K) and Sp(2l,K), l ≥ 2. In the case of orthogonal groups, the

center is of two elements {I,−I}. Any map χ maps Ωd(K) to identity. This

implies that there are at most four central automorphisms in this case.

Field Automorphisms: Let f ∈ Aut(K). Then the map xr(t) 7→ xr(f(t))

for all r ∈ φ and t ∈ K extends to an automorphism of G. These are called

field automorphisms. In terms of matrices these amount to replacing each

term of the matrix by its image under f .

Graph Automorphisms: Symmetry of Dynkin diagram induces such auto-

morphisms. This way we get automorphisms of order 2 for Al(K), l ≥ 2 and

Dl(K), l ≥ 4. We also get an automorphism of order 3 for D4(K). This map

is given by xr(t) 7→ xr̄(γrt), where r 7→ r̄ is Dynkin diagram automorphism

and γr = ±1. In the case of Al for l ≥ 2, the map x 7→ A−1Tx−1A where

A =



1

−1

1

−1
...


explicitly describes the graph automorphism. In the case of Dl for l ≥ 5,

the graph automorphism is given by x 7→ B−1xB, where B is a permutation

matrix obtained from identity matrix of size 2l× 2l by switching the lth row
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and −lth row. This automorphism is a conjugation automorphism.

Theorem 3.4.1. [14] Let K be a field of odd characteristic and l ≥ 2.

1. For the group SL(l+1, K) any automorphism is of the form iγθ, where
i is a conjugation automorphism defined by elements of GL(l + 1, K)
and γ is a graph automorphism of Al type.

2. For the group O(d,K) any automorphism is of the form cχiθ, where cχ is
a central automorphism, i is a conjugation automorphism by GO(d,K)
elements (this includes the graph automorphism of Dl case).

3. For the group Sp(2l,K) any automorphism is of the form iθ, where i
is a conjugation automorphism by GSp(2l,K) elements.

In all cases, θ denotes field automorphisms.

In the above theorem, conjugation automorphisms are given by conjuga-

tion by elements of a larger group and it includes the group of inner auto-

morphisms. We introduce diagonal automorphisms to make it more precise.

The conjugation automorphism i can be written as a product of ig and δ

where ig is an inner automorphism and δ is a diagonal automorphism.

Diagonal Automorphisms: In the case of Al the diagonal automor-

phisms are given by conjugation by diagonal elements of PGL(l + 1, K) on

Al(q) = PSL(l + 1, K). In the case of Bl, Cl and Dl the diagonal automor-

phisms are given by conjugation by the corresponding diagonal group defined

as above.

Let K be a finite field and G = L(K) be a Chevalley group over K. Stein-

berg described the automorphisms of these groups. We have the following

theorem [11, Theorem 12.5.1] and [55],

Theorem 3.4.2. [55] Let G = L(K) where L is simple, and K(= Fq) is a
finite field. Let φ ∈ Aut(G). Then there exist inner, diagonal, graph and field
automorphisms, denoted by i, δ, γ and θ respectively, such that φ = iδγθ.
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Chapter 4

Algorithms

To build an effective MOR cryptosystem with finite orthogonal group(s)

O(d,K), we need an efficient algorithm to solve the word problem. The

reason of this importance is immediate - Recall that in MOR cryptosystem

public key is presented as an action of an automorphism φ on the generators.

In order to encrypt a message m ∈ O(d,K), one need to compute φ(m) for

an arbitrary element m, thus the word problem in orthogonal groups must be

solved. In this chapter, we present an algorithm to solve the word problem

for twisted orthogonal groups over a field of odd characteristics and orthog-

onal groups over a field of characteristics 2. Our algorithm works for a field

of characteristics zero as well. We also describe the Gaussian elimination

algorithm developed in [8] for the split orthogonal groups.

The basic idea of the algorithm is to use the fact that multiplying any

orthogonal matrix by any one of the elementary generators enables us to

perform row or column operations. The algorithm is slightly different for

matrices of even and odd sizes. For the shake of simplicity and to keep the

presentation uniform we give different algorithms based on the size d.

Gaussian elimination algorithms play very important role in computa-

tional group theory. Gaussian elimination algorithms are seen as a subpro-

cess of the constructive matrix group recognition project. Several attempts

were made to develop Gaussian elimination algorithms for classical groups.

31
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To name a few, Brooksbank [9, section 5] used the similar idea to that in our

algorithm in his constructive group recognition algorithm to solve the word

problem for classical groups. Elementary matrices used by Brooksbank for

the algorithm are the output of a probabilistic Las Vegas algorithm. So, it’s

hard to judge, if he has the same elementary matrices as ours. He does not de-

fine elementary row-column operations. Moreover, he uses a low-dimensional

oracle to solve the word problem. For example, to solve the word problem

in twisted orthogonal groups, he assumes the existence of a four-dimensional

oracle. Our algorithm is more straightforward and works directly with ele-

mentary matrices. It seems that his methods could be modified to produce

a Gaussian elimination algorithm in all classical groups in finite fields of all

characteristics. However, his treatment depends on the primitive element ρ

of F×q and on expressing Fq as a finite dimensional vector space over Fp – the

prime subfield. This suggests that his algorithm would only work for finite

fields.

Costi [13] develops an algorithm similar to ours using standard genera-

tors, these generators are different from elementary matrices. His algorithm

assumes the existence of discrete logarithm oracle to solve the discrete log-

arithm problem in a finite field K. Moreover, Costi’s algorithm is recursive

and cannot be extended to infinite fields.

Cohen, Murray, and Taylor [41] proposed a generalized algorithm using

the row-column operations, using a representation of Chevalley groups. The

key idea there was to bring down an element to a maximal parabolic sub-

group and repeat the process inductively. Here we use the natural matrix

representation of these groups. Thus our algorithm is more direct and works

with matrices explicitly and more effectively.

A novelty of our algorithm is that we do not need to assume that the

Chevalley generators generate the group under consideration. Thus our al-
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gorithm proves independently the fact that these groups are generated by

elementary matrices.

This chapter is organized as follows: in section 4.1 we give the descrip-

tion of orthogonal groups in odd characteristics and even characteristics sep-

arately. In section 4.2, we present the algorithms for O(2l+ 1, K), O+(2l,K)

and O−(2l,K) respectively. The algorithm decsribed for orthogonal groups

over a field of odd characteristics works for the orthogonal groups over a

field of characteristics 0. Henceforth, we treat the case of orthogonal groups

over a field of characteristics 0 as the orthogonal groups over a field of odd

characteristics.
Definition 4.0.1. Let V be a vector space over a field K. A bilinear form
B on V is a map B : V × V −→ K which satisfies the following properties:

B(x1 + x2, y) = B(x1, y) +B(x2, y)
B(αx, y) = αB(x, y)

B(x, y1 + y2) = B(x, y1) +B(x, y2)
B(x, αy) = αB(x, y)

for all x1, x2, x, y1, y2, y ∈ V , all α ∈ K.

A bilinear form B on a vector space V is called symmetric if B(x, y) =

B(y, x) for all x, y ∈ V . A bilinear form B is called alternate or (skew-

symmetric if char K 6= 2) if B(x, x) = 0 for all x ∈ V. By fixing a basis for

V we can write B(x, y) = Txβy, we say B is non-degenerate if det(β) 6= 0.

The set V0 = {u ∈ V | B(u, v) = 0, ∀ v ∈ V } is called the kernel of B.

Definition 4.0.2. Let B be a symmetric bilinear form on a vector space V
over a field K of odd characteristics. A quadratic form on V associated
with the symmetric bilinear form B is a map Q : V −→ K defined as
Q(x) = B(x, x) for all x ∈ V.

Definition 4.0.3. Quadratic form Q is said to be non-singular if the kernel
of the associated bilinear form is zero.

4.1 Orthogonal groups

Let V be a vector space of dimension d over a field K and Q : V → K be

a quadratic form. Consider a symmetric bilinear form B : V × V → K and
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associate a matrix β to B by fixing a basis. Thus B(x, y) = Txβy, where x, y

are column vectors. Here, we recall the definition of the orthogonal group.

Definition 4.1.1. The orthogonal group associated with Q is defined as:
O(d,Q) := {X ∈ GL(V ) |Q(X(v)) = Q(v) for all v ∈ V }.

As the quadratic form is defined in a slightly different way in case of

even characteristics, we describe the orthogonal groups for odd and even

characteristics separately. By fixing a basis for V , we identify GL(V ) with

GL(d,K) and treat the orthogonal group as a subgroup of the matrix group

GL(d,K).

4.1.1 Orthogonal groups for odd characteristics

In this section, we assume that K is of odd characteristics. Recall that

odd characteristics includes characteristics 0 as well. We will work with

non-singular (non-degenerate) quadratic form Q, however, when the charac-

teristics of K is odd this corresponds to β being non-degenerate. Note that

one can easily recover the bilinear form from the quadratic form Q by the

formula

B(x, y) = 1
2 {Q(x+ y)−Q(x)−Q(y)}

and it is easy to see that a matrix X satisfies TXβX = β if and only if

Q(X(x)) = Q(x) for all x ∈ V . We use this relation later in our algorithms.

Let K(= Fq) be a finite field of odd characteristic. We write the di-

mension of V as d = 2l + 1 or d = 2l for l ≥ 1. If d is odd then there

is only one orthogonal group up to conjugation [17, page 79] and thus, we

can fix β as below. In this case, the orthogonal group is simply denoted by

O(2l + 1, q). However, up to conjugation, there are two different orthogonal

groups [17, page 79] in even dimension d = 2l. For the orthogonal group

with even dimension, we fix β as below. We denote these orthogonal groups

by O+(2l, q) and O−(2l, q). The later one is known as the twisted orthogonal

group. Throughout this chapter, we assume that Il is the identity matrix of
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size l over K.

We consider the non-degenerate symmetric bilinear forms β on a vector

space V defined over a field of odd characteristics given by the following

matrices:

• Orthogonal group with odd dimension d = 2l + 1: We fix a basis of V

and index it by 0, 1, 2, . . . , l,−1,−2, ...,−l and β =


2 0 0

0 0 Il

0 Il 0

.

• Orthogonal groups with even dimension d = 2l : The two non-

degenerate symmetric bilinear forms are as follows

1. We fix a basis of V and index it by 1, 2, ..., l,−1,−2, ...,−l and

β =

0 Il

Il 0

.
2. For the twisted form, we fix a basis of V and index it by

1,−1, 2, 3, ..., l,−2,−3, ...,−l and β =


β0 0 0

0 0 Il−1

0 Il−1 0

, where

β0 =

1 0

0 ε

 and ε is a fixed non-square in K.

4.1.2 Orthogonal groups for even characteristics

Assume that char(K)=2, in this case, the quadratic form is defined in a

slightly different way. A quadratic form Q is defined as follows:

Q(λx+ µy) = λ2Q(x) + µ2Q(y) + λµB(x, y)

for all x, y ∈ V , λ, µ ∈ K, and B(x, y) a symmetric bilinear form on V which

is called the associated bilinear form of Q. Putting λ = µ we can see that

B(x, x) = 0 and B(x, y) = B(y, x). Thus B is an alternating form and with
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the suitable choice of basis for V , we can represent the form B by the rank

2r matrix


0 0 0

0 0 Ir

0 Ir 0

. Let V0 = {x ∈ V |B(x, y) = 0, ∀ y ∈ V }, a subspace

of dimension d−2r. Dimension of V0 is called the defect of Q. Here we recall

the definition of non-degenerate quadratic form.

Definition 4.1.2. The quadratic form Q is said to be non-degenerate if no
non-zero vector x ∈ V0 satisfies Q(x) = 0.

Hereafter, we will work with non-degenerate quadratic forms. LetK = Fq

be a finite field of even characteristics. It is well known that if dim(V ) = 2l+1

then there is only one quadratic form up to equivalence [17, Chapter 14]. In

this case we fix a basis for V and index it as 0, 1, 2, . . . , l,−1,−2, . . . ,−l,

thus we can write Q as Q(x) = x2
0 + x1x−1 + . . .+ xlx−l with the associated

bilinear form β =


0 0 0

0 0 Il

0 Il 0

. However, in case of dim(V ) = 2l there are

two quadratic forms up to equivalence [17, Chapter 14] given as below

1. We fix a basis of V and index it as 1, 2, . . . , l,−1,−2, . . . ,−l and form

is Q(x) = x1x−1 + . . . + xlx−l with the associated bilinear form β =0 Il

Il 0

.

2. For the second one (twisted) we rearrange the basis to make the algo-

rithm uniform for both even and odd q and index it by

1,−1, 2, 3, . . . , l,−2,−3, . . . ,−l and the quadratic form is given as

Q(x) = α(x2
1 + x2

−1) + x1x−1 + . . .+ xlx−l with the associated bilinear

form β =


β0 0 0

0 0 Il−1

0 Il−1 0

, where αt2 + t + α is irreducible in K[x]
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and β0 =

0 1

1 0

.
Let Q be a non-degenerate quadratic form as defined above. For fixed basis,

we can note that any isometry g satisfying Q(g(v)) = Q(v) for all v ∈ V also

satisfy Tgβg = β, however, converse is not true. We denote the orthogonal

groups associated with Q by O(2l + 1, K), O+(2l,K) and O−(2l,K) respec-

tively.

The following algorithms work only for the bilinear forms described above.

However, with a proper change of basis, our algorithm works for any equiva-

lent bilinear forms. Our algorithm works well on fields of all characteristics

and sizes.

4.2 Gaussian elimination algorithms for or-
thogonal groups

We first describe the elementary matrices and the row and column operations

for the respective groups. These row and column operations are nothing but

multiplication by elementary matrices from left and right respectively. Here

the elementary matrices used are nothing but the Chevalley generators which

follows from the theory of Chevalley groups and are described in the previous

chapter.

The basic idea of the algorithm is to use the fact that multiplying any

orthogonal matrix by any one of the generators enables us to perform row or

column operations. The relation Tgβg = β gives us some compact relations

among the blocks of g which can be used to make the algorithm more faster.

To make the algorithm simple we will write the algorithm for O(2l + 1, K),

O+(2l,K) and O−(2l,K) separately.
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4.2.1 Gaussian elimination algorithm for O(2l + 1, K)

Elementary matrices (Chevalley generators) of orthogonal groups

of odd size O(2l + 1, K): For 1 ≤ i, j ≤ l and t ∈ K, ξ ∈ K∗

Table 4.1: Elementary matrices for O(2l + 1, K)

Char(K) Elementary matrices
xi,j(t) I + t(ei,j − e−j,−i), for i 6= j

both xi,−j(t) I + t(ei,−j − ej,−i), for i < j
x−i,j(t) I + t(e−i,j − e−j,i), for i < j
xi,0(t) I + t(2ei,0 − e0,−i)− t2ei,−i,

odd x0,i(t) I + t(−2e−i,0 + e0,i)− t2e−i,i,
wi I − ei,i − e−i,−i + ei,−i + e−i,i,

xi,−i(t) I + te0,−i + t2ei,−i,
even x−i,i(t) I + te0,i + t2e−i,i.

Elementary matrices for the orthogonal group over a field of even character-

istics differs from that of odd characteristics so in table 4.1 we made that

distinction and listed them separately in different row according to the char-

acteristics of K.

Let us note the effect of multiplying g by elementary matrices described

in table 4.2. We write an element g ∈ O(2l + 1, q) as g =


α X Y

E A B

F C D

,
where A, B, C, D are l × l matrices, X and Y are 1 × l matrices, E and

F are l × 1 matrices. Note that any isometry g satisfying the quadratic

form Q also satisfy Tgβg = β. In case of char(k) even, we can construct

the elements wi, which interchanges the ith row with −ith row, using the

relation wi = (I + e0,i + e−i,i)(I + e0,−i + ei,−i)(I + e0,i + e−i,i) = I + ei,i +

e−i,−i + ei,−i + e−i,i. In case of the orthogonal groups O(2l + 1, k) over a

field of odd characteristics we can construct wi, which interchanges the ith

row with −ith with a sign change in ith,−ith and 0th row, using the relation

wi = x0,i(−1)xi,0(1)x0,i(−1) = I − 2e0,0 − ei,i − e−i,−i − ei,−i − e−i,i.
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Table 4.2: The row and column operations for O(2l + 1, K)

Row operations Column operations
ER1 ith 7→ ith + tjth row and EC1 jth 7→ jth + tith column and
(both) −jth 7→ −jth − t(−i)th row (both) −ith 7→ −ith − t(−j)th column
ER2 ith 7→ ith + t(−j)th row and EC2 −ith 7→ −ith − tjth column and
(both) jth 7→ jth − t(−i)th row (both) −jth 7→ −jth + tith column
ER3 −ith 7→ −ith − tjth row and EC3 jth 7→ jth + t(−i)th column and
(both) −jth 7→ −jth + tith row (both) ith 7→ ith − t(−j)th column
ER4 0th 7→ 0th − t(−i)th row and EC4 0th 7→ 0th + 2tith column and
(odd) ith 7→ ith + 2t0th − t2(−i)th row (odd) (−i)th 7→ (−i)th − t0th − t2ith column
ER5 0th 7→ 0th + tith row and EC5 0th 7→ 0th − 2t(−i)th column and
(odd) (−i)th 7→ (−i)th − 2t0th − t2ith row (odd) ith 7→ ith + t0th − t2(−i)th column
ER6 0th 7→ 0th + t(−i)th row and EC6 (−i)th 7→ (−i)th + t0th + t2ith column
(even) ith 7→ ith + t2(−i)th row (even)

ER7 0th 7→ 0th + tith row and EC7 ith 7→ ith + t0th + t2(−i)th column
(even) (−i)th 7→ (−i)th + t2ith row (even)

wi Interchange ith and (−i)th rows wi Interchange ith and (−i)th column
(odd) with a sign change in ith,−ith (odd) with a sign change in ith,−ith

and 0th rows and 0th columns
wi wi

(even) Interchange ith and (−i)th row (even) Interchange ith and (−i)th column

We use these elements in the following algorithm to interchange the rows

or columns of matrix g. The main reason the following algorithm works is

the closed condition Tgβg = β which gives the following relations:

2TXX + TAC + TCA = 0, (4.1)

2αTX + TAF + TCE = 0, (4.2)

2αY + TFB + TED = 0, (4.3)

2TXY + TCB + TAD = Il. (4.4)

and the effect of ER1 (both) and EC1 (both) which is the usual Gaussian

elimination on A. Using this operation, one can reduce A to a diagonal ma-

trix.
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The Gaussian elimination for O(2l + 1, K)

• Step 1: Use ER1 (both) and EC1 (both) to make A into a diagonal

matrix. However, the process changes matrices A, B, C, D, E, F, X,

and Y as well. For the sake of notational convenience, we keep calling

these changed matrices as A, B, C, D, E, F, X, and Y.

• Step 2: Now there will be two cases depending on the rank r of the new

matrix A. The rank of A can be easily determined from the number of

non-zero diagonal entries.

• Step 3: Use ER3 (both) and non-zero diagonal entries of A to make

corresponding r rows of C zero.

(i) If r = l then C becomes zero matrix.

(ii) If r < l then interchange all zero rows(ith) of A with corresponding

rows(−ith) of C using wi so that the new C becomes zero matrix.

Once C becomes zero, note that the relation 4.1 if char(K) is odd or the

relation Q(g(v)) = Q(v) if char(K) is even guarantees that X becomes

zero. Then relation 4.4 guarantees that A has full rank l which also

make D to be diagonal with full rank l. Thus the relation 4.2 shows

that F becomes zero as well.

• Step 4: Now if char(K) is even then the relation 4.3 guarantees that

E becomes zero. If char(K) is odd, then use ER4 (odd) to make E a

zero matrix.

• Step 5: Use ER2 (both) to make B a zero matrix. For char(K) even

the relation Q(g(v)) = Q(v) guarantees that Y is a zero matrix and for

char(K) odd the relation 4.3 shows that Y becomes zero.
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Thus the matrix g reduces to


±1 0 0

0 A 0

0 0 D

, where A = diag(1, · · · , 1, λ) and

D = diag(1, · · · , 1, λ−1).

Elementary matrices (Chevalley generators) of orthogonal groups

of even size O+(2l,K):

Elementary matrices for O+(2l,K) are independent of char(K) so we de-

scribe them uniformly as follows. We treat Weyl group elements wi which are

used to interchange the rows or columns of a matrix as elementary matrices.

These elements can not be constructed using the Chevalley generators.

For 1 ≤ i, j ≤ l and t ∈ K, ξ ∈ K∗,

Table 4.3: Elementary matrices for O+(2l,K)

Char(K) Elementary matrices
xi,j(t) I + t(ei,j − e−j,−i), for i 6= j

both xi,−j(t) I + t(ei,−j − ej,−i), for i < j
x−i,j(t) I + t(e−i,j − e−j,i), for i < j
wi I − ei,i − e−i,−i + ei,−i + e−i,i.

4.2.2 Gaussian elimination algorithm for O+(2l,K)

The elementary matrices are described in table 4.3. Let us note the effect

of multiplying g by elementary matrices. We write g ∈ O+(2l,K) as g =A B

C D

, where A,B,C,D are l × l matrices.

Note that any isometry g satisfying the quadratic form Q also satisfy
Tgβg = β. The main reason the following algorithm works is the closed
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Table 4.4: The row and column operations for O+(2l,K)

Row operations Column operations
ER1 ith 7→ ith + tjth row and EC1 jth 7→ jth + tith column and
(both) −jth 7→ −jth − t(−i)th row (both) −ith 7→ −ith − t(−j)th column
ER2 ith 7→ ith + t(−j)th row and EC2 −ith 7→ −ith − tjth column and
(both) jth 7→ jth − t(−i)th row (both) −jth 7→ −jth + tith column
ER3 −ith 7→ −ith − tjth row and EC3 jth 7→ jth + t(−i)th column and
(both) −jth 7→ −jth + tith row (both) ith 7→ ith − t(−j)th column
wi Interchange ith and (−i)th row Interchange ith and (−i)th column

condition Tgβg = β which gives the following relations:
TAC + TCA = 0, (4.5)
TDB + TBD = 0, (4.6)
TDA+ TBC = 0. (4.7)

The above equation implies among other things, TCA + TAC = 0. This

implies that TAC is skew-symmetric. The working principle of our algorithm

is simple, uses the symmetry of TAC. The problem is, for arbitrary A and

C, it is not easy to use this symmetry. In our case, we were able to reduce

A to a diagonal matrix and then it is relatively straightforward to use this

symmetry.

The Gaussian elimination algorithm for O+(2l,K) is as follows:

• Step 1: Use ER1 (both) and EC1 (both) to make A into a diagonal

matrix. However, the process changes matrices A, B, C, and D as well.

For the sake of notational convenience, we keep calling these changed

matrices as A, B, C and D.

• Step 2: Now there will be two cases depending on the rank r of matrix

A. The rank of A can be easily determined from the number of non-zero

diagonal entries.
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• Step 3: Use ER3 (both) and non-zero diagonal entries of A to make

corresponding r rows of C zero.

(i) If r = l then C becomes zero matrix.

(ii) If r < l then interchange all zero rows(ith) of A with corresponding

rows(−ith) of C using wi so that the new C becomes zero matrix.

• Step 4: Use ER2 (both) to make B a zero matrix.

Thus the matrix g reduces to

A 0

0 D

, where A = diag(1, · · · , 1, λ) and

D = diag(1, · · · , 1, λ−1).

4.2.3 Gaussian elimination algorithm for O−(2l,K)

In this section, we describe row-column operations for twisted Chevalley

groups. These groups are also known as the Steinberg groups. An element

g ∈ O−(2l,K) as g =


A0 X Y

E A B

F C D

, where A, B, C, D are (l − 1)× (l − 1)

matrices, X and Y are 2× (l− 1) matrices, E and F are (l− 1)× 2 matrices

and A0 is a 2 × 2 matrix. In the Gaussian elimination algorithm that we

discuss, we reduce X, Y , E & F to zero and A and D to diagonal matrices.

However, unlike the previous cases we were unable to reduce A0 to an identity

matrix. However, for odd characteristics we were able to reduce A0 to a two-

parameter subgroup. Furthermore, our algorithm provides for the spinor

norm as before. Let us go ahead and talk about the output of the algorithm.

In the output we will have a 2 × 2 block (also called A0) which will satisfy
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TA0β0A0 = β0, where β0 =

1 0

0 ε

 for odd characteristics, as defined earlier.

Then A0 is a orthogonal group given by the bilinear form β0. Now if we write

A0 =

a b

c d

, then we get the following equations:

a2 + c2ε = 1

ab+ cdε = 1

b2 + d2ε = ε

Considering the fact that det(A0) = ±1, one more equation ac − bd = ±1

and this leads to two cases either a = d and b = cε or a = −d and b = −cε.

Recall that, since ε is not a square, d 6= 0. Then if c = 0, then there are four

choices for A0 and these are A0 =

±1 0

0 ±1

.
To summarize, in the output of the algorithm A0 will have either of the

six forms t −sε
s t

 or

t sε

s −t

 where t2 + s2ε = 1

or

±1 0

0 ±1


There are now two ways to describe the algorithm, one is to leave A0 as it is

in the output of the algorithm and the other is to include these matrices as

generators. For the purpose of uniform exposition we choose the later and

included the following two generators

x1(t, s) = I + (t− 1)e1,1 − (t− 1)e−1,−1 + s(e−1,1 + εe1,−1); t2 + εs2 = 1

x2 = I − 2e−1,−1

in the list of elementary generators in Table 4.5. In the case of even charac-

teristics no such reduction is possible and we included the matrix

t p

r s

 in

the list of generators with the condition that the determinant is 1.
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Elementary matrices (Chevalley generators) of twisted orthogonal

groups of even size O−(2l,K): The elementary matrices for O−(2l,K)

depends on the characteristics of K, so we describe them separately in the

following table 4.5. Let α be an Arf-invariant, 1 ≤ i, j ≤ l and t ∈ K, ξ ∈ K∗

Table 4.5: Elementary matrices for O−(2l,K)

char(k) Elementary matrices
xi,j(t) I + t(ei,j − e−j,−i), for i 6= j

both xi,−j(t) I + t(ei,−j − ej,−i), for i < j
x−i,j(t) I + t(e−i,j − e−j,i), for i < j
wi I − ei,i − e−i,−i + ei,−i + e−i,i for 2 ≤ i ≤ l

xi,1(t) I + t(e1,i − 2e−i,1)− t2e−i,i for 2 ≤ i ≤ l
x1,i(t) I + t(−e1,−i + 2ei,1)− t2ei,−i for 2 ≤ i ≤ l
xi,−1(t) I + t(e−1,i − 2εe−i,−1)− εt2e−i,i for 2 ≤ i ≤ l

odd x−1,i(t) I + t(−e−1,−i + 2εei,−1)− εt2ei,−i for 2 ≤ i ≤ l
x1(t, s) I + (t− 1)e1,1 − (t+ 1)e−1,−1

+s(e−1,1 + εe1,−1), where s2 + εt2 = 1
x2 I − 2e−1,−1

x1,−i(t) I + te1,−i + tei,−1 + αt2ei,−i for 2 ≤ i ≤ l
even x−1,−i(t) I + te−1,−i + tei,1 + αt2ei,−i for 2 ≤ i ≤ l

x0 I + (t− 1)e1,1 + (s− 1)e−1,−1 + pe1,−1
+re−1,1, where ts+ pr = 1.

Elementary matrices for the orthogonal group in even characteristics dif-

fers from that of odd characteristics so in above table we made that distinc-

tion and listed them separately in the different rows according to the charac-

teristics of K. The elementary matrices are described in table 4.5. The Weyl

group elements wi which we use to interchange columns or rows can not be

constructed using the Chevalley generators, so we include them in the table

of elementary matrices. Let us note the effect of multiplying g by elementary

matrices. We write an element g ∈ O−(2l,K) as g =


A0 X Y

E A B

F C D

, where
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A,B,C,D are (l − 1)× (l − 1) matrices, X and Y are 2× (l − 1) matrices, E

and F are (l − 1)× 2 matrices and A0 is a 2× 2 matrix.

Table 4.6: The row operations for O−(2l,K)

Row operations
ER1(both) ith 7→ ith + tjth row and and −jth 7→ −jth − t(−i)th row
ER2 (both) ith 7→ ith + t(−j)th row and jth 7→ jth − t(−i)th row
ER3(both) −ith 7→ −ith − tjth row and −jth 7→ −jth + tith row
ER4(odd) 1st 7→ 1st − t(−i)th row and ith 7→ ith + 2t1st − t2(−i)th row
ER5(odd) 1st 7→ 1st + tith row and (−i)th 7→ (−i)th − 2t1st − t2ith row
ER6(odd) (−1)th 7→ (−1)th − t(−i)th row and ith 7→ ith + 2εt(−1)th − εt2(−i)th row
ER7(odd) (−1)th 7→ (−1)th + tith row and (−i)th 7→ (−i)th − 2εt(−1)th − εt2ith row
ER8 (even) 1st 7→ 1st + t(−i)th row and ith 7→ ith + t(−1)th + αt2(−i)th row
ER9(even) (−1)th 7→ (−1)th + t(−i)th row and ith 7→ ith + t1st + αt2(−i)th row
wi(both) Interchange ith and (−i)th row

Table 4.7: The column operations for O−(2l,K)

Column operations
EC1(both) jth 7→ jth + tith column and −ith 7→ −ith − t(−j)th column
EC2(both) −ith 7→ −ith − tjth column and −jth 7→ −jth + tith column
EC3(both) jth 7→ jth + t(−i)th column and ith 7→ ith − t(−j)th column
EC4(odd) 1st 7→ 1st + 2tith column and (−i)th 7→ (−i)th − t1st − t2ith column
EC5(odd) 1st 7→ 1st − 2t(−i)th column and ith 7→ ith + t1st − t2(−i)th column
EC6 (odd) (−1)th 7→ (−1)th + (2εt)ith column and (−i)th 7→ (−i)th − t(−1)th − εt2ith column
EC7 (odd) (−1)th 7→ (−1)th − 2εt(−i)th column and ith 7→ ith + t(−1)th − εt2(−i)th column
EC8 (even) (−1)th 7→ (−1)th + tith column and (−i)th 7→ (−i)th + t1st + αt2ith column
EC9(even) 1st 7→ 1st + tith column and (−i)th 7→ (−i)th + t(−1)th + αt2ith column
wi(both) Interchange ith and (−i)th column

Note that any isometry g satisfying the quadratic form Q also satisfy
Tgβg = β. The main reason the following algorithm works is the closed
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condition Tgβg = β which gives the following relations:
TA0β0A0 + TFE + TEF = β0, (4.8)
TA0β0X + TFA+ TEC = 0, (4.9)
TA0β0Y + TFB + TED = 0, (4.10)
TXβ0X + TCA+ TAC = 0, (4.11)
TXβ0Y + TCB + TAD = Il−1. (4.12)

and the effect of ER1 (both) and EC1 (both) which is the usual Gaussian

elimination on A. Using this operation, one can reduce A to a diagonal ma-

trix.

The Gaussian elimination algorithm for O−(2l,K) is as follows:

• Step 1: Use ER1 and EC1 to make A into a diagonal matrix. However,

the process changes matrices A0, A, B, C, D, E, F, X, and Y as well.

For the sake of notational convenience, we keep calling these changed

matrices as A0, A, B, C, D, E, F, X, and Y.

• Step 2: Now there will be two cases depending on the rank r of matrix

A. The rank of A can be easily determined using the number of non-zero

diagonal entries.

• Step 3: Use ER3 and non-zero diagonal entries of A to make corre-

sponding r rows of C zero.

(i) If r = l − 1 then C becomes zero matrix.

(ii) If r < l − 1 then interchange all zero rows(ith) of A with corre-

sponding rows (−ith) of C using wi so that the new C becomes

zero matrix.

Once C becomes zero one can note that the relation TXβ0X + TCA +
TAC = 0 if char(k) is odd or the relation Q(g(v)) = Q(v) and the



48 Chapter 4. Algorithms

fact that αt2 + t+α is irreducible if char(k) is even guarantees that X

becomes zero [see lemma 4.2.1].

Then the relation TA0β0X + TFA + TEC = 0 shows that F becomes

zero as well and the relation TXβ0Y + TCB + TAD = Il−1 guarantees

that A has full rank l− 1 which also makes D to be diagonal with full

rank l− 1. Now we diagonalize A again to the form



1 0 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · λ


as

in step 1.

• Step 4: Use EC4 (odd) and EC6 (odd) if char(K) is odd or use EC8

(even) and EC9 (even) if char(K) is even to make E a zero.

Note that the relation TA0β0A0+TFE+TEF = β0 shows that A0 is invertible.

Thus the relation TA0β0Y +TFB+TED = 0 guarantees that Y becomes zero.

• Step 5: Use ER2 to make B a zero matrix. Thus the matrix g

reduces to: g =


A0 0 0

0 A 0

0 0 D

, where A = diag(1, 1, · · · , 1, λ) and

D = diag(1, 1, · · · , 1, λ−1). Now if char(K) is odd then go to step 6

otherwise go to step 7.

• Step 6: Using the relation TA0β0A0 = β0, check that A0 has the form:

A0 =

t −εs
s t

 or A0 =

t εs

s −t

. If the determinant of A0 is −1 then

multiply g by elementary matrix x2 to get new g of the above form in

which A0 has determinant 1. Now using the elementary matrix x1(t, s)

we can reduce g to


I2 0 0

0 A 0

0 0 D

, where A and D are as above.
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• Step 7: Using elementary matrix x0 we can reduce g to


I2 0 0

0 A 0

0 0 D

,
where A = diag(1, 1, · · · , 1, λ) and D = diag(1, 1, · · · , 1, λ−1).

Lemma 4.2.1. Let k be a field of characteristics 2 and let g =
(
A0 X Y
E A B
F 0 D

)
,

where A = diag(1, 1, · · · , 1, λ), be an element of O−(2l, k) then X = 0.

Proof : Let {e1, e−1, e2, · · · , el, e−2, · · · , e−l} be the standard basis of the

vector space V . Recall that the action of the quadratic form Q on a col-

umn vector x is given by Q(x) = α(x2
1 + x2

−1) + x1x−1 + . . . + xlx−l, where

x = (x1, x−1, x2, · · · , xl, x−2, · · · , x−l)t and αt2 + t + α is irreducible over

k[t]. By definition, for any g ∈ O−(2l, k) we have Q(g(x)) = Q(x) for all

x ∈ V . Let X =

x11 · · ·x1(l−1)

x21 · · ·x2(l−1)

 be a 2 × (l − 1) matrix. Computing

Q(g(ei)) = Q(ei) for all 2 ≤ i ≤ l, we can see that α(x2
1i + x2

2i) + x1ix2i = 0.

If x2i = 0 then we can see that x1i = 0. Suppose x2i 6= 0 for some i then

we rewrite the equation by dividing it by x2i as α(x1i

x2i
)2 + x1i

x2i
+ α = 0, which

is a contradiction to the fact that αt2 + t + α is irreducible over k[t]. Thus,

x2i = 0 for all 2 ≤ i ≤ l and hence X = 0.

4.2.4 Time complexity of the algorithms

We establish that the time complexity of the above algorithms is O(l3).

• Making A as a diagonal matrix by row-column operations has a com-

plexity O(l3).

• In worst case making C and D to be zero has complexity O(l2).

• Making E zero has complexity O(l).
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• Thus the complexity of the above algorithm is O(l3).

As a consequence of our algorithms, we can note the following applica-

tions.
Remark 4.1. In an orthogonal group, above algorithms can be used to
check if an element has determinant 1, i.e., belongs to the special orthogonal
group. This can be done in case of O+(2l,K) and O(2l+1, K) by counting the
number of times the elementary matrix wi was used, and in case of O−(2l,K)
can be done by counting the number of times the elementary matrices wi and
x2 were used. Recall that all elementary matrices, other than wi and x2 are
of determinant 1 and wi, x2 are of determinant -1. Hence, if we used an even
number of wi then the determinant of that element is 1, else -1.

Remark 4.2. The above algorithm can be used to determine, for an orthog-
onal group in odd characteristics, if an element belongs to the commutator
subgroup Ω. This can be done using the Spinor norm. We compute Spinor
norm explicitly [Appendix A] and we show that the image of λ, the output
in Step 5 for O(2l+ 1, K) and step 4 for O+(2l,K) in K×/K×2 is the Spinor
norm of the matrix. In case of O−(2l,K), if s = 0 in the step 6, then the
image of λ (output of step 6) in K×/K×

2 is the spinor norm of g. Other-
wise, an image of 2(1 − t)λε in K×/K×2 is the spinor norm of g. So if the
image of λ is 1 then that element belongs to the kernel of the Spinor norm.
Furthermore, if it has determinant 1, it is in the commutator Ω. This gives
an efficient membership test for Ω as a subset of the orthogonal group.



Chapter 5

MOR cryptosystem with finite
orthogonal groups

In this chapter, we discuss the MOR cryptosystem with orthogonal groups

and analyze its security. In section 5.1, we discuss how to choose right au-

tomorphisms for MOR cryptosystem with orthogonal groups and show that

for a secure MOR cryptosystem we must look at automorphisms that act by

conjugation, as the inner automorphisms. In section 5.2, we analyze the se-

curity of proposed MOR cryptosystem. We present a reduction attack which

reduces the discrete logarithm problem in 〈φ〉 to the discrete logarithms in

finite extensions of Fq. We show that embedding degree of orthogonal group

O(d, q) with q even and d odd is equal to d− 1 and also we conjecture that

embedding degree for other orthogonal groups is d2−1. The basic idea of the

reduction attack is to recover the conjugating matrix of the conjugation au-

tomorphism, once we recover the conjugating matrix then discrete logarithm

problem in 〈φ〉 reduces to the discrete logarithm problem in matrices. Next,

we use the Menezes and Wu’s algorithm to reduce the DLP in matrices to a

DLP in finite field Fqd .

Recall that in MOR cryptosystem public key is presented as an action of

φ on the generators, thus in practical implementation of the MOR cryptosys-

tem, two things matter the most. First, to compute φ(g), there should be an

efficient algorithm to solve the word problem. Second, smaller the number

51
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of generators better is the MOR cryptosystem.

We have addressed the first problem of solving the word problem in chap-

ter 4. We have developed a Gaussian elimination algorithm to solve the word

problem in O(d, q). However, the generators used to solve the word problem

are large in numbers but no need to worry. In section 5.2, we show that one

can reduce the key size effectively using the Steinberg generators in case of

orthogonal groups over the prime field Fp, where p ≡ 3 (mod 4).

5.1 Security of the proposed MOR cryptosys-
tem

The purpose of this section is to show that for a secure MOR cryptosystem

over the orthogonal groups we have to look at automorphisms that act by

conjugation, like the inner automorphisms. There are other automorphisms

that also act by conjugation, like the diagonal automorphism and the graph

automorphism for odd-order orthogonal groups. Then we argue about the

hardness of our security assumptions.

Let φ be an automorphism of one of the orthogonal groups G: O(2l+1, q),

O+(2l, q), or O−(2l, q). The automorphisms of these groups are described in

chapter 4. It is well known that φ = cχιδγθ [55, theorem 3.2.2], where

cχ is a central automorphism, ι is an inner automorphism, δ is a diagonal

automorphism, γ is a graph automorphism, and θ is a field automorphism.

The group of central automorphisms is too small, and the discrete loga-

rithm in field automorphisms reduces to a discrete logarithm in the field Fq.

So there is no benefit of using these in a MOR cryptosystem. Also, there are

not many graph automorphisms in orthogonal groups other than odd-order

orthogonal groups. In the odd-order orthogonal groups graph automorphisms

act by conjugation. Recall here that, our automorphisms are presented as

action on generators. It is clear [Section 2.4.2] that if we can recover the

conjugating matrix from the action on generators, then the security is Fqd , if
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not then the security is Fqd2−1 .

So from these, we conclude that for a secure MOR cryptosystem we

must look at automorphisms that act by conjugation, as the inner auto-

morphisms. Inner automorphisms form a normal subgroup of Aut(G) and

usually constitute the bulk of automorphisms. If φ is an inner automorphism,

say ιg : x 7→ gxg−1, we would like to determine the conjugating element g.

For the special linear group, it was done in [29]. We will follow the

steps there for the present situation too. However, before we do that, let us

digress briefly to observe that G → Inn(G) given by g 7→ ιg is a surjective

group homomorphism. Thus, if G is generated by g1, g2, . . . , gs then Inn(G)

is generated by ιg1 , . . . , ιgs . Let φ ∈ Inn(G). If we can find gj, j = 1, 2, . . . , r

generators, such that φ =
r∏
j=1

ιgj
then φ = ιg where g =

r∏
j=1

gj. This implies

that our problem is equivalent to solving the word problem in Inn(G). Note

that solving word problem depends on how the group is represented and it

is not invariant under group homomorphisms. Thus the algorithm described

in previous chapter to solve the word problem in the orthogonal groups does

not help us in the present case.

5.1.1 Reduction of security

In this subsection, we show that for orthogonal group O(d, q), where q is

even and d odd, the security of the MOR cryptosystem is the hardness of the

discrete logarithm problem in Fqd−1 . This is the same as saying that we can

find the conjugating matrix up to a scalar multiple. We further show that

the method that works for O(d, q) with q is even, d odd and special linear

groups [section 2.4.2] does not work for other orthogonal groups. From now

onwards, other orthogonal groups mean O+(2l, q), O−(2l, q) for all q and

O(2l + 1, q) with q odd.
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Case of O(d, q) with q even and d odd:

Let d = 2l + 1 and φ be an automorphism that works by conjugation, i.e.,

φ = ιg for some g. We recover the matrix h = α(g) up to scalar multiple,

where α is an isomorphism between O(2l + 1, q) and Sp(2l, q) which maps

xi,j(t) to xi,j(t), xi,−j(t) to xi,−j(t), x−i,j(t) to x−i,j(t), I + teo,−i + t2ei,−i to

I + t2ei,−i and I + teo,i + t2e−i,i to I + t2e−i,i respectively (see the table 4.1

for generators of O(2l+1, q) and section 3.2.4 for generators of symplectic

groups). Note that given an inner automorphism φ = ιg of O(2l+1, q), we get

an inner automorphism α◦φ = ιh. We follow the idea used in section 2.4.2 to

recover h up to scalar multiple, by using the generators I+sei,−i and I+se−i,i.

Write h in the column form as h = [C1, . . . , Cl, C−1, . . . , C−l]. Consider

the action of α ◦ φ = ιh on elementary matrices I + sei,−i and I + se−i,i:

h(I + sei,−i)h−1 = I + shei,−ih
−1. Note that [C1, . . . , Cl, C−1, . . . , C−l]ei,−i =

[0, . . . , 0, 0, . . . , 0, Ci, 0, . . . , 0], where Ci is at the −ith place. Multiplying this

further with h−1 we get each column as scalar multiple of Ci, say di. Similarly,

we compute [C1, . . . , Cl, C−1, . . . , C−l]e−i,i = [0, . . . , 0, C−i, 0, . . . , 0, 0, . . . , 0],

where C−i is at ith place. Multiplying this further with h−1 we get each

column as a scalar multiple of C−i, say d−i. Thus using the similar trick

as in section 2.4.2 we compute h(I + ei,−i)h−1, h(I + e−i,i)h−1 and choose

columns C ′i, C ′−i (which are up to scalar multiple of Ci, C−i respectively) for

each i = 1, . . . , l. Now, we construct a matrix B = [C ′1, . . . , C ′l , C ′−1, · · · , C ′−l].

Since each C ′i and C ′−i are scalar multiple of Ci and C−i implies B = hD,

where D is a diagonal matrix diag(d1, . . . , dl, d−1, . . . , d−l).

Next, we compute B−1α ◦ φ(xr(t))B = D−1h−1(hxr(t)h−1)hD = I +

D−1erD which is equivalent to computing D−1erD for r ∈ Φ. First com-

pute D−1(ei,j − e−j,−i)D to get d−1
i dj and d−1

−i d−j for i 6= j. Next, compute

D−1(ei,−i − e−i,i)D to get did−1
−i , d−id−1

i . Then we form a diagonal matrix

diag(1, d−1
2 d1, . . . , d

−1
l d1, (d−1

−1d−2)(d−1
−2d2)(d−1

2 d1), . . . , (d−1
−l d−1)(d−1

−1d1)), where
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(−i)th diagonal entry is (d−1
−i d−1)(d−1

−1d1) and multiply it with B to get d1h.

Thus we have determined h up to scalar multiple. Similarly, we determine

hx up to scalar say bhx. Now, computing (d1h)q−1 and (bhx)q−1 we get rid

of scalars, and if hq−1 6= I then solve DLP in 〈hq−1〉 using Menezes, Wu [35]

procedure by reducing it to the DLP in Fq2l to get the value of x. Thus

DLP in 〈φ〉 reduces to the DLP in Fq2l . However, if we choose g such that

gq−1 = I, then it seems that we might avoid this line of attack. No worries

we can bypass this argument by recovering the scalars a and b and then to

determine x we compute the discrete logarithm in 〈g〉 using Menezes and

Wu’s idea. We prove the following proposition.

Proposition 5.1.1. Given any g ∈ Sp(2l, q) up to scalar multiple ag, a ∈ Fq.
If gcd(d, q − 1) = 1, we can determine the scalar a. Otherwise one can find
the scalar a by solving a discrete logarithm problem in Fq.

Proof : We can recover the scalar a as follows: Let {λ1, . . . , λd} be a

set of eigenvalues of g then the eigenvalues of ag are {aλ1, . . . , aλd}. Set

α = aλ1 · · · aλd and thus α = ad as λ1 · · ·λd = det(g) = 1. Suppose

gcd(d, q − 1) = r, using extended Euclidean algorithm we find l and m such

that ld + m(q − 1) = r. Next, computing αl, we get ald = ar−m(q−1) = ar.

Thus, if gcd(d, q − 1) = 1 then we have recovered the scalar a otherwise we

can recover the scalar by solving the discrete logarithm problem in Fq. Let

ξ be a primitive element in Fq. Suppose a = ξi for some i. Thus, ar = ξir

and hence we determine ir and hence i by solving the discrete logarithm in

ξ and ξir. Hence, we can recover the scalar a from ag.

Thus, if gcd(d, q − 1) = 1 then using above proposition we can recover

the scalars a and b from ag and bgx respectively. Otherwise one need to solve

discrete logarithm problem in Fq to recover the scalars. Now, we can recover

g and gx from ag and bgx just by multiplying with scalar matrices a−1I and

b−1I respectively. Finally, we recover x using Menezes and Wu’s idea. Thus,
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if we choose g such that gq−1 = 1 and gcd(d, q− 1) 6= 1 then to solve the dis-

crete logarithm in 〈φ〉 one needs to solve the discrete logarithm in Fq and Fqd .

Remark 5.1. In the context of MOR cryptosystem using O(d, q), where
d-odd and q-even, if we choose g such that gq−1 = I and gcd(d, q − 1) 6= 1
then to solve the discrete logarithm in 〈φ〉 one needs to solve the discrete
logarithm in Fq and Fqd . Thus, embedding degree for MOR cryptosystem is
d− 1.

Now, we will show that the above line of attack won’t work for other

orthogonal groups.

Theorem 5.1.1. Let g ∈ GO(d, q) with the exception of case d-odd and
q-even. Consider the conjugation automorphism φ : O(d, q) −→ O(d, q). Let
{xr}, r ∈ Φ be a set of Chevalley generators of O(d, q) described earlier.
Suppose that the public-key is presented as an action of φ on {xr} then it is
impossible to recover a matrix gD, where D is a diagonal matrix using the
above reduction.

Proof : We prove the theorem for O+(d, q), d even and the theorem

follows for other cases similarly. Let d = 2l and we write g in columns

form as g = [C1, . . . Cl, C−1, . . . , C−l]. To see the effect of conjugation by

g on elementary matrices [Table 4.3], we compute gerg−1 which gives the

following equations:

1. Note that g(ei,j − e−j,−i)g−1 = [0, . . . , 0, Ci, 0 . . . , 0, C−j, 0, . . .] g−1,

where Ci is a at jth place and C−j is at a −ith place. After multiplying

by g−1 we get a matrix whose all columns are linear combinations of

columns Ci and C−j.

2. Note that g(ei,−j−ej,−i)g−1 = [0, . . . , 0, Ci, 0 . . . , 0, Cj, 0, . . .] g−1, where

Ci is at a −jth place and Cj is at a −ith place. After multiplying by g−1

we get a matrix whose all columns are linear combinations of columns

Ci and Cj.

3. Note that g(e−i,j − e−j,i)g−1 = [0, . . . , 0, C−i, 0 . . . , 0, C−j, 0, . . .] g−1,
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where C−i is at a jth place and C−j is at a ith place. After multiplying

by g−1 we get a matrix whose all columns are linear combinations of

columns C−i and C−j.

Suppose one can construct a matrix B from columns obtained above such

that B = gD, where D is diagonal, then we can see that diCi = aiCj + bjCk

for some i, j, k which is a contradiction as det(g) 6= 0. Thus, it is not possible

to construct a matrix B such that B = gD, where D is diagonal.

This conclusively proves that the attack on the special linear group [sec-

tion 2.4.2] and symplectic groups won’t work for most orthogonal groups.

At this stage, the best we can do is the following: We can construct B such

that B = g(D1 + PD2), where D1, D2 are diagonal and P is a permutation

matrix. We construct a matrix B as follows: For each i = 1, . . . , l − 1

compute g(I + ei,i+1 − e−(i+1),−i)g−1 − I whose each of column is a linear

combination of Ci and C−(i+1). Choose one of its column say riCi + siC−(i+1)

for each i = 1, . . . , l − 1. Similarly compute g(I + ei+1,i − e−i,−(i+1))g−1 − I

and choose r−iC−i + s−iC(i+1) for each i = 1, . . . , l− 1. Further, we compute

g(I + e1,−l − el,−1)g−1 − I to get rlCl + slC1 and g(I + e−1,l − e−l,1)g−1 − I

to get r−lC−l + s−lC−1.

We set B = [r1C1 + s1C−2, . . . , rl−1Cl−1 + sl−1C−l, rlCl + slC1, r−1C−1 +

s−1C2, . . . , r−(l−1)C−(l−1) + s−(l−1)Cl, r−lC−l + s−lC−1]. Now it is easy to note

that B = g(D1 + PD2), where D1 = diag(r1, . . . , rl, r−1, . . . , r−l), D2 =

diag(s1, . . . , sl, s−1, . . . , s−l) and P is permutation matrix corresponding to

the permutation of indexing set 1→ −2→ 3→ −4→ · · · → l − 1→ −l →

−1→ 2→ −3→ 4→ · · · → −(l − 1)→ l→ 1.

Note that B = D1 + PD2 is not a diagonal matrix. Consider

B−1φ(xr(t))B = (D1 + PD2)−1er(D1 + PD2). Since D1 + PD2 is not di-

agonal and there are no elementary matrices of the form I + ei,−i, I + e−i,i in

orthogonal groups it seems that the only way to solve DLP in 〈φ〉 is to solve
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DLP in Fqd2−1 . One can do similar computations for O(2l + 1, q), q odd and

O−(2l, q).

Remark 5.2. An observant reader would ask the question: why does this
attack works for the special linear and symplectic groups but not for orthog-
onal groups? The answer lies in a closer look at the generators (elementary
matrices) for these groups.

In the special linear groups, the generators are the elementary transvec-

tions of form I + tei,j, where i 6= j and t ∈ Fq. Then the attack goes on

smoothly as we saw earlier[section 2.4.2]. However, when we look at gener-

ators of the form I + tei,j − te−j,−i, where t ∈ Fq and i 6= j; conjugating by

them gets us a linear sum of the ith and (−j)th column, not a scalar mul-

tiple of one particular column. This stops the attack from going forward.

However in the case of O(2l + 1, q) with q even we go to the symplectic

group through an isomorphism α, which have generators of form I + ei,−i

and I + e−i,i for 1 ≤ i ≤ l. These generators make the attack possible for

the symplectic groups and hence for O(2l + 1, q), q even. However, there

are no such generators for other orthogonal groups, and so this attack turns

out to be impossible for other orthogonal groups. We summarize the above

discussion as follows:
Remark 5.3. MOR cryptosystem with orthogonal group O(d, q) with q-
even and d-odd has embedding degree equal to d − 1. However, it seems
likely that the embedding degree of other orthogonal groups is d2 − 1.

Remark 5.4. Since there is no unique way to order the elements in finite
field Fq, we can avoid the reduction attack on MOR cryprosystem with any
orthogonal group by choosing g such that gq−1 = 1 and d large. Thus, we can
conclude that the embedding degree of MOR cryptosystem using orthogonal
groups is d2 − 1

5.2 Reduction of key-size

One serious objection against an MOR cryptosystem is the size of the key

[39, section 7]. Recall that the size of the public-key depends on the number of

generators. Less the number of generators better is the cryptosystem. In this
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section, we address this issue for the orthogonal groups over prime field Fp,

where p ≡ 3 (mod 4). Ree [48] proved that the elementary matrices without

wi-the row interchange matrices, generate Ω the commutator subgroup of

the orthogonal group. However, in between the commutator and the whole

group, there is another important subgroup, WΩ = 〈Ω, wi〉 for some i. Let

λ be the output of the algorithms in sections 4.2.1, 4.2.2, 4.2.3. From the

algorithm point of view, it is the subgroup of all matrices for which λ is a

square. Now once the λ is a square, and we can efficiently compute the square

root, we can write this matrix down as a product of elementary matrices, and

it is easy to implement the MOR cryptosystem. It is well known that if p ≡ 3

(mod 4), then it is easy to compute the square root. Only, for this reason, we

have chosen p such that p ≡ 3 (mod 4). It is known [57] that the the finite

orthogonal group is generated by two elements called Steinberg generators.

We use Steinberg generators and present automorphism as an action on these

generators. If one has to compute φ(g), then the word problem must be solved

because the automorphisms used for the MOR cryptosystem are presented as

action on generators. Thus, we need an efficient algorithm to solve the word

problem in Steinberg generators. We use the algorithm developed in chapter

4 to resolve this issue. The basic idea is to write elementary matrices as words

in Steinberg generators and then use the Gaussian elimination algorithm to

solve the word problem. This approach is constructive and uses the straight-

line programs technique [4], which is popular in computational group theory.

Before we demonstrate the procedure, let us digress briefly to review the

technique of straight-line programs.

Suppose we have a group G = 〈X〉. By definition, any element g of G can

be expressed as a word in X, g = x1x2 · · ·xk, for xi ∈ X. The words in X

that define elements of G may be very long so in practice words are normally

stored as straight-line programs. A straight-line program from X to g is a
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sequence of expressions z = (z1, . . . , zk), where each zi is either an element

of a set X or is an expression of the form (zj, zk) or (zj,−1) for j, k < i.

Let’s make the notion of straight-line program precise, let z = (z1, . . . , zk)

we define the group element Eval(z) as : for i, j < k

Eval(z) :=


x if zk = x,

Eval((z1, . . . , zi))−1 if zk = (zj,−1),

Eval((z1, . . . , zi))−1 ∗ Eval((z1, . . . , zj))−1 if zk = (zi, zj).

For g we say z is a straight-line program(SLP) from X to g if Eval(z) = g.

For example, straight-line program for y−1
1 y2y

−1
1 y2 is (z1, z2, z3, z4, z5), where

z1 represent y1, z2 = (z1,−1), z3 represents y2, z4 = (z2, z3), and z5 = (z4, z4).

As we can see that straight-line programs are equivalent to words in X.

However in practice, evaluating a straight-line program is much faster than

evaluating the corresponding words since we evaluate repeated sub-words

once. In above example, if we have evaluated y−1
1 y2y

−1
1 y2 by simply cal-

culating each part in succession it would require two inversions and three

multiplications of group elements. However, evaluating the straight-line pro-

gram requires only one inversion and two multiplications of group elements.

For more detailed and compete discussion on straight-line programs we refer

to [42] and [21, Section 2.2.5]

In a context of our scheme, we can use these straight-line programs as

follows: Suppose we want to compute xi,j(t) for some t ∈ Fq. We have

loaded matrices wi−1x1,2(·)wi−1 in a memory in such a way that this formula

takes as input t and put it in the (1, 2) position of the matrix x1,2(·) and

do the matrix multiplication. This is one straight line program. Since these

programs are loaded in memory, computation is much faster. We have built

a series of these straight line programs, where one straight line program can

use other straight line programs and have written down the length of these

programs. The length is nothing but the number of matrices in the formula.
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To avoid the complications in the straight line programs using Steinberg

generators and their lengths computations, we describe these procedures for

O+(2l, p), O−(2l, p) and O(2l+ 1, p) separately. Throughout this section, we

assume that p ≡ 3 (mod 4).

5.2.1 Orthogonal group O+(2l, p)

It is known [57] that the group O+(2l, p) is generated by two elements x and

w which we describe below. Recall that to solve the word problem in these

generators, we need to know how to go back and forth between these two

generating sets - Steinberg generators and elementary matrices defined earlier

(chapter 4). We use the following generators which we refer as Steinberg

generators.

x = x1,2(1), (5.1)

w =



0 · · · 0 0 · · · 1

−1 · · · 0 0 · · · 0
... . . . ... ... . . . ...

· · · −1 0 0 · · · 0

0 · · · 1 0 · · · 0

0 · · · 0 −1 · · · 0
... . . . ... ... . . . ...

0 · · · 0 · · · −1 0



. (5.2)

Note that x itself is an elementary matrix, so we just need to write w as a

word in elementary matrices. To write w as a product of elementary ma-

trices is easy, just put this generator through our Gaussian elimination al-

gorithm(section 4.1.3). Here we demonstrate the other way round, that is,

how to write elementary matrices as a product of x and w. We provide a

constructive way to go from Steinberg generators to elementary matrices. In

the context of MOR cryptosystem, we do following computations using SLP

technique mentioned above. In what follows, we denote the length of SLP’s
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by L(d, i), where d = j − i and 1 ≤ i < j ≤ l.

d = 1, xi,j(t) = wi−1x1,2(t)w−(i−1),

d = 2, xi,j(t) = [xi,j−1(t), xj−1,j(1)],

d = 3, xi,j(t) = [xi,j−1(t), xj−1,j(1)],
... ... ...

d = l − 1, xi,j(t) = [xi,j−1(t), xj−1,j(1)].

Here

L(d, i) =

 2i− 1 for d = 1,

2L(d− 1) + 4(i+ d)− 6 for d = 2, 3, . . . , l − 1.

Now, wl = (−1)l−1

 0 −Il
−Il 0

 and xj,i(t) = wlxi,j(−t)w−l, so length of this

SLP is L(d, i) + 2l. Hence we get all xi,j(t), for 1 ≤ i 6= j ≤ l. Num-

ber of SLP = (l − 1) + 1 = l. Next observe that, Thus we can generate

Table 5.1: SLP lengths

Elements Indices Equation Length
x1,−l(t) wxl−1,l(t)w−1 2l − 1
x1,−i(t) 2 ≤ i ≤ l − 1 [xi,l(t), x1,−l(1)] 2(L(l − i, i) + 2l − 1)
xi,−j(t) 2 ≤ i ≤ l − 1 [xi,1(t), x1,−j(1)] 2L(i− 1, 1)+

2(2L(l − j, j) + 6l − 2) j 6= l
(i+ 1 ≤ j ≤ l) 2(L(i− 1, 1) + 4l − 1) j=l

all xi,−j(t), for i < j. Note that we can generate x−i,j(t) by computing

wlxi,−j(t)w−l = x−i,j(t), and the total number of SLP’s required to gener-

ate it is equal to l + 4. Recall that the elementary matrices xi,j(t) generate

Ω(2l, p), the commutator subgroup of O(2l, p) of index 4. Hence we generate

Ω(2l, p), using only two generators x and w. Observe that using the relation

w = w1,2(1)w2,3(1) · · ·wl−1,l(1)wl, where wi,j(t) = xi,j(t)xj,i(−t−1)xi,j(t), we

can generate wl. Now we know wl−1 = wlwl,l−1(1)wl−1,−l(1), so we gener-

ate wl−1. Now by induction, we generate wi = wi+1wi+1,i(1)wi,−(i+1)(1) for

i = l−1, . . . , 1. Here wi,−j(t) = xi,−j(t)x−i,j(t−1)xi,−j(t), for i < j. Hence we
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generate all the elementary matrices defined earlier (Table 4.3) using only two

generators x and w. So we generate a new subgroup WΩ(2l, p) of O(2l, p),

which is indeed a normal subgroup of O(2l, p). In our algorithm, output

matrix is d(λ) = diag (1, 1, · · · , λ, 1, 1, . . . , λ−1). If λ ∈ F×2
p , say λ ≡ t2

(mod p), then t ≡ λ
p+1

4 (mod p), since p ≡ 3 (mod 4).

Then d(λ) = diag (1, . . . , t2, 1, . . . , t−2)

= wl−1,l(1)diag (1, . . . , t2, 1, 1, . . . , t−2, 1)wl−1,l(−1)

= wl−1,l(1)wl−1,l(t)wl−1,l(−1)wl−1,−l(t)wl−1,−l(−1)wl−1,l(−1).

Hence we generate WΩ(2l, p) using only two generators x and w.

Remark 5.5. Let d(ζ) = diag (1, . . . , 1, ζ, 1, . . . , 1, ζ−1), where ζ is non-
square in F×p . Then the group 〈WΩ, d(ζ)〉 is the orthogonal group.

5.2.2 Orthogonal group O(2l + 1, p)

We use the following generators which we refer as Steinberg generators.

x = x0,1(1), (5.3)

w =


−1 0 0

0 0 −1

0 −I2l−1 0

 , (5.4)

wl = I − el,l − e−l,−l + el,−l + e−l,l. (5.5)

It is known [57] that the group O(2l + 1, p) is generated by these elements.

However, in context of the MOR cryptosystem, we need to know how to

go back and forth between these two generating sets – Steinberg generators

and elementary matrices defined earlier (Table 4.1). The procedure is almost

similar to the case of O+(2l, p). Again note that x = x0,1 is an elementary

matrix. Thus we just need to write w as a product of elementary matrices.

However, computing w is fairly easy, just put this generator through our

Gaussian elimination algorithm (section 4.1.2).

Here we demonstrate the other way round, that is, how to write ele-
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mentary matrices as a product of w and x. First we compute, x0,i(t) =

wi−1x0,1(1)w−(i−1) which of length 2i − 1 for 1 ≤ i ≤ l. Now we com-

pute xi,0(t) using the relation xi,0(t) = wlx0,i(−t)w−l for 1 ≤ i ≤ l, where

wl = (−1)l


1 0 0

0 0 Il

0 Il 0

 and length of this SLP is 2l + 2i − 1. Thus, we get

xi,0(t) and x0,i(t) for i = 1, 2, . . . , l. Next, we compute x1,2(t) using the com-

mutator formula x1,2(t) = [x1,0( t2), x0,2(1)] and length of this SLP is 4l + 8.

In what follows, we denote the length of SLP’s by L(d, i), where d = j − i

and 1 ≤ i < j ≤ l.

d = 1, xi,j(t) = wi−1x1,2(t)w−(i−1),

d = 2, xi,j(t) = [xi,j−1(t), xj−1,j(1)],

d = 3, xi,j(t) = [xi,j−1(t), xj−1,j(1)],
... ... ...

d = l − 1, xi,j(t) = [xi,j−1(t), xj−1,j(1)].

Here

L(d, i) =

 2i+ 4l + 6 for d = 1,

2L(d− 1, i) + 4(i+ d+ 2l + 2) for d = 2, 3, . . . , l − 1.

As xj,i(t) = wlxi,j(−t)w−l, so length of this SLP is L(d, i) + 2l. Hence we get

all xi,j(t) for 1 ≤ i 6= j ≤ l. Number of SLP = 3 + (l − 1) + 1 = l + 3.

Next we compute the remaining elementary matrices using the commu-

tator formula and are listed in the following table. We compute exact SLP

lengths required to generate elementary matrices. Thus we have generated

all xi,−j(t) for i < j. Now using the formula wlxi,−j(t)w−l = x−i,j(t), we get

x−i,j(t) and total number of SLP’s required is l + 7. It is shown in Ree [48]

that the elementary matrices xi,j(t) generate Ω(2l + 1, p), the commutator

subgroup of O(2l+1, p) of index 4. So we generate Ω(2l+1, p), using only two
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Table 5.2: SLP lengths

Elements Indices Equation (SLP) Length
x1,−l(t) wxl−1,l(t)w−1 6l + 6
x1,−i(t) 2 ≤ i ≤ l − 1 [xi,l(t), x1,−l(1)] 24l + 20 i = l − 1

2L(l − i, i) + 12(l + 1) i 6= l − 1
xi,−j(t) 2 ≤ i ≤ l − 1 [xi,1(t), x1,−j(1)] 2L(i− 1, 1) + 4(7l + 6)

+4L(l − j − d, j − d) j < l − 1
(i+ 1 ≤ j ≤ l) 2L(i− 1, 1) + 4(7l + 5) j = l − 1

2L(i− 1, 1) + 10l + 6 j = l

generators x and w. Now we know wl−1 = wlwl,l−1(1)wl−1,−l(1), so we gener-

ate wl−1. Hence by inductively we can generate wi = wi+1wi+1,i(1)wi,−(i+1)(1)

for i = l − 1, . . . , 1. Here wi,j(t) = xi,j(t)xj,i(−t−1)xi,j(t) for i 6= j and

wi,−j(t) = xi,−j(t)x−i,j(t−1)xi,−j(t) for i < j. Hence we generate all the

elementary matrices defined earlier (Table 4.1) using only two generators

x and w and an extra element wl. Hence we generate a new subgroup

WΩ(2l + 1, p) of the orthogonal group O(2l + 1, p), containing Ω, which

is indeed a normal subgroup of O(2l + 1, p). In our algorithm, the output

matrix is d(λ) = diag (1, 1, · · · , λ, 1, . . . , λ−1).

If λ ∈ F×2
p , say λ ≡ t2 (mod p), here t ≡ λ

p+1
4 (mod p), since p ≡ 3 (mod 4).

Then d(λ) = diag (1, 1, . . . , t2, 1, . . . , t−2)

= wl−1,l(1)diag (1, 1, . . . , t2, 1, 1, . . . , t−2, 1)wl−1,l(−1)

= wl−1,l(1)wl−1,l(t)wl−1,l(−1)wl−1,−l(t)wl−1,−l(−1)wl−1,l(−1).

Hence we generate WΩ(2l + 1, p) using x,w and wl.

Remark 5.6. Let d(ζ) = diag (1, 1, . . . , 1, ζ, 1, . . . , 1, ζ−1), where ζ is non-
square in F×p . Then the group 〈WΩ, d(ζ)〉 is the orthogonal group.
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5.2.3 Orthogonal group O−(2l, p)

We use the following generators (see table 4.5) which we refer as Steinberg

generators.

x = x1,2(1),

x′ = x−1,2(1),

w =


−I2 0 0

0 0 −1

0 −I2l−3 0

 ,
wl = I − el,l − e−l,−l − el,−l − e−l,l,

x1(t, s), where t, s ∈ Fp and x2.

In context of the MOR cryptosystem, we need to know how to go back

and forth between these generators and elementary matrices defined ear-

lier (Table 4.5). The procedure is almost similar to the case of O+(2l, p).

Again, note that x = x1,2, x′ = x−1,2, x1(t, s) and x2 are elementary ma-

trices. Thus, we just need to write w as a product of elementary matrices.

However, computing w is fairly easy, just put this generator through our

Gaussian elimination algorithm (section 4.1.2). Here we demonstrate the

other way round, that is, how to write elementary matrices as a product

of w, x, x′. First we compute, x1,i(t) = wi−1x1,2(1)w−(i−1) which of length

2i − 1 for 2 ≤ i ≤ l. Now we compute xi,1(t) using the relation xi,1(t) =

wl−1x1,i(−t)w−(l−1) for 2 ≤ i ≤ l, where wl−1 = (−1)l−1


I2 0 0

0 0 Il−1

0 Il−1 0


and length of this SLP is 2(l − 1) + 2i − 1. Thus, we get xi,1(t) and x1,i(t),

for i = 2, . . . , l. Similarly we compute xi,−1(t) and x−1,i(t) using the relations

x−1,i(t) = wi−1x−1,2(1)w−(i−1), xi,−1(t) = wl−1x−1,i(−t)w−(l−1) for 2 ≤ i ≤ l

and has SLP lengths 2i− 1, 2(l− 1) + 2i− 1 respectively. Next, we compute

x2,3(t) using the commutator formula x2,3(t) = [x2,1( t2), x1,3(1)] and length of
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this SLP is 4(l − 1) + 8. In what follows, we denote the length of SLP’s by

L(d, i), where d = j − i and 2 ≤ i < j ≤ l.

d = 1, xi,j(t) = wi−1x2,3(t)w−(i−1),

d = 2, xi,j(t) = [xi,j−1(t), xj−1,j(1)],

d = 3, xi,j(t) = [xi,j−1(t), xj−1,j(1)],
... ... ...

d = l − 1, xi,j(t) = [xi,j−1(t), xj−1,j(1)].

Here

L(d, i) =

 2i+ 4(l − 1) + 6 for d = 1,

2L(d− 1, i) + 4(i+ d+ 2(l − 1) + 2) for d = 2, 3, . . . , l − 2.
As xj,i(t) = wl−1xi,j(−t)w−(l−1), so length of this SLP is L(d, i) + 2(l − 1).

Hence, we get all xi,j(t) for 2 ≤ i 6= j ≤ l and number of SLPs is l + 2.

Next, we compute the remaining elementary matrices using the commutator

formula and are listed in the table 5.3, let r = l − 1.

Table 5.3: SLP lengths

Elements Indices Equation (SLP) Length
x1,−l(t) wxl−1,l(t)w−1 6(l − 1) + 6
x1,−i(t) 2 ≤ i ≤ l − 1 [xi,l(t), x1,−l(1)] 24(l − 1) + 20 i = l − 1

2L(r − i, i) + 12(r + 1) i 6= l − 1
xi,−j(t) 2 ≤ i ≤ r − 1 [xi,1(t), x1,−j(1)] 2L(i− 1, 1) + 4(7r + 6)

+4L(r − j − d, j − d) j < l − 1
(i+ 1 ≤ j ≤ l) 2L(i− 1, 1) + 4(7r + 5) j = l − 1

2L(i− 1, 1) + 10r + 6 j = l

Thus, we have generated all xi,−j(t) for i < j. Now, using the formula

wlxi,−j(t)w−l = x−i,j(t), we get x−i,j(t) and total number of SLP’s required

is l + 6. Now we know wl−1 = wlwl,l−1(1)wl−1,−l(1), so we generate wl−1.

Hence by inductively we can generate wi = wi+1wi+1,i(1)wi,−(i+1)(1), for i =

l − 1, . . . , 2. Here wi,j(t) = xi,j(t)xj,i(−t−1)xi,j(t), for i 6= j and wi,−j(t) =

xi,−j(t)x−i,j(t−1)xi,−j(t), for i < j. Hence we generate all the elementary
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matrices defined earlier (Table 4.5) using generators x, x′, x1(t, s), x2, w

and an extra element wl. In our algorithm the output matrix is d(λ) =

diag (1, 1, 1, . . . , λ, 1, . . . , λ−1). If λ ∈ F×2
p , say λ ≡ t2 (mod p), here t ≡ λ

p+1
4

(mod p), since p ≡ 3 (mod 4).

Then d(λ) = diag (1, 1, 1, . . . , t2, 1, . . . , t−2)

= wl−1,l(1)diag (1, 1, 1, . . . , t2, 1, 1, . . . , t−2, 1)wl−1,l(−1)

= wl−1,l(1)wl−1,l(t)wl−1,l(−1)wl−1,−l(t)wl−1,−l(−1)wl−1,l(−1).

Remark 5.7. Let d(ζ) = diag (1, 1, 1, . . . , ζ, 1, . . . , ζ−1), where ζ is non-
square in F×p . Then as a consequence of our algorithm 4.1.4, we can see
that x, x′, x1(t, s), x2, w and wl along with d(ζ) generates the twisted or-
thogonal group.

5.3 Implementation

In practice, the best public-key cryptosystem is the one that manages to keep

a good balance between speed and security. Hence there is always a trade-off

between speed and security. The implementation of the MOR cryptosystem

we have in mind uses the row-column operations. Let 〈g1, g2, . . . , gk〉 be a

set of generators for the orthogonal group as described before. Recall that

the automorphisms φ and φx used in MOR cryptosystem are presented as

action on generators, i.e., we have φ(gi) and φx(gi) as matrices, for i =

1, 2, . . . , k. Let m ∈ G be a message, in order to encrypt this message;

we compute φr. Now the question is how to compute large powers of φ

effectively. We do that by square-and-multiply algorithm [58, Algorithm 5.5].

For this implementation, squaring and multiplying is almost the same. So we

will refer to both squaring and multiplication as multiplication. Note that

multiplication is composing of automorphisms. First, we write the matrix

of φ(gi) as a word in generators for each i = 1, 2, . . . , k, we can do these

computations in parallel. Each thread computes φr(gi) for i = 1, 2, . . . , k.

Thus we compute images of φr by replacing all instances of φr(gi) computed
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using the parallel threads. This can be done very fast. However, the length

of the replaced word can become very large. The obvious question is, how

soon are we going to write this word as a matrix. This is a difficult question

to answer at this stage and depends on available computational resources.

Once we decide how often we change back to matrices, how are we going

to change back to matrices? There can be a fairly easy time-memory trade-

offs. Write all words up to a fixed length and the corresponding matrix as

a pre-computed table and use this table to compute the matrices. Once we

have matrices, we can multiply them together to generate the final output.

If writing all words is impossible, due to resource constraint, write some of

it in a table. There are also many obvious relations among the generators

of these groups. One can just store and use them. The best strategy for an

efficient implementation is yet to be determined. It is clear now that there

are many interesting and novel choices.

The benefits of this MOR cryptosystem are:

• This can be implemented in parallel easily.

• This implementation doesn’t depend on the size of the characteristic

of the field. This is an important property in light of Joux’s recent

improvement of the index-calculus attacks [6].

For parameters and complexity analysis of this cryptosystem, we refer

[29, Section 8]. Assume that we take a prime of a size 2160, and we are using

two generators presentation of φ for the even-orthogonal group. Then the

security is the discrete logarithm problem in Fpd2−1 . Now if we take d = 4,

then the security is at most F22560 . Our key size is about 8000 bits. Comparing

with Monico [39, section 7], where he says an ElGamal will have about 6080

bits, our system is quite comparable. Moreover, the MOR cryptosystem is

better suited to handle large primes and can be easily parallelized.
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5.3.1 Further Research

We conclude this thesis with the following open direction for further research.

What is the most efficient strategy to implement the MOR cryptosystem on

orthogonal groups that we described earlier?
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Appendix A

Spinor norm

In this chapter, we explicitly compute the Spinor norm of the matrices in

orthogonal group O−(d,K), for char(K) odd using the Gaussian elimination

algorithms presented in section 4.2.3. For the spinor norm computation of

other orthogonal groups, we refer to [8, section 5].

Spinor norm plays very important role in the study of orthogonal groups.

The classical way to define spinor norm is via Clifford algebras [17, Chapters

8 and 9]. However, in practice, it is difficult to use that definition to compute

the spinor norm. Wall [61], Zassenhaus [62] and Hahn [18] developed a theory

to compute the spinor norm. For our exposition, we follow [59, Chapter 11].

Murray and Roney-Dougal [41] used the formula of Hahn [18, Proposition

2.1] to compute spinor norm. However, their algorithm works only for K

finite. Our algorithm developed in chapter 4 works for infinite fields and

outputs the spinor norm quickly. It is well-known that by Cartan-Dieudonne

theorem [17, Theorem 6.6] every element of a orthogonal group can be written

as a product of at most d reflections. Let Q be a quadratic form.

Definition A.0.1. (Spinor norm) The spinor norm is a group homomor-

phism Θ : O(d,K) → K×/K×
2 defined by Θ(g) =

d∏
i=1

Q(ui), where

g = ρu1ρu2 · · · ρud
with Q(ui) 6= 0, for all 1 ≤ i ≤ d.

Let g ∈ O(d,K), denote g′ = I − g, Vg = g′(V ) and V g = Ker(g′). Using

73
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the bilinear form β, we define Wall’s bilinear form [ , ]g on Vg as follows:

[u, v]g = β(u, y), where v = g′(y).

This bilinear form satisfies following properties:

1. [u, v]g + [v, u]g = β(u, v) and [u, u]g = Q(u) for all u, v ∈ Vg;

2. g is an isometry on Vg with respect to [ , ]g;

3. [v, u]g = −[u, gv] for all u, v ∈ Vg;

4. [ , ]g is non-degenerate.

Then the spinor norm of g ∈ O(d,K) is defined to be

Θ(g) = disc(Vg, [ , ]g) if g 6= I

extended to I by defining Θ(I) = 1̄. This is another equivalent definition of

spinor norm. An element g is called regular if Vg is a non-degenerate subspace

of V with respect to the form β. As a consequence of Hahn [18, Proposition

2.1] formula we get the following proposition.

Proposition A.0.1. 1. For a reflection ρv, Θ(ρv) = Q(v).

2. Θ(−1) = disc(V, β).

3. For a unipotent element g the spinor norm is trivial, i.e., Θ(g) = 1̄.

We use this proposition and algorithm 4.2.3 to compute the spinor norm

of elements of O−(d,K). First we observe the following

Lemma A.0.2. The spinor norm of elementary matrices [Table 4.5] in
O−(d,K) are:

1. Θ(xi,j(t)) = Θ(x−i,j(t)) = Θ(xi,−j(t)) = 1̄.

2. Θ(wi) = 1̄.

3. Θ(diag(1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = λ̄,
Θ(diag(1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = ελ,
Θ(diag(−1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = λ̄,
Θ(diag(−1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = ελ.
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4. Θ(x1(t, s)) = 2(1− t).

5. Θ(x2) = ε.

Proof: The first one follows from previous proposition as all elemen-

tary matrices are unipotent. The element wi = ρei+e−i
is a reflec-

tion thus Θ(wi) = Q(ei + e−i) = 1̄. For the third part we note that

diag(1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1) = ρel+e−l
ρel+λe−l

and hence,

Θ(diag(1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = Θ(ρel+e−l
)Θ(ρel+λe−l

)

Θ(diag(1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = Q(el + λe−l)

Θ(diag(1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = λ̄.

Observe that

diag(1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1) = diag(1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)ρe−1

diag(−1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1) = diag(1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)ρe1

implies that

Θ(diag(1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = ελ,

Θ(diag(−1, 1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = λ.

Similarly we can see that

diag(−1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = diag(1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)ρe1

implies that Θ(diag(−1,−1, 1, . . . , 1, λ, 1, . . . , 1, λ−1)) = ελ. For the fourth

part we observe that x1(t, s) = ρ(t−1)e1+se−1 and hence

Θ(x1(t, s)) = Q(ρ(t−1)e1+se−1)

= (t− 1)2 + εs2

= 2(1− t) as t2 + εs2 = 1.

Note that x2 = ρe−1 and Θ(ρe−1) = ε̄ implies that Θ(x2) = ε.

Remark A.1. As we seen that our algorithm enables to write every element
g of O−(d,K) as a product of elementary matrices and a diagonal matrix
hence we can find the spinor norm of g.
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