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Abstract 

Gene-culture coevolutionary theory examines the effects of cultural traits, in addition to 

passing on of genetic traits from one generation to the next differentially. I construct a 

theoretical model that studies, in addition to the contribution of the phenotype of the 

organism, its interaction with the extended phenotype while determining the fitness of 

an individual in the population. I study both negative and positive interactions between 

the organismal phenotype and the extended phenotype. Positive interaction is when the 

extended phenotype enhances the fecundity of the individual, whereas negative 

interaction is when the extended phenotype adversely affects the fecundity of the 

individual. In both cases, the fitness increases as the population evolves with time. 

Interestingly, however, this increase is faster in the case of negative interaction than in 

positive interaction. In the second part of my thesis, I extend my model to study the 

evolution of cultural learning in a sexual system of reproduction. I combine frequency-

dependent learning biases namely, conformation bias and novelty bias, and assortative 

mating (in addition to the usual case of random mating) to examine the evolutionary 

dynamics of cultural traits. Since the biases modelled are frequency-dependent, I also 

investigate the cyclical fluctuations in cultural trait values for the two mating systems. 

My results agree with several results present in literature and also add a few insights to 

the existing knowledge of cultural evolution.     
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INTRODUCTION 

The outcomes of evolutionary processes cannot be fully appreciated without 

understanding how organisms modify the agents of natural selection in their 

environments, thereby modifying the process of biological evolution itself. This process 

of organisms modifying their environment is called niche construction (Laland and 

Brown, 2006). Proponents of the niche construction theory argue for its significance and 

its inclusion in modern evolutionary theory by claiming that it has several 

consequences. First, niche construction may contribute and/or modify the flow of energy 

and matter through ecosystems (Hölldobler and Wilson, 1990). Second, niche 

construction causes the modification of the environmental selective pressures on the 

organism by actively altering the environment itself, hence potentially altering the 

evolutionary trajectories of the concerned organisms (Jones et al., 1994).  In addition, 

these modified selection pressures could be bequeathed to the successive generations, 

modifying the selection pressures for them as well (Odling-Smee et al., 1996). Another 

important claim is that niche construction provides a second process in addition to 

natural selection that would assist the organism’s response to the environment it is 

present in and allow it to adapt (Laland et al., 1999). 

  

Cultural niche construction is a special case of niche construction, where a few cultural 

traits contribute to forces acting upon on genetic traits (which are evolutionary in 

nature), which could serve as a powerful tool for explaining evolution and behaviour. 

Gene-culture and/or culture-culture interactions are a subset of interactions which are 

included in cultural niche construction. 

 

Gene-culture coevolutionary theory comes under theoretical population genetics and 

attempts to include in its modelling the effects of cultural traits, in addition to differential 

transmission of genetic traits from one generation to another (Feldman and Laland, 

1996). The importance of including the cultural component while modelling was 
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demonstrated in a study which showed that the Sickle Cell mutant’s frequency in West 

African populations depends on a cultural trait, namely, yam farming. Populations that 

cultivated yams and cut trees in those regions create conditions where pools of 

rainwater remain stagnant, thus allowing mosquitoes to breed there, leading to strong 

selection of one form of the allele. Hence, in this case, the intensity of selection on a 

gene depends on the frequency of yam farming- the cultural component here- in the 

population. A second example of gene-culture coevolution is the evolution of lactose 

absorption. A significant percentage of human adults cannot break down lactose in their 

digestive system due to low activity of the lactase enzyme. The cultural practice of dairy 

farming, however, seems to contribute to a change in the allele frequency of genes that 

give rise to difference in phenotypes (namely individuals who can/cannot absorb 

lactose). There were about 90% lactose absorbers in populations with dairy farming 

traditions, whereas in populations with no dairy farming culture, absorbers accounted for 

less than 20% of the population. It is therefore quite likely that the cultural practice (dairy 

farming) had a key role in determining the allele frequencies in these populations 

(Swallow, 2003; Laland et al., 2001). 

 

In gene-culture models, the methods of transmission of cultural traits need to be defined 

separately, in addition to the genetic traits. These rules are defined based on the type of 

transmission being modelled. Vertical transmission occurs when an individual adopts a 

trait depending on whether its parent (s) has (have) that trait. Horizontal transmission 

involves the transmission of cultural traits between non-related conspecifics in the same 

generation, whereas oblique transmission occurs between generations (except from 

parents). When cultural traits are passed from key individuals in a group, it is termed 

indirect transmission, whereas frequency-dependent transmission occurs when the 

cultural trait is learned from the majority in a group (Bonduriansky and Day, 2009). 

Models detailing the relationship between the genetic aspect of evolution and cultural 

modifications have become increasingly complex with time (Rendell et al., 2011). 
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Initial models treated culture similar to any other feature of the phenotype, and while 

culture affected the individuals in a population, only the genes were passed to the next 

generation and it was only through the expression of these genes that the population’s 

culture in the subsequent generations could be altered (Tooby and Cosmides, 1990). As 

the gene-culture coevolutionary theory developed, models allowed for inheritance of 

cultural traits, which in turn could modify the selection pressures faced by the organisms 

(Cavalli-Sforza and Feldman, 1981). An extended gene-culture coevolution framework 

considered the niche construction aspect due to inheritance of genetic as well as 

cultural traits generating modified selection pressures that affect future generations 

(Laland et al., 2000). 

 

Despite advances in the field of genomics in recent years, leading to studies ignoring 

gene-culture coevolutionary theory in the belief that traits are predominantly determined 

by their underlying genetic basis, it is important to note that several unintuitive results 

and complex dynamics have resulted from theoretical studies considering culture. In 

population genetics, where culture is not considered, it is well known that heterozygote 

advantage would allow for genetic variation to be maintained (Rendell et al., 2011). It 

has also been shown that cultural trait transmission is not advantageous if the 

environment is constant or changing very quickly. Rather, it is helpful for the offspring to 

learn from their parents when the environment is slowly changing (Boyd and Richerson, 

1985). These examples show that several potentially unintuitive behaviours are possible 

in systems when cultural transmission is incorporated. 

 

 

To understand social learning, formal models to study the interplay between individual 

learning, social learning, and behavioural responses have been developed. Although 

these models apply to a wide range of natural systems pertaining to social learning, 

several general patterns are observed. For instance, it has been observed that social 

learning is favoured in environments where there is an intermediate level of fluctuation 
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(Feldman et al., 1996; Bergman and Feldman, 1995). This is because social learning 

allows quicker response to environmental changes than hard-wired responses, by virtue 

of the knowledge in the population accumulated over time (Boyd et al., 2011). If the 

environmental changes are glacial, then there is no significant effect of social learning 

because selection on the genes of individuals has the same effect. In this case, there 

would be no benefit in developing a learning machinery, which could be expensive (in 

terms of resources required). In environments where there are extremely rapid 

fluctuations, the problem of lack of knowledge arises. Each environment has not been 

present long enough for the population to develop a knowledge base that would aid in 

its adaptation. However, at intermediate rates of environmental fluctuation, social 

learning mechanisms are quicker than genetic adaptation and the individuals in the 

population also have enough time to gather adaptive knowledge (Winterhalder and 

Smith, 2000; Boyd and Richerson, 1995). In a given environment, Boyd and Richerson 

further showed that cultural learning in populations happens only in cases where the 

individual learning of the trait is relatively simple or when the trait is particularly useful in 

helping the individual adapt to its environment (Boyd and Richerson, 1995).  

 

A very pertinent idea in the field of cultural inheritance is the costly information 

hypothesis. The hypothesis pertains to the tradeoff between receiving accurate 

information at high costs versus acquiring less accurate information at lower costs. 

Accurate information can be obtained by individuals in the population (in the case that it 

becomes costly or unavailable) by observing and learning the behavioural patterns of 

other members of their group (Henrich and McElreath, 2003). Due to the difficulty in 

learning adaptive behaviours over the course of a lifetime, selection will favour 

mechanisms that allow extraction of beliefs and practices by individuals from the group 

they are a part of. Thus, in a certain set of environmental conditions, there exist several 

heuristic mechanisms and learning biases that may help in the adoption of practices 

that may prove advantageous to them (Henrich, 2001). 
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Learning biases, a cultural learning mechanism, can be split into two types: Content 

bias (also known as Direct bias) and Context bias. Direct bias is a cultural transmission 

rule characterized by the fact that a few cultural variants of a trait are more attractive 

than the others and are adopted by the individuals in the population. Directly biased 

transmission depends on the existence of variability of a cultural trait in the population 

(Boyd and Richerson, 1985). In contrast with Context biases, Content biases take 

shape after evaluation of the cultural variant over an extended period of time. This 

direction of bias need not be the same for all the individuals in the population, as the 

cultural variant selected by each individual is a decision taken after evaluating which 

variant is most adaptive in a range of environmental conditions. Direct biases are less 

valuable when the cost of evaluating each cultural variant in the population is high 

(Cavalli-Sforza and Feldman, 1981).  

Context biases on the other hand are adopted by individuals based on certain metrics 

which they determine are necessary and desirable. These biases could be based on, for 

instance, prestige in the group, success in producing offspring, healthy appearance and 

so on. These biases that arise due to cues taken from individuals who can be imitated - 

with suitable evolutionary benefits - are termed Model-based biases. There exists 

another form of context bias termed as Frequency-dependent biases. In this mode of 

bias, the probability of an offspring obtaining a particular variant of a trait is proportional 

to the frequency of the variant in the population in the parental generation. Like Model-

biased bias, this particular mode of bias requires less time to appropriate a cultural trait 

using the population’s inherent knowledge than direct bias, and hence is much more 

useful when the process of evaluating trait variants is costly (Henrich and McElreath, 

2003). 

 

Cultural learning helps in the acquisition of skills and strategies that affect fitness. The 

greater the variability in the skill set of the population, the more difficult it becomes to 

individually learn each variant of a skill and evaluate the optimum choice (immediately 

demonstrating the cons of Direct biases). The cost associated with attempting to learn 

each variant in turn increases the pressure to preferentially select a variant from the 
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existing knowledge in the population. Henrich and Gil-White showed that in cases such 

as these, individuals will have a greater chance of acquiring an adaptive skill set if they 

decide to focus on variants which allow them to be relatively more successful and learn 

the skill in a fashion identical to them (Henrich and Gil-White, 2001). For instance, if the 

skill under consideration is tool making for hunts, it would be preferential for the learners 

in the population to look at the hunting return of each individual in the population and 

imitate the strategy with the highest observed payoff. However, the use of indirect 

indicators (‘hunting returns’ in the example above) could be an erroneous indication of 

the success of the trait variant due to several confounding factors in the environment. 

Due to this, there have been several instances of humans copying successful 

individuals across a host of cultural traits but with very few of them actually contributing 

to the individual’s success (Flinn and Alexander, 1982). Hence, this strategy is viable 

only in cases where information acquisition of the skill is too costly to be individually 

learnt. The differences in the success of individuals adopting different variants of a skill 

leads to a demand for successful individuals in the population. In order to learn from 

them, there is a need to have preferred access to the individual. Learning the skill may 

also require some assistance from the successful individual. This leads to some form of 

deference payment by the success-biased learners, which could include deeds such as 

gifts and offspring care. This deference leads to the creation of a prestige hierarchy, 

which is thought to be another form of Model-based biases (Boyd and Richerson, 1985). 

 

Another strategy to deal with costly skills is to copy the behaviours, skills, and strategies 

of the majority. This mechanism of copying a behaviour after considering its frequency 

in the population over all the individuals is termed as conformity bias. As it depends on 

the number of individuals displaying a skill, or trait, or behaviour in a social group, it falls 

under the umbrella of frequency-dependent biases. While the advantage of conformity-

biased learning is apparent in information-poor environments, where it is difficult to 

identify the most successful strategy (sticking to the majority variant of the trait implicitly 

has the aggregation of all the knowledge and experience of the other members in the 

community), there are a few disadvantages. First, and most obviously, a high frequency 
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variant of a trait does not imply that it is successful. Second, if conformity bias is 

practiced by all the learners, there is no scope for exploration of alternative strategies or 

behaviours, thus bringing the adaptation and cultural evolution to a halt (Henrich and 

Boyd, 1998). 

 

Although several theoretical studies in the field of cultural evolution assume that mating 

of the individuals in a group is completely random, multiple studies have shown that 

individuals select their partners with similar phenotypes, including education level, 

height, and eye colour (Domingue et al., 2014; Laeng et al., 2007; Keller et al., 2013). 

Hence, the phenomenon of assortative mating is a factor that needs to be considered 

while constructing models related to cultural evolution. Positive assortative mating  

(homogamy) occurs when individuals of a similar phenotype tend to mate more often 

than expected by chance, whereas negative assortative mating is the term used when 

dissimilar phenotypes mate more often than expected by chance (Burley, 1983). This 

phenomenon has been shown to occur across taxa including birds and fishes in addition 

to humans (Fernö and Sjölander, 1976; Cooke et al., 1976). Analytical models have 

shown that assortative mating can increase the genotypic and phenotypic variation in 

populations (Feldman, 1977; Rice et al., 1978). It has also been shown to influence the 

dynamics and spread of cultural traits in a population that are generally rare in 

populations (Creanza et al., 2012; Creanza and Feldman, 2014). In short, these studies 

indicate the fact that assortative mating is pertinent to building realistic models of 

cultural transmission and evolution. 

 

In this project, we aim to construct a model that tests certain results from the literature 

and offer novel insights whilst trying to fill the blanks in gene-coevolutionary theory. We 

have attempted to incorporate various kinds on interactions between the organism’s 

genotype, its extended phenotype, and the effects it has on the environment, leading to 

modified selection pressures in the subsequent generations. Our model is 

fundamentally a modification of the Wright-Fisher model where we consider haploid, 
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asexual populations of constant population size, which exist in discrete generations. 

Additionally, I look at the effect of the difference in evolution of systems when the 

relative contributions of the organism’s phenotype and the extended phenotype are 

changed. This study is done over an extended parameter space of the coefficients that 

govern the contributions of the phenotype values mentioned above.    

 

In the second part of my thesis, I model individuals with a sexual system of 

reproduction, in an attempt to combine learning biases and assortative mating to 

observe the dynamics of evolution of cultural traits. Using this paradigm, I aim to study 

the adaptive strategies that arise when a population with an array of phenotypes for 

mate specificity (i.e. how picky an individual is while choosing its mate) and fecundity is 

coupled with learning biases of different types and intensities. The model concerns itself 

with a sexual system where all the individuals are polygamous. Further description of 

the model is given below in the Materials and Methods section.  
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Methods 

 

All the simulations were done using Python 2.7 programming language and related 

modules. Graphs have been plotted using SigmaPlot 11.0 and MatPlotLib. 

 

Model Description: 

 

The model was constructed in order to study the effects of positive and negative 

interactions between an individual’s inherent phenotype (generated from the underlying 

genotype) and the extended phenotype, in a population of constant size across 

generations. 

 

Individual-Based Modelling techniques are used. Every individual in the population is 

defined by two parameters: an inherent phenotype value (henceforth ‘O’) and an 

extended phenotype value (henceforth ‘E’). These O and E values represent a gradient 

of levels that directly contribute to the fecundity of the individual in the following 

generation. The fecundity of an individual is a linear function of O and E values, scaled 

by coefficients (c1 and c2) that determine the weight of each contributing component. In 

addition, to make the simulations more realistic, we factor in the contribution of the 

external environment. This value of the environmental resources (henceforth ‘env’), 

depending on the situation we aim to model, can either remain constant or can vary 

from generation to generation. The different cases will be detailed in the coming 

paragraphs. The fecundity function is defined as: 
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For positive interaction: fecundity =  

 

 

a) env = value of the environment, wherein a higher value would imply a richer 

environment with greater resources hence increasing the fecundity of each individual. 

b) c1, c2 = coefficients that determine the contributions of O and E respectively 

c) o, e = Values of O and E as defined earlier 

 

For negative interaction: fecundity = 

 

 

The resultant fecundity of individual once calculated feeds into the number of offspring 

with the same genotype, which comprise the next generation. The model assumes a 

Wright-Fisherian population. Using the fecundity function, the number of offspring for 

each individual is determined and the relative probabilities of the number of each 

individual’s offspring are calculated. Implicitly, the O and E values determine the relative 

number of offspring that each individual will have going into the next generation. 

The coefficient of ‘e’ in the model is constructed in a more complicated way simply to 

reduce the speed of evolution of the system. If the rate of fixation is too quick, the 

interesting dynamics occurring in the intermediate stages of the system’s evolution is 

harder to track. In essence, it can be thought of as a single coefficient, say ‘c3’ whose 

range of values is dissimilar to c1. 

 𝑒𝑛𝑣 ∗   𝑐1 ∗ 𝑜 +   
𝑐2

𝑐1+𝑐2
 ∗ 𝑒   

 𝑒𝑛𝑣 ∗   𝑐1 ∗ 𝑜 −   
𝑐2

𝑐1+𝑐2
 ∗ 𝑒   
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Additionally, the question of units does not have to arise as coefficients of both ‘o’ and 

‘e’ can be thought of scaling factors of their relative contributions to fecundity of an 

individual.  

 

Variations in the model: 

 

1. Tweaking of the environment (env) component: 

1. Constant environment: The simplest simulations were run using an 

environment component that remained constant across generations. 

Biologically, this means that there was a constant replenishment of resources 

in the environment and usage of resources by individuals in every generation 

did not reduce the fecundity of the offspring in the next generation. 

2. Temporally changing environment: Comparatively more realistic model, 

where two other parameters were used to replicate the effects of resource 

utilization by the population and subsequent reduction in resource amount, 

leading to lower fecundity among individuals in the later generations. Two 

parameters called ResAct and ResMax are defined. ResAct is defined as the 

product of the number of individuals times the sum of the means of the 

organism phenotype values and extended phenotype values in the 

population. ResMax is defined as the product of number of individuals and the 

sum of the maximum values of the organism phenotype and extended 

phenotype present in the population. The ratio of ResAct to ResMax is termed 

‘harm’ and the value of the ‘env’ parameter for a generation is simply 1.0 – 

(harm).  

a) ResMax = Carrying capacity of environment, i.e., if all the O-E pairs were 

(max(o), max(e)). Mathematically, N*{max(o) + max(e)} 

b) ResAct = Actual Σi(oi + ei) in a given generation where ‘o’ and ‘e’ are the 

organism phenotype and extended phenotype values, respectively 
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c) Harm = ResAct / ResMax 

d) env = 1 – Harm 

The effect of the individuals in a population is hence taken into consideration 

using this modification in the value of the environment. Biologically, this 

means that an individual with higher levels of fitness makes greater use of 

resources present hence increasing its fecundity, while at the same time 

reducing the resources present in the environment for other individuals. 

3. Persistence and effects of previous generations: In real life, the environment 

is not unique value for every generation but rather a product of the effects of 

populations that existed in previous generations as well. To account for such 

effects the mean of ‘env’ values of the penultimate and current generations 

are considered 

2. Mutations: 

1. Mutation of organism’s inherent phenotype and extended phenotype: In this 

case, there is a mutation in the level of fitness of an individual, both in its 

extended and inherent phenotype value. There was a 0.5 probability that a 

mutation could happen to the O or E value, which could change it to one level 

higher or lower every generation. Currently, we have limited the ability to 

mutate in only small steps above and below the current value of the 

individual’s phenotype values. 

2. Mutation of the organism’s phenotype only: Similar to the previous case, 

except here, the value of the extended phenotype for an individual remains 

constant with time. 

 

This model can be visualized for simplicity’s sake in the form of an algorithm as shown 

below 
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As an extension of this study, the effect of the relative contributions of the O and E 

values on the population-level metrics was observed. In these simulations, the x and y 

axes are the values of ‘c1’ and ‘c2’ which are the coefficients that govern the 

contributions of the O and E values, which are both variables on which an individual’s 

fecundity function depends, while the z-axis represented the dependent variable under 

consideration (val_org, val_ext, etc.). The range of c1 (and c2) varied from 1.0 to 10.0 

with a step size of 1.0. This meant that the parameter space consisted of a hundred 

different (c1, c2) combinations, for each of which, there existed a value of the parameter 

under consideration. Four different cases were considered and comparisons were 

drawn between them: 

1. Positive interaction, non-heritable environment, and absence of mutations 

2. Positive interaction, heritable environment, and presence of mutations 
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3. Negative interaction, non-heritable environment, and absence of mutations 

4. Negative interaction, non-heritable environment, and presence of mutations    

 

Cultural evolution and the impact of assortative mating and learning biases 

The second part of the simulations examines the impact of mating and biases in the 

learning of cultural traits. I attempt to compare the difference in evolutionary trajectories 

whilst comparing populations with random versus assortative mating, both in the 

presence and absence of biases. As in the previous set of simulations, Individual Based 

Modelling techniques were used. 

 

Derived from the previous model, every individual in the population is represented by an 

array of two elements: the first element being the value of the cultural trait is essentially 

a direct measure of its fecundity, whereas the second element measures the 

“specificity” of the individual with respect to its mate selection. In other words, a large 

value of the second element would imply that the individual is willing to mate with 

individuals who have very dissimilar cultural trait values. The addition of learning biases 

to this model further complicates the evolutionary dynamics in this model. All 

simulations are carried out with replicate size of 10. 

 

1. Assortative Mating: An individual ‘I’ is conceptualized as an array [C,V], where ‘C’ 

stands for the value of the cultural trait, and ‘V’ represents the degree of 

specificity in mate preference by the individual. Thus, if an individual has values 

of C as ‘c’ and V as ‘v’, the individual would be willing to mate with all individuals 

whose C value is within the range from ‘c-v’ to ‘c+v’. Naturally all these values 

are bounded by the lowest and highest values of C assigned in the simulations. 

This would mean that individuals with lower V values are pickier about choosing 

their mates than an individual with a higher V value. This range of V values 
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creates a variance in mating preferences that can potentially have an impact on 

the evolutionary trajectories of the cultural trait in the population. In such a model, 

random mating can be thought of as a special case, in which there is only one V 

value, which is equal to the value of the maximum C value in the population. 

2. Biases: Two important learning biases are incorporated in the model: Conformity 

bias and Novelty bias. Although they fall under the broader umbrella of frequency 

dependent biases, they are vastly different from each other. Conformity bias, as 

defined earlier, is the mechanism of copying a behaviour of the highest frequency 

in the population. Novelty bias on the other hand is the exact opposite of it. In this 

case, offspring in the next generation look to learn behaviours that are very 

limited in number in the population. To model this particular phenomenon, it is 

essential to introduce an element that captures a cultural trait’s frequency in the 

population. Hence a factor ‘d’ is introduced to the function that determines the 

value of the cultural trait of a learner i.e. offspring of the next generation. The 

product of the factor ‘d’ and the difference between the most or least present trait 

in the population (depending on the bias modelled) and the mid-parent value of 

the trait for ‘C’(MPV) is then added/subtracted (depending on the C value of the 

individual under consideration and its distance from the most or least frequent 

trait in the population depending on the bias modelled).  A larger value of ‘d’ can 

be thought of as a greater push/pull towards the most/least frequent trait 

(depending on the bias) which in turn can potentially alter the rate of adaptation 

and dynamics of the selection of cultural traits in the population.      

Mathematically, for conformity bias: 

 Ct+1 = MPV ± d * |CMAX frequency – MPV| 

Whereas, for novelty bias: 

Ct+1 = MPV ± d* |CMIN frequency – MPV| 

Given the two phenomena being modelled, the following combinations of mating and 

bias that can be studied: 
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1. Random mating and no bias: The most basic case in which every individual can 

mate with every other individual and no effects of bias are considered. 

2. Random mating with biases: The case where there is a population-level influence 

on the cultural trait value of an individual, but effects due to mate preference are 

not visible due to random mating. 

3. Assortative mating without biases: In this case, there is no effect of learning 

biases, thus making the system’s evolutionary trajectory a function of purely mate 

preferences of individuals in the population. 

4. Assortative mating with biases: This case considers the effects of both mate 

preference and learning biases, and any potentially counter-intuitive results that 

may arise due to the interplay of these two factors.   

To study the dynamics of the system in the cases with different mating patterns and 

learning biases it is essential to define a metric that allows for the quantification of the 

oscillations observed in the system. The metric that allows us to make this quantification 

is called Fluctuation Index (FI). A parameter with lower fluctuations in its value over a 

period of time will have a lower FI whereas a greater fluctuation in a series of values will 

lead to a higher FI. It is defined as follows: 

 𝐹𝐼 =
1

𝑇∗�̅�
∗ ∑ |𝑁𝑡+1 − 𝑁𝑡|

𝑇−1
𝑡=0  

Where, 

�̅� is the average of all the values of in the set (in this case, the set of C values) 

T is the total number of generations 

Nt is the tth value in the set of C values.  

 

Parameters for tracking evolution 
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To the study the evolution of the system, it is vital to have certain well-defined, pertinent 

parameters whose values indicate the changes in the system with time. The following 

are the parameters that are tracked in our model which help us analyse how evolution is 

progressing in our construct: 

1. val_org: The population mean of the organism phenotype value in a particular 

generation. This value is saved in a list every generation for the period of 

simulation. In the case of the cultural evolution simulations, this parameter also 

acts as the value of fitness. 

2. val_ext: The population mean of the extended phenotype value in a particular 

generation. This value is saved in a list every generation for the period of 

simulation. 

3. marg_fit_org: This parameter measures the fitness of every individual in the 

population, which is equal to the non-normalized value of the fecundity function 

with each individual’s corresponding O and E values. The mean over the entire 

population is taken for each generation and this is plotted against time to act as 

a measure of evolution. 

4. shan_ind_org: This parameter determines the Shannon Index of the 

population’s range of organism phenotype values. Shannon Index is a measure 

of diversity in a population and is given by the formula S = ∑(pi*ln(pi)), where ‘i’ 

is a counter starting from 1 and going to ‘x’, with ‘x’ being the number of unique 

values of O in the population and pi is the probability of occurrence of the ith 

value in the population. The Shannon Index is calculated every generation and 

added to a list. 

5. shan_ind_ext: This parameter determines the Shannon Index of the 

population’s range of extended phenotype values. Shannon Index is a measure 

of diversity in a population and is given by the formula S = ∑(pi*ln(pi)), where ‘i’ 

is a counter starting from 1 and going to ‘x’, where ‘x’ is the number of unique 
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values of O in the population and pi is the probability of occurrence of the ith 

value in the population. The Shannon Index is calculated every generation and 

added to a list. 

6. unique_combos: This parameter tracks number of unique combinations of 

organism phenotype and extended phenotype values in the population in a 

particular generation and adds it to a list which contains the number of unique 

combinations present in every generation. 
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RESULTS AND DISCUSSION 

 

All the simulations are run for 200 generations as we have observed that this is more 

than enough time for the populations to reach fixation and this is displayed in our 

parameter values obtained over time. Each of the above mentioned parameters have 

been plotted with respect to time for all different combinations of environment and 

mutation possibilities mentioned above. 

In addition, analysis has been done for the parameter space of c1 and c2 ranging from 

values 1 to 10 with unitary step size. This means that the parameters have been plotted 

with respect to two axes each of 10 values i.e. 100 coordinates with their respective 

parameter value in a particular generation. This is done for all 200 generations 

simulated. 

 

The results obtained by the simulations can be classified into two different sections 

 

Key for parameters: 

1. val_org: The population mean of the organism phenotype value in a particular 

generation. 

2. val_ext: The population mean of the extended phenotype value in a particular 

generation. 

3. marg_fit_org: This parameter measures the fitness of every individual in the 

population. 

4. shan_ind_org: This parameter determines the Shannon Index of the 

population’s range of organism phenotype values. 
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5. shan_ind_ext: This parameter determines the Shannon Index of the 

population’s range of extended phenotype values. 

6. unique_combos: This parameter tracks number of unique combinations of 

organism phenotype. 

 

Key for graphs: 

 

Each graph has 3 parts determining whether the environment is herited ‘h’ or non-

herited ‘nh’ followed by whether the environment is changing ‘em’ or remains constant 

‘e1’ and finally whether there is mutation of O and E values ‘m’ or no mutation ‘nm’ or 

simply mutation of the organism’s phenotype value (O) ‘om’ 

For example: nhe1m in the graph would mean that the environment is non-heritable, 

and there is only single environment and there is mutation in the system. 

 

 

Results from simulations with negative interaction between Organism and 

Extended phenotype (where c1, c2 = 1.0) 

Fig 1a 
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Fig 1b 

 

 

 

 

 

 

 

 

Fig 1c 
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Fig 1d 
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Fig 1f 
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Fig 1f 

 

 

 

 

 

 

 

 

 

When there is mutation of O and E, number of unique combinations does not drop to 

zero. This means that there is still some diversity after 200 gen. Mutation acts to reduce 

the strength of selection. This is true in all environments. However the effect of only 

mutation of O values, although reducing the number of unique combinations, does not 

allow complete selection of one particular phenotype in the population as seen in the no 

mutation case. 

Mean val_org (level of organism) reaches maximum value of 10 when there is no 

mutation. However, when there is mutation, this does not happen and mean val_org 

fixes at a value lower than 10. Mutation of only O values leads to fixation of average 

value of the parameter at some value between completely mutating individuals (O and E 

mutation) and no mutation case. There is an opposite trend for val_ext (level of 

extended phenotype) where with mutations, val_ext mean value is higher. However 

here, the presence of mutation of O values does not present any difference in 

parameter values as the results are virtually the same as the no mutation case. This is 

true for single and changing environment, both heritable and non-heritable. 
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In the constant environment case, the introduction of mutations seems to reduce the 

fitness of the individuals in the population. Mutating only the O values also caused 

reduction in the fitness but the effect was less dramatic than mutating both O and E 

values. However, in the case of changing environments, mutations do help in increasing 

the fitness of the individuals regardless of whether the environment was inherited or not. 

This implies that the presence of mutations injects diversity in the population allowing it 

to survive in a rapidly degrading environment (env = 1-harm) thus increasing fitness. 

While only O values were mutated, fitness did increase in changing environments but 

the effect was not as much as the case where O and E values were both mutated. In 

the single environment case, the mutations may serve to act in a direction opposite to 

selection hence slowing it down. 

Results from simulations with positive interaction between Organism and 

Extended phenotype (where c1, c2 = 1.0) 

Fig 2a (above) and 2b (below) 
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Fig 2c 

 

 

 

 

 

 

 

 

 

 

Fig 2d 
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Fig 2e 

 

 

 

 

 

 

 

 

 

 

Fig 2f 
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As expected, val_ext and val_org both increase with time but surprisingly; marg_fit 

(fitness) reduces even though both the components it is dependent on are selected for 

higher values. In the single environment case, mutations (both variations i.e. simply O 

mutations and the O and E mutation case) help increase the fitness values over time. In 

the single environment case, the only O mutation case does better than mutating both O 

and E. Even in the changing environment case, mutations help (although the general 

trend of fitness values is reducing) but in this case, mutation of both parts of the 

individual’s attributes aids in higher fitness values than simply mutating O values. All 

these are regardless of whether environment is heritable or not. In absence of mutation, 

fitness reduces the most, regardless of the environment faced.    

Fixation does not happen, quite obviously, in the cases where the mutation is switched 

on. But unlike the Negative Interaction cases, fixation does not happen in the 200 

generations observed even when mutation is switched off (although it does get close). 

The number of unique individuals when only O values are mutated is right in between 

the number of unique individuals that are present in the presence and complete 

absence of mutations as is logically expected. 

In all the cases (most visible in the single environment case), switching on mutation 

does tend to reduce the depression of fitness values of the individuals with time with 

respect to the mutation 'off' case. 

Therefore, in a nutshell, the qualitative change of fitness with mutations switching 'on' is 

the same for both Positive and Negative interactions except in the single environment 

case where the result is opposite. 

When mutations are switched on, the val_ext and val_org means increase with time as 

expected but do not reach the maximum possible value as is the case when mutations 

are off. This appears really interesting and can explain the increase in fitness in 

changing environments (like in the Negative interactions case). 



37 
 

Comparing the rate of reduction of Shannon Index between Positive and Negative 

interactions, it appears that rate of fixation is faster for both Organism and Extended 

phenotype values in Negative Interaction cases for all cases (mutation and non-

mutation cases). Also, interestingly, while in the Negative Interaction case, mutation of 

simply O values still allows for fixation over time, but in the Positive Interaction cases, 

the Shannon Index value fixates to a non-zero value even after 200 generations. 

 

The above model was used to study the effect of the contributions of the organism 

phenotype and extended phenotype (c1, c2) to the fecundity of an individual in the 

population and on the other parameters we have constructed to study the evolution of 

the system under consideration. In addition, we have extended our study to look at an 

extended parameter space of (c1,c2) ordered pairs on the metrics used for quantifying 

evolution. In simpler terms, this means that we are tracking the previously described 

parameters for different values of (c1,c2) pairings to see if there are any general or 

unique trends that are observable using our simulations. As mentioned in the Methods 

section, there are four different cases that are being considered and the results 

garnered are summarized below. I have varied the values of c1 and c2 from 1.0 to 10.0 

with a step size of 1.0 which gives a total of 100 unique combinations of (c1,c2) 

pairings. 

 

Results: 

 

1. Positive interaction, non-heritable environment, and absence of mutations:  

 Marg_fit_org: Simply due to the way the fecundity function is defined in the 

model, the populations with higher values of c1 and lower values of c2 have a 

higher starting value of the parameter under consideration i.e. marg_fit_org. 

However, at the end of 200 generations, it is observed that the value of the 

parameter goes to nearly 0 in the cases where c1 is at its lowest (c1 = 1.0) and 
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where c2 is at its highest (c2 = 10.0). The general trend seen is that the 

marg_fit_org of the population, regardless of the (c1,c2) combination seems to 

be going down over time. The highest value of the parameter after 200 

generations as expected is when (c1,c2) = (10.0,1.0). This reduction in the 

parameter is due to both the ‘val_org’ and ‘val_ext’ values nearing the optimum 

value which increases the resource used by the population every generation 

which decreases the ‘env’ which is part of the fecundity function. 

 Shan_ind_ext: The highest value of Shannon Index (SI) of the set of values of 

the extended phenotype after 200 generations (implying greatest diversity in 

population) was for (c1,c2) = (10.0,1.0). This result can attributed to the minimal 

contribution (or impact) of c2 to the value of the fecundity function hence 

reducing the strength of selection on the val_ext parameter. This would lead to 

greater variation existing in the population and this is observed in the values 

resulting from the simulation. Using similar arguments we can explain the result 

that the (c1,c2) combination with the lowest SI was (1.0, 10.0). Qualitative 

decreasing trend observed over time is similar to the way in which the 

‘marg_fit_org’ parameter reduced. 

 Shan_ind_org: The highest value of Shannon Index (SI) of the set of values of 

the extended phenotype after 200 generations (implying greatest diversity in 

population) was for (c1,c2) = (1.0,10.0). The lowest value of SI was observed to 

be (c1,c2) = (10.0,1.0). This result can be attributed to the high differential in 

selection coefficient exacerbated by the extremely high value of c1 (for instance 

10.0) which increases the strength of selection causing a reduction in variation. 

This is observable in this case as the mutations in this simulation are turned off. 

Qualitative decreasing trend observed over time is similar to the way in which the 

‘marg_fit_org’ parameter reduced. A pertinent point to note is that the 

contribution of the organism’s phenotype to fecundity is always going to be 

significantly greater than the extended phenotype’s contribution regardless of the 

value of c1 and c2. This means there is always going to be selection of some 

significant strength. This is apparent as the difference in SI detailed in the earlier 
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part of this paragraph occurs during the early part of the simulation (~30-50 

generation) and tends to 0 for all combinations of c1 and c2. This is especially 

important to explain the behaviour of the ‘unique_combos’ parameter. 

 Unique_combos: Although the initial loss of variation in all populations is uniform, 

after the simulations have run for 200 generations, it is observed that there are a 

greater number of unique combinations for parameter values where c1 is high 

and c2 is low i.e. in the most extreme scenario (c1,c2) = (10.0,1.0). This can be 

explained by invoking arguments already presented to explain the trends of 

Shannon Indices of both, the organism and extended phenotype values. The 

reasons are twofold: a) The coefficient of ‘O’ values is always going to be high 

causing strong selection to take place as far as organism phenotype values are 

considered which immediately reduces variation along that axis. b)The ‘E’ values, 

however, face weaker selection due to lower coefficient values hence providing 

variation in the population. This explains why the most number of unique 

combinations exist for low c1 values and high c2 values. 

 Val_ext: In general, the trend is one in which the parameter value is increasing. 

The maximum value of this parameter occurs for (c1,c2) = (1.0,10.0). This agrees 

with our prediction as in this particular case i.e. a high c2 value, the contribution 

of ‘E’ value to the fecundity is high and hence there is strong selection for that 

particular trait. This justification is lent further credence as it is observed that the 

‘val_ext’ parameter increases slowly with increasing c1 values as this means that 

the relative impact of the coefficient of the extended phenotype is reduced hence 

reducing the strength of selection on that trait.    

 Val_org: As expected, val_org fixates at the end of 200 generations regardless of 

the (c1,c2) pair. However, faster fixation happens with increasing values of c1 

peaking at c1 = 10.0. There is also a slight dip in rate of fixation with increasing 

c2 values which is to be expected given the fact that the contribution of the 

coefficient of ‘E’ values increases with regards to the fecundity function. 

2. Positive interaction, heritable environment, and presence of mutations 
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 Marg_fit_org: The qualitative trend of parameter values over time resembles the 

case where no environment is inherited and there is no mutation in that it 

reduces over all combinations of (c1,c2). However, the degree to which it 

reduces is slightly different. The rate of reduction of the parameter is much lesser 

in this case. After 200 generations, the value of the parameter across all 

combinations of c1 and c2 is higher than its counterpart in the case where there 

is no environment inherited and there are no mutations. (Upper row: No mutation, 

no heritable environment at generations 1 and 200 from left to right. Lower row: 

With mutation and inherited environment at generations 1 and 200 from left to 

right) 

Fig 3a (i – ii above, iii – iv below) 

 

 



41 
 

 Shan_ind_ext: There is a general reduction in the value of Shannon Index (SI) in 

the population of the extended phenotype over time just as expected due to 

selection. It is observed that SI remains high in cases where the range of c2 

values are on the lower side and c1 values are on the higher side (the most 

revealing example naturally being (c1,c2) = (10.0,1.0). However, unlike the 

previous case, the presence of mutations in this scenario prevents the value of SI 

from ever going to 0 by injecting variation in every generation. 

 Shan_ind_org: The highest value of Shannon Index (SI) of the set of values of 

the extended phenotype after 200 generations (implying greatest diversity in 

population) was for (c1,c2) = (1.0,10.0). The lowest value of SI was observed to 

be (c1,c2) = (10.0,1.0). The value of the parameter does not go to 0 as in the 

earlier case due to the presence of mutations which maintains variation in the 

population. Over 200 generations there is some reduction in SI but its effect is 

counteracted by the presence of mutations. 

 Unique_combos: This pattern observed over time is markedly different from the 

previous case. There is a uniform decrease in unique individuals over the 

parameter space but as evidenced by the Shannon Indices of the organism and 

extended phenotype, variation continues to exist due to the presence of 

mutations in the system.(For 15 and 65 gens)(Upper row: No mutation, no 

heritable environment, Lower row: Mutation and inherited environment) 

Fig 3b (i – ii above, iii – iv below) 
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 Val_ext: At the end of the run, the parameter is highest for low values of c1 and 

fairly consistent across the range of c2 values. This is expected given in 

scenarios where c1 is low, the coefficient of ‘E’ values in the simulation have a 

greater contribution to the fecundity of an individual. The value of the parameter 

does not fix to the maximum possible value unlike the case where there is no 

mutation and no herited environment. Hence, the maximum value of the 

parameter is lesser than the maximum possible attainable as the selection and 

mutation act as opposing forces counterbalancing each other. This is further 

visible when the Shannon Indices of the populations are observed.(Left : No 

mutation, no heritable environment, Right: With mutation and inherited 

environment) 

Fig 3c (i – ii, from left to right) 
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 Val_org: The trajectory is similar to that of ‘val_ext’ in that there is no fixation of 

the parameter over time. Also, as expected, the rate of reaching the maximal 

possible value of the parameter is fastest in the case where (c1,c2) = (10.0,1.0). 

Here as well, the strength of selection is counteracted by the introduction of 

mutations which maintains variation in the population that selection looks to 

reduce. 

3. Negative interaction, non-heritable environment, and absence of mutations 

 Marg_fit_org: Unlike observed in the cases of positive interaction, Marg_fit_org 

increases with time. This implies that the average fitness in the population is 

actually increasing. This difference is observed because ‘val_ext’ fixates to a 

lower value over time. This reduces the ‘harm’ parameter which increases value 

of ‘env’ (defined as 1-harm) and directly impacts the value of the parameter 

under consideration. The maximum value of the parameter as expected is 

present for higher values of c1 as it contributes significantly to the fecundity 

function. The values of ‘marg_fit_org’ is also higher for higher values of c2 as it is 

observed that ‘val_org’ fixates to lower values for higher values of c2. 

 Shan_ind_ext: The highest value of Shannon Index (SI) of the set of values of 

the extended phenotype after 200 generations (implying greatest diversity in 

population) was for (c1,c2) = (10.0,1.0). This result can attributed to the minimal 

contribution (or impact) of c2 to the value of the fecundity function hence 

reducing the strength of selection on the val_ext parameter. This would lead to 

greater variation existing in the population and this is observed in the values 

resulting from the simulation. Using similar arguments we can explain the result 

that the (c1,c2) combination with the lowest SI was (1.0, 10.0). Qualitative 

decreasing trend observed over time is similar to the way in which the 

‘marg_fit_org’ parameter reduced. 

 Shan_ind_org: Due to the strength of selection on ‘O’ values due to the way the 

model is set up, fixation of the optimal value of ‘val_org’ happens very quickly 



44 
 

and across all (c1,c2) combinations. Hence this particular parameter goes to 0 

overall (c1,c2) values with the first 150 generations. 

 Unique_combos: The general trend over the parameter space is that the 

variation reduces due to selection over generations. As the reduction in variation 

in ‘O’ values is uniform, the reduction in unique combinations of ‘O’ and ‘E’ value 

individuals depends on the rate of reduction of variation of ‘E’ values in the 

population which is indicated by the ‘shan_ind_ext’ parameter. The highest value 

of Shannon Index (SI) of the set of values of the extended phenotype was for 

(c1,c2) = (10.0,1.0) and this pattern is mirrored in the general trend observed in 

the ‘unique_combos’ parameter. 

 Val_ext: Unlike the positive interaction scenario, the ‘val_ext’ parameter is 

selected for lower values. This is due to the fact that smaller values of ‘E’ for 

individuals, in negative interaction cases, increases their fecundity value allowing 

them to have greater fitness. In fact, the maximum ‘marg_fit_org’ for negative 

interactions is higher than it is for positive interactions which is a very 

counterintuitive result which stems from this difference in selection of optimal 

‘val_ext’ values between the two types of interactions. 

 Val_org: In contrast to ‘val_ext’ values, ‘val_org’ values fixate to the maximum 

possible value regardless of the (c1,c2) pair similar to the positive interaction 

case of no mutation. The rate of fixation of values is uniform across all (c1,c2) 

pairs. 

4. Negative interaction, heritable environment, and presence of mutations 

 Marg_fit_org: Unlike observed in the cases of positive interaction, Marg_fit_org 

increases with time. This implies that the average fitness in the population is 

actually increasing. This difference is observed because ‘val_ext’ fixates to a 

lower value over time. This reduces the ‘harm’ parameter which increases value 

of ‘env’ (defined as 1-harm) and directly impacts the value of the parameter 

under consideration. The maximum value of the parameter as expected is 

present for higher values of c1 as it contributes significantly to the fecundity 
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function. The values of ‘marg_fit_org’ is also higher for higher values of c2 as it is 

observed that ‘val_org’ fixates to lower values for higher values of c2. However, 

the increase in fitness is not as much as it is in the case of negative interaction in 

the absence of mutations. This is because mutations reduce the efficacy of 

selection and hence ‘val_ext’ parameter does not go to lower values. This in turn 

reduces the fecundity of the individuals in the population. Another reason for the 

reduced value of the parameter is the fact that the ‘val_org’ reaches a lower 

maximum due to mutation weakening the effects of selection. (Upper row: No 

mutation, no heritable environment at generations 1 and 200 from left to right. 

Lower row: With mutation and inherited environment at generations 1 and 200 

from left to right) 

Fig 4a (i – ii above, iii – iv below) 
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 Shan_ind_ext: The highest value of Shannon Index (SI) of the set of values of 

the extended phenotype after 200 generations (implying greatest diversity in 

population) was for (c1,c2) = (10.0,1.0). This result can attributed to the minimal 

contribution (or impact) of c2 to the value of the fecundity function hence 

reducing the strength of selection on the val_ext parameter. This would lead to 

greater variation existing in the population and this is observed in the values 

resulting from the simulation. Using similar arguments we can explain the result 

that the (c1,c2) combination with the lowest SI would be the ones where c1 

values are extremely low and c2 values are extremely high. Qualitative 

decreasing trend observed over time is similar to the way in which the 

‘marg_fit_org’ parameter reduced. These values do not go to 0 for any (c1,c2) 

combination due to the introduction of mutations every generation which is the 

cause for variation in the population. 

 Shan_ind_org: Due to the strength of selection on ‘O’ values due to the way the 

model is set up, fixation of the optimal value of ‘val_org’ happens very quickly 

and across all (c1,c2) combinations. Unlike the ‘no mutation’ case, this particular 

parameter does not go to 0 due to mutations being turned ‘on’ injecting variation 

into the population. (Upper row: No mutation, no heritable environment after 15 

and 65 generations from left to right, Lower row: Mutation and inherited 

environment after 15 and 65 generations from left to right) 

Fig 4b (i – ii above, iii – iv below) 
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 Unique_combos: The general trend over the parameter space is that the 

variation reduces due to selection over generations. This effect is not seen as 

much in this particular case as mutations are ‘on’. As the reduction in variation in 

‘O’ values is uniform, the reduction in unique combinations of ‘O’ and ‘E’ value 

individuals depends on the rate of reduction of variation of ‘E’ values in the 

population which is indicated by the ‘shan_ind_ext’ parameter. The highest value 

of Shannon Index (SI) of the set of values of the extended phenotype was for 

(c1,c2) = (10.0,1.0) and this pattern is mirrored in the general trend observed in 

the ‘unique_combos’ parameter. The parameter value also never goes to 0 in 

any combination of c1 and c2 values due mutations providing variation every 

generation. 

 Val_ext: Lower values are selected in this case much like the case where there 

were no mutations. In negative interaction cases, the smaller values of the 

extended phenotype component increases the individuals’ fecundity value 

allowing them to have greater fitness. The presence of mutations counteracts the 

effect of selection and hence this parameter’s values do not go as low as they did 

in the ‘no mutation’ case. This in turn reduced the ‘marg_fit_org’ parameter of the 

population for the entire set of (c1,c2) values as a higher average ‘val_ext’ value 

in the population reduced the fecundity of the individuals. (Left : No mutation, no 

heritable environment, Right: With mutation and inherited environment. After 200 

generations) 

Fig 4c (i – ii, left to right) 
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 Val_org: This parameter increases but fixes at a lower value than that of the ‘no 

mutation’ case. As expected the effect of mutations counters the effect of 

selection. The increase of the parameter is uniform over the entire parameter 

space.   

 

Part 2 

 

The second part of the simulation work involved the study of the effects of two different 

types of mating (random and assortative) coupled with two types of frequency 

dependent biases (conformity and novelty). 

 

The results obtained will be considered by looking at the effect of the factor ‘d’ which 

can be biologically thought of as the strength of adoption of a particular cultural trait 

from the population. A higher value of ‘d’ would imply a greater push or pull in the 

direction of the required most/least common trait (depending on the type of bias) hence 

implying a greater magnitude of change in the individual’s cultural trait value every 

generation as compared to a case with a smaller ‘d’ value when all other parameters 

are considered equal.  
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Following this will be an analysis of the results from the Bias axis. For a randomly 

mating population, the individual effects of biases will be compared to each other 

highlighting the difference in their qualitative and quantitative impact on the evolution of 

a cultural trait. 

 

The third part of the results includes the layer of complexity that is assortative mating. 

To look at the impact of assortative mating, it is compared to the results obtained by 

random mating in cases where there is also either type of bias present.  

 

The initial trivial case considered was where purely random mating without any biases 

was simulated. As expected, there is fixation of a particular cultural trait value. In 

addition, the assortative mating case was considered without the impact of any biases. 

 

(Note: All error bars in black and white graphs are Standard Deviations and all error 

bars in colour graphs are Standard error) 

Fig 5 

 



50 
 

As it is already apparent, the C values end up fixing at one particular value and the 

absence of mutations due not induce variation of any sort. The V values also do not 

face any selection unlike the C values (which is the only parameter under selection) and 

hence remain constant through the course of the run. 

Fig 6 

 

In the case of assortative mating, selection happens here with the populations reaching 

a slightly higher fitness value than that of the random mating case. In addition, there is a 

very characteristic hump that appears at the very beginning of selection. There is also a 

concomitant increase in the mean value of V initially before it settles down. This settling 

down of the V value happens at a time similar to the fixation of the C value (and 

therefore fitness) of the population. This hump can be attributed to the effect of initial 

presence of a greater variety of individuals and hence greater ease of partner finding for 

individuals with low V values. The reduction of this variation in time could have led to 

reduction in frequency of individuals with higher C values and lower V values. The rate 

of fixation of the cultural trait takes at least twice as long to fixate in the case of 

assortative mating (13 generations) as compared to the random mating case (7 

generations) in part due to the initial increase of the phenotypic variance as depicted in 
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the graph (the hump). Rice et al. and Feldman et al. have, using analytical models, 

reached the same conclusion and stated that due to the increased correlation between 

mates in the assortative mating case for cultural traits, there is an increase in the 

phenotypic variance in the population (Feldman, 1977; Rice et al., 1978). Several large 

scale experimental studies show a similar result with positive assortment being claimed 

to increase inclusive fitness without additional effort required during reproduction. 

Although the model constructed by me does not consider these factors, hence not 

having a similar hypothesis, the fact that fitness of individuals in the population 

increases due to assortative mating is agreed to in this study (Thiessen and Gregg, 

1980).     

 

1. Impact of the ‘d’ parameter:  The initial trivial cases do not consider the impact of 

the parameter ‘d’ on the dynamics of the system. The values of the parameter 

are as follows: 0.01, 0.05, 0.08, 0.1, 0.5, and 0.8. Following the introduction of 

the ‘d’ parameter in the system the use of the Fluctuation Index metric allowed us 

to quantify the degree of amplitude of fluctuations and further allowed us to look 

at the impact it had on altering the usual evolutionary trajectory which occurred in 

the absence of this parameter. 

(Fig 7 & 8 are present in the next page; above and below respectively) 
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It is apparent that in both types of biases i.e. confirmation and novelty, the increasing 

value of ’d’ increases the amplitude of fluctuations in the system. The ‘d’ values 
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compared here are 0.01 (the lowest) and 0.8 (the apogee) which are the extremal 

values in the simulations. All the FI values for the intermediate values of ‘d’ were below 

the FI of the ‘d’ = 0.8 scenario. To drive home the impact of ‘d’ on the deviation from the 

initial trivial case, a pertinent case where ‘d’ = 0.5 (novelty bias) is shown below  

Fig 9 

 

In all my simulations regarding cultural learning biases, I have assumed the simplest 

case as far the external environment case i.e. ‘env’ = 1 which implies that the resources 

are constant and replenished every generation. This environment is therefore stable 

over time with all the cultural traits having the same spectrum of impact on the fitness of 

the individual. Previous studies have done studies with varying environments temporally 

and drew the conclusion that more stable environments favour the alleles for strong 

conformist transmission. In our case, as the work is done on a phenotypic level, the 

allele refers to a trait (Henrich and Boyd, 1998). Kendal et al. took it a step further and 
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showed that novelty biases have higher mean fitness in a population when the 

environmental variation is extremely low (in our case, it is zero) (Kendal et al., 2009). 

Additional studies have also confirmed the negative relationship between impact on 

fitness of frequency-dependent biases and environment stability (Nakahashi, 2007; 

Wakano and Aoki, 2007). Given below are figures from my model that agree with these 

results 

Fig 10 
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Fig 11 

 

There is a slight increase in values of fitness which agrees with other studies. However, 

I further add that these results are only true for low values of ‘d’ in the case of novelty 

bias. Higher values of ‘d’ on the other hand create large amplitude fluctuations that not 

only prevent fixation of one particular cultural trait but also reduces the mean fitness of 

the population due to degree of contribution towards the push/pull of the individual’s 

phenotype towards the most/least frequent trait regardless of its fitness.  This 

phenomenon is shown for high values of ‘d’ in the case of novelty bias below. 
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Fig 12 

 

Fig 13 
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This phenomenon of oscillations is not seen in the case of conformity bias for the entire 

range of ‘d’ values. A previous study by Efferson et al claims the same result as they 

observed that this particular bias can result in homogeneity of behaviour as induces 

adoption of behaviours most frequent in population and this drives it to fixation. They 

further showed that strong novelty bias can result in oscillatory behaviour as the trait in 

minority is driven to majority, after which it is rejected and hence reduces in frequency. 

Both these predictions made were in the case of a constant environment very much like 

the simulations performed here (Efferson et al., 2008). Shown above is a figure that is 

agreement of the previously mentioned predictions.    

 

2. Impact of the biases: Although it has been shown that the impact of ‘d’ exists for 

both biases, the extent of impact on the fluctuations for both the biases is vastly 

different. In fact, the type of fluctuation is characteristic of the bias.  

Fig 14 
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The FI values for confirmation vs novelty bias are compared for the entire range of ‘d’ 

values (X-axis which is in log scale). It is quite obvious that the impact of the same ‘d’ 

value on a population of individuals that learns via novelty bias is much more (in terms 

of variation of C values from generation to generation) than a population that learns its 

cultural traits via a confirmation bias. The difference, as can be observed, is several 

magnitudes larger, especially as the value of ‘d’ continues to increase.  Once again, to 

show to the difference in oscillations between the two types of biases a comparison of 

two graphs is given for the ‘d’ = 0.8 case 

Fig 15 
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Fig 16 

 

As it can be observed, the fluctuations are much more in the novelty bias case. What is 

also noticeable is the drop-off in the maximum C value that is fixing which in turn directly 

impacts the fitness of the population simply due to the way the system is modelled.  

This drop-off is more prominent in the case of the novelty bias scenario. 

 

3. Impact of the mating type:  Another layer of complexity can be added by 

considering different mating strategies in addition to the biases.  
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Fig 17 

 

In the above graph, comparisons have been made across 3 different types of ‘d’ values.  

In the case of confirmation bias, the type of mating does not have a very significance 

difference as far as FI values go indicating the fluctuations are not too different.  

However, the FI is slightly higher for the assortative mating for lower ‘d’ values and 

higher  FI values for d = ‘0.8’.  
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Fig 18 

 

In the above graph, across all 3 values of ‘d’ the FIs for random mating is higher than 

the FIs of assortative mating. This result is expected however. In the case of the 

confirmation bias, the value of ‘d’ helps push/pull the cultural trait value of every 

individual towards the mode in the population. This push/pull occurs in the direction of 

selection as it is the fittest individual trait that will eventually occur in greater frequency 

in the population. The higher values of FI in the novelty bias scenarios are also to be 

expected as the ‘d’ value pushes/pulls the cultural trait values of individuals in the 

population towards the cultural trait value of the lowest frequency in the population 
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which is in a direction opposite to regular selection as selection drives the population to 

fixation of one particular cultural trait by increasing its frequency with time.   

Conclusions  

 

The importance of considering the effect of cultural traits on evolution has been argued 

for in order to explain several experimental results (Feldman and Laland, 1996; 

Swallow, 2003). This has led to several models hypothesised with various degrees of 

contribution from the cultural part of the system (Cavalli-Sforza and Feldman, 1981; 

Laland et al., 2000; Tooby and Cosmides, 1990) . There exist a few theoretical models 

of cultural evolution in literature which are either analytical in nature and or at times use 

ideas from population genetics to simulate outcomes. In my project I have used 

techniques of Individual Based Modelling (IBM) to tackle this pertinent issue of 

incorporating culture into classical theories of evolution. Although simplistic, my model 

seems to agree with several expected predictions relating to the effects of mutations, 

fluctuating and constant environments, and impact of evolution due to differentially 

weighted contributions of organism and extended phenotype components to fitness of 

individuals. In addition to this, the model provides an interesting result wherein, for a 

given set of conditions, antagonistic interactions between organism phenotype and 

extended phenotype have higher fitness than interactions that add on to each other. 

Although the basal model is simplistic with a linear polynomial in two variables defining 

the fitness function, more complicated dynamics can be obtained with the help of more 

complicated forms to define fitness functions.  

A few modifications to the above constructed model allowed me to study the impact of 

mating types, and types of learning biases on evolution. Several studies have looked at 

assortative mating and its impact on evolution whereas others have looked purely at 

cultural learning biases. However, in nature these phenomena are not as mutually 

exclusive as these models assume them to be. This leads to the significance of my 

model which studies their effects independently and in conjunction with each other. 

Several results obtained agree with predictions from previous studies. In addition, the 
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analysis of Fluctuation Index (FI) provided novel insights into the dynamics of the mean 

of the cultural traits in the population. My results show that increasing the strength of 

push/pull towards the cultural trait value of maximal/minimal frequency (depending on 

the bias) increases the amplitude of fluctuations high enough to impact the mean fitness 

of the population. In addition, the amplitudes of fluctuations are very characteristic of the 

type of learning bias observed in the population. All these results have been obtained 

for very trivial fitness functions dependent only on the value of the cultural trait. It would 

be interesting to study the implications of mating types crossed with learning biases for 

complicated fitness functions as well as fluctuating environments and cases where 

mutations exist. The above sets of results further indicate the importance of cultural 

transmission and further work needs to be done along this interesting avenue of 

research.        



64 
 

References 

   Bergman, A., Feldman, M.W., 1995. On the Evolution of Learning: Representation of 

a Stochastic Environment. Theor. Popul. Biol. 48, 251–276. 

https://doi.org/10.1006/tpbi.1995.1029 

Boyd, R., Richerson, P.J., 1995. Why does culture increase human adaptability? Ethol. 

Sociobiol. 16, 125–143. https://doi.org/10.1016/0162-3095 (94)00073-G 

Boyd, R., Richerson, P.J., 1985. Culture and the Evolutionary Process. 

Boyd, R., Richerson, P.J., Henrich, J., 2011. The cultural niche: Why social learning is 

essential for human adaptation. Proc. Natl. Acad. Sci. 108, 10918–10925. 

https://doi.org/10.1073/pnas.1100290108 

Burley, N., 1983. The meaning of assortative mating. Ethol. Sociobiol. 4, 191–203. 

https://doi.org/10.1016/0162-3095 (83)90009-2 

Cavalli-Sforza, L.L., Feldman, M.W., n.d. Cultural Transmission and Evolution  (MPB-

16), Volume 16 [WWW Document]. Princet. Univ. Press. URL 

https://press.princeton.edu/titles/4409.html  (accessed 3.8.18). 

Cooke, F., Finney, G.H., Rockwell, R.F., 1976. Assortative mating in lesser snow geese  

(Anser caerulescens). Behav. Genet. 6, 127–140. https://doi.org/10.1007/BF01067143 

Creanza, N., Feldman, M.W., 2014. Complexity in models of cultural niche construction 

with selection and homophily. Proc. Natl. Acad. Sci. U. S. A. 111, 10830–10837. 

https://doi.org/10.1073/pnas.1400824111 

Creanza, N., Fogarty, L., Feldman, M.W., 2012. Models of Cultural Niche Construction 

with Selection and Assortative Mating. PLOS ONE 7, e42744. 

https://doi.org/10.1371/journal.pone.0042744 

Domingue, B.W., Fletcher, J., Conley, D., Boardman, J.D., 2014. Genetic and 

educational assortative mating among US adults. Proc. Natl. Acad. Sci. 111, 7996–

8000. https://doi.org/10.1073/pnas.1321426111 



65 
 

Feldman, M.W., 1977. The evolution of continuous variation. II. complex transmission 

and assortative mating. Theor. Popul. Biol. 11, 161–181. 

Feldman, M.W., Aoki, K., Kumm, J., 1996. Individual Versus Social Learning: 

Evolutionary Analysis in a Fluctuating Environment. Anthropol. Sci. 104, 209–231. 

https://doi.org/10.1537/ase.104.209 

Feldman, M.W., Laland, K.N., 1996. Gene-culture coevolutionary theory. Trends Ecol. 

Evol. 11, 453–457. 

Fernö, A., Sjölander, S., 1976. Influence of previous experience on the mate selection 

of two colour morphs of the convict cichlid, Cichlasoma nigrofasciatum  (Pisces, 

Cichlidae). Behav. Processes 1, 3–14. https://doi.org/10.1016/0376-6357 (76)90003-6 

Flinn, M.V., Alexander, R.D., 1982. Culture theory: The developing synthesis from 

biology. Hum. Ecol. 10, 383–400. https://doi.org/10.1007/BF01531192 

Henrich, J., 2001. Cultural Transmission and the Diffusion of Innovations: Adoption 

Dynamics Indicate That Biased Cultural Transmission Is the Predominate Force in 

Behavioral Change. Am. Anthropol. 103, 992–1013. 

Henrich, J., Boyd, R., 1998. The Evolution of Conformist Transmission and the 

Emergence of Between-Group Differences. Evol. Hum. Behav. 19, 215–241. 

https://doi.org/10.1016/S1090-5138 (98)00018-X 

Henrich, J., Gil-White, F.J., 2001. The evolution of prestige: Freely conferred deference 

as a mechanism for enhancing the benefits of cultural transmission. Evol. Hum. Behav. 

22, 165–196. 

Henrich, J., McElreath, R., 2003. The evolution of cultural evolution. Evol. Anthropol. 

Issues News Rev. 12, 123–135. https://doi.org/10.1002/evan.10110 

Hölldobler, B., Wilson, E.O., 1990. The Ants. Springer-Verlag, Berlin Heidelberg. 

Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as Ecosystem Engineers. 

Oikos 69, 373–386. https://doi.org/10.2307/3545850 



66 
 

Keller, M.C., Garver-Apgar, C.E., Wright, M.J., Martin, N.G., Corley, R.P., Stallings, 

M.C., Hewitt, J.K., Zietsch, B.P., 2013. The Genetic Correlation between Height and IQ: 

Shared Genes or Assortative Mating? PLOS Genet. 9, e1003451. 

https://doi.org/10.1371/journal.pgen.1003451 

Laeng, B., Mathisen, R., Johnsen, J.-A., 2007. Why do blue-eyed men prefer women 

with the same eye color? Behav. Ecol. Sociobiol. 61, 371–384. 

https://doi.org/10.1007/s00265-006-0266-1 

Laland, K.N., Brown, G.R., 2006. Niche construction, human behavior, and the 

adaptive-lag hypothesis. Evol. Anthropol. Issues News Rev. 15, 95–104. 

https://doi.org/10.1002/evan.20093 

Laland, K.N., Odling-Smee, F.J., Feldman, M.W., 1999. Evolutionary consequences of 

niche construction and their implications for ecology. Proc. Natl. Acad. Sci. 96, 10242–

10247. https://doi.org/10.1073/pnas.96.18.10242 

Laland, K.N., Odling‐Smee, J., Feldman, M.W., 2001. Cultural niche construction and 

human evolution. J. Evol. Biol. 14, 22–33. https://doi.org/10.1046/j.1420-

9101.2001.00262.x 

Laland, K.N., Odling-Smee, J., Feldman, M.W., 2000. Niche construction, biological 

evolution, and cultural change. Behav. Brain Sci. 23, 131-146; discussion 146-175. 

Odling-Smee, F.J., Laland, K.N., Feldman, M.W., 1996. Niche Construction. Am. Nat. 

147, 641–648. https://doi.org/10.1086/285870 

Rendell, L., Fogarty, L., Laland, K.N., 2011. Runaway cultural niche construction. 

Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 823–835. 

https://doi.org/10.1098/rstb.2010.0256 

Rice, J., Cloninger, C.R., Reich, T., 1978. Multifactorial inheritance with cultural 

transmission and assortative mating. I. Description and basic properties of the unitary 

models. Am. J. Hum. Genet. 30, 618–643. 



67 
 

Swallow, D.M., 2003. Genetics of lactase persistence and lactose intolerance. Annu. 

Rev. Genet. 37, 197–219. https://doi.org/10.1146/annurev.genet.37.110801.143820 

Tooby, J., Cosmides, L., 1990. The past explains the present: Emotional adaptations 

and the structure of ancestral environments. Ethol. Sociobiol. 11, 375–424. 

https://doi.org/10.1016/0162-3095 (90)90017-Z 

Winterhalder, B., Smith, E.A., 2000. Analyzing adaptive strategies: Human behavioral 

ecology at twenty-five. Evol. Anthropol. Issues News Rev. 9, 51–72. 

https://doi.org/10.1002/ (SICI)1520-6505 (2000)9:2<51::AID-EVAN1>3.0.CO;2-7 

 

 

 


