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Abstract 

 A detailed study of the dynamics of unimolecular dissociation of 1,2-dioxetane (DO) 

using direct chemical dynamics simulations is presented. Of special interest is the 

comparison of the dissociation kinetics with the predictions of RRKM theory and 

implication to the intramolecular vibrational energy redistribution in the molecule. In the 

process, instabilities observed in unrestricted direct dynamics simulations of homolytic 

bond dissociation and diradical formation are tackled. A simple and convenient algorithm 

has been used to circumvent the energy conservation issues related to these instabilities 

and obtain reliable trajectory simulations. Dissociation probabilities obtained for various 

initial vibrational excitations are presented and compared with each other and with 

classical harmonic RRKM theory.  DO is found to exhibit intrinsic non-RRKM behavior 

which is attributed to a) the presence of quasiperiodic trajectories trapped in the phase 

space ; b) bottlenecks in the IVR between vibrational modes inside and outside the ring.  
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Chapter 1: Introduction 

1,2-dioxetane (DO) has been of interest to chemists since many decades. Early 

studies focused on synthesis, characterization and decomposition rates of DO and its 

substituents.1–7 DO being one of the simplest molecules that exhibits chemiluminescence8, 

significant efforts have recently been concentrated into understanding the mechanism 

behind the chemiluminescence that accompanies the dissociation.3–5,7,9 Although the 

precise mechanism is not well established, computational studies opine that the S1 and T1 

potential energy surfaces, which are very close to the ground state singlet (S0) surface near 

the •O-CH2-CH2-O• singlet biradical region (Figure 1), are involved in this mechanism.7  

 

Figure 1: IRC potential energy curve from TSb to 2H2CO dissociation. 

 Experiments have shown that the chemiluminescence yields for the unimolecular 

dissociation of DO are less than 0.014,10, implying that most of the dissociation might occur 

completely on the ground state adiabatic singlet PES S0. Irrespective of which electronic 

state the product formaldehydes are formed in, the initial reaction from DO to TS1 happens 
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on the ground state S0 surface. In spite of the significant interest in the chemiluminescence 

mechanism, the ground state dissociation has been somewhat neglected. Recent work 

suggests than DO is formed as an intermediate in the combustion of ethylene with 

oxygen.11–16 A detailed study of the dissociation kinetics and dynamics on the ground state 

would thus certainly be of interest to the combustion and atmospheric chemistry 

communities. 

     The bulk of this work is an investigation into the kinetics and dynamics of the 

dissociation of vibrationally excited DO using direct dynamics simulations.17 In particular, 

the dissociation has been compared with the predictions of the Rice-Ramsperger-Kassel-

Marcus (RRKM) theory for unimolecular reactions18 at constant energy. RRKM theory is 

derived from statistical mechanics with some basic assumptions regarding the structure of 

the molecule and its phase space. Firstly, RRKM theory assumes that at a fixed total energy 

all the states of the molecule have an equal probability of being occupied, which results in 

the reactants forming a microcanonical ensemble. This microcanonical ensemble is 

assumed to be maintained throughout the reaction. Moreover, in systems that are prepared 

from non-random excitations (such as chemical excitation), RRKM theory assumes rapid 

and complete intramolecular vibrational energy redistribution (IVR)19,20. In other words, 

vibrational energy is assumed to be redistributed on a time scale much shorter than the 

average lifetime of the unimolecular reaction. With this assumption, RRKM theory predicts 

the following equation for the reaction rate: 

                                                                                                                                    (1) 

Here, E is the total energy of the system, N (E) is the sum of states for the transition state, 

E0 is the potential energy barrier, h is the Planck’s constant and ρ E  is the density of states 

for the reactant. Although not required for deriving the RRKM rate constant, another 

approximation that is frequently employed for calculating it is the harmonic approximation 

which simplifies the calculation of the sum and density of states.18 

 The validity of the predictions of RRKM theory depends on the validity of its 

assumptions. The harmonic approximation is accurate only near stationary points on the 

PES and its use may not be appropriate at large energies. Anharmonic corrections to the 



11 
 

sum and density of states, which are required in such cases, may not be easy to calculate. 

Secondly, and more importantly, the fast IVR assumption needs to be examined more 

carefully. Studies on van der Waal’s21,22 and ion-molecule complexes in SN2 reactions23 

have shown weak couplings between intra and intermolecular vibrational modes leading to 

slow IVR. Identification of any such bottlenecks that may be present in the IVR is intended 

in this study. 

 The dynamics of DO dissociation has been investigated using a type of chemical 

dynamics simulations called direct dynamics.17 In addition to probing the dynamics, this 

work also presents a discussion into the subtleties associated with instabilities in direct 

dynamics using unrestricted electronic structure methods on systems involving homolytic 

bond cleavage. DO dissociation being one such system, it is essential to address these 

instabilities to perform reliable simulations. 

1.1 Outline 

The thesis is divided into chapters that focus on varied aspects of the dissociation 

dynamics. Chapter 2 describes the tool used to study the dissociation dynamics, namely 

direct dynamics simulations. Initial conditions and sampling algorithms implemented in 

the simulations are discussed towards the beginning of the chapter. The dissociation 

problem in context of direct dynamics simulations is then presented. The use of a broken-

symmetry (BS) guess and its unreliability are highlighted, and a new algorithm is 

presented, which circumvents the energy conservation problems that arise in such 

simulations.  

Chapter 3 showcases and discusses the results of direct dynamics simulations on the DO 

system. A comparison of the results obtained for various different groups of trajectories is 

presented and commented upon. Similarities and differences between groups are 

highlighted and compared with the predictions of RRKM theory. Power spectra are 

calculated to verify the existence of quasiperiodic trajectories. A two-state coupled phase 

model is used to investigate the bottlenecks in IVR. Chapter 4 concludes. 
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Chapter 2: Methods 

2.1 Direct Dynamics 

To probe the dynamics of DO dissociation, this work employs a technique known as 

direct dynamics, which is a method of simulating chemical reactions using a mix of classical 

and quantum mechanics. These simulations work under the Born-Oppenheimer (BO) 

approximation24 which allows the motion of nuclei to be treated independently from the 

motion of electrons, enabling the motion of the nuclei to be modeled on an adiabatic 

potential energy surface (PES) calculated by keeping the nuclei at fixed configurations. 

Although this approximation works excellently for many systems, care must be taken when 

multiple energy surfaces are close in energy, in which case the BO approximation breaks 

down. In this work, the use of direct dynamics implicitly assumes the BO approximation to 

be valid.  Computational studies have shown that the excited state PE surfaces for the 

dissociation of DO are far apart in energy from the ground state in regions of the PES that 

are of interest in this study, justifying the use of the BO approximation for these 

simulations.7 

In direct dynamics simulations, also known as “on-the-fly” molecular dynamics 

simulations, the motion of the nuclei on the PES is modeled using classical equations of 

motion.17 The potential energy is calculated at each step along the simulation for the 

required nuclear configuration, eliminating the need to calculate a comprehensive PES. 

This allows the use of ab-initio or density functional electronic structure methods to obtain 

the potential energy. A typical direct dynamics trajectory may contain as many as 20-

30,000 electronic structure calculations, which limits the use of high-level electronic 

structure methods like CCSD. This drawback can be overcome by performing single-point 

calculations with high-level electronic structure methods and choosing a lower-level 

method that predicts similar energies and geometrical parameters, thus ensuring 

reliability. 
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The motivation behind investigating the dynamics of DO dissociation is a 

computational study on the addition of singlet oxygen to ethylene.16 Direct dynamics 

simulations were performed at various temperatures starting at TSb (Figure 1), which 

connects DO to the •O-O-CH2-CH2• singlet biradical. These simulations found non-RRKM 

dynamics characterized by bi-exponential plots of N(t)/N(0) versus time, which prompts 

the need for a more thorough investigation.   

2.2 Description of Trajectory Simulations 

 To probe DO dissociation dynamics, direct dynamics trajectory simulations were 

performed with the UB3LYP/6-31G* level of theory, which was also used in the previous 

study. To understand the effect of non-random excitations on the dynamics, the vibrational 

modes of DO were divided into four categories depending on their characteristic motions. 

The DO harmonic vibrational frequencies were calculated at the UB3LYP/6-31G* level of 

theory using the NWChem electronic structure program.25  The characteristic motions of 

the various categories have been presented in Table 1. Group A, B, C and D consist of C—H 

stretch modes, H—C—H wag and bend modes, out-of-plane motions and ring bend and 

stretches respectively. A vibrational excitation of 101.6 kcal/mol, including a zero-point 

energy (ZPE) of 39.06 kcal/mol, was added to each of these groups using quasi-classical 

sampling.26 This energy is equivalent to the average energy of the simulations carried out 

at 1000K in the previous study. In these vibrational excitations, ZPE was added to each 

mode and the rest of the energy was distributed equally amongst all the modes 

corresponding to that group. Apart from these four non-random excitations, a fifth group of 

trajectories were simulated to have random initial conditions using classical 

microcanonical sampling.26,27 For all groups no rotational energy was added.  

 The trajectory simulations were performed using UB3LYP/6-31G* with the 

VENUS/NWChem chemical dynamics program28,29 which has algorithms for selecting initial 

conditions built into it. The trajectories were integrated with a time step of 0.3 fs for a 

maximum time of 13.5 ps using the velocity-Verlet30 algorithm.  The transition state TS1 

has an O—O bond length of 2.1 Å16, which was fixed as the criterion for dissociation and the 
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time required to do so was recorded. Recrossing was checked by integrating the 

trajectories up to an O—O bond length of 2.2 Å; none was observed. The classical harmonic 

RRKM rate constant was calculated to be 0.64 ps-1. For groups A, B, C and D, 100 

trajectories were calculated, whereas for the random excitation group, 200 trajectories 

were calculated to study the long-time details of the dissociation. 

Table 1: UB3LYP/6-31G* Harmonic Vibrational Frequencies for DO. 

a. Frequencies in cm-1. 

b. Identification of modes for the different simulations groups. 

 

Mode Symmetry Frequencya  Description Groupb 

1 A 111 O-C-C-O torsion C 

2 B 758 Ring bend D 

3 B 867 Ring bend D 

4 A 893 Asym O-O & C-C stretch  D 

5 B 944 Asym C-O stretch D 

6 A 1029 Sym O-O & C-C stretch   D 

7 A 1078 Sym C-O stretch D 

8 A 1130 Asym H-C-H twist C 

9 B 1175 Sym H-C-H twist C 

10 A 1221 Asym H-C-H rock  C 

11 B 1330 Asym H-C-H wag B 

12 A 1383 Sym H-C-H wag B 

13 B 1540 Asym H-C-H bend B 

14 A 1563 Sym H-C-H bend B 

15 B 3047 C-H stretch A 

16 A 3052 C-H stretch A 

17 A 3100 C-H stretch A 

18 B 3117 C-H stretch A 
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2.3 The Dissociation Problem 

 The problem of addressing homolytic bond cleavage using electronic structure 

theory is not new to quantum chemists. It has been described in great detail and lucidity in 

many quantum chemistry texts.31,32 At the heart of the problem is the use of unrestricted 

electronic structure methods to obtain better approximations to the energy and 

wavefunction of the system.  In this work, the dissociation problem has been addressed in 

context of direct dynamics simulations using unrestricted electronic structure methods.  

Central to the problem is obtaining potential energies on the correct PES at each step in the 

direct dynamics simulation, as discussed below.   

2.3.1 1,2-dioxetane Dissociation Potential Energy 

Surface 

 The dissociation problem encountered in the direct dynamics of DO dissociation will 

be discussed in the upcoming sections. Although calculations have only been performed on 

this system, the arguments presented hold true for any system involving formation of a 

diradical due to homolytic bond cleavage.  

 To understand the problem of interest, a look at the PES surface for the dissociation 

process is essential. In this work, the PE was calculated using the UB3LYP/6-31G* level of 

theory. The intrinsic reaction coordinate (IRC) for this unimolecular dissociation involves 

the formation of the •O-CH2-CH2-O• singlet diradical  Figure 1 . The two transition states 

(TS1 and TS2) joining the DO minimum and the products to this diradical both have partial 

diradical character. 

The peculiarities of the direct dynamics of this system, which will be presented in 

the upcoming sections arise due to the following properties of the PES: a) The reactant 

region of the PES, near the DO minimum is closed-shell in nature; b) the region near the 

transition states and the diradical minimum is open-shell in nature; c) the region near the 

products is closed-shell in nature. A simulation trajectory started near the DO minimum 
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traverses from a region of closed-shell character into a region of open-shell character, 

which is crucial to the dissociation problem. 

The presence of a homolytic bond cleavage in the system necessitates the use of the 

unrestricted electronic structure formalism which allows alpha and beta spin electrons to 

have different spatial wavefunctions.31,32 This increased variational freedom comes at a 

small price: unrestricted wavefunctions are not eigenfunction of the S2 operator. For a 

singlet diradical, the wavefunction is known to be a linear combination of a singlet and a 

triplet with equal weights33,34, resulting in <S2> = 1, and not 0 like that of a true closed-

shell singlet.  Furthermore, <S2> rises continuously from 0 for a closed-shell system to 1 

for a diradical. Intermediate configurations are known to have <S2> between 0 and 1. This 

property can be used to monitor the diradical character of the system.34 To elaborate 

further, <S2>  is 0 near the DO minimum and it starts rising as the diradical character of 

the system increases; <S2> is 0.76 for TS1 and increases to 1 for the singlet diradical •O-

CH2-CH2-O•. 

 

Figure 2: Plot of potential energy (blue) and <S2> (orange) calculated at UB3LYP/6-31G* 

(solid line) and RB3LYP/6-31G* (dashed line). 
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The importance of using the unrestricted formalism is illustrated in Figure 2. In the 

regions of the PES with significant diradical character, the unrestricted method (UB3LYP) 

predicts lower energies than the restricted method (RB3LYP). It must also be noted that 

the onset of the region in which these methods predict different energies is marked by the 

onset of non-zero <S2> for the unrestricted method.  

2.3.2 The Broken-Symmetry Guess 

 One of the most important aspects of an unrestricted electronic structure 

calculation is the guess used for the initial density-matrix. If an unrestricted guess is not 

provided, the SCF is known to converge to the restricted solution.31,32 In single point 

calculations, such an unrestricted guess, also known as a broken-symmetry (BS) guess, is 

obtained by mixing the HOMO and LUMO orbitals asymmetrically for the alpha and beta 

spin electrons.31  

           In direct dynamics simulations, the wavefunctions for consecutive steps are expected 

to be very similar due to extremely small time steps. Taking advantage of this, the 

wavefunction obtained in the previous step is generally used as the guess for the current 

step29 [Algorithm I]. In simulations involving homolytic bond cleavage, such as the system 

in question, the strategy mentioned above may not be ideal. To obtain an unrestricted 

solution in open-shell regions, a BS guess is essential. In the region of the potential energy 

surface where the system transitions from closed shell to open shell, the wavefunction 

from the previous step which is used as the guess might be restricted, resulting in a 

restricted solution for the current step. The trajectory will thus continue to traverse on the 

restricted PES (Figure 3). 

  One possible way to ensure that a BS guess is used at each step in a direct 

dynamics simulation is to supply an external BS guess at each step. Such a guess can be 

obtained by performing a single-point calculation on an appropriate molecular geometry.  

This modification was implemented in the direct dynamics code as follows [Algorithm II]: 
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Figure 3: A schematic of the motion of a trajectory. The black and green arrows represent 

the motion of the trajectories calculated using Algorithm I and II respectively. The orange 

and blue lines represent the RB3LYP and UB3LYP potential energy curves respectively. 

 

1) The <S2> is checked at every step in the trajectory. If <S2> for the previous step 

wavefunction is less than 0.001, an external BS guess is used. 

2) If <S2> for the previous step wavefunction is more than or equal to 0.001, this 

wavefunction is used as the BS guess. 

 Algorithm II ensures that a BS guess is used at each step, which would, at first 

glance, make it a good candidate for running reliable trajectories. Unfortunately, trajectory 

simulations suggest otherwise. Plots of total energy and <S2> versus step number show 

peculiar jumps. (Figure 4a)  
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Figure 4: A plot of the total energy (blue) and <S2> (orange) versus step number for a 

representative direct dynamics trajectory calculated using a) Algorithm II, b) Algorithm III. 

 

 To explain the jumps in total energy and <S2> a hypothesis has been proposed 

which relies upon previous work that highlights the unreliable nature of a BS guess: it is 

necessary to obtain an unrestricted solution, but not sufficient.35,36 The hypothesis thus 



20 
 

assumes that the SCF procedure may converge to a restricted solution in spite of a BS guess 

being used. Consider the following scenario: A trajectory runs smoothly on the closed-shell 

region of the PES. In the region where the system transitions from closed shell to open shell 

character, an external BS guess is used, which incidentally, fails to obtain the unrestricted 

solution. A restricted solution is obtained (<S2> = 0) which prompts the external BS guess 

to be used for the next step. This cycle repeats and the trajectory traverses on the 

restricted PES, until the SCF converges to the unrestricted solution at a later step. At this 

point the trajectory jumps from the restricted PES to the unrestricted PES, which is lower 

in potential energy. As a result, some potential energy is lost, which is seen as the loss in 

total energy. A schematic of this process is shown in Figure 3. Another aspect which is 

consistent with this hypothesis is the jump in <S2>. Before the jump, when the trajectory is 

on the restricted PES, <S2> is 0, whereas it is non-zero on the unrestricted surface, which 

is seen as a jump in the <S2>.     

  With insights from this hypothesis, a modification to the direct dynamics algorithm 

is presented, with the aim of ensuring that trajectory simulations traverse smoothly on the 

unrestricted PES. The modified algorithm [Algorithm III] is as follows: 

1) The simulation is performed identically like Algorithm II with a minor addition: 

coordinates and momenta of all atoms are saved every 30 steps. 

2) When a jump in total energy is observed, the unrestricted wavefunction obtained after 

the jump is saved. 

3) The trajectory is restarted from the last saved coordinates and momenta, with a small 

modification: the wavefunction from step 2) is used as the external BS guess. 

 Two key subtleties need to be mentioned about this algorithm. Firstly, the number 

of steps at which the coordinates and momenta are saved is chosen such that the trajectory 

is restarted in the closed shell region of the PES. Secondly, the wavefunctions obtained after 

the jump are used as the BS guess because they are assumed to be a really good guess. The 

last saved geometry and the geometry during the jump are not expected to be significantly 

different because the coordinates and momenta are stored at rather short intervals.  Figure 
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4b shows the same trajectory from 4a run with Algorithm III, which now shows smooth 

energy conservation and gradual, smooth changes in <S2>. 

2.3.3. Reflections and Comments 

 The algorithm presented in the previous section works excellently for the system of 

interest, which makes it susceptible to be perceived as a full-proof algorithm, which is far 

from the truth. Although it can be used for other systems of similar nature with minor 

modifications, the unreliable nature of this algorithm must be understood. The use of 

wavefunctions obtained after the jump as the BS guess is extremely convenient; 

unfortunately, it may not always work. As mentioned in the previous section, a BS guess is 

always unreliable and the SCF can converge to the restricted solution. This algorithm also 

overlooks a more subtle aspect of the dynamics. Consider the following scenario. If a 

trajectory has insufficient energy along the reaction coordinate to reach the TS, it may stay 

on the restricted surface (even in the open-shell regions) and return to the closed shell 

regions without ever “jumping”, only to later traverse correctly on the unrestricted surface. 

Such trajectories will end up taking slightly longer to dissociate than they should, and it is 

not possible to identify them with this algorithm. 

 A better, much more sophisticated way to solve the issues discussed here would be 

performing triplet stability calculations at every point in the trajectory simulation. These 

calculations check if the SCF has converged to a minimum by calculating the eigenvalues of 

the orbital rotation hessian. The computational feasibility of performing such calculations 

at every step is questionable.  

2.4 Power Spectrum 

 To probe into the quasiperiodic nature37 of the trajectories that did not dissociate, 

power spectra38 have been calculated. A discussion of relevance of quasiperiodic behavior 

to reaction dynamics has been presented in Section 3.3. An algorithm to calculate a power 

spectrum from classical trajectory data has been previously reported39,40 and has been 

used here. This algorithm calculates the power spectrum by performing a Fourier 
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transform on the normal mode momentum autocorrelation function. A simple description 

follows: 

1) The Cartesian momenta obtained from the trajectory simulations for each step are 

converted into normal mode momenta using the eigenvectors of the mass-weighted 

hessian. 

2) The autocorrelation function for each normal mode momentum is calculated as a 

function of time   as follows:  

                                                                        
 
                                                              (2) 

Here, j is the normal mode coordinate index; t is the time step number in the trajectory and 

   is the jth normal mode momentum. The autocorrelation function is calculated at 2000 

points at steps of 6 fs. A trapezoidal apodization is used.39 

3) The Fourier transform (FT) of the autocorrelation function is calculated. The power 

spectrum is defined as the square of the absolute value of the FT. Here the power spectrum 

is calculated for frequencies between 0 and 3200 cm-1 at steps of 1.6 cm-1. 
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Chapter 3: Results and Discussion 

3.1 Dissociation Probabilities, Time Delays and 

Anharmonic Corrections 

  The percentage of trajectories that dissociated was 94%, 84%, 85%, 95% and 91% 

for groups A, B, C, D and random respectively. Some of these dissociations involved 

crossing the TSb barrier and not the TS1 barrier. Figures 5 and 6 show the varied nature of 

the plots of N(t)/N(0) for all the groups. 

 

Figure 5: Plot of the simulation ln[N(t)/N(0)] and fit versus time for the A (blue), B (red), 

and C (green) excitation groups. Each time a dissociation occurred a point is plotted. 
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 For excitation groups A, B and C, an initial time delay t0, is observed in the N(t)/N(0) 

plots (Figure 5), whereas no such delay is observed in groups D and random (Figure 6). 

Table 2 presents precise values.  

 

Figure 6: Same as for Figure 5, but for the D (red) and random (green) excitation groups, 

and for classical harmonic RRKM theory (blue). 

 

For groups A and C an exponential dissociation, shifted by the time delay t0, is observed: 

                                                             0   e p                                                             (3) 

For groups B, D and random, the dissociation is non-exponential, and has been fitted by a 

bi-exponential function: 

                                    0     e p               e p                                     (4) 

The parameters obtained for these fits are presented in Table 2.  Even if a molecule exhibits 

slow IVR, for an initial microcanonical sampling, a microcanonical ensemble is present at 
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very short times. Thus, for the random group of trajectories, the microcanonical RRKM rate 

constant can be obtained from the slope of the curve as t→0.41 It can be calculated as 

follows:            →     0 . This rate constant for the first five dissociations is 

calculated as 0.44 ps-1, which is approximately 1.5 times smaller than the classical 

harmonic RRKM rate constant. The difference in these two rate constants can be attributed 

to an anharmonic correction.42–44  

 Another aspect of these simulations, which was mentioned earlier, is that a small 

fraction of the trajectories were found to dissociate via TSb. The percentage of trajectories 

that dissociated in this manner are 6%, 4%, 5%, 0% and 2% for groups A, B, C, D and 

random respectively. Compared with the prediction of classical harmonic RRKM theory 

which stands at 0.6%, these numbers are significantly larger for most of the groups.  It 

must be noted that the anharmonic corrections for the sum of states for the transition 

states TS1 and TSb are expected to be much smaller than the corrections for the reactant 

DO, and hence classical RRKM theory should predict correct branching ratios.44 These 

results are clearly not in accord with the predictions of RRKM theory. 

3.2 Comparison of N(t)/N(0) plots 

 The various different non-random excitation simulations were performed with the 

intention of being able to compare the results to obtain some insights into the IVR of DO, 

which will be the focus of this section. Firstly, it must be noted that the reaction coordinate 

for DO dissociation consists of a substantial component of the O—O stretch. Groups D (ring 

stretch and bend) and random are expected to have energy initially localized along the 

reaction coordinate and it is not surprising that the time delay t0 is ~ 0 for these groups. 

The time delays observed in group A, B and C simulations are 0.87 ps, 0.24 ps and 0.31 ps 

respectively, which are significantly larger than the O—O stretch vibrational period, which 

is ~0.03 ps. These time delays signify the slow IVR from these groups.  
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Table 2: N(t)/N(0) Fitting Parameters for the Simulation Groups 

Group toa f1 k1b f2  k2b 

A 0.87 1.00 0.21 0.00 - 

B 0.24 0.12 0.18 0.88 0.14 

C 0.31 1.00 0.13 0.00 - 

D ~0 0.69 3.11 0.31 0.16 

Random ~0 0.98 0.20 0.02 ~ 0 

a. Unit is ps.  

b. Unit is ps-1. 

 

For the random excitation group, the N(t)/N(0) is bi-exponential, which makes DO 

an intrinsic non-RRKM molecule45. The bi-exponential fit suggests that ~98% of the 

dissociation occurs with a rate constant (k1) of 0.20 ps-1, which is approximately half of the 

anharmonic RRKM rate constant obtained from the short time dissociation. The rest of the 

dissociation, which follows k2 = 1.56 x 10-9 ps-1, that is negligible when compared to k1, is 

expected to be a manifestation of trapped trajectories with regular/quasiperiodic 

dynamics37. Classical harmonic RRKM theory predicts 0.3% of undissociated trajectories 

over the 13.5 ps that the trajectories are integrated, whereas the simulations show 9% 

undissociated trajectories.  

 Group A and C trajectory simulations interestingly show an exponential dissociation 

after the initial time delay t0. In spite of the significant differences in their time delays, both 

groups show similar rate constants: 0.21 ps-1 and 0.13 ps-1 for groups A and C respectively. 

These rate constants are approximately 2-3 times smaller than the anharmonic rate 

constant. 

 Group B displays slight bi-exponential behavior after the initial time delay. The rate 

constants k1 = 0.18 ps-1 and k2 = 0.14ps-1 obtained from the fit have similar values which 

are ~3 times smaller than the anharmonic rate constant. Apart from the slight bi-

exponential nature, the plots for groups B and C look very similar, which may be explained 
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by the similarity in their normal mode motions: both groups consist mainly of H—C—H 

motions. 

 The results for group D, which comprises of a ring stretches and bends, are the least 

surprising. The reaction coordinate is closely associated with the modes from group D and 

thus a very fast initial decay is observed with a rate constant k1 = 3.11 ps-1. Almost 70% of 

the dissociation is seen to occur at this rate, followed by much slower dissociation with rate 

constant k2 = 0.16 ps-1, again ~3 times smaller than the anharmonic rate constant. 

3.3 Chaotic and Quasiperiodic Motion 

Classical mechanical motion can be broadly classified into two categories: 

chaotic/ergodic and regular/quasiperiodic.46 RRKM theory assumes complete ergodic 

behavior of trajectories.18 At low energies, the vibrational Hamiltonian of a molecular 

system can be separated into uncoupled harmonic oscillators, which cannot exchange 

energy and thus exhibit quasiperiodic motion. For higher energies, the harmonic 

approximation is no longer accurate; anharmonicity and rotational-vibrational couplings 

can’t be ignored.37 At very high energies, extensive coupling between modes leads to 

ergodicity. At most energies above the reaction thresholds, both quasiperiodic and chaotic 

trajectories can exist resulting in intrinsic non-RRKM behavior.47,48   

The bi-exponential fit to the N(t)/N(0) plot for the microcanonical random 

excitation group shows an extremely small long time rate constant k2. As mentioned 

earlier, this might be a manifestation of the presence of quasiperiodic trajectories. Such 

trajectories exhibit little to no coupling between vibrational modes and are thus trapped in 

phase space – they are very unlikely to dissociate. The presence of such quasiperiodic 

trajectories can be investigated by calculating the power spectrum of a dynamic variable of 

the trajectories that do not dissociate. A power spectrum of quasiperiodic trajectories 

shows sharp peaks in contrast to the broad peaks of chaotic trajectories.46 Figures 7 and 8 

show the power spectrum for one representative trajectory. The sharp peaks seen in the 

power spectrum are telling of the quasiperiodic nature.  
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Figure 7: Power Spectra for several normal modes (Table 1) of a representative trajectory 

from the random group that did not dissociate. The x-axis is frequency from 0 to 3200 cm-1 

and the y-axis is energy/cm-1 (arbitrary units).  

 

Figure 8: Same as Figure 7; different modes. 
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 Each box in these figures is the power spectrum for one normal mode. A power 

spectrum is representative of the amount of energy present in a vibration of a particular 

frequency.39  Thus the power spectrum for each mode should contain peaks for the 

fundamental frequency for that mode or its overtones. It can be inferred from the spectra 

that energy is localized in modes 1, 3, 7, 10 and 11. It must be noted that the peak in the 

spectrum for mode 1 is located at around 200 cm-1, whereas the vibrational frequency for 

this mode is 111cm-1. It is most likely that this peak represents the first overtone of this 

mode.   

3.4 Coupled Phase Space Model 

 So far, the focus of this chapter has been presenting data obtained from various 

calculations. Sections 3.1 and 3.2 highlighted the various trends observed in the N(t)/N(0) 

plots for the trajectory simulations and Section 3.3 attempted to investigate the presence of 

quasiperiodic trajectories that may be responsible for the extremely small long-time rate 

constant obtained in the simulations of the random excitation group. Even a cursory look at 

Table 2 should be enough to notice that among the several groups of trajectory simulations 

performed, many rate constants seem to be in the range of 0.13-0.21 ps-1. Interestingly, the 

anharmonic rate constant is 2-3 times larger than these and the occurrence of similar rate 

constants is all these groups is intriguing to say the least. In this section, an attempt is made 

to explain the origin of these rate constants and gain a better understanding of the IVR in 

DO. 

 A detailed study of energy transfer amongst different modes may be performed by 

obtaining the power spectrum for various time periods within a trajectory49. Although not 

impossible, such a study is probably not the best approach for studying IVR in molecules 

with many vibrational degrees of freedom, such as DO. Considering that most reactive 

molecules have many degrees of freedom, a full dimensional investigation of IVR is difficult. 

To tackle this problem kinetic models have been developed to gain a qualitative 

understanding of IVR rates and intrinsic non-RRKM behavior in molecules.47,48,50 One such 

model is the two-state coupled phase space model50 that allows for an investigation into 
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factors influencing intrinsic non-RRKM nature of a molecule.  Extensions of this model, 

namely the three-state coupled phase space model and two-state-mod model (which allows 

reaction from both regions) are also available, but will not be considered in this work. 

 

Figure 9: A schematic of the two-state coupled phase space model. Region I is connected to 

the products via the transition state. 

 

 The two-state coupled phase model divides the phase space of the reactant into two 

regions, regions I and II, which are weakly coupled. Only region I has access to the 

transition state connecting to the products. Figure 9 shows a schematic of this model. The 

kinetic scheme is described below.  

                                                                                                                           (5)                                                                            

                                                                                                                                                         (6) 

Here, k1 is the rate constant for product formation from region I, and k2 and k3 are the rates 

for IVR between regions I and II. It can be shown that if a microcanonical ensemble is 

present at t = 0, the RRKM rate constant is:  

                                                                                                                                                 (7) 

   At this point, an assumption has been made to apply this model to the system of 

interest. Vibrational normal modes included in group D (Table 1), which consist of ring 
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stretch and bend motions, are assumed to constitute region I. All other vibrational modes, 

i.e. groups A, B and C, make up region II. Thus, this model assumes weak IVR between 

group D and the other groups. 

 With this assumption, group D trajectories are such that N1(0)=N(0) and N2(0)=0. 

These initial conditions have been used to solve the coupled differential equations that 

arise from the kinetic schemes (5) and (6). The expression thus obtained is: 

                                  0                                                                    (8) 

Here, λ1 and λ2 are such that                and            . Thus, the two-state 

coupled phase model predicts a bi-exponential plot for N(t)/N(0) with rate constants λ1 

and λ2. Values for λ1, λ2 and k1 were obtained by comparing this equation with the bi-

exponential fit obtained for group D trajectories in Section 3.1 and used to calculate the 

values for k2, k3 and the RRKM rate constant ko. Table 3 presents values obtained for all 

these rate constants. 

Table 3:  Values for various rate constants obtained from the two-state coupled phase space 

model. 

Rate constant Value (ps-1) 

λ1 3.11 

λ2 0.16 

k1 2.20 

k2 0.85 

k3 0.23 

k0 0.46 

  

 Given the assumption that group D modes for DO represent region I, the values 

obtained for the IVR rate constants between regions I and II are significantly smaller than 

the rate of formation of products from region I. Moreover, the rate of IVR from region II to 

region I (k3) is approximately two times slower than the anharmonic RRKM rate constant. 
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This is inconsistent with the RRKM assumption that IVR is fast compared to the 

unimolecular lifetime and hence serves to explain the intrinsic non-RRKM behavior of DO. 

The RRKM rate constant calculated using the two-state phase space model is ko = 0.46 ps-1, 

which matches closely with the anharmonic RRKM rate constant of 0.44 ps-1 obtained from 

the random group of trajectories in Section 3.1.  

 Groups A, B and C are all a part of region II in the two-state coupled phase space 

model.  To obtain a rate constant for such a system where all the molecules are initially 

present in region II, the steady state approximation51 can be employed. This approximation 

is generally used when the rate of formation of an intermediate in a reaction is significantly 

slower compared to the rate of its dissociation/disappearance. In this case, molecules from 

region II (N2) can be treated as the reactants whereas those from region I (N1) as the 

intermediate. Since k1 is almost ten times larger than k3 the steady state approximation 

may be employed and the steady state rate constant for the formation of products derived 

as:                     

                                                                                                                                          (9) 

The value of the steady state rate constant is 0.15 ps-1. It must be noted that kss is very close 

to the rate constants obtained for groups A, B and C, which are all in the range of 0.13-0.21 

ps-1. The two-state coupled phase space model treats all three groups on an equal footing 

and cannot distinguish between them, as they are all considered to be a part of region II.  

Hence, it has implicitly been assumed in this model that the dynamics of all these groups 

are similar. Despite this assumption, as is evident from the calculations presented here, this 

model serves excellently to highlight the slow IVR rate constants.  
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Chapter 4: Conclusion 

The primary intent of this work has been to explore and better understand the 

dynamics of the dissociation of DO using direct dynamics simulations. In spite of the 

challenges faced in ensuring the reliability of the direct dynamics simulations for a 

homolytic bond fission system, a simple algorithm was developed to circumvent the 

instabilities and obtain trajectories that dissociate on the correct PES.  

Over the years, unimolecular reactions have been modeled using two distinct 

approaches: Slater theory and RRKM theory. The former assumes no IVR, whereas the 

latter assumes complete IVR. It is not very surprising that almost all reactions fall 

somewhere between these two extremes. The data presented in this work should make it 

apparent that 1,2-dioxetane is no exception.  

 Trajectory simulations for excitation groups A, B, C and D shed light on the apparent 

non-RRKM dynamics of the system, where different non-random excitations exhibit varied 

dissociation dynamics. The trajectory simulations from the random group, serve to label 

DO as an intrinsic non-RRKM molecule. The majority of the dissociation for this simulation 

group is much slower than the anharmonic RRKM rate constant and the extremely slow 

long-time rate constant is an indication of quasiperiodic behavior. The existence of 

quasiperiodic trajectories has been verified by calculating the power spectrum of 

undissociated trajectories, which further cements DO as an intrinsic non-RRKM molecule. 

Slow IVR in DO has been modeled using a two-state coupled phase space model, 

which makes a simple attempt at understanding the bottlenecks in IVR by dividing the 

phase space into two regions. The use of this model brought to light the slow rate of IVR 

between group D vibrations and other vibrations, in turn showcasing that the vibrations in 

the ring are weakly coupled to vibrations outside the ring.  

A more detailed study of the vibrational energy transfer between the non-ring 

modes of the molecule may be possible, but has not been addressed here. The data 

presented here, especially the similarity between the rates of dissociation arising for group 
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A, B, C and random and the long-time rate for group D are extremely intriguing and calls for 

an experimental study into the dissociation dynamics of DO. 
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