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TQU estimators, HDV QE results are provided, while the QE result is

presented for the QU estimator. Additionally, MAP estimated values are

shown in the second row. ‡
th
Ÿ0 depicts the theoretical error prediction given

by Eq. 7.12. See also Fig. 8.4. . . . . . . . . . . . . . . . . . . . . . . . . 89
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ABSTRACT

In the evolving landscape of modern precision cosmology, the continuous progress of

ongoing and upcoming surveys has provided us with an unprecedented level of statistical

power for drawing robust inference. The study of the Cosmic Microwave Background

(CMB) fluctuations has been pivotal in this progress. The CMB acts as a tracer of

the primordial fluctuation field at the time of the last scattering, around a redshift of

z = 1100, corresponding to 380,000 years after the Big Bang. As these photons have

journeyed through the universe, they have experienced weak gravitational lensing by the

mass distribution in the large-scale structure of the later universe, thus carrying imprinted

information about this later period. Additionally, the frame from which we observe the

CMB, specifically the Solar-System barycentre, is in motion relative to the cosmological

rest frame, which further influences the observed CMB fluctuations. This thesis explores

these two secondary e�ects on the CMB fluctuations to infer significant phenomena,

employing a Bayesian framework to analyze and interpret the data.

The first part of the thesis introduces the fundamental concepts of CMB. In the subse-

quent part, we study the impact of the observation frame’s motion on CMB fluctuations.

On the largest scales, this motion can boost the CMB monopole to generate a dipole.

However, distinguishing this kinematic dipole from an intrinsic dipole in the observed

CMB dipole is challenging. According to the simplest and currently most favoured in-

flationary model, the intrinsic dipolar fluctuation in the CMB, should be of the same

order as fluctuations (10≠5 to 10≠6 K) at smaller angular scales. To test this, we study

the relativistic e�ects of this motion, namely modulation and aberration, on small-scale

CMB fluctuations. These e�ects break the statistical isotropy of the CMB, leading to

o�-diagonal terms in the harmonic space covariance matrix. We employ a Bayesian ap-

proach, using Hamiltonian Monte-Carlo (HMC) sampling, to explore the joint posterior

distribution of the covariance matrix and the signal. Our findings align the inferred ve-

locity with the canonical value obtained from the CMB dipole, achieving a significance

of approximately ≥ 5‡, the most competitive significance to date.

The third part of the thesis focuses on using the gravitational lensing signal of the

CMB to probe galaxy clusters. As the largest collapsed objects in the universe, clus-

ters o�er critical insights into cosmological parameters. The abundance of clusters as

a function of mass and redshift directly probes the structure growth amplitude, mass
xxiv



fraction, neutrino mass, and dark energy equation of state parameters. Hence, accurate

cluster mass measurements at high redshifts are crucial for this analysis. Anticipating

the CMB Stage 4 (CMB S4) experiment, we demonstrate the e�ectiveness of maximum-

a-posteriori estimation of the gravitational lensing potential for cluster mass estimation.

This approach significantly enhances the precision of cluster mass measurements in S4-like

experiments by approximately 13-20% over the conventional quadratic estimator (QE).

We also address the known bias in the temperature quadratic estimator caused by the

strong non-Gaussianity of the signal. Our results show that our estimator e�ectively

mitigates this bias without requiring scale cuts, thus preserving the signal-to-noise ratio.

The thesis is based on the following publications,

1. Sayan Saha, Shabbir Shaikh, Suvodip Mukherjee, Tarun Souradeep, and Benjamin
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2. Sayan Saha, Louis Legrand, and Julien Carron, Cluster profiles from beyond-

the-QE CMB lensing mass maps, JCAP 01 (2024) 024, arXiv:2307.11711 [astro-

ph.CO].

xxv





Part I

Introduction

1





Chapter 1

Introduction

1.1 CMB in the Era of Precision Cosmology

Cosmology is the scientific study of the universe’s overall structure and evolution over

time. The Hot Big Bang model is the most widely accepted model for the universe’s be-

ginning. This model theorizes that the universe originated from an intensely hot plasma

state and has been continuously expanding. Approximately 300,000 years after the be-

ginning, the universe had cooled su�ciently to allow the formation of the first neutral

atoms. During this epoch, photons, one of the fundamental components, became decou-

pled from the plasma and have been traveling towards us. These photons are known as the

Cosmic Microwave Background (CMB) radiation. Due to the expansion of the universe,

these photons have experienced significant redshift, now observable as an omnipresent

blackbody background at a temperature of 2.7 K.

At later times, the neutral baryonic matter collapsed in the gravitational wells of the

dark matter clumps and reionized the universe, giving rise to its first stars and galaxies.

Since then, the universe has continued to evolve under the influence of gravity, resulting

in the large-scale structure we observe today. The distribution of galaxies, alongside the

CMB photons, serve as crucial probes, o�ering insights into the universe at di�erent times.

As cosmologists, our primary goal is to comprehend the universe’s evolution across these

di�erent epochs. The most widely acclaimed model that aligns with empirical evidence

is the �CDM model. This model delineates the universe as a composition predominantly

of a cosmological constant, �, associated with dark energy, cold dark matter (CDM), and

ordinary baryonic matter. Their respective proportions have been meticulously quantified
3
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Figure 1.1: The spectrum of CMB as measured by FIRAS. Image source [1]

through various cosmological surveys.

The journey of observational cosmology began with a groundbreaking discovery by

Edward Hubble in 1924. Hubble’s observation of galaxies beyond the Milky Way revealed

a profound truth: the universe is in a state of expansion. This revelation, pointing to the

existence of a hot early universe, set the stage for another pivotal moment in the field:

the serendipitous discovery of the CMB radiation [13] by Arno Allan Penzias and Robert

Woodrow Wilson in 1965. This discovery, interpreted by Robert Dicke and his group [14]

at Princeton, provided the first concrete evidence supporting the inference of a hot early

universe. Following this discovery, the Cosmic Background Explorer (COBE) mission [15]

undertook the first space-based measurement of this radiation across a spectrum of fre-

quencies. Remarkably, COBE found that the CMB exhibits the most perfect blackbody

spectrum ever observed in science, with a temperature of T0 = (2.7255±0.0006)K [16,17].

The Far InfraRed Absolute Spectrophotometer (FIRAS) aboard COBE was specifically

designed to measure deviations from the CMB’s blackbody spectrum. Its exquisite ob-

servations matched a blackbody spectrum perfectly, as shown in Figure 1.1.

1.2 CMB Dipole

In cosmological studies, when observing the CMB, our frame of reference is not the Cos-

mological Rest Frame but rather one in motion. This is because we observe from the
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Figure 1.2: Top: The image of the CMB sky from COBE DMR 53 GHz band on a scale
0-4 K, showing a perfect uniformity. Middle: The fluctuation image in mK scale from
DMR, after subtracting the CMB monopole. Bottom: The fluctuations in µK scale after
subtracting the dipole as well. Image credit: NASA / COBE Science Team 1
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Earth, which itself is constantly moving. However, in CMB experiments, this motion –

particularly the Earth’s orbit around the sun – is meticulously accounted for and sub-

tracted from the observations. We e�ectively consider our observation frame as the Solar

System Barycenter, which, while more stable, is still in motion relative to the Cosmolog-

ical Rest Frame.

The CMB appears isotropic (uniform) in the Cosmological Rest Frame. The mean

temperature of the CMB is denoted as T0. When our observation frame is moving at

a velocity v, this movement creates an observable dipole pattern across the sky. This

pattern can be mathematically represented as:

�T
d(n̂) = T0(— · n̂). (1.1)

Here, — = v/c, where c is the speed of light, and n̂ denotes the unit vector pointing

towards the sky coordinates (◊, „).

The Di�erential Microwave Radiometer (DMR) [18] aboard the COBE satellite marked

a significant milestone in cosmology as the first instrument to measure the CMB fluctua-

tions beyond the dipole anisotropy in the 1970’s. Equipped with three frequency channels

at 31.4, 53, and 90 GHz, the DMR was specifically designed to capture these subtle varia-

tions. The instrument successfully measured the Dipole field [19], as described in Eq. 1.1.

This measurement is illustrated in the middle panel of Figure 1.2. However, when ob-

serving the dipole in the CMB, it is challenging to discern whether it results from the

motion of our observational frame or is an intrinsic feature of the CMB itself. Unraveling

this degeneracy is a crucial focus of the second part of this thesis, where we explore the

impact of our motion on small-scale fluctuations in the CMB.

To better understand these small-scale fluctuations, it is necessary to subtract the

dipole contribution from the fluctuation map. The COBE DMR was also pivotal in

providing the first map of these fluctuations beyond the dipole in the µK scale. The

lower panel of Figure 1.2 displays these fluctuations as detected by the DMR’s 53 GHz

channel. In the next section, we delve deeper into these fluctuations on a small angular

scale, discussing their characteristics and implications in more detail.

1
https://lambda.gsfc.nasa.gov/product/cobe/dmr_image.html
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Figure 1.3: Top panel: The nine-year observed foreground cleaned WMAP (2001-
2010), Image Source: [2]. Bottom Panel: Same temperature map as observed by Planck,
foreground cleaned using SMICA [3]

1.3 Small-Scale CMB fluctuations

CMB fluctuations at small angular scales beyond the dipole are pivotal in exploring the

primordial universe. Notably, these fluctuations are detectable at a scale of about 10≠5K,

much smaller than milliKelvin. They o�er insights into the universe’s conditions during

the last scattering. These fluctuations, which originated as primordial quantum fluctu-
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ations during inflation, have evolved to leave discernible imprints on the CMB. These

fluctuations are also the seeds of the web-like structures observed in the universe’s Large

Scale Structure (LSS) at later stages. Additionally, the CMB photons exhibit fluctuations

in polarization, approximately 10% the amplitude of temperature fluctuations, providing

another layer of understanding about the early universe.

1.3.1 Temperature Fluctuations

The observation of CMB temperature fluctuations has significantly advanced since the

initial detection by the COBE DMR. In the first decade of the 21st century, NASA’s

Wilkinson Microwave Anisotropy Probe (WMAP) [2] took over, o�ering improved resolu-

tion measurements. Following WMAP, the European Space Agency’s Planck [3] satellite,

in the second decade, provided the most detailed full-sky image of the CMB temperature

fluctuations to date. The measured fluctuations by these two missions are illustrated

in Figure 1.3. Besides these major space missions, numerous other ground-based and

balloon-borne experiments have contributed to our understanding by providing high-

resolution data, albeit for limited sky fractions.

The observed CMB fluctuations, which are CMB monopole and dipole subtracted fluc-

tuations, are basically a function on a sphere. They have a functional form that depends

on the direction unit vector n̂ © {◊, „}, where ◊ and „ are the polar and azimuthal angle,

respectively. It is always convenient to study these fluctuations in spherical harmonic

basis,

”T (n̂) =
ÿ

l

lÿ

m=≠l

almYlm(n̂). (1.2)

Here, Ylm(n̂) denotes the spherical harmonic functions, while alm represents the spherical

harmonic coe�cients, defined as alm =
s

d�n̂”T (n̂)Y ú
lm

(n̂). The index l and m are the

CMB multipoles. For Gaussian random fields, two-point correlation functions are su�-

cient to characterize the field’s statistics. In the case of a statistically isotropic sky, the

spherical harmonic coe�cients at distinct multipoles are expected to be uncorrelated, as

expressed by:

Èalma
ú
lÕmÕÍ = ”llÕ”mmÕCl. (1.3)

Here, Cl represents the power spectrum of the field and essentially indicates the variance

of the Gaussian random variables alm. The ensemble average in the above equation can
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also be obtained as an average over multiple independent realizations of the Gaussian sky.

As we can only observe the CMB from a single point in the universe, we have access to

only one realization of the signal. Nevertheless, the statistical isotropy of the sky allows

the construction of an estimator for Cl from averaging over all the CMB multipoles at

any l, as follows:

Ĉl = 1
2l + 1

lÿ

m=≠l

|alm|
2
. (1.4)

In this equation, alm represents the spherical harmonic coe�cients of the observed data.

The essence of this estimator is that, instead of averaging over di�erent realizations, the

statistical isotropy allows for averaging over di�erent multipoles m corresponding to the

same l, providing an unbiased estimator of Cl. For a full-sky analysis, the number of

multipoles available for a single l is (2l + 1). If the analysis is conducted on a fraction of

the sky, the term (2l + 1) in Eq. 1.4 is substituted with the available number of modes

fsky(2l + 1), where fsky represents the fraction of the sky under analysis.

1.3.2 Polarization Fluctuations

Towards the end of the epoch of recombination, photons underwent the last Thomson

scattering o� free electrons, leading to a remnant polarization pattern in the CMB pho-

tons. This scattering, in the presence of a quadrupole temperature anisotropy, produces

a remnant linear polarization. The CMB polarization is typically analyzed using Stokes

parameters Q, U, and V . However, in the standard physics, the circular polarization (V )

in CMB photons is negligible, so it is often excluded from consideration. Linear polariza-

tion can be conceptualized as a headless vector field on the celestial sphere. Consequently,

the zero-spin spherical harmonic basis is insu�cient for its decomposition. Notably, the

quantity (Q ± iU) transforms as a spin-2 field under rotations of the coordinate system

around the unit vector n̂. This allows for the use of a spin-2 spherical harmonic basis for

its representation. Mathematically, this is expressed as [20,21],

(Q ± iU)(n̂) =
ÿ

l

lÿ

m=≠l

a±2,lm ±2Y lm(n̂). (1.5)

Here, ±2Y lm(n̂) represents the spin ±2 spherical harmonics, and a±2,lm are the corre-

sponding coe�cients in this expansion. The quantities Q and U are dependent on the

choice of the coordinate system around the unit vector n̂. In order to make them in-
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-160 160 µK0.41 µK

Figure 1.4: Polarization anisotropy map measured by Planck, depicting headless vectors
to represent the polarization field. This is overlaid on a temperature map for context.
Both maps are at a resolution of 5 degrees for consistency and clearer interpretation.
Image source: [3]

dependent of the choice of the coordinate system, we write the coe�cients in terms of

parity eigenstates, such as

a±2,lm = Elm ± iBlm. (1.6)

Here, Elm’s and Blm’s are the parity even and parity odd modes. Under parity transfor-

mation, they behave in the following manner,

Elm æ (≠1)l
Elm,

Blm æ (≠1)l+1
Blm.

(1.7)

These E and B modes now can be expressed in real space in the same footing of scaler

fields, similar to the temperature field T , such as

E(n̂) =
ÿ

l

lÿ

m=≠l

ElmYlm(n̂),

B(n̂) =
ÿ

l

lÿ

m=≠l

BlmYlm(n̂).
(1.8)

The polarization anisotropy map contains a wealth of information and o�ers an indepen-

dent probe of the fluctuations in the primordial universe. Despite the challenge posed by

their polarization anisotropy being merely 10% of the temperature’s amplitude, significant
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progress has been made. Planck first mapped full-sky polarization, as shown in Figure 1.4.

Higher sensitivity observations have since been achieved by ground-based telescopes like

the Atacama Cosmology Telescope (ACT) [22], South Pole Telescope (SPT) [23], BI-

CEP [24], and POLARBEAR [25]. The next few decades promise even more detailed

maps from projects like Simon’s Observatory (SO) [26], Ali CMB Polarization Telescope

(AliCPT) [27], and CMB Stage-4 [28], along with the space-based mission LiteBIRD [29],

which promises to provide full-sky polarization maps with 1000 times the sensitivity of

Planck. These advancements underscore the importance of studying CMB polarization

to detect the imprints of primordial gravitational waves, providing direct evidence of the

universe’s inflationary stage.

1.4 Cosmological Principle and Statistical Isotropy (SI)

At the largest scales, the universe adheres to the cosmological principle, which states

that the universe is homogeneous and isotropic. This principle suggests that the universe

lacks any privileged locations and no preferred direction in space exists. Consequently,

this principle extends to the concept of statistical homogeneity and statistical isotropy

(SI) in fluctuation fields across the universe.

1.4.1 CMB Power-spectrum

The SI of the CMB fluctuations is described by the two-point correlation function ÈX(n̂)X Õ(n̂Õ)Í,

where this function depends only on the angular separation between two points. The

function is expressed as:

ÈX(n̂)X Õ(n̂Õ)Í = C(◊) = 1
4fi

Œÿ

l=2
(2l + 1)CXX

Õ

l
Pl(cos ◊). (1.9)

Here, X and X
Õ denote scalar fields associated with temperature and polarization, specif-

ically X œ T, E, B. The angular separation ◊ between points n̂ and n̂
Õ is defined as

◊ = arccos(n̂ · n̂
Õ). The second equality comes from decomposing the function of the

angular separation into a series of Legendre polynomials. The coe�cients C
XX

Õ
l

repre-

sent the auto and cross power spectra of these fields. The criteria of SI in Eq. 1.4.1

directly boils down to the diagonality of the covariance matrix in the harmonic space.

The non-zero diagonal terms are limited to the pairs TT, EE, BB, and TE, when the

physics adhere to the principle of parity invariance. These relationships are described as
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follows:
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Figure 1.5: The summary of power spectrum measurements with di�erent CMB-probes.
Upper pannel: CMB-TT, CMB-EE and CMB-BB are the auto angular power-spectrum as
defined in Eq. 1.10. The B-mode power spectrum is mostly due to the lensing of E-modes
by the large-scale structure mass distribution of the late time universe. Middle panel:
The cross power-spectrum between T and E modes. Lower panel : The power spectrum
of the lensing potential, as defined in more detail in Section 1.5. Image source: [3]
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Èalma
ú
lÕmÕÍ = C

T T

l
”llÕ”mmÕ ,

ÈElmE
ú
lÕmÕÍ = C

EE

l
”llÕ”mmÕ ,

ÈBlmB
ú
lÕmÕÍ = C

BB

l
”llÕ”mmÕ ,

ÈTlmE
ú
lÕmÕÍ = C

T E

l
”llÕ”mmÕ ,

(1.10)

In recent decades, advancements in space and ground-based CMB probes have allowed

us to measure these power spectra with increasing precision. These measurements, sum-

marized in Figure 1.5, display the quantity Dl = l(l+1)
2fi

Cl.

1.4.2 Violation of SI and BipoSH Representation

As discussed previously, the assumption of SI in CMB fluctuations necessitates a diag-

onal covariance matrix in harmonic space. However, several factors subtly violate this

SI nature. These include weak-lensing by large-scale structure mass distribution [30],

Lorentz boost due to our observation frame’s motion relative to the cosmological rest

frame [31], scale-dependent Cosmic Hemispherical Asymmetry (CHA) [32], and observa-

tional limitations like non-circular instrument beam patterns and masking [33,34]. These

factors introduce o�-diagonal terms in the covariance matrix, capturing which is crucial

for inferring signals that violate SI.

A convenient method to represent these o�-diagonal terms is to use the mathematical

framework of Bipolar Spherical Harmonics (BipoSH). This approach, first introduced in

the context by Hajian and Souradeep 2003 [33], expands the two-point correlation func-

tions in the BipoSH basis. Fundamentally, any function on the sphere S
2, such as the

temperature fluctuation field ”T (n̂), can be expanded in the spherical harmonic basis

Ylm(n̂), as shown in Eq. 1.2. Likewise, the two-point correlation function of the temper-

ature fluctuation field, C(n̂1, n̂2), being a function on S
2

◊ S
2 space, can be expanded in

the basis of this space:

C(n̂1, n̂2) =
ÿ

l1,l2

ÿ

L,M

A
LM

l1l2 {Yl1(n̂1) ¢ Yl2(n̂2)}LM . (1.11)

Here, A
LM

l1l2 ’s are coe�cients on this basis. The basis functions can be expressed in terms

of the basis of S
2, i.e., the spherical harmonics, Ylm(n̂), as follows,

{Yl1(n̂1) ¢ Yl2(n̂2)}LM =
ÿ

m1,m2

C
LM

l1m1l2m2Yl1m1(n̂1)Yl2m2(n̂2), (1.12)
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where the C
LM

l1m1l2m2 are the Clebsch-Gordan coe�cients [35]. Similar to S
2 space, we can

also do an inverse transform of the two-point correlation function C(n̂1, n̂2) using the

orthogonality condition of the BipoSH basis to obtain the BipoSH coe�cients as

A
LM

l1l2 =
⁄

d�n̂1

⁄
d�n̂2C(n̂1, n̂2){Yl1(n̂1) ¢ Yl2(n̂2)}ú

LM
. (1.13)

If we use the explicit forms of the correlation function and BipoSH basis, we can show

that the BipoSH coe�cients are actually a linear combination of the elements of the

covariance matrix in harmonic space,

A
LM

l1l2 =
ÿ

m1,m2

e
al1m1a

ú
l2m2

f
(≠1)m2C

LM

l1m1l2≠m2 . (1.14)

The Clebsch-Gordan coe�cients constrain the number of non-zero elements in covariance

for a given L value by |l1 ≠ l2| < L < l1 + l2. The diagonal terms of the covariance matrix

or the power spectrum are L = 0 terms of the BipoSH coe�cients,

A
00
l1l2 = (≠1)l1

Ò
2l1 + 1Cl1”l1l2 . (1.15)

In the BipoSH expansion (Eq. 1.14), the terms L ”= 0, encapsulate the o�-diagonal

elements in the covariance matrix. These elements indicate deviations from statistical

isotropy of the CMB fluctuations. In the second part of this thesis, we analyze the impact

of our observational frame’s motion on the CMB fluctuations. This motion introduces a

relativistic boost to the fluctuations, leading to an observable violation of SI. The BipoSH

formalism has been extensively used to study these violations of SI.

1.5 Weak Lensing of CMB

The CMB fluctuations carry a wealth of information about the early universe at a redshift

of z = 1100. However, during their journey to us through the large-scale structure of the

late-time universe, the CMB photons experience gravitational interaction with the large-

scale structure. This gravitational e�ect, while weak, is significant enough to cause small

detectable deflections. To simplify the analysis, an e�ective thin lens approximation

is employed, akin to the Born approximation. In this approximation, we consider the

cumulative deflection, which is an integration of deflections along the line of sight up to
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the last scattering surface, as e�ectively a single deflection by a ‘thin lens’. The lensed

temperature and polarization Stokes parameters, T̃ , Q̃, Ũ are remapped due to lensing by

a deflection vector d from the unlensed fields T, Q, U ,

T̃ (n̂) = T (n̂ + d),

(Q̃ + iŨ)(n̂) = (Q + iU)(n̂ + d).
(1.16)

Here, the deflection field d(n̂) is a vector field on the sphere, representing the directional

gradient of the scalar field, the projected lensing potential „(n̂),

d(n̂) = Òn̂„(n̂). (1.17)

The scalar field „(n̂) is a line-of-sight integration of the gravitational potential � of the

universe’s large-scale structure, extending up to the last scattering surface:

„(n̂) = ≠2
⁄

‰ú

0
d‰

‰ú ≠ ‰

‰‰ú
�(‰n̂), (1.18)

where ‰ represents the comoving distance, and ‰ú is the comoving distance to the last

scattering surface. In the third part of this thesis, we focus on the line-of-sight integrated

surface density, closely related to the lensing convergence Ÿ(n̂), defined as:

Ÿ(n̂) = ≠
1
2Ò

2
n̂
„(n̂). (1.19)

This convergence is a result of the quantum fluctuations from the time of inflation and

can be treated as Gaussian in nature. Similar to the CMB fluctuation scalar fields, the

lensing potential, „(n̂) can be expressed in spherical harmonic basis:

„(n̂) =
ÿ

L

Lÿ

M=≠L

„LMYLM(n̂), (1.20)

where „LM are the spherical harmonic coe�cients for the lensing potential field „(n̂).

Throughout this thesis, we use lowercase l, m for CMB multipoles and uppercase L, M

for lensing and BipoSH multipoles. For a statistically isotropic lensing potential field, we
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can define the power spectrum as

È„LM„LÕM ÕÍ = ”LLÕ”MM ÕC
„„

L
. (1.21)

In the third part of the thesis, we study clusters with CMB lensing. These clusters,

being a few arc minutes in size, allow for the flat-sky approximation and consequently the

use of Fourier transforms, significantly reducing computational complexity. Under the

flat-sky approximation, lensing and CMB multipoles are represented as vectors in Fourier

space. In real space, lensing causes the remapping of the unlensed map as outlined in

Eq. 1.5. For theE and B modes, lensing induces a transfer of power from E modes to

B modes. In Fourier space, lensing also causes violation of the SI of CMB fluctuations,

resulting in o�-diagonal terms [36,37]

e
X̃(l)X̃ Õ(lÕ)

f

fixed „
= f–(l, lÕ)„(L)”(l + lÕ

≠ L). (1.22)

Here, the averaging is over di�erent realizations of the unlensed CMB, with a fixed real-

ization of the lensing potential, „(n̂). The function f– is a correlation function dependent

on the pair – œ {TT, EE, BB, TE, TB, EB}, as outlined in Table 1 of [36]. Utilizing this

correlation, one can construct a minimum variance quadratic estimator for the lensing

potential, known as the Hu-Okamoto quadratic estimator [36] and Okamoto-Hu estima-

tor [37] for the full-sky version. Such an estimator was used to reconstruct the lensing

map from Planck-2018 temperature and polarization maps [4], as presented in the top

panel of Figure 1.6. Similar reconstructions have been conducted using ACT DR6 data [5]

and SPT-3G data [6], as depicted in middle and bottom panels in Figure 1.6, respectively.

The comparison of measured lensing potential power-spectrum across several probes to

date has been presented in Figure 1.7.

The third part of the thesis is dedicated to the study of clusters, which act as small

arcmin scale lenses. This analysis is conducted in anticipation of upcoming CMB exper-

iments characterized by exceptionally low noise levels and high-resolution data, such as

CMB Stage-4 (CMB S4) [28]. In our approach to reconstructing the lensing signature

of individual clusters, the reconstructed lensing potential of the large-scale structure is

treated as an additional level of Gaussian noise. Furthermore, we utilize lensing multi-

poles up to L = 6000, a range expected to be accessible by CMB S4. A key motivation
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Figure 1.6: Top panel: The reconstructed lensing deflection map from Planck-2018
temperature and polarization data in 67% sky-fraction. Image source: [4]. Middle Panel:
The reconstructed Ÿ map from ACT DR6 data over 9400 deg2 sky area. Image source [5].
Bottom Panel: The reconstructed Ÿ map from SPT-3G 2018 temperature map in 1500
deg2 sky area in the southern hemisphere. Image source [6]
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Figure 1.7: Comparison of the measured lensing potential power spectrum C
„„

L
across

various probes to date. Notably, the ACT DR6 results [7] exhibit the highest signal-
to-noise ratio among these measurements, closely matched by the precision of the
Planck NPIPE maps [8]. Image source: [7].

for this study is the anticipation that S4 will detect approximately 105 clusters. This sub-

stantial number of potential detections underscores the importance of employing cluster

cosmology and mass constraints derived from CMB lensing. Such methods are vital for

probing cosmological parameters more accurately in future research.

1.6 Bayesian Inferences in Cosmology

A primary theme of this thesis is the application of the Bayesian framework for parameter

inference. Contrasting the frequentist approach, which depends on a function of given

data, Bayesian inference focuses on exploring the posterior distribution of parameters of

interest. This approach is fundamentally rooted in Bayes’ theorem:

P (◊|d) = P (d|◊)P (◊)
P (d) . (1.23)

Here, ◊ represents the parameters of our model, and d denotes the data. The probability

P (◊|d) is the posterior distribution of the parameters ◊, P (d|◊) is the likelihood function,

representing the probability of obtaining the data for a specific parameter value. P (◊) is

the prior probability, reflecting our pre-existing knowledge about the parameters before

acquiring the data. P (d), known as the evidence, serves as a normalization factor for the
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probability distribution.

This thesis primarily focuses on signals that violate the statistical isotropic nature of

CMB fluctuations and generate o�-diagonal terms in the covariance matrix. The first

part involves the motion of the observation frame, while the second part concerns the

weak-lensing of CMB photons. The posterior distribution in this context is given by:

P (CS, s|d) = 1
Ò

|2fiCN ||2fiCS|

exp
;

≠
1
2

Ë
(d ≠ s)†C≠1

N (d ≠ s) + s†C≠1
S s

È<
P (CS).

(1.24)

Here, we explore the joint posterior distribution of the signal s and the covariance matrix

CS, given the data d. The diagonal terms of CS represent the power spectrum, and

the o�-diagonal terms contain the signal of interest. CN is the noise covariance matrix

derived from the experiment’s noise information, and P (CS) is the prior distribution of

the covariance matrix. For the diagonal terms or power spectrum Cl and the Doppler

boost o�-diagonal terms, a flat prior is typically assumed. For the lensing potential, a

well-motivated Gaussian prior is used.

In the second part of the thesis, the Hamiltonian Monte Carlo (HMC) technique is

employed to sample this posterior distribution, e�ectively addressing the curse of dimen-

sionality. In the third part, an iterative method based on real-space Newton-Raphson

scheme is utilized to find the maximum of the posterior distribution, leveraging the gra-

dients of the distribution.

1.7 Summary

This thesis explores the utility of CMB in precision cosmology. The CMB not only

serves as a direct probe of the universe’s early stages but also informs us about the later

stages, as the trajectories of CMB photons respond to the gravitational potential of the

mass distribution of the late-time universe. Additionally, the motion of our observation

frame relative to the cosmological rest frame introduces measurable e�ects in the CMB

fluctuations. This thesis investigates two primary phenomena related to these aspects.

The second part of the thesis methodically analyzes the modulation and aberration

e�ects resulting from the motion of the observation frame, which are scale-independent.

This analysis utilizes full-sky Planck-2018 temperature data up to high-resolution multi-

poles. We report a detection of velocity from these e�ects, confirming the canonical value
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of motion derived from the CMB dipole with a statistical significance of approximately

5‡.

In the third part, the focus shifts to galaxy clusters, which are the largest gravitation-

ally bound structures in the universe. These clusters are crucial for understanding the

growth of cosmic structures and have implications for various cosmological parameters.

While existing CMB surveys typically employ the quadratic estimator [36], this work

incorporates the Maximum-a-Posteriori (MAP) estimator [38] for more accurate lensing

potential field reconstruction in low-noise settings like CMB-S4. We demonstrate the

application of this estimator to improve cluster-mass estimation using simulations.

This chapter introduces the fundamental concepts and methodologies employed through-

out the thesis. It discusses the statistical isotropy of CMB fluctuations, its violation, and

an introduction to the BipoSH formalism, which has been employed in the second part for

analyzing the Doppler boost signal. It also outlines the basics of weak-lensing of CMB

by the large-scale structure and summarizes the current state of CMB measurements.

Finally, the chapter also presents the Bayesian framework for parameter inference, which

underpins the analytical approach of this thesis.
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Chapter 2

Overview of the Doppler Boost

Model

2.1 Introduction

The isotropic and homogeneous Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-

logical model imposes a natural 3+1 decomposition of spacetime. In this model, there ex-

ists a preferred reference frame in which the four-dimensional spacetime can be described

as a foliation of homogeneous and isotropic spatial hypersurfaces labeled by cosmic time.

The CMB is expected to be statistically isotropic within this framework.

The relative motion of the Solar System with respect to the rest frame of the CMB

modifies the statistical properties of the CMB temperature and polarization anisotropies.

It is known to be the major contributor to the dipolar ¸ = 1 fluctuation in the observed

CMB anisotropy, the biggest known fluctuation in the observed CMB, which causes mK

(10≠3 K) fluctuations on the mean CMB temperature T0 = (2.7255 ± 0.0006)K [16, 17].

The velocity of the Solar System barycentre, inferred from the CMB dipole measure-

ment, has been found to be v = (369±0.9) km/s in the direction (¸, b) = (263.99±0.14¶,

48.26±0.03¶) [16, 39–42].

Along with the well-known dipole anisotropy, this motion also causes correlation be-

tween the neighbouring spherical harmonic coe�cients l and (l ±1) of the observed CMB

sky [31, 43, 44], which leads to non-zero o�-diagonal terms in the harmonic space covari-

ance matrix of temperature and polarization field, which can be captured in terms of

the dipole spectra of the bipolar spherical harmonics (BipoSH) [33, 45, 46]. The Lorentz
23
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transformation of the CMB photons in our observation frame gives rise to two e�ects in

the relative intensity fluctuations, modulation and aberration, which we jointly refer as

Doppler boost. The first one is a frequency dependent e�ect that causes the CMB sky

to appear brighter (or dimmer) by an amount1
— © v/c = (1.23 ◊ 10≠3) in the direction

(or opposite direction) of motion. The second e�ect, aberration is frequency independent

and results in the deflection of the original directions of the incoming CMB photons. The

strength of Doppler boost varies across the sky and it depends on the projection (—̂ · n̂)

of the direction of the incoming photons (n̂) and the direction of local motion (—̂). The

imprints of these e�ects in the CMB temperature field is shown in Figure 2.1, where we

plot the di�erence between a simulated Doppler boosted CMB map at 217 GHz (gener-

ated using CoNIGS [9]) with the known value of the velocity amplitude — = 1.23◊10≠3 in

the known dipole direction (shown by the black plus symbol) and a statistically isotropic

(SI) map generated with the same initial random seed. This di�erence map shows the

fluctuations at all angular scales as a result of the scale-independent nature of Doppler

boost. The imprints of Doppler boost vary with the sky direction by the factor —̂ · n̂. The

e�ect is stronger in the direction (or in the opposite direction) of motion, rather in the

sky directions 90¶ away from the direction of local motion.

Several other cosmological probes have also been used to infer the motion of the

Solar System with respect to the cosmological rest-frame. One of the prominent probes

is the number count of radio galaxies [47–49]. Radio galaxies can be observed out to

cosmological distances and hence the contamination due to sample variance in the local

universe can be mitigated. Various works using data of radio sources available so far

have provided di�ering estimates of the Solar System motion [48]. However, current

and next-generation radio surveys are poised to make an accurate and high significance

detection [50–53]. More recently, the e�ect of the Solar System motion on the thermal

Sunyaev-Zeldovich e�ect [54] of galaxy clusters [55] in Planck data has been used to

estimate the Doppler boost signal [56].

Correlations in the CMB introduced by the Doppler boost provide an equally com-

petitive probe of the Solar System motion. Also, it is an important cross-check of the

estimate of the Solar System motion from CMB Dipole and that of consistency of the

CMB data-set. For high-resolution CMB maps, the detectability of such anisotropic im-

1
The speed of light in vacuum is denoted by c = 2.997 ◊ 10

5
km/s.
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Figure 2.1: We show the di�erence between a simulated statistically isotropic map and
a Doppler boosted map at 217 GHz generated with the same value of the initial random
seed using CoNIGS [9] with an injected signal in the fiducial dipole direction ¸ = 264¶,
b = 48¶, with the known amplitude v/c © — = 1.23 ◊ 10≠3 for the illustration purpose.

prints in the covariance matrix has been discussed in [57, 58]. The earliest detection of

such SI violation due to local motion, was done by the Planck team [59] in 2013, using

quadratic estimators proposed in [60]. Consequently, various other estimators have been

used to infer the Doppler boost signal [61, 62]. The e�ect of these correlations on other

quantities of interest in CMB studies is discussed in [63–65]. A better understanding

of the Doppler boost signal is also important for determining the possible contribution

of the intrinsic CMB dipole [66–68]. There are also works in the literature alluding to

possible hints of an axis of evil [69, 70], which indicates strong directional alignment of

the lowest multipoles CMB dipole, quadrupole and octopole along with the direction

of parity asymmetry of CMB corresponding to the largest angular scale. However, our

inference of the local motion has been carried out from the e�ects of the motion on the

CMB anisotropy at significantly smaller angular scales (lrange = 800 ≠ 1950). Hence, we

can safely say that our analysis circumvents any possible contamination from the said

e�ect and is expected not to have implications for the same.

This chapter o�ers a comprehensive overview of the Doppler boost model and outlines

the necessary formalism for analyzing the Planck 2018 SMICA temperature map. The

Doppler boost signal, being frequency-dependent, impacts data across di�erent frequency

channels in distinct ways. The SMICA CMB map amalgamates maps from nine frequency
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channels, introducing complexity in extracting the Doppler boost signal. To navigate this

challenge, we introduce a novel parameter, the SMICA boost factor b
SMICA(l), designed to

isolate our local motion’s signature from the SMICA map. In Section 2.2, we detail the

analytical expressions for the observed fluctuation map in both real and harmonic spaces,

highlighting the additional terms introduced by the Doppler boost e�ect. Section 2.3

delves into the derivation of the o�-diagonal terms in the covariance matrix specifically

for the SMICA map, providing the necessary analytical expressions. Finally, Section 2.4

summarizes the key points of this chapter.

2.2 Imprint of Doppler boost on CMB

We denote the CMB temperature in the direction n̂
Õ in the CMB rest frame by T

Õ(n̂Õ).

Our observation frame, fixed with respect to the Solar System barycentre, is moving with

the velocity — relative to the CMB rest frame. The observed CMB temperature in the

direction n̂, T (n̂) is given by the following expression [31],

T (n̂) = T
Õ(n̂Õ)

“(1 ≠ n̂ · —) , (2.1)

where “ = (1 ≠ —
2)≠ 1

2 is Lorentz factor and — © |—|. The observed direction n̂, in terms

of n̂
Õ and —, is [31,58,59]

n̂ = n̂
Õ
· —̂ + —

1 + n̂Õ · —
—̂ + n̂

Õ
≠ (n̂Õ

· —̂)—̂
“(1 + n̂Õ · —) . (2.2)

Expanding the observed temperature T (n̂) up to linear order in —, the observed temper-

ature fluctuations (excluding the CMB dipole) can be derived to be [44,59]

”T (n̂) = ”T
Õ(n̂ ≠ Ò(n̂ · —))(1 + n̂ · —). (2.3)

The Planck detectors measure the intensity fluctuations at nine frequency channels. The

intensity of CMB radiation at frequency ‹ is [43, 59]

I‹(n̂) = 2h‹
3

c2
1

exp[h‹/kBT (n̂)] ≠ 1 . (2.4)
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Hence, the temperature fluctuation ”T (n̂)I inferred from the intensity fluctuation ”I‹(n̂)

at frequency ‹ is [44, 59]

”T (n̂)I = ”I‹(n̂)
dI‹/dT |T0

= ”T
Õ(n̂ ≠ Ò(n̂ · —))(1 + b‹n̂ · —), (2.5)

where the frequency dependent boost factor b‹ has the following form

b‹ = ‹

‹0
coth

3
‹

2‹0

4
≠ 1. (2.6)

Here, ‹0 refers to the characteristics frequency corresponding to the CMB monopole

temperature T0, defined as:

‹0 ©
kBT0

h
¥ 57 GHz, (2.7)

where kB is Boltzmann’s constant and h is Planck’s constant.

We carry out the whole analysis in the spherical harmonic space. For given —, D(n̂)

represents the dipole field
2
, which has a form — · n̂. In the spherical harmonic basis

D(n̂) © — · n̂ =
1ÿ

N=≠1
—1NYL=1,N(n̂), (2.8)

where the peculiar velocity vector — has an amplitude — and a direction —̂ © (◊—, „—) in

the real space. For convenience, we use —10, the real part of —11 (—r

11) and the imaginary

part —11 (—i

11) as three real valued independent variables in our analysis. The real space

variables, —, ◊— and „— are related to the spherical harmonic coe�cients of the dipole

field as [11],

— =
Û

3
4fi

Ò
—2

10 + 2—r2
11 + 2—i2

11,

◊— = cos≠1

Q

a—10
—

Û
3

4fi

R

b ,

„— = ≠ tan≠1
A

—
i

11
—r

11

B

. (2.9)

We assume that the CMB sky is statistically isotropic in its rest frame. We simplify

Eq. 2.5 and calculate the alm’s for our boosted observation frame, in terms of the ãlm’s

2
Since D(n̂) is a real-valued function, the coe�cients —11 and —1≠1 are related as —ú

1≠1 = ≠—11.
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for the SI CMB rest frame. Up to linear order in —, [44]

”T (n̂) = (1 + b‹n̂ · —)(”T
Õ(n̂) ≠ Òi”T

Õ(n̂)Òi(n̂ · —)). (2.10)

Expressing the above equation in spherical harmonic space, we get

alm = ãlm + b‹

1ÿ

N=≠1
—1N

ÿ

lÕmÕ
ãlÕmÕ(≠1)m

�lÕl
Ô

12fi
C

10
lÕ0l0C

1N

lÕmÕl≠m

≠

1ÿ

N=≠1
—1N

ÿ

lÕmÕ
ãlÕmÕ

1
2[lÕ(lÕ + 1) ≠ l(l + 1) + 2](≠1)m

�lÕl
Ô

12fi
C

10
lÕ0l0C

1N

lÕmÕl≠m
,

(2.11)

where the spherical harmonic coe�cients of the SI CMB sky are ãlm =
s

”T
SI(n̂)Ylm(n̂)d�n̂.

C
LN

lÕmÕlm denote the Clebsch-Gordan coe�cients and �l1l2...ln ©

Ò
(2l1 + 1)(2l2 + 1)...(2ln + 1)

[35]. This is the expression of alm’s for a Doppler boosted CMB map at frequency ‹. Key

aspects of the expression are that the non-SI corrections of alm’s due to local motion have

a dependence on isotropic temperature field ãlm’s and the corrections are frequency de-

pendent through the boost factor b‹ . In the next section, we will exhibit how these non-SI

corrections generate non-zero o�-diagonal terms in the harmonic space CMB covariance

matrix.

2.3 Covariance matrix of Doppler boosted CMB temperature

map

We use the SMICA estimate of the CMB temperature anisotropy map provided by Planck.

The SMICA method makes use of maps in all nine frequency channels [71, 72]. However,

for the Planck-2018 SMICA map, not all the data from all the channels are used for

the whole sky. Though SMICA is a harmonic space method, for the Planck 2018 release,

it makes use of a real space filter in the form of a mask along with a harmonic space

filter [73]. The SMICA map provided in the 2018 data release of the Planck is constructed

as summarised in the following expression [73]

XSMICA = Xfull + P (Xhigh ≠ Xfull), (2.12)
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where Xfull and Xhigh have the following form,

Xfull(n̂) =
fullÿ

‹

ÿ

lm

a
‹

lm
Ylm(n̂)W full

‹
(l),

Xhigh(n̂) =
highÿ

‹

ÿ

lm

a
‹

lm
Ylm(n̂)W high

‹
(l). (2.13)

In the above expressions, “full” stands for all the nine Planck frequency channels and

“high” stands for only the six HFI frequency channels. The weights W
full
‹

(l) and W
high
‹

(l)

are defined and given by Planck3, and has been presented in Figure 2.2. The operator P

in Eq. 2.12, is a hybridization of two operators. One is an apodized galactic mask M
4,

the other one is an apodized high-pass filter F in harmonic space. F has the following

functional form5,

F = 0 for l < l1,

= 1
2 ≠

1
2 cos

C
fi(l ≠ l1)
l2 ≠ l1

D

for l1 Æ l Æ l2,

= 1 for l > l2. (2.14)

So the combined e�ect of the operator P is as follows. In masked regions of CMB

sky, where M = 0, XSMICA = Xfull. In unmasked regions, where M = 1, for l < l1,

XSMICA = Xfull and for l > l2, XSMICA = Xhigh. In the SMICA pipeline, l1 = 50 and l2 = 150

values are used5. As long as we consider regions where M = 1 and lrange over 150, it is

safe to approximate XSMICA = Xhigh. The alm’s of SMICA map (aSMICA
lm

), in terms of the

alm’s of the single frequency maps (a‹

lm
) is then

a
SMICA
lm

=
highÿ

‹

W
high
‹

(l)a‹

lm
. (2.15)

3
weights_T_smica_R3.00_Xfull.txt and weights_T_smica_R3.00_Xhigh.txt in

COM_Code_SMICA-weights-propagation_R3.00.tar.gz available in https://wiki.cosmos.esa.int/

planck-legacy-archive/index.php/SMICA_propagation_code
4
transition_mask.fits.gz in COM_Code_SMICA-weights-propagation_R3.00.tar.gz

5
See smica_coadd.py in COM_Code_SMICA-weights-propagation_R3.00.tar.gz
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Figure 2.2: The harmonic space SMICA weights used to construct the temperature
maps Xhigh(n̂) (left panel) and Xfull(n̂) (right panel), as mentioned in Eq. 2.13. Image
source: [10]

Using the expression in Eq. 2.11 of the alm’s for the boosted single channels in Eq. 2.15,

we get the expression of alm’s of boosted SMICA map

a
SMICA
lm

= ã
SMICA
lm

+ b
SMICA
lm

1ÿ

N=≠1
—1N

ÿ

lÕmÕ
ã

SMICA
lÕmÕ (≠1)m

�lÕl
Ô

12fi
C

10
lÕ0l0C

1N

lÕmÕl≠m

≠

1ÿ

N=≠1
—1N

ÿ

lÕmÕ
ã

SMICA
lÕmÕ (≠1)m

1
2[lÕ(lÕ + 1) ≠ l(l + 1) + 2] �lÕl

Ô
12fi

C
10
lÕ0l0C

1N

lÕmÕl≠m
,

(2.16)

which is a reduced form similar to a single channel expression, but with a boost factor

b
SMICA
lm

, given by

b
SMICA
lm

©

qhigh
‹

b‹W
high
‹

(l)a‹

lm

aSMICA
lm

. (2.17)

We calculate this b
SMICA
lm

from the six HFI frequency channels, with the aid of publicly

available SMICA propagation code5. We choose the most probable values from the b
SMICA
lm

distributions of (2l +1) modes at every multipole l, to obtain b
SMICA(l)6. The value chosen

as b
SMICA(l) makes sure that it is a representative values for most of the b

SMICA
lm

values at a

fixed l. The non-SI corrections of a
SMICA
lm

due to local motion in Eq. 2.16 are constituted

from all the quantities that are accessible to us through the SMICA map. For our analysis,

we compute b
SMICA(l) for three di�erent choices of masks shown in Figure 2.3. The increase

6
We avoid using the mean value of bSMICA

lm , as it is going to be driven by the extended tail of the

distribution.
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Figure 2.3: In this figure we show the SMICA boost factor b
SMICA(l) for 3 di�erent masks,

fsky = 40.1% (black curve), 59.1% (cyan curve) and 72.2% (magenta curve), which are
depicted in Figure 4.1. b

SMICA(l) corresponding to each mask is obtained by taking the
peaks of histograms of b

SMICA
lm

(we have (2l + 1) modes at each l). As a reference, the red
and the blue lines show the boost factor b‹ for the CMB channels, 143 GHz and 217 GHz,
respectively.

in the value of b
SMICA(l) at high l arises due to larger value of the SMICA weights for the

frequency channel 217 GHz at values of l Ø 1600 [73].

We use Eq. 2.16 to compute the covariance matrix elements for the SMICA map due

to the Doppler boost. Up to leading order in —,7

Èalma
ú
lÕmÕÍ =Cl”llÕ”mmÕ

+(≠1)m
Õ �llÕ
Ô

12fi

1ÿ

N=≠1
—1N [(bSMICA(l) ≠

1
2{l(l + 1) ≠ l

Õ(lÕ + 1) + 2})Cl

+(bSMICA(lÕ) ≠
1
2{l

Õ(lÕ + 1) ≠ l(l + 1) + 2})ClÕ ]C10
l0lÕ0C

1N

lmlÕ≠mÕ . (2.18)

7
È.Í denotes the ensemble average.



CHAPTER 2. OVERVIEW OF THE DOPPLER BOOST MODEL 32

A few important aspects of this expression are as follows. The first term in Eq. 2.18,

provides the diagonal elements Cl’s, which come from the ã
SMICA
lm

’s in Eq. 2.16. The

second term in Eq. 2.18, represents the leading order o�-diagonal terms, that are linear

in —. If the velocity of our local motion — were zero, then the —1N ’s would have been

zero and we would have been left with a diagonal covariance matrix as expected for

a SI sky. The o�-diagonal part has a dependence on the Cl’s, which again reinforces

the point that joint analysis of local motion variables along with the Cl’s, is essential.

There is a correction in the diagonal terms as well, if we include the next order for —

in our calculation. We have ignored the corrections to Cl due to local motion in this

analysis, as it can lead to a maximum relative di�erence in its value by about a few

times 10≠3– 10≠4 for the partial-sky analysis relevant for this work (with a minimum

fsky = 40.1%) [64, 65, 74, 75]. These values are sub-dominant in comparison to the total

uncertainties (cosmic variance + Planck instrument noise [76]) in the value of Cl at high

multipole values considered in this analysis [77]. However, for future high-resolution and

more sensitive CMB experiments, higher-order terms will play a crucial role and cannot

be ignored [64,65].

Any particular cause behind the violation of SI of the CMB manifests through non-zero

values of only certain o�-diagonal terms in the covariance matrix. BipoSH coe�cients

(ALN

l1l2) provide an elegant way to group these particular terms according to the nature

of the isotropy violating correlations, organizing them according to how they transform

under rotations [78]. The elements of the covariance matrix can be written as a linear

combination of the BipoSH coe�cients,

Èalma
ú
lÕmÕÍ = (≠1)m

Õ ÿ

LN

A
LN

llÕ C
LN

lmlÕ≠mÕ . (2.19)

The BipoSH coe�cients form a complete basis for expressing all the terms in the covari-

ance matrix. In particular, the diagonal elements of the covariance matrix are just the

L = 0, M = 0 terms of the BipoSH coe�cients, given by

A
00
llÕ = (≠1)l

Ô

2l + 1Cl”llÕ . (2.20)

The Clebsch-Gordon coe�cients in Eq. 2.18 limit the number of o�-diagonal terms we get

in the covariance matrix for a boosted sky. We get only the mixing of l and l ± 1 terms.
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Therefore the diagonal terms and just the immediately adjacent terms on both sides of

the diagonal terms in the covariance matrix are non-zero. As the BipoSH coe�cients for

this case are symmetric under the exchange of lower indices, l and l + 1, we only need

the A
1N

l,l+1 terms to express all the o�-diagonal terms. We compare Eq. 2.18 and Eq. 2.19

to get the expression of the BipoSH coe�cients as

A
1N

l,l+1 = —1NSl,l+1, (2.21)

where —1N is the amplitude of the Doppler boost signal and Sl,l+1 is called the shape

factor which is defined as,

Sl,l+1 ©
�l,l+1
Ô

12fi
[(l + b

SMICA(l))Cl ≠ (l + 2 ≠ b
SMICA(l + 1))Cl+1]C10

l0l+10. (2.22)

We use this particular form of the shape factor in our analysis to extract the Doppler

boost signal from the Planck-2018 SMICA temperature map [77].

2.4 Summary

The motion of our observation frame introduces significant e�ects on the CMB obser-

vations. At the largest scales, this motion results in the Doppler boost of the CMB

monopole, creating an observable dipole pattern. Beyond these large scales, our motion

also influences the fluctuations at smaller angular scales through modulation and aberra-

tion e�ects. Modulation amplifies the brightness of fluctuations in the direction of motion

while dimming them in the opposite direction. Aberration, on the other hand, deflects

the original trajectory of incoming photons. These are purely relativistic e�ects stemming

from our motion. Although it is challenging to isolate an intrinsic dipole component from

the observed CMB dipole, we can infer our velocity through these relativistic e�ects on

smaller angular scales. This approach helps in constraining the potential contribution of

an intrinsic dipole at the milli-Kelvin (mK) scale.

As discussed in this chapter, these small-scale e�ects violate the statistical isotropy of

the fluctuations, introducing o�-diagonal terms in the CMB covariance matrix in spheri-

cal harmonic space. Specifically, the Doppler boost causes correlations between adjacent

multipoles (alm and al±1m), resulting in non-zero o�-diagonal terms in the covariance

matrix. We represent these correlations using the BiPoSH formalism. The correlation
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strength is scale-independent, unlike the modulation due to Cosmic Hemispherical Asym-

metry (CHA) [32], which is scale-dependent and predominant at larger scales or lower l

values [11]. Therefore, we focus our analysis on high CMB multipole ranges to minimize

CHA contamination, as elaborated in Chapter 4 (Section 4.2). Another key aspect of the

Doppler boost signal, as outlined in this chapter, is its frequency dependence. Di�erent

frequency channel maps exhibit varying signal strengths. We utilize the Planck-2018

SMICA temperature map, which combines all frequency channels using optimized weights

in harmonic space. This comprehensive approach enhances our analysis, yielding better

detection significance than previous studies.

The parameters of interest in this estimation problem are the complete covariance

matrix and the signal alm. The o�-diagonal terms consist of both the power spectrum Cl

and the spherical harmonic coe�cients of the dipole field (—10, —
r

11, and —
i

11), as indicated

in Eq. 2.18. A Bayesian approach is adopted to explore the joint posterior distribu-

tion of these parameters. To address the high dimensionality challenge, Hamiltonian

Monte-Carlo (HMC) sampling is employed. The methodology and the ensuing posterior

distribution are comprehensively discussed in the subsequent chapter.



Chapter 3

Methodology

3.1 Introduction

In the previous chapter, we explored how the Doppler boost, resulting from the motion of

the observation frame, introduces observable e�ects in CMB data. These e�ects manifest

as o�-diagonal terms in the CMB covariance matrix. Building on the model of these

o�-diagonal terms, it is possible to develop a minimum variance quadratic estimator,

as outlined by [60], to infer the velocity of the observation frame from the data. This

approach has been successfully applied to derive the motion from the Planck-2013 data

set [79].

In this work, we analyze Planck-2018 SMICA temperature map [77] in the BipoSH

framework [44]. Our approach involves a joint Bayesian inference to simultaneously de-

termine the CMB power spectrum (Cl), the dipolar (L = 1) BipoSH coe�cients (which

encapsulate the o�-diagonal terms induced by local motion), and the temperature field in

spherical harmonic space (alm). As elaborated in Section 2.3, this comprehensive infer-

ence is necessitated owing to the fact that the non-SI o�-diagonal part of the harmonic

space covariance matrix is influenced by the SI diagonal part. Due to high dimensional

parameter space, we employ the Hamiltonian Monte-Carlo (HMC) method [80] to explore

the posterior distribution of our model parameters, i.e., the Doppler boost signal, Cl’s

and alm’s of the CMB map. We use the inference formalism developed in [11,81].

This chapter presents an in-depth explanation of the methodology employed in this

study. In Section 3.2, we delve into the specifics of the data model, including a discussion

on the likelihood and prior distributions. This section finally provides the expression of
35
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the posterior distribution, which we want to explore. Following this, Section 3.3 is ded-

icated to the HMC sampling technique. Here, we outline the foundational principles of

the HMC sampler and present the expressions for the momentum derivatives of the pa-

rameters concerned, which are essential for executing the sampling process. The chapter

concludes with a summary in Section 3.4, encapsulating the key points discussed.

3.2 Data Model and the Parameter Posterior

We use the following model for the data d 8,

d = Bs + N , (3.1)

where s is the CMB signal vector, N is the noise vector and B is the beam convolution

operator. We assume the noise to be Gaussian [77,82]. Hence, the probability of the data

d given signal s is

P(d|s) = 1
Ò

|2fiCN |

exp
5

≠
1
2(d ≠ s)†C≠1

N (d ≠ s)
6
, (3.2)

where, CN is the noise covariance matrix. We want to sample the joint posterior dis-

tribution of the parameters alm, Cl and —1N . Using the probability distributions given

above, we can express the posterior distribution of alm, Cl and —1N as

P(CS, s|d) = L(d|s, CS)�(s, CS)
E(d) , (3.3)

where L is the likelihood, E is the evidence and � is the prior. For the likelihood,

conditioned on s, d is independent of CS, implying L(d|s, CS) = L(d|s). Hence, we

have

P(CS, s|d) = L(d|s)�(s|CS)�(CS)
E(d) , (3.4)

where we used �(s, CS) = �(s|CS)�(CS). For the prior on the signal amplitude

�(s|CS), we use the theoretically motivated and empirically established fact that the

Gaussianity of the CMB fluctuations is a very good approximation [83–86]. Hence,

�(s|CS) = 1
Ò

|2fiCS|

exp
5

≠
1
2s†C≠1

S s
6
. (3.5)

8
We denote vectors and matrices by bold symbol.



CHAPTER 3. METHODOLOGY 37

In the above equations, E(d) is the Evidence of the data and is a normalization constant.

The explicit expression for the Evidence for this problem would be

E(d) =
⁄

dCSdsL(d|s)�(s|CS)�(CS). (3.6)

Evidence is generally computed for the purpose of model comparison. However, for

the probability distributions we consider, brute force computation of the evidence is

intractable. Instead, we bypass explicit computation of the above integration by using

the Savage Dickey Density Ratio [87] to perform model comparison in Section 5. �(CS)

is now the prior on the CMB signal covariance matrix and we assume it to be flat. The

robustness of analysis for di�erent choices of prior has been discussed in [11], for similar

scenario. Hence, the probability distribution to be sampled has the same functional form

as P(d|s)P(s|CS), explicitly expressed as

P(CS, s|d) = 1
Ò

|2fiCN ||2fiCS|

exp
;

≠
1
2

5
(d ≠ s)†C≠1

N (d ≠ s) + s†C≠1
S s

6<
. (3.7)

Note that the dependence of the posterior distribution on the parameters alm, Cl and —1N

is through the signal vector s and the signal covariance matrix CS. The above formalism

presents the Bayesian hierarchical model for the problem at hand. The alm form one set

of model parameter which are directly compared with the data. Parameters of the signal

covariance matrix form another set of parameters at a di�erent level of hierarchy.

Given the large number of parameters, we use the Hamiltonian Monte Carlo (HMC)

method [80, 88] to jointly sample the posterior distribution P(CS, s|d). The details of

the sampling of this particular distribution, using the language of BipoSH coe�cients

to describe the covariance matrix, are discussed in [11, 81]. Details of the particular

methodology used here are discussed in [11] in the context of dipole modulation (cosmic

hemispherical asymmetry) of CMB temperature anisotropy [83–85, 89]. We adopt this

formalism for the inference of the Doppler boost signal. In the next section, we describe

HMC in brief and provide some of the relevant mathematical expressions.

3.3 Sampling method: Hamiltonian Monte Carlo

HMC is an e�cient Monte Carlo sampling method and makes use of the Hamiltonian

dynamics to propose the sample [80, 88]. Further, HMC avoids the curse of dimension-
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ality that a�ects the Metropolis algorithm, especially for high dimensional inference and

therefore potentially achieves much higher acceptance probability for proposed samples

in the chain. HMC has been used in cosmology research for various challenging inference

problems with hierarchical Bayesian models; some examples are cosmological parameter

estimation [90], CMB power spectrum inference [91], various inference problems in large

scale structure [92–94], and inference of CMB lensing potential [95,96].

The Hamiltonian is defined as

H({qi, pi}) = 1
2pT µ≠1p ≠ ln[P(q)], (3.8)

where q is a vector of the parameters of interest, p is a vector of the momentum associated

with the parameters and µ is the mass matrix. The term ≠ ln[P(q)] is called the potential

energy for the distribution being sampled, here denoted by P(q). For our problem, P(q)

is given by the expression in Eq. 3.7. Hamilton’s equations are

q̇ ©
dq

dt
= ˆH

ˆp
and ṗ ©

dp

dt
= ≠

ˆH

ˆq
. (3.9)

The main calculation involved in HMC concerns the evaluation of the momentum deriva-

tive for the parameters of interest. Hence, one needs to get the following quantity for all

the parameters of interest

ṗj ©
dpj

dt
= ≠

ˆH

ˆqj

= ˆ ln[P({qi})]
ˆqj

. (3.10)

For our problem, the expression for the momentum derivative can be obtained ana-

lytically. In the remaining section, we present calculations of ˆ ln[P({qi})]
ˆq

, with q =

{alm, Cl, —1N}.

The momentum derivative corresponding to alm is given by

ṗlm = ≠
1
2

ÿ

l1m1

[C≠1
S ]l1m1lma

ú
l1m1 + 1

2
ÿ

l1m1

[C≠1
N ]l1m1lm(dú

l1m1 ≠ a
ú
l1m1). (3.11)

To deal with the mask, we express the probability distribution of the data given signal

using real space representation of the data and the signal. The joint likelihood for the
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signal in Npix pixels is

P(s|d) = 1
|2fiCN |1/2 exp

5
≠

1
2

Npixÿ

i=1

(di ≠ Bsi)2

‡2
i

6
, (3.12)

where Bsi is the signal in the i
th pixel of the map smoothed with the beam B and ‡

2
i

is

the noise variance in the i
th pixel. To accommodate the presence of mask, we express ṗlm

in the following form

ṗlm = ≠
1
2

ÿ

l1m1

S
≠1
l1m1lm

a
ú
l1m1 + 1

2

Npixÿ

i=1

1
‡2

i

5 ÿ

lÕmÕ
(dlÕmÕ ≠ blplalÕmÕ)blplYlÕmÕ(n̂i)

6
Ylm(n̂i). (3.13)

The momentum derivative corresponding to the BipoSH coe�cient A
LM

llÕ is [11]

ṗ
LN

llÕ = ≠
1
2

ÿ

mÕ

(≠1)m
Õ

DlÕmÕlÕmÕ
C

LN

lmÕlÕ≠mÕ”llÕ

≠
1
2

ÿ

mÕ,m

(≠1)m
Õ
OlÕmÕlm

DlÕmÕlÕmÕDlmlm

C
LN

lmlÕ≠mÕ + 1
2

ÿ

mÕ,m

(≠1)m
Õ
alÕmÕa

ú
lm

DlÕmÕlÕmÕDlmlm

C
LN

lmlÕ≠mÕ . (3.14)

In particular, the momentum derivative for the BipoSH coe�cient with L = 0, M = 0 is

ṗ
00
llÕ = 2l + 1

2A00
ll

(Â
00
llÕ

A00
ll

≠ 1), where Â
00
llÕ =

ÿ

mmÕ
alma

ú
lÕmÕC

00
lmlÕmÕ . (3.15)

The momentum derivative with respect to —1N parameter is

ˆH

ˆ—1N

=
ÿ

l

5
ˆA

1N

ll+1
ˆ—1N

ˆH

ˆA1N

ll+1
+ ˆA

1N

l+1l

ˆ—1N

ˆH

ˆA1N

l+1l

6
. (3.16)

The momentum derivatives for the real and imaginary parts of —11 are obtained using the

following expressions

ˆH

ˆ—r
11

= 2Ÿ

5
ˆH

ˆ—11

6
and ˆH

ˆ—i
11

= ≠2⁄

5
ˆH

ˆ—11

6
, (3.17)

where Ÿ and ⁄ are operators giving real and imaginary parts of the expression, respec-

tively.
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3.4 Summary

In this chapter, we explore the Bayesian framework adopted to infer the parameters of

interest. We explain the data model and discuss the likelihood and prior distributions, ul-

timately leading to the joint posterior distribution of the signal covariance matrix and the

signal in the spherical harmonic basis. The subsequent section delves into the application

of the Hamiltonian Monte-Carlo (HMC) sampler for sampling this posterior distribution.

Specifically, we focus on calculating the momentum derivatives for parameters such as

alm, Cl, and the velocity parameters —1N .

Moreover, this chapter addresses the non-ideal aspects of the data, incorporating

these considerations into the expressions for momentum derivatives. We formulate the

likelihood for the pixelated data, accounting for the beam e�ects, masking in the galactic

region, and extra-galactic point sources. These factors are crucial in our analysis pipeline,

especially given our focus on the Planck-2018 data. In the following chapter, we will delve

into the implementation details of our pipeline on this data set and discuss the outcomes

of our analysis.



Chapter 4

Analysis on Planck-2018 CMB

temperature map

4.1 Introduction

This chapter delves into our analysis of the Planck-2018 temperature data [3]. Employing

a Bayesian framework, we examine the joint posterior distribution of the signal covari-

ance matrix and the signal through the Hamiltonian Monte-Carlo (HMC) technique,

as detailed in the preceding chapter. As highlighted in Chapter 1, the Planck satellite

represents a monumental achievement over the past decade, providing high-resolution

and sensitivity measurements of the CMB fluctuation maps. This advance enabled the

probe of cosmological parameters with unprecedented accuracy. The Planck satellite

was equipped with a Low-Frequency Instrument (LFI) and a High-Frequency Instrument

(HFI), comprising 73 detectors across nine frequency bands. The LFI covered 30, 44,

and 70 GHz, while the HFI spanned 100, 143, 217, 353, 545, and 857 GHz. The scanning

strategy allowed Planck to scan the entire sky twice annually, with beam resolutions

ranging from 32.29 arcminutes at the 30 GHz channel to 4.22 arcminutes at the 857 GHz

channel.

The CMB maps from these frequency channels were then synthesized into a combined

map using several foreground-cleaning techniques. These techniques eliminate galactic

and extragalactic foregrounds, which are typically frequency-dependent, unlike the CMB

signal. Planck o�ers such foreground-cleaned maps through four component-separation

methods: NILC, SEVEM, Commander, and SMICA [10]. Our primary analysis focuses on the
41



CHAPTER 4. ANALYSIS ON PLANCK -2018 CMB TEMPERATURE MAP 42

SMICA map, though we also present results from the other foreground-cleaned maps to

a�rm the robustness of our findings. The SMICA algorithm has been thoroughly described

in Section 2.3, where we detailed the covariance matrix expression for the SMICA map in

Eq. 2.18, utilizing the SMICA weights provided by Planck. In this chapter, Section 4.2 out-

lines the implementation details of our algorithm on the SMICA data. Section 4.4 presents

the core results obtained from applying the algorithm to the Planck-2018 SMICA tem-

perature maps, including the marginalized distributions and the maximum-a-posteriori

estimates derived from those distributions. In Section 4.5, we extend our analysis to

other foreground-cleaned maps, such as NILC and SEVEM, to further validate our results.

The chapter concludes with a summary in Section 4.6.

4.2 Implementation Details

As discussed in Section 2.3, the SMICA pipeline provides us a hybrid map from the nine

Planck frequency channels. The SMICA map is constructed in a specific manner [73] to

minimize the contamination from foregrounds. Hence, as long as we are considering the

cleaner regions of the CMB sky well away from the galactic plane and using multipoles

higher than l = 150 for our analysis, we can use the approximation given in Eq. 2.15.

Accordingly, we have performed our analysis on Planck-2018 SMICA temperature map

for three di�erent choices of masking and three di�erent choices of the maximum CMB

multipoles, which we have discussed elaborately later. These three masks have been

shown in Figure 4.1a, 4.1b and 4.1c. To obtain the noise variance in each pixel to be used

in Eq. 3.13, we use 200 FFP10 simulations of the SMICA noise [76]. At every pixel, we

compute the variance of 200 FFP10 simulated noise maps10 stored as HEALPix [97] maps

with Nside = 2048. The noise variance map is provided in Figure 4.2. A more accurate

computation of noise covariance matrix in pixel-space can be performed using a recipe

developed in [98] and will be used in a future work. For the masked pixels that exclude

regions with high galactic foreground contamination and known point source locations

at high-latitudes, we assign infinite noise variance by making 1/‡
2 = 0 in Eq. 3.13. This

is the equivalent of having no information at those pixels. The anisotropy of the noise is

encoded in the noise variance map. For the calculation of the mass matrix of alm’s [91],

the noise power spectrum Nl is obtained from the di�erence of the two SMICA 2018 half-

10
https://pla.esac.esa.int/
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(a)

(b)

(c)

Figure 4.1: The grey regions in Figure 4.1a, 4.1b and 4.1c are the three di�erent masks
(fsky = 40.1%, 59.1% and 72.2% respectively), that have been used in our analysis.
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Figure 4.2: Top panel: The noise variance map, obtained from 200 FFP10 noise simu-
lations, used in our analysis. Bottom panel: One of the FFP10 noise realizations.

mission maps11, using the fact that noises of the two half-mission maps are uncorrelated.

We have used a smooth Nl (with lwidth = 40) in our analysis. In this joint inference

approach, we also smooth the auxiliary Cl using a rectangular window function of bin

width lwidth = 40 and apply it in momentum derivative expressions of BipoSH, given in

Eq. 3.14.

The whole analysis has been carried out at a resolution Nside = 2048, which grants us

su�ciently high lrange. The modulation part of the Doppler boost signal is degenerate with

11
COM_CMB_IQU-smica_2048_R3.00_hm1.fits and COM_CMB_IQU-smica_2048_R3.00_hm2.fits avail-

able at https://pla.esac.esa.int/
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Figure 4.3: Top panel: One of the sample maps (Nside = 2048) obtained from the
alm samples with the primary set-up (fsky = 40.1%, lmax = 1950). Bottom panel: The
di�erence between the SMICA map and the sample map at unmasked regions

the dipolar modulation signal of cosmic hemispherical asymmetry [11, 83–85, 89] at low

l. Hence we restrict the multipoles used in our analysis to l > lmin = 800 to circumvent

possible contamination in the estimation of —. We carry out our analysis using two

di�erent lrange from lmin = 800, with lmax = 1500 and 195012. Since the Doppler boost

signal is scale-independent and the variance of the —1N is inversely proportional to the

number of modes considered [11,44], it is crucial to perform the analysis up to high values

of the multipoles l. The analysis using the mask fsky = 40.1%, with lmax = 1950 is our

12
We have also obtained the result for lmax = 1700. It agrees well with the other lmax choices.



CHAPTER 4. ANALYSIS ON PLANCK -2018 CMB TEMPERATURE MAP 46

primary set-up in this work as it is the most conservative choice of a mask to reduce the

contamination from galactic foregrounds and in obtaining a more reliable inference of the

Doppler boost signal. In the next subsection, we present the detailed results obtained

with this primary setup. We also provide the inferred values from the other variations of

the setup as well.

4.3 HMC samples of CMB maps

We have obtained 5◊104 samples of the model parameters using HMC sampling method

discussed in Section 3. We discard the first 4000 samples as burn-in. In the top panel

of Figure 4.3, we show one of the samples of alm. In the bottom panel of Figure 4.3, we

show the di�erence between the sample map and the input SMICA map over the unmasked

regions. From this figure, it is very prominent that the sample map and the input map

agrees well, in the regions with less noise variance (see top panel of Figure 4.2).

4.4 Inference of the Covaraince Matrix

4.4.1 The Diagonal Part

In the rest of this section we discuss the distribution of the CMB covariance matrix

parameters obtained using the HMC technique. By allowing alm to vary subject to

the assumptions of the data likelihood, we assimilate all the information present in the

data map. However, it is the samples of the covariance matrix parameters, Cl and —1N ,

that confront the Doppler boost model. In the top panel of Figure 4.4, we present the

distributions of Cl samples for some specific values of l. For comparison, we also provide

the realisation Cl values of SMICA map (accounting for the Nl and the beam) and the

�CDM best-fit theory Cl’s provided by Planck [99], at those l’s. The fitted curves in

these figures are the analytic form of marginalised posterior distributions of Cl’s as given

in [100,101]

P(Cl|d) ¥
1

Nsample

ÿ

i

P(Cl|‡
i

l
), (4.1)

where ‡
i

l
is the realisation power spectra of the alm samples and the index i runs overs the

Nsample number of samples. The conditional distribution of Cl given ‡
i

l
, has the following
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Figure 4.4: Top panel: The distributions of Cl’s for six di�erent l values. Histograms
are obtained using the samples of Cl. The solid black curve is the analytic distribution
curve of that specific Cl. The black dashed line shows the peak values. The solid red line
represents the value of Cl obtained from SMICA map. The magenta line shows the best fit
�CDM theory Cl given by Planck. Bottom panel: The Maximum-a-posteriori estimate
of Cl distribution inferred in this analysis (black curve) along with the realisation Cl

(red curve) obtained from the SMICA map. The blue curve represents the best fit �CDM
theory Cl given by Planck. We have an evidence in the power spectrum of a SMICA
residual of an isotropic unresolved extra-galactic point source background.

form [100,101]

P(Cl|‡
i

l
) Ã Cl

A
‡

i

l

Cl

B( 2l+1
2 ≠1)

exp
C

≠
2l + 1

2
‡

i

l

Cl

D

. (4.2)
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We use this analytical form to fit the corresponding distributions13. We present the peaks

of the distributions as the estimated value of Cl’s in our analysis. In the bottom panel of

Figure 4.4, we plot the inferred power spectrum along with the realisation Cl of SMICA

map and the �CDM best-fit theory Cl’s.

4.4.2 The o�-diagonal part

Next, we present the inference of the o�-diagonal terms in the covariance matrix. As

the expression of the o�-diagonal terms Eq. 2.21 suggests, this eventually boils down to

the inference of the Doppler boost signal in our case. We have provided the summary of

our results with the three choices of masking (as given in Figure 4.1) using multipoles

up to lmax = 1950, in Table 4.1. In this table, we present the maximum posterior

points as the inferred values of the —10, —
r

11 and —
i

11 parameters in our analysis, along

with the error bars. We also provide the velocity amplitudes — and the direction of the

velocity in Galactic coordinates (¸, b), obtained from the maximum posterior points of

their distributions, along with their corresponding error bars. The reported — is obtained

from the corresponding maximum posterior points of the —10, —
r

11 and —
i

11 distributions.

We report the signal to noise ratio (SNR) of the measurement of the Doppler boost signal

for di�erent choices of galactic mask in Table 4.1. A 5.23‡ detection of the non-zero value

of Doppler boost is achieved from the case with fsky = 72.2%. For the other choices of

masks, fsky = 59.1% and fsky = 40.1%, we have made a 4.97‡ and 4.54‡ detection of

the Doppler boost signal respectively.

For our primary setup (fsky = 40.1%, lmax = 1950) we present the joint posterior

distributions of —10, —
r

11 and —
i

11 samples in Figure 4.5. We also compare the estimated

values of Doppler boost parameters —1N in this analysis, with the canonical values known

from the CMB dipole measurements — = 1.23 ◊ 10≠3 [16, 40–42]. The 2D joint distri-

butions of the —1N parameters show that there is no significant correlation among them.

The distribution of the velocity amplitude — and the joint distribution of the direction

coordinates (¸, b) are given in Figure 4.6 and Figure 4.7, respectively. The samples of

the real-space variables —, ¸ and b have been obtained from the —10, —
r

11 and —
i

11 samples

using the transformation relation Eq. 2.9. Galactic latitude b is related to the HEALPix

13
An extremely large number of independent ‡l samples is required in Eq. 4.1 to get the accurate

distribution at high l. So instead, we take Nsample = 10 and treat those ten ‡i
l as free parameters in the

analytical form of the distribution. We use the subroutine scipy.optimise.curve_fit [102] to optimize

the values of these parameters to get the best-fit curve for the posterior distribution.
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Table 4.1: Summary of results for di�erent choices of mask, with lmin = 800 and
lmax = 1950

fsky = 40.1%, SNR= 4.54

Parameter —10 ◊

103
—

r

11 ◊

103
—

i

11 ◊

103 — ◊ 103
¸ b

Inferred
Value 1.840 0.014 -0.620 0.996 268.5¶ 61.8¶

Standard
Devia-
tion

0.436 0.298 0.378 0.219 49.8¶ 12.3¶

fsky = 59.1%, SNR= 4.97

Parameter —10 ◊

103
—

r

11 ◊

103
—

i

11 ◊

103 — ◊ 103
¸ b

Inferred
Value 2.058 0.031 -0.248 1.020 264.5¶ 75.2¶

Standard
Devia-
tion

0.427 0.327 0.366 0.205 88.2¶ 9.7¶

fsky = 72.2%, SNR=5.23

Parameter —10 ◊

103
—

r

11 ◊

103
—

i

11 ◊

103 — ◊ 103
¸ b

Inferred
Value 2.104 -0.002 -0.509 1.087 270.4¶ 68.2¶

Standard
Devia-
tion

0.428 0.326 0.340 0.208 57.1¶ 10.3¶

polar angle ◊— as b = 90 ≠ ◊—, whereas Galactic longitude ¸ is the same as the HEALPix

azimuthal angle „—. We have also presented the inferred directions for three di�erent

masks with lmax = 1950 and lmax = 1500 in Figure 4.7.
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Figure 4.5: The figure presents the 1D distributions and 2D joint distributions of —10,
—

r

11 and —
i

11 samples. These samples are obtained from the analysis of the SMICA 2018
temperature map, with fsky = 40.1% mask, using multipoles up to lmax = 1950. The
contours in the joint distribution show the levels for 68% and 90% of the sample points,
respectively. The blue dashed line shows the peak values of the distribution and the red
solid line represents the canonical value of our local motion from CMB dipole.

The amplitude of the signal is consistent with the value measured from the CMB

dipole, for all the three choices of mask and the values of lmax considered in this analysis.

The direction of the signal is most consistent with the choice fsky = 40.1% (as shown

in Table 4.1 and Figure 4.7), as it is the most conservative choice to avoid galactic

contamination. We do not explore below this sky fraction as that would mask the Doppler

boost signal significantly causing loss of information in inferred amplitude. The choice

of lmax is also crucial in our analysis. As we can see from the Cl inference in Figure 4.4,

there is a mismatch between the best-fit theory Cl given by Planck and the realisation
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Figure 4.6: the distribution of —. The samples of —, ◊— and „— has been obtained from
the —10, —

r

11 and —
i

11 samples using Eq. 2.9.

Cl of SMICA at l Ø 1500, likely due to the unresolved point sources contributions at

those scales [99,103,104]. For an isotropic distribution of point sources, we do not expect

a statistically significant departure of the inferred direction of Doppler boost from the

fiducial value inferred from CMB dipole [16,39–42]. Furthermore the inferred Cl from our

analysis is consistent with the SMICA realisation Cl as expected. So, we consider a Galactic

mask with a low available sky fraction and include CMB multipoles up to lmax = 1950

to reduce the contamination from anisotropic Galactic foregrounds in the estimation of

Doppler boost signal, and also maximize the signal to noise ratio (SNR) of the detection

of the signal, even though it costs us a slight shift in the inference of its direction (see
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Figure 4.7: The joint distribution of ◊— and „— with fsky = 40.1% mask, using multipoles
up to lmax = 1950. The samples of —, ◊— and „— has been obtained from the —10, —

r

11 and
—

i

11 samples using Eq. 2.9. In Figure 4.6, the dashed blue line is the mean of this histogram,
whereas the dashed cyan line depicts the — value corresponding to the maximum posterior
points of —10, —

r

11 and —
i

11 parameters. The purple curve represents the analytical form
of this distribution (as derived in [11]). The dashed red line presents the known dipole
amplitude corresponding to the Solar System velocity 1.23 ◊ 10≠3. In Figure 4.7, the ◊—

and „— samples are binned in a HEALPix grid of Nside = 32, normalized by its peak value
and smoothed by a Gaussian kernel. The cyan circle represents the maximum posterior
point of the distribution with our primary set-up. The white cross represents the known
dipole direction. In this figure, we also depict the inferred direction for the other analysis
setups: fsky = 59.1%, lmax = 1950 (cyan diamond); fsky = 72.2%, lmax = 1950 (cyan
square); fsky = 40.1%, lmax = 1500 (magenta circle); fsky = 59.1%, lmax = 1500 (magenta
diamond) and fsky = 72.2%, lmax = 1500 (magenta square). The grey and purple lines
show the borders of fsky = 40.1% and fsky = 72.2% masks respectively.

Figure 4.7) from the fiducial value inferred from CMB dipole [16,40–42]. In future work,

we will do a joint estimation of the point source and foreground contamination, along

with the CMB and the Doppler boost signal to explore the reason for this minor shift in

the Doppler boost direction.
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4.5 Robustness of Results on Di�erent Foreground Cleaned Maps

In this section, we replicate the analysis on the NILC and SEVEM maps1 with the mask

fsky = 40.1%, using multipoles from lmin = 800 up to lmax = 1950. The noise variance

maps needed for the analysis have been obtained by computing variances at every pixel

of FFP10 noise simulations2 for each kind.

To express the spherical harmonic coe�cients (alm’s) of a Doppler-boosted sky for

component-separated CMB maps and to compute the e�ective boost factor, it is neces-

sary to use specific weights (for NILC) or coe�cients (for SEVEM). These are then integrated

according to the formula applicable to each component separation map. While the nec-

essary weights and codes for performing these operations on the SMICA map are publicly

accessible3, similar resources for NILC and SEVEM is not available. As a result, our analysis

of these maps does not employ the same level of rigor in calculating the e�ective boost

factor as done for the SMICA map. Instead, we have adopted a constant e�ective boost

factor be� = 2.38, matching the average SMICA boost factor for the given mask and lrange

For a comparative analysis with the SMICA results, our findings are summarized in

Table 4.2. Moreover, we present the distributions of velocity amplitude and inferred

directions for NILC and SEVEM, alongside those from SMICA, in the top and bottom panels

of Figure 4.8, respectively.

4.6 Summary

In this chapter, we have presented the findings from our analysis of the Planck-2018

temperature data within a Bayesian framework. Employing Hamiltonian Monte Carlo

(HMC) sampling, as detailed in the preceding chapter, we have navigated the joint pos-

terior distribution of the entire covariance matrix and the signal itself. The diagonal

elements of the covariance matrix represent the power spectrum Cl’s, and the inference

of its o�-diagonal elements primarily involves determining the observation frame’s veloc-

ity, denoted as —. The spherical harmonic components of the dipole field, which arise

due to motion, D(n̂) = — · n̂, are parameterized by —10, —
r

11, and —
i

11. These are the

key parameters of interest. Conversion to the amplitude and direction of the velocity
1
COM_CMB_IQU-nilc_2048_R3.00_full.fits and COM_CMB_IQU-sevem_2048_R3.01_full.fits

available at https://pla.esac.esa.int/
2
https://pla.esac.esa.int/

3
COM_Code_SMICA-weights-propagation_R3.00.tar.gz available in https://wiki.cosmos.esa.int/

planck-legacy-archive/index.php/SMICA_propagation_code
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Table 4.2: Summary of results for di�erent component separation CMB maps, with
mask fsky = 40.1%, using multipoles from lmin = 800 upto lmax = 1950

SMICA

Parameter —10 ◊

103
—

r

11 ◊

103
—

i

11 ◊

103 — ◊ 103
¸ b

Inferred
Value 1.840 0.014 -0.620 0.996 268.5¶ 61.8¶

Standard
Devia-
tion

0.436 0.298 0.378 0.219 49.8¶ 12.3¶

NILC

Parameter —10 ◊

103
—

r

11 ◊

103
—

i

11 ◊

103 — ◊ 103
¸ b

Inferred
Value 1.522 -0.118 -0.581 0.849 280.5¶ 57.2¶

Standard
Devia-
tion

0.432 0.305 0.372 0.217 61.8¶ 13.9¶

SEVEM

Parameter —10 ◊

103
—

r

11 ◊

103
—

i

11 ◊

103 — ◊ 103
¸ b

Inferred
Value 1.848 -0.016 -0.527 0.974 271.8¶ 65.5¶

Standard
Devia-
tion

0.429 0.304 0.359 0.209 62.3¶ 11.7¶

is achieved using Eq. 2.9. We provide the posterior distributions of the Cl’s for di�er-

ent multipoles l and the maximum-a-posteriori estimate of Cl from the distribution in

Figure 4.4. This analysis emphasizes the importance of jointly inferring the diagonal
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Figure 4.8: Top panel: The distributions of the velocity amplitude for NILC (black),
SEVEM (blue) and SMICA (orange), with the mask fsky = 40.1% using multipoles from
lmin = 800 up to lmax = 1950. The inferred values from these three maps have been
indicated by the dashed line, with the same colour choices. The red dashed line represents
the value inferred from CMB dipole. Bottom panel: The inferred directions for NILC

(magenta dot), SEVEM (green dot) and SMICA (yellow dot), with the mask fsky = 40.1%
using multipoles from lmin = 800 up to lmax = 1950. The map shown in this figure
corresponds to the observed CMB dipole, with the direction indicated by the white cross.
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and o�-diagonal terms, as the o�-diagonal terms also relate to the power spectrum Cl, a

relationship previously discussed in Chapter 2.

Next, we discuss the inference results concerning the local motion velocity derived

from the Planck-2018 SMICA temperature map, which constitute the primary findings of

our study. The analysis includes the marginalized and 2D joint distributions of the veloc-

ity parameters in spherical harmonic space, —10, —
r

11, and —
i

11, as presented in Figure 4.5.

As anticipated, our results indicate no significant correlation among these parameters.

We summarise the main results for the multipole range lrange = 800 ≠ 1950, employing

three sets of sky fractions fsky = 40.1%, 59.1%, and 72.2%, in Table 4.1. The distribu-

tions of amplitude and direction of the velocity, computed using Eq. 2.9, are depicted

in Figure 4.6. These findings align closely with the canonical values obtained from the

CMB dipole, remaining within 1‡ margins for both amplitude and direction distributions.

For the specified sky fractions, the significance of detection is reported at 4.54‡, 4.97‡,

and 5.23‡, respectively. Additionally, this chapter compares the results with analyses

conducted on other foreground-cleaned maps, such as NILC and SEVEM in Section 4.5,

demonstrating consistency with the primary SMICA findings. We calculate the Bayes fac-

tor in the subsequent chapter to evaluate further the likelihood of the canonical value

expected from the CMB Dipole.



Chapter 5

Model Comparison with Bayes factor

5.1 Introduction

Bayesian statistics provides a principled way to compare two di�erent models. Using the

conditional probabilities involved in the Bayes theorem, one can obtain the expression

for the ratio of the probability of two models conditioned on a given data set. This ratio

is called the Bayes factor. It is a prime tool for the comparison of two models [105–107]

under consideration. The expression of Bayes factor for two models M1 and M2 is given

by

BM1≠M2 = P(M1|d)
P(M2|d) = P(M1)

P(M2)
E(d|M1)
E(d|M2)

. (5.1)

In the absence of any a priori discriminating information between two models, we choose

the prior probability P(M) for the two models M1 and M2 to be equal. Hence, the Bayes

factor becomes just the ratio of the Bayesian evidence E(d|M) for those two models.

Section 5.2 details the computation of the Bayes factor for the canonical value derived

from the CMB dipole. Subsequently, Section 5.3 focuses on calculating the Bayes factor

for a velocity value inferred from the dipole observable in quasar data [49]. This structured

analysis aims to quantitatively assess the comparative evidence each model provides for

the observed data, facilitating a more informed evaluation of the models’ validity in

explaining the Doppler boost phenomena in CMB fluctuations.
57
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5.2 Bayes Factor for Known CMB Dipole Value

In our work, the two models that we compare are as follows. The M2 in the denominator,

is the Doppler boost model. The M1 in the numerator, is the hypothesis that the CMB

sky is Doppler boosted with the velocity amplitude, — = 1.23◊10≠3 (the inferred velocity

amplitude from CMB dipole [16, 40–42]). For the sake of convenience, we reparametrize

our variables to equal variance parameters [11],

wz = —10, wx = ≠

Ô

2—
r

11, wy =
Ô

2—
i

11. (5.2)

In this new three dimensional parameter space, the norm r can be defined as

r ©

Ò
w2

z
+ w2

x
+ w2

y
=

Ò
—2

10 + 2—r
11

2 + 2—i
11

2 =
Û

4fi

3 —. (5.3)

So the model M1 is a nested model within M2, with the value of the parameter r =

r|
—=1.23◊10≠3 . Hence, the Bayes factor can be obtained using the Savage-Dickey density

ratio (SDDR) [87,108],

BSDDR = PCl,◊,„(r|d, DB)
�(r|DB)

-----
—=1.23◊10≠3

, (5.4)

where, PCl,◊,„(r|d, DB) is the posterior distribution of the norm (r), marginalised over

power spectrum (Cl) and the direction (◊, „). � is the prior distribution of the norm.

We choose � to be uniform within a sphere of radius R = r|
—=2.73◊10≠3 , centered at

(wx, wy, wz) = (0, 0, 0), and zero outside. The marginalized prior density of the norm is

�(r|DB) = 3r
2

R3 for r Æ R. (5.5)

With this setup, we find the Bayes factor in favour of M1, to be

BSDDR ¥ 7.43 for fsky = 40.1%. (5.6)

According to the Je�reys’ scale [105], this indicates that the data substantially favors

the value of — from known CMB dipole, as it stays within 1.1‡ from the inferred signal

strength in our analysis. For the other two masks (fsky = 59.1% and 72.2%), the values
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of the Bayes factor in favor of the canonical value of —, are 8.14 and 8.72, respectively.

The Bayes factors with lmax = 1500 are 5.22, 5.57 and 4.99 for fsky = 40.1%, 59.1% and

72.2% respectively.

5.3 Bayes Factor for Known Quasar Dipole Value

We also calculate the Bayes factor for the — value inferred using the amplitude of the

dipole signal 0.01554 estimated in [49], which makes use of the CatWISE2020 quasar

catalog [109] prepared from the WISE [110] and NEOWISE data set [111]. By using the

median value of 1.17 for the power-law spectra index (parameter – in Eq. 1 in [49]), we

get a value of — = 2.73 ◊ 10≠3 from the observed dipole amplitude 0.01554 14. Now the

M1 in Eq. 5.1 is the hypothesis that the CMB sky is Doppler boosted with an velocity

amplitude — = 2.73 ◊ 10≠3 [49]. We do not have enough samples at this value of — to

compute the value of posterior from the histogram. Hence, we use the analytical form

of the posterior distribution to obtain the value at the desired point. Since wx, wy and

wz are all Gaussian random variables, we can derive the analytic form of the posterior

distribution of norm (r), marginalized over (◊, „) to be [11]

P(r) = r

‡2

Û
r

rú
exp

C

≠
r

2 + r
2
ú

2‡2

D

I1/2

3
rrú

‡2

4
for r Æ R, (5.7)

where rú is the norm of (wxú, wyú, wzú), the maximum likelihood point in the wxwywz-

space and ‡ is the standard deviation of each of these variables. I1/2 is the modified

Bessel function of first kind with order 1/2. We estimate the values of rú and ‡ from the

(wx, wy, wz) samples. Using the value of posterior and prior at — = 2.73 ◊ 10≠3, we find

the Bayes factor in favour of this model to be

BSDDR ¥ 1.24 ◊ 10≠11
. (5.8)

This indicates a strong disagreement (according to the Je�reys’ scale [105]) with the value

of local motion — = 2.73 ◊ 10≠3. The mismatch between the amplitude of the velocity

inferred from CMB and from quasars di�ers by about 8‡. For the other two choices of

masks, (fsky = 59.1% and 72.2%), the values of the Bayes factor in favour of the quasar

value are 3.35 ◊ 10≠11 and 6.58 ◊ 10≠11, respectively, indicating strong disagreement with
14

For a mean value of the power-law spectral index – = 1.26, one can get a value of — = 2.66 ◊ 10
≠3

[112].
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the value inferred in this work. The Bayes factors with lmax = 1500 are 1.47 ◊ 10≠5,

1.65 ◊ 10≠4 and 2.26 ◊ 10≠4 for fsky = 40.1%, 59.1% and 72.2% respectively. So, for

both the extreme choices of lmax considered in this analysis, a high value of local motion

(— ¥ 2.73 ◊ 10≠3) is strongly disfavoured15.

5.4 Summary

This chapter discusses the estimation of the Bayes factor for various values of the local

motion velocity. The Bayes factor is a statistical metric used to quantify how much more

likely one model is compared to another, given the observed data. When the analysis

involves a specific value for the velocity, one model e�ectively becomes a nested model

within a more general model where the velocity is a free parameter. We employed the

Savage-Dickey density Ratio (SDDR) to calculate the Bayes factor in such cases.

Initially, we calculated the Bayes factor for the canonical value of — derived from the

CMB dipole, which was found to be 1.23 ◊ 10≠3. This yielded a Bayes factor in the

range of 7.43 to 8.72. According to Je�rey’s scale, these results strongly indicate that

the canonical value of — is favored by the Doppler boost signal observed in the small

angular scale fluctuations of the CMB. For comparative purposes, we also calculated the

Bayes factor for a value of — derived from the quasar dipole, which was found to be

1.24◊10≠11. This significantly lower value indicates a strong disfavor towards the quasar

dipole-derived — in the context of the Doppler-boost signal in CMB.

By evaluating the Bayes factor for the velocity value from the CMB dipole, we e�ec-

tively constrain the likelihood of any intrinsic dipole component that might have been

present in the observed CMB dipole at the milliKelvin (mK) scale. This approach not

only underscores the utility of the Bayes factor in model comparison but also enhances our

understanding of the underlying mechanisms contributing to the observed cosmological

dipole in CMB.

15
We also calculate the Bayes factor for — = 2.66 ◊ 10

≠3
which corresponds to –mean = 1.26 of the

distribution given in [49]. These values are 1.17 ◊ 10
≠10

, 2.90 ◊ 10
≠10

and 5.96 ◊ 10
≠10

with lmax = 1950

for fsky = 40.1%, 59.1% and 72.2% respectively.
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Chapter 6

CMB lensing by galaxy clusters

6.1 Introduction

Galaxy clusters are the largest gravitationally bound structures in the Universe. Their

abundance as a function of redshift and mass is a direct probe of the growth of structures,

and thus provides constraints on the matter density �m, on the amplitude of matter

fluctuations ‡8, as well as on the dark energy equation of state and the sum of neutrino

masses [113–123].

To constrain the cluster mass, most surveys rely on either the richness [124–128], the

X-Ray emission [113,129,130], or the Sunyaev-Zel’dovich (SZ) e�ect [116,119,131]. These

observables need to be calibrated against the total cluster mass (including both baryonic

and dark matter). This scaling relation between the observable and the cluster mass is

currently the dominant source of systematic error [132–134]. With future CMB surveys,

which are expected to detect of order 105 galaxy clusters [26,28,123,135], the systematic

uncertainties will dominate the error budget, and as such accurate mass calibration is

even more necessary.

The e�ect of gravitational lensing provides a direct observable of the total mass, free

from assumptions on the dynamical state of the gas. Gravitational lensing of background

galaxies o�ers precise calibration of the scaling relation [136–143], but is subject to sys-

tematics such as the intrinsic alignment and redshift uncertainties of the sources [144],

and is limited by the absence of background galaxies for clusters at high redshift.

The gravitational lensing of the CMB, on which we focus here, is free from the system-

atics of galaxy weak lensing, and most useful for high redshift clusters. The CMB acts as
63
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an extended source at a redshift of 1100, with well understood statistics [30]. Note that

CMB lensing reconstruction is however not totally free from systematics, mainly due to

astrophysical contaminations, such as the own SZ emission of the cluster [145–147].

In Chapter 1, we introduced the fundamental principles of the weak gravitational

lensing formalism of CMB. This segment of the thesis leverages the weak lensing of CMB

to investigate galaxy clusters, which, as previously noted, hold significant cosmological

information as being the largest gravitationally bound structures. This chapter outlines

the model adopted for analyzing the total matter density profile of these clusters and

their lensing e�ects on the observed CMB maps. Section 6.2 describes the Navarro-

Frenk-White (NFW) model [148], utilized in this study. The NFW model, a widely

accepted fit for the matter density profile in galaxy clusters, is a good approximation for

the distribution of dark matter within these structures. In Section 6.3, we explore the

CMB lensing formalism in the context of an NFW cluster. This section discusses how

galaxy clusters, modeled by the NFW profile, act as lenses that modify the path of CMB

photons, thereby imprinting specific signatures on the CMB maps. These lensing e�ects

are crucial for probing the mass distribution of galaxy clusters. The chapter concludes

with Section 6.4, summarizing the key points discussed and the implications of utilizing

weak gravitational lensing of the CMB to study galaxy clusters.

6.2 NFW Profile

We adopt a truncated version [149] of the NFW profile [148] to model the cluster mass

distribution in our analysis. In this model, the dark matter density of the galaxy cluster

is

fl(r) =

Y
___]

___[

fl0
( r

rs
)(1 + r

rs
)2 if r < Rtrunc

0 if r > Rtrunc

, (6.1)

where fl0 and rs are the characteristic cluster density and characteristic scale radius of

the profile, respectively. We use M200 to characterize the mass of the cluster in terms

of the mass enclosed in a sphere of radius R200, within which the average density of the

cluster is 200 times the critical density of the Universe flcrit at the cluster redshift z. We

truncate the NFW profile at a radius Rtrunc = 3 ◊ R200 to derive more realistic mass

profiles [149], addressing the physical limitation that dark matter halos do not extend
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indefinitely. One can write the following relation between fl0 and flcrit [150],

fl0 = flcrit(z) 200
3

c200

ln (1 + c200) ≠

3
c200

1 + c200

4 , (6.2)

where c200 = R200/rs is the concentration parameter. In this spherically symmetric model,

the concentration parameter has the following empirical dependence on the cluster mass

and redshift [151,152]

c200(M200, z) = 5.71 (1 + z)≠0.47
A

M200
2 ◊ 1012 h≠1M§

B≠0.084

. (6.3)

Hence, the NFW density profile is quantifiable with these two parameters, the mass2

M200 and redshift z.

6.3 Lensing by NFW profile

The gravitational field created by the inhomogenity in the mass distribution in the Uni-

verse causes deflection of CMB photons. This phenomenon is referred to as weak lensing

of the CMB [30]. As a result of weak lensing, the original CMB signal is remapped on

the sky. We denote the quantities for the unlensed primordial CMB as X(n̂) and for the

remapped lensed CMB as ÊX(n̂), respectively. Here, X can represent temperature (T )

or polarization Stokes parameters (Q and U). Assuming the flat-sky approximation, the

remapping of the unlensed quantity can be expressed as

ÊX(n̂) = X(n̂ + –(n̂)), (6.4)

where –(n̂) is the deflection field, which can be expressed as the gradient of the lensing

potential: –(n̂) = Òn̂„(n̂), neglecting the LSS lensing rotational component which is a

second order e�ect in the scalar perturbations. The convergence Ÿ(n̂) is the most relevant

observable in our work [30],

Ÿ(n̂) = ≠
1
2Ò

2
n̂„(n̂). (6.5)

Since we assume a spherically symmetric profile for the cluster (see Eq. 6.1), the cluster

convergence is circularly symmetric, and depends only on the radial distance from the

2
We express M200 in units of solar mass M§, which is 1.99 ◊ 10

30
kg.
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cluster center, denoted as r = |r| [149,153]

Ÿcl(r) = �cl(r)
�crit(z) , (6.6)

where �cl(r) is the projected surface density of the cluster along the line of sight [149,152]

�cl(r) = 2
⁄

Rtrunc

r

xfl(x)
Ô

x2 ≠ R2 dx , (6.7)

and �crit(z) represents the critical surface density of the universe at the cluster red-

shift [149,153]

�crit(z) = c
2

4fiG

dA,CMB
dA,cldA,cl-CMB

, (6.8)

where c is the speed of light, G is the Newtonian gravitational constant, and dA,CMB,

dA,cl, and dA,cl-CMB represent the angular diameter distances to the hypersurface of the

last scattering of CMB, the cluster, and between the cluster and the hypersurface of the

last scattering of CMB, respectively. In the small angle approximation we can relate the

angular separation ◊ and the radial distance from the cluster center as ◊ = r

dA,cl
. The

expression for the cluster convergence is then obtained as [154]

Ÿcl(x) = 2flsrs

�crit(z)g(x), (6.9)

where x = r/rs = ◊/◊s and g(x) is a circularly symmetric function depending on the

truncation of the profile,

g(x) =

Y
_______]

_______[

≠

Ô
x2max≠x2

(1≠x2)(1+xmax) + 1
(1≠x2)

3
2

cosh≠1
1

x
2+xmax

x(1+xmax)

2
, (x < 1)

Ô
x2max≠1

3(1+xmax)

Ë
1 + 1

1+xmax

È
, (x = 1)

≠

Ô
x2max≠x2

(1≠x2)(1+xmax) ≠
1

(x2≠1)
3
2

cosh≠1
1

x
2+xmax

x(1+xmax)

2
, (1 < x Æ xmax),

(6.10)

where we introduced xmax, the ratio of the truncation radius to rs, which in our case

is equal to 3 ◊ c200. We rewrite the cluster convergence as a product of a normalization

Ÿ0 and a template function Ÿt, that depends on the chosen density profile of the dark-

matter halo (and hence, on its mass and redshift), so that Ÿcl(x) = Ÿ0 Ÿt(x). Here,

Ÿt is a circularly symmetric template function, which has a functional dependence on
r

rs
= ◊

◊s
. The normalisation Ÿ0 is chosen such that Ÿt = 1 at scale radius rs and the
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Figure 6.1: The well-known dipole-like structure that we expect in (lensed-unlensed) 1

sky when there is a cluster with M200 = 2 ◊ 1014
M§

2, z = 0.7 present in our line of sight.

cluster convergence is Ÿ0 there. When there is a circularly symmetric convergence profile

in front of a temperature gradient, we expect a dipole-like structure in the lensed-unlensed

CMB [155], as depicted in Figure 6.1. The intensity of this induced dipole is contingent

upon two factors: the mass of the galaxy cluster and the magnitude of the background

CMB temperature gradient. Furthermore, the orientation of this dipole is dictated by

the direction of the temperature gradient in the background CMB. Given the definition

of Ÿ0, it has direct proportionality relation with the mas of the cluster M200 [149],

Ÿ0◊
2
s

Ã
M200

�crit(z)d2
A

(z) . (6.11)

The analytical form of the Fourier transform to the convergence profile, is given by

[154,156,157]

Ÿa(l; z) = M200ũ(k = ¸/‰; z)
(1 + z)≠2�crit(z) , (6.12)

1
The simulations have been obtained using our code LensIt: https://github.com/carronj/LensIt

2M§ is the solar mass, i.e. 1.99 ◊ 10
30

kilogram
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where ũ(k = ¸/‰; z) is given by

ũ(k = ¸/‰; z) = 1
mnfw

[sin y{Si[y(1 + xmax)] ≠ Si(y)}

+ cos y{Ci[y(1 + xmax)] ≠ Ci(y)} ≠
sin (yxmax)
y(1 + xmax) ].

(6.13)

Here, we define a new Fourier variable, k = ¸/‰. ‰ is the comoving angular diameter

distance at that redshift, defined as ‰(z) =
s

z

0 dz
Õ 1
H(zÕ) = (1 + z)dA(z). In the above

equation, y = (1 + z)krs; Si(x) and Ci(x) denote the sine and cosine integrals and the

normalisation mnfw = ln (1 + c200) ≠

1
c200

1+c200

2
.

6.4 Summary

This chapter serves as an introduction to the section of the thesis dedicated to probing

galaxy clusters via weak-lensing e�ects on CMB. Galaxy clusters, the largest bound

structures in the observable universe, began forming relatively recently around redshifts

z ≥ 1, collapsing within the gravitational wells generated by dark matter. By analyzing

the distribution of these clusters in terms of their mass and redshift, we gain valuable

insights into the evolution of the universe and are able to impose constraints on dark

energy. This analysis also provides direct information on the growth of cosmic structures,

enhancing our comprehension of the universe’s matter density (�m), the amplitude of

matter fluctuations (‡8), and the total mass of neutrinos (q
m‹). With the advent of

next-generation CMB surveys like CMB Stage 4 (S4), which is expected to detect around

105 clusters, galaxy clusters are poised to become a crucial and independent tool for

refining our estimates of cosmological parameters. However, to e�ectively use galaxy

clusters as a cosmological probe, precise measurement of their masses is crucial. The

following part of the thesis is dedicated to developing an improved estimator for cluster

mass by leveraging the lensing signals present in CMB data in anticipation of future CMB

experiments such as CMB-S4.

This introductory chapter outlines the theoretical model for the mass profiles of galaxy

clusters. We review the well-known NFW profile, introducing parameters such as the

characteristic scale radius and density, essential to the work in this thesis. Additionally,

we study the expected lensing signatures in the CMB maps lensed by such profiles. In

the subsequent chapters, we will elaborate on this foundation to construct an estimator
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for cluster mass through a Bayesian inference approach to the lensing potential.





Chapter 7

Cluster mass estimators

7.1 Intrduction

The standard tool to reconstruct the lensing deflection field from the CMB is the quadratic

estimator (QE) [4,36,37,158], which combines pairs of CMB maps to estimate the statis-

tical anisotropies created by lensing. It has been shown that the standard temperature

QE underestimates the strong deflection field of massive clusters due to a bias in the esti-

mated gradient (unlensed) CMB field [159]. Filtering out the small scales on the gradient

leg of the QE greatly reduces this bias [12], at the expense of losing a moderate amount

of signal to noise.

For current and upcoming CMB surveys, the QE reconstructed cluster lensing field is

noise dominated. One possibility is to stack the reconstructed lensing map and measure

the average cluster mass [146, 152, 160, 161]. Similarly, one can obtain the mean cluster

mass with matched-filtering [149,162–164].

Other estimators have been developed to reconstruct the lensing field around galaxy

clusters, such as stacking CMB maps along the gradient direction to extract the lensing

dipole [165, 166], the gradient inversion estimator [167, 168], or the maximum likelihood

estimator (MLE) [169–171]. The MLE directly fits the few parameters of a lensing tem-

plate on observed CMB maps, and thus estimates the cluster mass without reconstructing

the actual lensing map signal. This estimator is adequate for stacking analyses, provided

the template shape accurately describes the mass profile and the mass distribution around

the cluster, including potential sources of contamination such as the SZ e�ect. Recently,

machine learning based tool to estimate the cluster mass from lensed CMB maps, using
71
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neural networks trained on simulations, have also been proposed [172–174].

First introduced in [175, 176], likelihood-based CMB lensing mass map estimators

aim to optimally reconstruct the large scale deflection field. Refs. [177, 178] introduced

similar technology in the context of cluster lensing. The approach is built on assuming

a cluster convergence profile, and iteratively delensing the observed maps to obtain the

cluster mass. The lensing template at each iteration is estimated by stacking a set of

reconstructed cluster convergence profiles. Some approximations are made for a tractable

implementation, due to systematics introduced by the beam of the instrument.

Recent years have seen further development of the CMB lensing likelihood-based

estimator of Ref. [175, 176] (often called now maximum a posteriori estimator (MAP)),

and other Bayesian attempts, [38,96,179–184]. It has been demonstrated that the MAP

estimator outperforms the QE, in particular for deep polarization surveys such as CMB-

S4 [28], where most of the observed B-modes are created by lensing. Indeed, while the

QE is limited by the cosmic variance of the lensed B-modes, the likelihood estimator is

able to delens more of these B-modes (provided the noise is below the lensing level of

≥ 5µK arcmin), and thus decreases the variance. The MAP lensing mass map estimator

essentially achieves what is expected to be the lowest possible reconstruction noise.

The scope of this work is to test the performance of the MAP estimator (as im-

plemented in Ref. [38]) in the vicinity of galaxy clusters. Contrary to the likelihood

approximations of Refs. [177,178], or to the MLE of [169–171], our MAP estimator does

not assume a cluster profile, or the presence of a cluster signal at all, and is thus agnostic

about the true deflection field. We take into account the large scale structures (LSS) de-

flection field together with the one from the cluster specifically. LSS lensing increases the

reconstruction noise substantially at low noise levels, making the analysis more realistic.

Our results, including the CMB simulations and the lensing reconstructions, were

obtained with the publicly available code LensIt1. We describe the MAP reconstruc-

tion methodology in Section 7.2. We follow Ref. [38] very closely, but introduce some

adoptiontion details to enable the algorithm to work reliably at high resolution and high

multipoles in the presence of clusters. In Section 7.3, we describe the simple matched

filter we use to recover the mass of the cluster from the MAP lensing maps.

1
https://github.com/carronj/LensIt
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7.2 Lensing Reconstruction

7.2.1 Data Model and the Covaiance Matrix

We work in the flat sky approximation, and identify multipoles to 2D plane wave vectors

¸ = (¸x, ¸y). As standard in literature, we use ¸ for the CMB multipoles and L for the

lensing multipoles.

Let X be the unlensed CMB temperature or polarisation field, X œ {T, Q, U}, ex-

pressed in Fourier space. The covariance of these unlensed fields are the primordial power

spectra
e
X¸, X

†
¸Õ

f
= ”

¸

¸ÕC
unl
¸

.

The observed CMB field in pixel space can be expressed as

X
dat = BDX + n (7.1)

where D is the operator that maps the unlensed CMB modes to the lensed CMB in

real space (and thus contains the Fourier transform and lensing remapping operations).

The operator B is the linear response matrix of the instrument, including beam and

pixel window functions, and n is an independent noise, expressed in pixel space. When

considering the temperature estimator, we have X
dat

© T , polarization only estimators

have X
dat

© (Q, U), while the minimum variance estimators have X
dat

© (T, Q, U).

For a fixed deflection field, the covariance of the observed CMB fields is

Cov– ©

e
X

dat
X

dat,†
f

–
= BDC

unl
D

†
B

† + N , (7.2)

where N is the noise covariance matrix in pixel space. Averaging on the deflection fields

as well, we can write this covariance as

Cov ©

e
X

dat
X

dat,†
f

= BYC
len

Y
†
B

† + N , (7.3)

where C
len is the covariance of the lensed CMB fields, given by the fiducial lensed CMB

power spectra, and Y is the Fourier transform operator.
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7.2.2 Quadratic Estimator (QE)

For current CMB experiments, the minimum variance quadratic estimator (QE) [36, 37]

stands out as the most conventional method. They are based on the principle that the

lensing of CMB fluctuations breaks the statistical isotropy, creating correlations among

the CMB multipoles. Specifically, the correlation between two CMB multipoles separated

by L is directly proportional to the lensing potential „(L). This relationship is elaborated

upon in Section 1.5 of Chapter 1, particularly in Equation 1.22. By optimally weighting

the sum of these two-point statistics for the pairs of CMB multipoles separated by the

same lensing multipole L, we can reconstruct the lensing potential „(L), with minimum

error.

In pixel space, the unnormalized quadratic estimator of the lensing deflection field

can be expressed as the product of two filtered CMB maps

–̂QE(n) = X̄(n) ÒX
WF(n) , (7.4)

where the inverse variance filtered and Wiener filtered legs are

X̄ = B
†Cov≠1

X
dat

,

X
WF = C

len
Y

†
B

†Cov≠1
X

dat
.

(7.5)

The normalisation of the QE is chosen to obtain an unbiased estimator, and is expressed

in Fourier space as the isotropic response function R
QE(L) [36]. This gives the normalised

QE convergence field in Fourier space,

Ÿ̂
QE(L) = ≠

1
2

iL · –̂QE(L)
RQE(L) . (7.6)

• HDV QE: The presence of strong non-Gaussianity at the center of the cluster intro-

duces a bias in the temperature QE, leading to an underestimation of the cluster’s mass.

This issue has been explored in greater detail in the following chapter. To highlight this

limitation, we also present results using a modified QE that incorporates a scale cut on

the gradient leg of the temperature map at ¸cut = 2000. This approach, referred to as

the Hu-Dedeo-Vale QE (HDV QE), o�ers a way to mitigate the bias and provide a more

accurate estimation of the cluster mass [12].
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7.2.3 Maximum a Posteriori (MAP) Estimator

The maximum a posteriori estimator of the deflection field that maximizes the likelihood

of the lensed CMB fields, assuming a Gaussian prior on the lensing potential, with power

spectrum C
ŸŸ,fid
L

, is given by

ln P(–|X
dat) = ln L(Xdat

|–) ≠
1
2

ÿ

L

|Ÿ(L)|2

C
ŸŸ,fid
L

, (7.7)

where the lensed CMB likelihood is assumed to be Gaussian, and given by

ln L(Xdat
|–) = ≠

1
2X

dat,†Cov≠1
– X

dat
≠

1
2 ln det Cov–. (7.8)

In practice, the MAP lensing deflection field –̂MAP is determined by Newton-Raphson

iterations on the posterior, starting from –̂QE until convergence is achieved, using the

gradient of Eq. 7.7 (with respect to the –) as search direction. Specifically, the gradients

are given by,

g
tot

©
” ln p(–|X

dat)
”–(n̂) = g

QD
≠ g

MF + g
PR

, (7.9)

where:

• g
QD is the gradient originating from the quadratic term of the log likelihood, as

detailed in Eq. 7.8

• g
MF represents the mean-field contribution, coming from the determinant of the

covariance matrix part of the likelihood function.

• g
PR is the gradient arising from the prior part of the likelihood.

The main term of the gradient, g
QD can be obtained exactly by running a QE with

modified weights on partially delensed CMB maps (see [38] for more details). This is the

gradient of the first term on the right-hand side in Eq. 7.8, quadratic in the data for fixed

–, whose role is to capture the residual lensing signal. The gradient of the second term on

the right-hand side, independent of the data for fixed –, is the ‘mean-field’, that removes

from the quadratic piece signature of anisotropies unrelated to lensing. In our analysis,

there is no masking and the noise is statistically isotropic, making the traditional main

sources of mean-field to vanish. In principle there is however also a noise contribution to
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the mean-field during the iterative procedure: the delensed data noise during the iterative

process is not isotropic anymore, because at each step the data is delensed to reduce the

CMB statistical anisotropy. This compresses or dilates regions of the sky according

to the local estimate of the convergence field, changing the local e�ective noise levels.

Ref. [185] discusses in some details this contribution for reconstruction from polarization,

showing that it is very small and limited to large lensing multipoles that contributes

negligibly to the signal. Hence, for simplicity, we neglect the mean field altogether in this

paper. This mean-field is possibly more relevant in temperature, since reconstruction

from temperature is more sensitive to convergence-like signals than from polarization,

but our results support the idea that it cannot have a large impact overall. A more

precise analysis of the role of the mean-field in temperature reconstruction deferred to

for future work.

We note that the normalization of this estimator is not tractable analytically. We

follow [181,183] and obtain an empirical normalization of our MAP estimator from a set

of simulations. We generate 1000 CMB flat sky patches, and lens them with Gaussian

random realizations of the large scale structures deflection field. Note that in these

simulations we do not include any cluster signal. The empirical normalization is assumed

to be isotropic, and is obtained from the cross correlation between the reconstructed

Ÿ̂
MAP and the input convergence Ÿ

in, averaged over our set of simulations

W
MAP
L

=
K

C
Ÿ

in
,Ÿ̂

MAP

L

C
Ÿin,Ÿin
L

L

. (7.10)

As demonstrated in [181,183], this empirical normalization is not sensitive to variations in

cosmology, input lensing, or data noise. This robustness ensures accurate normalization

even when the fiducial components, such as the input lensing potential map, or the noise

levels utilized in the simulations, do not closely align with those present in the data.

In the posterior maximization process, delensing of the CMB occurs via the opera-

tor D
†. Our first implementations of the MAP solver in Ref. [38] made the additional

assumption of the invertibility of the deflection field, and performed remappings of the

maps using a standard bicubic spline algorithm. To improve stability and performance,

we update our flat-sky tools with the lensing method of Ref. [184], based on non-uniform

FFTs techniques [186, 187]. This method is extremely accurate and at the same time



CHAPTER 7. CLUSTER MASS ESTIMATORS 77

removes this unnecessary assumption of an invertible deflection. With this, we found

that the search for the MAP point converges without issues on all relevant scales, after

only 10-20 iterations.

In this section, we discuss various estimators for reconstructing lensing information,

including the QE, HDV QE, and the MAP estimator. For these estimators, we can utilize

pairs of maps to extract lensing information across di�erent channels. Specifically:

• Temperature Only Channel (T): Here, we use pairs of temperature maps to

derive two-point statistics, focusing solely on temperature data.

• Polarization Only Channel (Q,U): This channel leverages all possible pair com-

binations of polarization maps, specifically the E and B modes (X,Y œ {E,B}), to

reconstruct lensing signals from polarization data alone.

• Combined Channel (T,Q,U): As the most e�cient approach, the combined

channel integrates all available data from temperature and polarization maps. This

method is the global minimum variance estimator, as outlined in [188]. It utilizes

all possible pair combinations of temperature and polarization maps for the most

e�ective reconstruction of lensing information.

For illustrative purposes, Figure 7.1 presents the analytical prediction of the reconstruc-

tion noise for the combined channel (TQU) estimators. This plot emphasizes the better

performance of the MAP estimator over the QE for CMB S4 experimental setup. Ad-

ditionally, it demonstrates that implementing a scale cut in the HDV QE leads to an

increase in reconstruction noise compared to the traditional QE, as expected.

7.3 Cluster Signal Reconstruction

Once we have reconstructed the lensing map Ÿ̂(L) from the simulated CMB data, we

fit our theoretical template Ÿ0Ÿt(L). In practice the template would be obtained with a

first guess of the cluster angular scale ◊s. This can be estimated for instance from the

tSZ emission of the cluster as in [149]. Here we take the template which corresponds to

the angular scale of the simulated clusters. Our estimator assumes an isotropic Gaussian

noise spectrum N(L), such that ÈŸ̂(L)Ÿ̂(LÕ)Í ≠ ÈŸ̂(L)ÍÈŸ̂(LÕ)Í = ”(L ≠ LÕ)N(L). This

allows us to construct a minimum variance estimator for Ÿ0, following [149], and using
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Figure 7.1: Comparison of reconstruction noises for QE, HDV QE, and MAP estimators
in the combined TQU channel under CMB-S4 noise and beam conditions.

the asymmetric Fourier convention,

Ÿ̂0 =

⁄ d2L

(2fi)2
Ÿt(L)Ÿ̂(L)

N(L)
⁄ d2L

(2fi)2
|Ÿt(L)|2
N(L)

. (7.11)

This is the matched filter that we use throughout our paper. Owing to spherical sym-

metry, all quantities but Ÿ̂(L) in the aforementioned expression are functions of L = |L|.

The theoretical error ‡
2,th
Ÿ0 for the estimator is as follows [149]:

1
‡

2,th
Ÿ0

= 1
2fi

⁄
Lmax

Lmin
dLL

|Ÿt(L)|2
N(L) , (7.12)

Due to the proportionality between Ÿ0 and M200 in Eq. 6.11, we use Ÿ̂0
‡Ÿ0

in order to get

the mass constraint, M̂200
‡M200

. This quantity is referred to as the signal to noise ratio (SNR)

throughout this paper.

In the above equations, the noise of the Ÿ̂(L) estimate is given by

N(L) = C
ŸŸ

L
+ N

(0)
L

+ N
(1)
L

, (7.13)

where C
ŸŸ

L
represents the power spectrum of the background convergence profile of the
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large-scale structure, without including the cluster. This contributes to the noise on

the cluster lensing signal. In the case that Ÿ̂ is the QE estimate, N
(0)
L

is the leading

CMB-lensing reconstruction noise (the disconnected four-point function), and N
(1)
L

the

connected part originating from the secondary trispectrum contractions, proportional to

C
ŸŸ

L
[30,189]. In the MAP case, the same Eq. (7.13) provides a good fit to the spectrum,

with both noise terms calculated with partially delensed spectra, following Ref. [181]. On

hypothetical maps where the cluster lensing signal were the only lensing-like signal, only

N
(0)
L

would be present.

On small scales, the non diagonal terms in the covariance N(L, L
Õ) of Ÿ̂(L) could

become important and reduce the constraining power, as discussed in [167]. We check

from our set of simulations (described in the next chapter) that for all the estimators we

considered, and up to L = 5000, the covariance N(L, L
Õ) of Ÿ̂(L) is very close to diagonal,

justifying that it is nearly optimal to use N(L) for our matched filtering.

In Fig. 7.2, we show the contribution of each lensing multipole to the theoretical signal

to noise of Eq. 7.12. The y axis is the integrand at each L, which must be summed over

to obtain the inverse noise of the cluster mass estimate. These curves are obtained with

the theoretical N
(0)
L

and N
(1)
L

of each estimator, considering a CMB-S4 like experiment

with white noise level of 1µK-arcmin in temperature and
Ô

2µK-arcmin in polarization

and a beam full width at half-maximum (FWHM) of 1 arcmin. We considered a cluster

of mass of M200 = 2 ◊ 1014
M§, at z = 0.7, that matches the expected mean mass and

redshift of the CMB-S4 clusters detected with thermal SZ e�ect [28].

We include multipoles ¸
CMB
min = 100 to ¸

CMB
max = 4000 of the CMB temperature and

polarization maps for the lensing reconstruction. We compare both the QE and the

MAP estimators.

In Fig. 7.2, We also show that for both QE and MAP, the lensing scales that dominates

the signal to noise are around L ≥ 2000 in the temperature and around L ≥ 1100 in the

polarization. The HDV QE estimator mainly loses information on the large scales, for

L . 2000, while smaller scales contain similar information as compared to the QE. This

shows that for the CMB-S4 like configuration and cluster convergence profile assumed

in our analysis, temperature and polarization channels bring similar level of information,

albeit from di�erent scales. Finally we clearly see that the MAP estimator outperforms

the QE at all lensing scales, and this improvement is primarily due to increased signal
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Figure 7.2: Contribution per lensing multipole to the cluster mass SNR (the integrand
of Eq. 7.12) shown in case of a 2 ◊ 1014

M§ cluster at z = 0.7, for the CMB-S4-like
configuration described in the text. Green, orange and magenta show temperature-only,
polarization-only and combined reconstruction respectively. Dashed shows the quadratic
estimator case and solid the CMB lensing maximum a posteriori method of this work.
Dotted shows the QE with a high-¸ cut on the gradient leg [12]. While the MAP approach
is exactly the same than for optimal CMB lensing power spectrum reconstruction, this
probes much smaller scales (the spectrum SNR is almost entirely confined to L < 1500
for this configuration).

from the polarization channel.

7.4 Summary

This chapter introduces the tools used to reconstruct the lensing potential from observed

CMB maps. The most conventional method for current CMB experiments is the QE.

They are based on the principle that the lensing of CMB fluctuations breaks the statisti-

cal isotropy, creating correlations among the CMB multipoles. Ideally, we reconstruct the

lensing information using optimally weighted two-point statistics. This approach can uti-

lize temperature maps (T), polarization maps (Q,U), or any combination thereof (T,Q,U)

for reconstruction. With the noise levels of current experiments, the QE is nearly optimal.

However, for future experiments like CMB S4, with polarization noise levels potentially

below 5 µK-arcmin, we need more sophisticated reconstruction techniques to e�ciently
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utilize all available lensing B-mode information, thereby reducing reconstruction noise.

An alternative, the MLE-based methods, have shown promise for more e�cient lensing

reconstruction in low-noise settings. Carron et al. [38] introduced an iterative technique

for maximizing the posterior distribution of the lensing potential using a Newton-Raphson

iteration scheme. This method, briefly overviewed here, employs gradients of the posterior

distribution iteratively to locate its maximum. We discuss the expected reduction in

reconstruction noise using this method compared to the traditional QE at CMB S4 noise

levels. This noise suppression directly benefits parameter estimations reliant on lensing

reconstructions, such as cluster mass estimation using matched filtering techniques from

reconstructed lensing information.

In addition to introducing the iterative MAP estimator for lensing reconstruction,

this chapter provides the matched filtering expression for estimating cluster mass, which

will be used to obtain the results on simulations in the next chapter. In that chapter, we

aim to present theoretical predictions for mass constraints derived using various channel

estimators. Furthermore, we will showcase our simulation results obtained under noise

conditions like those expected for the CMB S4 experiment. Additionally, we delve into

the analysis of a bias in temperature-QE arising from the strong non-Gaussianity at the

cluster center and evaluate the performance of our MAP estimator in mitigating this bias.





Chapter 8

Results

8.1 Introduction

In this chapter, we present results on the cluster convergence profile and on the cluster

mass from reconstructions of the lensing signal from a set of simulations. Our simulations

assume a CMB S4-like experiment [28], with white noise level of 1µK-arcmin in temper-

ature and
Ô

2µK-arcmin in polarization and a beam with a full width at half-maximum

(FWHM) of 1 arcmin. Our flat sky patches have a pixel size of 0.3 arcmin with 1024

pixels on a side. The simulations recreate observed lensed sky patches through a two-

stage lensing process. First the a Gaussian random realisation of the unlensed primordial

CMB patch is lensed by a Gaussian random realisation of a LSS lensing potential. Sub-

sequently, this map is further lensed by a circularly symmetric cluster convergence field

at the center of the sky-patch. In our implemention, the lensing e�ects from the LSS and

the cluster are assumed to be independent, which is a slightly unrealistic assumption,

however deemed adequate for the purposes of this work.

We test both the quadratic estimator and the MAP estimator, as introduced in Sec-

tion 7.2, to obtain the estimated Ÿ̂(L). We then estimate the mass of the cluster with the

matched filtering, as described in Section 7.3. We compare our results for the tempera-

ture only (T), the polarization only (QU) and the minimum variance (TQU) estimators.

The polarisation channel (QU) is constructed from the all the possible combination XY,

where X,Y œ {E,B}. The TQU channel estimator is the global minimum varaince esti-

mator as defined in [188]. In the Section 8.2 we use simulations with a cluster-mass of

M200 = 4◊1014
M§ and use CMB multipoles for lensing reconstruction up to lmax = 5000,

83
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to highlight the amount of bias in the reconstructed profile prominently. In the Section

8.3 we use simulations with M200 = 2 ◊ 1014
M§ and CMB multipole up to lmax = 4000.

The reason behind such choice of mass is that it corresponds to the expected mean mass

of CMB-S4 clusters, while the lmax is chosen to be conservative, as we expect that the

smaller CMB scales will be foreground dominated. For both Sections, the redshift has

been chosen to be z = 0.7, and the lower limit of the CMB multipoles used in the lensing

reconstruction has been set at lmin = 100.

8.2 Profile Reconstruction

As discussed in the literature [12, 159], the temperature QE is biased low due to strong

to moderate lensing close to the cluster center. As lensing by the cluster magnifies the

background CMB, the gradient of the observed CMB is smaller than the unlensed CMB

gradient. Since the weak lensing signature, manifested as a dipole-like pattern in the

di�erence between the lensed and unlensed sky, is sensitive to both the strength of the

gradient and the mass of the cluster, it decreases that signature as well. As a consequence,

when we estimate the cluster signal using weak lensing temperature QE, the estimator

is biased low. The temperature quadratic estimator is nothing but a product of two

filtered maps as given in Eq. 7.4. The bias comes mainly from the small scales in the

gradient leg. A solution to this bias, as demonstrated in [12], is to use a low-pass filter

for the gradient leg and only include multipoles below ¸ = 2000. We denote this modified

QE with a scale cut, as Hu-Dedeo-Vale QE (HDV QE) from now on.

We run all the estimators (QE, HDV QE and MAP) with the temperature only chan-

nel, on 1000 simulations, and stack the reconstructed maps. To assess the noise in each

reconstruction, we performed additional runs of the estimators on the same simulation,

with the same CMB and LSS realization, but without the cluster present. To reduce the

variance during the stacking process, for each reconstructed map we first subtract the

convergence estimated from the simulation without the cluster, before stacking them. Of

course, an analysis on real data does not allow for this approach: we only use it here to

estimate the bias more precisely.

In the upper panel of Figure 8.1, we provide the comparison for the real-space deflec-

tion angle profile (–̂(◊)). The deflection –, which is the gradient of the lensing potential

„ is a vector quantity, but only its radial component is non-zero on average, since our
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Figure 8.1: Top panel: Reconstructed deflection angle profiles –(◊) from stacking a set
of 1000 temperature-only reconstructions (M = 4 ◊ 1014

M§, z = 0.7). CMB multipoles
100 Æ ¸ Æ 5000 are used to reconstruct the lensing multipoles 100 Æ L Æ 5000. Shown
are the standard QE (blue), QE with a high-¸ cut at 2000 on the gradient leg [12] (green,
HDV QE), and the maximum a posteriori (MAP) lensing reconstruction of this work (red,
without any cuts), and the input truncated to the same L range. The bias in the MAP
reconstruction is much reduced compared to the QE but still visible at this cluster mass.
In polarization reconstruction no such bias is visible. The deflection profile’s oscillatory
features results from the fact that the lensing reconstruction is performed in harmonic
space and truncated to Lmax = 5000. Lower panel: The same profiles in harmonic
space, weighted at each multipole by their contribution to the cluster mass estimate (see
Eq. (7.11)). An estimate of the map-level reconstruction noise was subtracted in each
realization, in order to accelerate convergence, so that the scatter is not representative of
an actual data analysis. Analytic predictions are given for the QE and HDV QE cases as
the dotted and dashed black lines. The MAP case is slightly tilted in this configuration
compared to the input profile (solid black).
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Figure 8.2: Analytical predictions for the QE-inferred mass bias as a function of halo
mass for temperature-only QE lensing mass map reconstruction, with (green, ‘HDV QE’)
and without (blue) cut on the gradient leg [12], including CMB multipoles 100 Æ ¸ Æ 5000
and lensing multipoles 100 Æ L Æ 5000 (here all clusters are set at z = 0.7). The points
show the corresponding results for our simulated reconstructions with M200 = 4, 7 and
10 ◊ 1014

M§, together with the result of our MAP method (red). The error bar is our
empirical estimate for a sample of a thousand cluster. The bias is a strong function of
halo mass and can be very significant for massive haloes.

clusters are circularly symmetric. Hence we only stacked the radial component of –. The

somewhat oscillatory nature of this deflection profile is due to the truncation in harmonic

space: only Fourier modes below Lmax = 5000 are reconstructed. The lower panel of

Figure 8.1 shows the following quantity,

2L + 1
4fi

Ÿ̂(L)Ÿt(L)
N(L) , (8.1)

which is the unnormalized contribution of each and every multipole to the mass estimate

in Eq. 7.11 (empirically, errors are independent to a good approximation). As expected

the QE is biased low for such massive clusters, whereas the HDV QE [12] does almost

unbiased reconstruction of the cluster signal on all scales, at the cost of throwing away

some information on small angular scale. Our iterative estimator in other hand, does get
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Figure 8.3: Same as the lower panel of Fig. 8.1, for the polarization-only (QU) quadratic
and MAP estimators. The QU channel does not su�er from the bias due to strong to
moderate lensing close to the cluster center.

rid of most of the bias, without sacrificing any information. For this high cluster mass,

our recovered profile still shows some deviation from the input, with recovered signal

lower than expected on large lensing scales and higher on smaller scales. In the lower

panel of Figure 8.1, we also plot as the dotted and dashed analytic prediction for the QE

and HDV QE reconstruction of the cluster signal in L space. We do this essentially by

brute-force calculation of the QE and HDV QE expectation values, varying CMB and

LSS lensing fluctuations, while keeping the cluster lensing deflection fixed, as described

in more detail in Appendix A. The predictions match well, but not exactly, with the

empirical findings. We are unable to identify the origin of the (small) discrepancies and

defer this investigation to future work. One possible cause for the di�erence is that the

analytical predictions are calculated using curved-sky geometry, while the simulations

use small boxes in the flat-sky approximation. Fig. 8.2 shows the prediction with this

tool for the halo mass bias as a function of halo mass, together with our findings on this

simulation set. We see that the predicted mass bias for the HDV QE is quite accurate

compared to the simulations, while there seems to be a small o�set for the QE. It is

interesting to note that the MAP bias is very close to the HDV QE bias, while having

lower variance.

For comparison, we show the same quantity in Eq. 8.1 for the polarization only (QU)
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estimators in Fig. 8.3. We note that the bias in the QE, due to the magnification of

the background gradient, is almost negligible, in contrast to the significant bias for the

temperature estimator. We argue that this might come from the fact that the polarization

QE is dominated by the EB combination, which is mostly sensitive to the shear and not

the magnification. In practice, we also test QE sourced by EE pair alone and find that

the bias is smaller than for the TT estimator.

We now discuss how the iterative estimator also suppresses the noise of the mass

estimation compared to QE and HDV QE.

8.3 Cluster mass constraints

We now consider 1000 simulations with a cluster mass of M200 = 2◊1014
M§ and z = 0.7,

chosen to be close to the expected mean values of the CMB-S4 clusters. We reconstruct

the lensing signal with scales between ¸
CMB
min = 100 and ¸

CMB
max = 4000, for both polarization

and temperature maps. We reconstruct the lensing convergence fields with the three

estimators: QE, HDV QE and MAP, and with the temperature only (T), polarization

only (QU) and minimum variance (TQU) estimators. We then run a matched filter on

these reconstructed lensing map to estimate the convergence amplitude Ÿ̂0, assuming a

template Ÿt with the characteristic angular size ◊s corresponding to the input mass and

redshift of the cluster profiles. We use the lensing multipoles between Lmin = 100 and

Lmax = 6000 to obtain Ÿ̂0 from Eq. 7.11. We use the empirical noise, obtained from 1000

simulations, as the variance N(L) of Ÿ̂L in that equation.

We compute the variance of Ÿ̂0 from our set of 1000 simulations, and compare to the

theoretical expectations of the variance from Eq. 7.12. Table 8.1 summarizes our results

from 1000 stacked clusters with input Ÿ0 = 0.1285, corresponding to a cluster mass of

M200 = 2◊1014
M§ at z = 0.7. The mean estimated (Ÿ̂0) from these simulations is shown

alongside the respective errors (‡Ÿ0). The emperical errors in ‡Ÿ0 have been obtained

using bootstraping method on 1000 simulations. Results for T and TQU estimators are

derived from HDV QE, while the QU estimator results are based on the standard QE.

The MAP estimates are also provided for comparison in a separate row. Theoretical error

predictions (‡th
Ÿ0) are included, calculated using (Eq. 7.12).

In Fig. 8.4, we show the theoretical relative error on the mass measurements for a set

of 1000 stacked clusters, as a function of white noise level, for our set of estimators. We
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Table 8.1: Summary of results on 1000 simulations with input Ÿ0 = 0.1285, correspond-
ing to a cluster mass of M200 = 2 ◊ 1014

M§ at z = 0.7. The table displays the mean Ÿ̂0
evaluated from 1000 simulations along with the corresponding errors ‡Ÿ0 , obtained using
from bootstrapping. For the T and TQU estimators, HDV QE results are provided, while
the QE result is presented for the QU estimator. Additionally, MAP estimated values are
shown in the second row. ‡

th
Ÿ0 depicts the theoretical error prediction given by Eq. 7.12.

See also Fig. 8.4.

HDV QE : T

ÈŸ0Í 0.1276

‡Ÿ0 0.0099
±0.0003

‡
th
Ÿ0 0.0096

QE : QU

ÈŸ0Í 0.1397

‡Ÿ0 0.0088
±0.0002

‡
th
Ÿ0 0.0090

HDV QE : TQU

ÈŸ0Í 0.1337

‡Ÿ0 0.0068
±0.0002

‡
th
Ÿ0 0.0067

MAP : T

ÈŸ0Í 0.1273

‡Ÿ0 0.0082
±0.0003

‡
th
Ÿ0 0.0083

MAP : QU

ÈŸ0Í 0.1342

‡Ÿ0 0.0078
±0.0002

‡
th
Ÿ0 0.0081

MAP : TQU

ÈŸ0Í 0.1331

‡Ÿ0 0.0061
±0.0002

‡
th
Ÿ0 0.0062

also plot the standard deviation we recovered from our simulation set (points with error

bars). We employ the bootstrap method, by resampling our simulation set, to estimate

the error on this error. We see that at the CMB-S4 noise level, the performance of the

estimators on simulations are within the expectations. Moreover, we see that the MAP

estimator allows to recover the loss in constraining power from the HDV QE estimator.

It is clear that as we go to lower noise level, the polarization estimators eventually

dominates the constraints. In this regime, the lensing signal unrelated to the cluster plays

an increasingly important role in the error budget. Care must be taken comparing these

numbers to the literature, since many works (for example MLE’s [171], using Gaussian

CMB’s generated with lensed CMB spectra instead of a non-Gaussian CMB) do not

consider this source of noise. At the CMB S4 noise level, the MAP estimator detects

the cluster signal with an approximate 12%, 13% and 20% enhancement in significance

compared to HDV QE with TQU, QU and T channels respectively. While our results are
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Figure 8.4: Constraints on cluster mass for a sample of 1000 identical clusters
(M200 = 2◊1014

M§, at redshift 0.7) as a function of white noise levels. The beam FWHM
is 1 arcmin. It is important to note that the the relative noise quantity ‡M200/M200 cor-
responds the error the mass measurement for 1000 stacked clusters. Green, orange and
magenta show temperature-only, polarization-only and combined reconstruction respec-
tively. Dotted lines (HDV QE) show the QE forecast (Eq. 7.12) with a cut at 2000 in the
gradient leg [12] to remove the QE bias (see Fig. 8.1), dashed lines the QE case without
any cuts, and solid the maximum a posterior lensing map reconstruction method of this
work (MAP). The improvement in constraining power comes from the partial removal
from the CMB maps of the lensing signal not directly related to the cluster, and is more
prominent in polarization, as expected. Markers with error bars are estimated from our
set of simulations, with the x coordinate slightly shifted for clarity. The error bars are
obtained from the bootstrapping method (for 1000 clusters), showing good consistency.
In the QE case, we applied a simple multiplicative correction to remove the bias in the
estimate.
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presented based on 1000 simulations, they can be easily extrapolated to the projected

number of clusters in CMB S4, estimated to be 105. By employing the MAP estimator

for 105 clusters, the mass can be constrained, achieving an accuracy down to 0.47% for

our ideal scenario where no mis-centering or foreground e�ects are present.

8.4 Summary

After detailing the methods for lensing reconstruction and matched filtering techniques for

estimating cluster masses in the previous chapter, this chapter has presented comprehen-

sive results of our analysis. Initially, we discussed the bias encountered in temperature-QE

due to moderate to strong lensing e�ects at the cluster center. The lensing signature of a

cluster is influenced by two primary factors: the cluster’s mass and the gradient strength

of the background CMB. The strong lensing near the center significantly reduces the gra-

dient strength compared to the weak lensing regime, thereby significantly reducing the

lensing signature of the cluster in the observed CMB map. Consequently, temperature

QE tends to underestimate the cluster mass. Hence, temperature QE underestimates the

mass of the cluster. While the HDV QE attempts to bypass this issue by implementing

a scale cut in the gradient leg of the QE, this solution, unfortunately, leads to a reduced

SNR due to the loss of information beyond the scale cut. On the other hand, our itera-

tive MAP estimator eliminates this bias to a degree comparable to that of HDV QE but

without sacrificing SNR. We have shown the e�ect of the bias in profile reconstruction

in the harmonic space for all our estimators using the temperature-only channel. We

have illustrated the impact of this bias on profile reconstruction in harmonic space for

our estimators using only the temperature channel. We have also noted that the bias

worsens for clusters of higher mass. Profile reconstruction using the polarization-only

channel revealed no noticeable bias.

Subsequently, we have dedicated the next section to discussing mass constraints and

comparing the performance of the estimators, QE, HDV QE, and MAP across di�erent

channel estimators. We present the theoretical predictions of the inverse SNR for 1,000

stacked clusters, showing its dependence on the noise level of the experiment. We then

present the results on simulations with beam and noise levels as expected in CMB S4.

These simulations incorporate two levels of lensing: firstly, a Gaussian random realization

of primordial CMB is lensed by a Gaussian random realization of large-scale structure
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lensing potential („LSS), and then this once-lensed CMB is further lensed by a circularly

symmetric cluster lensing potential. Then, once lensed, CMB is lensed with circularly

symmetric cluster lensing potential. The reconstructed lensing potential from such sim-

ulations includes the cluster lensing potential, „LSS, and the reconstruction noise. In this

context, „LSS acts as an additional layer of Gaussian random noise. Using the NFW

template on the reconstructed lensing convergence, we obtained the mass of the clusters

from the simulations. The results on simulations, as detailed in Table 8.1 align with our

analytical forecasts, which is illustrated in Figure 8.4. In conclusion, this chapter demon-

strates that the iterative MAP estimator successfully addresses the mass bias induced

by strong lensing without compromising the SNR, and it provides more accurate mass

constraints compared to both QE and HDV QE.



Chapter 9

Conclusion

Throughout this thesis, we have delved into analyzing fluctuations in the CMB on small

angular scales. Our focus has been mainly on the signatures of statistical isotropy viola-

tion due to our observation frame’s motion and the weak gravitational lensing of CMB

photons. Employing a Bayesian framework, we have inferred parameters from these sig-

natures, such as the velocity of our observation frame and the masses of galaxy clusters.

In the first part of this thesis, we laid the groundwork by introducing the fundamental

concepts of the CMB and highlighting its significance in the realm of precision cosmology.

In the second part, we delved into the analysis of the Doppler boost signal in CMB data

due to our local motion. From this signal, we estimated the velocity of our observation

frame. Subsequently, in the third part, we study the weak gravitational lensing of CMB

photons by galaxy clusters. In this context, we show the application of the Maximum

a posteriori (MAP) reconstruction method to estimate the cluster masses e�ectively for

future CMB experiments such as CMB S4. This chapter concludes our findings and

outlines future research directions.

9.1 Doppler Boost of CMB

In our work, we study the violation of statistical isotropy of the CMB sky due to the

Doppler boost of CMB photons in our observation frame. We have assumed the statistical

isotropy of CMB fluctuations in the cosmological rest-frame. In this joint inference, we

explore the parameter space of the whole CMB covariance matrix under the Doppler boost

model in a Bayesian framework. This approach is necessary because the anisotropic o�-

diagonal part is influenced by the isotropic diagonal part. The inference of the o�-diagonal
93
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elements leads to the estimation of —1N parameters (the amplitude and direction of the

local motion) as in Eq. 2.19. We jointly infer our model parameters, i.e. the spherical

harmonic coe�cients alm’s, the power spectra Cl’s and the Doppler boost signal —10, —
r

11

& —
i

11. This is achieved by sampling the posterior distribution Eq. 3.7 for Planck-2018

SMICA temperature anisotropy map. Inference of the high-dimensional parameter space

is facilitated by the use of the HMC sampling method. The frequency dependence of the

modulation e�ect in the SMICA temperature map is captured using a SMICA boost factor

b
SMICA(l), which is a weighted sum of the frequency dependence with the SMICA weights.

The expression of b
SMICA(l) is given in Eq. 2.17 and plotted in Figure 2.3 for di�erent

choices of mask. This recipe can also be used for any CMB map estimate obtained using

the internal linear combination based method and can be used in relevant future work.

We have performed our analysis on three di�erent sky fractions (fsky = 40.1%, 59.1%

and 72.2%) using multipoles from lmin = 800 up to lmax = 1950. With these setups, we

have detected the non-zero value of the Doppler boost signal which is consistent with the

fiducial values from the known CMB dipole [16,39–42], with a significance of 4.54‡, 4.97‡

and 5.23‡, respectively, as expected from a previous forecast [44]. With our primary setup

of fsky = 40.1% and lmax = 1950, we conclude that our analysis finds value of the peculiar

velocity of our observation frame with respect to the CMB to be v = (298.5 ± 65.6)

km/s. The direction of this velocity has been found in galactic coordinates (¸, b) =

(268.5¶
± 49.8¶, 61.8¶

± 12.3¶). We have computed the Bayes factor in favour of the

canonical values from the known CMB dipole, to be 7.43. This value indicates a definite

evidence of the canonical values in CMB data. The Bayes factor in favour of the dipole

value inferred from the quasar distribution [49] is ≥ 1.24 ◊ 10≠11, indicating strong

disagreement according to the Je�reys’ scale [105]. Similar analysis has also been carried

out using NILC and SEVEM, with reasonable approximations for the e�ective boost factor.

The values of inferred velocity and direction16 have been found to be consistent with the

ones from SMICA. The consistency of the Doppler boost signal presented in this work

method from the small angular scale temperature data with the measured CMB dipole

suggests evidence for the absence of other dipole modulation signal with amplitude higher

than ≥ 10≠3 at those angular scales. This is consistent with the power-law decay of the
16

However, we don’t put the detailed results for NILC and SEVEM due to the unavailability of their

respective weights and the corresponding propagation codes in Planck Legacy Archive and IRSA websites.

These are required to calculate the e�ective boost factor, which is essential to estimate the Doppler boost

signal.
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cosmic hemispherical asymmetry signal in l obtained previously [11]; and with the non-

detection of directional anomalies in cosmological parameter estimates from the small

scale anisotropies [190,191].

In our analysis, we have used a diagonal noise covariance matrix, computed from 200

FFP10 noise simulations. However a further improvement can be made by also including

the o�-diagonal terms of the covariance matrix. This will be explored in a future work

using a fast covariance matrix calculation technique [98]. This Bayesian formalism can

also be applied to the Planck polarization map to extract the Doppler boost signal [44]

using the SMICA boost factor introduced in this analysis. The method will also be useful

for the future ground-based and space-based high resolution CMB experiments such as

Advanced ACTPol [192], SPT-3G [193], Simons Observatory [194], CMB-S4 [195], CMB-

HD [196], CMB-Bhārat17, and PICO [197] to infer the value of local motion [31,44,58] and

also the imprints of cosmic hemispherical asymmetry [198–200] from CMB temperature

and polarization anisotropy.

9.2 Clusters: Small-Scale CMB Lenses

In our work, we demonstrated the use of the maximum a posteriori CMB lensing mass

map estimator to reconstruct the mass profile of galaxy clusters. We showed that the

constraints on the cluster masses reach the forecasted ones on simple simulations. The

MAP estimator improves the constraints on the cluster mass by 12% compared to the

HDV QE [12] with joint temperature and polarization reconstruction, and by 20% from

polarization only. This is due to the absence of scale cuts in temperature, and iterative

reduction of the CMB fluctuations sourced by cluster and LSS lensing (in polarization

predominantly).

In temperature, the MAP estimator su�ers from a much smaller bias than the well-

known QE bias, that arises from the misestimate of the background gradient CMB modes.

This may be interpreted by the fact that the MAP iteratively estimates the delensed CMB

modes, using higher order correlation functions of the CMB maps, to get more accurately

the unlensed gradient. This permits usage of all CMB scales in the reconstruction, with-

out the necessity of scale cuts as in [12] (provided, of course, that foregrounds or other

contaminating signals are under control on the relevant scales).

17
http://cmb-bharat.in



CHAPTER 9. CONCLUSION 96

The MAP reconstruction used here is the exact same that is being developed for

generic CMB lensing reconstruction, on wide areas of the sky. It makes no assumption on

what sources the deflections, and a reconstruction on some area of the sky will reconstruct

at once all cluster signals in the area in a ‘optimal’, statistically speaking, manner. On

the practical side, the curved sky MAP implementation received recently considerable

increase in speed and accuracy [184], making full-sky analyses perfectly doable in very

reasonable time, and converging just as well on realistic, N-body simulations inputs.

Results will be presented elsewhere.

In this first work, we used for simplicity flat-sky simulations, each time with one cluster

in a small patch. Our simulations went a step further than some other analyses [171] by

including the lensing from the background large scale structures together with the cluster.

This increases the variance of the QE, and somewhat less for the MAP. We assumed there

the background LSS lensing independent from the cluster. In reality, clusters are located

at the nodes of the cosmic web, and are highly correlated with overdensity regions. More

sophisticated and realistic simulations such as Websky [201] or DEMNUni [202] can be

used to quantify this. We also neglected many practical issues, such as the impact of mis-

centering, which can degrade the constraints on the mass by about ≥ 10% [135,149]. To

this and other issues independent from the mass reconstruction process such as masking,

and anisotropic noise, the same techniques developed for the QEs, can be applied here

as well. We also plan to test the robustness of our analysis against the choice of assumed

profile in our future work.

The normalization of the MAP lensing mass map (which is analogous to a Wiener-

filter) requires careful handling. Indeed, at the present time it cannot be obtained ac-

curately analytically and we relied on a set of (cluster-free, with Gaussian input lensing

fields) fiducial simulations to obtain it. We showed in [181] that this normalization is

independent of the true cosmology, input lensing and data noise statistics of the CMB,

hence we expect this procedure to be su�ciently robust in practice.

Much work remains to be done. We did not consider contamination from foregrounds

signal, such as the SZ e�ect, radio point sources or the Cosmic Infrared Background. The

thermal SZ (tSZ) e�ect has a frequency dependence which allows to remove its contribu-

tion from the observed CMB maps, at the expense of increased variance. It is possible to

reduce the loss of signal in the lensing reconstruction by tSZ cleaning only the gradient leg
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of the QE [145–147]. The kinematic SZ (kSZ) however cannot be distinguished from the

lensing signal. E�orts have been undertaken to enhance the robustness of cluster-lensing

estimators against kSZ contamination [166, 203]. The rotational kSZ e�ect [204] is also

another possible source of contamination, which will be addressed within the scope of

foreground studies in our future work. However, it is expected that the polarization fore-

grounds are small on the relevant scales, so our MAP estimator forecast in polarization

should in principle be robust.
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Appendix A

Appendix for Chapter 8

A.1 Exact QE bias calculation

In this appendix we sketch how we obtain the exact expectation value of a quadratic

estimator (QE) in the presence of a fixed deflection field. This allows us to predict the

mass profiles and mass bias obtained by QE mass estimates. We used a curved-sky

implementation, which could certainly made much faster in a satisfactory manner using

the flat-sky approximation, but we found it fit enough for purpose.

We consider a generic separable temperature QE, described by two isotropic functions

Fl and Gl. Following Planck-lensing style notation, it may be written in configuration

space,

1ĝ(n̂) =
Q

a
ÿ

l1m1

Fl1Tl1m1 sYl1m1(n̂)
R

b

◊

Q

a
ÿ

l2m2

Gl1Tl2m2 tYl2m2(n̂)
R

b .

(A.1)

In the case of interest, lensing from temperature-only, we have s = 0, t = 1, and

Fl = 1
Cl + Nl

, Gl = ≠

Ò
l(l + 1) Cl

Cl + Nl

, (A.2)

Here, 1ĝ(n̂) is the unnormalized deflection vector (spin-1) field estimate. We want to

evaluate this quantity

È 1ĝ(n̂)Ífixed „
, (A.3)

which may be used to predict the result of stacking QEs from CMB maps on identical
101
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clusters.

Let n̂
Õ be the undeflected position that corresponds to the observed location n̂. Work-

ing at fixed n̂, by Fourier transforming the T -maps, we may write this as a cross-spectrum,

È 1ĝ(n̂)Ífixed „
=

ÿ

lm

ClF
ú
lm

(n̂)Glm(n̂), (A.4)

with

Glm =
⁄

d
2
n2G(n̂, n̂2)Y ú

lm
(n̂Õ

2)

Flm =
⁄

d
2
n1F (n̂, n̂1)Y ú

lm
(n̂Õ

1).
(A.5)

Here F and G have structure similar to that of a spin-weighted correlation function

F (n̂, n̂1) =
ÿ

l1m1

Fl1 sYl1m1(n̂) 0Y
ú

l1m1(n̂1),

G(n̂, n̂2) =
ÿ

l2m2

Gl2 tYl2m2(n̂) 0Y
ú

l2m2(n̂2).
(A.6)

For an arbitrary deflection field, this is a tough calculation, requiring several spherical

harmonics transforms on non-regular grid per each point of interest n̂

In the case of cluster lensing things simplify quite a bit owing to

• spherical symmetry, Èg(n̂)Ífixed deflection will depend on the co-latitude ◊ only, and

the deflection field does not change the longitude coordinates,

• and the fact that clusters are small. With the coordinates such that the cluster lies

at the pole, only a small number of m’s will be necessary. The circle at latitude ◊

has length sin ◊, hence there is an e�ective mmax ≥ lmax sin ◊ ≥ 5 for ◊ ≥ 10Õ and

an analysis with lmax = 5000. Since it is spin-1, È1g(◊)Í will be heavily dominated

by the m = 1 component near the pole.

We use this to perform the calculation in Eq. (A.3) by brute force, using the e�cient

general spherical harmonic transforms of [184].
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