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Abstract

The aim of this project is to use the spectral clustering algorithm to detect important

geological and climate features by utilizing the properties of the graph Laplacian.

Spectral clustering uses similarity measures between data points to construct the

graph Laplacian and then finds clusters using the eigenvectors corresponding to its

largest eigenvalues.

Our work has found the relationships between connectivity parameters that are

used to define pairwise similarity values between data points and the eigenvalues

of the graph Laplacian. These relationships are then used to cluster spatiotemporal

datasets, including some high-dimensional datasets.

We have also tried to account for the phase differences that exist between two other-

wise similar high-dimensional time series by using Dynamic Time Warping (DTW)

and Uniform Manifold Approximation and Projection (UMAP).

The relationships we find between the connectivity parameters and the graph Lapla-

cian’s eigenvalues can be used to study eigengaps which are important to perform

cluster analysis and detect the number of clusters that can possibly be obtained

without having an estimate beforehand.
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Chapter 1

Introduction

In this project, we have used unsupervised machine-learning algorithms to detect

geological structures and climate zones through various low and high-dimensional

spatial or spatio-temporal datasets. The main technique we have used is spectral

clustering. Although the algorithms are pretty straightforward, the choice of multiple

parameters involved in these algorithms is often tricky, and we have spent a significant

part of the project on that. In order to choose parameters, we used some methods

from Luxborg’s 2007 tutorial on spectral clustering [1] while also trying to find new

ways. We manipulate the Laplacian matrix and try to find relationships between

its eigenvalues and the values of the connectivity parameters. Once we establish a

relationship, we use it to detect geographical features without using any additional

information from Earth and climate science.

Spatio-temporal datasets are often of very high dimensions. Both spectral clustering

and UMAP use spectral graph theory to project these high-dimensional datasets

into lower-dimensional space before doing any clustering. Therefore, we first create

some low-dimensional synthetic datasets and then generalize our findings to spatio-

temporal datasets.

Another challenge to this project was the choice of an appropriate similarity measure
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for clustering such datasets. We mostly used L1-norm distance function and then

converted it into a similarity measure by using Gaussian function 2.1. But for some

datasets, the phase difference between otherwise similar data points was too much

to be ignored. Therefore, we tried DTW distance function as well.

We begin with an introduction to spectral clustering and spatio-temporal datasets

and then discuss some of the earlier applications of spectral clustering. But first,

we need to understand the Laplacian matrix. After we have seen what spectral

clustering is, we will see how it has been used in the past to cluster real-life datasets

in section 1.2. Then we look at the description of the datasets that we will use for

our project in section 1.3.

1.1 Spectral clustering

Spectral clustering uses spectral graph theory to cluster a given dataset. Let S =

{x1, x2, ..., xn} be a set of data points in Rd. Our goal is to find a partition of S

containing sets Ci = {xi1 , xi2 , ..}, i = 1, 2...., k such that the inter-cluster similarity

is minimized and intra-cluster similarity is maximized while also making sure the

clusters are not too small. This problem of balancing the cluster ‘size’ becomes

NP-hard. See Wagner and Wagner (1993) [2] for more discussions.

So, instead of finding perfect clusters, we try to approximate our clusters using

the spectral algorithm in which we convert the given dataset into a graph and find

its clusters using eigenvectors of the graph Laplacian [3]. This is a density-based

algorithm as opposed to KMeans, and it also has a way of determining the number

of clusters that can be obtained. The difficulty is converting the dataset into a graph

and determining what similarity measure we should use between data points. The

full algorithm is discussed in chapter 2.

Similarity measures often depend on what are called the ‘connectivity parameters.’

A significant part of the project was the selection of such parameters. The crucial

part of judging the choices of our parameters was to analyze the eigenvalues of
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the graph Laplacian for reasons discussed in chapter 2. The number of clusters is

determined by the eigengap in the spectral plot of the graph Laplacian. If there is

an eigengap between kth and (k + 1)th eigenvalues, we try to find k clusters in the

graph. Variation of the connectivity parameters can give us a significant eigengap

for a dataset, but it is not always guaranteed, as shown in chapter 3.

To see if the eigengap is stable, we plotted the eigengaps against the size of the

dataset, first for the ideal matrix and then for the perturbed matrix. The ideal

matrix is the Laplacian of a graph where points from different clusters are infinitely

far apart. Thus, the ideal matrix is a block matrix. Then, we perturb it by connecting

points from different clusters to each other.

Once the number of clusters is determined, the next step is to project the dataset onto

a k-dimensional space where k is the number of clusters. This method is important

for both spectral clustering and UMAP (for UMAP, the dimension of the projected

space is determined by the manifold embedded in the original dataspace). The

manner in which these projections are made is discussed in chapter 2.

1.2 Earlier applications of spectral clustering

1.2.1 Speech separation

One of the most common applications of spectral clustering is to identify words

or speakers. It has been used to separate speakers’ speeches recorded by a single

microphone by Bach and Jordan (2006) [4]. Their technique differs slightly from

ours as they have first generated training samples, but we do not use this approach.

Speeches can be treated as time series, but they often have phase differences. A

different similarity measure is sometimes used to compare them correctly. It is called

dynamic time warping, and its methodology is discussed in chapter 2. However, this

metric is very time-consuming and unsuitable for large datasets.
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1.2.2 Image clustering

Spectral clustering has proven effective in clustering images of digits drawn with

different hand-writings [5]. Therefore, it might be used to separate images of different

objects without requiring a training sample.

1.2.3 Community detection

Real-life communities can be detected with spectral clustering if the right attributes

are chosen to calculate the similarity matrices. This has been done for diving students

according to their academic performances by Mouden et al (2019) [6].

1.3 The datasets

We have used four different types of datasets in this project. The first three are

spatiotemporal datasets, which are described using geographical coordinates and/or

time coordinates along with any other attribute we might want to include while

finding similarity values between data points [7].

1.3.1 Events

An event dataset is a low-dimensional dataset that has spatial and temporal coordi-

nates only. An example of this is an earthquake dataset [8] that we have used in our

project. The dataset contains spatial coordinates and the dates of 782 earthquakes

that occurred from 2001 to 2022, with a magnitude of at least 6.5. It is dense in

space but very sparse in time; therefore, clustering the dataset in both dimensions

is difficult.

1.3.2 Time series

A time series contains numerical values that a given variable takes over a selected

time interval. Each time series is associated with geographical coordinates such that

when we cluster the dataset, it is technically a clustering of locations.
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Time series are often high-dimensional datasets; therefore, finding lower-dimensional

manifolds through trial and error is difficult. We also need to find good similarity

measures to compare two time series as we need to consider the existing phase dif-

ference. If we wish to shorten the length of a time series by averaging, we need to

ensure the adjacency matrix is not changed drastically.

We have used two such datasets in this project. The first dataset contains the time

series of outgoing longwave radiation values over South Asia. It is obtained from

ERA5 hourly data on single levels available on climate.copernicus.eu. We have OLR

values at 32,361 locations between 60◦E to 100◦E and -10◦N to 40◦N after every 0.25◦.

It is obtained through reanalysis, which combines model data with real observations

using laws of physics. The values measure the intensity of longwave radiation emitted

from Earth’s atmosphere. The lower the absolute value, the more cloudy it is at that

location.

The second time series dataset is daily rainfall values interpolated into grids of 1◦×
1◦over India created by Rajeevan et al (2006) [9].

1.3.3 Maps

The maps are snapshots of measurements referenced by geographical coordinates

at any given time. We have used the OLR maps dataset for clustering. This is a

32,361-dimensional dataset containing hourly OLR values over South Asia.
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Chapter 2

Methodology

This chapter explains the theory behind the methods that we are going to use for

our datasets. It also has a description of all the algorithms we apply and why we

apply them.

We begin with the main spectral clustering algorithm that we are going to follow

throughout the project. The next section describes why the algorithm should work

and the results of some of the experiments we performed to test the theory behind

the algorithm. After that, we describe how we can determine the values of the

connectivity parameters and how our choices determine the clustering results using

some experiments on synthetic datasets.

Finally, we end this chapter after discussing the theory behind UMAP and DTW

and how to manipulate their algorithms to get good clustering results.

2.1 The Spectral Clustering Algorithm

The algorithm for spectral clustering uses special properties of the Laplacian matrix

derived from spectral graph theory [10]. The algorithm below was presented by

Andrew et al (2001) [11].
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Let us suppose we have a set of n data points S = {x1, x2, ..., xn} in Rl, and we would

like to cluster them in k subsets. The number k can be determined by looking at the

eigenvalues of the Laplacian, which we will discuss later.

1. Form a similarity matrix (also known as affinity matrix) A ∈ Rn×n where

Aij = s(i, j) when i ̸= j, and Aii = 0. s(i, j) is a similarity function that

takes values between 0 and 1. Andrew et al (2001) use the Gaussian similarity

function given as,

s(i, j) = exp

(
−∥xi − xj∥2

2σ2

)
. (2.1)

We will also use some other methods to find similarities between data points

as we deal with different types of datasets.

2. Create a diagonal matrix D such that Dii is the sum of the ith row of A.

3. Construct the Laplacian matrix L = D−1/2AD−1/2. There are other methods

of constructing a Laplacian, as mentioned in Luxborg (2007) [1].

4. Find v1, v2, ..., vk the eigenvectors of L corresponding to the top eigenvalues

of L. They are chosen to be orthonormal to each other in case of repeated

eigenvalues. Now form a matrix V = [v1 v2 ..... vk] ∈ Rn×k.

5. Normalize each row of V so that the rows have unit length. We will call the

normalized matrix Y .

6. Consider each row of Y as a data point in Rk and cluster them into k clusters

using K-means algorithm [12].

7. Think of the ith row of Y as corresponding to xi and cluster the original data

points as the rows of Y have been clustered.

2.2 Why does it work?

In order to understand why the spectral algorithm works, Andrew et al [2001] first

consider an ideal dataset where all the clusters are infinitely far apart from each
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other and then generalize the results using matrix perturbation theory [13].

2.2.1 The ideal case

In the ideal case, where the points from different clusters are all far apart, the

similarity matrix Â and the Laplacian L̂ are both block diagonal matrices. Let us

assume that there are n data points and 3 clusters in the dataset. Then, the matrices

will look like the following:

Â =


A(11) 0 0

0 A(22) 0

0 0 A(33)

 ; L̂ =


L(11) 0 0

0 L(22) 0

0 0 L(33)

 . (2.2)

Using simple linear algebra, it can be shown that L̂(ii) has a strictly positive principal

eigenvector with eigenvalue 1, and the second eigenvalue is strictly less than 1. The

set of eigenvalues of L̂ is the union of the sets of eigenvalues of its blocks, and the set

of its eigenvectors is the union of the sets of the eigenvectors of its blocks with zeros

added appropriately to make them n-dimensional. In other words, the vector space

spanned by the eigenvectors of L̂ is the direct sum of the vector spaces associated

with the span of eigenvectors of each block.

And hence, we have:

V̂ =


v1

(1) 0 0

0 v1
(2) 0

0 0 v1
(3)

 (2.3)

where v
(i)
1 is the principal eigenvector of L̂(ii). Finally, we normalize the rows of V̂
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to get

Ŷ =


1⃗ 0⃗ 0⃗

0⃗ 1⃗ 0⃗

0⃗ 0⃗ 1⃗

 . (2.4)

If we apply K-Means on the rows of Ŷ , it will cluster together points around three

unit vectors in Rk. So, we have seen that the algorithm works for the ideal case.

Now, we look at how and when it will work for a general case.

2.2.2 The general case

In the general case, the similarity between points of different clusters is non-zero, and

therefore, the adjacency matrix and the Laplacian matrix are not block diagonals.

The Laplacian for the general case is L = L̂+ E where E is a perturbation matrix.

The question is when the eigenvectors of the general Laplacian and the ideal Lapla-

cian will be close enough so that we get clusters similar to the ideal case? The answer

to that is given by the Davis-Kahan theorem from matrix perturbation theory as ex-

plained by Luxborg(2007) [1].

Davis-Kahan Theorem. Let A,H ∈ Rn×n be symmetric matrices, and let ||.|| be
the Frobenius norm or the two-norm for matrices, respectively. Consider Ã := A+H

as a perturbed version of A. Let S1 ⊂ R be an interval. Denote by σS1(A) the set of

eigenvalues of A which are contained in S1, and by V1 the eigenspace corresponding

to all those eigenvalues (more formally, V1 is the image of the spectral projection

induced by σS1(A).) Denote by σS1(Ã) and Ṽ1 the analogous quantities for Ã. Define

the distance between S1 and the spectrum of A outside of S1 as

δ = min{|λ− s|;λ eigenvalue of A, λ /∈ S1, s ∈ S1}.

Then the distance d(V1, Ṽ1) := || sinΘ(V1, Ṽ1)|| between two subspaces V1 and Ṽ1 is
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bounded by

d(V1, Ṽ1) ≤
||H||
δ

.

According to the theorem, the distance between the eigenspace corresponding to the

first k eigenvalues of L and the eigenspace corresponding to the first k eigenvalues

of L̂ has an upper bound of ||E||/δ where δ is the eigengap between the kth and the

(k + 1)th eigenvalues of L. For more details about the theorem, refer to Section V.3

of Stewart and Sun (1990) [13].

If we have a graph Laplacian L such that we can find a large enough eigengap δ after

its kth eigenvalue, then we know there is a block diagonal matrix L̂ which is similar

to L, and the clusters in the graph are clearly separable.

We created an ideal adjacency matrix with all the elements on the block diagonals

(except for the diagonal elements) being 1 and the rest being zero. The matrix has

3 blocks. Therefore, the dataset will have 3 clusters. Then, we plot the eigengap

between the third and the fourth leading eigenvalues of the corresponding Laplacian.

To compare it with non-ideal cases, we add small perturbations to the ideal adjacency

matrix. Let Âij (i ̸= j) be any element of the ideal adjacency matrix. We add a

small error ϵij, which is generated from a normal distribution. Then, we vary the

standard deviation to create multiple perturbed adjacency matrices. For each value

of standard deviation, we vary the number of data points and plot it against the

eigengap to see if the eigengaps stabilize with an increasing number of data points.

The figure for eigengaps of the ideal Laplacian matrix is shown in figure 2.1.

The plots of eigengaps for perturbed similarities are shown in Fig 2.2.

2.3 Constructing a graph

The first challenge while attempting to perform spectral clustering is to choose how

to convert the given dataset into a graph. If you think of the dataset as a graph with

similarity between two data points representing the weight of the edge connecting
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Figure 2.1: Eigengaps of the ideal Laplacian with 3 blocks.

Figure 2.2: Eigengaps of Laplacian with 3 blocks for perturbed similarity matrices,
with varying standard deviation.

those two points, then the problem is finding an appropriate method of constructing

this graph. There are multiple ways we can do this. Some of them are given in

Luxborg (2007) [1]:

• ϵ−neighborhood graphs. To generate this type of graph, choose a cutoff
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parameter ϵ such that if the similarity between two points is more than ϵ, they

are connected with an edge of weight zero. Otherwise, there is no edge added

between them. This graph should be constructed only if it is known that all

the clusters are similarly dense. Otherwise, no single value of ϵ can identify

clusters. Therefore, we do not use it for spatiotemporal clustering.

• k-nearest neighbor graphs. In this graph, two vertices are connected if

either one of them is among the k nearest neighbors of the other. This type

of graph does not face the same problem as the ϵ-neighborhood graph, as it

can work with clusters of different densities. However, we cannot use it for

our project either, as it increases inter-cluster similarity if the clusters have

different densities but are close to each other in some regions.

• Mutual k-nearest neighbor graphs In this graph, two vertices are con-

nected if and only if both of them are among each other’s k nearest neighbors.

This graph is far more sparse than k-nearest neighbor graphs.

• Fully connected graph This graph is most commonly used in our project.

It connects each vertex with all other vertices, and each edge is given a weight

equal to the similarity between the two corresponding vertices. Andrew et al

(2001) [11] use gaussian similarity function given by eq 2.1.

We use fully connected graphs and mutual k-nearest neighbor graphs for spatiotem-

poral datasets as they do not require any strict assumptions about the dataset.

Luxborg (2007) [1] has illustrated the first three types of graphs on synthetic datasets.

The similarity function is a function s(i, j) that determines the weight assigned to the

edge connecting vertices i and j. For a fully connected graph, we use the following

similarity function:

s(i, j) = exp

(
−d(i, j)2

σ2

)
. (2.5)

Here, d(i, j) is a distance function between data points corresponding to vertices i

and j. Here, we need to choose an appropriate distance function as well as a good

value of σ so that we can obtain meaningful clusters. For most datasets, we can
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use the L1 norm or the L2 norm as our distance function, but sometimes, another

technique called dynamic time warping (DTW) is useful. We will discuss DTW later.

But first, we discuss how to choose a value of σ.

2.4 Choosing the parameter σ

In order to determine a method of choosing σ, first, we create a synthetic dataset and

see how the changing values of σ change the results of spectral clustering. Our syn-

thetic dataset consists of two concentric two-dimensional annuli with one thousand

points in each annulus. To choose an initial value of σ, we use a thumb rule given

by Luxborg (2007) [1]. The rule states that the value of σ should be of the order of

the mean distance of a point to its k-th nearest neighbor where k ∼ log(n) + 1. For

our dataset, this value of σ is around 0.5. The result is shown in figures 2.3 and 2.4.

As we increase the value of σ, the rows of Y come all together due to increasing sim-

ilarity values between data points. Also, the eigengap between the first eigenvalue

and the second eigenvalue keeps increasing with increasing σ.

We find that varying σ once we have obtained an initial estimate using the above-

mentioned thumb rule is quite useful in finding a good eigengap to estimate the

number of clusters. As we have seen, increasing the value of σ decreases the number

of clusters that can be obtained.

To test it, we use another synthetic dataset. This dataset contains a set of five balls,

each containing 700 points. Then, we add random noise to the dataset to test if the

technique of varying σ can detect clusters hidden between noise. The initial estimate

of σ is 0.129. Let us call it σ0. Using this estimate, we find the Laplacian matrix and

plot its eigenvalues shown in Fig 2.5. The eigengap is obtained after 10th eigenvalue

even though we need 5 clusters. This is happening because the noise has caused some

perturbations to our adjacency matrix. If we proceed with the spectral clustering

algorithm using 10 as the number of our clusters, we get meaningless clusters that

might ruin our cluster analysis. Therefore, we try to vary σ to see if we can get

a value of σ such that it gives an eigengap after 5 eigenvalues of the Laplacian.
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Figure 2.3: Clustering concentric annuli, for σ = 0.5, 1.

For σ = 5σ0, the eigengap is present between the 5th and the 6th eigenvalues (see

Fig 2.5b). Therefore, we use the corresponding Laplacian to cluster our dataset.

The clusters obtained by using σ0 are not able to separate balls clearly, and we have

some clusters formed purely due to noise, as can be seen in Fig 2.5c. But we find
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Figure 2.4: Clustering concentric annuli, for σ = 1.5, 2.

that as we vary σ, the clusters become very well separated and meaningful with

little effect of noise. This is an effective technique to find clusters, and we will use it

extensively in chapter 3.

If the initial estimate of σ gives us too many clusters or clusters that are not mean-
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(a) Top 100 eigenvalues of
Laplacian for σ = σ0.

(b) Top 100 eigenvalues of
Laplacian for σ = 5σ0.

(c) Clusters obtained for
σ = σ0.

(d) Clusters obtained for
σ = 5σ0.

Figure 2.5: Clustering 5 balls with randomly added noise.

ingful, we should increase the values of σ in order to increase the pairwise similarity

between data points. This will move the eigengap to the right, i.e., the number

of clusters obtainable from the algorithm will decrease. If, on the other hand, the

initial estimate of σ is giving very few clusters, or if a large eigengap is present after

the largest eigenvalue itself, then decreasing the value of σ might help, but in most

probability, there are no clusters obtainable if the eigengap lies between the first and

the second eigenvalues.

At last, we try to look at how the eigenvalues will behave with the changing of σ if

there are no clusters that can be obtained. For this, we create a synthetic dataset

containing only points uniformly distributed on a disk with no identifiable patterns.
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Figure 2.6: Top 100 eigenvalues of Laplacian for uniform points with no clusters.

Let the initial estimate of σ be σ0 obtained using the above-mentioned thumb rule.

We plot the eigenvalues for various values of σ to see how the eigenvalues behave (see

Fig 2.6). There is no significant eigengap anywhere for smaller values of σ, and as

we increase σ, we see that the eigengap between the first and the second eigenvalue

starts increasing. This implies that even our manipulation of the σ value does not

find a cluster.

Note that if the value of σ is decreased too much, the eigengap is almost always

present after a very large number of eigenvalues, but the clusters thus obtained are

not meaningful and contain a very small number of data points as was seen in Fig 2.5c.

Another problem with σ being too small is that the pairwise similarities become so

small that the machine used to run the algorithm may record the similarities as zero.

2.5 Dynamic time warping (DTW)

So far, we have used the L1 norm for measuring distances between two data points.

This distance is converted to similarity using the Gaussian similarity function as

shown in eq 2.5. However, if our data points are in the form of a time series, then

there might be a phase difference that the L1 norm will not consider. Therefore, a

better method of measuring the distance between two time series is to use DTW, first
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introduced in 1959 [14], as its algorithm considers the phase difference that might

exist between two otherwise similar time series.

Let us say we have two time series, each of length n. In the DTW algorithm, a cost

matrix C ∈ Rn×n is created where Cij is the distance between the ith element of the

first time series and the jth element of the second time series. The task is to find a

path P = (p1, p2, ..., pk) from C11 to Cnn where pi = (xi, yi) and xi is an element of

the first time-series, while yi is an element of the second time series such that the

cost of the path is minimized. The cost of a path is the sum of distances between

elements of two time series corresponding to each pi. Senin (2009) [15] has created

a review of DTW, which contains a detailed algorithm of DTW.

One important part of DTW is a slope constraint, introduced by Sakoe and Chiba

(1978) [16]. This constraint controls the slope of the optimal path so that it is

neither too steep nor too gentle. If this constraint is not applied, the resulting path

might end up comparing one small part of the first time series to the entire second

time series, creating an unrealistic distance measure. Let us say we put the slope

constraint at n/m. This would imply that any path that the DTW algorithm looks

at must be such that anym consecutive movements along the same time series should

be followed by at least n movements along the diagonal. We also need the distance

measure to be symmetric for the spectral clustering to work. Therefore, the slope

constraints will be symmetric for both time series.

The programming language Python has a package called ‘dtw-python’ that con-

tains some in-built slope constraints that we will use while dealing with time-series

datasets. For more information about using dtw in Python, please see Giorgino

(2009) [17]. If the length of each time series is n, then the algorithm’s complexity

is O(n2) [15]. Therefore, for high-dimensional datasets, DTW is much slower than

using the L1 norm.
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(a) Slope=1/2. (b) Slope=1.

(c) Slope=2. (d) No slope constraint.

Figure 2.7: DTW optimal warping paths for different symmetric slope constraints.

2.5.1 Examples

In order to show the differences between different values of the sakoe-chiba slope

constraint, we take two OLR time series from the dataset mentioned in section 1.3.

The first time series T1 contains OLR values at the coordinates 26.5◦N, 81.25◦E,

while the second time series T2 contains OLR values at the coordinates 26.75◦N,

71◦E. The OLR values are obtained by averaging over every 12 hours from June 1

to September 30, 2010. Therefore, the length of each time series is 244.

The symmetric constraints we use are labeled as P05 (slope=1/2), P1 (slope=1), P2

(slope=2), and P0 (no constraint) in the ‘dtw-python’ package that was used to get

these illustrations.
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Constraints ddtw(T1, T2) ddtw(T3, T2) ddtw(T3, T1)
ddtw(T3,T2)
ddtw(T3,T1)

P0 8.022 12.029 7.117 1.69

P05 17.585 38.533 11.202 3.44

P1 22.441 46.748 15.271 3.061

P2 29.482 53.627 19.132 2.803

Table 2.1: Symmetric constraints values for comparing three time series.

As we see in Figure 2.7, the higher the slope constraint, the more the optimal warp-

ing path is similar to the diagonal. This means that using DTW with high slope

constraints will be similar to using the L1 norm as our distance measure. The result

when there is no slope constraint is highly unrealistic as the algorithm compares

very few elements of the second time series (elements around its 150th element) with

almost half of the first time series. It is also very slow as it has to optimize over a far

greater number of possible warping paths compared to having some slope constraints.

If clustering using the L1 norm gives some meaningful clustering with only a part

of the dataset not clustered well, we can use higher slope constraints, but if the L1

norm clustering is very poor or meaningless, lower values of slope constraints need to

be used. However, we do not use the P0 (no constraint) algorithm because it gives

low distances between data points that are supposed to be very different. To see how

zero slope constraint ruins our similarity matrix, we take three time series obtained

similarly as T1 and T2 were. Let’s call them T1, T2 and T3. The time series T1 and T2

are the same as the ones defined above. The third time series T3 is associated with

the location at coordinates 21◦N, 79.25◦E.

The locations associated with time series T1 and T3 receive similar rainfall patterns

during the monsoon period, while the location associated with T2 is a dry region

receiving very different levels of rainfall than the other two. Therefore, we expect

DTW to give a lower distance between T1 and T3 than between T2 and T3.

Table 2.1 shows how different constraint values distinguish between a pair of similar
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time series (with phase difference) and a pair of asimilar time series. The values

for when there is no constraint (P0) are very similar to each other, and the ratio

ddtw(T3, T2)/ddtw(T3, T1) is close to 1 even though T3 and T2 have different levels of

OLR values while T3 and T1 have similar values. P05 gives the highest value of the

aforementioned ratio, and from there, the ratio keeps falling. As the slope constraint

gets stricter, the algorithm is no longer able to detect significant phase differences

between T3 and T1, and hence sees them as vastly different time series. Therefore,

the slope constraint should not be kept too high even though it makes the algorithm

much faster.

2.6 UMAP

Uniform Manifold Approximation and Projection, or UMAP, is a relatively new

technique that can reduce the dimension of a given dataset without losing much

information if the data points lie on a low-dimensional manifold in a high-dimensional

data space. The UMAP algorithm uses category theory [18] to detect a locally

connected low-dimensional manifold on which the data is assumed to be uniformly

distributed. To see the theoretical explanation and the complete algorithm of UMAP,

refer to McInnes et al (2020) [19].

Generally, UMAP is used to visualize a high-dimensional dataset on a 2-D or a 3-D

space. But for our project, we use it to reduce the dimension of time-series datasets

in order to cluster them as high-dimensional dataset loses variation in pairwise sim-

ilarities if the number of data points is not large enough compared to the dimension

of the data space [20]. The problem with this approach is that we do not know the

dimension of the underlying manifold. We tried to build an algorithm to solve this

problem but got no satisfactory solution. The algorithm will be discussed later in

the section.

To see the workings of UMAP, we begin with an example using a synthetic dataset.

The dataset used is shown in Fig 2.8a. The UMAP algorithm is applied to the

whole dataset, and the resulting projection is shown in Fig 2.8b. Finally, the UMAP
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(a) (b)

(c)

Figure 2.8: Application of UMAP on a synthetic dataset.

algorithm is applied only to the two concentric annuli in the original dataset, and

then the projection function obtained through UMAP is used to plot the rest of the

dataset. The result is shown in Fig 2.8c. An important assumption of the UMAP

algorithm is that given an underlying manifold, the data is uniformly distributed

on it. Therefore, whenever there is a low-density region between two annuli, the

algorithm separates them, considering them as two different manifolds. It also builds

a projection function that is continuous between the two annuli. Hence the difference

between figures 2.8b and 2.8c.

2.6.1 A correlation algorithm

In order to detect the dimension of the underlying manifold in the data space, we

develop an algorithm using the following lemma given in McInnes et al (2020) [19]:

38



(a) 5-dimensional sphere in
R20

(b) 8-dimensional sphere in
R20

Figure 2.9: Result of the correlation algorithm on synthetic dataset.

Lemma. Let (M, g) be a Riemannian manifold in an ambient Rn, and let p ∈ M
be a point. If g is locally constant about p in an open neighborhood U such that g is

a constant diagonal matrix in ambient coordinates, then in a ball B ⊆ U centered at

p with volume πn/2

Γ(n/2+1)
with respect to g, the geodesic distance from p to any point

q ∈ B is 1
r
dRn(p, q), where r is the radius of the ball in the ambient space and dRn is

the existing metric on the ambient space.

Note that r only depends on the manifold and the dimension of the data space,

while the locally constant metric g is constructed using Fuzzy simplicial sets. The

lemma tells us that the geodesic distance on the manifold is a linear function of the

Euclidean distance if the points are close enough. We use this fact to use Pearson’s

correlation coefficient to detect the dimension of the manifold. The algorithm we

developed is as follows:

1. Choose randomly a certain number of data points from the original dataset.

2. For each chosen data point i, find its Euclidean distance from its k− th nearest

neighbor and from its k0−th nearest neighbor where k < k0. k0 is the argument

for the hyper-parameter ‘n-neighbor’ that we feed to the UMAP algorithm.

UMAP then tries to minimize the distance between each data point and its

first k0 − th nearest neighbor.
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3. Divide the two distances to get xi.

4. Run UMAP to project the dataset on a low dimensional space Rd for various

values of d.

5. On the projected space, find the Euclidean distance from point i to its k − th

nearest neighbor on the original data space. Let it be yi.

6. For each projection, calculate the Pearson’s correlation coefficient ρ between

the ratio of distances calculated in the original data space and the distances

calculated in the projected space. The Pearson’s correlation coefficient between

two samples {xi} and {yi} is given by

ρ =
Σ(xi − x)(yi − y)√
Σ(xi − x)2Σ(yi − y)2

. (2.6)

7. The projection for which the value of ρ is highest should be a good projection.

Unfortunately, this algorithm does not perform on the synthetic datasets for which

we tried it. To test it, we generate a dataset in R20, with the data points lying on a

lower-dimensional manifold.

In Fig 2.9a, the data points were generated on a 5-D sphere embedded in R20, while

in Fig 2.9b, the sphere was 8-D. In both plots, the value of Pearson’s correlation

coefficient becomes stable after the first 3 values with significant error bars. There-

fore, the algorithm is not able to detect the embedded manifold that we intended to

detect. The choice of Pearson’s coefficient may not be suitable for this task, and a

better measure of similarity between the original space and the projected space is

needed.
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Chapter 3

Application and Results

In order to apply spectral clustering on the datasets mentioned in section 1.3, we first

apply exploratory data analysis, try to reduce the dimensions of high-dimensional

datasets, and try to estimate the number of clusters that can be obtained. We begin

with a low-dimensional dataset containing information about earthquakes. Then we

try to cluster OLR time-series and maps datasets with mixed results. Finally, we

end with some clusters of the rainfall time-series data.

We also show some interpretations of the clusters and eigenvalues that we obtain.

3.1 Earthquake dataset

As described before, this dataset contains latitudes and longitudes of major earth-

quakes that have occurred this century. It also contains the time of the earthquakes,

but in order to cluster a dataset with dimensions of different units, we needed a

more dense dataset. So we only clustered it in spatial dimensions. The purpose of

clustering these earthquake points is to see if spectral clustering can detect, without

any information from Earth Science and simply using the unsupervised algorithm,

the major fault lines between Earth’s tectonic plates.
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Figure 3.1: Eigenvalues of the Laplacian for the earthquake dataset

We use the Gaussian similarity measure to give weights to the graph’s edges. The

similarity measure we use is

s(i, j) = exp

(
−(dgeo(i, j))

2

2σ2

)
, (3.1)

where dgeo(i, j) is the geodesic distance between i and j, the two locations given by

their latitudes and longitudes. Let us assume the latitudes of i and j are θi and θj

respectively, while their longitudes are ϕi and ϕj respectively. The geodesic distance

between them would be:

dgeo(i, j) = 6378.8 cos−1(sin θi sin θj + cos θi cos θj cos (ϕi − ϕj)) (3.2)

Using this distance measure and the thumb rule mentioned before to estimate a value

of σ, we get σ = 468. After creating the graph and its Laplacian matrix, we plot the

top 100 of its eigenvalues in Figure 3.1.

There are multiple significant eigengaps in the plot, as can be seen in Fig 3.1. We

want to keep the number of clusters to a minimum due to a small dataset. There-
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Figure 3.2: Earthquake clusters over Asia-Pacific, σ = 468, k = 17

fore, we choose two eigengaps, the first one between the 17th and the 18th largest

eigenvalues, and the second one between the 26th and the 27th largest eigenvalues.

We have to run the clustering algorithm twice, once for k = 17, and then for k = 26,

where k is the number of clusters we want.

Increasing the number of clusters does help in separating some fault lines from each

other. For example, when we have k = 17, the algorithm clusters together the

earthquakes along the Eurasian and the Indian plates with those along the Indian and

Arabian plates. Both of the clusterings have correctly detected fault lines between

the Philippine plate and its neighboring plates.
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Figure 3.3: Earthquake clusters over Asia-Pacific, σ = 468, k = 26

The map with fewer clusters has managed to keep all earthquakes occurring between

the Indo-Australian plate and the Pacific plate in one cluster, but the map with 26

clusters has broken it into 3 different clusters. The reason for this could be that we

do not have a bigger dataset, as this dataset contains only those earthquakes that

were above the magnitude of 6.5.

In both cases, we have managed to separate earthquakes between the Indo-Australian

plate and the Eurasian plate from the earthquakes along the border between the Indo-
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Australian plate and the Pacific plate. These detections would not have been possible

without proper information about the number of clusters required. The number is

confirmed by looking at the eigengap, and not by providing any theory from Earth

Science. Therefore, it is correct to conclude that Luxborg’s thumb rule [1] is sufficient

to detect fault lines for this earthquake dataset.

Recall from the Davis-Kahan theorem that the upper bound on the distance between

the eigenspace of the ideal Laplacian and that of the perturbed Laplacian is ||H||/δ.
If the clusters are dense, the intra-cluster similarity increases which makes the clusters

very tight. According to the theorem given by Andrew et al (2001) [11], if the clusters

are well connected, or ‘tight’, then even a small eigengap can be used to detect those

clusters using spectral clustering. Therefore, if we had a bigger dataset, the problem

that arose with detecting fault lines might not have occurred.

3.2 OLR dataset

This dataset contains hourly values of outgoing longwave radiation intensity at the

locations in and around the Indian subcontinent from 10◦S to 40◦N and from 60◦E

to 100◦E after every 0.25◦ of latitude and longitude. These values were produced

using climate reanalysis. The dataset is used to create two new types of datasets,

the time series dataset and the maps dataset, which are discussed below.

3.2.1 Time series dataset

The time-series dataset is obtained by creating a time-series of OLR values at each

location given above during the monsoon period in the Indian subcontinent. This

period is assumed to be from June 1 to September 30, 2010, although yearly variations

exist.

Since the initial time series contains hourly data, the length of each time series will be

24×122 = 2928. If each time series is considered to be a data point, the dataset will

be 2928 dimensional, which is quite high, and we could lose the similarity variations
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(a) (b)

(c)

Figure 3.4: L1 Norm distance matrices for (a) Hourly time-series and (b) Time-series
averaged over every 12 hours. And (c) The difference between the two matrices
divided by the first matrix.

among the pairs of data points. The algorithm also takes much longer to run as

calculating the distance between two time series using the L1 norm requires O(n)

time while DTW requires O(n2) time, where n is the length of the time series.

In order to reduce the dimensions of the dataset, the simplest thing to do would be

to average the OLR values over 12 hours. If we do that, the new dimension of the
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dataset will be 2928/12 = 244. However, we need to ensure that while reducing the

dimensions, the information about the pairwise similarities of the data points is not

lost. In order to do that, we plot the distance matrices for the hourly time-series

dataset and the averaged time-series dataset over every 12 hours.

The plots are shown in Figure 3.4. Although the matrices look very similar, we plot

the matrix resulting from subtracting the above two matrices and then dividing it

by the first matrix. We cannot simply subtract the two matrices as the distance

matrix for the hourly time-series dataset has bigger distances than the one for 12-

hour averaged time-series data due to the bigger length of the hourly time-series. To

account for that, we divide the distance matrix for the hourly time-series data by 12.

The plot of the resulting matrix is shown in Fig 3.4c. Most elements of the matrix

shown in Fig 3.4c are less than 0.2 as can be seen using the colorbar. Therefore, very

little information is lost on avergaing the OLR values every 12 hours.

From now on, OLR time-series will mean 12 hours averaged OLR time-series until

otherwise stated. We now create a graph where each vertex corresponds to a time

series, and the weight of the edges between vertices i and j will be given by the

similarity function:

s(i, j) = exp

(
−(||i− j||1)2

σ2

)
, (3.3)

where we use the L1 norm as the distance function. Next, we find an initial estimate

of σ with the same method as before. Let us call the initial estimate σ0 = 1434.58.

We vary σ around σ0 and build the Laplacian matrix for each of those values of σ.

The plots of the top 100 eigenvalues for all the values of σ that we tried are given in

Fig 3.5. As we increase the σ, the k− th eigenvalue decreases for all k except k = 1.

The top eigenvalue always remains 1.

For very small values of σ, a significant eigengap is found only for larger k′s, which

means we will obtain too many clusters, and it will be difficult to interpret them.

For example, σ = 0.2σ0 gives an eigengap after the top 60 eigenvalues. On the other

hand, for very large values of σ, the eigengap between the largest and the second

largest eigenvalues is significantly big, meaning the algorithm will be unable to detect
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Figure 3.5: Eigenvalues of graph Laplacian, for different values of σ, OLR time-series
dataset.
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Figure 3.6: Top 100 eigenvalues of the Laplacian matrix for σ = 2σ0, OLR time-series
data.

any clusters at all.

Only for σ = 2σ0 do we find a significant eigengap after a limited number of eigenval-

ues so that we neither get too many small clusters nor get only 1-2 clusters. The top

100 largest eigenvalues of the Laplacian matrix for σ = 2σ0 are shown in Fig 3.6. The

eigengap we choose is between the 19th and the 20th largest eigenvalues. Therefore,

we ran the algorithm to find 19 clusters in the dataset. The clusters are shown in

Fig 3.7.

The algorithm has simply clustered together points that are close together in spatial

coordinates. This is because the L1-norm function is incapable of considering any

phase difference two time series might have. So, no matter how similar the two time

series might be, the L1 norm is going to give a large distance if there is a significant

spatial distance between the two corresponding locations. In order to take into

account the phase differences, we use dynamic time warping.
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Figure 3.7: The 19 clusters of OLR time-series data, using l1-norm distance function,
and σ = 2σ0, shown in three different different plots for clarity.

Dynamic Time Warping (DTW)

The DTW algorithm is very slow, and it was not possible to try it using various slope

constraints. We choose the symmetric P05 constraint because it would account for

most phase differences but would not give unrealistic comparisons that P0 gives, as

seen in Section 2.5.

The same algorithm as above is followed, except this time, we use the DTW distance

function instead of the L1-norm. We try to cluster for different values of σ estimated

in the same manner as before, but the algorithm simply clusters almost all of the

subcontinent together. Some points in the northern part form small clusters, but
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(a) Top 100 eigenvalue (b) Labelling of clusters

Figure 3.8: Clustering of OLR 2010 maps to detect monsoon period.

they are too small to give us meaningful interpretations. The P05 might be too low

of a constraint that makes most of the points similar. More strict constraints like P1

or P2 might be tried, but due to their heavy time-consuming nature, we do not try

them.

3.2.2 Maps dataset

This dataset is derived from hourly OLR values in the subcontinent from 2010. Each

data point (also called a map) lies in R32,361 and contains the OLR values at 32,361

locations all over the Indian subcontinent at a time instant. In other words, each data

point is a snapshot of the OLR values over the entire subcontinent at a particular

time. The total number of data points is 365 × 24 = 8760. We again begin with

using L1 norm for measuring distances between maps.

The main goal of clustering maps is to determine if the monsoon period can be

separated from the rest of the year using spectral clustering and appropriate manip-

ulation of the parameter σ. Using earlier methodology, we obtain the initial estimate

of σ, σ0 = 669, 255. Since we already know that we need 2 clusters and have already

seen how the eigengap behaves with σ varying, we just need to manipulate the value

of σ so that the eigengap is significant after the second largest eigenvalue. We get

that eigengap for σ = 0.8σ0 as shown in Fig 3.8a. Using this σ, and the Gaussian
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Figure 3.9: Top 100 eigenvalues of the Laplacian for the rainfall time series data

similarity function as given in eq 3.3, we run the spectral clustering algorithm to

obtain two clusters.

The two clusters are shown in Fig 3.8b. Label 1 on the y-axis corresponds to the mon-

soon maps, while label 0 corresponds to non-monsoon maps. It has very accurately

separated the monsoon from the rest of the year, as can be seen.

3.3 Rainfall data

The rainfall data contains daily rainfall values over India interpolated into grids of

1◦ × 1◦ created by Rajeevan et al (2006) [9]. We use the same similarity function

and the same method for the initial estimate of σ as for the OLR time series data.

The initial estimate of σ is σ0 = 807.54. We vary the value of σ and calculate the

eigenvalues of the Laplacian for each value. The plot of the top 100 eigenvalues of

the Laplacian for various values of σ is given in Fig 3.9.

For 0.3σ0, 0.4σ0, and 0.5σ0, we find a significant eigengap after the 46th, 29th, and
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18th largest eigenvalues, respectively. We run the algorithm using these parameter

values. The clusters are shown in Fig 3.10, along with the number of points in each

clusters.

The clusters get progressively smaller as we decrease the σ value due to decreasing

pairwise similarities. Most points are in one cluster, while smaller clusters correspond

to high-rainfall areas. Therefore, the algorithm has separated high-rainfall regions

from the rest of India without getting any information about the number of clusters

from climate science.

3.4 OLR vs Rainfall datasets

We compare the two time-series datasets to see why rainfall time-series have been

clustered but the OLR time-series could not be. To see the difference between the

two datasets, we plot histograms of pairwise distances and UMAP projections.

3.4.1 Histogram of pairwise distances

We plot the histogram of pairwise distances of all possible pairs of data points for

both the OLR time-series and the rainfall time-series datasets. The plots are shown

in Fig 3.11. If the histogram has more than one peak, it implies that there exists at

least two clusters in the data with respect to the distance function used [20]. As can

be seen in the plot, the OLR histogram has only one peak.

3.4.2 UMAP

We now plot their UMAP projections on R2 to visualize the differences between

rainfall and OLR time-series datasets. The projections are shown in Fig 3.12. The

rainfall data has far more patterns than the OLR dataset. OLR data points are

scattered almost uniformly on the manifold, making it difficult to cluster them.

Therefore, we conclude that it is not possible to cluster the OLR time-series dataset

that we had.
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(a) σ = 0.5σ0, k = 18

(b) σ = 0.4σ0, k = 29

(c) σ = 0.3σ0, k = 46

Figure 3.10: Rainfall time series data clusters, using L1 norm. The scatter plot show
the number of data points in each cluster.
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(a) (b)

(c) (d)

Figure 3.11: Histograms of pairwise distances for (a) OLR time-series data, L1 norm
distance function, (b) Rainfall time-series data, L1 norm distance function, (c) Con-
centric annuli, Euclidean distance, and (d) Synthetic data containing 5 well-separated
balls each containing uniformly distributed points, Euclidean distance.
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(a) OLR time-series data.

(b) Rainfall time-series data.

Figure 3.12: UMAP projections on R2
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Chapter 4

Conclusion

During the project, we have had some success in finding some properties of clustering

parameters like σ and k. We have also successfully used these properties to detect

geological and climate features without using any theory from Earth science, which

would not have been possible using common clustering algorithms such as K-means.

We list here all the conclusions we have drawn from the project results.

4.1 Parameter σ

While using the Gaussian similarity function (eq 2.1), the value of σ can be initially

estimated using a thumb rule given in Luxborg (2007) [1]. After that, we need to

vary σ to vary the location of the eigengap of the Laplacian. We have discovered a

relationship between the eigenvalues and the σ parameter. For the k− th eigenvalue

of the Laplacian, increasing the σ decreases the eigenvalue. And the magnitude by

which this decrement happens appears to be increasing with k for smaller values of

k. And since we do not want too many clusters with too few data points, we are

only concerned with relatively small values of k.
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4.2 Spectral clustering has detected geological and

climate features.

Using Luxborg’s thumb rule [1] and manipulation of connectivity parameters and

Laplacian’s eigenvalues, the spectral algorithm has found the following features:

1. The fault lines between Earth’s tectonic plates using latitudes and longitudes

of recorded earthquakes.

2. The monsoon days separated from the rest of the year using OLR maps dataset.

3. The high rainfall areas separated from the rest of India using rainfall time-series

dataset.

4.3 OLR time-series data could not be clustered.

None of the methods worked on OLR time-series data to find any meaningful clusters.

Extreme manipulations of the Laplacian’s eigenvalues did give a clustering, but it

was not significant and mostly arbitrary. On the other hand, rainfall time-series data

was successfully clustered.

4.4 Future Work

• More work is needed in order to find the rate of change in eigenvalues of the

Laplacian as we change the parameter σ.

• The slope constraints for the DTW algorithm can be varied and the result

might have more meaningful clusters as the constraints are eased.

• To find the dimension of the underlying manifold in a high-dimensional datas-

pace, we need to find a better coefficient than the Pearson’s correlation coeffi-

cient to be used with UMAP.
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