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Abstract

Grid cells in the medial entorhinal cortex (mEC) fire action potentials whenever the
animal is positioned at the vertices of a tessellating hexagonal grid. Changes to the
animal’s environment can alter grid orientation, break its symmetry along specific axes,
and increase or decrease the spatial scale of the grid. In this work, we focus on a trans-
formation of the spatial scale of the grid as a function of the novelty of the environment.
The grid pattern formed by an individual grid cell shows visible changes in novel envi-
ronments - its hexagonal symmetry is distorted, and there is an increase in the spatial
scale of the entire grid. As the animal spends more time in its environment the spa-
tial scale of the grid pattern contracts, and the ’gridness’, a measure of symmetry,
gradually increases. We study this phenomenon using biophysically realistic neuronal
networks. The neurons in our network are conductance-based neurons modeled as
layer II stellate cells that are coupled via inhibitory interneurons. Previous experiments
in brain slices have discovered Spike timing dependent plasticity (STDP) in the In-
hibitory synpases of the mEC, which could potentially reshape the topology of grid cell
networks present in this region. In our study, we demonstrate that changes in the topol-
ogy of the neuronal network, brought about by STDP, in conjuction with the modulation
of the theta rhythm from the medial septum can replicate the dynamics observed in
the mEC as the animal becomes progressively familiar with its environment.
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1 Introduction

The Hippocampus and associated regions, commonly referred to as the Hippocampal
formation, are some of the most well studied and characterized regions of the brain,
at the level of both, individual neurons and circuits. Electrophysiological experiments,
lesion studies and insights gathered from patients lacking these regions have led to the
understanding that these regions play important roles in the formation of memories,
and spatial navigation. In the succeeding introduction, I will briefly talk about what we
currently know about spatial navigation and hippocampal plasticity, and explain the
phenomenon we have tried to model during my Master’s thesis.

1.1 The Hippocampal cognitive map

Studying the behavior of rats in artificial mazes, Edward Tolman put forth the hypoth-
esis that animals form an internal representation (commonly called map) of the envi-
ronment, and use this representation to perform tasks such as navigation and reward
procurement (Tolman 1948). Tolman coined the term ‘cognitive map’ for internal repre-
sentations of this sort, and they have subsequently been accordingly referred. Tolman,
however, was unable to provide any conclusive experimental evidence to prove that
animals indeed build such representations.

In 1971, while recording the activity of neurons in the hippocampus, Dostrovsky and
O’Keefe found that certain neurons increase their firing rate drastically whenever the
animal occupies certain locations in space (O’Keefe and Dostrovsky 1971). This se-
lective preference to certain places in the environment earned these cells the name,
‘place cells’. Place cells showed a number of interesting properties, perhaps two of
the most striking ones among these were a. place cells change their receptive field if
landmarks present in the environment are rotated/moved, the change in the position
of the receptive field mimicing the change in the position of the landmark and b. small
changes in the environment are represented by modulating the firing rates of the exist-
ing place cell ensemble coding for the room (rate remapping), whereas larger changes
are represented by a complete change in the place cell ensemble representing the
environment (global remapping). The dependence on landmarks shows that animals
store previous maps of the environment in the brain, and accordingly modify this map
when there is a change to the environment. However, when a large change is made,
the animal represents this change with a completely different set of cells. These two
observations completely agree with the ‘cognitive map’ theory (O’Keefe and Dostro-
vsky 1971).
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Ever since this seminal discovery, a number of other cells have been identified that
are sensitive to various parameters of the animal-environment interactive system. In
this menagerie of cell-types, two discoveries have been of paramount importance in
changing the way we perceive spatial navigation, these are head-direction cells and
grid cells (E.I. Moser, M.-B. Moser, and McNaughton 2017). Head-direction cells, as
the name suggests, are cells that respond when the animal is facing a particular direc-
tion (Taube, Muller, and Ranck 1990, Taube, Muller, and Ranck 1990). Initially identi-
fied in the dorsal presubiculum, these cells have subsequently been found across cor-
tical and subcortical regions (E.I. Moser, M.-B. Moser, and McNaughton 2017). The
existence of head-direction cells is indicative of the fact that the hippocampus might
be integrating head angular velocity to calculate heading direction. Heading direction
coupled with velocity of motion (obtained from various sensory modalities) could be
used to calculate the instantaneous location of the animal. This was one of the first
discoveries hinting at the use of idiothetic reference frames (the position of the animal
is specified with respect to an arbitrary reference point) for spatial navigation. Navi-
gation in such a reference frame, i.e. calculating position via integration of self-motion
cues, is known as path-integration. The discovery of head-direction cells directly point
towards the existence of a path-integration system in an idiothetic reference frame (E.I.
Moser, M.-B. Moser, and McNaughton 2017).

The identification of this wide assortment of cells that respond to different features of
the environment, had bolstered the notion of the existence of the hippocampal cogni-
tive map, the discovery of Grid cells in the Entorhinal Cortex rendered this idea nearly
indubitable (E.I. Moser, Roudi, et al. 2014, E.I. Moser, M.-B. Moser, and McNaughton
2017). The properties of grid cells hinted at them being a possible neural substrate
for path integration, and the animal’s metric of space. Grid cells are neurons that fire
action potentials whenever the animal is located at the vertices of a tessellating grid
of equilateral triangles (Hafting et al. 2005). Unlike place fields, these spatially peri-
odic, hexagonal receptive fields of grid cells are nearly universal, in that the same
hexagonal repeating pattern (for a single cell) forms in almost all environments (Haft-
ing et al. 2005). The robust grid pattern formed by these cells is nevertheless affected
by a few factors, such as the geometry of the boundary of the environment, the nov-
elty/familiarity of the environment, presence of compartments in the environment etc
(Barry, Ginzberg, et al. 2012, Barry, Hayman, et al. 2007, Krupic et al. 2015).

1.2 Neuronal Plasticity in the Hippocampus

The Hippocampus has also been a prolific area for the study of synapses and their mat-
uration over time. The study of synapses in this region viz. Hippocampal synapses, has
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helped neuroscientists gain fundamental insights on how the brain learns and adapts
to its environment. It has been postulated, and verified in many cases that the brain
encodes information (learning) and memories through changes in the efficacy of the
presynaptic neuron, as one of the neurons that activate a postsynaptic neuron. One
could say that changes in synaptic strength encode learning and memory (T.V. Bliss
and Collingridge 1993, Martin, Grimwood, and Morris 2000).

Many of these ideas were conceived and formulated through the study of hippocampal
synapses. Historically, these studies were performed by providing patterned activation
to certain subsets of neurons, either presynaptic, or both presynaptic and postsynap-
tic. Following this patterned input, the changes in synaptic efficacy as a function of the
patterned activation, was noted. Such studies led to the identification of two forms of
plasticity that have different timescales for the change in synaptic efficacy, aptly named
as short term potentiation (STP) and long term potentiation (LTP) (Martin, Grimwood,
and Morris 2000). A detailed study of the processes that underlie synaptic transmis-
sion allowed researchers to understand some of the salient factors that determine the
type of plasticity, e.g. STP is predominantly determined by presynaptic calcium stores,
whereas LTP is enabled by the NMDA receptor(T.V.P. Bliss and Lømo 1973, T.V. Bliss
and Collingridge 1993, Martin, Grimwood, and Morris 2000).

Numerous studies have found that the change in synaptic strength depended upon
the order and time difference between presynaptic and postsynaptic activation. This
form of asymmetric Hebbian learning has been called Spike-timing dependent plas-
ticity (STDP). STDP, a type of synaptic learning rule has been found to exist in mul-
tiple regions of the brain (Markram et al. 1997, Bi and Poo 1998). Different types of
STDP - excitatory and inhibitory, with different learning curves have been documented
(Markram et al. 1997, Bi and Poo 1998, Haas, Nowotny, and Abarbanel 2006, Vogels
et al. 2013).

While these studies have been very useful in understanding the molecular and cellular
level changes that underlie learning, it has not been possible to understand how learn-
ing is represented at the level of the network. In other words, we do not know what
differentiates a network that has ‘learned’ from other neuronal networks. The study of
Grid cell networks in the Entorhinal Cortex provides the ideal system for approaching
this question.
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1.3 Our work: Using Stellate cell circuits to study network-level
learning

When an animal is introduced to a novel environment, the hexagonal symmetry of the
grid pattern gets distorted, the size of individual receptive fields and the spacing be-
tween neighbouring receptive fields increases. As the animal gets familiarized with its
environs, the hexagonal symmetry of the pattern gets gradually restored, and the di-
ameter and spacing of individual grid cell receptive fields attain steady values (Barry,
Hayman, et al. 2007, Barry, Ginzberg, et al. 2012). The mechanisms and changes in
the Entorhinal Cortex underlying this internal shift in the state of the animal, as the
familiarity with its environment increases, remain largely unknown.

a b d e
i

ii

iii

c

Figure 1. A figure panel adapted from Barry, Ginzberg, et al. 2012 showing changes
in grid fields brought about by different environments. Column a and e were trials con-
ducted in familiar environments, columns b-d were trials conducted in environments
novel to the animal. The first row (i) shows the trajectory of the animal (black) and
locations where the grid cell was active (light green). The middle row (ii) is a firing rate
map (red-high firing, blue-low firing and white-unvisited locations). The last row (iii) is
a spatial-autocorrelogram. For details on the exact values of peak firing rate, ’gridness’
of the pattern and how the spatial autocorrelogram was constructed, the reader can
consult Barry, Ginzberg, et al. 2012.

Stellate cells are cells found in the medial Entorhinal Cortex (mEC) that are thought
to be grid cells. We propose a novel idea, the use of Stellate cell circuits to study
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the changes that learning brings about networks. The emergence of spatially periodic,
repeating receptive fields is believed to be a property of Stellate cell networks. Such
receptive fields have been obtained through a variety of computational models that
employ different principles (Fransén et al. 2004, Burak and Fiete 2009, Hasselmo and
Shay 2014, O’Keefe and Burgess 2005, Giocomo, M.B. Moser, and E.I. Moser 2011).
The composition, architecture and nature of inputs to the Stellate cell network wholly
decide the activity of each of the individual neurons that comprise the network. Given
that there are visible change in the receptive fields of a neuron as the animal learns the
environment, and since changes in individual receptive fields of cells are believed to
be a network property, it is only natural that changes to stellate cell networks, brought
about the learning, cause these changes.

Previous electrophysiological experiments in Layer II/III of the mEC have established
the existence of Inhibitory Spike-timing dependent plasticity (iSTDP) at the synapses
between the Inhibitory interneurons and Stellate cells (IE synapses) (Haas, Nowotny,
and Abarbanel 2006). In this study, we attempt to study the changes that iSTDP brings
about in a network, as the animal becomes progressively familiar with its environment.
Given that there are no Excitatory-Excitatory synapses (EE synapses) in the mEC,
and Inhibitory interneurons are the primary inputs to Stellate cells in this region (Couey
et al. 2013, Schmidt et al. 2017), we hypothesize that the changes in the firing patterns
of Stellate cell networks are brought about by inhibitory plasticity.

For my Master’s thesis, we address this problem by modeling neuronal networks com-
prising biophysically realistic neurons and synapses. The IE synapses of the network
are plastic, and the efficacy of the synapse evolves in accordance with experimentally
characterized plasticity rules (Haas, Nowotny, and Abarbanel 2006). All our simula-
tions, and parameter values have been based on insights and evidences from exper-
iments. The following sections of this thesis will detail the relevant experiments, and
our attempts to model this extremely interesting transformation in the spatial scale of
grid cell patterns.
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2 Materials and Methods

All simulations were performed using C++ and insilico, a C++ library developed at the
Computational Neuroscience Lab, IISER Pune (http://www.iiserpune.ac.in/ collins/insilico/).
The development of insilico was motivated by the desire to allow the programmer to
focus on details pertaining to the simulation, without spending too much time on the
actual coding and debugging aspects. Insilico uses odeint - a C++ library developed
for solving the Initial value problems of Ordinary differential equations by iterative nu-
merical integration (Ahnert and Mulansky 2011). All simulated data was obtained in
the form of .dat files, whose analysis was carried out using python 2.7.6 and various
other python libraries.

2.1 Neurons

We have modelled both Stellate cells and Inhibitory neurons as biophysically realistic
point entities. In some parts of this thesis, we will be using the abbreviation E neurons
for Stellate cells/Excitatory neurons, and I neurons for Inhibitory interneurons. The
Stellate cell model has been based on a previous model of a Layer II/III stellate cell in
the medial Entorhinal Cortex(mEC) (Rotstein et al. 2006). This model is an extension
of the Hodgkin-Huxley model of the neuron. In addition to the standard sodium (INa),
potassium (IK) and leak channels (IL), this neuron has a persistent sodium channel
(INaP ), and a two component (fast and slow) hyperpolarization-activated current (Ih).
Stellate cells in the medial Entorhinal Cortex have been shown to exhibit low-amplitude
(1-4 mV ) oscillations at theta-rhythm frequencies, commonly referred to as subthresh-
old oscillations (STOs). Previous studies show that the interplay between the persistent
sodium current and the hyperpolarization-activated current is sufficient to explain the
emergence of STOs (Dickson et al. 2000, Fransén et al. 2004). Stellate cells have
been shown to exhibit characteristic rebound spikes after inhibition from interneurons.
Computational models that include the Ih current, and pharmacological experiments
that block HCN channels (responsible for the Ih current) have established that the Ih

current is necessary for the production of these rebound spikes after receiving inhibi-
tion (Dickson et al. 2000).

The current equation for this model of a Stellate cell is below:

C
dV

dt
= Iext + IDC − INa − IK − IL − Ih − INaP − Isyn − INoise (1)

where V is the membrane potential (mV ), C is the membrane capacitance (µF/cm2),
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Iext is an externally applied bias to the neuron (µA/cm2), IDC is the applied DC to the
neuron that stays constant throughout the simulation, Isyn is the current that flows into
the neuron through the synpase and INoise is a noise term introduced in the synaptic
current. Iosc is any form of oscillating current that is given to the neuron. For the En-
torhinal Cortex circuit that we are modelling, we use this oscillating current to simulate
the theta rhythm input from the medial septum (MS). The channel currents are defined
by the following differential equations:

INa = GNam
3h(V − ENa)

IK = GKn
4(V − EK)

IL = GL(V − EL)

INaP = Gpp(V − ENa)

Ih = Gh(0.65rf + 0.35rs)(V − Eh)

(2)

GX and EX(X = Na, K, L, p, h) are the maximal conductances (mS/cm2) and rever-
sal potentials (mV ) respectively. The units of time are msec. All the gating variables
x(where x = m,h, n, p, rf , rs) obey first order differential equations of the form:

dx

dt
=
x∞(V )− x
τx(V )

, (3)

where

x∞(V ) =
αx(V )

αx(V ) + βx(V )
and τx(V ) =

1

αx(V ) + βx(V )
(4)

The voltage dependent parameters αx(V ) and βx(V ) have been defined as functions
that show some form of exponential dependence on x. Due to space constraints, we
haven’t specified the functions of αx(V ) and βx(V ) in this section. For the exact func-
tional forms of αx(V ) and βx(V ), where x = m,h, n, p, rf , rs, the interested reader can
consult section 5.1.

The inhibitory neuron model we have used is based off the Inhibitory neurons modelled
in the work by Wang and Buzsaki (Xiao-Jing Wang and György Buzsáki 1996). The
current equation for this model of the inhibitory neuron is given below:

C
dV

dt
= Iext + IDC − INa − IK − IL − Isyn − Iosc − INoise (5)
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The sodium (INa), potassium (IK) and leak (IL) currents have been modeled accord-
ing to Hodgkin and Huxley’s equations, written in equation 2. However, the maximum
conductance values and gating variables have been modified to make the inhibitory
interneurons show characteristic behaviors of hippocampal and neocortical interneu-
rons. These interneurons exhibit a brief after-hyperpolarization phase of -15mV , which
transiently takes the membrane potential to values around -70 mV , this has been im-
plemented by setting the maximum value of potassium conductance (GK) to low val-
ues, and a fast gating variable for IK so as to ensure that it deactivates quickly during
the spike repolarization. Another striking property of these interneurons is their ability
to generate fast, repetitive spikes, this has been implemented by having fast kinetics
for sodium inactivation (h) and potassium activation (n), and a relatively high threshold
for the potassium current, IK (Xiao-Jing Wang and György Buzsáki 1996). A list of
all the variables and the values assigned to them in the simulations, can be found in
Xiao-Jing Wang and György Buzsáki 1996. A description of the synaptic current, Isyn,
and details on how it’s computed can be found in section 2.2 and equation 8.

2.2 Synapses

Our network consists of two types of neurotransmitter-receptor pairs, AMPA for Excitatory-
Inhibitory synapses (EI synapses) and GABAA for Inhibitory-Inhibitory synapses (II
synapses) and Inhibitory-Excitatory synapses (IE synapses). Since Stellate cells have
been found to connect to other Stellate cells only via inhibitory interneurons (Couey et
al. 2013), we do not include EE synapses in our network.

All conductances (AMPA and GABAA) in the network have been modelled as simple
first-order kinetic reactions. Each postsynaptic receptor is assumed to exist in any one
of two configurations, open or closed. The probability of the receptor remaining in the
closed state is 1 − Pr, whereas the probability of remaining in the open state is Pr.
In the simulation, these probabilities are a function of time, and depend on the pres-
ence/absence of neurotransmitter in the synaptic cleft. α is the rate at which each
channel switches from closed to open state, and β is the rate at which the channel
switches from open to closed state. This can be represented in the differential equa-
tion:

dPr
dt

= α(1− Pr)− βPr (6)

For simplicity, we model the neurotransmitter in the synaptic cleft as a square pulse
[Figure 2]. The neurotransmitter concentration in the synaptic cleft rises sharply after

12



the arrival of a presynaptic action potential. In the simulation environment, this instant
of time is defined as the ”last spike” of the presynpatic neuron (tn−1). The concentra-
tion of neurotransmitter in the synaptic cleft drops down to zero after a fixed duration
of time (Td). This approximation ensures that the neurotransmitter concentration in the
synaptic cleft takes binary values, allowing us to simplify calculations by specifying α

and β values for each of the two states of the synapse.

State 1 - β ∼ 0, lasts for a duration of Td after the presynaptic neurons fires
State 2 - α ∼ 0, for all other values of time in the simulation

After reducing the complexity of our synapse, the modified time differential equation
for probability depends only on the state of the synapse, as shown in equation 7 and
figure 2. The probability of a channel remaining open, is calculated by numerical inte-
gration of the following differential equation:

dPr
dt

=

α(1− Pr) for t′n−1 ≤ t ≤ t′n−1 + Td

−βPr for other values of t
(7)

The value of the postsynaptic conductance in mS/cm2 is specified as a product of the
maximum value of conductance and the probability of a channel being in the open
state. This can be intuitively thought of as the fraction of receptors on the postsynaptic
density that remain in the open state. Each postsynaptic conductance directly feeds
into the postsynaptic neuron in the form of a postsynaptic current (Isyn) mentioned
in equation 2, which is given by the product of the postsynaptic conductance and
difference between the membrane potential and resting potential [Equation 8].

Isyn = GsynPr(V − Esyn) (8)

2.3 Neuronal network architecture

The overall architecture of the network resembles that of continuous attractor models
that have been used to explain grid cell firing (Burak and Fiete 2009, Giocomo, M.B.
Moser, and E.I. Moser 2011). However, certain differences between our model and
other models allow us to effectively study the motion of an animal in one dimension.
These features of the model have been described below.

An individual grid cell’s receptive field tessellates space. Figure 3 shows the receptive
fields of adjacent grid cells, superimposed. Looking at this schematic, it becomes ev-
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Figure 2. A schematic showing the two states in our synapse model and how the
neurotransmitter concentration in the synaptic cleft varies depending on the state of
the synapse. Section 2.2 describes the reasons for modelling the synapse in such a
manner.

ident that as the animal travels through space, the trajectory of the animal is mapped
onto the activity of a sequence of grid cells. If one considers linear trajectories through
space (shown by white lines in figure 3), the animal’s path will be encoded by a set of
periodic, repeating receptive fields, as shown in figure 4.

Thus, every linear trajectory in space can be mapped onto the repetitive, periodic activ-
ity of a group of cells. One can think of this periodic activity as the successive activation
of neurons in a ring. This was the primary reason for us to construct our network in
the form of two concentric rings. This simplistic transformation from linear trajectories
to ring networks, shown in figure 4 prompted us to start our investigation by analyzing
linear trajectories.

Our model has two rings, a ring of I neurons, and a ring of E neurons. To make it
easy to visualize this network, one can imagine two concentric rings, an inner ring of
I neurons and an outer ring of E neurons. A striking feature of our model is that the
inner ring of I neurons that are all-all connected. This type of connectivity is a stan-
dard recipe for a winner-takes-all paradigm, and forces the peak of activity to stay at
one interneuron at a time (Assisi, Stopfer, and Bazhenov 2011). After an inhibitory
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Figure 3. A schematic showing all the grid fields of four different neurons (marked
in red, blue, orange and yellow) in a particular environment. The three pairs of white
parallel lines indicate three possible straight line trajectories of the animal.

Figure 4. The straight line trajectory that the rat travels has been taken from the hor-
izontal pair of white parallel lines in figure 3. As the rat travels along this path, the
sequence of grid cells activated will be periodic and repeating. This sequential activity
can be mapped onto the periodic activity of neurons on a ring.

neuron fires, it activates the nearest excitatory neuron via rebound after inhibition, as
explained in section 2.1. Thus, the activity of excitatory neurons, in our network, is a
faithful representation of the activity of inhibitory interneurons.
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Figure 5. A schematic showing the archirecture of our neuronal network. Blue circles
- Excitatory neurons (Stellate cells), orange circles - Inhibitory interneurons. The red
lines indicate the all-all inhibitory network of the interneurons. For the purposes of
clarity, we haven’t drawn the IE and EI synapses. Figure 9 shows the IE and EI
connectivity kernels in detail, before and after STDP.

In all our network simulations(except one simulation in section 3.4), we have included
an external input that is provided to inhibitory interneurons. This ‘external input’ is a
constant DC current that is given to one neuron at a time in the network, and shifts
between neurons in a cyclic manner with the specified frequency (ε = frequency with
which the external drive shifts between neurons on the ring). Since we started off with
completely symmetric network weights in our simulation, it was imperative to have an
extraneous determinant of activity propagation direction. The external input given to a
neuron played this role, ensuring that the activity bump preferentially flowed from one
I neuron to the adjacent I neuron. While there isn’t any experimental evidence that the
connectivity of inhibitory neurons in a given volume of the mEC resembles that of a
complete graph, this assumption allows us to mimic a winner-takes-all scenario where
the activity shifts between neurons.

Each inhibitory neuron is connected to excitatory neurons in the other ring in such a
way that neurons that are closer to each other have a greater value of synaptic weight.
This form of local connectivity has been implemented by modelling the outgoing synap-
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tic weight profile of each neuron as a Gaussian. The EI connectivity profile has been
defined slightly differently, instead of a single-peaked Gaussian, the EI connectivity
profile comprises two peaks which are slightly shifted away from the E neuron, in
opposite sides of the ring. Figure 5 is a schematic that shows some features of the
network architecture. A figure detailing the exact IE and EI connectivity kernels used
in our simulations can be found in panel a of figure 9. Our justification for including
such an external input in our simulations, modelling the EI and IE connectivity ker-
nels in such a manner, and other discussions can be found in section 3.2.

2.4 A biologically plausible learning rule - STDP

Spike-timing dependent plasticity (STDP) is a type of asymmetric Hebbian learning
rule. Initially characterized in excitatory cortical and hippocampal synapses, STDP
has subsequently been identified in many other brain regions and is thought to un-
derlie processes like Long-term potentiation (LTP) and Long-term depression (LTD),
which are potential candidates for memory formation and forgetting (Markram et al.
1997, Bi and Poo 1998, T.V. Bliss and Collingridge 1993). Inhibitory STDP (iSTDP) is
a type of STDP where the presynaptic neuronal activity hyperpolarizes the postsynap-
tic neuron. With repeated pairings of presynaptic neuron (pre) and postsynaptic activity
(post), inhibitory STDP causes an increase/decrease in the strength of inhibition. The
change in slope of the Inhibitory postsynaptic potential (IPSP), or the peak value of the
IPSP can be used as a proxy for the strength of inhibition on the postsynaptic neuron
(Haas, Nowotny, and Abarbanel 2006, Vogels et al. 2013).

We have used an online implementation of STDP to model the rules that underlie
weight learning at the synapse (Morrison, Diesmann, and Gerstner 2008). A detailed
account of the experimental demonstration of Inhibitory STDP, and our reason for
choosing to model this phenomenon using a differential equation model can be found
in section 3.1. This model of STDP assumes two hypothetical variables, x - linked
with the presynaptic neuron and y - linked with the postsynaptic neuron. Each time
the presynaptic neuron spikes, there is a jump in the value of x (implemented through
a δ function). Barring this jump caused whenever the neuron spikes, the value of x
obeys an exponential decay with a specific time constant. Variable y exhibits a similar
behavior with respect to the postsynaptic neuron [Figure 6]. a+ and a− are constants
that determine the height of jump caused in variables x and y respectively. The time-
dependence of these equations has been expressed in the differential equations be-
low.
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τ+
dx

dt
= −x+ a+(x)

∑
i

δ(t− ti − txlag)

τ−
dy

dt
= −y + a−(y)

∑
j

δ(t− tj − tylag)
(9)

Where ti and tj for i, j = 1,2,3 ... denotes the firing times for the presynaptic and post-
synpatic neurons respectively, and txlag and tylag are respective lag times for the onset
of x and y variables [See figure 6]. For every iteration, the values txlag and tylag are
drawn from a Gaussian distribution of mean = 8.0 msec and variance = 1.0 msec2.

For a biophysical understanding of the molecular players governing the variance in
synaptic weight, one can liken x to the amount of glutamate bound to receptors on
the postsynaptic density (PSD) or the fraction of NMDA receptors existing in the open
state. Similarly, one can think of y as the voltage at the synapse caused by the back-
propagating action potential, or the calcium entry due to the backpropagating action
potential.

The change in synaptic weight is specified using these x and y variables. Each time
the postsynaptic neuron spikes, the weight of the synapse is increased by a value
proportional to the value left by trace y, and each time the presynaptic neuron spikes
the value of the synapse is decreased by a value proportional to the trace x at that
instant. This update rule is written in the form of the differential equation below.

dw

dt
= A+(w)x(t)

∑
j

δ(t− tj)− A−(w)y(t)
∑
i

δ(t− ti) (10)

The terms A+(w) and A−(w) are functions that act as weighting factors in equation 10.
It makes sense, biologically, to keep the weight of the synapse in a fixed range. We can
use the terms A+(w) and A−(w) to ensure that the weight of the synapse stays within
the fixed range. We have accomplished this by setting A+(w) and A−(w) as functions
with a multiplicative weight dependence, called soft bounds, defined in equation 11.

A+(w) = (wmax − w)η+

A−(w) = wη−
(11)

Where η+ and η− are positive constants and wmax is the maximum possilbe weight of
the synapse. This values of A+(w) and A−(w) ensures that the weight of the synapse
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Figure 6. A schematic showing how the differential equations 9 and 10 behave. Panels
A. and B. show cases where tpost − tpre > 0 and tpost − tpre < 0 respectively. The
blue and green lines show the behavior of the presynaptic and postsynaptic neurons
in time, respectively. The behavior of x and y variables have been depicted as blue
and green dashed lines, respectively. The synaptic weight (w), which depends on the
instantaneous values of x and y, has been marked in yellow ochre. One can see that
whenever tpost − tpre > 0 the weight of the synapse increases, and whenever tpost −
tpre < 0 the weight of the synapse decreases. This prediction is in accordance with the
experimental STDP curve obtained by Haas, Nowotny, and Abarbanel 2006, shown in
figure 7.

remains between 0 and wmax. The advantage of using an online model of this form is
that it becomes possible to account for the contribution of every spike generated by
every neuron in the entire network, to the weight of a particular synapse. While this
may be computationally very intensive to simulate, I believe that this level of detail is
imperative, especially when one is studying synaptic phenomena such as learning with
the help of biophysically detailed models.

2.5 Data Analysis

All simulated data was generated in the form of text files (.dat files). The analysis
of these files was carried out in Python 2.7.6. Most of the analysis code was devel-
oped over the course of the project and extensively used the numpy and scipy Python
libraries. To calculate the parameters like the inter-burst interval, burst widths and ro-
bustness of the firing sequence, we did the following:
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Firstly, we represented the entire network activity in the form of spike rasters. To do
this, we used the peak-detector function available openly at https://github.com/demotu/BMC
(author: Marcos Duarte). After converting the entire dataset to spike timepoints, we cal-
culated inter-spike intervals (ISI) by looking at the time difference between spikes. To
differentiate a spike occurring as a part of a burst from a stray spike, we set a threshold
of 1700 msec, i.e. if the ISI is greater than 1700 msec then then the two spikes would
not be a part of the same burst. After segregating all the spikes into bursts and stray
spikes, it was possible to calculate parameters like the inter-burst interval and burst
width.

Now, in order to define a robustness measure for the data presented in section 3.3,
we compared the spike rasters for the 10 different trials of the network. This was done
to check the pairwise-similarity between all of the trials. As a measure of similarity be-
tween trials, we used a discrete measure of spike synchronization defined by Mulansky
and Kreuz 2016. The libraries defined by Mulansky and Kreuz 2016 are available in
the python library, pyspike. The SPIKE-Synchronization measure is defined as an nor-
malized coincidence detector, where the coincidence window is an adaptive function
of the ISI for the neurons being compared (equation 12). The ISI for neuron m at the
ith spike (νmi ) is defined as νmi = tmi+1 − tmi , where tmi+1 and tmi are the i + 1th and ith

spikes of neuron m, respectively.

τm,nij =
1

2
min(νmi , ν

m
i−1, ν

n
j , ν

n
j−1) (12)

where τm,nij is the adaptive coincidence defined for the ith and jth spikes of neuronsm,n
respectively. After defining the adaptive window, the coincidence indicator for neuron
m is defined by:

Cm
i =

 1 if minj(|tmi − tnj |) < τm,nij

0 otherwise
(13)

Now, in a similar fashion, one can define C l
i , where l = 1,2,3 ...S is the total number

of spike trains for which we are calculating the SPIKE-Synchronization measure. The
value of synchronization (SY NC) for the series of spike trains can then be defined as:

SY NC =
1

S

S∑
l=1

Cl =
C

M
(14)
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3 Results

3.1 Modelling iSTDP at the synapse

In 2006, while studying the electrophysiological properties of neuronal circuits in Layer
II/III of the medial Entorhinal Cortex, (Haas, Nowotny, and Abarbanel 2006) found
that the IE synapses in this region exhibit Inhibitory Spike-timing dependent plastic-
ity (iSTDP). Stellate cells were identified by their characteristic electrophysiological
responses to depolarizing and hyperpolarizing current injections, which were deliv-
ered through the patch clamp technique. Presynaptic Inhibitory neurons were acti-
vated via extracellular stimulation of 10 - 50 µA, within 100-200 µm of the recording
patch clamped electrode. Presynaptic extracellular excitation was paired with postsy-
naptic activity (after a fixed duration in msec) by injecting currents of 1-3 nA through
the recording electrode in current clamp mode. This pairing protocol was repeated for
a duration of 3-5 mins at a frequency of 2 Hz. After this pairing protocol, the authors
measured the ratio of the slope of the Stellate cell IPSP relative to the slope of the
IPSP before the pairing protocol. This quantity has been used as a proxy for the po-
tentiation of the IE synapse [Figure 7].

This pairing protocol was repeated for different values of time difference in postsynap-
tic (tpost) and presynaptic (tpre) neuron firing, to obtain the STDP curve shown in figure
7. The STDP curve obtained was an asymmetric curve which potentiates for positive
values of (tpost - tpre), and depresses for negative values of the same. Both the peak
values for potentiation and depression were obtained when the magnitude of time dif-
ference was found to be around ± 10 msec. However, the extents of potentiation and
depression were found to be different.

Based on the best fit to the points on the STDP curve, the authors proposed a theo-
retical model to explain the function mapping (tpost - tpre) values to changes in synaptic
weights. This function is given below:

F (∆t) =

1 + a1(∆t)10ea2∆t, for ∆t < 0

1 + a3(∆t)10ea4∆t, for ∆t > 0
(15)

where a1 = −2.6 · 10−7ms−10, a2 = 0.94ms−1, a3 = 2.29 · 10−6ms−10, a4 = −1.10ms−1.
While this function was able to explain the results of the STDP protocol used by the
authors, it had a major drawback. The function could only account for a single pair
of pre-post spikes, in other words, this was a memoryless function. However, in real
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Figure 7. A figure panel adapted from Haas, Nowotny, and Abarbanel 2006 that shows
the STDP curve for IE synapses in the mEC. The red dashed curve is the least-square
error fit, that has been used to model equation 15. The y-axis (∆ IPSP) is the ratio
of IPSP after the STDP protocol to the IPSP before the STDP protocol. The peaks of
potentiation and depression lie at around±10msec. The blue circles are individual data
points obtained in the experiment, and the black error bars show the standard error for
each of the points. For the exact details on the sample sizes and which data points
showed a significant difference in ∆ IPSP, the reader can consult Haas, Nowotny, and
Abarbanel 2006.

biological systems, it has been found that the change in synaptic weights caused by
pre-post pairings depends not only tpost - tpre, but also depend on the firing rate, and
cooperativity among inputs (Sjöström, Turrigiano, and Nelson 2001, Feldman 2012).

Given that the neurons in our model of an Entorhinal cortex circuit show bursting be-
havior, by using the model proposed in equation 15, we would miss out on most of
the interesting detail and variability shown in our network model. More importantly, a
model that doesn’t take into account the effect of all spikes may not give us a realistic
estimate of what really happens. Thus, in order to account for the effect of multiple
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Figure 8. The STDP curves obtained by simulating the experimental protocol of Haas,
Nowotny, and Abarbanel 2006. a. The STDP curve where τx = τy = 5.0msec−1. The
red dotted line is the least-square error fit of equation 15 for these data points. The
values of the constants in equation 15 that gave produced the red-dotted line are
a1 = −1.13 · 10−7ms−10, a2 = 0.91ms−1, a3 = 4.36 · 10−7ms−10, a4 = −0.93ms−1. b. The
STDP curve where τx = τy = 74.0msec−1.

presynaptic and postsynaptic spikes, we decided to use implement an online scheme
for STDP, whose details have been presented in section 2.4.

The specifics of our STDP protocol were entirely based upon the Haas, Nowotny, and
Abarbanel 2006 experiment, i.e. the number, frequency of pairings, intensity of applied
current etc. were set to the same values that were used in the experiment. We found
that a mere presentation of artificial spikes to the STDP differential equations 9 and
10 was almost identical to the STDP curve obtained by providing paired pulses to bio-
physically detailed point neurons. Thus, we performed our simulation of the STDP ex-
periment by presenting artificially timed spikes to the STDP differential equations. The
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number of free parameters that one could vary were - τx, τy, a+(x), a−(y), A+(w), A−(w).
After running a parameter sweep over all these values, we identified the range of val-
ues for which our simulation of the experiment bore resemblance to the experimental
STDP curve [Figure 8].

Panel a of figure 8 shows our simulation of the Haas, Nowotny, and Abarbanel 2006
experiment using the differential equations in 9 and 10. After simulating the entire
network where all the IE synapses are show iSTDP, we saw that it took a lot of time
to see a discernible difference in the weights of the network. It would would take of the
order of hundred minutes (in insilico simulation time) to see a difference large enough
to show a functional difference in the behavior of the network. This would translate to
the order of tens of days in real simulation time. To speed things up with our simulation,
we tweaked the STDP curve by changing the value of τx = τy = 74.0msec−1, and
slightly increasing the peak value of potentiation at 10 msec (because all synapses
in the network simulation were potentiating)[Panel b, figure 8]. Making these changes
to the STDP curve allowed even larger values of tpost - tpre to show an increase in
weights. Given that most of the time differences in our network simulation (tpost - tpre)
are greater than 10 msec, using the STDP curve shown in panel b of figure 8 saved
us more than 90 percent of the total simulation time. All the results discussed in the
remainder of this thesis were carried out with the parameter values that were used to
plot the STDP curve in panel b of figure 8.

3.2 Inhibitory STDP gives rise to an asymmetry in network weights

After fixing different parameter values for our STDP function, we applied this learning
rule to all the IE synapses in our network and looked at the changes brought about to
network structure and function. According to the Haas, Nowotny, and Abarbanel 2006
experiment, apart from being an asymmetric function in time, the STDP function also
differs in the extent of potentiation vs. depression. The magnitude of the potentiation
peak is greater than the magnitude of the depression peak, both of which are located
at around 10 msec from the center.

Because of this inherent asymmetry in potentiation vs. depression, one would expect
a greater fraction of IE synapes to undergo potentiation as opposed to depression. As
expected, because of the domineering effect of potentiation over depression, we see
that all the synapses in the network potentiate. However, the extent of potentiation was
different for different synapses.

For this simulation, all the neurons in the network were kept in a hyperpolarized state
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Figure 9. Connectivity kernels - before and after STDP. a. IE and EI connectivity ker-
nels for neuron index = 10 (on both E and I rings) before STDP i.e. for a symmetric
network. b. Changes in the IE connectivity kernel at different stages of STDP (mea-
sured in mins). The external input moves from the right to the left. The numbers above
the red kernel (before STDP) indicate the different labels assigned to positions on the
outgoing connectivity of an I neuron. These positions will be used in figure 10.

by injecting a negative DC current. This was done to ensure that all inhibitory neu-
rons fire only in the presence of an external current greater than a certain value, and
all Stellate cells fired only after the rebound after inhibition from the interneurons. This
behavior of the Stellate cells in our network agrees with previous research that Stellate
cell networks can generate grid fields through the rebound after inhibition paradigm
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(Hasselmo and Shay 2014). Additionally, we imposed a time-varying external input of
8 Hz (discussed in 2.3) on the inhibitory interneurons of the network. The external
input frequency (εHz) was kept the same as the theta drive frequency (θHz) so as
to allow the peak of every theta cycle to coincide with the external input current. The
concomitance of the peak of the theta rhythm and the DC external drive was a result
of their similar frequencies.

a

b

Figure 10. Changes brought about by STDP in the network. a. The change in peak
value of the IE connectivity kernel (position 3) for all the inhibitory neurons in the
network after 10 mins of STDP. b. The change in weight of all the synapses present in
position 2 and position 4 of the IE kernel for the entire network.
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The need for an external drive arose because we initially started off with a completely
symmetric network. Thus, without an external drive, activity wouldn’t propagate along a
particular direction. Rather, one would observe a random firing order of neurons. One
can think of this external drive to neurons as a signal received from other regions of the
brain. This could be a signal such as the velocity at which the animal runs, postion or
tactile cues. Indeed, such signals to stellate cells in the medial entorhinal cortex have
been identified and documented in spatial navigation literature. The Haas, Nowotny,
and Abarbanel 2006 protocol lasted for a duration of 3-5 mins, in realistic biological
networks one can expect to see changes brought about by STDP at timescales of tens
- hundreds of minutes. Thus, we ran our simulation, with IE synapses obeying an in-
hibitory STDP rule for a duration of 10 mins.

After 10 mins, we noticed the following changes. First and foremost, our dual ring ar-
chitecture allowed all the IE synapses to potentiate. However, this might simply be an
artefact of the inherent asymmetry between potentiation and depression in the STDP
curve. More importantly, there was a difference in the extents to which the synapses
potentiated. After careful observation, we were able to see that the synapses in the
direction of the external input potentiated more when compared to synapses that were
oriented in a direction opposite to the external input [Figure 9 and 10]. This induced a
very well-defined asymmetry in the system caused by the direction of activity propaga-
tion. One could say that as the animal repeatedly moves in one direction, the synapses
that correspond to movement in that direction potentiate more than other synapses.

3.3 Learning causes a shift of the robust regime in frequency
space

Networks with asymmetry induced by iSTDP had two salient features, a. these asym-
metric networks appeared to be a lot less robust compared to symmetric networks that
were driven by an external input, and b. as the extent of asymmetry in the network in-
creased, the speed with which the activity wave spread across the network increased
[Figure 15].

A possible reason for the low robustness, mentioned in a could be that because asym-
metry increases the speed of activity propagation across the ring, this change in speed
doesn’t match with the onset of the of the external input to the neuron. In other words,
the external input frequency doesn’t synchronize with the natural frequency of activity
shift that is defined by the weights of the network, this loss of synchronization leads
to the activation of different neurons at the same instant of time, and ultimately a de-
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Figure 11. STDP shifts the robust regime to higher values in frequency space. a, b
and c are robustness matrices for 0 sec, 30 sec and 180 sec of STDP respectively.
The x-axis and y-axis in each of these cases are the frequency of external input (ε),
and frequency of theta drive (θ), respectively. Each square of the matrix is a value of
robustness measured over 10 different trials of the network (refer to 3.3 for details).
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Figure 12. Panels i, ii, iii, iv, v and v show the behavior of the entire network for the
designated squares labelled in figure 11. Panels i, iii and v are neuronal traces for
θ = ε = 8Hz for matrices a, b and c respectively in figure 11. Panels ii, iv and vi are
neuronal traces for θ = ε = 10Hz for matrices a, b and c respectively in figure 11. It
is evident that θ = ε = 10Hz is more robust for asymmetric networks and θ = ε =
8Hz is more robust for symmetric networks, the implications of this observation will be
discussed in section 3.4.

crease in the robustness of the wave of activity.

To test this hypothesis, we simulated 10 trials for 529 different combinations of theta
drive frequency (θ Hz)and external input frequency (εHz). We compared these simu-
lations for both symmetric and different asymmetric network topologies at 30 secs and
180 secs of STDP. The data was represented in the form of a matrix of 529 squares
(23×23), with each square representing a different value of θ and εHz . For each par-
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Figure 13. A figure panel adapted from Jeewajee et al. 2008 that shows the decrease
in frequency of theta rhythm (θ Hz) as the animal is shifted to a novel environment. The
x-axis shows the number of days the animal is the animal is kept in an environment.
All days with an asterisk (1*, 2* and 3*) indicate days that correspond to the transfer of
the animal to a novel environment. The y-axis is a measure of the change in θ in com-
parison to the baseline value of θ when the animal is familiarised with its environment.
For the variance in data point values and the exact conditions in which the experiment
was performed, the reader can consult Jeewajee et al. 2008.

ticular case, i.e. a given value of (θ, ε), we measured the robustness of the network by
using the synchronization measure described in section 2.5.

After calculating the synchronization measure over 10 trials for 529 different cases,
and representing these values in the form of a square matrix, it was clearly visible
that the stable region among the 529 different squares had shifted to higher frequency
values, i.e. the robust regime in frequency space had moved further to the upper right
corner in the frequency matrix. These observations agree with previous experiments
that observed that the frequency of theta oscillations drops to lower values when the
animal is introduced to a novel environment and gradually increases as the animal
gets familiarised with its environment (Jeewajee et al. 2008)[Figure 13]. A very recent
paper which studied brain rhythms in freely-moving humans makes the case for higher
frequency theta rhythms during movement or active exploration (Yassa 2018). Our
theory predicts that the possible reason for this increase in theta drive frequency with
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increasing familiarity could be the need to produce robust grid cell sequences. We
propose that the changing network topology as the animal explores its environment, is
the driving force behind this shift in theta frequency values.

3.4 Asymmetry in the network connectivity reduces the width of
neuronal bursts and defines a direction of propagation

Given that inhibitory STDP introduces an asymmetry - hence favoring one direction of
propagation over the other, one immediately expects to see changes in network ac-
tivity that are a result of this newly generated asymmetry. In section 3.3 we showed
that asymmetry effected through STDP can change the range of theta frequencies for
which the network is stable - a very important functional change. As STDP acts on the
synapses in the network, the amount of asymmetry gradually changes as a function of
time. We took snapshots (observed synaptic weights) of all the synapses at different
timepoints of the simulation, at intervals of 10 sec, and used these values of synaptic
weights to set up different simulations. All the snapshots of the network were within the
first 200 secs of the STDP simulation. We did this because after the first 200 secs of the
simulation, there was a significant shift in the robust regime, as discussed in section
3.3. We found that after the first 200 secs of the simulation, one had to increase the
value of theta frequency to ensure stable firing of the network.

The simulations discussed in sections 3.2 and 3.3 were carried out in the presence
of an external input. In order to test the effects of asymmetry in the absence of an
external input, we changed the value of the DC current injected to Inhibitory neurons
to a positive value. This enabled inhibitory interneurons to fire of their own accord, and
Stellate cell firing to be guided by rebound after inhibition from neighboring interneu-
rons, as explained in section 2.3. Removing the external input to individual neurons
allowed us the study the sole effects of asymmetry on network behavior.

We observed that with increasing levels of asymmetry the average width of neuronal
bursts and the value of inter-burst interval (IBI) decreased [Figure 14]. Naturally, this
also allowed for activity to spread faster across the ring. These plots show that asym-
metry alone can bring about a 36 percent decrease in IBI. However, the absence of an
external input to the inhibitory neurons is analogus to the condition where the animal
is stationary (no velocity input to the mEC). To mimic the conditions experienced by an
navigating animal in reality, we must account for a. an external signal which plays the
role of inputs from other brain regions to the mEC and b. The increase in frequency of
theta input to the mEC, which has been found in experiments (Jeewajee et al. 2008,
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Figure 14. Asymmetry increases the speed of activity propagation across the ring.
a. A plot of the average inter-burst interval of all the neurons in the network vs. the
amount of asymmetry in the ring (measured as secs of STDP acted. b. A plot of the
average burst width of all the neurons in the network vs. the amount of asymmetry in
the ring (measured as secs of STDP acted.)

Yassa 2018) and in our simulations.

The inclusion of an external input to the system introduces order in the pattern of firing.
Propagation of sequences in one direction ensures that we are studying the motion of
an animal traveling along a linear track in one direction. With a concomitant increase in
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Figure 15. Propagation of sequences in the presence of an external input. a. A snap-
shot of network activity for a completely symmetric network (0 secs of STDP), for this
simulation θ = ε = 8Hz. b. A snapshot of network activity for an asymmetric network
(180 secs of STDP), for this simulation θ = ε = 12Hz

the frequency of theta oscillations, we see a very clear decrease in the burst width and
IBI. This reduction in the value of burst width and IBI increased the speed of activity
propagation across the network. Since the animal moves in a straight line, each IBI
corresponds to the distance between the start of one receptive field to the start of the
next. Thus, the shrinking of IBIs can be thought of as direct evidence that the spatial
scale of the grid pattern decreases as the animal spends more time in its environment
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- allowing STDP to act. This is the most important claim of my thesis and sums up
our explanation of the phenomenon of grid field maturation. We put forth the following
ideas: a. The animal ”learning” the environment is represented as structural changes
in the network connectivity brought about by iSTDP b. The structural changes cause
an asymmetry in the synaptic connections, as the animal favors one direction of travel
over the other c. The induced asymmetry in the network connectivity changes the
functional behavior of the system, in that, higher frequency values of external inputs
are preferred d. Higher frequency inputs in conjunction with the asymmetry induced
by STDP are responsible for the changes in properties of grid cell firing as the animal
becomes familiar with its environment, i.e. the decrease in spatial scale of the grid
pattern.
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4 Discussions

4.1 Network connectivity - Experiments, Results and Inferences

In this study, we have shown that a network with a dual-ring architecture, with a cer-
tain network topology and external inputs can mimic the changes shown by grid cell
networks. In the following section, we will briefly talk about the experiments that have
led us to construct the network in the following manner.

Earlier studies have found that Stellate cells in the mEC do not receive excitatory input,
and connect to each other via inhibitory intermediaries, forming a recurring inhibitory
network (Couey et al. 2013). Couey et al. 2013 demonstrated that a model employ-
ing this connectivity framework could produce hexagonal grids. A recent study used
three-dimensional electron microscopy to create dense reconstructions of local presy-
naptic axons in layer II of the mEC found the existence of cellular feedforward inhibitory
networks(Schmidt et al. 2017). Schmidt et al. 2017 found that Stellate cells selectively
synapse onto inhibitory interneurons which inhibit other excitatory neurons in the mEC,
primarily pyramidal neurons. Simulations performed using this type of network con-
nectivity have shown that these neuronal networks can produce precisely regulated
firing patterns. These experiments allow us to draw two important inferences about
the connectivity of the mEC: a. There are almost none/very few excitatory-excitatory
connections (EE synapses) in the mEC (Couey et al. 2013), b. Since very few/almost
no feedback connections exist in the mEC, there will be minimal overlap in the con-
nectivity kernels of excitatory and inhibitory neurons that are directly connected (E
neurons and I neurons positioned next to each other in figure 5).

In keeping with these experimental findings, one can design the network connections
in one of the two ways shown in figure 16. The two connectivity profiles shown in figure
16 are the only two possible ways of connecting the network assuming that the out-
going connectivity of a neuron (E/I) is either nearest-neighbour connected or a slight
offset from nearest neighbour connectivity. The reason we picked a bimodal kernel
(peaks around the central peak), as opposed to an unimodal kernel is because we
didn’t want to inherently bias the propagation of neuronal activity in one direction of
the ring over the other. Consider case b. of figure 16, in such a connectivity paradigm
each Stellate cell makes a single interneuron fire (neuron at the peak of the EI kernel).
Now, upon firing, this interneuron will proceed to activate two Stellate cells, as dictated
by the IE kernels that branch off into two opposite directions of the ring. So, in case
b. of figure 16 it would not be possible to ensure that the activity is propagated solely
in one direction. Thus, this type of connectivity would not be a good way to study the
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motion of an animal that moves in a single direction along a straight line. Considering
this fact, we chose to model the synaptic connections in our network according to the
connectivity scheme of case a., figure 16. The exact kernel with the values of synaptic
weights used (before STDP acts on the network) has been shown in panel a of figure
8. The peak weights and the width of the Gaussian functions (for connectivity kernels)
were picked after doing a parameter sweep for peak heights and widths; we selected
the connectivity kernel that gave us a robust propagation of network activity only in the
presence of an external theta drive to the network.

IE

EI EI

a.

EI

IEIE

b.

Figure 16. A schematic illustrating the two possible types (a and b)of connectivity ker-
nels we could have used in our network. Both IE and EI connectivity kernels have
been modelled as Gaussian functions. Blue - IE connectivity kernel, Red - EI con-
nectivity kernel.

Many other experiments looked at inputs to the Entorhinal Cortex from the medial sep-
tum. Studies have found that theta oscillatory inputs (4 Hz - 12 Hz) from the medial
septum (MS) are important for maintaining the robustness of the grid pattern formed
by neurons of the mEC(Koenig 2011). These studies led to the belief that theta in-
put from the MS plays a very important role in spatial navigation. Bats are the only
known exception to this; bats show robust grid field formation even in the absence of
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continuous theta-band oscillations (Yartsev, Witter, and Ulanovsky 2011). It has been
found that inputs from the medial septum selectively inhibit Inhibitory interneurons in
the mEC, through GABAergic synapses (Gonzalez-Sulser et al. 2014). In accordance
with these experiments, we provide theta rhythmic input to all the inhibitory neurons in
our network.

In our work, we suggest a possible mechanism to explain the functional changes that
learning brings about in a network. We put forth the idea that Inhibitory Spike-timing
dependent plasticity, a phenomenon shown to exist in the IE synapses of the mEC,
could induce long lasting changes in grid cell circuits that change the firing properties
of the circuit, and thus, each individual grid cell. Our simulations show that iSTDP al-
ters the weights of the network in such a way that it makes them more asymmetric
with time. We show that this induced asymmetry can explain many experimentally ob-
served behaviors of grid cell networks.

We understand that there might be other mechanisms that could be responsible for the
functional changes observed in grid cell firing properties as the animal learns its envi-
ronment. One possible alternative could be that learning brings about changes in the
networks present in areas closely associated to the mEC, and the input of these areas
to the mEC is changed, which causes the changes in the firing patterns of grid cells.
Another possibility is that the sharper fields, and reduced inter-grid distance could be
an effect of reducing the variability in the inputs that feed into the mEC from areas like
the medial septum (theta rhythm), hippocampus etc.

4.2 Extending our study to 2D trajectories

We understand that restricting ourselves to the study of linear trajectories does not do
justice to the problem at hand. In reality, unless the animal is forced by a task/physical
boundaries, it is very unlikely that the animal will restrain itself to moving along a
straight line in only one direction. So, how do we solve the problem of motion in more
than one direction? To account for this, we propose the following: keep a different sub-
set of neurons that code for each direction. Figure 17 shows how it is possible to code
for movement in two directions by keeping two subsets of neurons - east-going and
west-going neurons. The existence of two different rings of Stellate cells that code for
both directions ensures that each direction gets an independent representation in the
neuronal network. So, if the animal runs east more times than the animal runs west,
then the east-going ring of neurons will have a greater level of asymmetry compared
to the west-going ring of neurons.
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Figure 17. The circles with solid colors (blue, green, yellow and red) represent In-
hibitory Interneurons that have an all-all connectivity (all the II connections haven’t
been shown here.) The hollow circles with a red outline represent Stellate cells. There
are two different groups of Stellate cells, one group that receives input when the animal
travels eastwards (receive green input) and the other group that receives input when
the animal travels westwards (receive blue input). The arrows on the top and bottom
represent the direction in which the animal is moving, i.e. the upper row of Stellate
cells are active when the animal is travelling rightward, and the bottom row of Stellate
cells will be active when the animal is traveling leftward.

One can similarly account for all four cardinal directions by dedicating a separate ring
of neurons for each of the directions. The line of thinking, however, can only extend to
a finite number of directions. Using such a scheme, it would become difficult to code
for motion when the animal doesn’t restrict itself to straight-line paths. If the animal
travels along a curve, then one possible way to code for such movement would be to
decompose the curve into straight paths by replacing every point on the curve with a
tangent to that point. While such a recipe does seem to offer a solution to the problem,
it would involve the constant switching of activity between neurons on different rings
via an external current source. Also, there is no guarantee that such a network would
generate grid fields and show the maturation of these grid fields with environmental
familiarity.

The field of Spatial navigation doesn’t have a satisfactory answer to the riddle of navi-
gation in two dimensions. The two dominant classes of models - Continuous attractor
networks (CANs) and Oscillatory Interference networks (OINs) have their own short-
comings. CANs make use of network topologies that are yet to be verified, and existing
models of CANs use overly-simplified neuron models that ignore the internal dynamics

38



and rich variation in spiking behavior across different neurons types (Burak and Fiete
2009, Giocomo, M.B. Moser, and E.I. Moser 2011). OINs make unrealistic assump-
tions about the phase of incoming oscillatory input to the cells(Hasselmo and Shay
2014, Blair, Gupta, and Zhang 2008). The existence of grid fields in the absence of a
continuous theta oscillation (Yartsev, Witter, and Ulanovsky 2011), weakens the case
for OINs as the mechanism behind grid field generation. In summary, each class of
models has its own drawbacks. The topic of grid field formation is one of great interest
and is heavily disputed, unless there is more substantiating experimental evidence, it
isn’t possible to ascertain the exact mechanism used by cells to represent space.

4.3 Similarites with hippocampal sequences and memory consol-
idation

In section 3.4 we showed that as the network becomes more asymmetric, the width of
neuronal bursts and the inter-burst interval decreases. Apart from causing functional
changes in the behavior of the network, we wanted to see whether asymmetric net-
works could maintain the propagation of activity (along a direction of the ring) in the
absence of an external input. To do this we simulated networks at different stages
of STDP (seconds for which STDP was active). After about 10 mins of STDP, we
observed that even in the absence of an external input, the direction of activity prop-
agation remained the same. In other words, the asymmetry caused by STDP left a
long-lasting change on the behavior of the network, in that it favored one direction over
the other [Figure 18].

Previous studies wherein the subject is asked to mentally navigate across a virtual
landscape have shown us that that subjects are able to form cognitive maps, and suc-
cessfully navigate using these maps in the absence of tactile and motion cues (Doeller,
Barry, and Burgess 2010, Deuker et al. 2016). These studies tell us that position and
velocity information might not be necessary to successfully navigate about a land-
scape once the subject has gained reasonable familiarity with its environs. The results
of our simulations provide a plausible explanation for this experimental observation.
The animal’s ‘familiarity’ with its environment is a measure of change brought about
in neuronal networks in the hippocampal formation through learning. We put forth the
idea that Inhibitory STDP present in the IE synapses gives rise to asymmetries in
network connectivity that could explain the ability of animals to successfully navigate
in the absence of additional cues.

However, I believe that one must look at this result with some skepticism. Although
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Figure 18. Propagation of sequences in an asymmetric network (10 mins of STDP) in
the absence of an external input.

sequences that propagate along the same direction of the external input can be found
in figure 18, these sequences are not the same as the sequences obtained in the
presence of an external input [Figure 15]. The primary distinction between the two se-
quences is the fact that the sequences obtained in the absence of an external input
are much less robust, i.e. the number of spikes per burst, the onset of a burst and the
overlap between the bursting phases of neighbouring neurons are highly variable, and
appear to be governed by extraneous stochastic forces. Thus, one must be careful
before making the claim that these firing patterns of Stellate cells could represent the
motion of an animal through space.

Having said that, one can draw some very interesting parallels between the sequences
found in figure 18 and the sequences observed in hippocampal place cells. The se-
quences obtained in the absence of an external input represent the behavior of Stel-
late cells when the animal is either sleeping or in an awake resting state. In states of
sleep/awake resting, the behavior of place cells is very interesting: place cells activity
during sleep mimics the place cell activity during motion. In other words, the ensemble
of place cells that was active during active exploration is also active during states of
awake resting and sleep (Pavlides and Winson 1989, Skaggs and McNaughton 1996,
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Louie and Wilson 2001). However, there are two important distinctions between the se-
quences during active exploration and sequences during sleep/awake resting, i. The
sequences during sleep and awake resting can be either in the original direction of
propagation (forward replay) or in the opposite direction (reverse replay) (Diba and
Buzsáki 2007, Buzsáki 2015) and ii. These sequences appear to be temporally com-
pressed, the entire place cell ensemble firing in about 40 msec - 100 msec.

Most replay events co-occur with a high frequency (100-250 Hz) burst that manifests
itself in the local field potential (LFP) of the hippocampus (Buhry, Azizi, and Cheng
2011). These bursts were termed as Sharp-wave ripple sequences (SWRs), a de-
tailed review of almost every aspect of SWRs can be found in Buzsáki 2015. Initially,
studies found a strong correlation between the occurrence of SWRs and memory con-
solidation, the storage of memories of real-life events (Axmacher, Elger, and Fell 2008,
Dupret et al. 2010). It was subsequently verified that SWRs are required for the con-
solidation of episodic memories, this was done in a number of very elegant experi-
ments where the authors disrupted the formation of SWRs through external means (Gi-
rardeau et al. 2009, Ego-Stengel and Wilson 2010, Jadhav et al. 2012). This is where
the field of SWRs currently stands, a causal link between SWRs and memory consol-
idation is almost irrefutable. However, the exact mechanism by which SWRs lead to
the consolidation of memories still remain unknown. The most popular hypotheis that
dominates the field currently is that replay events (co-occurring with SWRs) happen
in timescales that have previously been shown to induce LTP (T.V.P. Bliss and Lømo
1973, T.V. Bliss and Collingridge 1993). However, this hypothesis needs verification.

Sequences in our network in the absence of an external drive resembles place cell
replay events in sleep and awake resting states of the animal. Consider the relatively
fast burst of neurons that occurs at around 24,000 msec in figure 18, the total duration
of this burst (across the entire ensemble of Stellate cells) is of the order of 100-200
msec. This timescale of activity discharge for an ensemble is comparable to that ob-
served during SWRs in the hippocampus. We see a lot more of such fast discharges
in networks with asymmetries. However, due to various constraints, we have not been
able to quantitatively study the properties of these fast-sequences and explore this
area of the project. The existence of such fast bursts in our asymmetric networks,
and the noticible direction of activity propagation, is very encouraging - tempting us
to draw comparisons between our model and Hippocampal place cell sequences. It is
quite possible that network topology is the reason for behind the formation of SWRs
in the Hippocampus. However, without more substantiating evidence, one can only
speculate.
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5 Appendices

5.1 Neuronal parameters

Stellate cells

• Resting potential of the neuron (at the start of the simulation): Values for a
single neuron are drawn from a Normal distribution where µ = −61.2, σ = 12.5.
The value of µ, σ of resting potentials of the entire Stellate cell population was
taken from the data provided in Haas, Nowotny, and Abarbanel 2006.

• Values of gating variables at the start of the simulation: m = 0.0224224, n =

0.1.3519, h = 0.954963, p = 0.0678057, rs = 0.118111, rf = 0.0779264

• Parameters used in equations 3 and 4:
αm(V ) = −0.1(V + 23)/e−0.1(V+23)−1

βm(V ) = 4e−(V+48)/18)

αh(V ) = 0.07e−(V+37)/20

βh(V ) = 1/(e−0.1(V+7) + 1)

αn(V ) = −0.01(V + 27)/(e−0.1(V+27) − 1)

βn(V ) = 0.125e−(V+37)/80

αp(V ) = 1/(0.15(1 + e−(V+38)/6.5))

βp(V ) = e−(V+38)/6.5/(0.15(1 + e−(V+38)/6.5))

rf,∞(V ) = 1/(1 + e(V+79.2)/9.78)

τrf (V ) = 0.51/(e(V−1.7)/10 + e−(V+340)/52) + 1

rs,∞(V ) = 1/(1 + e(V+2.83)/15.9)58

τrs(V ) = 5.6/(e(V − 1.7)/14 + e−(V+260)/43) + 1

• The initial values of all the currents, namely INa, Ik, IL, INaP , Ih, IDC , Iext are all set
to 0. The value of current to the cell through an ion channel evolves according to
the equations specified in equation 2.

• Values of maximum conductance and reversal potentials for ion channels
All maximal conductances are in mS/cm2 and all reversal potentials are in mV .
GNa = 52, ENa = 55

GK = 11, EK = −90

GL = 0.5, EL = −65

Gh = 1.5, Eh = −20

Gp = 0.5

• The value of capacitance of the neuron is set to 1 µF/cm2

42



• External DC input given to Stellate cells
Periodic pulse input - Iext
The periodic pulse input is a current defined to mimic the effects of a constant
external DC to all the Stellate cells of the network. The equations describing the
periodic pulse input to the neurons are:

Iext =


Pmin t < tstart

Pmax + (Pmin − Pmax)e−(t−tstart)/τrise t ∈ [tstart, tend]

Pmin + (Pmax − Pmin)e−(t−tend)/τfall t > tend

(16)

where,
t = time
tstart = temporal onset of current
tend = temporal termination of current

It is important to note that the values of tstart and tend are periodic. That is,
tstart = t1, t1 + Γ, t1 + 2Γ + ....

tend = t2, t2 + Γ, t2 + 2Γ + ....

where,
t1 = First onset of periodic pulse, t2 = First termination of periodic pulse and
t2 − t1 = t∆, where t∆ is the duration of the pulse and Γ is the time period of the
periodic pulse. The values of the parameters in equation 16 for stellate cells are
as follows:
Γ = 30 sec

t1 = 1 sec

t2 = 29 sec

τrise = Random number from the uniform distribution [20.0, 200.0] msec−1

τfall = 20.0 msec−1

In the presence of an external input to the inhibitory interneurons:
Pmin = Random number picked from the uniform distribution [−4.0,−3.6] µA/cm2

Pmax = −2.7 µA/cm2

In the absence of an external input to the inhibitory interneurons:
Pmin = Random number picked from the uniform distribution [−4.0,−3.6] µA/cm2
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Pmax = 0.2 µA/cm2

Inhibitory interneurons

• Resting potential of the neuron (at the start of the simulation): Values for
a single neuron are drawn from a Normal distribution where µ = −61.2, σ =

12.5. The value of µ, σ of resting potentials of the entire inhibitory interneuron
population was kept the same as the distribution of resting potentials for Stellate
cells; this was done for simplicity.

• Values of gating variables at the start of the simulation: m = 0.0224224, n =

0.764751, h = 0.283859

• Parameters used in equations 3 and 4:
αm(V ) = −0.1(V + 35)e−0.1(V+28) − 1

βm(V ) = 4e−(V+60)/18)

αh(V ) = 0.07e−(V+58)/20

βh(V ) = 1/(e−0.1(V+28) + 1)

αn(V ) = −0.01(V + 34)/(e−0.1(V+34) − 1)

βn(V ) = 0.125e−(V+44)/80

• The initial values of all the Currents, namely INa, Ik, IL, IDC , Iext are all set to 0.
The value of current to the cell through an ion channel evolves according to the
equations specified in equation 2.

• Values of maximum conductance and reversal potentials for ion channels
All maximal conductances are in mS/cm2 and all reversal potentials are in mV .
GNa = 35, ENa = 55

GK = 9, EK = −90

GL = 0.1, EL = −65

• The value of capacitance of the neuron is set to 1 µF/cm2

• The behavior of the gating variables
The excitation variable for the sodium current (m) is assumed to be fast, hence
m is substituted by its steady-state values m∞ = αm/(αm + βm).

The behavior of the gating variables h and n obey the following first order differ-
ential equations: dh/dt = φ(αh(1− h)− βhh) and dn/dt = φ(αn(1− n)− βnn)

where φ = 5.
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• The external current inputs given to the Inhibitory interneurons in the net-
work

1. Sinusoidal input - Iosc
The sinusoidal input is given to all the interneurons to mimic the effect of
the theta drive from the medial septum to the inhibitory interneurons of the
mEC (Koenig 2011, Gonzalez-Sulser et al. 2014). The mathematical form
of the sinusoidal input is:

Sinusoidal input = A sin (2πω/1000.0 + Φ)(V − Vth)

where,
A = Amplitude of input = 0.05 µA/cm2

ω = Frequency of theta drive = 8 Hz (for all simulations). The frequency of
theta drive was varied to obtain figures 11 and 12.
Φ = Phase of incoming input to neuron = 0.0 i.e. all the interneurons receive
inputs with the same phase.
V = Membrane potential of the neuron (mV )
Vth = Threshold potential of the drive = -80 mV

2. Periodic pulse input - Iext
The periodic pulse input (for interneurons) to mimic the effects of both, a
constant external DC to all the interneurons of the network, and the shift-
ing external input described in section 3.2. The equations describing the
periodic pulse input to the interneurons are the same as those detailed in
equation 16.

The values of the parameters used in equation 16 vary depending on whether
the periodic pulse current is used as a common DC input or as an external
input given to one neuron at a time. The values of the parameters for each
of these cases is given below.

(a) Constant D.C. to all interneurons
Pmin = −3.1 µA/cm2

Pmax = −0.05 µA/cm2

Γ = 30 sec

t1 = 1 sec

t2 = 29 sec

τrise = Random number from the uniform distribution [20.0, 200.0] msec−1

τfall = 20.0 msec−1
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(b) External input given to a single interneuron
Pmin = −0.05 µA/cm2

Pmax = 1.0 µA/cm2

Γ = 30 sec

t∆ = 1/ω msec. For all simulations, except figures 11 and 12, the value
of ω was set to 8 Hz, so t∆ = 125 msec.
τrise = 2.0 msec−1

τfall = 2.0 msec−1

5.2 Synaptic parameters

1

2

3

4

5
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b

c

d

e

Figure 19. The IE and EI connectivity kernels for a particular neuron. Both the IE
and EI kernels have been superimposed on each other for the same neuron index (the
same position on both E and I rings). The numbers (1-5) are labels that have been
assigned to different postsynaptic neurons on the outgoing IE kernel. Similarly, the
alphabets (a-e) are postions assigned on the EI kernel. The y-axis contains synaptic
weight values (mS/cm2), these values are accurate and are the same values that have
been used in the simulations (before STDP).

• The values of the rate constants and reversal potential of the synapse
AMPA synapses: α = 1.1 msec−1, β = 0.19 msec−1, Esyn = 0.0 mV

GABAA synapses: α = 10.5 msec−1, β = 0.166 msec−1, Esyn = −80.0 mV
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• Duration for which neurotransmitter remains in the synaptic cleft (Td) = 2.0 msec

• Maximum values of the postsynaptic conductance (Gsyn) for different synapses
There are three types of synapses in the network, viz. II, IE and EI synapses.
All the II synapses in the network are equivalent, i.e. all the II synapses have
the same value of Gsyn = 1.0 mS/cm2.

• Figure 19 shows the outgoing connectivity profile for the same neuron index (10)
on both the E and I rings. The values of maximum postsynaptic conductance for
each of these positions is given below. All the values are in mS/cm2.

1. IE connectivity kernel
Position 1: 0.001157
Position 2: 0.074608
Position 3: 0.299207
Position 4: 0.074608
Position 5: 0.001157

2. EI connectivity kernel
Position a: 0.000463
Position b: 0.119683
Position c: 0.000463
Position d: 0.119683
Position e: 0.000463

5.3 STDP parameters

In this section, we will list the parameters used in our simulation of iSTDP in the IE

synapses of the network [Equation 10]. Figure 8 shows two STDP curves obtained by
simulating the pre-post pairing protocol used in Haas, Nowotny, and Abarbanel 2006.
Panel a of figure 8 has been produced with parameter values that produce an STDP
curve that closely resembles that of the Haas, Nowotny, and Abarbanel 2006 experi-
ment. Whereas panel b of the figure has been generated with parameter values that
give rise to a faster change in network weights. The reasons for having two indepen-
dent sets of parameter values can be found in section 3.1. The parameter values for
both these cases can be found below.

• Panel a of figure 8
τ+ = 5.0 msec−1

τ− = 5.0 msec−1
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a+ = 18.0

a− = 18.0

η+ = 0.19

η− = 0.25

wmax = 3.0 mS/cm2

• Panel b of figure 8
τ+ = 74.0 msec−1

τ− = 74.0 msec−1

a+ = 25.0

a− = 18.0

η+ = 0.19

η− = 0.25

wmax = 3.0 mS/cm2
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