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Abstract

We prove an algebraicity result for all the critical values of L-functions for

GL3 × GL1 over a totally real field, and a CM field separately. These L-

functions are attached to a cohomological cuspidal automorphic representa-

tion of GL3 having cohomology with respect to a general coefficient system

and an algebraic Hecke character of GL1. This is derived from the theory of

Rankin–Selberg L-functions attached to pairs of automorphic representations

on GL3×GL2. Our results are a generalization and refinement of the results

of Mahnkopf [26] and Geroldinger [14]. The resulting expressions for criti-

cal values of the Rankin-Selberg L-functions are compatible with Deligne’s

conjecture. As an application, we obtain algebraicity results for symmetric

square L-functions.
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Statement of Originality

The main results of this thesis which constitute original research are Theo-

rems 1.2 and 1.3. This leads to Corollaries 1.4 and 1.5.

Sections 4.2.2 and 5.4; Propositions 4.6, 4.19 and 4.20; Lemma 5.20 as well

as Theorem 5.11 are original subsidiary results that are required to prove the

main results. As an application, main theorem helps to prove Theorem 1.6.
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Chapter 1

Introduction

1.1 History and motivation of the problem.

There has been a long history involving special values of automorphic L-

functions for GLn × GLm, where the special values are written as algebraic

multiples of complex invariants defined by means of representation theory

and cohomological tools. More precisely, given a cuspidal automorphic rep-

resentation Π on a reductive algebraic group G, there have been attempts to

answer the following questions:

• What are the interesting integers s = m to consider for L(s,Π)?

• What can we say about algebraicity properties of L(m,Π)?

This work is related to a conjecture of Deligne on special values of motivic

L-functions. The statement of the conjecture is as follows (see Deligne [11,

Conj. 2.8]):

Conjecture 1.1 Let M be a pure motive over Q with coefficients in a num-

ber field Q(M). It asserts that the critical values at s = m ∈ Z of the

L−function attached to Motive M can be described, upto multiplication by el-

ements in a number field Q(M), in terms of geometric motivic periods c±(M)

and certain explicit power of (2πi) as follows:

L(m,M) ∼Q(M) (2πi)d(m)c(−1)m(M).

1



In 1998, Mahnkopf [26] started looking at the problem of proving an al-

gebraicity result for all critical values of Rankin–Selberg L-functions on

GL3 × GL1 over a number field F . In his paper, he proved the algebraicity

of the critical values of the L-function attached to a cuspidal automorphic

representation of GL3 over Q having cohomology with respect to constant

coefficients. Later in 2015, his student Geroldinger [14], generalized his work

to arbitrary cohomological weights (µ1, µ2, µ3) of GL3 over Q and also proved

a functional equation for p−adic automorphic L-functions. This thesis deals

with proving an algebraicity result for the special values of L-functions for

GL3 ×GL1 in the following two situations:

1. Over a totally real field having cohomology with general coefficients

µ = (µ1, µ2, µ3);

2. Over a CM field (totally imaginary quadratic field over a totally real

field) having cohomology with coefficients µ = (µι, µῑ) where µι =

(µ1, µ2, µ3) and µῑ = (µ∗1, µ
∗
2, µ

∗
3) such that µ2 = µ∗2 and also µ is a

“parallel” weight.

Such results can be proved by giving a cohomological interpretation to an

integral representing a critical L-value.

1.2 Statements of the theorems.

Algebraicity results for all critical values of certain Rankin-Selberg L-functions

for GL3 ×GL1 over a number field F derives from the theory of L-functions

attached to pairs of automorphic representations on GL3 × GL2. Once we

have L-functions on GL3 × GL2, we adapt general techniques and methods

of Raghuram’s paper [29] to prove the main theorems. To describe the the-

orems in greater detail, we need some notations. Suppose AF is the ring of

adeles of F . Given a regular algebraic cuspidal automorphic representation
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Π of GL3(AF ), one knows from Clozel [9] that there is a pure dominant in-

tegral weight µ such that Π has a nontrivial contribution to the cohomology

of some locally symmetric space of GL3 with coefficients coming from the

finite-dimensional representation with highest weight µ. We denote this as

Π ∈ Coh(G3, µ), for µ ∈ X+
0 (T3), where T3 is the diagonal torus of G3 = GL3.

Let Π = Π∞⊗Πf be the usual decomposition of Π into its archimedean part

Π∞ and its finite part Πf . One knows that its rationality field Q(Π) is

a number field and that Π is defined over this number field. For a given

weight µ, the representationMµ is defined over a number field Q(µ), and by

Clozel [9], it is known that cuspidal cohomology has a Q(µ)-structure; hence

the realization of Πf as a Hecke-summand in cuspidal cohomology in low-

est possible degree has a Q(Π)-structure. On the other hand, the Whittaker

modelW(Πf ) of the finite part of the representation admits a Q(Π)-structure.

Following Raghuram-Shahidi [33], on comparing these two Q(Π)-structures,

certain periods pεΠ(Π) ∈ C× were defined and studied; here εΠ = (εv)v∈Sr

is a collection of signs indexed by the set Sr of real places of F . For any

σ ∈ Aut(C), one knows that σΠ ∈ Coh(G3,
σµ) and one can define periods

simultaneously for all σΠ. Henceforth, let µ ∈ X+
0 (T3) stand for a dominant

integral pure weight and consider Π ∈ Coh(G3, µ). The statement of the

theorems are as follows:

Theorem 1.2 (F is totally real) Let Π ∈ Coh(G3, µ) with εΠv = 11 for all

v ∈ S∞ (see Proposition 3.9 for the definition of εΠv), and let µ ∈ X+
0 (T3)

such that for each µ = (µv)v∈S∞ , µv = (nv, 0,−nv) with nv a non-negative

integer. Put n = min{nv}. Let χ : F×\A×F → C× be a character of finite

order, and define Q(χ) := Q({values of χ}). Suppose that m ∈ Z is critical

for Lf (s,Π⊗ χ), the finite part of the standard degree-3 L-function attached

to Π and χ. Then

m ∈

{
{1− nev, . . . ,−3,−1; 2, 4, . . . , nev}, if χ is totally even,

{1− nod, . . . ,−4,−2, 0; 1, 3, . . . , nod}, if χ is totally odd,
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where nev = 2
[
n+1

2

]
= the largest even positive integer less than or equal to

n+1, and nod = 2
[
n
2

]
+1 = the largest odd positive integer less than or equal

to n + 1. (If χ is even at one place and odd at another place then there are

no critical points.) Fix a quadratic totally odd character ξ once and for all

(which will be relevant only when χ is totally odd). Consider the four cases:

Case 1a. χ is totally even and m ∈ {2, 4, · · · , nev}.
Define Ω+

r (Π) := pεΠ(Π)Lf (−1,Π)−1. There exists a nonzero complex

number P 1
∞(µ,m) depending only the weight µ and the critical point m

such that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 1
∞(µ,m) Ω+

r (Π)G(χ)2,

where, by ≈Q(Π,χ), we mean up to an element of the number field which

is the compositum of the rationality fields Q(Π) and Q(χ); and G(χ) is

the Gauß sum of χ.

Case 1b. χ is totally even and m ∈ {1− nev, · · · ,−3,−1}.
Define Ω+

l (Π) := pεΠ(Π)Lf (2,Π)−1. There exists a nonzero complex

number P 2
∞(µ,m) such that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 2
∞(µ,m) Ω+

l (Π)G(χ).

Case 2a. χ is totally odd and m ∈ {1, 3, · · · , nod}.
Define Ω−r (Π) := pεΠ(Π)Lf (0,Π⊗ ξ)−1. There exists a nonzero complex

number P 3
∞(µ,m) such that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 3
∞(µ,m) Ω−r (Π)G(χ)2G(ξ),

where G(ξ) is the Gauß sum of ξ.
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Case 2b. χ is totally odd and m ∈ {1− nod, · · · ,−4,−2, 0}.
Define Ω−l (Π) := pεΠ(Π)Lf (1,Π⊗ ξ)−1. There exists a nonzero complex

number P 4
∞(µ,m) such that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 4
∞(µ,m) Ω−l (Π)G(χ).

Moreover, in each of the cases, the ratio of the L-value on the left hand side

divided by all the quantities in the right hand side is equivariant for the action

of Aut(C).

This theorem has appeared in the article [31]. For F = Q, µ = 0 and m = 1,

the case 2a above is the main rationality result in Mahnkopf [26]; and for

F = Q and general µ, a weak form of the above theorem is implicit in the

construction of the p-adic L-functions in Geroldinger [14]. Let’s mention in

passing that if n = 0 and χ is totally even, then there are no critical points.

Now we come to CM case where the shape of the main theorem is similar to

the totally real case but the input data is different and more complicated.

Theorem 1.3 (F is a CM field) Let Π ∈ Coh(G3, µ) with µ ∈ X+
0 (T3).

We suppose that µ is a parallel weight, that is, µ = (µv)v∈S∞ ,

µv = (n1, 0, n2; −n2, 0, −n1)

with n1 a non-negative integer and n2 a non-positive integer. (See Section 2.1

for the definition of S∞.) Furthermore, let χ : F×\A×F → C× be an algebraic

Hecke character also of parallel weight such that

χ∞(z∞) =
∏
v∈S∞

(
zv
|zv|

)−2t

for some t ∈ Z. For integers a and b, let

[a, b] := {m ∈ Z | a ≤ m ≤ b}.

Suppose that m ∈ Z is critical for Lf (s,Π⊗χ), the finite part of the standard

degree-3 L-function attached to Π and χ. Then
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• for t strictly positive,

m ∈


[2 + n1 − t, t− n1 − 1] if 0 ≤ n1 ≤ t− 2,

[t− n1, n1 + 1− t] if t ≤ n1 ≤ 2t− 1,

[1− t, t] if n1 ≥ 2t;

if n1 = t− 1 then there are no critical points;

• for t strictly negative,

m ∈


[2− n2 + t, n2 − 1− t] if t+ 2 ≤ n2 ≤ 0,

[n2 − t, 1 + t− n2] if 2t+ 1 ≤ n2 ≤ t,

[1 + t, −t] if n2 ≤ 2t;

if n2 = t+ 1, there are no critical points.

(If t = 0, that is, χ is finite order character, then there are no critical points.)

Furthermore, fix once and for all the unitary algebraic Hecke character φ of

parallel weight such that φ∞(z) =
(
z
|z|

)2

. Consider the cases:

Case 1. t is strictly positive, n2 ≤ −2t, n1 ≥ 1 and

m ∈


[2 + n1 − t, t− n1 − 1] if n1 ≤ t− 2,

[t− n1, n1 + 1− t] if t ≤ n1 ≤ 2t− 1,

[1− t, t] if n1 ≥ 2t.

Define Ω+(Π) := p(Π)Lf (0,Π⊗φ)−1. Then there exists nonzero complex

numbers P+
∞(µ,m) (depending only the weight µ and the critical point

m) and c+(φχ−1) (depending on characters χ and φ) such that

Lf (m,Π⊗ χ) ≈Q(Π,χ,φ) P+
∞(µ,m) Ω+(Π) c+(φχ−1)G(χ)2 G(φ),

where, by ≈Q(Π,χ,φ), we mean up to an element of the number field which

is the compositum of the rationality fields Q(Π), Q(χ) and Q(φ); and

G(χ)(resp. G(φ)) is the Gauß sum of χ(resp. φ).
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Case 2. t is strictly negative, n1 ≥ −2t, n2 ≤ −1 and

m ∈


[2− n2 + t, n2 − 1− t] if t+ 2 ≤ n2,

[n2 − t, 1 + t− n2] if 2t+ 1 ≤ n2 ≤ t,

[1 + t, −t] if n2 ≤ 2t.

Define Ω−(Π) := p(Π)Lf (1,Π ⊗ φ−1)−1. There exists nonzero complex

numbers P−∞(µ,m) and c+(χφ) such that

Lf (m,Π⊗ χ) ≈Q(Π,χ,φ) P−∞(µ,m) Ω−(Π) c+(χφ)G(χ) G(φ)−2.

Moreover, in each of the cases, the ratio of the L-value on the left hand side

divided by all the quantities in the right hand side is equivariant for the action

of Aut(C).

This theorem will appear in the forthcoming article [35], in which author will

address the general µ situation. For a cuspidal automorphic representation

of GL3(AF ) which is regular conjugate self-dual, cohomological, the above

theorem is contained in the main rationality results of Jie Lin’s thesis [25].

The proof of theorems, following [26], is based on an integral representation

for the value Lf (m,Π×χ), which we derive from the Rankin–Selberg theory of

L-functions for GL3×GL2, by taking Π on GL3 and an induced representation

Σ(χ1, χ2) on GL2. Furthermore, assume that the representations are such

that s = 1/2 is critical for the Rankin-Selberg L-function attached to Π ×
Σ(χ1, χ2). We note that

L(s,Π× Σ(χ1, χ2)) = L(s+ 1/2,Π⊗ χ1)L(s− 1/2,Π⊗ χ2).

Using results from [26] and [30], we can arrange for the data d1, d2, χ
0
1 and χ0

2

in totally real case (Proposition 4.19) and for the data σ1, σ2, χ
1
1 and χ1

2 in

CM case (Proposition 4.20) so as to afford an interpretation of the critical L-

value L(1
2
,Π×Σ(χ1, χ2)) as a Poincaré pairing between the pull-back to GL2

of a cuspidal cohomology class ϑ◦Π,εΠ for Π and an Eisenstein cohomology class
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ϑ◦Σ for Σ(χ1, χ2) (see Theorem 5.11). Now we freeze one of the characters

χ1, χ2, and let the other vary, to capture all the critical values L(m,Π⊗χ). In

Section 5.4, for the each of the cases above in both the theorems, we express

L(m,Π ⊗ χ) in terms of certain periods and the Poincaré pairing of ϑ◦Π,εΠ

and ϑ◦Σ, from which we deduce the required algebraicity result in Sections

6.2 and 6.3.

Let’s now briefly address the compatibility of algebraicity results with mo-

tivic periods and motivic L-functions. Let M be a pure motive over Q with

coefficients in a number field Q(M). Suppose M is critical, then a celebrated

conjecture of Deligne [11, Conjecture 2.8] relates the critical values of its

L-function L(s,M) to certain periods that arise out of a comparison of the

Betti and de Rham realizations of the motive. One expects a cohomologi-

cal cuspidal automorphic representation Π to correspond to a motive M(Π);

one of the properties of this correspondence is that the standard L-function

L(s,Π) is the motivic L-function L(s,M(Π)) up to a shift in the s-variable;

see Clozel [9, Section 4]. With the current state of technology, it seems

impossible to compare our periods pε(Π) with Deligne’s periods c±(M(Π)).

Be that as it may, one can still claim that Theorems 1.2 and 1.3 are com-

patible with Deligne’s conjecture by considering the behavior of L-values

under twisting by characters. Blasius [2] and Panchishkin [28] have indepen-

dently studied the behavior of c±(M(Π)) upon twisting the motive M(Π)

by a Dirichlet character (more generally by Artin motives). Using Deligne’s

conjecture, they predict the behavior of critical values of motivic L-functions

upon twisting by algebraic Hecke characters. This takes the following form

in case of Theorem 1.2 which we state only when the twisting character is a

totally even finite order Dirichlet character:

Corollary 1.4 (F is totally real) Let Π ∈ Coh(G3, µ) and χ : F×\A×F → C×

be of finite order and which is totally even. If the critical point m is to the

8



right of the center of symmetry then

Lf (m,Π⊗ χ) ≈ Lf (m,Π)G(χ)2,

but if the critical point m is to the left of the center of symmetry then we

have

Lf (m,Π⊗ χ) ≈ Lf (m,Π)G(χ).

In both the cases the ratio is Aut(C)-equivariant.

From the above relation between critical values for twisted L-functions with

the corresponding values of the untwisted L-functions we may claim that our

result is compatible with Deligne’s conjecture. See also [32, Section 7] where

such relations for twisted critical values are conjectured for symmetric power

L-functions of a modular form.

Analogously it takes the following form in case of Theorem 1.3 where the

twisting character is a unitary algebraic Hecke character, which is enough to

state for a particular sub-case of each case:

Corollary 1.5 (F is CM field) Let Π ∈ Coh(G3, µ) and χ : F×\A×F → C×

be a unitary algebraic Hecke character, defined as in Theorem 1.3. Also fix a

unitary Hecke character φ as stated in Theorem 1.3. If t ≥ 1; n1 ≥ 1; n2 ≤
−2t and the critical point m satisfies 1− t ≤ m ≤ t then

Lf (m,Π⊗ χ)

G(χ)2
≈ Lf (m,Π⊗ φ)

G(φ)2
· c+(φχ−1),

but if t ≤ −1; n1 ≥ −2t; n2 ≤ −1 and the critical point m is such that

1 + t ≤ m ≤ −t then we have

Lf (m,Π⊗ χ)

G(χ)
≈ Lf (m,Π⊗ φ−1)

G(φ)−1
· c+(χφ).

In both the cases the ratio is Aut(C)-equivariant.

The above corollary suggests a factorization of the periods of χφ in terms

of the periods of χ and of φ, possibly giving a symmetric form to the above
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equations.

The proof of both the corollaries follows by taking ratio of L-values:

Lf (m,Π⊗χ) and Lf (m,Π⊗η) where η is the trivial character when F is to-

tally real or η is a fixed unitary algebraic Hecke character when F is CM field.

Finally, as an application let’s discuss the case of symmetric square L-

functions for GL2. For a totally real case Theorem 1.2 applies to the sym-

metric square L-function L(s, Sym2ϕ, χ) attached to a holomorphic cuspidal

Hilbert modular form ϕ, twisted by a finite order Dirichilet character χ. See

Section 6.4. Furthermore, for a CM field case we wish to apply Theorem 1.3

to obtain a rationality result for all the critical values of the symmetric–square

L-function L(s, Sym2(π), χ) attached to cohomological cuspidal automorphic

representation π, twisted by a unitary Hecke character χ. This leads us to

the following theorem:

Theorem 1.6 Let π ∈ Coh(G2, µ) with µ ∈ X+
0 (T2), a ‘parallel’ dominant

integral weight such that for each v ∈ S∞, µv = (a,−a; a,−a) for some

a ≥ 1. Let χ be a unitary algebraic Hecke character of a CM field such that

χ∞(z) = (z/|z|)−2t for some t > 0. Assume that a ≥ t. Suppose a character

φ is same as defined in Theorem 1.3. Then the critical set consists of integers

m ∈ [1− t, t] and furthermore,

Lf (m, Sym2(π)⊗ χ)

≈Q(π,χ,φ) P+
∞(Sym2(µ)),m) Ω+(Sym2(π)) c+(φχ−1)G(χ)2 G(φ).

The proof of the above theorem is given in Section 6.4.

In Chapter 2, we give a dictionary of terminologies which will be needed

later to develop the theory. The reader may quickly skim through this chap-

ter to acquaint himself/herself with the notations and cohomological groups

we deal with.
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In Chapter 3, we begin with a cuspidal automorphic representation on GL3

and an induced representation on GL2 and study their cohomological nature.

In Section 3.2 we see the general form of an algebraic Hecke character, which

later helps in finding the critical values of L-function and defining the in-

duced representation. Furthermore, Sections 3.3 and 3.4 deal with cuspidal

cohomology on GL3 and Eisentein cohomology on GL2 respectively.

In Chapter 4, we study the analytic interpretation of L-function on GL3 ×
GL1. In Section 4.1, we attach an L-function to a pair of representations on

GL3 × GL2, using Rakin–Selberg integrals. In Section 4.2 we calculate the

critical set for L-functions on GL3 × GL1 in terms of weights associated to

representations. Furthermore, we arrange everything for the compatibility of

weight systems in Section 4.3.

In Chapter 5, we study the cohomological interpretation of Rankin-Selberg

integral, using tools available in chapter 3 and then prove the main identity

which relates the L-value with the global pairing of cohomology classes. Fi-

nally in Chapter 6, we give the Galois equivariant version of both the main

theorems followed by an application to the symmetric square L-functions,

by thinking of the L-function on GL3 × GL1 as the standard L-function of

the symmetric-square–which is a cohomological cuspidal representation of

G3–twisted by an algebraic Hecke character χ.

11



Chapter 2

Preliminaries

2.1 Notations and Definitions

• N,Z,Q and R denote the set of natural numbers, integers, rational

numbers, and real numbers, respectively.

• C denotes the field of complex numbers; for z ∈ C, <(z) will denote its

real part, |z| its absolute value and z̄ its complex conjugate.

• For integers a and b, define [a, b] := {m ∈ Z | a ≤ m ≤ b}.

• 11 stands for trivial character.

• The base field. Let F be a number field of degree dF = [F : Q] with

ring of integers O = OF . For any place v we write Fv for the topo-

logical completion of F at v. Let S∞ be the set of archimedean places

of F . Let S∞ := Sr ∪ Sc, where Sr (resp., Sc) is the set of real (resp.,

complex) places. Let εF = Hom(F,C) be the set of all embeddings of F

as a field into C. There is a canonical surjective map εF −→ S∞, which

is a bijection on the real embeddings and real places, and identifies a

pair of complex conjugate embeddings {ιv, ῑv} with the complex place

v. For each v ∈ Sr, we fix an isomorphism Fv ∼= R which is canonical.

Similarly for v ∈ Sc, we fix Fv ∼= C given by (say) ιv; this choice is

not canonical. Let r1 = |Sr| = number of real places and r2 = |Sc| =

12



number of complex places; hence dF = r1 + 2r2.

In particular, if we separate the case of totally real and totally imagi-

nary number fields (or CM fields) then:

1. F is totally real. In this case S∞ = Sr and hence dF = r1.

2. F is CM field. A number field F is a CM field if it is a totally

imaginary quadratic extension F/F0 where the base field F0 is

totally real. Put [F0 : Q] = d0. Then dF = [F : Q] = 2d0.

Furthermore, in this case S∞ = Sc and hence dF = 2r2. This

implies r2 = d0.

Moreover, if v /∈ S∞, and p denotes the prime ideal of O corresponding

to v, then we let Fp the completion of F at p, and Op the ring of integers

of Fp. Sometimes, Fv is used for Fp and similarly Ov for Op. The unique

maximal ideal of Op is pOp and is generated by a uniformizer $p. Let

DF denote the absolute different of F , that is,

D−1
F = {x ∈ F : TF/Q(xO) ⊂ Z}.

For any prime ideal p of F define rp ≥ 0 by: DF =
∏

p p
rp . Let AF

stand for its adèle ring, with AF,f and A×F the ring of finite adèles and

group of idèles, respectively. For brevity, AQ will be denoted by A, and

similarly, A× for A×Q.

• We let ‖ ‖F : A×F −→ R>0 be the adèlic norm of F defined by

‖ x ‖=
∏

v−finite ramified

|xv|v
∏
v∈S∞

|xv|[Fv :R]
v .

• Lie groups. The algebraic group GLn/F will be denoted as Gn, and

we put Gn = RF/Q(Gn). An F -group will be denoted by an underline

and the corresponding Q-group via Weil restriction of scalars will be

denoted without the underline; hence for any Q-algebra A the group

13



of A-points of Gn is Gn(A) = Gn(A ⊗Q F ). Let Bn = T nUn stand

for the standard Borel subgroup of Gn of all upper triangular matrices,

where Un is the unipotent radical of Bn, and T n the diagonal torus.

The center of Gn will be denoted by Zn. These groups define the

corresponding Q-groups Gn ⊃ Bn = TnUn ⊃ Zn. Observe that Zn is

not Q-split, and we let Sn be the maximal Q-split torus in Zn; we have

Sn ∼= Gm over Q.

Note that the field F at infinity is

F∞ := F ⊗ R '
∏
ι∈εF

Fι '
∏
v∈Sr

R×
∏
v∈Sc

C.

Then the group at infinity is

Gn,∞ := Gn(R) =
∏
v∈S∞

GLn(Fv) ∼=
∏
v∈Sr

GLn(R)×
∏
v∈Sc

GLn(C).

We have the center Zn(R) =
∏

v∈Sr R
××

∏
v∈Sc C

×, where each copy of

R× (resp.,C×) consists of nonzero scalar matrices in the corresponding

copy of GLn(R) (resp., GLn(C)). The subgroup Sn(R) of Zn(R) denotes

the split component of center consisting of R× diagonally embedded in∏
v∈Sr R

× ×
∏

v∈Sc C
×. Furthermore, suppose Cn,∞ :=

∏
v∈Sr O(n) ×∏

v∈Sc U(n) be the maximal compact subgroup of Gn(R). Put

Kn,∞ = Sn(R)Cn,∞

∼= R×
(∏
v∈Sr

O(n)×
∏
v∈Sc

U(n)

)

∼= R×+

(∏
v∈Sr

O(n)×
∏
v∈Sc

U(n)

)
= Sn(R)0Cn,∞,

where Sn(R)0 denotes the topological connected component of the iden-

tity of the split component Sn(R). Let K0
n,∞ be the topological con-

nected component of Kn,∞. Hence

K0
n,∞ = Sn(R)0C0

n,∞
∼= R×+

(∏
v∈Sr

SO(n)×
∏
v∈Sc

U(n)

)
.
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For any topological group G, we will let π0(G) := G/G0 stand for the

group of connected components. We will identify

π0(Gn,∞) = π0(Kn,∞) ∼=
∏
v∈S∞

{±1} =
∏
v∈Sr

{±} ×
∏
v∈Sc

{+}.

Furthermore, we identify π0(Gn(R)) inside Gn(R) via the δ′ns where

the matrix δn = diag(−1, 1, . . . , 1) represents the nontrivial element in

O(n)/SO(n). The character group of π0(Kn,∞) is denoted by ̂π0(Kn,∞).

• Mµ denotes an irreducible finite dimensional complex representation

of Gn,∞ with highest weight µ.

• Fix a global measure dg on Gn(A), which is a product of local measures

dgv. The local measures are normalized as follows: For a finite place v,

ifOv is the ring of integers of Fv, then we assume that Vol(Gn(Ov)) = 1,

and at infinity assume that Vol(C0
n,v) = 1.

• Lie algebras. For a real Lie group G, we denote its Lie algebra by

g0 and the complexified Lie algebra by g, i.e., g = g0 ⊗R C. Thus, for

example, if G is the Lie group GLn(R) then g0 = gln(R) and g = gln(C).

Let gn,∞ and kn,∞ denoting the complexified Lie algebras of Gn,∞ and

Kn,∞, respectively.

• Let ι : GLn−1 −→ GLn be the map g 7→ ( g 1 ). Then ι induces a

map at the level of local and global groups and between appropriate

symmetric spaces of Gn−1 and Gn, all of which will also be denoted by

ι again; we hope that this will cause no confusion. The pullback (of a

subset, a function, a differential form, or a cohomology class) via ι will

be denoted by ι∗.

• We fix, once and for all, a non-trivial, continuous, additive character

ψ : F \ AF −→ C×. We assume that ψv : F+
v −→ C× is unramified for

all finite places v. That is, if DF =
∏

p p
rp , the product running over
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all prime ideals p ⊂ O, then the conductor of the local character ψv is

Ov, i.e., ψv is trivial on Ov and non-trivial on p−1
v Ov.

• Gauß sums of Adèlic characters. For a Dirichlet character χ mod-

ulo an integer N , following Shimura [39], we define its Gauß sum g(χ)

as the Gauß sum of its associated primitive character, say χ0 of con-

ductor c, where g(χ0) =
∑c−1

a=0 χ0(a) e2πia/c. For a Hecke character ξ of

F , by which we mean a continuous homomorphism ξ : F× \A×F −→ C∗,
following Weil [44, Chapter VII, Section 7], we define the Gauß sum

of ξ as follows: We let c stand for the conductor ideal of ξf . Let

y = (yv)v 6=∞ ∈ A×f be such that ordv(yv) = −ordv(c). The Gauß sum of

ξ is defined as

G(ξf , ψf , y) =
∏
v 6=∞

G(ξv, ψv, yv),

where the local Gauß sum G(ξv, ψv, yv) is defined as

G(ξv, ψv, yv) =

∫
O×v

ξv(uv)
−1ψv(yvuv)duv.

For almost all v, where everything in sight is unramified, we have

G(ξv, ψv, yv) = 1, and for all v we have G(ξv, ψv, yv) 6= 0. Note that,

unlike Weil, we do not normalize the Gauß sum to make it have abso-

lute value one and we do not have any factor at infinity. Suppressing

the dependence on ψ and y, we denote G(ξf , ψf , y) simply by G(ξf ) or

even G(ξ).

• Locally symmetric spaces. (See [16, Section 1.1].) Let Kf be an

open-compact subgroup of Gn(Af ). Let us write Kf =
∏

pKp where

each Kp is an open compact subgroup of Gn(Qp) and for almost all p

we have Kp =
∏

v|p GLn(Ov). Define the double-coset space

Sn(Kf ) = Gn(Q) \Gn(A)/K0
n,∞Kf = GLn(F ) \GLn(AF )/K0

n,∞Kf .

For brevity, let K = K0
n,∞Kf , and define

X = Gn(A)/K = Gn(R)/K0
n,∞ ×Gn(Af )Kf ,
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i.e., X is the product of the symmetric space Gn(R)/K0
n,∞ with a

totally disconnected space; any connected component of X is of the

form Xg = Gn(R)0(g∞; gf )Kf/K where g = (g∞; gf ) ∈ Gn(A) with

g∞ ∈ π0(Gn(R)) ⊂ Gn(R). The stabilizer of Xg inside Gn(Q) is

Γg := {γ ∈ Gn(Q) : γ ∈ Gn(R)0 ∩ gfKfg
−1
f }. Any connected com-

ponent of Sn(Kf ) is of the form Γg \Xg
∼= Γg \Gn(R)0/K0

n,∞. However,

Γg does not act freely on Xg since Sn,∞ ⊂ Kn,∞. Indeed, the stabilizer

of every point in Xg contains a congruence subgroup ∆ of Sn(OF ); this

∆ is independent of the point in Xg, but the congruence conditions on

∆ depend on Kf . The group Γ̄g = Γg/∆ acts freely on Xg and the

quotient Γ̄g \Xg is a locally symmetric space. We will abuse terminol-

ogy and sometimes refer to Sn(Kf ) as a locally symmetric space of Gn

with level structure Kf .

Similarly, define

S̃n(Kf ) := Gn(Q)\Gn(A)/C0
n,∞Kf = GLn(F )\GLn(AF )/C0

n,∞Kf ,

where C0
n,∞ is the connected component of the identity of the maximal

compact subgroup Cn,∞ of Gn(R). We get a canonical fibration φ given

by:

S̃n(Kf )

��

= Gn(Q)\Gn(A)/C0
n,∞Kf

φ

��
Sn(Kf ) = Gn(Q)\Gn(A)/K0

n,∞Kf .

• Automorphic representations. An irreducible representation of

Gn(A) = GLn(AF ) is said to be automorphic, following Borel–Jacquet

[4], if it is isomorphic to an irreducible subquotient of the representation

of Gn(A) on its space of automorphic forms. We say an automorphic

representation is cuspidal if it is a subrepresentation of the represen-

tation of Gn(A) on the space of cusp forms Acusp(Gn(Q)\Gn(A)) =

Acusp(GLn(F )\GLn(AF )). Let Vπ be the subspace of cusp forms re-
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alizing a cuspidal automorphic representation π. For an automorphic

representation π of Gn(A), we have π = π∞ ⊗ πf , where π∞ is a rep-

resentation of Gn,∞ and πf = ⊗v/∈S∞πv is a representation of Gn(Af ).

The central character of π will be denoted ωπ.

• Rationality field of π. Given π, suppose V is the representation

space of πf , any σ ∈ Aut(C) defines a representation πσf on V ⊗CCσ−1

where Gn(Af ) acts on the first factor. Let S(πf ) be the subgroup of

Aut(C) consisting of all σ such that πσf ' πf . Define the rationality

field Q(πf ) of πf as the subfield of C fixed by S(πf ); we denote this as

Q(π) ≡ Q(πf ) = CS(πf ). (See [32] for details.)

• The finite part of a global L-function attached to a representation π

is denoted by Lf (s, π) and for any place v the local L-factor at v is

denoted by L(s, πv).

2.2 Various Cohomologies

• Relative Lie algebra cohomology. (See Borel-Wallach [5] for de-

tails.) If V is a g−module, and q ∈ N, then

Cq = Cq(g;V ) = HomF (∧qg, V ),

and d : Cq −→ Cq+1 is defined as

df(x0, . . . , xq) =
∑
j

(−1)jxj.f(x0, . . . , x̂j, . . . , xq)

+
∑
j<k

(−1)j+kf([xj, xk], x0, . . . , x̂j, . . . , x̂k, . . . , xq).

Here a hat over an argument means that it is omitted. An elementary

calculation shows that d intertwines the action of g, and that d2 = 0.

Furthermore, to x ∈ g there is associated an endomorphism θx of Cq

and a linear map ix : Cq −→ Cq−1 defined by

(θxf)(x1, . . . , xq) =
∑
j

f(x1, . . . , [xj, x], . . . , xq) + x · f(x1, . . . , xq),
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(ixf)(x1, . . . , xq−1) = f(x, x1, . . . , xq−1).

Let Cq(g, k, V ) be the subspace of Cq(g, V ) consisting of the elements

annihilated by the maps ix and θx for all x ∈ k. Then Cq(g, k, V ) is

stable under the map d and we have

Cq(g, k;V ) = Homk(∧q(g/k), V ),

where the action of k on ∧q(g/k) is induced by the adjoint representa-

tion.

The cohomology groups of complex Cq(g, k;V ) are the relative lie al-

gebra cohomology groups Hq(g, K;V ) of g mod k, with coefficients in

V , where K is the connected subgroup such that Lie(K) = k. We are

interested in the cohomology groups: H•(gn,∞, K
0
n,∞;V ).

Observe that if K0 is a normal subgroup of K, since K acts on the

space Hom(∧•(g/k), V ), this implies K/K0 acts Hom(∧•(g/k), V )K0 =

HomK0(∧•(g/k), V ). Here K0 is a topological connected component of

K

• Sheaf cohomology. (Reference: see Harder-Raghuram [17]) Given

a dominant-integral weight µ ∈ X+(Tn) and the associated repre-

sentation Mµ,E, where E is an extension of Q(µ), we get a sheaf

M̃µ,E of E−vector spaces on symmetric space SGn(Kf ) as follows: Let

π : Gn(A)/K0
n,∞Kf → Sn(Kf ) be the canonical projection. For any

open subset U of Sn(Kf ) define the sections over U by:

M̃µ(U) := {s : π−1(U)→Mµ,E | s is locally constant, and

s(γu) = ρµ(γ)s(u); ∀ γ ∈ Gn(Q), u ∈ π−1(U)},

where ρµ is the finite dimensional representation of Gn(R) with highest

weight µ. This defines a sheaf of complex vector spaces on Sn(Kf ).

Note that even if Mµ,E 6= 0 it is possible that the sheaf M̃µ,E = 0.
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(See Harder [16, 1.1.3].) Indeed, M̃µ,E = 0 unless the central character

of ρµ has the infinity type of an algebraic Hecke character of F . We

are interested in the sheaf cohomology groups

H•(Sn(Kf ),M̃µ,E).

It is convenient to pass to the limit over all open-compact subgroups Kf

and let H•(Sn,M̃µ,E) := lim
−→Kf

H•(Sn(Kf ),M̃µ,E). There is an action

of π0(Gn,∞)×Gn(Af ) on H•(Sn,M̃µ,E), and the cohomology of Sn(Kf )

is obtained by taking invariants under Kf , i.e.,

H•(Sn(Kf ),M̃µ,E) = H•(Sn,M̃µ,E)Kf .

Working at a transcendental level, i.e., taking E = C, we can compute

the above sheaf cohomology via the de Rham complex, and then rein-

terpreting the de Rham complex in terms of the complex computing

relative Lie algebra cohomology, we get the isomorphism:

H•(Sn,M̃µ) ' H•(gn,∞, K
0
n,∞;C∞(Gn(Q)\Gn(A))⊗Mµ).

With level structure Kf it takes the form:

H•(Sn(Kf ),M̃µ) ' H•(gn,∞, K
0
n,∞;C∞(Gn(Q)\Gn(A))Kf ⊗Mµ).

We will also consider the cohomology groups H•(S̃n(Kf ),M̃µ).

• Cuspidal cohomology. The inclusion

C∞cusp(Gn(Q)\Gn(A)) ↪→ C∞(Gn(Q)\Gn(A))

of the space of smooth cusp forms in the space of all smooth functions

induces, via results of Borel [3], an injection in cohomology; this defines

cuspidal cohomology:

H•cusp(Sn(Kf ),M̃µ) ' H•(gn, K
0
n,∞;C∞cusp(Gn(Q)\Gn(A))Kf ⊗Mµ).
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Using the usual decomposition of the space of cusp forms into a di-

rect sum of cuspidal automorphic representations, we get the following

fundamental decomposition of π0(Gn,∞)×Gn(Af )-modules:

H•cusp(Sn,M̃µ) =
⊕

Π

H•(gn, K
0
n,∞; Π∞ ⊗Mµ)⊗ Πf .

We say that Π contributes to the cuspidal cohomology of Gn with

coefficients inMµ if Π has a nonzero contribution to the above decom-

position. Equivalently, if Π is a cuspidal automorphic representation

whose representation at infinity Π∞ after twisting byMµ has nontrivial

relative Lie algebra cohomology, i.e., H•(gn, K
0
n,∞; Π∞ ⊗Mµ) 6= 0 for

some •. In this situation, we write Π ∈ Coh(Gn, µ). It is well known

(see [9]) that only pure weights support cuspidal cohomology.
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Chapter 3

Representation Theory and
Cohomology

3.1 Finite dimensional representations

Consider Tn,∞ =
∏

v∈S∞ Tn(Fv). Let X∗(Tn) = X∗(Tn,∞) be the group of all

algebraic characters of Tn,∞, and let X+(Tn) = X+(Tn,∞) be the subset of

X∗(Tn,∞) which are dominant integral with respect to Borel subgroup Bn.

A weight µ ∈ X+(Tn,∞) is described as follows: µ = (µv)v∈S∞ , where

• For v ∈ Sr, we have µv = (µv1, . . . , µ
v
n), µvi ∈ Z, µv1 ≥ . . . ≥ µvn, and the

character µv sends t = diag(t1, . . . , tn) ∈ Tn(Fv) to
∏

i t
µvi
i .

• If v ∈ Sc then µv is the pair (µιv , µῑv), with µιv = (µιv1 , · · · , µιvn ), µιvi ∈
Z, µιv1 ≥ · · · ≥ µιvn ; likewise µῑv = (µῑv1 , · · · , µῑvn ) and µῑv1 ≥ · · · ≥ µῑvn ;

the character µv is given by sending

t = diag(z1, · · · , zn) ∈ Tn(Fv) to
n∏
i=1

zµ
ιv

i z̄i
µῑv ,

where z̄i is the complex conjugate of zi.

Furthermore, if there is an integer w(µ) such that

(1) For v ∈ Sr and 1 ≤ i ≤ n we have µvi + µvn−i+1 = w(µ);

(2) For v ∈ Sc and 1 ≤ i ≤ n we have µῑvi + µιvn−i+1 = w(µ),
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then we call such a weight µ a pure weight and call w(µ) the purity weight of µ.

We denote the set of dominant integral pure weights as X+
0 (Tn) = X+

0 (Tn,∞).

Furthermore, take an integer b and integers a1 ≥ a2 ≥ · · · ≥ an such that

aj + an−j+1 = b;

now for each v ∈ S∞ put µv = (a1, · · · , an); then µ is pure with w(µ) = b.

Such a weight is called a parallel weight.

For µ ∈ X+(Tn,∞), we define (ρµ,Mµ,C) an irreducible finite dimensional

complex representation of Gn,∞ with highest weight µ as follows: Since

Gn,∞ =
∏

v∈Sr GLn(R)×
∏

v∈Sc GLn(C), it is clear that

(ρµ,Mµ) = (⊗vρµv ,⊗vMµv)

such that for v ∈ Sr, (⊗vρµv ,⊗vMµv) being the irreducible finite dimensional

representation of GLn(R) of highest weight µv, and v ∈ Sc, (⊗vρµv ,⊗vMµv)

is the complex representation of the real algebraic group G(Fv) = GLn(C)

defined as ρµv(g) = ρµιv (g)⊗ ρµῑv (ḡ); here ρµιv (resp., ρµῑv ) is the irreducible

representationMµιv (resp.,Mµῑv ) of the complex group GLn(C) with highest

weight µιv (resp., µῑv).

3.2 Algebraic Hecke Characters

(See Weil [43] for more details.) Recall AF is the adèle ring of F , and IF = A×F
is the group of idèles of F . Let E be the group of all units ε in F and

CF = IF/F× denotes the idèle class group of F .

Definition. A Hecke character is a continuous homomorphism

χ : IF/F× −→ C×.

Recall the norm map ‖ ‖ of an idèle α ∈ IF which is defined as

‖ α ‖=
∏
v

|αv|v,
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where all the valuations are normalized valuations. Then IF/F× −→ R×+ is

a surjective homomorphism with kernel =: 0IF . Clearly F× ⊂ 0IF . We have

the following exact sequence

0 −→ 0IF/F× −→ IF/F× −→ R×+ −→ 0.

This sequence splits. For example, two of the splittings are given by mapping

t ∈ R×+ into the idéle which is t at a particular real infinite place and 1

elsewhere, or by mapping t to t1/2 at a particular complex infinite place and

1 elsewhere. This splitting gives

IF/F× ' 0IF/F× × R×+.

It is a fundamental fact that 0IF/F× is compact (Neukirch [27, Theorem VI.

1.6]). A continuous homomorphism of 0IF/F× into C× has compact image

and so lands in S1. Furthermore, any homomorphism R×+ −→ C× is of the

form x 7−→ |x|w for a complex number w = σ + iϕ. Putting these remarks

together, any Hecke character χ can be uniquely factored as

χ = χ◦⊗ ‖‖σ (3.1)

where χ◦ : IF/F× −→ S1 is a unitary Hecke character and σ ∈ R.

The character at infinity of a Hecke character:

• Characters of R×. Any continuous homomorphism χ : R× → C× is of the

form

χ(x) = sgn(x)−f |x|w =

(
x

|x|

)−f
|x|w,

with f ∈ {0, 1} and w ∈ C. Such a character χ is unitary if and only if

w = iϕ ∈ iR.

• Characters of C×. First let us note that for z = x + iy ∈ C, its nor-

malized real absolute value is defined as |z| := |z|R :=
√
x2 + y2 and its
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normalized complex absolute value is |z|C := |z|2R = x2 + y2. Any continuous

homomorphism χ : C× → C× is of the form

χ(z) =

(
z

|z|

)−f
|z|wC ,

with f ∈ Z and w ∈ C. Such a character χ is unitary if and only if

w = iϕ ∈ iR.

• Description of χ∞. For a Hecke character χ, let χ∞ = χ|F×∞ where F×∞ ↪→
IF . We want to describe this character explicitly. We will use the following

notations: λ is any infinite place; λ ∈ S∞, ρ is any real place; ρ ∈ Sr

and Fρ ' R canonically, and ι is any complex place; ι ∈ Sc and Fι ' C
non-canonically. Further |x∞|∞ =

∏
λ

|xλ|λ for x∞ ∈ F∞ is the product of

normalized valuations. Keep in mind that a Hecke character factorizes as

χ = χ◦⊗ ‖ ‖σ; see Equation (3.1). We can write the character at infinity χ∞

on x∞ ∈ F×∞ as

χ∞(x∞) =

( ∏
λ∈S∞

(
xλ
|xλ|

)−fλ
|xλ|iϕλλ

)
|x∞|σ∞,

where fρ ∈ {0, 1}, fι ∈ Z, ϕλ ∈ R and σ ∈ R.
Using above description of χ at infinity one can classify all finite order char-

acters (say χ0): A character χ0 of CF is of finite order if and only if it is 1

on the connected component of identity in IF , that is, if and only if fι = 0

for all complex places ι, ϕλ = 0 for all infinite places λ, and σ = 0. This

implies, for example, a finite order character on R× will be either 11 or sgn

and a finite order character on C× is always 11.

After classifying finite order characters, we want to classify Hecke characters

χ (given by Equation (3.1)): Following Weil, given fλ and σ, a necessary and

sufficient condition for the existence of a character χ is that there should be
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an integer m such that∏
λ∈S∞

(ελ/|ελ|)mfλ = 1 =⇒
∏
λ∈S∞

(ελ/ε̄λ)
mfλ = 1, (3.2)

for all ε ∈ E. The last equation is obtained by replacing m by 2m.

Clearly, if F is a totally real number field, then Equation (3.2) always holds.

Further if F is a CM field, that is, totally imaginary quadratic extension of

a totally real number field F0, then, by Dirichlet’s theorem εm is totally real

for every ε ∈ E because the group E0 of the units in F0 is of finite index in E

and take m to be that index. Hence Equation (3.2) holds on E for that value

of m and for arbitrary values of fι. It implies then for a CM field, character

χ exists.

Note: The above argument may not work in the case of totally imaginary

fields, i.e., for all ε ∈ E, εm need not be totally real. For a totally imaginary

field F , it may happen that there does not exist any totally real field say

Fr between F and Q such that necessary condition Equation (3.2) holds.

For example take F = Q(
√

2 + i
√

3). Its easy to check that F is totally

imaginary number field of degree 4, which is not a CM field as Q(i
√

6) is the

only proper subfield of F . Hence we work with CM fields only.

We say that χ is of type(A) if all the ϕλ are 0 and σ is rational. In order

for a field to have non-trivial characters of type(A), it is necessary and suffi-

cient that it should contain a totally imaginary quadratic extension F1 of its

maximal totally real subfield F0, for example, F is CM field with F = F1.

Otherwise F will have trivial characters.

A trivial algebraic Hecke character is a trivial character of type(A), which is

the form χ0 ‖ ‖m, with χ0 of finite order and m an integer. If F is a totally

real number field, then F will have only trivial algebraic Hecke characters.
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Hence an algebraic Hecke character of a totally real field looks like

χ = χ0 ‖ ‖m,

with m ∈ Z and χ0 a finite order Dirichlet character.

A non-trivial algebraic Hecke character is a non-trivial character of type(A)

for which 2σ is an integer and fλ ≡ 2σ ( mod 2) for all λ. Hence an algebraic

Hecke character of a CM field looks like

χ = χ1 ‖ ‖σ, (3.3)

with a unitary character χ1 whose infinity part is

χ1
∞(x∞) =

∏
λ

(xλ/|xλ|)−fλ

such that fλ ≡ 2σ (mod 2) for some fλ ∈ Z and σ ∈ 1
2
Z. According to Weil,

such characters are called characters of type(A0).

Note. In this thesis, unless otherwise mention, for CM case we deal with

algebraic Hecke characters of type(A0) with parallel weight. Hence under

this assumption, an algebraic Hecke character χ of a CM field looks like:

χ = χ1 ‖ ‖σ,

with a unitary character χ1 whose infinity part is

χ1
∞(x∞) =

∏
λ

(xλ/|xλ|)−f =

(
x∞
|x∞|

)−f
such that f ≡ 2σ (mod 2) for some f ∈ Z and σ ∈ 1

2
Z.

Fact 3.4 If a character χ of the idèle class group CF of the field F is of

type(A0), then the coefficients of the Hecke L-series associated with χ lie in a

finite algebraic extension of Q; we denote this field as Q(χ) and it is described

below.
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More facts:

• Assume that F has at least one real place. Define the signature εχ of

an algebraic Hecke character χ as follows: By the purity constraint,

with purity weight w, the character χ0 := χ ‖ ‖−w(χ) is a character of

finite order. For v ∈ Sr, define

εχv = (−1)wχ0
v(−1).

Now put εχ = (εχv)v∈Sr . The signature is an r1-tuple of signs indexed by

real embeddings of F. This implies when F is a CM field, no signature

appears because a finite order character of C× is always trivial.

• For each finite place v and any smooth character ωv : F×v → C×, define

the rationality field Q(ωv) of ωv as the field obtained by adjoining the

values of ωv to Q. For an algebraic Hecke character χ, we define its

rationality field Q(χ) as the compositum of the fields Q(χv) for all finite

places v that are unramified for χ. Then Q(χ) is a number field, and

the field Q(χ) need not contain the field F .

Critical values of an algebraic Hecke character.

1. χ is a finite order Dirichlet character. Let χ be a Dirichlet character

mod m with χ(−1) = (−1)p, where p ∈ {0, 1}. The following results

hold for the special values of L-function attached to χ (see Neukirch

[27, Chapter 7] for details):

• For any integer k ≥ 1, one has

L(1− k, χ) = −Bk,χ

k
, (3.5)

where Bk,χ is the generalized Bernoulli number.

• For k ≡ p (mod 2), k ≥ 1, one has

L(k, χ) = (−1)1+
k−p

2
G(χ)

2ip

(
2π

m

)k
Bk,χ̄

k
. (3.6)
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2. χ is a unitary Hecke character of a CM field. Let χ be an algebraic

Hecke character of F× such that χ∞(z∞) =
(
z∞
|z∞|

)−f
for f ∈ Z and for

all z∞ ∈ Cr2 . Using Section 3.2, it is clear that f ≡ 0 (mod 2), that is,

f is an even integer. Put f = 2a; a ∈ Z. Rewriting the character at

infinity we get:

χ∞(z∞) =
∏
v∈S∞

(
zv
|zv |

)−2a

=
∏
v∈S∞

z−2a
v |zv|2a

=
∏
v∈S∞

z−2a+a
v z̄v

a = r2 · (z−av z̄v
a).

Let L(s, χ) be the Hecke L-function attached to character χ. Then the

infinite part of L-value is

L∞(s, χ) =
∏
v∈Sc

L(s, χv) = r2 · (2(2π)Γ(s+ |a|)).

Similarly the Hecke L-factor associated with χ∨ is

L∞(1− s, χ∨) =
∏
v∈Sc

L(1− s, χ∨v ) =
∏
v∈Sc

2(2π)Γ(1− s+ |a|).

An integer m is critical if for all v ∈ Sc the Gamma factors Γ(s + |a|)
and Γ(1− s+ |a|) have no poles, that is,

m+ |a| ≥ 1; and 1−m+ |a| ≥ 1.

On simplifying we get:

m ∈ Z is critical if and only if {1− |a| ≤ m ≤ |a|}. (3.7)

Fact 3.8 Blasius [2] proved that Deligne’s conjecture [11, Conjecture

2.8] (which relates critical values of a motivic L-function L(s,M) to

certain motivic periods) holds for a motive M(χ) (of pure weight w)
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attached to an algebraic Hecke character χ over CM fields. It is stated

as follows: If s is critical for the L-function attached to an algebraic

Hecke character χ over a CM field F , then

Lf (s, χ)

c+(χ ‖ · ‖s)
∈ Q(χ)⊗Q C,

where c+(χ ‖ · ‖s) = (2πi)
s[F : Q]

2 c(−1)s(χ). Here c± are the motivic

periods introduced by Deligne and Q(χ) is a number field as in Fact

3.4. (See also [37].) Moreover M(χ) has no
(
w
2
, w

2

)
−classes unless F

is totally real and hence using ([18], for example) c+(χ) ∼Q(χ) c
−(χ).

3.3 Cuspidal Cohomological representations

of GL3

Let µ ∈ X+
0 (T3,∞) be a pure weight, and let Π ∈ Coh(G3, µ). The pur-

pose of this section is to first write down explicitly the representation Π∞

in terms of µ. Since Π∞ =
∏

v∈S∞ Πv, if we have local representations at

hand then the problem of describing Π∞ is a purely local one. This helps

in computing the set of critical points of Rankin-Selberg L-functions. Sec-

ondly, we study the connection of representation Π∞ with cohomology groups

H•(g3,∞, K
0
3,∞; Π∞⊗Mµ), giving the possible degrees in which one has non-

trivial cuspidal cohomology. This permits us to give a cohomological inter-

pretation to Rankin-Selberg L-functions. We begin by taking up real and

complex places separately. Before that we make the following observation:

• The group K3,∞/K
0
3,∞ = (Z/2Z)r1 acts on H•(g3,∞, K

0
3,∞; Π∞ ⊗Mµ). We

consider certain isotypic components for this action. Consider an r1 tuple of

signs indexed by the set Sr of real places in S∞. Let

ε = (εv)v∈Sr ∈ {11, sgn}r1 = (K3,∞/K
0
3,∞)∧.
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When F is totally real field, Π uniquely determines ε, and when F is a

CM field then no sign appears as F has no real place. For later use let

H•(g3,∞, K
0
3,∞; Π∞ ⊗Mµ)(εΠ) be the corresponding isotypic component.

3.3.1 Cohomological representations of GL3(R)

We review some well known details that will be relevant later on. (See [29] for

more details and further references.) For any integer ` ≥ 1, let D` stand for

the discrete series representation of GL2(R) with lowest non-negative SO(2)-

type given by the character
(

cosθ −sinθ
sinθ cosθ

)
7→ exp−i(`+1)θ, and central character

a 7→ sgn(a)`+1.

Suppose µ ∈ X+
0 (T3) is a pure dominant integral weight written as µ =

(µv)v∈S∞ with µv = (µv1, µ
v
2, µ

v
3) and let w = µv1 + µv3 = 2µv2 be the purity

weight of µ. Note that w is an even integer. Let’s write it as w =: 2w◦ = 2µv2.

Suppose Π ∈ Coh(G3, µ), then it is clear that

Π⊗ ‖ ‖w◦∈ Coh(G3, µ− w◦)

because

H•(g3,∞, K
0
3,∞; Π∞⊗ ‖‖w

◦ ⊗Mµ ⊗ (det)−w
◦
) = H•(g3,∞, K

0
3,∞; Π∞ ⊗Mµ).

The purity weight of µ−w◦ is 0, and furthermore Π⊗| |w◦ is a unitary cuspidal

representation. As far as L-functions (and their special values) are concerned,

we have not lost any information since L(s,Π⊗ ‖ ‖w◦) = L(s+ w◦,Π). We

will henceforth assume:

1. µ is a pure dominant integral weight with purity weight 0; so µ =

(µv)v∈S∞ with µv = (nv, 0,−nv) for a non-negative integer nv.

2. Π ∈ Coh(G3, µ), i.e., Π is a unitary cuspidal automorphic representa-

tion of GL3/F that has nontrivial cohomology with respect to Mµ.

The following well-known proposition records some basic information about

the relative Lie algebra cohomology groups in this context.
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Proposition 3.9 Let µ ∈ X+
0 (T3) be a pure dominant integral weight with

purity weight 0; we write µ = (µv)v∈S∞ with µv = (nv, 0,−nv) for an integer

nv ≥ 0. Put `v = 2nv + 2. Suppose Π ∈ Coh(G3, µ). Then for every v ∈ S∞
we have

Πv = Ind
GL3(R)
P(2,1)(R) (D`v ⊗ εΠv) ,

where, P(2,1) is the standard parabolic subgroup of GL3(R) with Levi quotient

GL2(R) × GL1(R), and εΠv is a quadratic character of R×. In terms of the

central character, we have εΠv(−1) = −ωΠv(−1). (We also write εΠv = sgneΠv

with eΠv ∈ {0, 1}.)

Define bF3 = 2dF = 2[F : Q]. The smallest degree • for which

H•(g3,∞, K
0
3,∞; Π∞ ⊗Mµ) 6= 0 is • = bF3 = 2dF ,

and in this degree, the cohomology group is one-dimensional. Further as a

K3,∞/K
0
3,∞-module we denote the cohomology group by εΠ, which is a dF -tuple

of signs: (sgn1+eΠv )v∈Sr .

3.3.2 Cohomological representations of GL3(C)

(See [29] for more details and further references.) Suppose Π ∈ Coh(G3, µ)

and µ ∈ X+
0 (T3) is a pure dominant integral weight written as µ = (µv)v∈S∞ .

We shall drop v from the notations for this section. Then, for each complex

place v, µ is a pair (µι, µῑ), where ι is a complex embedding that has been

non-canonically chosen and fixed, and ῑ is the conjugate embedding; and

we have 3-tuples µι = (µ1, µ2, µ3) and µῑ = (µ∗1, µ
∗
2, µ

∗
3) of integers. Let

w = µ∗1 + µ3 = µ∗2 + µ2 = µ∗3 + µ1 be the purity weight of µ. Then

µι = (µ1, µ2, µ3), and µῑ = (w − µ3,w − µ2,w − µ1).

Reduction of µ: Let χ be an algebraic Hecke character such that χ∞(z) =

zmz̄n for some m,n ∈ Z. Before we proceed, we need to prove the existence

of character χ. We have the following lemma:
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Lemma 3.10 For a fixed v ∈ Sc and given integers m and n. There exist

an algebraic Hecke character χ such that χ∞(z) = zmz̄n.

Proof. Take f := n − m and σ := m+n
2

. From Section 3.2, given f ∈ Z
and σ ∈ 1

2
Z, there exists a character of type(A0) belonging to f which has

following shape:

χ = χ1 ‖ . ‖σ,

such that f ≡ 2σ (mod 2) and χ1 : F× \ A×F −→ C× with χ1
∞(z) =

(
z
|z|

)−f
.

Then for each v ∈ Sc, we have

χv(z) = (z/|z|)−f |z|2σ

= z−f |z|f+2σ

= z−fz
f+2σ

2 z̄
f+2σ

2

= z−f/2+σz̄f/2+σ.

Clearly m = −f
2

+σ, and n = f
2

+σ. Then χ∞(z) = zmz̄n. Hence χ is the re-

quired character. �

Now using [29, Proposition 2.14],

Π∞ = Ind
GL3(C)
B(C) (za1 z̄b1 ⊗ za2 z̄b2 ⊗ za3 z̄b3),

where (a1, a2, a3) = (µ1 + 1, µ2, µ3 − 1); and (b1, b2, b3) = (µ∗3 − 1, µ∗2, µ
∗
1 + 1).

Then

L∞(s,Π∞ ⊗ χ∞) ≈
3∏
i=1

Γ

(
s+

ai + bi +m+ n

2
+
|ai − bi +m− n|

2

)
.

If m = n,

L∞(s,Π∞ ⊗ χ∞) ≈
3∏
i=1

Γ

(
s+

ai + bi + 2m

2
+
|ai − bi|

2

)

≈
3∏
i=1

Γ

(
s+m+

ai + bi
2

+
|ai − bi|

2

)
= L∞(s+m,Π∞).

(3.11)
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Thus for the game to work we need to impose the following hypothesis:

Consider Π ∈ Coh(G3, µ) with µ in X+
0 (T3,∞) such that for each v ∈ Sc,

µ2 = µ∗2. It is clear then that the representation Π under a Tate twist,

Π⊗ ‖ · ‖µ2∈ Coh(G3, µ− µ2)

because

H•(g3,∞, K
0
3,∞;VΠ∞⊗ ‖ · ‖µ2

∞ ⊗Mµ ⊗ det−µ2 ⊗ d̄et
−µ2)

= H•(g3,∞, K
0
3,∞;VΠ∞ ⊗Mµ).

The purity weight of µ − µ2 is 0, and furthermore Π⊗ ‖ · ‖µ2 is a unitary

cuspidal representation. As far as L-functions (and their special values) are

concerned, we have not lost any information since

L(s,Π⊗ ‖ ‖µ2) = L(s+ µ2,Π).

Twisted Representation. Consider tΠ = Π⊗ ‖ ‖µ2 be a Tate twist of Π

along with the condition that for each complex place v assume µ2 = µ∗2. Put

tµ = µ− µ2. This gives us tΠ ∈ Coh(G3,
tµ), where tµv = (µι, µῑ), such that

µι = (µ1 − µ2, µ2 − µ2, µ3 − µ2), and µῑ = (µ∗1 − µ∗2, µ∗2 − µ∗2, µ∗3 − µ∗2).

Then for each v ∈ Sc we have

tµ = (n1, 0, n2; −n2, 0, −n1), (3.12)

with µ1−µ2 = n1 ∈ Z+ and µ3−µ2 = n2 ∈ Z−, where Z+ = {n ∈ Z : n ≥ 0}
and Z− = {n ∈ Z : n ≤ 0}.
Henceforth we will assume:

1. µ is a pure dominant integral weight with purity weight 0; so µ =

(µv)v∈S∞ with µv = (µιv ; µῑv) = (n1v, 0, n2v; −n2v, 0,−n1v) for a non-

negative integer n1v and a non-positive integer n2v. Furthermore, as-

sume µ to be a parallel weight; so there exists

µ0 = (µι0;µῑ0) = (n1, 0, n2;−n2, 0,−n1)
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such that for each v ∈ S∞, µv = µ0.

2. Π ∈ Coh(G3, µ), i.e., Π is a unitary cuspidal automorphic representa-

tion of GL3/F that has nontrivial cohomology with respect to Mµ,

The following well-known proposition records some basic information about

the relative Lie algebra cohomology groups in this context.

Proposition 3.13 Let µ ∈ X+
0 (T3) be a pure dominant integral ‘parallel’

weight with purity weight 0; we write µ = (µv)v∈S∞ with

µv = (n1, 0, n2;−n2, 0, −n1)

for integers n1 ≥ 0 ≥ n2. Define the cuspidal parameters as:

a = (a1, a2, a3) := (n1 + 1, 0, n2 − 1)

b = (b1, b2, b3) := (−n1 − 1, 0, −n2 + 1).

Suppose Π ∈ Coh(G3, µ). Then for every v ∈ Sc and corresponding to pa-

rameters a, b we have

Πv := Ind
GL3(C)
B(C) (za1 z̄b1 ⊗ za2 z̄b2 ⊗ za3 z̄b3),

where for integers a, b, zaz̄b is the character of C× which sends z to zaz̄b. It

is well known that Πv is irreducible, essential tempered, and generic.

Define bF3 = 3d0. The smallest degree • for which

H•(g3,∞, K
0
3,∞; Π∞ ⊗Mµ) 6= 0 is • = bF3 = 3d0,

and in this degree, the cohomology group is one-dimensional, and since K3,∞ =

K0
3,∞ is connected, π0(K3,∞) is trivial, and hence acts trivially on this coho-

mology group.
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3.4 Eisentein Cohomology for GL2

For i = 1, 2, let χi : F× \ A×F −→ C× be algebraic Hecke characters. Then

according to Section 3.2, χi’s have the following shape:

• If F is a totally real field, then

χi =‖ . ‖di χ0
i ,

where χ0
1, and χ0

2 are of finite order and d1, d2 ∈ Z. Clearly for every

archimedean place v, χ0
i is a quadratic character of R×. Thus we have

χ0
iv = (sgn)eiv , for eiv ∈ {0, 1}.
• If F is a CM field, then

χi =‖ . ‖σi χ1
i ,

for some σi ∈ 1
2
Z and χ1

i are the characters of parallel weight such that at

each infinite place v ∈ Sc,

χ1
i,v(z) = (z/|z|)−fi ,

with fi ∈ Z and fi ≡ 2σi (mod 2).

Define the globally induced representation

Σ(χ1, χ2) := Ind
G2(A)
B2(A)(χ1 ‖ ‖1/2, χ2 ‖ ‖−1/2),

which decomposes into a restricted tensor product Σ(χ1, χ2) = ⊗′vΣ(χ1,v, χ2,v),

where Σ(χ1,v, χ2,v) denotes the normalized parabolically induced representa-

tion Ind
GL2(Fv)
B2(Fv) (χ1,v| |1/2v , χ2,v| |−1/2

v ) of GL2(Fv). Let

Σf (χ1, χ2) := ⊗v-∞Σ(χ1,v, χ2,v)

and

Σ∞(χ1, χ2) := ⊗v|∞Σ(χ1,v, χ2,v)

denote the finite and infinite part of Σ(χ1, χ2), respectively. For simplicity

of notations take Σ(χ1,v, χ2,v) =: Vχv .
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3.4.1 Choice of λ for non-zero cohomology

Let Mλ be a finite dimensional representation of G2,∞, with highest inte-

gral dominant weight λ = (λv)v∈S∞ ∈ X+
0 (T2) which decomposes as Mλ =

⊗v|∞Mλv where Mλv is the finite-dimensional irreducible representation of

GL2(Fv) with highest weight λv. In this subsection for each fix v ∈ S∞, we

want to find λv in terms of parameters appear in the characters χ1 and χ2

such that

H•(g2,v, K
0
2,v;Vχv ⊗Mλv) 6= 0,

for some • ∈ Z. We handle real and complex case separately:

Case 1. If v is a real place (The basic reference here is Harder [16]):

If we write λv = (λv,1, λv,2), with integers λv,j and λv,1 ≥ λv,2, then

Mλv = Symλv,1−λv,2(C2) ⊗ detλv,2 . Hence, the dimension of Mλv is

λv,1 − λv,2 + 1, and its central character is t 7→ tλv,1+λv,2 . We want to

find (λv,1, λv,2) in terms of d1, d2, ε1v, ε2v such that

H•(g2,v, K
0
2,v;Vχv ⊗Mλv) 6= 0.

This is well-known, and we follow [16], however we need to transcribe

his notation in terms of our notation. Take d ∈ N and ν ∈ Z, and

define the finite-dimensional representation M(d, ν) acting on the space

of homogeneous polynomials of degree d in two variables X, Y given by:((
a b
c d

)
P

)
(X, Y ) = P (aX + cY, bX + dY )(ad− bc)ν .

The dimension ofM(d, ν) is d+1, and it’s central character is t 7→ td+2ν .

For m ∈ Z, let ξm denote the character of R× that sends t to tm.

Furthermore, for a pair of characters χi(i = 1, 2) of R×, let

aIndGB(χ1 ⊗ χ2)

denote the algebraic (un-normalized) parabolic induction of the char-

acter χ1⊗χ2 of the Borel subgroup to GL2(R). Then we have (see [16,
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page 69])

Hq(gl2(R), SO(2); aIndGB(ξ−ν−d⊗ξ−ν)⊗M(d, ν)) =

{
C if q = {0, 1}
0 otherwise.

and similarly we have

Hq(gl2(R), SO(2); aIndGB(ξ1−ν ⊗ ξ−d−ν−1)⊗M(d, ν))

=

{
C if q = {1, 2}
0 otherwise.

Since the central characters of aIndGB(ξ−ν−d ⊗ ξ−ν) ⊗ M(d, ν) and

aIndGB(ξ1−ν ⊗ ξ−d−ν−1)⊗M(d, ν) are trivial (a necessary condition for

non-vanishing of cohomology dictated by Wigner’s Lemma), we also

have Hq(gl2(R), SO(2);−) = Hq(gl2(R), SO(2)R×;−) for the modules

above. Comparing M(d, ν) with Mλv we get:

d = λv,1 − λv,2, ν = λv,2.

Keeping later application in mind, we would like to arrange for Vχv to

be aIndGB(ξ1−ν ⊗ ξ−d−ν−1) = aIndGB(ξ1−λv,2 ⊗ ξ−1−λv,1) to get nontrivial

cohomology for q = 1, 2. Using definitions, we get

Vχv := Ind
GL2(Fv)
B2(Fv) (χ1,v| |1/2v , χ2,v| |−1/2

v ) = aIndGB(χ1,v| |v, χ2,v| |−1
v ) .

Therefore, we would like to have:

|t1|d1+1|t2|d2−1(sgn(t1))ε1v(sgn(t2))ε2v = t
1−λv,2
1 t

−1−λv,1
2 ,

which may be written as

|t1|d1+1|t2|d2−1(sgn(t1))ε1v(sgn(t2))ε2v

= |t1|1−λv,2(sgn(t1))1−λv,2 |t2|−1−λv,1(sgn(t2))−1−λv,1 .
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On comparing both sides we get:

λv,1 = −d2, λv,1 ≡ ε2v + 1 (mod 2)

λv,2 = −d1, λv,2 ≡ ε1v + 1 (mod 2) . (3.14)

Case 2. If v is a complex place (See Harder [16] for reference):

If we write λv = (λιv, λ
ῑ
v) with λιv = (λv,1, λv,2), and λῑv = (λ∗v,1, λ

∗
v,2)

where λv,j, and λ∗v,j are integers such that λv,1 ≥ λv,2 and λ∗v,1 ≥ λ∗v,2.

Then

Mλv =Mι
λv ⊗M

ῑ
λv

= Symλv,1−λv,2(C2)⊗ detλv,2 ⊗ ¯Sym
λ∗v,1−λ∗v,2(C2)⊗ d̄et

λ∗v,2 .

We want to find (λv,1, λv,2) and (λ∗v,1, λ
∗
v,2) in terms of f1, f2, σ1, σ2 such

that

H•(g2,v, K
0
2,v;Vχv ⊗Mλv) 6= 0.

Again we need to transcribe the notation of [16] in terms of our no-

tation. Take d ∈ N and ν ∈ Z, and define the finite-dimensional

representation M(d, ν) = M(d1, ν1)⊗M(d2, ν2) where each M(di, νi) is

the finite dimensional representation of GL2(R) acting on the space of

homogeneous polynomials of degree di in two variables X, Y given by:((
a b
c d

)
P

)
(X, Y ) = P (aX + cY, bX + dY )(ad− bc)νi

The dimension of M(di, νi) is di + 1, and its central character is t 7→
tdi+2νi . For m,n ∈ Z, let ξ(m,n) denote the character of C× that sends

z to zmz̄n. Furthermore, for a pair of characters χi (i = 1, 2) of C×, let

aIndGB(χ1 ⊗ χ2) denote the algebraic (un-normalized) parabolic induc-

tion of the character χ1 ⊗ χ2 of the Borel subgroup B(C) to GL2(C).

Then we have (see [16, page 74])

Hq(gl2(C), U(2)C×; aIndGB(ξ(1−ν1,−d2−ν2)⊗ξ(−d1−1−ν1,−ν2))⊗M(d, ν))

=

{
C if q ∈ {0, 1},
0 otherwise,

39



if d1 = d2. (The cases that will be relevant to us later on, based on the

choices in Proposition 4.20, indeed satisfy the condition d1 = d2.)

Comparing M(d, ν) with Mλv we get:

d1 = λv,1 − λv,2, ν1 = λv,2,

and

d2 = λ∗v,1 − λ∗v,2, ν2 = λ∗v,2. (3.15)

Keeping this in mind, we would like to arrange for Vχv to be

aIndGB(ξ(1−ν1,−d2−ν2) ⊗ ξ(−d1−1−ν1,−v2))

= aIndGB(ξ(1−λv,2,−λ∗v,1) ⊗ ξ(−λv,1−1,−λ∗v,2))

to get nontrivial cohomology for q = 1, 2. Using definitions, we get

Vχv := Ind
GL2(Fv)
B2(Fv) (χ1,v| |1/2v,C, χ2,v| |−1/2

v,C ) = aInd
GL2(Fv)
B(Fv) (χ1,v| |v,C, χ2,v| |−1

v,C) .

Therefore, we would like to have:(
t1
|t1|

)−f1

|t1|σ1+2

(
t2
|t2|

)−f2

|t2|σ2−2 = t
1−λv,2
1 t̄1

−λ∗v,1t
−λv,1−1
2 t̄2

−λ∗v,2 ,

which may be written as

t
−f1+2σ1

2
+1

1 t̄1
f1+2σ1

2
+1t
−f2+2σ2

2
−1

2 t̄2
f2+2σ2

2
−1 = t

1−λv,2
1 t̄1

−λ∗v,1t
−λv,1−1
2 t̄2

−λ∗v,2 .

On comparing both sides we get:

λv,1 =

(
f2

2
− σ2

)
, λv,2 =

(
f1

2
− σ1

)
;

and

λ∗v,1 = −
(
f1

2
+ σ1 + 1

)
, λ∗v,2 =

(
1− f2

2
− σ2

)
. (3.16)

Summarizing both cases, we have the following lemma:
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Lemma 3.17 For i = 1, 2, let χi be algebraic Hecke characters of F . Let

λ ∈ X+(T2,∞) be a dominant integral parallel weight written as λ = (λv)v∈S∞.

Suppose that λ satisfies Equation (3.14) if F is totally real, and satisfies

Equation (3.16) if F is CM field. Then

Hq(g2,∞, K
0
2,∞; Σ∞(χ1, χ2)⊗Mλ) 6= 0⇐⇒ q = 1 or 2.

This lemma leads to the following proposition:

Proposition 3.18 Assume the following hypothesis:

• For totally real field: Let χi = ‖ . ‖di χ◦i be algebraic Hecke characters

of F with di ∈ Z and χ◦i finite-order character. Suppose that d1 ≥ d2,

and for v ∈ S∞ suppose also that χ◦iv = (sgn)eiv for eiv ∈ {0, 1} such that

eiv 6≡ di (mod 2). Let λ ∈ X+
0 (T2) be the dominant integral ‘parallel’ weight

determined by d1, d2 as: λ = (λv)v∈S∞, where each λv = (−d2,−d1). Define

bF2 = dF .

• For CM field: Let χi = ‖ . ‖σi χ1
i be algebraic Hecke characters of F

with σi ∈ 1
2
Z and χ1

i are the characters such that χ1
i∞(z∞) = (z∞/|z∞|)−fi

for some fi ∈ Z with the property fi ≡ 2σi (mod 2). Further let λ ∈ X+(T2)

be the dominant integral ‘parallel’ weight determined by f1, f2, σ1, σ2 as: λ =

(λv)v∈S∞, where each λv = (λιv, λ
ῑ
v); with

λιv =
(
f2

2
− σ2,

f1

2
− σ1

)
and λῑv =

(
−
(
f1

2
+ σ1 + 1

)
, 1− f2

2
− σ2

)
.

Define bF2 = d0.

Then

H•(g2,∞, K
0
2,∞; Σ∞(χ1, χ2)⊗Mλ) 6= 0 ⇐⇒ bF2 ≤ • ≤ 2bF2 .

Furthermore, in the extremal degrees of bF2 and 2bF2 , the cohomology group is

one-dimensional.

Proof. The proof follows from Künneth formula for relative Lie algebra
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cohomology (and the details recalled above)

H•(g2,∞, K
0
2,∞; Σ∞(χ1, χ2)⊗Mλ)(εΠ)

=
⊕

Σav=•

(
⊗
v∈Sr

Hav(g2,v, K
0
2,v; Σ(χ1v, χ2v)⊗Mλv)(εv)⊗

v∈Sc

Hav(g2,v, K
0
2,v; Σ(χ1v, χ2v)⊗Mλv)(11)).

�

3.4.2 Action of K2,∞/K
0
2,∞ on group cohomology

We need to determine the action of π0(K2,∞) on Lie algebra cohomology

groups H•(g2,∞, K
0
2,∞; Σ∞(χ1, χ2)⊗Mλ).

Case 1. F is totally real field. Let’s recall some standard conven-

tion: For a representation Π of GLn (in any suitable local or global

context) and for a real number t, we denote Π ⊗ |.|t by Π(t). Also,

we will abbreviate the normalized parabolically induced representation

Ind
GL2(R)
B2(R) (ξm1 ⊗ ξm2) simply as ξm1 × ξm2 . Observe that, for v ∈ S∞ we

have

Σv(χ1, χ2) = χ1v(1/2)× χ2v(−1/2)

= | · |d1 sgne1v(1/2)× | · |d2 sgne2v(−1/2)

= ξd1(sgn)(1/2)× ξd2(sgn)(−1/2)

= ξ−λv,2(sgn)(1/2)× ξ−λv,1(sgn)(−1/2).

Now, we need to determine the action of π0(K2,∞) on the cohomology

group H1(g2,∞, K
0
2,∞; Σ∞(χ1, χ2) ⊗Mλ). To this end, take two inte-

gers a and b with a ≥ b. Consider the following exact sequence of

(gl2(R),O(2)R×+)-modules:

0 −→ Da−b+1

(
a+ b

2

)
−→ ξa(1/2)× ξb(−1/2) −→Ma,b −→ 0.
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Twisting by the sgn character, while noting that twisting commutes

with induction, we get

0 −→ Da−b+1

(
a+ b

2

)
−→ ξa(sgn)(1/2)× ξb(sgn)(−1/2)

−→Ma,b ⊗ sgn −→ 0.

Note that the discrete series representation Dl is invariant under twist-

ing by sgn character. For brevity, let ν := (a, b); ν∨ = (−b, −a);

Vν := ξa(sgn)(1/2)× ξb(sgn)(−1/2),

Dν∨ = Da−b+1

(
a+ b

2

)
,

and

M−
ν :=Mν ⊗ sgn .

The above exact sequence may then be written as

0 // Dν∨
i // Vν //M−

ν
// 0 .

Tensor this sequence by Mν∨ =M∨
ν , and apply H•(gl2, SO(2)R×+;−)

to get the following long exact sequence:

0→ H0(Dν∨ ⊗Mν∨)→ H0(Vν ⊗Mν∨)→ H0(M−
ν ⊗Mν∨)→

→ H1(Dν∨ ⊗Mν∨)→ H1(Vν ⊗Mν∨)→ H1(M−
ν ⊗Mν∨)→

→ H2(Dν∨ ⊗Mν∨)→ H2(Vν ⊗Mν∨)→ H2(M−
ν ⊗Mν∨)→

H3(Dν∨ ⊗Mν∨)→ · · ·

Now, we make precise all the above cohomology groups as O(2)/SO(2)-

modules. Recall 11 stand for the trivial character, and let sgn the sign-

character of O(2)/SO(2) . For the finite-dimensional modules M−
ν ⊗

Mν∨ , first of all, since H0 = Hom, we easily see that

H0(M−
ν ⊗Mν∨) = sgn .
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Next, it follows from [42, Propsition I.4], that

H2(M−
ν ⊗Mν∨) = 11,

and furthermore, one may see that Hq(M−
ν ⊗Mν∨) = 0 for q /∈ {0, 2}.

For the discrete series representation, it is well-known that

H1(Dν∨ ⊗Mν∨) = 11⊕ sgn, and Hq(Dν∨ ⊗Mν∨) = 0, if q 6= 1.

Also, since Vν doesn’t contain a finite-dimensional sub-representation

we deduce H0(Vν ⊗Mν∨) = 0, whence, H1(Vν ⊗Mν∨) sits in the short

exact sequence:

0→ H0(M−
ν ⊗Mν∨)→ H1(Dν∨ ⊗Mν∨)→ H1(Vν ⊗Mν∨)→ 0.

Hence, as an O(2)/SO(2)-module we get

H1(Vν ⊗Mν∨) = 11.

Furthermore, if [Dν∨ ]+ denotes an eigenvector in H1(Dν∨ ⊗Mν∨) for

the trivial action of O(2) , then we may take it’s image under i• (the

map induced by the inclusion i in cohomology) as a generator [Vν ] for

H1(Vν ⊗Mν∨) , i.e.,

i•[Dν∨ ]+ = [Vν ]. (3.19)

To complete the picture, since the dimension of the symmetric space is

2, we have Hq = 0 for all q ≥ 3, and that

H2(Vν ⊗Mν∨) ∼= H2(M−
ν ⊗Mν∨) = 11.

What we especially will want later is summarized in the following

lemma:

Lemma 3.20 For integers a ≥ b, we have as an O(2)/SO(2)-module:

H1(gl2(R), SO(2)R×+; (ξ−b(sgn)(1/2)×ξ−a(sgn)(−1/2))⊗M(a,b)) = C11.
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Case 2. F is a CM field. Since K3,v = U(2)C×, it is connected. The

group π0(K2,v) is trivial and hence it vacuously acts trivially on the

cohomology group H1(gl2(C),U(2)C×; Σ(χ1v, χ2v)⊗Mλv).

On combining both the cases we return to the global situation and use the

above local details to get the following:

Proposition 3.21 Under the hypothesis of Proposition 3.18 we have: The

group π0(K2,∞) acts trivially on HbF2 (g2,∞, K
0
2,∞; Σ∞(χ1, χ2)⊗Mλ).

Proof. Similar to Proposition 3.18, the proof follows from Künneth formula

for relative Lie algebra cohomology and Lemma 3.20. �

3.4.3 Eisenstein cohomology classes corresponding to
Σ(χ1, χ2)

This works exactly as in Mahnkopf [26, Section 1.1] with the additional

book-keeping of having to work over a totally real field or a CM field and a

general coefficient system offering no additional complications; so, we merely

record the details for later use. To begin, fix a generator [Σ(χ1, χ2)∞] = [Σ∞]

of the one-dimensional

HbF2 (g2,∞, K
0
2,∞; Σ∞(χ1, χ2)⊗Mλ) = C[Σ∞].

Tensoring by [Σ∞] and following it up by Eisenstein summation gives us a

map:

FΣ : Σ(χ1, χ2)
Rf
f −→ HbF2 (S2(Rf ),Mλ). (3.22)

where Rf is any open-compact subgroup for which the Rf -invariants in

Σ(χ1, χ2)f , denoted as Σ(χ1, χ2)
Rf
f , is nonzero. (This is the map denoted

as ‘Eis’ on [26, page 96].) Furthermore, the map FΣ is Aut(C)-equivariant.
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Chapter 4

Analytic Theory of L-functions

4.1 Rankin-Selberg L-functions for GL3×GL2

4.1.1 Definition of Whittaker Model

Let (Π, VΠ) be a smooth cuspidal representation of GL3(AF ). Let φ ∈ VΠ be

a smooth cusp form. For each continuous additive character ψ, we define a

ψ−Fourier coefficient, or ψ−Whittaker function of φ by

wφ(g) ≡ wφ,ψ(g) :=

∫
N3(F )\N3(AF )

φ(ng)ψ−1(n)dn,

which satisfies wφ(ng) = ψ(n)wφ(g), for all n ∈ N3(AF ).

Define W(Π, ψ) = {wφ|φ ∈ VΠ}. The group G3(A) acts on this space by

right translation and the map φ 7−→ wφ intertwines the G3(A)–action. The

space W(Π, ψ) is called the Whittaker model of Π. We will be working with

Whittaker models and without any ado we will freely use standard results.

(See, for example, Bump [6, Chapters 3, 4] for reference.)

Theorem 4.1 (Global Whittaker Models). If Π = ⊗′Πv is a cuspidal

automorphic representation of GL3(AF ). Then

(1) there exists a unique Whittaker model W(Π, ψ) for Π with respect to a

non-trivial additive character ψ.
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(2) (Local Whittaker Models.) For any place v of F , representation

Πv of GL3(Fv) has a unique space W(Πv, ψv) of smooth functions such

that for all w ∈ W(Πv, ψv),

1. w(ng) = ψv(n)w(g), ∀n ∈ N3(Fv), g ∈ GL3(Fv),

2. w(gk′) = w(g) for all k′ ∈ K ′ for some K ′ ⊂ GL3(Ov).

(3) the global space decomposes as a restricted tensor product of local Whit-

taker models. That is, if φ = ⊗vφv, where φv is a spherical vector for

almost all v, then wφ =
∏
wφv with wφv(kv) = 1 for almost all v, where

kv = GL3(Ov).

4.1.2 The global integral

We will apply the Rankin–Selberg theory of L-functions for GL3×GL2 to the

pair (Π,Σ), where Π is a cuspidal automorphic representation of GL3(AF )

and Σ = Σ(χ1, χ2) the induced representation defined above. (See, for ex-

ample, [10, Lecture 5].) Take a cusp form φΠ ∈ VΠ, and recall that a cusp

form is a rapidly decreasing function. Let ϕχ1,χ2 ∈ Σ(χ1, χ2), and note that

ϕχ1,χ2 is a function on B2(Q)\G2(A). To ensure G2(Q)-invariance we do an

Eisenstein summation:

E(ϕχ1,χ2 , g, s) :=
∑

γ∈B2(F )\GL2(F )

|α|sϕχ1,χ2(γg).

It’s well known ([16, page 80]) that E(ϕχ1,χ2 , g, s) converges for <(s) � 0,

and has an analytic continuation to an entire function of s if χ1 6= χ2. (In

all the cases that will be relevant to us later on, based on the choices in

Propositions 4.19 and 4.20, we will indeed have χ1 6= χ2.) Put

E(ϕχ1,χ2)(g) := E(ϕχ1,χ2 , g, 0).

Consider the global period integral:

I(s, φΠ, E(ϕχ1,χ2)) :=

∫
G2(Q)\G2(A)

φΠ(ι(g))E(ϕχ1,χ2)(g)|detg|s−1/2dg. (4.2)
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This integral converges for all s ∈ C since a cusp form has rapid decay

whereas an Eisenstein series slowly increases.

To see the Eulerian nature of the above period integral, we pass to the

Whitakker models of the representations. Fix a nontrivial additive character

ψ : AF/F → C×, and suppose that

wΠ ∈ W(Π, ψ), and wE ∈ W(Σ(χ1, χ2), ψ̄)

are global Whittaker vectors corresponding to φΠ and E(ϕχ1,χ2), respectively.

Then

I(s, φΠ, E(ϕχ1,χ2))
(∀s∈C)

=

∫
G2(Q)\G2(A)

φΠ(ι(g))E(ϕχ1,χ2)(g)|detg|s−
1
2dg,

(<(s)�0)
=

∫
N2(A)\G2(A)

wΠ(ι(g))·(∫
N2(F )\N2(A)

E(ϕχ1,χ2)(ng)ψ(n)dn

)
|detg|s−

1
2dg,

(<(s)�0)
=

∫
N2(A)\G2(A)

wΠ(ι(g))wE(g)|detg|s−
1
2dg.

Now suppose φΠ and ϕχ1,χ2 are chosen so that wΠ and wE are pure tensors,

written as restricted tensors wΠ = ⊗′wΠv and wE = ⊗′wEv , then we have∫
N2(A)\G2(A)

wΠ(ι(g))wE(g)|detg|s−
1
2dg

=
∏
v

∫
N2(Fv)\GL2(Fv)

wΠv(ι(gv))wEv(gv)|detgv|
s−1

2
v dgv

=:
∏

v Ψ(s, wΠv , wEv).

We need to compute the local integrals Ψ(s, wΠv , wEv), especially at ramified

places.

4.1.3 Choice of local Whittaker vectors for induced
representations of GL2

For i = 1, 2, let χi be algebraic Hecke characters of F× \ A×F as defined in

Section 3.2. Fix a place v of F . Let Fv be the completion of F at v, with
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the ring of integers Ov and pv is its maximal ideal. Let qv = #Ov/pv be the

cardinality of the residue field, and $v denote a fixed generator of pv. The

normalized valuation val on Fv has the property that val($v) = 1. For the

normalized absolute value we have |$v| = q−1
v . Recall Σv := Σ(χ1v, χ2v) :=

Ind
GL2(Fv)
B(Fv) (χ1v| |1/2v , χ2v| |−1/2

v ) is the induced representation of GL2(Fv) on

the space

V (χ1v, χ2v) := {f : GL2(Fv)→ C | f
((

a x
0 b

)
g
)

= |ab−1|vχ1v(a)χ2v(b)f(g)}.

The action of GL2(Fv) on V (χ1v, χ2v) is by right translations. Since it is

known that B(Fv)N
−
2 (Fv) is dense in GL2(Fv), any f ∈ V (χ1v, χ2v) is com-

pletely determined by its values on elements of the form
(

1 0
∗ 1

)
. So we get

a model for Σ(χ1v, χ2v) obtained by restricting functions in V (χ1v, χ2v) to

N−2 (Fv). We denote the space of functions on N−2 (Fv) ' Fv by V (χ1v, χ2v)
−.

We recall some well-known facts about ‘new vectors’ in induced representa-

tions (see [7] and [36, Proposition 2.1.2]):

Proposition 4.3 Suppose the conductor of χiv is Cond(χiv) = fχiv = pniv ,

say. Then the conductor of Σ(χ1v, χ2v) = fΣv = fχ1fχ2 = pnv , with n = n1+n2.

For m ≥ 0 we define

K01(pm) := {
(
a b
c d

)
∈ GL2(Ov) : c ≡ 0, d ≡ 1(pm)},

with the understanding that K01(p0) = GL2(Ov). Then, the space of K01(pn)-

invariant vectors in Σ(χ1v, χ2v) is one-dimensional, say Cfnew
v . Moreover,

this ‘new-vector’ as a function on N−(Fv) may be taken to be of the following

shape:

• If χ1v and χ2v are ramified, then

fnew
v

(
1 0
x 1

)
=

{
χ1v(x)−1|x|−1/2, if val(x) = n2,

0, if val(x) 6= n2.
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• If χ1v is unramified and χ2v is ramified, then

fnew
v

(
1 0
x 1

)
=

{
χ1v($v)

−n2 |$v|−n2/2, if val(x) ≥ n2,

0, if val(x) < n2.

• If χ1v is ramified and χ2v is unramified, then

fnew
v

(
1 0
x 1

)
=

{
χ1v(x)−1χ2v(x)|x|−2, if val(x) ≤ 0,

0, if val(x) > 0.

• If χ1v and χ2v are unramified, then we take fnew
v = f sp

v , the spherical

vector, i.e., the vector fixed by GL2(Ov), normalized such that f sp
v (kv) =

1 for kv ∈ GL2(Ov).

Now we consider the new-vector fnew
v in the local Whittaker model. For the

global additive character ψ, we will furthermore assume that the local ψv is

unramified, i.e., the largest fractional ideal on which ψv is trivial is Ov. For

fv ∈ V (χ1v, χ2v), the corresponding ψ−1
v -Whittaker function is given by the

integral:

wfv(g) ≡ wfv ,ψ−1
v

(g) =

∫
N(Fv)

ψv(n)fv(w
−1
◦ ng)dn,

where w◦ =
(

0 1
−1 0

)
. The map fv 7→ wfv identifies the local induced represen-

tation Σ(χ1v, χ2v) with its Whittaker model W(Σ(χ1v, χ2v), ψ
−1
v ). We have

the following lemma for new vectors stated in terms of the Whittaker models:

Lemma 4.4 The space of K01(pn)−invariant vectors inW(Σ(χ1v, χ2v), ψ
−1
v )

is one-dimensional, and we may take as generator wnew
Σv

:= wfnew
v
. Further-

more, there exists t∗ = diag(t, 1) such that wnew
Σv

(t∗) 6= 0, for some t ∈ F×v .

Proof. First part of the lemma follows from [36, Proposition 2.12] and

second part follows from Kirillov theory (see, for example [12, Section 3]).

�

We would like to take a convenient t∗ and compute the value wnew
Σv

(t∗). To-

wards this, to begin, suppose v is a finite unramified place, i.e., Σv admits
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a Kv-fixed vector which is unique up to scalars; take w◦Σv as the unique

Kv-fixed vector such that w◦Σv(1) = 1. On the other hand, wf sp
v

is also a

Kv-fixed vector, and so there exists a Cv ∈ C× such that wf sp
v

= Cvw
◦
Σv

; then

Cv = wf sp
v

(1). We have the well-known proposition ([8, Theorem 5.4], [38,

Chapter 5, page 352]):

Proposition 4.5 Suppose χ1v and χ2v are unramified characters, and f sp
v is

the spherical vector in the induced representation Σv, then

Cv = wf◦v (1) = L(2, χ1vχ
−1
2v )−1.

Let’s note that in the usual Casselman-Shalika formula, one sees the value

at s = 1 of a local L-function, but recall in our case that for Σ(χ1, χ2) the

inducing representation is χ1(1/2)×χ2(−1/2) which accounts for the L-value

at s = 2, since L(1, χ1v(1/2)(χ2v(−1/2))−1) = L(2, χ1vχ
−1
2v ).

Let Sχi be the set of finite places where χi is ramified; then put SΣ = Sχ1∪Sχ2 .

Let v ∈ SΣ. Applying Lemma 4.4, we take for wnew
Σv

the unique K01(pn)-fixed

vector normalized such that wnew
Σv

(t∗) = 1. Since the space of new-vectors is

one-dimensional, there exists Av ∈ C× such that wfnew
v

= Avw
new
Σv

. Hence,

Av = wfv
(
t 0
0 1

)
. The precise value of Av is given by the following

Proposition 4.6 Let fnew
v be the new vector in the induced representation

Σv as in Proposition 4.3. Then

Av = wfnew
v

(
t 0
0 1

)
=

q
−n2/2
v χ2v($

−n2)G(χ2v), if χ2v is ramified,

Vol(Ov), if χ2v is unramified.

Proof. Before we begin, let’s recall the following well-known fact about local

Gauß sums: if the conductor of ψv is Ov, then∫
O×v

ψv(aε)χv(ε)d
×ε =

{
χ−1
v (a$e)G(χv), if valv(a) = −e,

0, otherwise,
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where e = cond(χv). Thus, by the definition of the Whittaker function we

have

wfess
v

(
t 0
0 1

)
=

∫
N(Fv)

f
(
w−1
◦ u
(
t

1

))
ψv(u)du

=

∫
F×v

f
(
w−1
◦
(

1 x
0 1

)(
t 0
0 1

))
ψv(x)dx =

∫
F×v

f
((

0 −1
t x

))
ψv(x)dx.

Make the substitution x 7−→ tx, and use
(

0 −1
t tx

)
=
(
x−1 −1

0 tx

)(
1 0
x−1 1

)
to rewrite

the last integral as

|t|v
∫
F×v

f
((

x−1 −1
0 tx

)(
1 0
x−1 1

))
ψv(tx)dx

= |t|v
∫
F×v

χ1v(x)−1χ2v(tx)|x−2t−1|vf
(

1 0
x−1 1

)
ψv(tx)dx

=
∑
n∈Z

∫
$nvO

×
v

χ1v(x)−1χ2v(tx)|x−2|vf
(

1 0
x−1 1

)
ψv(tx)dx.

Now to compute wfess
v

(
t 0
0 1

)
using the very last expression, we consider three

cases:

1. χ1v and χ2v are both ramified. In this case, by Proposition 4.3, we

have f
(

1 0
x−1 1

)
= 0 for all x such that val(x−1) 6= n2. Hence only the

summand for n = −n2 survives to get:

wfess
v

(
t 0
0 1

)
=

∫
$
−n2
v O×v

|x|−2
v χ1v(x)−1χ2v(tx)χ1v(x)|x|

1
2
v ψv(tx)dx

=

∫
$
−n2
v O×v

|x|
−3
2
v χ2v(tx)ψv(tx)dx (put x = $−n2

v y)

= |$−n2
v |

−3
2
v

∫
O×v

χ2v(t$
−n2
v y)ψv(t$

−n2
v y)|$−n2

v |vdy

= |$v|
n2

2
v χ2v($

−n2
v )

∫
O×v

χ2v(ty)ψv($
−n2
v ty)d×y.

Recall that on O×v , dy = d×y. Note that∫
O×v

χ2v(y)ψv($
−n2
v ty)d×y 6= 0⇔ val($−n2

v t) = −n2 ⇔ t ∈ O×v .
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Put ty = z to get

wfess
v

(
t 0
0 1

)
= |$v|

n2

2
v χ2v($

−n2
v )

∫
O×v

χ2v(z)ψv($
−n2
v z)d×z

= q−n2/2
v χ2v($

−n2)G(χ2v).

2. χ1v is unramified and χ2v is ramified. In this case, by Proposition

4.3, we have f
(

1 0
x−1 1

)
= 0, for n > −n2. Hence we get

wfess
v

(
t 0
0 1

)
=
∑

n≤−n2

∫
$nvO

×
v
|x|−2

v χ1v(x)−1χ2v(tx)χ1v($
−n2
v )|$v|−n2/2

v ψv(tx)dx

(now put x = $n
v y);

=
∑

n≤−n2
|$v|−n−n2/2

v χ1v($
−n−n2
v )χ2v($

n
v )
∫
O×v χ2v(ty)ψv(t$

n
v y)d×y.

For the inner integral we have:∫
O×v

χ2v(y)ψv($
n
v ty)d×y 6= 0⇔ val($n

v t) = −n2.

Let’s take t ∈ O×v , then only the summand for n = −n2 will be non-

zero, and we get:

wfess
v

(
t 0
0 1

)
= q−n2/2

v χ2v($
−n2
v )

∫
O×v

χ2v(ty)ψv(t$
−n2
v y)d×y

= q−n2/2
v χ2v($

−n2
v )G(χ2v).

3. χ1v is ramified and χ2v is unramified. In this case, by Proposition

4.3, we have nonzero summands corresponding to n ≥ 0:

wfess
v

(
t 0
0 1

)
=
∑
n≥0

∫
$nvO

×
v

|x|−2
v χ1v(x)−1χ2v(tx)χ1v(x)χ2v(x)−1|x|2vψv(tx)dx

=
∑
n≥0

∫
$nvO

×
v

χ2v(t)ψv(tx)dx.
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Now we take t ∈ O×v so that χ2v(t) = 1 and ψv(tx) = 1 for x ∈ $n
vO×v

and n ≥ 0; this gives: ∑
n≥0

∫
$nvO

×
v

dx = Vol(Ov).

�

For future reference, let’s define

AΣ :=
∏
v∈SΣ

Av. (4.7)

4.1.4 Integral representation of Lf(12 ,Π× Σ(χ1, χ2))

Let’s go back to the period integral in Equation (4.2) and its expression as

a product of the local zeta integrals involving Whittaker vectors:

I(s, φΠ, E(ϕχ1,χ2)) =
∏
v

Ψ(s, wΠv , wEv). (4.8)

We now make a judicious choice of Whittaker vectors and compute the zeta

integrals as follows:

(1) If v /∈ SΣ ∪S∞, take wΠv = wess
Πv

which is the essential vector as in [21],

and wEv = wf sp
v

, then we have:

Ψ(s, wess
Πv , wf sp

v
) =

∫
N2(Fv)\GL2(Fv)

wess
Πv(ι(gv))wf sp

v
(gv)|det(gv)|

s−1
2

v dgv

= L(2, χ1vχ
−1
2v )−1

∫
N2(Fv)\GL2(Fv)

wess
Πv(ι(gv))w

◦
v(gv)

× |det(gv)|
s−1

2
v dgv

= L(2, χ1vχ
−1
2v )−1L(s,Πv × Σ(χ1v, χ2v)).

Let’s define

LΣ := LSΣ
(2, χ1χ

−1
2 )−1 =

∏
v∈SΣ

Lv(2, χ1vχ
−1
2v )−1. (4.9)
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(2) If v ∈ SΣ, take wEv = wfnew
v

, and let wΠv be the unique Whittaker

function whose restriction to ι(GL2(Fv)) is supported on the double

coset N2(Fv)t
∗K01(cond(Σv)), and on this double coset it’s given by

wΠv(ι(nt
∗k)) = ψ(n), for all n ∈ N2(Fv) and all k ∈ K01(cond(Σv)).The

existence and uniqueness of wΠv follows from Kirillov theory ([1, Section

5]). So,

Ψ(s, wΠv , wfess
v

) =

∫
N2(Fv)\GL2(Fv)

wΠv(ι(gv))wfnew
v

(gv)|det(gv)|
s−1

2
v dgv

= Av

∫
N2(Fv)\GL2(Fv)

wΠv(ι(gv))w
new
Σv (gv)|det(gv)|

s−1
2

v dgv

= AvVol(K01(cond(Σv))).

Let’s define

VΣ :=
∏
v∈SΣ

Vol(K01(cond(Σv))). (4.10)

(3) If v ∈ S∞, let wΠv and wEv be arbitrary nonzero vectors. (Later these

will be certain ‘cohomological vectors’.)

Let’s note that the function ϕχ1,χ2 in the induced space Σ(χ1, χ2) is taken

accordingly:

ϕχ1,χ2 = ϕ∞ ⊗ ϕf , ϕf = ⊗v/∈SΣ
f sp
v ⊗v∈SΣ

fnew
v , (4.11)

with ϕ∞ some cohomogical vector. Similarly, the cusp form φΠ is chosen as:

φΠ = φ∞ ⊗ φf , φf = ⊗v/∈S∞φv, φv corresponds to wΠv , (4.12)

with φ∞ some cohomogical vector.

With the above choice of Whittaker vectors in Equation (4.8) becomes (after

multiplying and dividing by suitable local factors and after using the defini-

tions in Equations (4.7), (4.9) and (4.10)):
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I(s, φΠ, E(ϕχ1,χ2)) =∏
v∈S∞

Ψv(s, wΠv , wEv) ·
AΣ · VΣ · LΣ∏

v∈SΣ
L(s,Πv × Σ(χ1v, χ2v))

· Lf (s,Π× Σ(χ1, χ2))

Lf (2, χ1χ
−1
2 )

.

For the factors for v ∈ S∞, suppose s = 1/2 is critical (as we will take a

little later on), then by definition of criticality, L(1
2
,Πv × Σv) is finite. Also

Ψ(s,wΠv ,wfv )

Lv(s,Πv×Σv)
is holomorphic for all s ∈ C, hence

Ψ(1
2
, wΠv , wfv) :=

(
Ψ(s,wΠv ,wfv )

Lv(s,Πv×Σv)

)
|s=1/2 · L(1

2
,Πv × Σv)

is finite. Furthermore, the local L-factors are nonzero and the finite part of

a global L-function Lf (s,Π× Σ(χ1, χ2)) has an analytic continuation for all

s. Hence we get, at s = 1
2
:

I(1
2
, φΠ, E(ϕχ1,χ2))

=
∏
v∈S∞

Ψv(
1
2
, wΠv , wEv)

AΣ · VΣ · LΣ

LSΣ
(1

2
,Π× Σ)

·
Lf (

1
2
,Π× Σ(χ1, χ2))

Lf (2, χ1χ
−1
2 )

, (4.13)

where, LSΣ
(1

2
,Π× Σ) =

∏
v∈SΣ

Lv(
1
2
,Πv × Σ(χ1v, χ2v)).

4.2 Special values of L-functions on GL3×GL1

4.2.1 Local Langlands correspondence for GL3(F)

In this subsection, we recall the dictionary to attach an L-function to a

given irreducible admissible representation of GL3(F), F = R or C, using

Langlands classification. (See [24] for details and future reference.) It says

that there is a well-defined bijection between the set of all equivalence classes

of n-dimensional semisimple complex representations of Weil group of F,

denoted WF, and the set of all equivalence classes of irreducible admissible

representations of GLn(F). We will discuss real and complex case separately:
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F = R

The building blocks for irreducible admissible representations of GL3(R) are

the representations of GL1(R) and GL2(R). Thus the building blocks will

be:

11⊗ | |tR, or sgn⊗| |tR  for GL1(R),

and

Dl ⊗ |det|tR  for GL2(R),

for some t ∈ C.

On the other hand, the Weil group of R, denoted as WR, is the non split

extension of C× by Z/2Z given by

WR = C× ∪ jC×,

where j2 = −1 and jcj−1 = c̄.

The one dimensional representations φ of WR are parametrized by a sgn and

a complex parameter t as follows:

(+, t) : φ(z) = |z|tR and φ(j) = +1,

(−, t) : φ(z) = |z|tR and φ(j) = −1.

Furthermore, the irreducible two dimensional semi-simple representation φ

of WR, up to equivalence, is classified by a pair (l, t) with l ∈ Z, l ≥ 1 and

2t ∈ C.

Lemma 4.14 Every finite dimensional semi-simple representation φ of WR

is fully reducible, and each irreducible representation has dimension one or

two.

Now let φ be an 3-dimensional semi simple complex representation of WR. By

the above Lemma, φ is fully reducible, and on the one and two–dimensional

building blocks, the correspondence is given by

(+, t) −→ 11⊗ | |tR
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(−, t) −→ sgn⊗| |tR

(l, t) −→ Dl ⊗ |det|tR.

To each finite dimensional semi-simple complex representation φ of the Weil

group of R, is associated a local L factor with certain nice properties. The

formula is:

L(s, φ) =



L(s, φ1)L(s, φ2), if φ = φ1 ⊕ φ2

π−(s+t)/2Γ( s+t
2

), if φ 7→ (+, t)

π−(s+t+1)/2Γ( s+t+1
2

), if φ 7→ (−, t)

2(2π)
−
(
s+t+

l
2

)
Γ
(
s+ t+ l

2

)
, if φ 7→ (l, t).

F = C

For z ∈ C, let [z] = z/|z|. The building blocks for irreducible addmissible

representations of GL3(C) are the representations of GL1(C) given by

z 7−→ [z]l|z|tC,

where |z|C = zz̄ and l ∈ Z, t ∈ C.
On the other hand, the Weil group of C is given by WC = C×. Since C× is

abelian, such a representation φ is diagonalizable and hence is the direct sum

of one–dimensional representations, each classified by a pair (l, t). Thus the

correspondence is given by

(l, t) 7−→ [z]l.|z|t.

The local L-factor corresponding to a one dimensional representation φ of

WC is

L(s, φ) = 2(2π)
−
(
s+t+

|l|
2

)
Γ
(
s+ t+ |l|

2

)
, if φ 7→ (l, t).

For φ reducible, L(s, φ) is the product of the L-factors of the irreducible

constituents of φ.
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4.2.2 Critical set for L-functions

Consider the Rankin–Selberg L-function L(s,Π ⊗ χ) where Π is a cuspidal

automorphic representation of GL3(AF ), and χ is an algebraic Hecke char-

acter of F× \ A×F .

Definition: We say an integer m is critical for L(s,Π⊗ χ) if both

L∞(s,Π∞ ⊗ χ∞) and L∞(1− s,Π∨∞ ⊗ χ∨∞)

are regular, that is, both the L-factors at infinity on either side of the func-

tional equation have no poles at s = m, where

L∞(s,Π∞ ⊗ χ∞) =
∏
v∈S∞

Lv(s,Πv ⊗ χv).

We will find critical set for L(s,Π ⊗ χ) separately for totally real field and

CM field.

F : totally real

In Section 3.3.1, we have seen that without loss of generality we can take Π

as follows: Π ∈ Coh(G3, µ) such that for each v ∈ Sr, µv = (nv, 0, −nv);
with nv ≥ 0. Further let χ0 be a finite order algebraic Hecke character. For

each v ∈ Sr, χ0
v is character from R× to R× of finite order. Let us denote

χ0
v = εχv := (sgn)eχv with eχv ∈ {0, 1}.

Since F is totally real number field, S∞ = Sr. As in Proposition 3.9, for

each v ∈ Sr we have

Πv = Ind
GL3(R)
P(2,1)(R)(Dl1v |det|w/2 ⊗ εΠv |det|w/2),

where l1v = 2µv1 + 2 = 2nv + 2, and w = 2µv2 = 0. Using these values we get

Πv ⊗ χv = Ind
GL3(R)
P (R) (D2nv+2 ⊗ εΠvεχv).

Reduction to the case of εΠv = 11: Take Π ∈ Coh(G3, µ) as before, and

fix a nontrivial quadratic character η of F such that ηv = εΠv for all v ∈ S∞.
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(Such an η exists; consider the character attached to a quadratic extension

obtained by adjoining the square root of an element that is negative for

a prescribed set of embeddings–this element may be produced using weak-

approximation in F.) Then, Π⊗η also has cohomology with respect to µ, and

it is easy to see that εΠv⊗ηv = 11. Furthermore, to study the critical values

of L(s,Π⊗ χ), it suffices to consider L(s, (Π⊗ η)⊗ (χ⊗ η)). Henceforth, we

will assume:

1. µ = (µv)v∈S∞ , µv = (nv, 0,−nv) with nv ≥ 0, and

2. Π ∈ Coh(G3, µ), and εΠv = 11 for all v ∈ S∞.

Thus after the above reduction, we get for each v ∈ Sr

Πv ⊗ χv = Ind
GL3(R)
P (R) (D2nv+2 ⊗ εχv).

Case 1. χv = 11 for all v ∈ Sr.
This case may also be described as eχv = 0 for all v ∈ Sr. We have

Πv ⊗ χv = Ind
GL3(R)
P (R) (D2nv+2 ⊗ 11).

Now for each v ∈ Sr, dual representation of a pair Π⊗ χ is given by

Π∨v ⊗ χ∨v = Π∨v ⊗ χ̄v = Πv ⊗ χv,

as discrete series representation is self–dual.

Using Section 4.2.1, by the local Langlands correspondence, the asso-

ciated L-factors are:

L∞(s,Π∞ ⊗ χ∞) =
∏
v∈Sr

(
2(2π)−(s+

2nv+2
2

)Γ

(
s+

2nv + 2

2

)
π−

s
2 Γ
(s

2

))
≈
∏
v∈Sr

Γ(s+ nv + 1)Γ
(s

2

)
,

L∞(1− s,Π∨∞ ⊗ χ∨∞) ≈
∏
v∈Sr

Γ(1− s+ nv + 1)Γ

(
1− s

2

)
,
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where, by ≈, we mean up to nonzero constants and exponential func-

tions which are holomorphic and nonvanishing everywhere, and hence

irrelevant for computing the critical points.

It is known that for an integer m, Γ(m) is finite if and only if m ≥ 1,

i.e., m ∈ {1, 2, 3, ....}. Hence s = m is critical if for each v ∈ Sr

m+ nv + 1 ≥ 1, m
2
≥ 1; 2−m+ nv ≥ 1, 1−m

2
≥ 1.

Now it is an easy exercise to see that:

Critical set for L(s,Π× χ) = {1− nev, . . . ,−3,−1, 2, 4, . . . , nev},
(4.15)

where,

nev = 2

[
n+ 1

2

]
= the largest even positive integer less than or equal to n+ 1,

and n = minv∈Sr{nv}.

Note that if n = 0 (this is the case, for example if µ = 0, i.e., the case

of constant coefficients for the cohomology of GL3) then the critical set

is empty.

Case 2. χv = sgn for all v ∈ Sr.
It may also be described as eχv = 1 for all v ∈ S∞. In this case we have

Πv ⊗ χv = Ind
GL3(R)
P(2,1)(R) (D2nv+2 ⊗ sgn) and again using Section 4.2.1 the

associated L-factors are:

L∞(s,Π∞ × χ∞) ≈
∏
v∈Sr

Γ(s+ nv + 1)Γ

(
s+ 1

2

)
,

L∞(1− s,Π∨∞ × χ∨∞) ≈
∏
v∈Sr

Γ(1− s+ nv + 1)Γ

(
2− s

2

)
.

Then an integer m is critical if the following holds:

m+ nv + 1 ≥ 1, m+1
2
≥ 1; 2−m+ nv ≥ 1, 2−m

2
≥ 1.
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It is an easy exercise now to deduce that:

Critical set for L(s,Π×χ) = {1−nod, . . . ,−2, 0, 1, 3, . . . , nod}, (4.16)

where,

nod = 2
[n

2

]
+ 1 = the largest odd integer less than or equal to n+ 1.

Note that in this case, the critical set is always nonempty.

Case 3: There exist two places v1, v2 ∈ S∞ such that εΠv1
= εχv1 and

εΠv2
6= εχv2 .

Then in the expression for L∞(s,Π∞×χ∞) we would have as a factor:

Γ
(
s
2

)
Γ
(
s+1

2

)
and it is easy to see that in this situation there are no

critical points; whence, we will not consider this case.

F : CM field

As in Proposition 3.13, let µ ∈ X+
0 (T3) be a “parallel” weight written as µ =

(µv)v∈S∞ with µv = (n1, 0, n2;−n2, 0,−n1) for integers n1, n2 such that n1 ≥
0 ≥ n2, and suppose Π ∈ Coh(G3, µ). Let χ be an algebraic Hecke character

of F× \A×F of type(A0) such that χ∞(z∞) =
∏

v∈S∞

(
zv
|zv |

)−f
for some f ∈ Z.

Comparing with the general form of an algebraic Hecke character, we get

f ≡ 0 (mod 2), that is, f is even. Put f = 2t for some t ∈ Z. Hence we have

χ∞(z) = z−tz̄t.

For each v ∈ S∞, we have

Πv = Ind
GL3(C)
B(C) (zn1+1z̄−n1−1 ⊗ 11⊗ zn2−1z̄−n2+1).

Then, on tensoring with χv we get

Πv ⊗ χv = Ind
GL3(C)
B(C) (za1 z̄b1 ⊗ za2 z̄b2 ⊗ za3 z̄b3);
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with the cuspidal parameters

a = (a1, a2, a3) = (n1 + 1− t, −t, n2 − 1− t),

and

b = (b1, b2, b3) = (−n1 − 1 + t, t, −n2 + 1 + t).

Again using Section 4.2.1, the associated local L-factor is:

L(s,Πv ⊗ χv) =
3∏
i=1

L(s, zai z̄bi)

=
3∏
i=1

2(2π)
−
(
s+

ai+bi
2

+
|ai−bi|

2

)
Γ

(
s+

ai + bi
2

+
|ai − bi|

2

)

≈
3∏
i=1

Γ

(
s+

ai + bi
2

+
|ai − bi|

2

)
≈ Γ

(
s+
|2n1 + 2− 2t|

2

)
Γ

(
s+
| − 2t|

2

)
Γ

(
s+
|2n2 − 2− 2t|

2

)
= Γ(s+ |n1 + 1− t|)Γ(s+ |t|)Γ(s+ |n2 − 1− t|),

where, by ≈, we mean up to nonzero constants and exponential functions.

Similarly, look at the dual representation

Π∨v ⊗ χ∨v = Ind
GL3(C)
B(C) (zc1 z̄d1 ⊗ zc2 z̄d2 ⊗ zc3 z̄d3);

with the cuspidal parameters

c = (c1, c2, c3) = (−n2 + 1 + t, t, −n1 − 1 + t),

and

d = (d1, d2, d3) = (n2 − 1− t, −t, n1 + 1− t).

Now one can easily check that
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L(1− s,Π∨v ⊗ χ∨v )

= L(1−s,Πv⊗χv) = Γ(1−s+ |n1 +1− t|)Γ(1−s+ |t|)Γ(1−s+ |n2−1− t|).

We will separate this into cases depending on whether t is positive or negative.

Case 1: t > 0 for all v ∈ S∞.

This implies n2 − 1− t ≤ 0 as n2 is non-positive.

Case 1a. n1 + 1− t ≥ 0.

Using Section 4.2.1, the associated L-factors are:

L∞(s,Π∞ ⊗ χ∞) ≈
∏
v∈Sc

Γ(s+ n1 + 1− t)Γ(s+ t)Γ(s− n2 + 1 + t),

and

L∞(1− s,Π∨∞ ⊗ χ∨∞)

≈
∏
v∈Sc

Γ(1− s+ n1 + 1− t)Γ(1− s+ t)Γ(1− s− n2 + 1 + t).

By the definition of criticality of Γ functions, an integer m ∈ Z is

critical if the following inequalities hold for all v ∈ Sc:

m+ n1 + 1− t ≥ 1, m+ t ≥ 1, m− n2 + 1 + t ≥ 1;

and

1−m+ n1 + 1− t ≥ 1, 1−m+ t ≥ 1, 1−m− n2 + 1 + t ≥ 1.

On solving above inequalities we get:

m ≥ 1− t; m ≥ t− n1, and m ≤ t; m ≤ 1− t+ n1.

Consider following two cases:

• If n1 ≤ 2t− 1 for all v ∈ Sc. Then it is easy to check that:

Critical set for L(s,Π× χ) = {m ∈ Z | t−n1 ≤ m ≤ n1 +1− t}.

In this case critical set is non-empty only if n1 ≥ t.
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• If n1 ≥ 2t for all v. Again it is an easy exercise now to see that:

Critical set for L(s,Π× χ) = {m ∈ Z | 1− t ≤ m ≤ t}.

Note that under the assumption t is positive, the critical set is

always non-empty.

Case 1b. n1 + 1− t ≤ 0 for all v ∈ Sc.
Recall n2− 1− t ≤ 0. For each v ∈ Sc the associated local L-factors is:

L(s,Πv ⊗ χv) ≈ Γ(s− n1 − 1 + t)Γ(s+ t)Γ(s− n2 + 1 + t),

and

L(1−s,Π∨v ⊗χ∨v ) ≈ Γ(1−s−n1−1+ t)Γ(1−s+ t)Γ(1−s−n2 +1+ t).

An integer m is critical if

m ≥ {2 + n1 − t; 1− t; n2 − t},

and

m ≤ {t− n1 − 1; t; t+ 1− n2}.

Hence it is easy to see that:

Critical set for L(s,Π× χ) = {m ∈ Z | 2 + n1 − t ≤ m ≤ t− n1 − 1}.

Clearly it is non-empty only if n1 ≤ t− 2.

On summarizing Case 1 we get: If t is strictly positive,

critical set for L(s,Π× χ)

= m ∈


[2 + n1 − t, t− n1 − 1] if 0 ≤ n1 ≤ t− 2,

[t− n1, n1 + 1− t] if t ≤ n1 ≤ 2t− 1,

[1− t, t] if n1 ≥ 2t.

(4.17)
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Note that for n1 = t− 1 there are no critical points.

Case 2: t < 0 for all v ∈ Sc.
This implies n1 + 1− t ≥ 0 as n1 is non-negative.

Case 2a. n2 − 1− t ≤ 0 for all v. The associated L-factors at infinity

are:

L∞(s,Π∞ ⊗ χ∞) ≈
∏
v∈Sc

Γ(s+ n1 + 1− t)Γ(s− t)Γ(s− n2 + 1 + t),

and

L∞(1− s,Π∨∞ ⊗ χ∨∞)

≈
∏
v∈Sc

Γ(1− s+ n1 + 1− t)Γ(1− s− t)Γ(1− s− n2 + 1 + t).

An integer m ∈ Z is critical if for all v ∈ Sc the following inequalities

hold:

m+ n1 + 1− t ≥ 1, m− t ≥ 1, m− n2 + 1 + t ≥ 1;

and

1−m+ n1 + 1− t ≥ 1, 1−m− t ≥ 1, 1−m− n2 + 1 + t ≥ 1.

To simplify above inequalities we get:

m ≥ 1 + t; m ≥ n2 − t, and m ≤ −t; m ≤ 1 + t− n2.

Similar to case 1 consider the following two cases

• If 2t+ 1 ≤ n2 for all v ∈ Sc. Then it is easy to conclude that:

Critical set for L(s,Π× χ) = {m ∈ Z | n2− t ≤ m ≤ 1+ t−n2},

which is non-empty if and only if n2 ≤ t for all v ∈ S∞.
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• If n2 ≤ 2t for all v. Again it is an easy exercise now to see that:

Critical set for L(s,Π× χ) = {m ∈ Z | 1 + t ≤ m ≤ −t}.

In this case critical set is always non-empty as t > 0.

Case 2b. n2 − 1− t ≥ 0 for all v ∈ Sc.
Recall n1 + 1− t ≥ 0. The associated local L-factors are:

L(s,Πv ⊗ χv) ≈ Γ(s+ n1 + 1− t)Γ(s− t)Γ(s+ n2 − 1− t),

and

L(1−s,Π∨v ⊗χ∨v ) ≈ Γ(1−s+n1 +1− t)Γ(1−s− t)Γ(1−s+n2−1− t).

An integer m ∈ Z is critical if for all v ∈ Sc the following inequalities

hold :

m ≥ {−n1 − 1 + t; 1 + t; 2 + t− n2};

and

m ≤ {n1 + 1− t; −1− t; n2 − 1− t}.

It is an easy exercise now to see that:

Critical set for L(s,Π× χ) = {m ∈ Z | 2 + t− n2 ≤ m ≤ n2 − 1− t}.

Observe that critical set is non-empty only if t+ 2 ≤ n2.

On summarizing Case 2 we get: If t is strictly negative,

critical set for L(s,Π× χ)

= m ∈


[2− n2 + t, n2 − 1− t] if t+ 2 ≤ n2 ≤ 0,

[n2 − t, 1 + t− n2] if 2t+ 1 ≤ n2 ≤ t,

[1 + t, −t] if n2 ≤ 2t.

(4.18)

Note that for n2 = t+ 1 critical set is empty.
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Case 3: t = 0.

Then in the expression for L∞(s,Π∞ × χ∞) and L∞(1 − s,Π∨∞ × χ∨∞) we

would have a factor: Γ(s) and Γ(1− s) respectively and it is easy to see that

in this situation there are no critical points; whence, we will not consider this

case.

4.3 Interlacing of weights

Before stating our next proposition, let’s recall the following well-known

branching rule (a condition on the coefficients system) for finite-dimensional

representations:

HomGL2(C)(Mλ ⊗Mµ,C) 6= 0⇐⇒ µ � λ∨

where µ � λ∨ means µv � λ∨v for all v ∈ S∞ and

µv � λ∨v ≡


µ1v ≥ −λ2v ≥ µ2v ≥ −λ1v ≥ µ3v if F is totally real

µ1 ≥ −λ2 ≥ µ2 ≥ −λ1 ≥ µ3;

µ∗1 ≥ −λ∗2 ≥ µ∗2 ≥ −λ∗1 ≥ µ∗3 if F is a CM field.

Proposition 4.19 (F is totally real) Let µ and Π be as in Remark 4.2.2,

and let χ be a finite order character of A×F/F×. We fix once and for all, a

totally odd quadratic Hecke character ξ of F , and make the following choices

for Hecke characters χi =‖ ‖di χ0
i , with integers di and finite order characters

χ0
i :

Case 1. εχv = 11 for all v ∈ S∞.

Case 1a. m ∈ {2, 4, . . . , nev}, d1 = m − 1, d2 = −1, χ0
1 = χ, and χ0

2 = 11;

put λv = (1, 1−m).
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Case 1b. m ∈ {1− nev, . . . ,−3,−1}, d1 = 1, d2 = m, χ0
1 = 11, and χ0

2 = χ;

put λv = (−m,−1).

Case 2. εχv = sgn for all v ∈ S∞.

Case 2a. m ∈ {1, 3, . . . , nod}, d1 = m− 1, d2 = 0, χ0
1 = χ, and χ0

2 = ξ; put

λv = (0, 1−m).

Case 2b. m ∈ {1 − nod, . . . ,−2, 0}, d1 = 0, d2 = m, χ0
1 = ξ, and χ0

2 = χ;

put λv = (−m, 0).

Then, in all the above four cases, we have

1. L(1
2
,Π⊗ Σ(χ1, χ2)) is critical;

2. H1
(
gl2, SO(2)R×+; Σ(χ1, χ2)v ⊗Mλv

)
= C11 as an O(2)/SO(2)-module;

3. µ � λ∨.

Proof. The proof is a routine check in each case and we will only briefly

present the key details:

Case 1a. For the L-value we see that

L(1
2
,Π⊗ Σ(χ1, χ2)) = L(1 + d1,Π⊗ χ0

1)L(d2,Π⊗ χ0
2)

= L(m,Π⊗ χ)L(−1,Π),

and both the L-values on the right hand side are critical by Equation

(4.15). The induced representation may be written as

Σ(χ1, χ2)v = ξm−1(sgn)(1/2)× ξ−1(sgn)(−1/2),

which has nontrivial cohomology with respect to λv = (1, 1 −m); see

Proposition 3.18. Clearly λ ∈ X+
0 (T2). Further for interlacing condition

µ � λ∨ we want:

n ≥ m− 1 ≥ 0 ≥ −1 ≥ −n

which follows from the given range of critical set.
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Case 1b. For the L-value we have

L(1
2
,Π⊗ Σ(χ1, χ2)) = L(2,Π)L(m,Π⊗ χ),

and for the induced representation we have

Σ(χ1, χ2)v = ξ1(sgn)(1/2)× ξm(sgn)(−1/2),

which has nontrivial cohomology with respect to λv = (−m,−1). One

can easily check that µ � λ∨ which is n ≥ 1 ≥ 0 ≥ m ≥ −n.

Case 2a. For the L-value we have

L(1
2
,Π⊗ Σ(χ1, χ2)) = L(m,Π⊗ χ)L(0,Π⊗ ξ),

and for the induced representation we have

Σ(χ1, χ2)v = ξm−1(sgn)(1/2)× (sgn)(−1/2),

which has nontrivial cohomology with respect to λv = (0, 1 − m).

Clearly λ ∈ X+
0 (T2) and µ � λ∨.

Case 2b. For the L-value we have

L(1
2
,Π⊗ Σ(χ1, χ2)) = L(1,Π⊗ ξ)L(m,Π⊗ χ),

and for the induced representation we have

Σ(χ1, χ2)v = (sgn)(1/2)× ξm(sgn)(−1/2).

�

Proposition 4.20 (F is a CM field) Let Π ∈ Coh(G3, µ) such that µ =

(µv)v∈Sr , µv = (n1, 0, n2;−n2, 0, −n1), with n1 ≥ 0 and n2 ≤ 0. Let χ

be a character of F× \ A×F such that χ∞(z∞) =
∏

v∈S∞(zv/|zv|)−2t for some

t ∈ Z. We fix once and for all, a unitary algebraic Hecke character φ of
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F with ‘parallel’ weight such that φ∞(z) =
(
z
|z|

)2

, and make the following

choice for Hecke characters

χi =‖ . ‖σi χ1
i ,

for some σi ∈ 1
2
Z and characters χ1

i are such that χ1
i∞(z∞) =

∏
v∈S∞(zv/|zv|)−fi

and fi ≡ 2σi (mod 2):

Case 1. t is strictly positive, that is, t > 0; n1 ≥ 1 and n2 ≤ −2t

∀ v ∈ S∞. Also an integer m satisfies Equation (4.17). Choose χ1
1 = φ,

σ1 = −1, χ1
2 = χ, and σ2 = m; put

λv = (t−m, 0; 1, 1− t−m).

Case 2. t is strictly negative, i.e., t < 0; n2 ≤ −1 and n1 ≥ −2t

∀ v ∈ S∞. Furthermore, an integer m satisfies Equation (4.18). Choose

χ1
1 = χ, σ1 = m− 1, χ1

2 = φ−1, and σ2 = 1; put

λv = (0, t−m+ 1; −t−m, −1).

Then, in all the cases, we have

1. L(1
2
,Π⊗ Σ(χ1, χ2)) is critical;

2. H1 (gl2,U(2)C×; Σ(χ1v, χ2v)⊗Mλv) = C11 as an U(2)/SU(2)-module;

3. µ � λv.

Proof. The details of the proof in each case are as follows:

Case 1 Clearly χ1
1 = φ implies f1 = −2 and χ1

2 = χ implies f2 = 2t.

Then for the L-value we see that

L(1
2
,Π⊗ Σ(χ1, χ2)) = L(1,Π⊗ χ1)L(0,Π⊗ χ2)

= L(1 + σ1,Π⊗ χ1
1)L(σ2,Π⊗ χ1

2)

= L(0,Π⊗ φ)L(m,Π⊗ χ),
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and both the L-values on the right hand side are critical by Equation

(4.17). Observe that Π⊗φ is unitary and hence using [20], L(0,Π⊗φ) 6=
0. The induced representation may be written as

Σ(χ1, χ2)v = aInd
GL2(C)
B2(C) (ξ(1, −1) ⊗ ξ(−t+m−1, t+m−1))

which has nontrivial cohomology with respect to

λv = (t−m, 0; 1, 1− t−m);

see Proposition 3.18. Clearly for the sub-cases in critical set λ ∈
X+(T2). For the interlacing of weights we want

n1 ≥ 0 ≥ 0 ≥ m− t ≥ n2;

and

n2 ≤ 1− t−m ≤ 0 ≤ 1 ≤ n1,

which immediately follows from the condition on n1 and n2 in terms of

t.

Case 2. Clearly from the above substitutions χ1
1 = χ and χ1

2 = φ−1

we have f1 = 2t and f2 = 2. For the L-value we see that

L(1
2
,Π⊗ Σ(χ1, χ2)) = L(1 + σ1,Π⊗ χ1

1)L(σ2,Π⊗ χ1
2)

= L(m,Π⊗ χ)L(1,Π⊗ φ−1),

and both the L-values on the right hand side are critical by Equation

(4.18). Clearly Π⊗φ−1 is unitary and hence L(1,Π⊗φ−1) 6= 0 by [20].

The induced representation may be written as

Σ(χ1, χ2)v = aIndGL2
B2

(ξ(−t+m,t+m) ⊗ ξ(−1,1))

which has nontrivial cohomology with respect to

λv = (0, t−m+ 1; −t−m, −1);
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again see Proposition 3.18. In this case also it is easy to check that

λ ∈ X+(T2). For the interlacing of weights we want

n1 ≥ m− t− 1 ≥ 0 ≥ 0 ≥ n2;

and

n2 ≤ −1 ≤ 0 ≤ −(t+m) ≤ n1.

From the given conditions on n1 and n2 in terms of t it is easy to check

that all the inequalities are satisfied.

�
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Chapter 5

Cohomological interpretation of
the integral

In this chapter, we interpret the period integral I(s, φΠ, E(ϕχ1,χ2)) in terms

of Poincaré duality. More precisely, the vector wΠf will correspond to a coho-

mology class ϑΠ,εΠ in degree bF3 (the bottom degree of the cuspidal range for

G3) on a locally symmetric space denoted by S3(Kf ) for GL3, and similarly

ϕf ∈ Σ(χ1, χ2)f will correspond to a class ϑΣ in degree bF2 . The class ϑΠ,εΠ ,

after dividing by a certain period, has good rationality properties. Pull back

ϑΠ along the proper map ι : S̃2 −→ S3, and wedge (or cup) with ϑΣ, to give

a top degree class on S̃2 with coefficients in a tensor product sheaf. Now if

s = 1/2 is critical which is the same as saying the constituent sheaves are

compatible (which is the case when the weights interlace: µ � λ∨), then

we get a top-degree class on S̃2 with constant coefficients. Apply Poincaré

duality, i.e., fix an orientation on S̃2 and integrate. One realizes then that

this is essentially the above period integral. Interpreting the integral, and

hence the L-value it represents, as a cohomological pairing permits us to

study arithmetic properties of such special values, since this pairing is Galois

equivariant. We now make all this precise.
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5.1 The cohomology classes

Recall from Propositions 3.9 and 3.13, given any Π ∈ Coh(G3, µ) and for

the signature εΠ for Π, the cohomology group

HbF3 (g3,∞, K
0
3,∞; Π∞ ⊗Mµ)(εΠ) 6= 0,

and is one-dimensional. Fix a basis [Π∞] of this one-dimensional space, and

this gives us the following comparison isomorphism (see [33]):

FΠf ≡ FΠf ,εΠ,[Π∞] :W(Πf ) −→ HbF3 (g3,∞, K
0
3,∞;VΠ ⊗Mµ)(εΠ). (5.1)

The isomorphism FΠf is a G3(Af )-equivariant map between irreducible mod-

ules, both of which have Q(Π) structures that are unique up to homotheties;

we can adjust the map by a scalar–which is the period–so as to preserve ratio-

nal structures; for more details see [33]. There is a nonzero complex number

pεΠ(Π) attached to the datum (Πf , εΠ, [Π∞]) such that the normalized map,

F◦Πf := pεΠ(Π)−1FΠf

is Aut(C)–equivariant, i.e., the following diagram commutes

F◦Πf :W(Πf )

σ

��

// HbF3 (g3,∞, K
0
3,∞;VΠ ⊗Mµ,C)(εΠ)

σ

��

F◦σΠf
:W(σΠf ) // HbF3 (g3,∞, K

0
3,∞;VσΠ ⊗Mσµ,C)(εΠ).

The complex number pεΠ(Π) is well-defined up to multiplication by elements

of Q(Π)×. The collection {pεΠ(σΠ) : σ ∈ Aut(C)} is well-defined in (Q(Π)⊗
C)×/Q(Π)×. In terms of the un-normalized maps, we can write the above

commutative diagram as

σ ◦ FΠf =
(
σ(pεΠ (Π))
pεΠ (σΠ)

)
FσΠf ◦ σ.

Now define the cohomology class attached to the global Whittaker vector

wΠf as,

ϑΠ,εΠ := FΠf (wΠf ), and ϑ◦Π,εΠ = pεΠ(Π)−1ϑΠ,εΠ . (5.2)

75



Let Kf be an open compact subgroup of G3(Af ) which fixes wΠf and such

that, Σ(χ1, χ2)f has vectors fixed under Rf := ι∗Kf . Then

ϑΠ,εΠ ∈ HbF3 (g3,∞, K
◦
3,∞;V

Kf
Π ⊗Mµ)(εΠ)

and via certain standard isomorphisms [33, Section 3.3], we may identify the

class in H
bF3
cusp(S3(Kf ),M̃µ)(Π̃f ), where Π̃f := Πf ⊗ εΠ is a representation

of G3(Af ) ⊗ π0(K3,∞). Furthermore, since cuspidal cohomology injects into

cohomology with compact support, we get ϑΠ,εΠ ∈ H
bF3
c (S3(Kf ),M̃µ).

On the other hand, recall the map in Equation (3.22):

FΣf : Σ(χ1, χ2)
Rf
f −→ HbF2 (S2(Rf ),M̃λ),

which is Aut(C)-equivariant, that is, σ ◦ FΣ = FσΣ ◦ σ for all σ ∈ Aut(C).

Define the class

ϑ◦Σ := FΣ(ϕf ), (5.3)

where ϕf is defined in Equation (4.11). Using the canonical map φ∗ (the

map induced by φ in cohomology)

HbF2 (S2(Rf ),M̃λ)
φ∗ // HbF2 (S̃2(Rf ),M̃λ) ,

we get φ∗ϑΣ in HbF2 (S̃2(Rf ),M̃λ).

For the open compact subgroupsKf of GL3(Af ) andRf = ι∗(Kf ) of GL2(Af ),

the map ι, being a proper map, induces a map between the cohomology with

compact supports:

ι∗ : H•c (S3(Kf ),M̃µ) −→ H•c (S̃2(Rf ), ι
∗M̃µ).

Now consider the following diagram:
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W(Πf )× Σ(χ1, χ2)f // H
bF3
c (S3(Kf ),M̃µ)×HbF2 (S2(Rf ),M̃λ)

ι∗×φ∗
��

H
bF3
c (S̃2(Rf ), ι

∗M̃µ)×HbF2 (S̃2(Rf ), φ
∗M̃λ)

∧
��

H
bF3 +bF2
c (S̃2(Rf ), ι

∗M̃µ × φ∗M̃λ).

Numerical coincidence:

1. F is totally real: Using Propositions 3.9 and 3.18, we have bF3 = 2dF

and bF2 = dF . Then we have

bF3 + bF2 = 2dF + dF = 3dF = 3r1

= dF dim(GL2(R)0/SO(2)) = dim(S̃2(Rf )).

2. F is a CM field: Similarly using Propositions 4.20 and 3.18 in this

case we get

bF3 + bF2 = 3d0 + d0 = 4d0 = 4r2

= d0 dim(GL2(C)/U(2)) = dim(S̃2(Rf )).

Hence in both the cases

ϑΠ,εΠ ∧ ϑΣ ∈ H
dim(S̃2(Rf ))
c (S̃2(Rf ), ι

∗M̃µ × φ∗M̃λ).

Compatibility of sheaves

We now assume the hypotheses of Proposition 4.19 for totally real case and of

Proposition 4.20 for CM case. The interlacing condition of weights µ � λ∨,

gives the branching rule for finite-dimensional representations as

HomGL2(C)(ι
∗Mµ,Mλ∨) 6= 0
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which gives a non-trivial pairing, 〈·, ·〉 : ι∗Mµ ×Mλ −→ C which in turn

induces a pairing at the level of sheaves:

〈·, ·〉 : ι∗M̃µ × φ∗M̃λ −→ C,

where C is the constant sheaf corresponding to C. Now by composing this

map with the ∧-map gives

〈·, ·〉 ◦ ∧ : H
dim(S̃2(Rf ))
c (S̃2(Rf ), ι

∗M̃µ × φ∗M̃λ) −→ H
dim(S̃2(Rf ))
c (S̃2(Rf ),C).

5.2 The global pairing

We now have a top-degree class on an orientable manifold. We fix an ori-

entation, compatibly on all the connected components; this was called the

Harder-Mahnkopf cycle in [30, Section 3.2.3] (see also [29, Section 2.5.3.3]),

and defined therein as

C(Rf ) =
1

Vol(Rf )

∑
x∈Q×\A×/R>0det(Rf )

[ϑx,Rf ].

The action of δ2 = (−1, 1) on this cycle C(Rf ) is given by r∗δ2C(Rf ) =

(−1)C(Rf ). Here δ2 ∈ O(2)/SO(2) and this action is relevant only in the

totally real case; in the CM case since U(2) is connected, π0(K2,∞) is trivial.

We can define the global pairing as:

〈ϑΠ,εΠ , ϑΣ〉C(Rf ) =

∫
C(Rf )

ι∗ϑΠ,εΠ ∧ φ∗ϑΣ. (5.4)

To evaluate this global pairing, we will write the cohomology classes as differ-

ential forms, and as in [30, Section 3.2.5], but before we evaluate the global

pairing we will need to discuss an analogous pairing involving the (g∞, K
0
∞)-

classes at infinity.
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The pairing at infinity

(See [29, Section 2.5.3.6].) Recall, that we have fixed [Π∞] a basis of the one-

dimensional space HbF3 (g3,∞, K
0
3,∞; Π∞⊗Mµ,C)(εΠ) , and similarly, we have

[Σ∞] generating the one-dimensional space HbF2 (g2,∞, K
0
2,∞; Σ∞(χ1, χ2) ⊗

Mλ,C). Define

dFn = dim(gn,∞/kn,∞).

To compute the pairing at infinity, we choose a basis {yj : 1 ≤ j ≤ dF2 } of

(g2,∞/k2,∞)∗ such that {yj : 1 ≤ j ≤ dF2 − 1} is a basis of (g2,∞/Lie(C2,∞))∗.

Next, fix a basis {xi : 1 ≤ i ≤ dF3 } of (g3,∞/k3,∞)∗, such that ι∗xj = yj

for all 1 ≤ j ≤ dF2 − 1, and ι∗xj = 0 if j ≥ dF2 . We further note that

y1∧y2∧ · · ·∧ydF2 corresponds to a G2(R)0-invariant measure on S̃2(Rf ). Let

{mα} (resp., {mβ}) be a Q-basis for Mµ (resp., Mλ).

The class [Π∞] is represented by aK0
3,∞-invariant element in ∧bF3 (g3,∞/k3,∞)∗⊗

W(Π∞)⊗Mµ,C which can be written as

[Π∞] =
∑

i=i1<···<ibF3

∑
α

xi ⊗ w∞,i,α ⊗mα, (5.5)

where w∞,i,α ∈ W(Π∞, ψ∞). Similarly, [Σ∞] is represented by aK0
2,∞-invariant

element in

∧bF2 (g2,∞/k2,∞)∗ ⊗ Σ∞(χ1, χ2)⊗Mλ

which we write as

[Σ∞] =
∑

j=j1<···<jbF2

∑
β

yj ⊗ ϕ∞,j,β ⊗mβ. (5.6)

Let w∞,j,β ∈ W(Σ∞(χ1, χ2), ψ−1
∞ ) be the Whittaker vector corresponding to

ϕ∞,j,β. We now define a pairing at infinity by

〈[Π∞], [Σ∞]〉 =
∑

i,j

s(i, j)
∑
α,β

〈mα,mβ〉Ψ∞(1/2, w∞,i,α, w∞,j,β), (5.7)

where s(i, j) ∈ {0,−1, 1} is defined by ι∗xi ∧ yj = s(i, j)y1 ∧ y2 ∧ · · · ∧ ydF2 .

Recall that the zeta integral at infinity Ψ∞(1/2, w∞,i,α, w∞,j,β) is defined only
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after meromorphic continuation. However, the assumption that s = 1/2 is

critical ensures that they are all finite, hence 〈[Π∞], [Σ∞]〉 is finite.

Lemma 5.8 〈[Π∞], [Σ∞]〉 6= 0.

Proof. It is easy to see that

〈[Π∞], [Σ∞]〉 =
∏
v∈S∞

〈[Πv], [Σv]〉;

hence it is enough to prove non-vanishing locally for every v ∈ S∞. We will

consider the totally real and CM cases separately:

• If F is a totally real field: As in Section 3.4.2, for the discrete series

representation, it is well known that

H1(gl2, SO(2)R×+;Dλ∨ ⊗Mλ) ∼= C[Dλ]
+ ⊕ C[Dλ]

−.

Recall from Equation (3.19) that [Dλ]
+ maps to [Σv] under the map

denoted i• therein, and this map also kills [Dλ]
−. One can conclude

that

〈[Πv], [Σv]〉 = 〈[Πv], [Dλ]
+〉.

Now Kasten and Schmidt [22] have proved 〈[Πv], [Dλ]
+〉 6= 0, which

proves the lemma.

• If F is CM field: Using Binyong Sun [41, Theorem C], after converting

to our notations, we have

H3d0(gl2(C),U(2)C×; Πv ⊗M∨
µv ⊗ σv ⊗M

∨
νv) 6= 0.

In other words

〈[Πv], [σv]〉 6= 0,

where [σv] = Hd0(gl2(C),U(2)C×;σv ⊗ M∨
νv) is a generator of one-

dimensional cohomology group. Here σv ∈ Coh(G3, ν) with ν = (νv)v∈S∞

such that if

νv = (ν1, ν2; ν∗1 , ν
∗
2)
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then

σv = Ind
GL2(C)
B2(C) (za1 z̄b1 ⊗ za2 z̄b2),

where (a1, a2) =
(
ν1 + 1

2
, ν2 − 1

2

)
and (b1, b2) =

(
ν∗2 − 1

2
, ν∗1 + 1

2

)
. On

comparing σv with our G2(Fv)-representation Σ(χ1v, χ2v) (see Section

3.4 for the definition of Σ(χ1v, χ2v)) we get

2σ1 − f1 + 1

2
= ν1 +

1

2
;

2σ1 + f1 + 1

2
= ν∗2 −

1

2

and
2σ2 − f2 − 1

2
= ν2 −

1

2
;

2σ2 + f2 − 1

2
= ν∗1 +

1

2
.

Simplifying these equations we get:

νv = (ν1, ν2; ν∗1 , ν
∗
2)

=

(
2σ1 − f1

2
,
2σ2 − f2

2
;

2σ1 + f1

2
+ 1,

2σ2 + f2

2
− 1

)
= (−λ2,−λ1; −λ∗2,−λ∗1)

= λ∨v

This implies σv ⊗M∨
νv = σv ⊗Mν∨v = Σv ⊗Mλv . Hence we get

〈[Πv], [Σv]〉 = 〈[Πv], [σv]〉 6= 0,

which proves the lemma. �

In both cases we are now justified in making the definition:

P∞(µ, λ) :=
1

〈[Π∞], [Σ∞]〉
. (5.9)

5.3 L-value as a global pairing of cohomology

classes

Using Equations (5.1) and (5.5) we write:

ϑΠ,εΠ =
∑

i

∑
α

xi ⊗ φi,α ⊗mα,
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where the cusp form φi,α in the ψ -Whittaker model of Π, looks like wΠf ⊗
w∞,i,α; recall from Equation (4.12) that wΠf corresponds to φf . Similarly,

using Equations (3.22) and (5.6), we may write

ϑ◦Σ =
∑

j

∑
β

yj ⊗ Ej,β ⊗mβ,

where the Eisenstein series Ej,β is constructed by taking Eisenstein summa-

tion for the function ϕf ⊗ϕ∞,j,β in the full induced representation Σ(χ1, χ2),

with ϕf as is in Equation (4.11). We get the global pairing

〈ϑΠ,εΠ , ϑ
◦
Σ〉C(Rf ) =

∑
i,j

∑
α,β s(i, j)〈mα,mβ〉

∫
S̃2(Rf )

φi,α(ι(g))Ej,β(g) dg

= vol(Rf )
∑

i,j

∑
α,β s(i, j)〈mα,mβ〉I(1

2
, φi,α, Ej,β)

The second equality is because of φf and ϕf are both Rf invariant, and also

by our normalization of measure in Section 2.1 that vol(SO(n)) = 1 and

vol(U(n)) = 1. Using Equation (4.13) we get:

〈ϑΠ,εΠ , ϑ
◦
Σ〉C(Rf ) =

1

P∞(µ, λ)
· vol(Rf )AΣ · VΣ · LΣ

LSΣ
(1

2
,Π× Σ)

·
Lf (

1
2
,Π× Σ(χ1, χ2))

Lf (2, χ1χ
−1
2 )

.

(5.10)

Dividing by the period pεΠ(Π) to get the rational class ϑ◦Π,εΠ now proves the

following:

Theorem 5.11 Let Π ∈ Coh(G3, µ) with µ ∈ X+
0 (T3), and Σ(χ1, χ2) be the

induced representation of GL2(AF) as in Section 3.4. Separate the cases as

follows:

F is totally real. Let λ ∈ X+
0 (T2) be the dominant integral ‘parallel’ weight

determined by d1, d2, χ
◦
1, χ

◦
2 as: λ = (λv)v∈Sr , where each λv = (−d2,−d1)

such that eiv 6≡ di (mod 2), and

F is a CM field. Let λ ∈ X+(T2) be the dominant integral ‘parallel’ weight

determined by σ1, σ2, χ
1
1, χ

1
2 as: λ = (λv)v∈Sc, where each λv = (λιv, λ

ῑ
v); with

λιv =
(
f2

2
− σ2,

f1

2
− σ1

)
, and λῑv =

(
−
(
f1

2
+ σ1 + 1

)
, 1− f2

2
− σ2

)
.
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Assume that s = 1/2 is critical for L(s,Π × Σ(χ1, χ2)) and that µ � λ∨.

Then there exist nonzero complex numbers P∞(µ, λ) and pεΠ(Π) such that

Lf (
1
2
,Π× Σ(χ1, χ2))

P∞(µ, λ) pεΠ(Π)Lf (2, χ1χ
−1
2 )

= (vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π× Σ)) · AΣ · 〈ϑ◦Π,εΠ , ϑ

◦
Σ〉C(Rf ).

This already shows that the left hand side is algebraic. Moreover we can

study the action of the Galois group of Q on the quantities.

5.4 The main identity for the critical values

Lf(m,Π⊗ χ)

F is totally real

Now recall the fact that the L-value at s = 1/2 attached to the pair of

representations (Π,Σ(χ1, χ2)) decomposes as

Lf (
1
2
,Π× Σ(χ1, χ2)) = Lf (1,Π⊗ χ1)Lf (0,Π⊗ χ2)

= Lf (1 + d1,Π⊗ χ0
1)Lf (d2,Π⊗ χ0

2).

Now we consider the four cases as delineated in Proposition 4.19. Before

getting into details, let’s comment that, using Equation (3.5), in each case

the L-value L(2, χ1χ
−1
2 ) in the denominator of the left hand side of the above

theorem, which is the same as L(2+d1−d2, χ
0
1χ

0
2
−1), is in fact a critical value

of a classical Dirichlet L-function of a finite order Hecke character of F for

the choices of dj and χ0
j , j = 1, 2.

Case 1. χ is even, that is, εχv = 11 for all v ∈ S∞.

Case 1a. m ∈ {2, 4, . . . , nev}. Take d1 = m − 1, d2 = −1, χ0
1 = χ, and

χ0
2 = 11. Put λv = (1, 1−m). Then, Theorem 5.11 takes the form:
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Lf (m,Π⊗ χ)

P∞(µ,m) Ω+
r (Π)Lf (2 +m,χ)

= (vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π×Σ)) ·AΣ · 〈ϑ◦Π,εΠ , ϑ

◦
Σ〉C(Rf ), (5.12)

where the modified period is defined as

Ω+
r (Π) := pεΠ(Π)Lf (−1,Π)−1. (5.13)

Case 1b. m ∈ {1 − nev, . . . ,−3,−1}. Take d1 = 1, d2 = m, χ0
1 = 11, and

χ0
2 = χ. Put λv = (−m,−1). In this case Theorem 5.11 takes the

form:

Lf (m,Π⊗ χ)

P∞(µ,m) Ω+
l (Π)Lf (3−m,χ−1)

= (vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π×Σ)) ·AΣ · 〈ϑ◦Π,εΠ , ϑ

◦
Σ〉C(Rf ), (5.14)

where the modified period is defined as

Ω+
l (Π) := pεΠ(Π)Lf (2,Π)−1. (5.15)

Case 2. χ is odd, that is, εχv = sgn for all v ∈ S∞. In this case, we fix once and

for all, a totally odd quadratic Hecke character ξ of F .

Case 2a. m ∈ {1, 3, . . . , nod}. Take d1 = m−1, d2 = 0, χ0
1 = χ, and χ0

2 = ξ.

Put λv = (0, 1−m). Then Theorem 5.11 takes the form:

Lf (m,Π⊗ χ)

P∞(µ,m) Ω−r (Π)Lf (m+ 1, χξ−1)

= (vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π×Σ)) ·AΣ · 〈ϑ◦Π,εΠ , ϑ

◦
Σ〉C(Rf ), (5.16)

where the modified period is defined as

Ω−r (Π) := pεΠ(Π)Lf (0,Π⊗ ξ)−1. (5.17)
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Case 2b. m ∈ {1 − nod, . . . ,−2, 0}. Take d1 = 0, d2 = m, χ0
1 = ξ, and

χ0
2 = χ. Put λv = (−m, 0). Then, Theorem 5.11 takes the form:

Lf (m,Π⊗ χ)

P∞(µ,m) Ω−l (Π)Lf (2−m, ξχ−1)

= (vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π×Σ)) ·AΣ · 〈ϑ◦Π,εΠ , ϑ

◦
Σ〉C(Rf ), (5.18)

where the modified period is defined as

Ω−l (Π) := pεΠ(Π)Lf (1,Π⊗ ξ)−1. (5.19)

F is CM field

Before getting into the details observe that, since there are no real places,

signature doesn’t appear in the period pεΠ(Π) and ϑ◦Π,εΠ . Hence we denote it

as p(Π) and ϑ◦Π respectively. Furthermore we prove a lemma regarding the

criticality of the L-value L(2, χ1χ
−1
2 ) in the denominator of the left hand side

of the above theorem, which is the same as L(2 + σ1 − σ2, χ
1
1 (χ1

2)−1).

Lemma 5.20 L(2 + σ1 − σ2, χ
1
1 (χ1

2)−1) is indeed a critical value of L-

function attached to the unitary algebraic Hecke character χ1
1 (χ1

2)−1 of F for

the choices of σj and χ1
j , j = 1, 2.

Proof. Consider the two cases as delineated in Proposition 4.19.

Case 1. Suppose t is totally positive, n2 ≤ −2t and n1 ≥ 1. Take

f1 = −2, σ1 = −1, f2 = 2t, and σ2 = m. Then the L-value

L(2 + σ1 − σ2, χ
1
1(χ1

2)−1) = L(1−m,χ◦),

with χ◦ is such that χ◦∞(z) =
(
z
|z|

)2+2t

. Now using Section 3.2, 1−m
is critical for χ◦ if

−t ≤ 1−m ≤ 1 + t,

that is, −t ≤ m ≤ 1+ t. We check this condition for the following three

sub-cases:
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• For 0 ≤ n1 ≤ t − 2, m ∈ [2 + n1 − t, t − n1 − 1]. This gives a

series of inequaities

−t < 2 + n1 − t ≤ m ≤ t− n1 − 1 < t < 1 + t.

• For t ≤ n1 ≤ 2t− 1, m ∈ [t− n1, n1 + 1− t]. This implies

−t < −t+ 1 < t− n1 ≤ m ≤ n1 + 1− t ≤ t− 1 < t+ 1.

• For n1 ≥ 2t, m ∈ [1− t, t], which immediately gives −t ≤ m ≤
1 + t.

Hence in all the above sub-cases, 1−m is critical for χ◦.

Case 2b. t is totally negative, n1 ≥ −2t and n2 ≤ −1. Take f1 = 2t,

σ1 = m− 1, f2 = 2, and σ2 = 1. Then the L-value

L(2 + σ1 − σ2, χ
1
1(χ1

2)−1) = L(m,χ◦),

with χ◦ is such that χ◦∞(z) =
(
z
|z|

)2−2t

. Again using Section 3.2, m is

critical for χ◦ if

t ≤ m ≤ 1− t.

Again we need to check this condition for the following three sub-cases:

• For t + 2 ≤ n2 ≤ 0, m ∈ [2 − n2 + t, n2 − 1 − t]. This gives a

series of inequalities

t < 2− n2 + t ≤ m ≤ n2 − 1− t < 1− t.

• For 2t+ 1 ≤ n2 ≤ t, m ∈ [n2 − t, 1 + t− n2]. This implies

t < t+ 1 < n2 − t ≤ m ≤ 1 + t− n2 ≤ −t− 1 < 1− t.

• For n2 ≤ 2t, m ∈ [1 + t, −t], which gives

t < 1 + t ≤ m ≤ −t < 1− t.
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In all the above sub-cases, m is critical for χ◦.

Hence in each case the L-value L(2, χ1χ
−1
2 ) is in fact a critical value. �

Now recall the fact that the L-value at s = 1/2 attached to the pair of

representations (Π,Σ(χ1, χ2)) decomposes as

Lf (
1
2
,Π× Σ(χ1, χ2)) = Lf (1,Π⊗ χ1)Lf (0,Π⊗ χ2)

= Lf (1 + σ1,Π⊗ χ1
1)Lf (σ2,Π⊗ χ1

2).

Case 1. t is strictly positive, n2 ≤ −2t and n1 ≥ 1 for all v ∈ S∞.

In this case, we fix once and for all, a unitary Hecke character φ of F

such that φ∞(z) =
(
z
|z|

)2

. An integer m satisfies Equation (4.17). Take

χ1
1 = φ, σ1 = −1, χ1

2 = χ and σ2 = m; put λv = (t−m, 0; 1, 1−t−m).

Then f1 = −2 and f2 = 2t. Hence Theorem 5.11 takes the form:

Lf (m,Π⊗ χ)

P∞(µ,m) Ω+(Π)Lf (1−m,φχ−1)
=

(vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π× Σ)) · AΣ · 〈ϑ◦Π, ϑ◦Σ〉C(Rf ), (5.21)

where the modified period is defined as

Ω+(Π) := p(Π)Lf (0,Π⊗ φ)−1. (5.22)

Case 2. t is negative, n1 ≥ −2t and n2 ≤ −1 for all v ∈ S∞.

Observe that the inverse φ−1 of above defined unitary Hecke character

of F satisfies φ−1
∞ (z) =

(
z
|z|

)−2

. Also an integer m satisfies Equa-

tion (4.18). Take χ1
1 = χ, σ1 = m − 1, χ1

2 = φ−1, and σ2 = 1; put

λv = (0, t −m + 1; −t −m, −1). Then f1 = 2t and f2 = 2. Hence

Theorem 5.11 takes the form:
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Lf (m,Π⊗ χ)

P∞(µ,m) Ω−(Π)Lf (m,χφ)
=

(vol(Rf )VΣ) · (LΣ LSΣ
(1

2
,Π× Σ)) · AΣ · 〈ϑ◦Π, ϑ◦Σ〉C(Rf ), (5.23)

where the modified period is defined as

Ω−(Π) := p(Π)Lf (1,Π⊗ φ−1)−1. (5.24)
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Chapter 6

Galois equivariance

6.1 The action of Aut(C)

We study Galois equivariance, i.e., behaviour under the action of σ ∈ Aut(C)

of all the quantities in the main identity for each of the four cases in both the

theorems. Let’s parse the Galois action on the various ingredients involved

in the main identities:

• The Poincaré duality pairing 〈 , 〉 is Galois-equivariant. (See, for example,

[30, Proposition 3.14].)

• The Galois action on the class ϑ◦Π,εΠ . Due to our specific choice of finite

Whittaker vectors wΠf , exactly as in [30, Proposition 3.15], we get

σ(ϑ◦Π,εΠ) =
σ(G(ωΣf ))

G(ωσΣf )
ϑ◦σΠ,εσΠ

=
σ(G(χ1χ2))

G(σχ1
σχ2)

ϑ◦σΠ,εσΠ
.

Furthermore, for Dirichlet characters χ1 and χ2, it’s well-known (see [39,

Lemma 8]) that

σ

(
G(χ1χ2)

G(χ1)G(χ2)

)
=
G(σχ1

σχ2)

G(σχ1)G(σχ2)
.

Putting the above two together we get

σ(ϑ◦Π,εΠ) =
σ(G(χ1)G(χ2))

G(σχ1)G(σχ2)
ϑ◦σΠ,εσΠ

. (6.1)
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• To understand the Galois action on the class ϑ◦Σ, we begin with the function

ϕf which is the finite part of ϕχ1,χ2 as defined in Equation (4.11). Let’s

denote ϕf also as ϕχ1f ,χ2f
. Now, σ ∈ Aut(C) acts on ϕf by acting on all its

local components. The action of Aut(C) on Σv is given by acting on the

values of a function in the induced space (see [26, Section 1.1]). For the

local components of ϕχ1f ,χ2f
(with notations suitably modified) we get for

the spherical vectors:

σf sp
v (χ1v, χ2v) = f sp

v (σχ1v,
σχ2v),

and from our choices of new vectors made in Proposition 4.3, we get for

v ∈ SΣ \ Sχ2 :

σfnew
v (χ1v, χ2v) = fnew

v (σχ1v,
σχ2v),

however, for v ∈ Sχ2–the set of ramified primes for χ2, we get:

σfnew
v (χ1v, χ2v) =

σ(q
n2/2
v )

q
n2/2
v

fnew
v (σχ1v,

σχ2v).

Note that the quantity σ(q
n2/2
v )/q

n2/2
v is ±1. Putting these together we get

σϕχ1f ,χ2f
=

 ∏
v∈Sχ2

σ(q
n2/2
v )

q
n2/2
v

ϕσχ1f ,σχ2f
.

Since the Eisenstein map FΣ in Equation (3.22) is Aut(C)-equivariant, we

get

σ(ϑ◦Σ) =

 ∏
v∈Sχ2

σ(q
n2/2
v )

q
n2/2
v

ϑ◦σΣ. (6.2)

• Now we look at Galois action on the quantity AΣ. Recall from Equation

(4.7) that Aσ =
∏

v∈SΣ
Av and the values of Av are computed in Proposition

90



4.6. Now the volume of Ov, by our choice of measures, is rational. We easily

deduce that

σ(AΣ) =

 ∏
v∈Sχ2

σ(q
−n2/2
v )

q
−n2/2
v

 · σ(G(χ2))

G(σχ2)
AσΣ. (6.3)

From Equations (6.2) and (6.3) we get

σ(AΣ ϑ
◦
Σ) =

σ(G(χ2))

G(σχ2)
AσΣ ϑ

◦
σΣ. (6.4)

• The quantities LΣ and LSΣ
(1

2
,Π × Σ) are Galois equivariant as they are

finite products of local critical L-values; this follows from [30, Proposition

3.17].

• The volume terms vol(Rf ) and VΣ are rational numbers by our choice of

measures.

• Using Equation (3.6) we have, for a totally even Dirichlet character % of

F , and an even positive integer r, it’s well-known that we have the following

rationality result for the critical value Lf (r, %):

σ

(
Lf (r, %)

(2πi)rG(%)

)
=

Lf (r,
σ%)

(2πi)rG(σ%)
. (6.5)

• Finally recall the Fact 3.8, we have an algebraicity result for the critical

value r of Lf (r, χ) attached to the finite part of an algebraic Hecke character

χ over a CM field, which can be rewritten as follows:(
Lf (r, χ)

(2πi)rd0c+(χ)

)
=

Lf (r,
σχ)

(2πi)rd0c+(σχ)
. (6.6)
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6.2 Proof of Theorem 1.2

Notice that for σ ∈ Aut(C) applied to the pairing of the cohomology classes,

after using Galois-equivariance of the duality pairing, and after using Equa-

tions (6.1) and (6.4) we get

σ
(
〈ϑ◦Π,εΠ , AΣ ϑ

◦
Σ〉
)

= 〈ϑ◦σΠ,εΠ
, AσΣ ϑ

◦
σΣ〉

σ(G(χ1)G(χ2)2)

G(σχ1)G(σχ2)2
. (6.7)

Now keeping above Galois equivariant facts in mind, the details of the proof

in all the four cases are as follows:

Case 1a. On multiplying and dividing by the factor (2πi)2+mG(χ),

rewrite Equation (5.12) as

Lf (m,Π⊗ χ)

P 1
∞(µ,m) Ω+

r (Π)G(χ)

= (vol(Rf )VΣ) ·
(
LΣ LSΣ

(1
2
,Π× Σ)

)
·
(
Lf (2 +m,χ)

(2πi)2+mG(χ)

)
· 〈ϑ◦Π,εΠ , AΣ ϑ

◦
Σ〉,

where P 1
∞(µ,m) = (2πi)2+mP∞(µ,m). Now apply σ ∈ Aut(C) to both

sides. The first three parentheses on the right hand side are Aut(C)-

equivariant as explained above. In this case we have G(χ1) = G(χ◦1) =

G(χ) and G(χ2) = G(χ◦2) = G(11) = 1. Hence using Equation (6.7) we

get

σ

(
Lf (m,Π⊗ χ)

P 1
∞(µ,m) Ω+

r (Π)G(χ)

)

= (vol(Rf )VσΣ) ·
(
LσΣ LSΣ

(1
2
, σΠ× σΣ)

)
·
(
Lf (2 +m, σχ)

(2πi)2+mG(σχ)

)
· 〈ϑ◦σΠ,εΠ

, AσΣ ϑ
◦
σΣ〉

σ(G(χ))

G(σχ)
,

which is the same as

σ

(
Lf (m,Π⊗ χ)

P 1
∞(µ,m) Ω+

r (Π)G(χ)

)
=

Lf (m,
σΠ⊗ σχ)

P 1
∞(σµ,m) Ω+

r (σΠ)G(σχ)
· σ(G(χ))

G(σχ)
,
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and which in turn may be rewritten as

σ

(
Lf (m,Π⊗ χ)

P 1
∞(µ,m) Ω+

r (Π)G(χ)2

)
=

Lf (m,
σΠ⊗ σχ)

P 1
∞(σµ,m) Ω+

r (σΠ)G(σχ)2
,

proving the Galois-equivariant version. This implies in particular that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 1
∞(µ,m) Ω+

r (Π)G(χ)2,

where ≈Q(Π,χ) is a number field which is the compositum of the ratio-

nality fields Q(Π) and Q(χ).

Case 1b Rewrite Equation (5.14) as

Lf (m,Π⊗ χ)

P 2
∞(µ,m) Ω+

l (Π)G(χ)

= (vol(Rf )VΣ) ·
(
LΣ LSΣ

(1
2
,Π× Σ)

)
·
(
Lf (2 +m,χ)

(2πi)3−mG(χ)

)
· 〈ϑ◦Π,εΠ , AΣ ϑ

◦
Σ〉,

where P 2
∞(µ,m) = (2πi)3−mP∞(µ,m). Now apply σ ∈ Aut(C) to both

sides. As in Case 1a, using the above remarks along with the facts

G(χ1) = G(χ◦1) = G(11) and G(χ2) = G(χ◦2) = G(χ), applying σ to the

pairing we get

σ

(
Lf (m,Π⊗ χ)

P 2
∞(µ,m) Ω+

l (Π)G(χ−1)

)

= (vol(Rf )VσΣ) ·
(
LσΣ LSΣ

(1
2
, σΠ× σΣ)

)
·
(
Lf (3−m, σχ−1)

(2πi)2+mG(σχ−1)

)
· 〈ϑ◦σΠ,εΠ

, AσΣ ϑ
◦
σΣ〉

σ(G(χ)2)

G(σχ)2
,

which is the same as

σ

(
Lf (m,Π⊗ χ)

P 2
∞(µ,m) Ω+

l (Π)G(χ−1)

)
=

Lf (m,
σΠ⊗ σχ−1)

P 2
∞(σµ,m) Ω+

r (σΠ)G(σχ−1)
·σ(G(χ)2)

G(σχ)2
,

and which in turn may be rewritten as

σ

(
Lf (m,Π⊗ χ)

P 2
∞(µ,m) Ω+

l (Π)G(χ)

)
=

Lf (m,
σΠ⊗ σχ)

P 1
∞(σµ,m) Ω+

l (σΠ)G(σχ)
,
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proving the Galois-equivariant version. This implies in particular that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 1
∞(µ,m) Ω+

r (Π)G(χ).

Case 2a Rewrite Equation (5.16) as

Lf (m,Π⊗ χ)

P 1
∞(µ,m) Ω−r (Π)G(χ)G(ξ)−1

= (vol(Rf )VΣ) ·
(
LΣ LSΣ

(1
2
,Π× Σ)

)
·
(

Lf (m+ 1, χξ−1)

(2πi)m+1G(χ)G(ξ)−1

)
· 〈ϑ◦Π,εΠ , AΣ ϑ

◦
Σ〉,

where P 3
∞(µ,m) = (2πi)m+1P∞(µ,m). Clearly the first three parenthe-

ses on the right hand side are Aut(C)-equivariant as explained earlier.

Use Equation (6.7) and substitute the folloing: G(χ1) = G(χ◦1) = G(χ)

and G(χ2) = G(χ◦2) = G(ξ). For σ applied to the pairing of the coho-

mology classes we get

σ

(
Lf (m,Π⊗ χ)

P 3
∞(µ,m) Ω−r (Π)G(χ)G(ξ)−1

)

= (vol(Rf )VσΣ)·
(
LσΣ LSΣ

(1
2
, σΠ× σΣ)

)
·
(

Lf (m+ 1, σχσξ−1)

(2πi)m+1G(σχ)G(σξ)−1

)
·

· 〈ϑ◦σΠ,εΠ
, AσΣ ϑ

◦
σΣ〉

σ(G(χ)G(ξ)2

G(σχ)G(σξ)2
,

which is the same as

σ

(
Lf (m,Π⊗ χ)

P 3
∞(µ,m) Ω−r (Π)G(χ)

)
=

Lf (m,
σΠ⊗ σχ)

P 3
∞(σµ,m) Ω−r (σΠ)G(σχ)

· σ(G(χ)G(ξ)

G(σχ)G(σξ)
,

and which proves the theorem, since

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 3
∞(µ,m) Ω−r (Π)G(χ)2G(ξ).

Case 2b. Rewrite Equation (5.12) as
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Lf (m,Π⊗ χ)

P 4
∞(µ,m) Ω−l (Π)G(ξ)G(χ)−1

= (vol(Rf )VΣ) ·
(
LΣ LSΣ

(1
2
,Π× Σ)

)
·
(

Lf (2−m, ξχ−1)

(2πi)2−mG(ξ)G(χ)−1

)
· 〈ϑ◦Π,εΠ , AΣ ϑ

◦
Σ〉,

where P 4
∞(µ,m) = (2πi)2−mP∞(µ,m). Now apply σ ∈ Aut(C) to

both sides. The first three parentheses on the right hand side are

Aut(C)-equivariant as explained earlier. Applying σ to the pairing

of the cohomology classes, and using G(χ1) = G(χ◦1) = G(ξ) and

G(χ2) = G(χ◦2) = G(χ) we get

σ
(
〈ϑ◦Π,εΠ , AΣ ϑ

◦
Σ〉
)

= 〈ϑ◦σΠ,εΠ
, AσΣ ϑ

◦
σΣ〉

σ(G(ξ)G(χ)2)

G(σξ)G(σχ)2
.

Hence

σ

(
Lf (m,Π⊗ χ)

P 4
∞(µ,m) Ω−l (Π)G(ξ)G(χ)−1

)

= (vol(Rf )VσΣ)·
(
LσΣ LSΣ

(1
2
, σΠ× σΣ)

)
·
(

Lf (2−m, σχ)

(2πi)2−mG(σξ)G(σχ)−1

)
·

· 〈ϑ◦σΠ,εΠ
, AσΣ ϑ

◦
σΣ〉

σ(G(ξ)G(χ)2)

G(σξ)G(σχ)2
.

Since ξ is quadratic, G(ξ)2 = G(ξ2) = G(11) = 1. We get

σ

(
Lf (m,Π⊗ χ)

P 4
∞(µ,m) Ω−l (Π)G(χ)

)
=

Lf (m,
σΠ⊗ σχ)

P 4
∞(σµ,m) Ω−l (σΠ)G(σχ)

,

proving the Galois-equivariant version. This implies in particular that

Lf (m,Π⊗ χ) ≈Q(Π,χ) P 4
∞(µ,m) Ω−l (Π)G(χ).

This concludes the proof of Theorem 1.2.
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6.3 Proof of Theorem 1.3

The line of proof is exactly same for both the cases. The details are as follows:

Case 1. On multiplying and dividing by (2πi)(1−m)d0c+(φχ−1), Equa-

tion (5.21) may be rewritten as

Lf (m,Π⊗ χ)

P+
∞(µ,m) Ω+(Π)c+(φχ−1)

= (vol(Rf )VΣ) ·
(
LΣ LSΣ

(1
2
,Π× Σ)

)
·
(

Lf (1−m,φχ−1)

(2πi)(1−m)d0c+(φχ−1)

)
· 〈ϑ◦Π, AΣ ϑ

◦
Σ〉,

where P+
∞(µ,m) = (2πi)(1−m)d0P∞(µ,m). Now apply σ ∈ Aut(C) to

both sides. Using above facts, the first three parentheses on the right

hand side of the equation are Aut(C)-equivariant. Applying σ to the

pairing of the cohomology classes, after using Galois-equivariance of

the duality pairing, as well as using Equations (6.1) and (6.4) we get

σ (〈ϑ◦Π, AΣ ϑ
◦
Σ〉) = 〈ϑ◦σΠ, AσΣ ϑ

◦
σΣ〉

σ(G(χ1)G(χ2)2)

G(σχ1)G(σχ2)2
. (6.8)

In this case we have G(χ1) = G(χ1
1) = G(φ) and G(χ2) = G(χ1

2) = G(χ).

Hence using the above substitutions we get

σ

(
Lf (m,Π⊗ χ)

P+
∞(µ,m) Ω+(Π)c+(φχ−1)

)

= (vol(Rf )VσΣ) ·
(
LσΣ LSΣ

(1
2
, σΠ× σΣ)

)
·
(

Lf (1−m, σφσχ−1)

(2πi)(1−m)d0c+(σφσχ−1)

)
· 〈ϑ◦σΠ, AσΣ ϑ

◦
σΣ〉

σ(G(φ)G(χ)2)

G(σφ)G(σχ)2
,

which is the same as
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σ

(
Lf (m,Π⊗ χ)

P+
∞(µ,m) Ω+(Π)c+(φχ−1)

)

=
Lf (m,

σΠ⊗ σχ)

P+
∞(σµ,m) Ω+(σΠ)c+(σφσχ−1)

· σ(G(φ)G(χ)2)

G(σφ)G(σχ)2
.

Hence the Galois-equivariant version of Theorem 1.3 in Case 1 is as

follows:

σ

(
Lf (m,Π⊗ χ)

P+
∞(µ,m) Ω+(Π) c+(φχ−1)G(χ)2G(φ)

)

=
Lf (m,

σΠ⊗ σχ)

P+
∞(σµ,m) Ω+(σΠ)c+(σφσχ−1)G(σχ)2G(σφ)

.

This implies in particular that

Lf (m,Π⊗ χ) ≈Q(Π,χ,φ) P+
∞(µ,m) Ω+(Π) c+(φχ−1)G(χ)2 G(φ),

where ≈Q(Π,χ,φ) is a number field which is the compositum of the ratio-

nality fields Q(Π), Q(χ) and Q(φ).

Case 2. The proof is similar to Case 1. So let’s briefly present the

details. In this case multiply and divide by (2πi)(m)d0c+(χφ), Equation

(5.23) may be rewritten as

Lf (m,Π⊗ χ)

P−∞(µ,m) Ω−(Π) c+(χφ)

= (vol(Rf )VΣ) ·
(
LΣ LSΣ

(1
2
,Π× Σ)

)
·
(

Lf (m,χφ)

(2πi)(m)d0c+(χφ)

)
· 〈ϑ◦Π, AΣ ϑ

◦
Σ〉,

where P−∞(µ,m) = (2πi)(m)d0P∞(µ,m).

Now apply σ ∈ Aut(C) to both sides. The first three parentheses on

the right hand side are Aut(C)-equivariant as explained above. Further
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we have G(χ1) = G(χ1
1) = G(χ) and G(χ2) = G(χ1

2) = G(φ−1). Using

these facts along with Equation (6.8) for Case 2 we get

σ

(
Lf (m,Π⊗ χ)

P−∞(µ,m) Ω−(Π) c+(χφ)

)

= (vol(Rf )VσΣ) ·
(
LσΣ LSΣ

(1
2
, σΠ× σΣ)

)
·
(

Lf (m,
σχσφ)

(2πi)(m)d0c+(σχσφ)

)
· 〈ϑ◦σΠ, AσΣ ϑ

◦
σΣ〉

σ(G(χ)G(φ−1)2)

G(σχ)G(σφ−1)2
,

which is the same as

σ

(
Lf (m,Π⊗ χ)

P−∞(µ,m) Ω−(Π) c+(χφ)

)

=
Lf (m,

σΠ⊗ σχ)

P−∞(σµ,m) Ω−(σΠ)c+(σχσφ)
· σ(G(χ)G(φ)−2)

G(σχ)G(σφ)−2
,

which further may be rewritten as

σ

(
Lf (m,Π⊗ χ)

P−∞(µ,m) Ω−(Π) c+(χφ)G(χ)G(φ)−2

)

=
Lf (m,

σΠ⊗ σχ)

P−∞(σµ,m) Ω−(σΠ) c+(σχσφ)G(σχ)G(σφ)−2
,

proving the Galois-equivariant version of Theorem 1.3 in Case 2. This

implies in particular that

Lf (m,Π⊗ χ) ≈Q(Π,χ,φ) P−∞(µ,m) Ω−(Π) c+(χφ)G(χ) G(φ)−2.

This concludes the proof of Theorem 1.3.
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6.4 Application: Symmetric square L-function

The purpose of this section is to put on record that Theorems 1.2 and 1.3

gives as an application, a rationality result for all the critical values of the

symmetric square L-functions. We will consider real and imaginary case

seperately:

F : totally real

Let ϕ be a primitive holomorphic cuspidal Hilbert modular form over F of

weight (k1, . . . , kd), where d = dF . Suppose that all the kj have the same

parity, and that ϕ is not of CM-type. We want to apply Theorem. 1.2 to

get a rationality result for all the critical values of the symmetric square

L-function L(s, Sym2ϕ, χ) attached to ϕ, twisted by a finite order Dirichlet

character χ.

We will work with the L-function L(s, Sym2ϕ, χ) in the automorphic context.

Let Π(ϕ) be the cuspidal automorphic representation of GL2(AF ) attached

to ϕ. By Gelbart–Jacquet [13] we know the existence of an isobaric auto-

morphic representation Sym2(Π(ϕ)) of GL3(AF ), defined as Sym2(Π(ϕ)) =

⊗′vSym2(Πv(ϕ)), where Sym2(Πv(ϕ)) is an irreducible admissible representa-

tion of GL3(Fv) obtained via the local Langlands symmetric-square transfer

of Πv(ϕ). If ϕ is not of CM-type, i.e., Π(ϕ) is not a dihedral representation

then it’s well-known that Sym2(Π(ϕ)) is cuspidal. If L(s, Sym2(Π(ϕ)) ⊗ χ)

denotes the standard degree-3 L-function of Sym2(Π(ϕ)) twisted by χ then

we have

L(s, Sym2ϕ, χ) = L(s− k0 + 1, Sym2(Π(ϕ))⊗ χ), (6.9)

where k0 = min(kj). This may be seen as in the verification of [34, Theorem

1.4, (1)].

For convenience, let’s suppose that all the kj ≥ 2 are even. Then Π(ϕ) is

cohomological to the weight µ = (µj) where µj = ((kj − 2)/2,−(kj − 2)/2).
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Following [29], we may verify that Sym2(Π(ϕ)) ∈ Coh(G3; Sym2(µ)) for the

weight Sym2(µ) = (Sym2(µj)), where Sym2(µj) = (kj − 2, 0, 2− kj).

In the notation of Theorem 1.2, we get n = min(nj) = k0 − 2. For the sake

of simplicity, let’s consider the case when χ is totally even. Then, the critical

set for L(s, Sym2(Π(ϕ))⊗ χ) is given by

{3− k0, . . . ,−1; 2, 4, . . . , k0 − 2}.

From Equation (6.9) we get that the critical set for L(s, Sym2ϕ, χ) is the set

{2, 4, . . . , k0 − 2; k0 + 1, k0 + 3, . . . , 2k0 − 3}.

This is to be interpreted as an empty set if k0 = 2. If m is critical for

L(s, Sym2ϕ, χ), and is on the right of the center of symmetry, i.e., k0 + 1 ≤
m ≤ 2k0 − 3 and m is odd, then Case 1a. of Theorem 1.2 takes the form:

L(m, Sym2ϕ, χ) ≈Q(ϕ,χ) P 1
∞(Sym2(µ),m− k0 + 1) Ω+

r (Sym2(Π(ϕ))G(χ)2.

(6.10)

It’s an easy exercise to see that Q(Sym2(Π(ϕ)), χ) ⊂ Q(Π(ϕ), χ) = Q(ϕ, χ).

(See also statements (4) and (5) of [34, Theorem 1.4].) Moreover, we may

state this result in a Galois-equivariant manner.

A comparison of Equation (6.10) with the main result of Sturm [40] for the

critical values of the symmetric-square L-functions for an elliptic modular

form would lead us to speculate that our global period Ω+
r (Sym2(Π(ϕ)) is

related in some explicit way to the Petersson inner product 〈ϕ, ϕ〉.

F : CM field

Let π be a cohomological cuspidal automorphic representation of GL2/F with

purity weight w, that is, π ∈ Coh(G2, µ) with µ ∈ X+
0 (T2). Then for each

v ∈ Sc, µv = (µι, µῑ) , where µι = (a, b); µῑ = (a∗, b∗) such that a ≥ b; a∗ ≥ b∗

and a + b∗ = b + a∗ = w. By Gelbart–Jacquet [13] we know the existence

of an isobaric automorphic representation Sym2(π) of GL3(AF ), defined as
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Sym2(π) = ⊗′vSym2(πv), where Sym2(πv) is an irreducible admissible rep-

resentation of GL3(Fv) obtained via the local Langlands symmetric-square

transfer of πv. Furthermore, following [29, Theorem 3.2],

Sym2(π) ∈ Coh(G3, Sym2(µ)), (6.11)

with Sym2(µ) = (Sym2(µ)ι, Sym2(µ)ῑ)ι∈εF such that

Sym2(µ)ι = (2a, a+ b, 2b) and Sym2(µ)ῑ = (2a∗, a∗ + b∗, 2b∗). (6.12)

Clearly the Sym2(µ) ∈ X+
0 (T3).

6.4.1 Proof of Theorem 1.6

By thinking of the symmetric square L-function on GL3×GL1 as the standard

L-function of the symmetric-square–twisted by an algebraic Hecke character

χ, and after using Equations (6.11) and (6.12), we get

Sym2(π) ∈ Coh(G3, Sym2(µ)),

such that for each v ∈ S∞, Sym2(µv) = (2a, 0,−2a; 2a, 0,−2a). In terms

of notations of Theorem 1.3, we get n1 = 2a and n2 = −2a. Under the

assumption that a ≥ t, the critical set for L(s, Sym2(π) ⊗ χ) is given by

{1− t ≤ m ≤ t}. Then Case 1 of Theorem 1.3 takes the form:

Lf (m, Sym2(π)⊗ χ)

≈Q(Sym2(π),χ,φ) P+
∞(Sym2(µ)),m) Ω+(Sym2(π)) c+(φχ−1)G(χ)2 G(φ),

where P+
∞(Sym2(µ)),m) = (2πi)1−mp∞(Sym2(µ),m) and Ω+(Sym2(π)) =

p(Sym2(π))L(0, Sym2(π)⊗ φ)−1. Again its an easy exercise to see that

Q(Sym2(π)).χ, φ) ⊂ Q(π, χ, φ).

This proves the theorem.
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