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1. Introduction 

Rapid changes in climatic conditions and habitat degradation are posing alarming threats of 

extinction to a number of species (Crooks et al., 2017; Didham et al., 2012; Thomas et al., 

2004). Unfortunately, but not surprisingly, not all species are equal in their ability to respond 

to such new challenges and maintain a steady abundance over the long run (Parmesan, 2006).  

For some of these species human intervention is necessary to avoid extinction, whereas others 

might survive either by adapting to the new conditions or by dispersing to more favorable 

areas. In this thesis, I have examined potential strategies for increasing stability of extinction-

prone populations and investigating evolutionary consequences of dispersal evolution. For 

this purpose, I have used computer simulations and experiments using laboratory populations 

of the fruit-fly, Drosophila melanogaster. Here I present an overview of the various studies 

and the corresponding findings presented in this thesis. 

2. A Comparison of Six Methods for Stabilizing Population Dynamics (Chapter 2) 

Here I compare six different control methods with respect to their efficiency at inducing a 

common level of enhancement (defined as 50% increase) for two kinds of stability 

(constancy and persistence) under four different life history/ environment combinations. I 

show that for these six methods, even when the magnitude of stabilization attained is the 
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same, other aspects of the dynamics like population size distribution can be very different. 

Consequently, correlated aspects of stability, like the amount of persistence for a given 

degree of constancy stability (and vice versa) or the corresponding effective population size 

(a measure of resistance to genetic drift) vary widely among the methods. Moreover, the 

number of organisms needed to be added or removed to attain similar levels of stabilization 

also varies for these methods, a fact that has economic implications. Finally, I compare the 

relative efficiency of these methods through a composite index of various stability related 

measures. My results suggest that Lower Limiter Control (LLC) (Hilker and Westerhoff, 

2005) seems to be the optimal method under most conditions, with the recently proposed 

Adaptive Limiter Control (ALC) (Sah et al., 2013) being a close second. 

The content of this chapter has been published as the following research article: 

Tung, S., Mishra, A. and Dey, S. 2014. A comparison of six methods for stabilizing 

population dynamics. Journal of Theoretical Biology 356, 163-173. 

 

3. Population stability through Upper Limiter Control (ULC) and Lower Limiter 

Control (LLC) (Chapter 3) 

Although a large number of methods exist to control the dynamics of populations to a desired 

state (Dattani et al., 2011; Hilker and Westerhoff, 2005; Sah et al., 2013; Tung et al., 2014), 

few of them have been empirically validated, which limits the scope of using these methods 

in real-life scenarios. To address this issue, I tested the efficacy of two well-known control 

methods in enhancing different kinds of stability in highly fluctuating, extinction-prone 

populations of Drosophila melanogaster. The Upper Limiter Control (ULC) method (Hilker 

and Westerhoff, 2005) was able to reduce the fluctuations in population sizes as well as the 

extinction probability of the populations. On the negative side, it had no effect on the 

effective population size and required a large amount of effort. On the other hand, Lower 

Limiter Control (LLC) enhanced effective population size and reduced extinction probability 

at a relatively low amount of effort. However, its effects on population fluctuations were 

equivocal. I also show that biologically-realistic simulations, using a very general population 

dynamics model, are able to capture most of the trends of my data. This suggests that my 

results are likely to be generalizable to a wide range of scenarios. 

The content of this chapter has been published as the following research article: 
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Tung, S., Mishra, A., Dey, S. 2016. Stabilizing the dynamics of laboratory populations of 

Drosophila melanogaster through upper and lower limiter controls. Ecological Complexity 

25, 18-25.  

 

4. Population stability through Both Limiter Control (BLC) and Target Oriented 

Control (TOC) (Chapter 4) 

Here, I investigated the effects of two other well-studied control methods (Both Limiter 

Control and Target-Oriented Control) on the dynamics of unstable populations of Drosophila 

melanogaster. In contrast to the methods investigated in the previous chapter, here I show 

that both BLC and TOC (Dattani et al., 2011) can significantly reduce population 

fluctuations, decrease extinction probability and increase effective population size 

simultaneously. I use the distribution of population sizes to derive biologically intuitive 

explanations for the mechanisms of how these two control methods attain stability. Finally, I 

show that non-Drosophila specific biologically realistic simulations are able to capture 

almost all the trends of my data, indicating that these results are likely to be generalizable 

over a wide range of taxa. 

The content of this chapter has been published as the following research article: 

Tung, S., Mishra, A., Dey, S. 2016. Simultaneous enhancement of multiple stability 

properties using two-parameter control methods in Drosophila melanogaster. Ecological 

Complexity 26, 128–136.  

 

5. Understanding Drosophila dynamics through a stage-structured individual-based 

model (Chapter 5) 

The amount of resources available to different life-stages can affect the dynamics of stage-

structured populations. I investigate this through a stage-structured individual-based model of 

Drosophila that incorporates life-history parameters common to many holometabolous insect 

populations. I also compare my study with experiments and models on the dynamics of 

various other species to understand which aspects of dynamics are generalizable. I then use 

this model to explore how the interaction between nutrition levels and various facets of 

unequal number of males and females affect population dynamics. I show that the effects of 

unequal sex-ratio and sex-specific culling are greatly influenced by fecundity but not by 

levels of juvenile nutrition. I also demonstrate that the efficiency of a widely-used pest 
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control method (Sterile Insect Technique) depends on a complex interaction between the 

levels of juvenile nutrition and the density-independent adult fecundity. 

The content of this chapter has been submitted as the following research article and it is 

currently under review: 

Tung, S., Rajamani, M., Joshi, A., Dey, S. 2017. Understanding the dynamics of laboratory 

populations of Drosophila melanogaster: Long-term experiments meet individual-based 

modelling. bioRxiv 138446. 

 

6. Simultaneous evolution of multiple dispersal components and kernel in laboratory 

populations of Drosophila melanogaster (Chapter 6) 

Global climate is changing rapidly and is accompanied by large-scale destruction of habitats. 

Since dispersal is the first line of defense for mobile organisms to cope with such adversities 

in their environment, it is important to understand the causes and consequences of evolution 

of dispersal. Using four large (N~2500) outbred populations of Drosophila melanogaster, 

subjected to artificial selection for increased dispersal, I show that different components of 

dispersal, such as  propensity and ability, can evolve rapidly and simultaneously. The 

response to selection persisted even in the absence of proximate drivers for dispersal. The 

dispersal kernel evolved to have significantly greater standard deviation and reduced values 

of skew and kurtosis, which ultimately translated into a 67% greater spatial extent. I also 

found that although sex-biased dispersal exists in this species, its expression can vary 

depending on which dispersal component is being measured and the environmental condition 

under which dispersal takes place. Interestingly though, there was no difference between the 

two sexes in terms of dispersal evolution. 

The content of this chapter has been published as the following research article: 

Tung, S., Mishra, A., Shreenidhi, P. M., Sadiq, M. A., Joshi, S., Sruti, V. S., Dey, S. 2017. 

Simultaneous evolution of multiple dispersal components and kernel. Oikos 127, 34–44. 

 

7. Evolution of dispersal syndrome and its corresponding metabolomic changes 

(Chapter 7) 

In this chapter, I explore the the behavioral, life-history and metabolic consequences of 

dispersal evolution in Drosophila. In terms of life history, the dispersal selected populations 

had similar values of body size, fecundity and longevity as the controls. However, in terms of 

behavior, the selected populations evolved significantly greater locomotor activity, 
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exploratory tendency, and aggression. These observations led to predictions about putative 

mechanisms that were confirmed through untargeted metabolomic fingerprinting using NMR 

spectroscopy. The selected flies had evolved greater amounts of glucose, AMP, and NAD, 

suggesting elevated cellular respiration. At the same time, levels of neuropeptides, such as 

octopamine, serotonin and dopamine, related to aggression and exploration had increased in 

the dispersal selected flies. 

The content of this chapter has been submitted as the following research article and it is 

currently under review process: 

Tung, S., Mishra, A., Gogna, N., Sadiq, M. A., Shreenidhi, P. M., Sruti, V. S., Dorai, K., Dey, 

S. 2017. Evolution of dispersal syndrome and its corresponding metabolomics changes. 

bioRxiv 178715. 

 

8. Conclusion 

In the final chapter (Chapter 8), I have summarized the main results of the previous chapters, 

discussed their potential implications and mentioned possible avenues for further work.  

 

Apart from the published/ submitted research articles mentioned above, I am also associated 

with the following manuscripts, which are at different stages preparation: 

i. Mishra, A., Tung, S., Shree Sruti, V. R., Sadiq, M. A., Srivathsa, S., and Dey, S. Pre-

dispersal conditions and presence of opposite sex modulate density dependence and sex 

bias of dispersal. bioRxiv (2017) 146605. [submitted] 

ii. Tung, S., Mishra, A., Shreenidhi, P. M., Sadiq, M. A., Sruti, V. S., Dey, S. Evolution of 

larval and adult life-history traits as a correlated response to selection for increased 

dispersal in Drosophila melanogaster. [under preparation] 

iii. Tung, S., Mishra, A., Shreenidhi, P. M., Sadiq, M. A., Sruti, V. S., Dey, S. Selection for 

condition-dependent dispersal leads to the evolution of phenotypic-dependent dispersal in 

Drosophila. [under preparation] 

iv. Mishra, A.*, Tung, S.*, Shreenidhi, P. M., Sadiq, M. A., Sruti, V. S., Chakraborty, P. P., 

and Dey, S. Sex differences in dispersal syndromes are modulated by environment and 

evolution (2018) *Equal contribution. [submitted] 
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Millions of life forms co-exist on this planet and are responsible for the sustenance of each 

other, often in a completely non-intuitive manner. This bond of dependency among the 

species is often so strong that elimination of even one species can affect the composition, 

structure, and function of an entire ecosystem (Schmitz et al., 2000). Unfortunately, this 

extraordinary diversity of life on earth is threatened today by, inter alia, massive over-

exploitation, habitat degradation and habitat destruction (reviewed in Pereira et al., 2010; 

Rands et al., 2010). Natural phenomena like flood and soil erosion, coupled with human 

activity, are constantly remodeling the natural landscape, which, in turn, has negative 

consequences for the biota that relies on it (Didham et al., 2012; Wilson et al., 2016). 

Similarly, habitat fragmentation, another prominent reason for habitat degradation, is 

reducing animal movement and gene flow, thereby increasing the risk of local extinction 

(Crooks et al., 2017). To make matters worse, global climate, in particular, temperatures and 

patterns of precipitation, are changing rapidly (IPCC, 2007). As these environmental 

conditions have strong effects on most organisms, such changes, not surprisingly, are not 

only affecting the life-history, behaviour and abundance / distribution of species worldwide, 

but also threatening the survival of many species (Thomas et al., 2004). 

Organisms can cope with such dynamic and stressful environmental scenarios, either by 

dispersing to areas with favorable environments or by adapting to the new local 

environmental conditions (Bellard et al., 2012; Berg et al., 2010; Travis et al., 2013). 

Unfortunately, but not surprisingly, not all species are equal in their ability to respond to such 

new challenges (Parmesan, 2006). In particular, the ability to shift and expand their 

geographical range is found to be crucially dependent on attributes of the local population 

dynamics, including abundance and stability (Mair et al., 2014). Therefore, understanding the 

key factors that affect the various attributes of population dynamics, and the nature of 

adaptive evolution due to contemporary habitat degradation and global climate change, are 

some of the most crucial issues in biology today. Consequently, the nature of the problem is 

not only limited to its mere scientific interest, but also it has attracted the attention of the 

practitioners of biodiversity conservation and resource management (Allen-Wardell et al., 

1998; Butchart et al., 2010; Gray, 1997; Noss, 1990). 

The size of any biological population typically fluctuates over time in the wild (Turchin and 

Taylor, 1992 and the references therein) and even under controlled laboratory conditions 

(Becks and Arndt, 2008; Desharnais et al., 2001; Dey and Joshi, 2007; Sah et al., 2013). 

Whenever population sizes reach small values, the population has a high risk of going extinct 
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due to increased demographic stochasticity (Gabriel and Bürger, 1992). Small perturbations 

in population sizes can prevent such crashes- a notion that has been extensively investigated 

in theoretical ecology (Corron et al., 2000; Dattani et al., 2011; Hilker and Westerhoff, 2005; 

McCallum, 1992; Sah et al., 2013). Although notionally a part of the vast literature on 

controlling non-linear systems (for reviews see Andrievskii and Fradkov, 2003, 2004; Schöll 

and Schuster, 2008), methods that can be actually used to control real populations are quite 

few in number. This is primarily due to the ways these methods typically operate and certain 

properties of most ecological time series. Most chaos-control methods rely on small time-

dependent changes in the key parameters of the equations controlling the nonlinear system, 

which turns a chaotic trajectory into a stable periodic motion (Ott et al., 1990). However, this 

strategy is unsuitable for real biological populations as, in most cases, the exact equations 

underlying the dynamics remain unknown. Moreover, even when a rough idea about the 

equations are available, precise estimation of the parameters of the equations are difficult, 

since most ecological time series are short in length and are invariably noisy. Finally, the 

system parameters that determine the observed dynamics (e.g. growth rate and carrying 

capacity) are mostly estimated post-facto through model-fitting, and thus, are not available 

for real-time perturbations. Over the last two decades, a number of control methods have 

been proposed which do not require a real-time estimation of parameter values and work over 

large parameter ranges, thus being relatively robust to the noise in parameter estimation 

(Dattani et al., 2011; Hilker and Westerhoff, 2005; Sah et al., 2013). These methods typically 

work by perturbing the number of individuals in the population which is a more easily 

maneuvered empirical quantity.    

Unfortunately, despite a substantial amount of theoretical work, there is little interest in 

practitioners of conservation to try out these methods on field. There can be several reasons 

for this reluctance. Firstly, these methods have typically been shown to work using a variety 

of population dynamics models and in the context of very different concepts of stability (e.g. 

Corron et al., 2000; Güémez and Matías, 1993; McCallum, 1992). This makes it difficult to 

compare the relative efficiencies of these methods and determine 'a suitable method' in the 

context of a real biological population. Secondly, only a few of the proposed methods have 

been empirically validated even under laboratory conditions, let alone in nature. Given that 

the survival of threatened species is at stake, it is understandable that the practitioners of 

conservation are unwilling to try out untested methods in the field.  
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While experiments with external perturbation methods and insights from the associated 

generic phenomenological models are important for controlling a biological population, it is 

also crucial to identify the intrinsic and extrinsic determinants of population stability and 

understand how these factors interact. This is even more critical for organisms with stage-

structured life cycles. This is because the different developmental stages can potentially 

experience different environments (for example in insects where the larvae and adults have 

very different niches) or the same environmental factor can have different effects across 

multiple developmental stages (Payne, 1933). Unfortunately, the interaction of life-history 

and environment in shaping the dynamics of stage-structured populations is poorly 

understood. For example, despite a rich body of work on Drosophila population dynamics 

(Dey and Joshi, 2006; Mueller and Joshi, 2000; Nunney, 1983; Prout and McChesney, 1985; 

Rodriguez, 1989), it is still not clear if and how various life-history traits interact with 

nutritional availability at larval and adult stages in affecting its population stability (although 

see Nicholson, 1957; Mueller, 1988; Mueller and Huynh, 1994). Moreover, there is little 

theoretical or empirical understanding of how these nutritional regimes affect the various 

aspects of the population size distribution (mean, skewness and the position of the various 

quantiles). Apart from the obvious academic interest, such insights, wherever generalizable, 

can be invaluable for a better long-term management of already unstable populations. 

It is unfortunate but self-evident fact that the above-mentioned kinds of population 

management are implementable only for a small number of species, both in terms of 

implementation and economic viability. What about the species that need to fend for 

themselves? In order to survive in the rapidly changing contemporary climate and landscape, 

organisms can either adapt to the new conditions or disperse to places with favorable 

environmental conditions. Since adapting to the new stressful environments can often be a 

slow process, dispersal is more likely to be the first line of defense, at least for those 

organisms that are capable of it. Moreover, by distributing offspring over different 

environmental conditions, dispersal acts as a useful bet hedging strategy to cope with spatio-

temporal heterogeneity (Matthysen, 2012). Thus, not surprisingly, the evolution of dispersal 

and its consequences have been a major focus of research in evolutionary ecology for the last 

few decades (reviewed in Bowler and Benton, 2005; Clobert et al., 2012; Ronce, 2007). In 

terms of the process, dispersal is often subdivided into three stages – emigration from the 

natal habitat, inter-patch movement and immigration into the destination patch (Bowler and 

Benton, 2005). Although all these three stages are part of the same phenomenon, the 



10 

 

behavioural and physiological attributes necessary to tackle them can be very different. For 

example, emigration involves behavioural traits related to judging the natal habitat quality 

and complex decision-making, whereas traits related to physical stamina, endurance, etc. 

might be more important for the movement stage. Consequently, dispersal is a composite trait 

that consists of multiple components, like dispersal propensity (i.e. the fraction of dispersers 

leaving the current habitat), which is mostly related to the emigration stage, and dispersal 

ability (i.e. the mean distance travelled), which is mostly related to the movement stage. 

Thus, in the course of dispersal evolution, the component(s) of dispersal which will 

eventually evolve becomes contingent upon the nature of the selection pressure faced by each 

component, the costs associated with them, the manner these costs interact with each other 

and the ways they are countered by the organisms (Bonte et al., 2012). Therefore, evolution 

of a given component does not necessarily make an organism better in terms of another 

component. For example, in spider mites, artificial selection can increase dispersal propensity 

(Yano and Takafuji, 2002) but not dispersal ability (Bitume et al., 2011). In the same 

organism, when selection is imposed in the form of spatially correlated extinctions, the 

frequency of long-distance dispersers (LDDs) increases but dispersal propensity is reduced 

(Fronhofer et al., 2014). However, from these studies, it is not clear whether different 

dispersal components can evolve simultaneously or evolution of one actually imposes an 

intrinsic constraint over the evolution of other components. Also, despite several theoretical 

propositions, the way in which the evolutionary response to the individual components will 

interact to affect dispersal distance distribution or dispersal kernel remains unclear. 

To complicate matters further, dispersal is interrelated with a number of other life-history and 

behavioural traits, either functionally or through cost/benefit relationships (Bonte et al., 2012; 

Clobert et al., 2009; Stevens et al., 2012). That is why, often certain suites of behavioural and 

life-history traits are found to be closely associated with more dispersive phenotype 

(reviewed in Clobert et al., 2009). This suite of traits associated with dispersal are called 

dispersal syndromes and have been investigated in some detail (Clobert et al., 2009; Stevens 

et al., 2014).  For example, in terms of behaviour, dispersers typically exhibit greater 

exploratory tendencies (Cote et al., 2010; Korsten et al., 2013) and are more aggressive 

(Duckworth and Badyaev, 2007). Similarly, in terms of life-history, dispersers are often 

larger in size (Dingle et al., 1980) and have greater fecundity (Ebenhard, 1990). Although, 

dispersal syndromes are important to understand the genetic and demographic consequences 

of dispersal (Clobert et al., 2009; Ronce and Clobert, 2012), such trait correlations cannot 
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reliably predict which trait(s) will evolve as a correlated response to dispersal evolution. This 

is because dispersal evolution is also a function of the nature of the genetic variation at the 

disposal of the organism, including the underlying trade-off structures among the traits. This 

automatically calls for a detailed investigation of the evolutionary robustness of the dispersal 

syndromes (Ronce and Clobert, 2012). 

In this context, another important issue is the underlying mechanism of dispersal evolution. 

Compared to the anatomical or physiological changes associated with dispersal traits 

(reviewed in Zera and Brisson, 2012), we have relatively lesser understanding regarding the 

causal molecular mechanisms. So far, two genes, Phosphoglucose isomerase (Pgi) (Niitepõld 

et al., 2009) and the cGMP-dependent protein kinase called foraging (for) gene (Osborne et 

al., 1997) have been shown to be related to dispersal in insects. In C. elegans, three genes, 

namely G-protein coupled receptors npr-1 (de Bono and Bargmann, 1998), and tyra-3 

(Bendesky et al., 2011) and rol-1 (Friedenberg, 2003) have also been shown to have a 

connection with dispersal phenotypes. Although these are valuable insights, it is not always 

clear whether these genes would be the ones whose frequencies would change during 

dispersal evolution (Saastamoinen et al., 2017; Turner et al., 2015). More critically, given the 

complexity and polygenic nature of dispersal (Zera and Brisson, 2012), it is natural to assume 

that in any given species, dispersal evolution will probably involve changes in a relatively 

large number of genes and metabolic pathways (Saastamoinen et al., 2017). Therefore, a 

promising approach would be to look at the changes at the level of the metabolome and 

correlate those with corresponding behavioural and life-history changes. Although this 

approach has been successfully used in the context of adaptation to various stresses (Sørensen 

et al., 2017) or circadian profiles of metabolites (Gogna et al., 2015), to the best of our 

knowledge, it has rarely been attempted in the context of dispersal evolution (although see De 

Roissart et al., 2016; Matsumura et al., 2016). 

In this thesis, I investigate some of the above-mentioned issues.  

Chapter 2 describes a theoretical comparison of the efficiencies of six different control 

methods in inducing population stability under four different life-history/environment 

combinations using a unifying framework. Here, I used biologically realistic simulations, 

incorporating noise in growth rates and carrying capacity, as well as the lattice effect, to 

study how these control methods alter the distributions of population sizes before and after 

the methods are applied in a generation. From this, I demonstrate how multiple aspects of 
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stability like extinction probabilities, fluctuations in population sizes and effective population 

size are affected by the six control methods.  

Next, in Chapter 3 and 4, I present an empirical validation of the effects of four well-known 

control methods of the limiter family (Upper Limiter Control, Lower Limiter control, Both 

Limiter Control and Target-Oriented Control) in stabilizing extinction-prone, widely 

fluctuating populations of Drosophila melanogaster. Using the distributions of the population 

sizes, I derive a biologically intuitive understanding of how these methods affect five 

different aspects of Drosophila dynamics, namely constancy, persistence, effective 

population size, average population size and effort magnitude. In the process, I have also 

validated a number of existing theoretical predictions from the literature. Finally, I 

demonstrate that Ricker-based simulations, under biologically realistic assumptions, capture 

most of the empirical trends obtained here. Since the Ricker model is not Drosophila-specific 

and is applicable over a wide range of taxa (inter alia, bacteria (Ponciano et al., 2005), fungi 

(Ives et al., 2004), ciliates (Fryxell et al., 2005), insects (Dey and Joshi, 2006; Sheeba and 

Joshi, 1998) and fishes (Denney et al., 2002; Ricker, 1954)), these results indicate that the 

empirical insights obtained here are likely to be generalizable.  

In Chapter 5, I present a novel Individual-Based model of Drosophila dynamics, which 

includes parameters that are common to the life history of several holometabolous insects. 

This model successfully captured most of the aspects of the dynamics observed in a 

previously reported 49-generation (~3 years) long population-dynamics experiment under 

four contrasting nutritional regimes. Upon validation of the model using these data, I 

investigated how the various parameters of the model, which represent different life-history 

attributes, interact with the nutritional environments to affect the dynamics of the 

populations. Next, I compared my results with those of the experimental and theoretical 

studies in various taxa including dipterans, crustaceans, fishes, birds and mammals, to 

understand which aspects of dynamics are generalizable. Further, I extend the model to 

investigate the interaction between the amount of food and an unequal number of males and 

females on the population dynamics. Specifically, I addressed the following three issues: the 

effects of various sex ratios, sex-specific culling and sterile-insect technique. These studies 

reveal that the interaction is quite complex and certain aspects of nutrition affect the 

dynamics more than others, which implies that it is important to take nutrition into account 

while modelling these phenomena. 
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In Chapter 6, I report the results of a selection experiment on laboratory populations of 

Drosophila melanogaster, using a setup analogous to increasing habitat- fragmentation over 

generations. I demonstrate that multiple components of dispersal can evolve rapidly and 

simultaneously, which can lead to the evolution of the dispersal kernel. I then show that, once 

evolved, these traits can express themselves even in the absence of any proximal cues, 

indicating that the individuals have become intrinsically more dispersive. In the process, I 

also empirically demonstrate sex-biased dispersal (SBD) in D. melanogaster and investigate 

the selection × sex interaction in this species. 

Chapter 7 extends the study in the previous chapter and focuses on finding out the 

consequences of dispersal evolution in terms of three behavioural traits- locomotor activity, 

exploration and aggression, and three life-history traits- dry body weight, fecundity, and 

longevity. The observation of these phenotypic assays led to predictions about putative 

mechanisms that were confirmed through untargeted metabolomic fingerprinting using NMR 

spectroscopy with the help of a collaborator. Comparing the metabolome of the selected and 

the control flies, I found that the former had greater amounts of glucose, AMP, NAD and 

citric acid in their body, suggesting the evolution of an elevated level of cellular respiration. 

At the same time, the levels of neuropeptides that play a crucial role in the expression of the 

above-mentioned behavioural traits were found to be higher in the dispersal-selected flies. 

In the final chapter, I summarize the salient results obtained in chapters 2-7 and discuss their 

academic and potential practical implications. I also mention how the results presented here 

can stimulate future empirical and theoretical investigations in the field. Some of the chapters 

in this thesis are extended/modified forms of already published (Chapters 2, 3, 4, 6) or 

submitted (Chapters 5, 7) manuscripts. 
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CHAPTER 2 

 

 

 

A Comparison of Six Methods for Stabilizing 

Population Dynamics 

 

 

 

 

 

Highlights 

• Methods that involve culling promote persistence more than constancy stability. 

• The converse is true for methods that involve only restocking steps.  

• Efficacies of the methods depend upon growth rates and carrying capacities. 

• Overall, restocking to a fixed lower threshold is the optimal control method. 

 

 

 

 

 

 

 

 

 

 

Adapted from: Tung, S., Mishra, A. and Dey, S. 2014. A comparison of six methods for 

stabilizing population dynamics. Journal of Theoretical Biology 356, 163-173. 
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1. INTRODUCTION 

1.1 Background 

Since the seminal work of Ott, Grebogy and Yorke (Ott et al., 1990), a large number of 

methods have been proposed to stabilize the dynamics of unstable non-linear systems (for 

reviews see (Andrievskii and Fradkov, 2003, 2004; Schöll and Schuster, 2008)). Many of 

these methods work by manipulating the parameters of the system in real time, such that the 

trajectory of the system can be stabilized to the desired kind of dynamics (stable point or 

cycles of appropriate periodicity). However, such methods are unsuitable for controlling real 

biological populations in which the precise equations governing the system are typically 

unknown and parameters (e.g. intrinsic growth rate, carrying capacity etc.) can only be 

estimated a posteriori, through model-fitting. Control of biological populations is more easily 

achieved through methods that stabilize the dynamics through perturbations to the state 

variable, (i.e. the population size) and require relatively less system-specific information. 

Over the last two decades, many such methods have been proposed (Corron et al., 2000; 

Dattani et al., 2011; Hilker and Westerhoff, 2005, 2007; McCallum, 1992; Sah et al., 2013) 

and at least a few of them have also been empirically verified (Becks and Arndt, 2008; 

Desharnais et al., 2001; Dey and Joshi, 2007; Sah et al., 2013).  

This proliferation of biologically relevant control methods has created some interesting 

problems of its own. In ecology, there are multiple notions about the concept of stability 

(Grimm and Wissel, 1997) and ideally one would not like to opt for a method that enhances 

one kind of stability (say reduction in fluctuation in population size) at the cost of another 

(say long term persistence). However, studies on control methods often focus on 

enhancement of only one type of stability, without investigating how other aspects of the 

dynamics get affected (e.g. Corron et al., 2000; Güémez and Matías, 1993; McCallum, 1992). 

Recent empirical studies indicate that induction of one kind of stability may (Sah et al., 2013) 

or may not (Dey et al., 2008) translate into the enhancement of other kinds of stability. 

Therefore it is important to investigate how different control methods affect multiple kinds of 

stability simultaneously.  

Such comparisons can be quite complex as most theoretical studies employ different models 

of population growth and evaluate the efficacies of the control methods in different parameter 

ranges, some of which can even be biologically unrealistic. Thus, for meaningful comparison, 

these methods need to be investigated under common conditions, i.e. for the same model and 

similar levels of enhancement of stability. Moreover, since it has been empirically shown that 
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the effects of perturbation can vary depending on the intrinsic growth rates or the 

environment of the population (e.g. Dey and Joshi, 2013), it is conceivable that the efficacy 

of control methods can also be affected by these factors. Thus, any comparison of the control 

methods also needs to take into account multiple combinations of intrinsic growth rate and 

carrying capacity values. Finally, any real world scenario typically involves an economic 

component (Hilker and Westerhoff, 2005), which might play a significant role in deciding 

which control method is best suited to a given scenario. Our study aims to compare the 

performance of six well-known control methods in population dynamics under the above-

mentioned set of conditions.  

Here, owing to logistic constraints, we restrict our analyses to six control methods which 

were selected based on two criteria. Our primary selection criterion was the relative ease with 

which the methods could be implemented in real, biological populations. This ruled out some 

of the well-known, empirically verified control methods that require extensive knowledge of 

the equations governing the system and the corresponding parameter values (Becks et al., 

2005; Desharnais et al., 2001). Our second criterion was the extent of information already 

available about the control methods in the population dynamics literature. Barring one (Both 

Limiter Control, see section 1.2), for which we found no prior reference in the literature, all 

the methods that we chose have been extensively investigated both analytically and 

numerically, and have been shown to be robust to at least some degree of noise. We realize 

that there might be other control methods that fit these two criteria and therefore do not claim 

that our coverage is comprehensive.  

1.2 Description of six control methods 

The mathematical expressions for the six control methods and the corresponding ranges 

investigated in the exploratory analysis are given in Table 2.1. Here we present a brief 

description of how these methods stabilize population dynamics. Among the six, constant 

pinning (CP), also referred to in the literature as constant immigration / feedback, is perhaps 

the most well studied (McCallum, 1992; Sinha and Parthasarathy, 1995; Solé et al., 1999) and 

involves the influx of a constant number of individuals (from some external source) into the 

population in every generation.  In its general form, CP involves both immigration and 

emigration from a population (Sinha and Parthasarathy, 1995), but here we concentrate solely 

on immigration which has been shown to enhance stability for populations governed by the 

Ricker (Ricker, 1954) dynamics (McCallum, 1992; Stone, 1993). The reason for this is best 

understood graphically. For models that have single-humped first-return maps (also known as 
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the stock-recruitment curve) with at most one inflection point to the right of the maximum, 

the nature of the dynamics depends upon how negative the slope of the first-return map is at 

the point where it intersects the 45° line. Since constant immigration shifts the entire return 

map upwards (see Fig  2 of Stone and Hart, 1999), the slope at this point is reduced, which 

can convert chaotic dynamics into periodic oscillations or even stable points, depending upon 

the magnitude of the reduction (Sinha and Parthasarathy, 1995).  For those models, such as 

the logistic, where moving up the first-return map increases the slope at the intersection point 

with the 45° line, CP destabilizes the dynamics by making it more complex (Sinha and 

Parthasarathy, 1995).  Biologically, CP creates a “floor” and does not allow the population to 

hit values below the constant immigration threshold. This method has been empirically 

demonstrated to reduce fluctuations in sizes for spatially-unstructured (Dey and Joshi, 2013) 

but not spatially structured populations (Dey and Joshi, 2007).   

Table 2.1. Details of the six control methods compared in this study* 

Sl. 

No. 
Control Method 

Mathematical 

expression 

Control 

parameter 

constants 

Control 

parameter 

range(s) 

for Fig 

2.2- 2.7 

Step 

size 

1. 
Constant Pinning 

(CP) 
a

t 
= b

t
 + p Pin (p) 1 to k-1 1 

2. 
Lower Limiter 

Control (LLC) 
a

t 
= max [b

t
 , h]  Lower limit (h) 1 to k-1 1 

3. 
Adaptive Limiter 

Control (ALC) 
a

t 
= max [b

t
 , c × a

t -1
] 

ALC intensity 

(c) 
0.05 to 0.95 0.05 

4. 
Upper Limiter 

Control (ULC) 
a

t
 = min [b

t
 , H] Upper limit (H) k+1 to 3k 1 

5. 
Both Limiter 

Control (BLC) 
a

t 
= max [h, min[ b

t
 , H]] 

Lower limit (h) 1 to k-1 1 

Upper limit (H) k+1 to 3k 1 

6. 
Target Oriented 

Control (TOC) 

a
t 
= max [0, c

d
 × T +(1 - 

c
d
) × b

t
)] 

Target, T k NA 

c
d
 0.05 to 0.95 0.05 

 

* bt and at are the population sizes before and after perturbation in the tth generation, such that 

bt+1 = FUNC(at), where FUNC stands for the population recruitment function (Ricker model, 

in this study). For BLC, H > h. NA denotes not applicable. 
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One of the issues with constant pinning is that the population sizes are augmented even when 

they are not low. This problem is avoided with the so called hard ‘limiter control from below’ 

(Hilker and Westerhoff, 2005), or Lower Limiter Control (LLC) in this study, which 

prescribes that each time the population size falls below a pre-determined lower threshold, it 

is brought back to that value through restocking.  Graphically, LLC truncates some part of the 

lower end of the return map, which in turn makes part of the upper end unavailable to the 

system (Hilker and Westerhoff, 2005). This constrains the range of values that the system can 

take, finally leading to stabilization of the dynamics (Hilker and Westerhoff, 2005, 2006; 

Wagner and Stoop, 2000). A similar truncation of the return map can also be obtained by 

bringing the population size back to a given upper threshold (through culling) every time it 

crosses the threshold (Middleton et al., 1995). This is the control strategy known as hard 

‘limiter control from above’ (Hilker and Westerhoff, 2005) and referred to as Upper Limiter 

Control (ULC) in this study. A logical extension of the LLC and the ULC scheme is to 

combine both and bring the population to a lower or a upper threshold each time the size goes 

respectively below or above those limits. This is what we term as Both Limiter Control 

(BLC), a scheme that has not been proposed earlier to the best of our knowledge. 

One of the drawbacks of all the four methods described above is that the value of the control 

parameter (i.e. the various thresholds, or the fixed number of immigrants for CP) is hard set a 

priori, as a result of which, the methods are unable to adjust when there are underlying 

increasing or decreasing trends in the time series. This problem is alleviated in a class of 

control methods that set the magnitude of the perturbation as a function of the population size 

(Güémez and Matías, 1993; Pyragas, 1992), leading to methods such as proportional 

feedback control (Carmona and Franco, 2011). In these methods, although the proportion of 

the feedback is set a priori, the magnitude of the change (i.e. number of individuals added or 

removed) is dependent on the actual population sizes. We decided to investigate one such 

recently proposed method called Adaptive Limiter Control or ALC which has been 

theoretically and empirically demonstrated to reduce the fluctuation in size of both spatially 

structured and un-structured populations (Sah et al., 2013). Unlike the previous methods, 

ALC is not capable of turning a chaotic trajectory into a stable point equilibrium, but “traps” 

the dynamics into a region around the carrying capacity (Franco and Hilker, 2013). The range 

of this trapping region is determined by the growth rate, the carrying capacity and the value 

of the controlling parameter (Franco and Hilker, 2013) and the nature of the dynamics can be 

either periodic cycles or chaos (Sah et al., 2013). For situations where it is desirable to guide 
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the system towards a particular value of the state variable rather than a range of values, the 

so-called Target-Oriented Control or TOC (Dattani et al., 2011) seems to be of greater use. In 

this method, the system is guided towards a particular target value (set a priori based on 

whatever is the desired usage) by introducing individuals whenever the population size is 

below the target and removing individuals when the population size is above the target. The 

number of individuals to be added or removed is proportional to the difference between the 

target and the current value of the population size. It has been analytically shown that for 

high enough values of this proportion, TOC will always lead the system to a positive stable 

point (Franco and Liz, 2013). In this study we fixed the target at carrying capacity, which is 

expected to minimize the magnitude of interventions for attaining a given level of stability 

(Dattani et al., 2011). 

In this study, we compare the efficiency of these six methods in inducing a common level 

(50%) of reduction in either fluctuation in population sizes or extinction frequencies under 

four different life history/ environment combinations. Since these control methods have been 

extensively investigated (analytically and numerically) in the literature,  we focus on an 

intuitive understanding of how these methods change the distributions of population sizes 

over time, thereby affecting fluctuations, extinctions, effective population sizes and the 

amount of perturbation required to attain a defined stability goal. We use Ricker model–

based, biologically realistic simulations incorporating parameter noise, stochastic extinctions 

and lattice effect (sensu Henson et al., 2001). We show that for these six methods, even when 

the degree of stability attained is similar, the resulting population size distributions can be 

very different. Consequently, for a given degree of stability attained, the correlated features 

of dynamics (e.g. extinction probability, ability to resist genetic drift etc.) vary widely among 

the methods. The magnitude of perturbation needed to attain similar levels of stability was 

also different for these methods, which is likely to have economic consequences. Finally, we 

computed a composite index of various stability related measures to compare the relative 

efficiency of these methods. The major insight from our study is that there is no single 

method that is optimal under all circumstances. The performances of the methods are likely 

to depend upon which aspect of the dynamics is being controlled and what are the life-history 

/ environment of the habitat.  However, under many conditions, Lower Limiter Control, i.e. 

restocking to a constant lower threshold, seems to be an optimal strategy. 
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2. METHODS 

2.1 Population growth model 

We used the well-studied Ricker model (Ricker, 1954) for representing the population 

dynamics. This map is given as Nt+1=Nt*exp(r*(1-Nt/K)), where r, K and Nt denote intrinsic 

growth rate, carrying capacity and population size at time t, respectively. Due to its simplicity 

and lack of species specific features, this model has been extensively investigated 

theoretically (May and Oster, 1976). First principle derivation suggests that populations 

exhibiting scramble competition and random spatial distribution should exhibit Ricker 

dynamics (Brännström and Sumpter, 2005). Since populations of several species are expected 

to exhibit these properties, the model has been widely used to describe the dynamics of, inter 

alia, bacteria (Ponciano et al., 2005), fungi (Ives et al., 2004), ciliates (Fryxell et al., 2005), 

insects (Dey and Joshi, 2006; Sheeba and Joshi, 1998) and fishes (Denney et al., 2002; 

Ricker, 1954). Therefore, simulation results obtained here from this model are expected to be 

broadly applicable across a large number of taxa. 

 

2.2 Life history / environmental regimes 

The aim of this study was to compare the efficacy of various ecologically meaningful control 

algorithms under biologically relevant common conditions. However, the intrinsic growth 

rates and carrying capacities of species under different environments vary widely. Thus, it is 

conceivable that control algorithms might differ in terms of their efficacy and/or cost of 

implementation under various environments. Since it is not possible to represent every 

growth rate-carrying capacity combination, we arbitrarily chose two levels of intrinsic growth 

rate r (Low = 2.8 and High = 4.0) crossed with two levels of carrying capacity K (Low = 60 

and High = 300). Thus, we investigate four combinations HrHk, HrLk, LrHk and LrLk, 

where HrHk denotes a combination of r = 4.0 and K = 300 and so on. Since we aimed to 

study the stabilizing effects of the control methods, we explicitly chose r-values that led to 

stochastic extinctions and large amplitude oscillations in population sizes in the unperturbed 

cases. The value of r = 2.8 is representative of the growth rates of some laboratory insect 

populations (Dey and Joshi, 2006; Sheeba and Joshi, 1998) whereas the value of r = 4.0 is 

well within the limits of Ricker growth rates estimated from natural populations of fishes 

(Denney et al., 2002). In the context of the Ricker model, r = 2.8 represents a value just after 

the onset of chaotic dynamics (which happens at r = 2.697) while r = 4.0 represents highly 

chaotic dynamics (May and Oster, 1976). The value of Lk (= 60) was chosen to be similar to 
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a previous analysis (Sah et al., 2013) while Hk was arbitrarily chosen as 5 times Lk. Thus, the 

four regimes represented dynamics that seem well within the ranges of real biological 

populations in the laboratory and nature.  In all cases, the initial population size (N0) was 

taken to be 20.  

2.3 Transients and lattice effect 

Most studies in the control literature tend to investigate the dynamics of the system under 

steady states. However, many factors that determine the dynamics of a population (e.g. the 

environment of its habitat or the distributions of various life-history traits) are unlikely to 

remain constant for long (Hastings, 2004). Moreover, due to the time scales involved, most 

available ecological time series are short and, therefore, unsuitable for checking the 

predictions on steady-state dynamics. Therefore, following earlier work (Franco and Hilker, 

2013; Sah et al., 2013) we explicitly concentrated on the transient dynamics by restricting our 

simulations to the first 50 iterations. Moreover, we rounded off the number of organisms and 

the magnitude of the perturbations to the nearest integer values. This accounted for the fact 

that real organisms always come in integer numbers (lattice effect; Henson et al., 2001), 

which is known to significantly affect the dynamics in simulation studies (Domokos and 

Scheuring, 2004).  

2.4 Extinctions and resets 

In the absence of lattice effect, a Ricker-generated time-series can never take a zero value 

(i.e. become extinct) when initiated with non-zero population sizes. However, in simulations 

incorporating the lattice-effect, the Ricker dynamics permits extinctions whenever the 

population size goes below 0.5. We call this kind of extinction as Lattice Effect Extinction 

(LEE) which happens when INT[FUNC(Nt-1)] = 0, where INT is a function rounding off the 

population size to the nearest integer and FUNC represents the population recursion function 

(here the Ricker model). Following previous empirical studies (Dey and Joshi, 2006; Dey and 

Joshi, 2013; Sah et al., 2013), we also incorporated extinction due to demographic 

stochasticity (EDS) in the form of a 50% probability of extinction whenever the population 

size went below four. Mathematically, this can be represented as P(Nt = 0 | Nt’ < = 4)) = 0.5 

where Nt denotes the population size in generation t after the extinction step and Nt’ denotes 

the population size in generation t immediately after the application of the Ricker model on 

Nt-1 (i.e. FUNC(Nt-1)). Biologically, EDS occurs due to chance realizations of probabilistic 

events in a population, e.g. when all the members of a population are of the same sex, or are 

infertile, or fail to reach adulthood (Hunter and Gibbs, 2007). Prior simulations using this 
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level of EDS have been seen to give good fits to trends from experimental time series of 

laboratory populations of Drosophila melanogaster (Dey and Joshi, 2006; Sah et al., 2013). 

For unperturbed populations and those controlled by ULC, the population size was reset to a 

value of eight after an extinction event (Dey and Joshi, 2006; Sah et al., 2013). In the case of 

all other control methods, the extinct populations were automatically reset by the respective 

control schemes. 

For representational purposes, we scaled the extinction probability for all control methods in 

a given regime by the average (over 50 replicates, see below) extinction probability of the 

unperturbed population in that regime. This allowed us to directly compare the efficacies of 

the methods across regimes.  

2.5 Stochasticity and replication 

Since noise is known to have a major impact on the dynamics of perturbed populations (Dey 

and Joshi, 2007), we incorporated noise in both r and K in each iteration of the simulations. 

Thus, the stochastic intrinsic growth rate was given as r + ε (where ε ϵ U[-0.2, 0.2]) and the 

stochastic carrying capacity as λK (where λ ϵ U[0.9, 1.1]). All simulations were repeated 50 

times and the corresponding mean values (of FI, effort magnitude etc.) and standard errors 

around the mean are reported here. The small error bars indicated that 50 replicates were 

enough for the purpose of our study. However, we repeated a subset of our simulations with 

1000 replicates and found no qualitative difference with our results (data not shown).  

Thus, the complete sequence of steps in the simulation is given as: 

at-1 → [FUNC]→ [INT]→[EXT]  →bt →  [CTRL] → at 

where at and bt are the population sizes after and before application of control in the tth 

generation, and FUNC, INT,  EXT and CTRL stand for the population recursion (here Ricker 

model), integerization, stochastic extinction and control (here CP, LLC etc.) functions 

respectively. Henceforth, the time series of bt and at are referred to as the pre- and post-

perturbation time series respectively.  

2.6 Effort magnitude and Effective Population Size (Ne) 

The cost of implementation of the six control methods was quantified as the effort magnitude, 

defined as the average number of individuals added or removed per generation from the 

population in order to attain the desired control level (Hilker and Westerhoff, 2005). It can be 

computed as:  
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where bt and at are the population sizes before and after perturbation in the tth generation and  

𝑁̅ and T denote the average population size and total length of the simulation time series 

respectively (Sah et al. 2013). Following previous studies (Dey and Joshi, 2007; Sah et al., 

2013), 𝑁̅ was computed on the time series of at values. Note that effort magnitude defined 

this way is dimensionless, being a fraction of the corresponding mean population size, thus 

permitting direct comparisons across different regimes. Following earlier work (Hilker and 

Westerhoff, 2005; Sah et al., 2013), we assumed that lower values of effort mean less 

expense and therefore are economically more viable.   

We quantified Effective population Size (Ne) as the harmonic mean of the post-perturbation 

time series (Allendorf and Luikart, 2007): 
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where, Nt is the population size in generation t and T is the length of the time series. In any 

fluctuating population, the loss of genetic diversity is accelerated each time the population 

size hits low numbers but is relatively unaffected by high numbers. Due to this asymmetry, 

average population size, which puts equal weight on population troughs and peaks, is a poor 

indicator of the loss of genetic diversity. On the other hand, Ne gets more adversely affected 

by small population sizes, and hence is a better index for the rate of loss of genetic diversity.  

For representational purposes, we scaled the Ne for all control methods in a given regime by 

the average Ne of the unperturbed population in that regime. This allowed us to directly 

compare the efficacies of the methods across regimes.  

2.7 Measures of stability  

Populations with relatively large amplitude of fluctuations in population size are considered 

to have lower ‘constancy’ stability and vice versa (Grimm and Wissel, 1997). The constancy 

stability of the simulated time series was quantified using the Fluctuation index, FI (Dey and 

Joshi, 2006) which represents the average one-step fluctuation in population size, scaled by 

the population mean:  
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where, 𝑁̅ is the average population size, Nt is the population size in generation t and T is the 

length of the time series. Persistence stability is the converse of the extinction probability of a 

population (Grimm and Wissel, 1997). Mathematically, extinction probability = E/T; where 

E represents the total number of extinction events during T iterations.  

2.8 Composite Performance Score  

One of the aims of this study was to compare the overall performance of the six control 

methods against each other. Therefore we devised a composite performance score which 

combined the relative performance of each control method w.r.t FI, extinction probability 

(EP), effort magnitude (EM) and effective population size (Ne). Since the ranges of values 

taken by these quantities are very different, we normalized each quantity in each regime, by 

the highest value in that regime. So for example, in the HrLk regime, since ULC had the 

highest effort magnitude, the corresponding values for all the methods were divided by the 

effort magnitude of ULC. This normalizes all values to a scale of 0 to 1, with 0 being the best 

performance and 1 being the worst. This works well for fluctuation index, extinction 

probability and effort magnitude where lower values are more desirable. Since higher values 

of Ne are more preferable, we subtracted the normalized Ne values from 1. The composite 

performance score for each method in a given regime was simply the sum of the three 

normalized scores, which implies equal weightage to each score. In other words, for 50% 

reduction in FI, the performance score is given as EM′ + EP′ + (1- Ne′ ) and for 50% 

reduction in extinction probability, the corresponding expression is EM′ + FI′ + (1- Ne′ ), 

where prime denotes the normalization operation. Clearly lower values of this score for a 

given method in a particular scenario indicate better performance than higher values.  

 

3. RESULTS AND DISCUSSION 

3.1 Dynamics of unperturbed populations 

We first explored the dynamics of the four regimes in the absence of any perturbation. The 

two Hr regimes (i.e. HrHk and HrLk) showed higher FI (Fig 2.1A) and greater extinction 

probability (Fig 2.1B) compared to the corresponding Lr regimes. This difference between Hr 

and Lr is not surprising in terms of constancy, as a higher value of r implies greater amplitude 

of fluctuation in the time series and hence a greater FI.  A larger FI is also expected to 

increase the frequency with which a population crashes to very low values, and thus reduce 
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persistence. Interestingly, although HrLk had the same r and a marginally higher FI than 

HrHk (Fig 2.1A), the corresponding extinction probability was approximately double (Fig 

2.1B).  This is intuitive since increasing the habitat capacity of a population (which is 

analogous to k here) is expected to increase the time to extinction (Grimm and Wissel, 2004). 

This also highlights the point that constancy and persistence of a population need not 

necessarily have a simple relationship and it is risky to try and extrapolate one from the other, 

an observation that seems to have a fair bit of empirical support of late (Dey and Joshi, 2013; 

Dey et al., 2008; Sah et al., 2013).  

 

Figure 2.1. Dynamics of unperturbed populations in four regimes. (A) Average fluctuation index, 

(B) average extinction probability, and (C) average effective population size of the unperturbed 

populations calculated over 50 replicate runs for each of the four regimes. In this and all subsequent 

figures, HrHk stands for High r (= 4.0) and High k (= 300), LrLk denotes a combination of Low r (= 

2.8) and Low k (= 60), and so on for the other two regimes.    Error bars represent standard error of the 

mean (SEM). The two Hr regimes had higher FI and extinction probability compared to the two Lk 

regimes. Although the effective population sizes of the two Hr regimes were comparable to that of the 

LrLk regime, this was an artifact of the simulation protocol (see section 3.1 for more details). Some of 

the error bars are too small to be visible. 

 

Another important factor that increases the chance of population extinction is the erosion of 

genetic diversity through genetic drift. Although the importance of drift is well recognized in 

evolutionary (Wright, 1931) and conservation biology literature (Hare et al., 2011), most 

studies in population control have ignored the effects of a control method on genetic drift. 

Here we investigate this phenomenon by studying the effective population size Ne (Fig 2.1C), 

which is defined as the corresponding size of an ideal population that has an equivalent rate 

of loss of heterozygosity as the population under study (Allendorf and Luikart, 2007). The 

rate of loss of heterozygosity increases with decrease in population sizes or bottlenecks 

(Gillespie, 1998). More interestingly, even the rate of generation of genetic variation, as 

measured by the average mutation rate, scales negatively with Ne among the major 
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phylogenetic groupings (Lynch, 2010). This suggests that higher values of Ne are more 

desirable since they are expected to cause lesser loss of genetic variation. When the Ne of a 

series is measured as the corresponding harmonic mean, it tends to get much more negatively 

affected by the presence of low values than the corresponding arithmetic mean. This suggests 

that the two Hr regimes (HrHk and HrLk) are expected to have much lower values of Ne 

compared to the two Lr regimes. However, the Ne of HrHk and HrLk were found to be 

roughly similar to that of LrLk. This discrepancy is explained by the fact that both Hr 

regimes were marked by large number of extinctions (Fig 2.1B) which were followed by 

resets to a value of eight (see section 2.4). Consequently, all the zero values in the population 

sizes in these two regimes were replaced by eight, which significantly increased the Ne. We 

verified this line of reasoning by simulating the unmodified Ricker model (i.e. in the absence 

of lattice effect, noise or extinction) and found that the Ne under HrHk and HrLk regimes 

were actually orders of magnitude less compared to the two Lr regimes. Therefore, the high 

values of Ne in the two Hr regimes should be considered an artefact of the extinction-reset 

protocol.     

Thus, even though the dynamics of all four regimes are chaotic, we find important differences 

in their properties in the absence of any perturbation. We next investigated how the six 

different control methods affected these properties.  

3.2 Exploratory Analysis 

Literature survey indicated that given high enough values of the corresponding control 

parameter, most of the methods are expected to turn chaotic dynamics into stable points or 

low amplitude periodic oscillations. However, the relative efficiencies of these methods are 

hard to compare since they have typically been studied in the context of different kinds of 

stability properties. For example, TOC has been primarily investigated in the context of 

ameliorating chaotic dynamics to a stable point (Dattani et al., 2011), whereas ALC does not 

ameliorate chaos to begin with (Franco and Hilker, 2013; Sah et al., 2013). Therefore in order 

to make the comparisons meaningful, we began by exploring the efficacy of all six methods 

in enhancing the constancy and persistence stability over a wide but biologically / 

realistically meaningful control parameter range (Fig 2.2-2.7). Here, we stress upon the 

meaningfulness of the parameter ranges, since some times the methods perform the best 

under parameter values that are realistically unfeasible or biologically undesirable.  For 

example, for CP, we only considered number of immigrants up to k, since we feel that 
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perturbation sizes greater than the carrying capacity are impractical. Similarly, for cases 

where the population size is not allowed to go below a fixed threshold (Lower Limiter 

Control or LLC), we only considered values less than the carrying capacity, since setting a 

lower threshold above k is biologically unrealistic.  

From Fig 2.2-2.7, it is clear that although there were differences in terms of their 

performance, all six methods were able to reduce the fluctuation index under all four regimes. 

To create a common platform for comparison, we extracted the values of the control 

parameters from Fig 2.2-2.7 that lead to a 50% reduction in Fluctuation Index (FI) and 

Extinction Probability w.r.t the unperturbed dynamics as in Fig 2.1. For those methods where 

the desired level of stability (constancy or persistence) is attained for multiple control 

parameter values, we have arbitrarily chosen the one which had the lowest effort magnitude. 

Table 2.2 summarizes these values of control parameters. We then compared these six 

methods in terms of their effort magnitude, resulting effective population size (Ne) and the 

corresponding extinction probability or fluctuation index. Finally, we combined the 

performance of all these methods to come up with a common score that would help us to 

choose one method over another in a given scenario. It should be noted here that we do not 

seek to establish mathematically rigorous results on how these methods actually stabilize the 

dynamics. We have explicitly chosen methods for which such information already exists (see 

section 1.2 for the relevant references). The current study aims to create an intuitive 

understanding of how the different control methods alter the distributions of pre- and post-

perturbation population sizes. The reasons for focussing on population size distributions are 

two-fold. Firstly, although it has been shown that in response to some control methods, the 

pre-and post-perturbation population sizes can have quantitatively (Franco and Liz, 2013) or 

qualitatively (Franco and Hilker, 2007) different dynamics, the phenomenon has not been 

explored extensively. Secondly, as we demonstrate here, various aspects of population 

dynamics like effort magnitude and the probability of extinction can be ultimately thought of 

as an interaction between the pre-and post- perturbation population sizes.  
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Table 2.2. Parameter values of the six control methods leading to 50% enhancement of 

stability* 

 Regimes 
CP LLC ALC ULC BLC TOC 

p h c H h H T c
d
 

50% reduction 
in Fluctuation 

Index 
  

HrHk 266 236 0.47 367 193 468 300 0.6 

HrLk 52 46 0.42 75 34 93 60 0.59 

LrHk 225 229 0.49 373 225 478 300 0.4 

LrLk 47 46 0.47 75 45 104 60 0.4 

50% reduction 
in Extinction 
Probability 

HrHk 264 222 0.52 751 15 753 300 0.51 

HrLk 54 44 0.44 141 26 126 60 0.54 

 

*Note that these values represent the thresholds of population sizes / values of control parameters set 

for attaining 50% reduction in FI or extinction probability, and not the number of organisms to be 

added or subtracted. In case of BLC, since multiple parameter combinations satisfied the criteria of 

50% reduction in FI and extinction probability, we chose the combination with the lowest effort 

magnitude. 

 

Figure 2.2: Average fluctuation index (± SE; black) and extinction probability (± SE; grey) for 

different levels of immigration under the Constant Pinning (CP) method. A, B, C and D represent 

HrHk, HrLk, LrHk, and LrLk regimes respectively. Error bar at each point is too small to be visible 

clearly. 
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Figure 2.3: Average fluctuation index (± SE; black) and extinction probability (± SE; grey) for 

different levels of lower threshold under the Lower Limiter Control Method (LLC). A, B, C and D 

represent HrHk, HrLk, LrHk, and LrLk regimes respectively. Error bar at each point is too small to 

be visible clearly. 

 

 

 

Figure 2.4: Average fluctuation index (± SE; black) and extinction probability (± SE; grey) for 

different levels of ALC intensity (c) under the Adaptive Limiter Control Method (ALC). A, B, C 

and D represent HrHk, HrLk, LrHk, and LrLk regimes respectively. Error bar at each point is too 

small to be visible clearly. 
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Figure 2.5: Average fluctuation index (± SE; black) and extinction probability (± SE; grey) for 

different levels of upper threshold under the Upper Limiter Control Method (ULC). A, B, C and D 

represent HrHk, HrLk, LrHk, and LrLk regimes respectively. Error bar at each point is too small to 

be visible clearly. 

 

Figure 2.6.1: Average fluctuation index for different combinations of upper and lower threshold 

under the Both Limiter Control Method (BLC). A, B, C and D represent HrHk, HrLk, LrHk, and 

LrLk regimes respectively. 
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Figure 2.6.2: Average extinction probability for different combinations of upper and lower 

threshold under the Both Limiter Control Method (BLC). A, B, C and D represent HrHk, HrLk, 

LrHk, and LrLk regimes respectively. 

 

Figure 2.7: Average fluctuation index (± SE; black) and extinction probability (± SE; grey) for 

different levels of TOC intensity (cd) under the Target Oriented Control Method (TOC). A, B, C 

and D represent HrHk, HrLk, LrHk, and LrLk regimes respectively. Error bar at each point is too 

small to be visible clearly. 
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3.3 50% reduction in Fluctuation Index (FI) 

3.3.1 50% reduction in FI: Persistence stability 

Although extinction has been extensively studied theoretically and empirically (Griffen and 

Drake, 2008 and references therein), few studies on control methods have explicitly 

considered enhancement of persistence (although see Dey and Joshi, 2013; Hilker and 

Westerhoff, 2007; Sah et al., 2013). This is perhaps because many studies on controlling 

single species biological populations come from the tradition of chaos control in non-linear 

dynamics, and primarily focus on the attainment of simpler dynamics (Dattani et al., 2011; 

McCallum, 1992; Sinha and Parthasarathy, 1995) or reducing the variation in population size, 

i.e. constancy (Hilker and Westerhoff, 2005). Therefore, we first investigated how achieving 

a given level of constancy affects the corresponding persistence stability.   

 

Figure 2.8. Box-plots of the post-perturbation population size distributions for 50% reduction 

in Fluctuation Index. A, B, C, and D correspond to the HrHk, HrLk, LrHk and LrLk regimes 

respectively. Thick grey lines = means, thin black lines in the box = medians. Lower and upper 

limits of the box represent 25th and 75th percentiles, lower and upper whiskers denote 10th and 90th 

percentiles while the lower and upper dots stand for 5th and 95th percentiles. U stands for the 

unperturbed population while the other abbreviations denote the six methods. All the values have 

been scaled by the corresponding carrying capacity (k) of the regime to facilitate comparison. ULC 

always had the lowest post-perturbation population size, since it did not involve any restocking. 
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Figure 2.9. Box-plots of the pre-perturbation population size distributions for 50% reduction 

in Fluctuation Index. A, B, C, and D correspond to the HrHk, HrLk, LrHk and LrLk regimes 

respectively. Thick grey lines = means, thin black lines in the box = medians. Lower and upper 

limits of the box represent 25th and 75th percentiles, lower and upper whiskers denote 10th and 90th 

percentiles while the lower and upper dots stand for 5th and 95th percentiles. U stands for the 

unperturbed population while the other abbreviations denote the six methods. All the values have 

been scaled by the corresponding carrying capacity (k) of the regime to facilitate comparison. ULC 

had the highest pre-perturbation population size, which indicated that it would also have the least 

amount of extinctions. Note that the size distribution of the unperturbed (U) populations is 

asymmetric in the two Hr regimes (A,B), but not in the two Lr regimes (C,D). This has 

consequences for the corresponding effort magnitudes. 

For a similar level of reduction in FI (i.e. 50% of the unperturbed population), the 

corresponding population size distributions were found to be very different for the six 

methods, particularly in the two Hr regimes (Fig 2.8 and 2.9). The lower percentiles (5th, 10th 

and 25th) of post-perturbation population sizes are higher than the corresponding values for 

the unperturbed for all the control methods in all four regimes (Fig 2.8). This is not surprising 

for all methods that include a restocking component (i.e. except ULC). In the case of ULC, 

the lower percentiles take higher values due to prevention of crashes from high numbers in 

the previous generation. This becomes apparent from the distribution of the pre-perturbation 

population sizes (Fig 2.9) which shows that ULC maintains the lower percentiles of 
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population sizes higher than all the other methods. This leads to the prediction that ULC is 

expected to have the smallest probability of extinction for this level of enhancement of 

constancy and indeed we found no extinctions at all under ULC in any of the four regimes 

(Fig 2.10A). This result apparently contradicts an earlier study that found that the imposition 

of an upper limiter is actually expected to increase the extinction probability of a population 

(Middleton et al., 1995). This discrepancy is due to the fact that the earlier study assumed 

density-independent, randomly distributed growth rates, due to which the chances of an 

extinction in the next generation (t+1) increased monotonically with any kind of reduction in 

population size in generation t (Middleton et al., 1995). However, in this study, we explicitly 

assumed growth rates to be density-dependent, as a result of which, the extinction probability 

in t +1 actually goes down with reduction in population size in t. As long as the ULC 

threshold is not set at extremely low levels (i.e. so low as to become extinction pre-images) 

and there are no Allee effects (which was not considered in this study), reducing the ULC 

upper limit is expected to promote persistence (Fig 2.5). This discrepancy between the results 

of the two studies highlights that the effects of a particular control method can be conditional 

upon the nature (i.e. density-dependent vs density-independent) of the population growth 

rates.  

 

Figure 2.10. Comparison of the six methods for 50% reduction in Fluctuation Index. C = CP, L = 

LLC, A = ALC, U = ULC, B = BLC, T = TOC. (A) Average (± SEM) extinction probability. Note that 

there were no extinctions in the LrHk regime. The absence of a method within a regime indicates no 

extinctions. (B) Average (± SEM) effort magnitude corresponding to the six methods in four regimes. 

(C) Average (± SEM) effective population size corresponding to the six methods in four regimes. In 

panels A and C, each value has been scaled by the average value of the unperturbed population in that 

regime. In general, the methods that involve a culling step, i.e. ULC, BLC and TOC, are better at 

reducing extinction probability. However, they have higher effort magnitudes in the two Hr regimes. 

All methods were effective in increasing the effective population size compared to the controls. Some 

of the error bars are too small to be visible. 
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Figure 2.11. Lattice Effect Extinctions (LEE) Vs Extinctions due to Demographic Stochasticity 

(EDS) for 50% reduction in fluctuation index. Average (± SEM) fraction of times extinction 

occurred due to population size falling below 0.5 (LEE) or between 1 and 3 (EDS). (A) HrHk, (B) 

HrLk and (C) LrLk. No extinction occurs in LrHk regime and hence it has been omitted here. The 

extinctions were scored over 50 generations for 50 replicate runs for each method in each regime. Note 

the differences in the Y-axis scales in the three figures. For a similar reduction in fluctuation index, the 

relative frequencies of LEE and EDS varied between the control methods. Some of the error bars are 

too small to be visible. 
 

Since culling enhances persistence when the population sizes are high, we expected the other 

two methods that also involve culling steps (i.e. BLC and TOC) to a degree, to be effective in 

terms of reducing extinction probabilities. Since the resolution in Fig 2.8-2.9 was too low for 

investigating this prediction, we explicitly studied the fraction of times the population sizes 

crashed low enough to cause concern in terms of extinction. Using all the replicate time series 

for each control method, we quantified the fraction of times extinction happened due to 

lattice effect (i.e. LEE) and demographic stochasticity (i.e. EDS). Even though the control 

magnitudes were set such that all methods caused an equal reduction in FI, the corresponding 

reductions in LEE and EDS were different, owing to how these methods changed the 

distribution of population sizes. ULC never allowed the population sizes to reach either the 

EDS or the LEE zone (Fig 2.11), which explains the complete lack of extinction in that 

control method (Fig 2.10A). Although, the upper ranges (≥75th percentiles) of BLC’s post 

perturbation values were higher than those of ULC (Fig 2.8), they were not high enough to 

lead to EDS or LEE in the next generation (Fig 2.11) and therefore caused no extinctions (Fig 

2.10A). The same stands true for TOC in general, except for low and very low frequencies of 

extinction in the HrLk and HrHk regimes respectively (Fig 2.10A). On the other hand, the 

three restocking control methods that did not have a component of directly reducing the peaks 

in population sizes (CP, LLC and ALC) had significant number of extinctions, particularly in 
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the two Hr regimes (Fig 2.10A). ALC and CP turned out to be the worst performers in terms 

of persistence in the HrHk and the HrLk regimes respectively. This observation was 

explained when we compared the EDS and LEE values in these two regimes (Fig 2.11A-B). 

The unperturbed populations in both regimes suffered primarily from LEE which both ALC 

and CP were able to partially ameliorate. However, CP was more effective in reducing LEE 

and suffered a higher fraction of EDS whereas the converse was true for ALC (Fig 2.11A-B). 

These observations were supported by the fact that ALC consistently had higher values for 

the 90th and 95th percentiles for the post-perturbation population sizes (Fig 2.8A, 2.8B) which 

means they are expected to hit lower values in the next generation more often. Interestingly, 

in the LrLk regime, CP actually induced LEEs where there were none in the unperturbed (Fig 

2.11C) and ultimately increased the extinction probability. LLC was found to be the most 

effective in terms of reducing the extinction probability in all the regimes (Fig 2.10A) and 

primarily suffered from EDS (Fig 2.11A-C). The overall message from all these observations 

is that control methods interact with growth rate and carrying capacity to alter the distribution 

of population sizes, which in turn determines the relative frequencies of LEE and EDS, 

ultimately affecting the persistence stability of populations. Since in populations with high 

growth rates, extinctions can only happen following a crash from a peak, methods that control 

the upper ranges of population sizes are better in terms of controlling extinctions for a given 

level of fluctuation in population sizes. However, such methods have their own share of 

problems in terms of applicability.   

3.3.2 50% reduction in FI: Effort Magnitude  

All control methods investigated in this study involve restocking or culling of individuals. In 

practice, addition or removal would always incur some economic cost which can become a 

major factor in the choice of control methods. There are no simple ways of knowing how 

much the implementation of a method would cost as the figures would clearly be contingent 

on factors like the species under consideration, the technological know-how available etc. 

Therefore, following past studies (Hilker and Westerhoff, 2005; Sah et al., 2013), we 

considered the number of organisms added (or removed) to be a proxy of the economic cost 

involved. We assume here that all else being equal, the economic cost (and hence the 

undesirability of a method) is directly proportional to the number of organisms to be added or 

removed. 
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Figure 2.12. Restocking and culling efforts for BLC and TOC. Panel A, B, C and D represent 

the regimes HrHk, HrLk, LrHk and LrLk respectively. 
 

In the two Hr regimes, the three methods that involved some amount of culling (ULC, BLC, 

TOC) required greater effort compared to the three that relied solely on restocking (CP, LLC, 

ALC) (Fig 2.10B). This is a direct consequence of the positive-skew in the distribution of the 

unperturbed populations under high intrinsic growth rate (Fig 2.9A-B). Ricker model of 

population growth ensures that whenever growth rate is high (r > 2.0), crashes bring the 

population size below the carrying capacity whereas increases in population sizes take them 

above k. Thus, in the absence of perturbation, for Hr, approximately 50% of the points of the 

return map are squeezed between 0 and k while the remaining 50% are spread over the 

interval k to approximately 5k (Fig 2.9A-B).  Due to this long tail of the first return map of 

the Ricker model (May and Oster, 1976), even small magnitudes of restocking prevent the 

population from reaching relatively large intervals in terms of peak sizes in the next 

generation. On the other hand, a much wider interval of high population sizes need to be 

controlled, to restrict the magnitude of the crashes in the next generation. The net result of 

this is that restocking methods require lesser effort to reduce the fluctuation in population 

sizes, compared to methods that involve culling. This line of reasoning does not fully explain 

the working of control methods like BLC and TOC that involve both culling and restocking. 

However when we explicitly looked at the magnitudes of culling and restocking for these two 

methods it was found that under high r, more effort is expended in culling than in restocking 

(Fig 2.12A-B).  
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The above account is expected to hold only when the population size distribution is positively 

skewed. This explains why under low r (i.e. for LrLk and LrHk), where the distribution of 

population sizes is more symmetric (see unperturbed in Fig 2.9C-D), there was less 

difference in the effort magnitudes across the six methods (Fig 2.10B). This also highlights 

that the effort magnitude of a method depends primarily on the growth rate of the species. It 

should be noted here that, by definition, the effort values of a time series are scaled by the 

corresponding average population size (Section Methods: Effort magnitude and Effective 

Population Size). Thus, the actual values of the number of organisms to be added or removed 

will clearly depend on the carrying capacity.  Moreover, from fig 2.12C-D, we note that for 

low r, there is more restocking for BLC whereas culling remains the dominant factor for 

TOC. This distinction can be important because these two processes have opposite effects on 

another crucial determinant of the extinction probability of a population, namely its genetic 

diversity. 

3.3.3 50% reduction in FI: Effective Population Size (Ne) 

A population which has lower genetic diversity can suffer from inbreeding-like deleterious 

effects and therefore have a greater risk of extinction (Newman and Pilson, 1997). In the 

present study, since all six methods increased the breeding size (i.e. post perturbation size, 

Fig 2.8) of the populations, the corresponding Ne values were enhanced under all four 

regimes (Fig 2.10C). Since ULC led to the lowest values for both the upper (95th percentile) 

and the lower (5th percentile) of population size distributions (Fig 2.8) it was relatively less 

effective in terms of Ne, particularly under HrHk (Fig 2.10C). For all the other methods, both 

the upper and the lower ranges played a role in determining the Ne and the knowledge of any 

one was not sufficient for prediction. In general, CP tended to lead to the highest Ne under all 

four regimes.  

3.3.4 50% reduction in FI: Composite performance score 

From our results it is clear that at the level of constancy stability investigated, no single 

method is unambiguously superior to the others. As is often the case in biology, the “best” 

method was context-dependent. However, such answers mean little for most practical 

purposes. Therefore we computed the composite performance score with equal weightage to 

extinction probability, effort magnitude and effective population size (Fig 2.13A). Note that 

for this score, lower values indicate better performance and vice versa. LLC was found to be 
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the optimal method under HrHk, HrLk and Lr Hk regimes, whereas BLC was the best 

performer under the LrLk regime (Fig 2.13A).  

 

 

Figure 2.13. Composite performance score for comparison between the control methods. C = 

CP, L = LLC, A = ALC, U = ULC, B = BLC, T = TOC.  A) For 50% reduction in FI. (B) For 50% 

reduction in extinction probability. Lower values indicate better performance. Although no method 

was clearly superior in all the regimes, in general, LLC performed the best under most 

circumstances and ALC was the second best. 
 

3.4 50% reduction in extinction probability 

The above discussion pertained to the correlates of attaining a 50% reduction in fluctuation 

index. However, for most practitioners of conservation, reducing the extinction probability of 

a population is perhaps a more pressing goal. Therefore, we repeated the entire analysis 

above in terms of 50% reduction in extinction probability. The exploratory analysis can be 

found in Figs 2.2- 2.7 whereas the persistence analogues of Figs 2.8-2.10 are Figs 2.14-2.16. 

It should be noted here that the two Lr regimes (LrHk and LrLk) suffered almost no 

extinctions and therefore were excluded from this part of the study.  
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Figure 2.14. Box-plots of the post-perturbation population size distributions for 50% reduction in 

Extinction Probability. A and B correspond to the HrHk and HrLk regimes respectively. Note that the 

unperturbed populations in LrHk and LrLk suffered negligible extinctions and hence they are excluded 

here. Thick grey lines = means, thin black lines in the box = medians. Lower and upper limits of the 

box represent 25th and 75th percentiles, lower and upper whiskers denote 10th and 90th percentiles while 

the lower and upper dots stand for 5th and 95th percentiles. U stands for the unperturbed population 

while the other abbreviations denote the six methods. All the values have been scaled by the 

corresponding carrying capacity (k) of the regime to facilitate comparison across regimes. 

 

 

Figure 2.15. Box-plots of the pre-perturbation population size distributions for 50% reduction in 

Extinction Probability. A and B correspond to the HrHk and HrLk regimes respectively. Note that the 

unperturbed populations in LrHk and LrLk suffered negligible extinctions and hence they are excluded 

here. Thick grey lines = means, thin black lines in the box = medians. Lower and upper limits of the 

box represent 25th and 75th percentiles, lower and upper whiskers denote 10th and 90th percentiles while 

the lower and upper dots stand for 5th and 95th percentiles. U stands for the unperturbed population 

while the other abbreviations denote the six methods. All the values have been scaled by the 

corresponding carrying capacity (k) of the regime to facilitate comparison across regimes. 
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Figure 2.16. Comparison of the six methods for 50% reduction of extinction probability. 

Note that the unperturbed populations in LrHk and LrLk regimes suffered almost no extinctions 

and were excluded. (A) Average fluctuation index (± SE). (B) Average effort magnitude (± SE). 

(C) Average effective population size (± SE). In panels A and C, each value has been scaled by 

the average value of the unperturbed population in that regime. 
 

We began by looking at the effects of reducing extinction probability by 50% on the 

corresponding FI. The three methods that did not have a culling step (i.e. CP, LLC and ALC) 

had lower FI compared to the three that included a culling step (i.e ULC, BLC and TOC) (Fig 

2.16A). Interestingly, the former set of methods was actually worse off in reducing extinction 

probability for a given reduction in FI (cf Fig 2.10A and Fig 2.16A). This once again 

highlights the rather complex relationship between consistency and persistence, a fact that 

can be observed more directly by examining Fig 2.2-2.7.   

The effort magnitude profiles were also very different particularly in the HrHk regime (cf Fig 

2.10B and 2.16B). It can be immediately seen that it requires relatively lesser effort to reduce 

extinction by 50% than to achieve a similar reduction in FI. This is because the pre-images to 

prevent LEE or EDS are well above k and hence require relatively less culling effort, whereas 

a population needs to be more heavily controlled to obtain a similar magnitude of reduction 

in FI (Table 2.2). An interesting manifestation of this effect can be observed in the 

unnaturally low effort magnitude and Ne of BLC in the HrHk regime (Fig 2.16C). To explain 

this observation, we recall that for BLC, multiple combinations of the upper and the lower 

threshold led to a 50% reduction in extinction probability and therefore arbitrarily the 

combination that had the lowest effort magnitude was chosen (Table 2.2). In the lower-

threshold-upper threshold parameter space, there is a small zone of relatively high upper 

thresholds and really small lower thresholds that showed a 50% reduction in extinction 

probability. Our arbitrarily set criteria picked a point in this zone of the parameter space. 

Since the extinctions were mitigated by preventing crashes in the pre-perturbation population 
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sizes, the very low value of the lower threshold did not matter in that context. However, since 

the Ne is computed on the post-perturbation population sizes, the low values of the lower 

threshold led to a very small increase in post-perturbation population size, which reflected in 

the very small Ne. The very small Ne of ULC in the HrHk regime arises due to a similar 

reason, except that in this case, there are no lower thresholds to begin with. This inability to 

enhance the Ne proved costly for ULC and BLC in terms of the composite performance score. 

Overall, ALC emerged as the primary method of choice for reducing extinction probabilities, 

with LLC and CP being second and third preferred methods respectively (Fig 2.13B). 

3.5 Caveats 

Although these comparisons were obtained from simulations that incorporated several 

biologically realistic features, from an application point of view, there are several other 

caveats that need to be considered. In this study, we gave equal weightage to culling and 

restocking for computing the effort which, depending on the species, need not always be the 

case. Thus, for example, if artificial breeding of a particular species is more expensive than 

killing them in wild, then the entire effort calculation needs to be suitably modified. 

Similarly, culling and restocking have very different effects on the standing genetic variation 

of a population. In this study, we compute Ne solely as a function of the population sizes. 

However, if the organisms that are used for restocking come from a different genetic stock, 

then for all control methods except ULC, the actual rate of loss of genetic variation would be 

less than what is indicated by the values of Ne reported here.  

In the computation of the composite performance score, we gave equal weightage to 

fluctuation index / extinction probability, effort magnitude and effective population size, 

which might not be applicable under all scenarios. We also omitted factors like frequencies of 

external interventions, which might become crucial under certain scenarios (Franco and 

Hilker, 2013). Any changes in these relative weightages or inclusion of more parameters for 

comparison can possibly lead to different conclusions in terms of relative performances of the 

methods. For example, we did not take into account the cost of census of the population, 

which actually varies among the methods. CP needs no censuses for implementation, which 

perhaps explains its popularity among studies that explicitly consider more realistic 

frameworks (Gusset et al., 2009).  LLC requires lower census efforts in peak years (i.e. till 

the point the threshold number of animals has been sighted) and greater census efforts in lean 

years (when the population sizes are low, larger fraction of the population will have to be 
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counted to decide whether the perturbations need to be implemented). The other four methods 

require complete census at all time intervals. It is perceivable that sometimes the cost of 

census might over-run the cost of implementation of the perturbations, which is evidently 

economically undesirable. Moreover, for many organisms like butterflies or fishes, a total 

count of the population might be impossible, and one would be forced to depend upon counts 

extrapolated from samples. Robustness of control methods towards such noisy 

implementations have been demonstrated for most of the methods referred here (Dattani et 

al., 2011; Hilker and Westerhoff, 2005; Sah et al., 2013; Solé et al., 1999) but was not 

included in the present study since it is relatively difficult to quantify. However, its 

importance in terms of usability of a control method cannot be overstated. Finally, this study 

is explicitly in the context of spatially unstructured, single-species populations whereas most 

natural populations are expected to exist as metapopulations in multi-species assemblages 

which might necessitate other kinds of control strategies (e.g. Hudson et al., 1998). Thus, a 

multitude of factors still need to be considered before adopting the various control methods 

investigated here, under field conditions. However, given that the consequences of controls 

going wrong can sometimes be catastrophic for ecosystems (e.g. Pyke, 2008), the kind of 

comparison that we attempt here will be a crucial part of translating theory into practice.  

 

4. CONCLUSIONS 

Several interesting observations emerged from this study. At least for the levels of stability 

investigated in this study, methods that have a culling step (ULC, BLC and TOC) are better at 

preventing extinctions although they are worse off in terms of reducing fluctuations in 

population sizes. The converse is true for methods that involve only restocking step (CP, LLC 

and ALC). The efficacy of control methods that incorporate both (like TOC and BLC) varies 

depending on whether restocking becomes the dominant force or culling. Of course, the 

efficacy of the methods also depend upon combination of growth rates and carrying 

capacities of the populations, which highlights that there is no alternative to gathering 

relevant biological information before the application of a control method (although see 

(Hilker and Westerhoff, 2007)). However, in the absence of detailed knowledge of the 

system, LLC (and to a lesser extent ALC), are the optimal methods to employ (Fig 2.13). 
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CHAPTER 3 

 

 

 

Population stability through Upper Limiter Control 

(ULC) and Lower Limiter Control (LLC) 

 

 

 

 

 

Highlights 

 Empirical validation of two methods: Upper and Lower Limiter Control (ULC and LLC). 

 ULC promotes constancy and persistence but has less effects on genetic stability. 

 LLC enhances persistence and genetic stability but not constancy. 

 Biologically realistic simulations match the data, indicating generalizability. 

 

 

 

 

 

 

 

 

Adapted from: Tung, S., Mishra, A., Dey, S. 2016. Stabilizing the dynamics of laboratory 

populations of Drosophila melanogaster through upper and lower limiter controls. 

Ecological Complexity 25, 18-25.  
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1. INTRODUCTION 

Over the last two decades, several methods have been suggested in control theory 

(Chernousko et al., 2008) and theoretical nonlinear dynamics (Andrievskii and Fradkov, 

2003, 2004; Schöll and Schuster, 2008) to stabilize unstable non-linear dynamical systems. 

Several of these methods have been proposed for system where the underlying dynamics are 

well-characterized and stability is achieved by perturbing  system parameters in real time to 

attain desired behaviours like stable points or simple limit cycles (Garfinkel et al., 1992). 

Unfortunately, for even fairly simple biological populations, the exact equations underlying 

the dynamics are often unknown. Moreover, when available, the parameters of such 

equations (e.g. carrying capacity or intrinsic growth rate) can often only be estimated a 

posteriori through model-fitting and thus are not available for real time perturbations. Finally, 

due to the ubiquity of noise in biological systems, it is not only impossible to attain stable 

points or limit cycles in the strict mathematical sense, it also becomes very difficult to 

distinguish such behaviours from chaotic dynamics (although see Desharnais et al., 2001). 

Thus, a different class of control methods and observables are needed in the context of 

biological populations.  

The choice of method also critically depends upon the desired goal of control. There are two 

major, typically mutually exclusive, motivations for stabilizing biological populations. The 

first is in the context of economically exploited species (e.g. fishes) where the aim is to 

maximize the yield over a long period of time and reduce the uncertainty of the yield (Lande 

et al., 1997). The second aim seeks to reduce the amplitude of fluctuation in sizes or increase 

the long term probability of persistence for populations (Gusset et al., 2009; Hilker and 

Westerhoff, 2007). Not surprisingly, stabilizing the yield of harvested populations has 

received far more theoretical and empirical attention (Milner-Gulland and Mace, 1998) than 

stabilizing threatened species. Part of the problem with the latter is that conservation efforts 

are typically directed towards charismatic species of mammals and birds. The dynamics of 

such species typically cannot be captured by the simple models that have been often used to 

investigate the various control methods (e.g. Dattani et al., 2011; Sah et al., 2013). However, 

it should be noted that a simple model like the Ricker map (Ricker, 1954) does provide fairly 

accurate descriptions of the dynamics of taxonomic groups including bacteria (Ponciano et 

al., 2005), fungi (Ives et al., 2004), ciliates (Fryxell et al., 2005), insects (Sheeba and Joshi, 

1998) and fishes (Denney et al., 2002). Together, such taxa account for a huge fraction of the 

total biodiversity on earth, at least some part of which have already been recorded to be 
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extinct (Baillie and Butcher, 2012). Therefore, there is a need to study the methods that can 

stabilize the dynamics of such “non-charismatic” taxa.  

A major hindrance in applying the insights gained from theoretical studies in controlling 

endangered populations is the fact that few of the proposed methods have been empirically 

validated even under laboratory conditions (however see Desharnais et al., 2001; Dey and 

Joshi, 2007; Sah et al., 2013), let alone in nature. Given that survivals of threatened species 

are at stake, it is understandable when practitioners of conservation are unwilling to try out 

untested methods in the field. On the other hand, new methods have to be validated somehow 

in order to assess their suitability for a given scenario.  A reasonable way out of this impasse 

is to validate these methods under laboratory conditions. The success of a method to stabilize 

laboratory populations allows us to verify our understanding about how the method works. 

Unfortunately, it does not guarantee the method’s success under field conditions but merely 

increases the confidence that can be placed on its success. On the other hand, the failure of a 

method under laboratory conditions would typically suggest lack of understanding regarding 

some crucial aspect of the biology of the system.  

In this context, a well-investigated class of methods are the so called limiter control methods 

which seek to stabilize a population by implementing different kinds of thresholds in 

population sizes (Corron et al., 2000; Zhou, 2006). Extensive mathematical (Franco and 

Hilker, 2013, 2014), numerical (Sah and Dey, 2014; Sah et al., 2013) and empirical (Sah et 

al., 2013) studies suggest that at least for one method of this class – the so called Adaptive 

Limiter Control or ALC- the theoretical predictions match the empirical data rather well. In 

this study, we investigate the stabilizing properties of two other limiter control methods, 

namely upper limiter control (ULC) and lower limiter control (LLC) (Hilker and Westerhoff, 

2005), using unstable laboratory populations of the common fruit-fly Drosophila 

melanogaster. For each of these control methods, we investigate two different arbitrarily 

chosen values of the controlling parameter. We chose these two methods over many such 

available culling / restocking schemes (e.g. Dattani et al., 2011; Liz and Franco, 2010)  

primarily because they have been extensively investigated theoretically and numerically 

(Hilker and Westerhoff, 2005, 2006; Tung et al., 2014). This means that a number of 

predictions already exist in the literature for verifying against our empirical data. Therefore, 

the main focus of this paper was on an intuitive understanding of how these two methods 

affect the dynamics.  
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Here we show that ULC reduces temporal fluctuations in population sizes, as well as the 

extinction probability of populations. However, it is unable to enhance the effective 

population size and has high effort magnitude. On the other hand, the efficacy of LLC in 

reducing the fluctuations in population sizes is equivocal. In spite of that, the method is able 

to cause significant reduction in extinction probability and increased effective population 

size. Most importantly, the effort magnitude required to stabilize the populations is much less 

compared to ULC. We provide biologically intuitive explanations of how these control 

methods stabilize the populations. We also experimentally verify several theoretical 

predictions from the literature and show that our empirical results agree well with 

biologically realistic simulations. 

 

2. METHODS 

2.1. Maintenance regime of the flies 

In this study, we used individuals from a large (breeding size of ~2400) laboratory population 

of Drosophila melanogaster called DB4. The detailed maintenance regime and ancestry of 

this population has been described elsewhere (Sah et al., 2013). From this population, we 

derived 30 single vial cultures, each of which represented an independent population. Each of 

these populations was initiated by placing exactly 10 eggs on 1.1 ml of banana-jaggery 

medium in a 30 ml plastic vial. The vials were placed in an incubator at 25°C under constant 

light conditions. Once eclosion started, the freshly emerged adults of a population were daily 

transferred to a corresponding adult-holding vial, containing approximately 6 ml of banana-

jaggery medium. This process continued till the 18th day after egg-collection, after which the 

egg-vials were discarded. The adult flies were then supplied with excess live yeast paste for 

three days to boost up their fecundity. On the 21st day after egg-collection, the adults were 

counted and culling or restocking of flies was imposed as per the prescribed control regimes 

(see section 2.2). Since the dynamics of a sexually reproducing species is primarily governed 

by the number of females, culling or restocking was implemented only on the female flies 

(Dey and Joshi, 2006; Dey and Joshi, 2007).  The adults were then allowed to oviposit in a 

vial containing 1.1 ml of medium for 24 hrs. After oviposition, the adults were rejected and 

the eggs formed the next generation.  The experiment was run over 14 generations. 

Theoretical (Mueller, 1988) and empirical (Dey and Joshi, 2006; Mueller and Huynh, 1994; 

Sah et al., 2013) studies have shown that a combination of low levels of larval food (1.1 ml 

here) and excess live yeast paste destabilizes the populations by inducing large amplitude 
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oscillations in the time series. This nutritional regime thus allowed us to study the stabilizing 

effect of various control methods on populations whose dynamics were otherwise unstable.  

2.2 Control methods 

Upper Limiter Control (ULC) involves culling to a fixed threshold, i.e. the population size is 

not allowed to go beyond an upper value (Hilker and Westerhoff, 2005). Mathematically, this 

is written as Ntˊ = min (Nt, U) where Nt and Ntˊ refer to the population sizes before and after 

the application of the control method, U is the pre-determined value of the upper threshold 

and min(x,y) is the minimum operator. To impose ULC experimentally, we culled the number 

of females in a population to the arbitrarily set levels of 15 (U1) or 10 (U2). When the 

number of females in a population was less than the threshold, the population was left 

unperturbed. Note that for ULC, lower values of U represent more stringent control and 

therefore U2 is a stronger control than U1.  

Lower Limiter Control (LLC) is achieved by restocking the population to a fixed number, i.e. 

the population size is never allowed to fall below a fixed limit (L). Mathematically, this is 

given as Ntˊ = max (Nt, L) where L stands for the fixed lower threshold and max(x, y) is the 

maximum operator. For experimental implementation, we chose two arbitrary lower 

thresholds of 4 (L1) and 10 (L2) females where L2 represents a stronger control than L1. 

Following an earlier protocol (Dey and Joshi, 2006), the flies were counted, the number was 

multiplied by half (i.e. assuming equal sex ratio) and rounded up to estimate the number of 

females in the population. If this number was greater than the pre-determined value of L (i.e. 

4 or 10) then the population was left untouched, else the shortfall was made up by adding the 

required number of females from outside. Thus, we explicitly incorporated some degree of 

noise in terms of application of LLC (see section 4.2 for the rationale of the same). 

We used 5 replicate single vial cultures each for U1, U2, L1 and L2. We also had two batches 

of unperturbed populations (designated C1 and C2), each consisting of 5 replicate 

populations. C1 served as the unperturbed experimental controls for the ULC treatments 

while C2 were the corresponding experimental controls for the LLC treatments. The pairing 

of C1 with ULC and C2 with LLC was done a priori, i.e. at the time of initiation of 

experiments, before the data analysis. An extra set of experimental controls ensures that the 

ULC and LLC experiments are completely independent of each other. It also allowed us to 

verify the reproducibility of the unperturbed dynamics.  
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In case of U1, U2, C1 and C2, an extinct population was rescued by adding 4 males and 4 

female flies from outside (Dey and Joshi, 2006). No such intervention was needed for the L1 

and L2 populations where the control method automatically ensured that the breeding 

population never went extinct. The flies used for rescue (as well as restocking) were 

maintained by allowing 4 males and 4 females (yeasted) to oviposit in each generation in 

vials containing ~5ml of larval medium. Thus, these flies experienced a lower level of larval 

crowding as compared to the actual populations which were maintained on 1.1 ml of medium. 

This was essential for logistic reasons, so as to ensure a steady supply of flies in the backups. 

However, this can be a potential problem in the context of these experiments, as flies raised 

under severe larval crowding are typically much smaller in size and have lower fecundity 

(Mueller and Joshi, 2000). Thus, the immigrant flies could potentially have different 

demographic parameters compared to the native flies of a population. However, in our 

experiments, this problem was ameliorated to some extent as we did not observe any major 

size differences between the treatment and the back-up flies (ST personal observation). This 

was perhaps because 4 yeasted females typically lay sufficient eggs to cause considerable 

crowding even with ~5ml of food which was evident from the degraded state of the medium 

during collection of adults. We used the time series of the post-perturbation (i.e. application 

of control method) population sizes for computing all indices of population stability except 

persistence (see below). 

2.3. Constancy and persistence stability  

Populations with larger fluctuations over time are deemed to have less ‘constancy’ stability 

and vice versa (Grimm and Wissel, 1997). We used the Fluctuation Index or FI (Dey and 

Joshi, 2006) to quantify the constancy stability of a given time series.  

  
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where N’t is the breeding population size, N represents average population size and T denotes 

the length of the time series.  

Persistence stability (Grimm and Wissel, 1997) of a population was scored as the extinction 

probability during the course of the experiment (= number of extinctions / length of the time 

series). Since one of the methods (LLC) involved restocking, persistence was scored using 

the pre-perturbation census size. 
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2.4. Average population size and effective population size:  

Average population size ( N ) was simply the arithmetic mean of the time series while 

effective population size (Ne) was quantified as the harmonic mean of the time series 

(Allendorf and Luikart, 2007).  

1

1
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e t
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N T N


   

It should be noted that sex ratio can occasionally deviate from 1:1, which would make the 

actual effective size lower than what this formula would predict. 

2.5. Effort magnitude:  

Following previous studies (Hilker and Westerhoff, 2005; Sah et al., 2013), we assumed that 

the number of organisms to be removed or added for implementing a control method (i.e. the 

so called effort magnitude) is a proxy for the corresponding economic cost of 

implementation. Thus,  
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where Nt and N’t represent the pre- and post-control  population sizes respectively in the tth 

generation, and N and T denote the average population size and length of the time series 

respectively. It should be noted here that effort magnitude is the actual number of individuals 

culled from or added to the population. Although the value of the a priori set threshold does 

have a bearing on the empirically observed effort magnitudes, the two are not the same 

quantity. Since the flies used for rescuing the extinct populations were counted as a part of 

effort, C1 and C2 have non-zero effort magnitudes. 

2.6. Statistical analyses:  

The data for ULC and LLC were analysed separately along with their matched unperturbed 

populations, i.e. C1 and C2 respectively. The fluctuation index, average population size, 

effective population size and effort magnitude data were subjected to separate one-way 

ANOVA (unperturbed population and the two levels of fixed thresholds being the fixed 

factors). In those cases, where a significant main effect was obtained, Tukey’s HSD was 

employed for testing the significance of pair-wise differences among means. All ANOVA 

and associated comparisons were performed using STATISTICA® v5 (StatSoft. Inc., Tulsa, 
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Oklahoma). We also used the freeware Effect Size Generator (Devilly, 2004) to compute 

Cohen’s d statistic (Cohen, 1988) as a measure of effect sizes for the pair-wise differences 

among the means. The effect sizes were interpreted as small, medium or large for d < 0.5, 0.5 

< d < 0.8, and d > 0.8. 

2.7 Simulations 

The dynamics of the populations were simulated using the Ricker model (Ricker, 1954). This 

model is given as Nt+1=Nt*exp(r*(1-Nt/K)), where r, K and Nt denote intrinsic growth rate, 

carrying capacity and population size at time t respectively. Upper and lower limiter control 

were imposed according to the following mathematical form (Tung et al., 2014): 

Upper Limiter Control (ULC): N’
t
 = min (N

t
 , H) 

Lower Limiter Control (LLC): N’
t 
= max(N

t
 , h) 

where N
t
 and N’

t
 are the population sizes before and after perturbation in the tth generation. 

Nt+1 = f(N’
t
), where f stands for Ricker model. H and h are upper and lower threshold of ULC 

and LLC respectively. min (x, y) and  max (x, y) are minimum and maximum operator 

respectively. 

Parameter values: We fit the Ricker model to the unperturbed experimental time-series (C1 

and C2) and obtained a mean r and K of 2.6 and 34 respectively. These values of r and K 

were then used to simulate the basic dynamics of unperturbed and controlled populations. 

Matching the experimental values, upper threshold for U1 and U2 were kept at 15 and 10, 

whereas lower threshold for L1 and L2 were 4 and 10 respectively. 

Stochasticity and lattice effect: Noise can significantly influence the dynamics of perturbed 

populations (Dey and Joshi, 2007). Therefore we incorporated noise to both the parameters, r 

and K, in each iteration. For this, we picked the r and K values from uniform distributions of 

2.6±0.5 and 34±15 respectively. Real organisms always come in integer numbers, and 
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incorporating this in simulations can affect the dynamics of the systems; a phenomenon 

termed as lattice effect (Domokos and Scheuring, 2004; Henson et al., 2001). We accounted 

for lattice effect by rounding off the number of organisms in each generation, as well as the 

values of the perturbations, to the nearest integer. 

The magnitudes of perturbations were computed for each of the treatments of the control 

methods after assuming a 1:1 sex ratio. Thus, for example, when the lower limit of LLC was 

set to 4, the control method was implemented only when the population size fell below 8. 

Although for non-zero initial conditions, the Ricker model does not take zero-values and 

hence, can never show extinction, the same is not true for the integerized model. Therefore, 

we set reset rules similar to the experiment for our simulations. When the unperturbed 

populations and ULC treatments went extinct, the population size was reset to 8. No resets 

were necessary for the LLC treatments where the control method automatically ensured reset. 

Each simulation was run for 100 iterations and FI, average population size and effective 

population size were computed over the resulting time series. All figures (Fig. 3.4 and Fig. 

3.9) represent means over 100 independent replicates for each treatment. We also repeated all 

simulations for 14 generations and 5 replicates (i.e. the same as our experimental conditions). 

We found no qualitative differences between the two cases, and chose to report the former set 

of simulations (i.e. 100 iterations and 100 replicates) here, as they represent the dynamics 

over a slightly longer timescale.  

In short, the sequence of steps in the simulation is given as: 

N’t-1 → [FUNC]→ [INT]→[EXT]  →Nt →  [CTRL] → N’t 

where N’t and Nt are the population sizes after and before application of control in the tth 

generation, and FUNC, INT,  EXT and CTRL represent the population recursion (here Ricker 

model), integerization, stochastic extinction and control (here ULC and LLC) functions 

respectively. The initial value for all simulations was set to 10, which was the same as the 
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starting population size in the experiments. All calculations, except extinction probability, 

were performed on the time series of the N’t values. 

 

3. RESULTS  

3.1 Upper Limiter Control (ULC) 

In the absence of any perturbation, the distribution of the population sizes was found to be 

positively skewed with a large difference between the mean and the median (Fig. 3.1a). 

However, in the presence of upper thresholds beyond which the population sizes were not 

allowed to venture, the distributions became more symmetric, as evidenced by the low values 

of skew and little difference between the means and the medians (Fig. 3.1b-c). This change in 

population distribution translated into a significant reduction in FI (F2, 12 = 20.8, P = 0.0001). 

Post-hoc tests revealed that although U1 and U2 had similar FI, both were significantly more 

stable than the corresponding unperturbed populations with high effect sizes (Fig. 3.2a, Table 

3.1). This is consistent with the fact that the population size distributions of U1 and U2 were 

almost identical to each other and greatly different from the unperturbed treatment (Fig. 3.1). 

Interestingly, although ULC involves culling above a threshold, the effective population sizes 

(F2, 12 = 2.32, P = 0.14, Fig. 3.2b) and the average population sizes (F2, 12 = 1.08, P = 0.37, 

Fig. 3.2c) of the unperturbed and the controlled populations did not differ significantly (see 

section 4.1 for discussion). In terms of effort magnitude (Fig. 3.2d), there was a significant 

main effect of treatment (F2, 12 = 44.07, P = 0.000003). Tukey’s HSD suggested that both U1 

and U2 required significantly greater effort than the unperturbed populations and the 

corresponding effect sizes were large (Table 3.1). This is intuitive and confirms previous 

theoretical observations (Tung et al., 2014) that ULC requires a large amount of effort in 

terms of number of organisms to be removed from the controlled population. ULC also had 

an almost significant (F2, 12 = 3.61, P = 0.06) effect in terms of reduction of extinction 

probability (Fig. 3.5a). The effect size of the reduction achieved by U1 and U2, compared to 

the unperturbed population, were found to be large (Table 3.1).  Finally, comparing Fig. 3.1 

and 3.2 with the corresponding simulations (Fig. 3.3 and 3.4) suggests that our simulations 

were able to capture the broad trends of the data remarkably well. 
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Table 3.1 Tukey P value and effect size for all pair wise combinations of C1, U1 and U2 

ULC Pairwise 

combinations  
Tukey P 

Effect size ± 

95% CI 

Fluctuation index 

C1-U1 0.0007 3.66 ± 2.03 

C1-U2 0.0004 3.38 ± 1.93 

U1-U2 0.78 0.43 ± 1.25 

Av. population size 

C1-U1 * 0.95 ± 1.31 

C1-U2 * 0.85 ± 1.29 

U1-U2 * 0.17 ± 1.24 

Effective population 

size 

C1-U1 * 1.17 ± 1.34 

C1-U2 * 1.49 ± 1.4 

U1-U2 * 0.23 ± 1.24 

Effort magnitude 

C1-U1 0.0002 5.39 ± 2.67 

C1-U2 0.0002 6.00 ± 2.91 

U1-U2 0.08 1.25 ± 1.35 

Extinction probability 

C1-U1 0.21 1.4 ± 1.38 

C1-U2 0.05 1.8 ± 1.47 

U1-U2 0.7 0.48 ± 1.26 
 

*Note: The post-hoc analysis was not performed, when the main effect was statistically insignificant.  

 

Table 3.2 Tukey P value and effect size for all pair wise combinations of C2, L1 and L2 

LLC Pairwise 

combinations   
Tukey P 

Effect size ± 

95% CI 

Fluctuation index 

C2-L1 0.11 1.43 ± 1.39 

C2-L2 0.17 1.14 ± 1.34 

L1-L2 0.004 2.85 ± 1.76 

Av. population size 

C2-L1 * 0.93 ± 1.31 

C2-L2 * 1.71 ± 1.45 

L1-L2 * 0.41 ± 1.25 

Effective population 

size 

C2-L1 0.17 1.43 ± 1.39 

C2-L2 0.0002 4.7 ± 2.4 

L1-L2 0.0003 4.26 ± 2.24 

Effort magnitude 

C2-L1 0.58 0.93 ± 1.31 

C2-L2 0.05 1.44 ± 1.39 

L1-L2 0.008 2.21 ± 1.57 

Extinction probability 

C2-L1 0.06  2.4 ± 1.63 

C2-L2 0.02 2.8 ± 1.74 

L1-L2 0.78 0.37 ± 1.25 
 

*Note: The post-hoc analysis was not performed, when the main effect was statistically insignificant. 
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3.2 Lower Limiter Control (LLC) 

A different set of five unperturbed populations (Fig. 3.6a) gave almost the same distributional 

properties as seen in Fig. 3.1a, thus attesting the reproducibility of the distribution for the 

unperturbed case. However, when the population size was not allowed to fall below a fixed 

threshold, the changes in the population size distributions (Fig. 3.6b-c) were less dramatic 

than those seen for ULC (Fig. 3.1b and Fig. 3.1c). The nature of the intervention assured that 

there were no individuals in the lowermost bins for the two levels of LLC (Fig. 3.6b-c). 

Although the skew values were somewhat reduced due to the perturbations, the distribution 

still had a sufficiently long tail indicating that the populations were capable of reaching very 

high sizes. As a result of this, although there was an overall significant effect of treatment in 

the ANOVA (F2, 12 =8.75, P = 0.005), neither L1 nor L2 had significantly lower FI compared 

to the unperturbed treatment (Fig. 3.7a). Interestingly though, L1 had a significantly higher FI 

than L2 (Fig. 3.7a, Table 3.2), which is due to the fact that small values of LLC can actually 

increase the FI of populations (Tung et al., 2014). The effective population size of L2 was 

significantly higher (F2, 12 = 39.86, P = 0.000005) than that of the unperturbed and L1 with 

high effect sizes (Fig. 3.7b, Table 3.2). This is intuitive as the effective population size is 

primarily affected by low values in a series and LLC ensures that the population size does not 

go below a lower threshold. Similarly, the observation that the effective population size of L2 

is greater than that of L1 is trivially explained by the fact that L2 involved immigrating larger 

number of individuals than L1. However, in spite of adding individuals from outside, there 

was no significant difference (F2, 12 = 2.8, P = 0.1) between the three treatments in terms of 

average population size (Fig. 3.7c). There was a significant effect in terms of effort 

magnitude (F2, 12 = 7.32, P = 0.008) and the L2 treatment required significantly greater 

amount of effort (with large effect sizes of the difference) compared to both L1 and the 

unperturbed populations (Fig. 3.7d, Table 3.2). Overall, the empirical results suggest that the 

L1 level of LLC treatments were primarily ineffective in inducing constancy stability in the 

populations, while L2 was somewhat more effective (see discussion for possible 

explanations). However, in terms of persistence, LLC led to significant (F2, 12 = 5.85, P = 

0.02) reduction in extinction probability. The effect size of the reduction achieved by L1 and 

L2, compared to the unperturbed population, were found to be large (Table 3.2). Finally, as 

with ULC, our simulations were again able to reflect the broad trends of the empirical data (cf 

Fig. 3.6 and Fig. 3.7 with Fig. 3.8 and 3.9 respectively).  
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4. DISCUSSION 

This study compares how the upper and lower limiter control methods affect the dynamics of 

biological populations. However, it is not a direct comparison of the efficiency of the two 

methods. This is because simulations (Tung et al., 2014) indicate that almost every control 

method is capable of inducing almost any level of constancy stability, depending on the value 

of the control parameter (i.e. U or L). As it is not possible to equate over the parameter values 

for two methods as different as ULC and LLC, it becomes meaningless to compare their 

efficiencies. A recent simulation study circumvented this problem by numerically figuring 

out the magnitude of perturbation needed by each control method to achieve an arbitrary pre-

determined level of stability (Tung et al., 2014). The efficiencies of the control methods were 

then investigated at those parameter values by comparing the resultant effective population 

size, effort magnitude, etc. Clearly, such an exercise is logistically very difficult in the 

context of an experimental study, where one is severely constrained in terms of how many 

treatments can be investigated. Therefore, in this study, we limit ourselves to mechanistic 

understanding of how each control method functions and refrain from a direct comparison of 

their efficiencies in attaining stability. It should be noted here that although the efficiencies of 

ULC and BLC cannot be compared quantitatively, it is valid to make qualitative comparisons 

between these two methods, for the given parameter values, in terms of their effects on the 

dynamics. 

4.1 Upper Limiter Control (ULC) 

Population size distribution and FI: ULC affects the dynamics of fluctuating Drosophila 

population in two ways. Firstly, by definition, the breeding population size was not allowed 

to go beyond a pre-determined threshold. Secondly, reduction in the number of breeding 

adults in generation t decreased the number of eggs laid in the next generation (i.e. t+1), 

which in turn lowered the larval competition. As a result, there was an increase in the larval 

survivorship which reduced the occurrences of population crashes in generation t+1. This is 

demonstrated by the fact that application of ULC (Fig. 3.1b and 1c) reduced the frequency of 

the lower population sizes compared to the unperturbed case (Fig. 3.1a). Consequently, the 

distribution of population sizes became more symmetric, the median approached the mean 

and the skewness reduced. This result is the biological analogue of the truncation of the 

stock-recruitment curve demonstrated by previous numerical studies (Figure 3.10 in Hilker 

and Westerhoff, 2005) and provides a biological, mechanistic understanding of how ULC 
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enhances the constancy stability of populations (Fig. 3.2a). The reduction in population FI 

due to ULC is consistent with an earlier study on ciliates that had reported reduced variability 

in population size upon imposing an upper threshold (Fryxell et al., 2005). 

 

Fig. 3.1. Population size distributions for unperturbed and ULC-treated populations: (a) 

Unperturbed (C1), (b) U1 (upper threshold = 15), (c) U2 (upper threshold = 10). The bin size is 4 

when the population size is in the range 0-20, and 20 otherwise. When the value of the upper 

threshold is lowered, thereby increasing control intensity, the frequency of the extreme values 

decreases and the overall distribution becomes more symmetric. 

 

 Effective population size: We also investigated the potential impact of ULC on the genetic 

stability of populations by quantifying the effective population size (Ne). Ne is defined as the 

corresponding size of an ideal population which loses heterozygosity at the same rate as the 

given population and is calculated here as the harmonic mean of the population sizes over 

time (Allendorf and Luikart, 2007). Since the rate of loss of heterozygosity has an inverse 

relationship with Ne, it follows that higher values of Ne are more desirable for enhanced 

genetic stability of populations. Also, as the harmonic mean gets affected more by the lower 

values in a time series, Ne is sensitive to population bottlenecks. Since ULC reduces 

population crashes, it was expected to enhance Ne. However, although both levels of ULC 

increased Ne compared to the unperturbed treatment (Fig. 3.2b), the difference was not 

statistically significant. Moreover, in spite of medium to large effect sizes of the differences 

between the means, the confidence intervals around the effect sizes were wide (Table 3.1). 

Together these suggest that there was wide variation in terms of the ability of ULC in 

enhancing Ne. This is primarily because although ULC reduces the frequency of population 

crashes, it cannot ameliorate it completely (Fig. 3.1b-c) and populations can still hit low 

values through demographic or environmental stochasticity. This observation is also 
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consistent with a recent study which found that ULC was the least effective among six 

control methods in terms of increasing Ne (Tung et al., 2014). To summarize, ULC is not a 

reliable method in terms of enhancing Ne. 

 

Fig. 3.2 Dynamics after applying ULC. C1 represents the unperturbed populations while U1 and 

U2 stand for ULC thresholds of 15 and 10 respectively. Each bar represents a mean over 5 replicate 

populations. Error bars denote standard error around the mean and * denotes P < 0.05. (a) 

Fluctuation index: Both the ULC treatments reduced population fluctuations significantly. Neither 

U1 nor U2 had a significant effect on (b) Effective population size and (c) Average population size. 

(d) Effort magnitude: Both U1 and U2 required significantly more external perturbation than C1. 

See text for possible explanations. 

 

Average population size: ULC also failed to affect the average population size of the 

controlled populations (Fig. 3.2c). Although removal of individuals is expected to reduce the 

population size, control methods that involve culling can sometimes lead to an increase in 

average population size. This phenomenon has been called the paradox of limiter control 

(Hilker and Westerhoff, 2006) or the Hydra effect (Abrams, 2009) in the ecological literature. 

It happens because culling reduces the negative effects of density dependence on realized 

growth rate, thus off-setting the loss of numbers due to removal. However, when the stock-

recruitment curve of a population shows a long flat tail, as can be inferred for our populations 

from Fig. 3.1a, then the hydra effect is not expected for a large range of ULC values. This is 

because for such populations, until and unless the ULC thresholds are fairly low, the increase 
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in the realized growth rate is not sufficient to cause an increase in the mean population size 

after compensating for the number of adults removed. This phenomenon has been observed in 

earlier theoretical studies (Hilker and Westerhoff, 2005) and was also captured in our 

simulations (Fig. 3.4c). 

 

Fig. 3.3 Population size distributions of the simulated unperturbed and ULC-treated populations:  

(a) Unperturbed (C1), (b) U1 (upper threshold=15), (c) U2 (upper threshold=10). When the 

population size is between 0-20, bin size is 4 and 20 otherwise. 

 

Fig. 3.4 Simulated dynamics after applying ULC. C1 represents the unperturbed populations while 

U1 and U2 stand for ULC thresholds of 15 and 10 respectively.Each bar represents a mean over 

100 replicate populations. Error bars denote standard error around the mean. (a) Fluctuation index, 

(b) Effective population size, (c) Average population size and (d) Effort magnitude. 

Effort magnitude: Both U1 and U2 required effort to the tune of 40-50% of the corresponding 

average population size (Fig. 3.2d). This is because although a fixed upper threshold restricts 

the number of breeding females, the high fecundity of the flies ensured a substantially higher-

than-threshold population size in the next generation. Consequently, ULC had to be applied 

in most generations which translated into a high effort magnitude. This observation is 

consistent with a recent theoretical investigation which found that ULC entailed a relatively 
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high effort magnitude (Tung et al., 2014). Our results show that when cost of culling is high, 

the levels of ULC investigated here are likely to be prohibitively expensive. However, we 

note here that if harvesting the species in question has some economic benefits, then the cost 

of harvesting might be off-set by the income derived from it! Thus, like most issues in 

conservation, whether a given strategy is feasible or not, will be context dependent. 

 

Fig. 3.5 Extinction probability after applying ULC and LLC. Each bar represents a mean over 5 

replicate populations. Error bars denote standard error around the mean and * denotes P < 0.05. (a) 

ULC: C1, U1 and U2 represent the unperturbed populations, and ULC thresholds of 15 and 10 

respectively. (b) LLC: C2, L1 and L2 stand for unperturbed populations, and LLC thresholds of 4 

and 10 respectively. Both control methods were able to reduce the extinction probability, although 

the reduction was marginally insignificant for ULC (see text for possible explanation). 

 

Persistence: Due to its tendency to diminish the frequency of population crashes, ULC 

reduced the extinction probability of the controlled populations, although the effect was 

statistically marginally insignificant (Fig. 3.5a). Similar observations have been made in the 

case of harvested populations where it is seen that the presence of some kind of upper 

threshold in population size is needed to optimize the yield and reduce the extinction 

probability under unpredictable environments (Lande et al., 1997).  

 To summarize, our results indicate that although ULC induces constancy and persistence 

stability, it is not very efficient in terms of enhancing the genetic stability of populations and 

is economically expensive. 

4.2 Lower Limiter Control (LLC) 

A numerical comparison of six control methods had concluded that LLC was the optimal 

control method under most (though not all) circumstances (Tung et al., 2014). Therefore, we 

investigated LLC under slightly more stringent conditions than ULC. Since under most real-

life conditions, one is forced to operate on estimates of population sizes, rather than precise 
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counts, we explicitly incorporated some degree of imprecision in our implementation of LLC. 

For this, rather than using the exact counts of female numbers in the population, we followed 

a previous protocol (Dey and Joshi, 2006) and estimated the number of females under the 

assumption of 1:1 sex ratio. Since this assumption will evidently be not met in every 

generation, some amount of estimation error is built into the experimental procedure. 

 

Fig. 3.6 Population size distributions of the unperturbed and LLC-treated populations: (a) 

Unperturbed (C2), (b) L1 (lower threshold=4), (c) L2 (lower threshold=10). When the population 

size is between 0-20, bin size is 4 and 20 otherwise. LLC treatments did not have a major effect on 

the population size distribution. 

 

Population distribution and constancy stability: LLC directly prevents population sizes from 

going below a threshold without placing any restrictions on how high they can get.  

Consequently, although the population never hits the lower values in Fig. 3.6b-c, there is not 

much change in the long right hand tail, and the skew values reduce more slowly with 

increase in the threshold. Compared to ULC (Fig. 3.1b-c), the spread remains considerably 

wider. Not surprisingly therefore, the FI of neither L1 nor L2 were significantly different 

from the corresponding unperturbed population (Fig. 3.7a). This failure to reduce FI could 

indicate that LLC cannot enhance constancy in real populations. It could also be attributed to 

the fact that we incorporated some degree of imprecision in the application of LLC. Either 

way, our results indicate that a lot more empirical studies are needed to establish the efficacy 

of LLC in stabilizing biological populations. Interestingly, the FI of the L1 populations was 

larger than that of C2 populations but that of L2 was lower than both C2 and L1. This 

increase in FI for small values of restocking has been observed in numerical simulations of 

LLC (Tung et al., 2014) and other restocking methods like ALC (Franco and Hilker, 2013; 

Sah et al., 2013) and pinning (Tung et al., 2014) and it is tempting to wonder whether this is a 

generic property of all restocking methods. However, much more theoretical work would be 

needed to establish the reason for this observation.  
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Fig. 3.7 Dynamics after applying LLC. C2 represents the unperturbed populations while L1 and L2 

stand for LLC thresholds of 4 and 10 respectively. Each bar represents a mean over 5 replicate 

populations. Error bars denote standard error around the mean and * denotes P < 0.05. (a) 

Fluctuation index: Although there is a significant difference between L1 and L2, neither of them is 

significantly different from C2. L2 significantly increased (b) Effective population size but none of 

the LLC treatments affect (c) Average population size significantly. (d) Effort magnitude: L2 

required significantly more external perturbation than both C2 and L1 

 

Effective and average population size: Although LLC treatments could not enhance the 

constancy stability, L2 increased the Ne significantly (Fig. 3.7b). This is important as low Ne, 

and thereby enhanced chance of loss of genetic diversity, has been shown to have detrimental 

effect on population sustenance (Newman and Pilson, 1997). However, this attainment of 

higher Ne is trivial as restocking methods increases the harmonic mean by ensuring that the 

population size never goes below a lower threshold. More crucially, in spite of restocking, 

there was no statistically significant effect of LLC on the average population size (Fig. 3.7c) 

which contradicts earlier theoretical predictions (Hilker and Westerhoff, 2005). Interestingly 

though, the effect sizes of all pair-wise differences were large (Table 3.2) and Fig. 3.7c does 

reveal an increasing trend in average population size with increase in intensity of LLC. The 

lack of statistical significance is better explained by the presence of large amount of variation 

among replicates in the L1 and L2 treatment, which might be an artefact of the noise 

incorporated during census. Thus the effect of LLC on average population size merits further 

investigation. 



63 

 

Effort magnitude: The effort magnitude required for LLC is much, much less compared to 

that of ULC (cf Fig. 3.2d and 3.7d and note the difference in scale). Unfortunately, the two 

values are not directly comparable here, since they lead to different amounts of constancy 

stability. However, an earlier comparison of control methods have shown that for attaining 

comparable levels of stability, LLC typically requires the least amount of effort (Tung et al., 

2014). This leads to the possibility that the performance of LLC can be probably improved 

significantly without incurring too much cost in terms of effort magnitude.  

Persistence: Although LLC failed to enhance constancy, it had a significant effect in terms of 

persistence (Fig. 3.5b) which was almost comparable to that of ULC (cf 3.5a and 3.5b). 

Prima facie, this is counterintuitive as LLC does not involve culling and hence cannot reduce 

the frequency of population crashes to zero or very low numbers. This in turn means that it is 

not expected to reduce extinction probability which was scored before the imposition of 

perturbation. The discrepancy gets resolved when we recall that there are two ways in which 

a population can go extinct. The first is when the numbers in generation t crash to zero due to 

overpopulation in generation t-1. The second is when overpopulation in generation t-1 causes 

the numbers to become very low in generation t, which in turn leads to extinction in 

generation t+1. While LLC cannot ameliorate the first kind of extinction, it can reduce the 

probability of the second kind due to restocking by fecund individuals. This is the converse of 

ULC, which can only reduce the first kind of extinction but not the latter type. This leads to 

the prediction that the optimal method to promote persistence would depend on the kind of 

extinction suffered by the target population. For any population which, like our Drosophila 

cultures, suffer from both kinds of extinctions, a control method that incorporates both 

culling and restocking would be the most effective in terms of promoting persistence.  
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Fig. 3.8 Population size distributions of the simulated unperturbed and LLC-treated populations: 

(a) Unperturbed (C2), (b) L1 (lower threshold=4), (c) L2 (lower threshold=10). When the 

population size is between 0-20, bin size is 4 and 20 otherwise. 

 

Fig. 3.9 Simulated dynamics after applying LLC. C2 represents the unperturbed populations while 

L1 and L2 stand for LLC thresholds of 4 and 10 respectively. Each bar represents a mean over 100 

replicate populations. Error bars denote standard error around the mean. (a) Fluctuation index, (b) 

Effective population size, (c) Average population size and (d) Effort magnitude. 

 

To summarize, the present experiments are inconclusive about the effects of LLC on 

constancy. However, it is clear that LLC boosts effective population size and persistence 

while requiring relatively less effort. 

4.3 Caveats 

Several caveats need to be considered while extrapolating our results to natural conditions. 

This study was conducted on Drosophila populations maintained under discrete generation 

cycles. This allowed us to test predictions emanating from discrete generation models like the 

Ricker map. The results of our study are therefore relevant for those species whose 

populations undergo non-overlapping generation cycles in nature. However, populations of 

several species in nature exhibit overlapping-generations which are sometimes age/stage 

structured. Such populations often have very different dynamics from those represented by 

simple maps (Caswell, 2001), which may or may not be controlled by methods like ULC or 

LLC.   



65 

 

 In our study, we consider culling and restocking to be equivalent in terms of effort 

magnitude, which is clearly a simplifying assumption. Under many circumstances, killing 

individuals in a population might be less expensive than reintroduction from a source and 

vice versa. In all those cases, the effort magnitude needs to be suitably scaled to arrive at the 

actual economic cost. Unfortunately, this issue must be handled on a case-by-case basis, 

depending on the biology of the species and the available infrastructure, and it is impossible 

to incorporate those nuances in a general study like ours. Another fact not considered here is 

that the economic cost of census also might be very different for ULC and LLC. In the former 

case, the entire population needs to be counted while in the latter case, census effort is 

restricted to the point that the threshold number of organisms is cited. Furthermore, although 

we have calculated effective population size solely as a function of the census size, in reality, 

culling and restocking (and hence ULC and LLC) differ in how they affect the loss of genetic 

variation in a population. This is because if the individuals used in restocking belong to a 

different gene pool, then there would be relatively lower loss of genetic variation than what is 

expected based on the values of harmonic means. Simulation (Lacy, 1987), laboratory (Ball 

et al., 2000) and field (Vilà et al., 2003) studies suggest that even a small amount of 

immigration is sufficient to maintain / restore heterozygosity in populations. Thus, assuming 

the availability of a genetically diverse source population, LLC is a fundamentally superior 

method in terms of maintaining genetic diversity, which is consistent with our conclusions 

about genetic stability based on the harmonic mean of the population sizes. Finally, we have 

only examined the effects of ULC and LLC on spatially-unstructured populations of a given 

species, whereas most natural populations exist in spatially-structured communities of many 

species.  Thus, several factors need to be taken into account before our experimental results 

can become usable in real-life scenarios. However, given that erroneous application of 

control methods can lead to ecological disasters (Pyke, 2008), studies such as ours can help in 

bridging the gap between theory and practical applications. 

 

5. CONCLUSIONS 

Our empirical results suggest that ULC is an efficient method in terms of reducing 

fluctuations as well as extinction probability. However, it does not increase the effective 

population size and needs fairly large magnitude perturbations. On the other hand, although 

the efficacy of LLC in reducing population fluctuations is equivocal, it increases effective 
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population size, reduces stochastic extinction probability and requires relatively less effort. 

Thus, the choice of methods under a given condition would depend upon the aspect of the 

dynamics that needs to be stabilized. We also investigated the generalizability of our 

empirical results. Our Ricker-based simulations did not contain any species-specific 

parameters, and yet were able to corroborate most of the empirical observations. This 

indicates that our experimental results are not due to some specific features of Drosophila 

biology, and hence, likely to be broadly applicable. It has been theoretically shown that 

populations that experience scramble competition and are randomly distributed over space, 

follow the Ricker dynamics (Brännström and Sumpter, 2005). Since large number of 

organisms belonging to diverse taxa fulfil these two conditions, our results are likely to be 

relevant in wide-ranging scenarios. However, there are several caveats to our results, and any 

extrapolation to real-life scenarios must be supplemented by relevant system-specific 

information.  
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CHAPTER 4 

 

 

 

Population stability through Both Limiter Control 

(BLC) and Target Oriented Control (TOC) 

 

 

 

 

 

Highlights 

• First empirical validation of methods: BLC and TOC. 

• Both methods stabilize populations and reduce extinction propensity simultaneously. 

• Application of these methods also results in a higher effective population size. 

• Non-Drosophila specific simulation results agree well with the data. 

 

 

 

 

 

 

 

Adapted from: Tung, S., Mishra, A., Dey, S. 2016. Simultaneous enhancement of multiple 

stability properties using two-parameter control methods in Drosophila melanogaster. 

Ecological Complexity 26, 128–136. 
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1. INTRODUCTION 

Although several methods have been proposed for stabilizing biological populations over the 

last two decades (e.g. Dattani et al., 2011; Güémez and Matías, 1993; Hilker and Westerhoff, 

2005; McCallum, 1992; Sah et al., 2013), few (if any) have been actually applied for 

conserving threatened populations. This gap between theory and application has multiple 

putative reasons. Firstly, in ecology, the term stability can refer to many concepts (Grimm 

and Wissel, 1997) and most theoretical studies typically restrict to any one of them. However, 

in any real world usage, the adopted control method must be able to simultaneously stabilize 

multiple aspects of the dynamics. Thus, for example, a method that reduces fluctuations in 

population sizes, but has relatively less impact on extinction probability, is of limited utility. 

Since different aspects of stability often do not correlate with each other (Dey and Joshi, 

2013; Dey et al., 2008), choosing a method often becomes problematic. 

To complicate matters further, most control methods proposed in the theoretical literature 

lack adequate empirical (i.e. ones that use real biological populations as opposed to computer 

simulations) verification. Some of the most well-known empirical studies on population 

control deal with methods that either require high levels of mathematical sophistication (e.g. 

Desharnais et al., 2001) or very detailed models of the system (Becks et al., 2005). The high 

degree of specificity of these studies can sometimes make it difficult to extend their insights 

into controlling other systems. Moreover, such studies (Becks et al., 2005; Desharnais et al., 

2001) often deal with amelioration of chaos or characterization of the attractor, whereas the 

primary concern of most conservation biologists would be to prevent inbreeding or reduce 

extinction probability. Consequently, such empirically well-characterized control methods 

turn out to be of limited relevance for most real-world applications. As stated already, much 

of the proposed control methods have never been investigated using biological populations. 

Given that the survivals of species are at stake, the reluctance of the practitioners in adopting 

untested methods for controlling natural populations is well justified. The only way to bridge 

this gap between theory and practise is to empirically verify the control methods proposed in 

the literature under conditions that are as close to their conditions of intended use as possible. 

Clearly, methods that require relatively less system-specific information and are easier to 

implement (e.g. Gusset et al., 2009; McCallum, 1992), are likely to be more useful in this 

context. One such set of control methods is the so-called limiter class of methods.  
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Broadly speaking, the limiter methods do not allow the populations to go above or below 

(depending on the method) a pre-determined threshold through culling or restocking 

respectively. Recent empirical studies have shown that such methods can typically reduce 

either fluctuations in population sizes or extinction probability, but not both (Sah et al., 2013; 

Tung et al., 2016). This observation led to the conjecture that methods which involve both 

restocking and culling might prove to be more successful in simultaneous control of multiple 

aspects of stability. A well-studied method of this type is the Target-Oriented Control (TOC) 

(Braverman and Chan, 2014; Braverman and Franco, 2015; Dattani et al., 2011; Franco and 

Liz, 2013), which is a modification of the traditional proportional feedback method (Güémez 

and Matías, 1993; Liz, 2010). In TOC, the current population size is perturbed towards a 

predetermined ‘target’ by culling or restocking (Dattani et al., 2011; Franco and Liz, 2013). 

The magnitude of the perturbation is determined based on the difference between the pre-

perturbation population size and the target value. Theoretical studies have shown that TOC 

globally stabilizes higher order difference equations (Braverman and Franco, 2015) and is 

particularly useful in those cases where the population size needs to be manipulated towards a 

pre-determined value (Dattani et al., 2011). 

Another method that involves both culling and restocking is the recently proposed Both 

Limiter Control or BLC, which involves setting an upper and a lower threshold a priori 

(Tung et al., 2014). Each time the population size is outside the range set by these thresholds, 

appropriate culling or restocking is implemented to bring the size back to the upper or the 

lower threshold respectively. It has been shown numerically that BLC can protect populations 

from overcrowding and extinction risk due to demographic stochasticity (Tung et al., 2014). 

Further, both TOC (Fig 1 of Dattani et al., 2011) and BLC (Figure 4.1) can suppress the 

complex chaotic dynamics of a system to a stable point or limit cycles. However, till date, 

there has been no empirical investigation of how these two control methods affect the 

dynamics of real biological populations. 
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Figure 4.1. Effect of BLC on the long-term dynamics of a single, spatially unstructured 

population using Ricker model. Here N0 =10 and K=34. The red scatter plot shows the classic 

period-doubling route to chaos exhibited by the Ricker model in the absence of any external 

perturbations. The green scatter plot indicates the same except here BLC method had been applied 

with upper and lower threshold on half of the population size being 10 and 4 respectively (same as 

the experiment here). Thus, in presence of BLC, the complex dynamics of the system gets 

suppressed and it largely becomes a two-point limit cycle with much reduced amplitude of 

population size fluctuations. 
 

In this study, we investigate the effects of BLC and TOC in stabilizing the dynamics of 

spatially-unstructured laboratory populations of Drosophila melanogaster. Both these 

methods were found to be capable of inducing significant reduction in fluctuations in 

population sizes and extinction probability. Moreover, both methods also significantly 

increased the effective population sizes. However, the good performance of BLC and TOC 

came at the cost of a significantly large effort magnitude, which is likely to translate into 

relatively high economic expenditure. We also derive biologically intuitive understandings of 

how the control methods work by comparing the distribution of population sizes with and 

without control. Finally, we show that simulations using a biologically realistic, non-

Drosophila-specific model, can capture most of the trends of our experimental results. This 

suggests that our observations are likely to be generalizable over a wide range of taxonomic 

groups. 
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2. METHODS 

2.1 Experimental populations  

In this study, we used 20 single vial populations of Drosophila melanogaster derived from a 

large outbred population, called DB4. DB4 population was maintained on a 21-day discrete 

generation cycle, as detailed elsewhere (Sheeba et al., 1998). Each of the 20 single vial 

populations used for this experiment were initiated by collecting 10 eggs on 1.1 ml of 

standard banana-jaggery medium and reared in an incubator at 25ᵒ C temperature under 

constant light. Once the adults started eclosing in a vial, they were transferred daily into 

corresponding adult-holding vials containing ~6ml of medium. The correspondence between 

an egg-collection vial and its adult-holding vial was strictly maintained. On the 18th day from 

the day of egg collection, the flies were supplied with live yeast paste to boost fecundity. 

Three days later, the adults were counted under mild CO2 anaesthesia and culling or 

restocking were implemented wherever necessary as per the protocol of the corresponding 

control method (see section 2.2). After this, the adults were put into fresh vials containing 1.1 

ml food for oviposition. After 24 hours, the adults were discarded and the eggs formed the 

next generation. The experiment lasted for 14 generations.  

 

2.2 Control methods and performance indices 

Both Limiter Control (BLC): In BLC, the population size is not allowed to go beyond 

predetermined upper and lower threshold values (Tung et al., 2014). Mathematically, this can 

be represented as Ntˊ = max(min(Nt, U), L), where Nt and Ntˊare population sizes before and 

after the application of the control method, U and  L are the pre-determined values of the 

upper and lower thresholds, and max and min denote the maximum and minimum operators. 

Here, we arbitrarily chose the upper and lower thresholds as 4 and 10 females respectively. 

Since the dynamics of sexually reproducing species are primarily driven by the number of 

females in the population, we restricted the implementation of the control to the females. In 

other words, when the number of females in a given generation was less than 4 or more than 

10, BLC was applied by restocking to 4 females or culling to 10 females respectively. 

 

Target Oriented Control (TOC): In TOC, the population size is nudged towards an a priori 

fixed target value (Dattani et al., 2011). It is a two-parameter control method which can be 

mathematically represented as Ntˊ = Nt + cd × (Ʈ-Nt), where Nt and Ntˊ are population sizes 

before and after the application of TOC and Ʈ denotes the target population size. The 
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parameter cd (arbitrarily set to 0.7 here) represents the fraction by which the difference 

between the target (set arbitrarily to 30) and current population size is restocked or culled. 

Thus, in our experiment, when the population size exceeds 30, 70% of the excess individuals 

are culled and when population size is below the target, 70% of the difference in number of 

individuals is added to the population.  

 

Since earlier theoretical studies (Dattani et al., 2011; Tung et al., 2014) had suggested TOC to 

be a very effective control method, we decided to test it under somewhat more stringent 

conditions than BLC. For this, we incorporated some degree of imprecision in the 

implementation of the control method. Modifying the protocol of an earlier study (Dey and 

Joshi, 2006), in this study we estimated the number of females to be added or removed as 

floor [0.5 × cd × (Ʈ-Nt)], where floor [x] denotes the function leading to the largest integer 

not greater than x. This way of calculating the magnitude of the control assumes an equal sex 

ratio which will not be the case in every generation, thus introducing some noise in the 

implementation. 

 

We used three measures of stability, namely constancy, persistence and effective population 

size.  Constancy stability (Grimm and Wissel, 1997) of populations refers to the magnitude of 

temporal fluctuations in population sizes: population that have larger fluctuations have lesser 

constancy stability and vice versa. Persistence stability of a population is a measure of its 

probability of extinction (Grimm and Wissel, 1997) such that higher extinction probability 

denotes lower persistence stability and vice versa. Effective population size (Ne) is an 

indicator of how fast a population is expected to lose its genetic variation and thus, is a 

measure of its genetic stability (Hare et al., 2011). Following a previous study (Hilker and 

Westerhoff, 2005) we estimated the effort magnitude, which is a proxy for the cost of 

implementation of the control methods. This quantity computes the number of individuals 

externally added or removed per generation. Effort frequency was measured as the proportion 

of generations external perturbation was required. All performance indices (except extinction 

probability) were computed on the time series of the breeding population (i.e. after the 

implementation of restocking/culling). The mathematical expressions for all the indices are 

given in Table 4.1. 
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Table 4.1: Performance metrics and their mathematical expressions 

Performance 

metric 

Index Formula References 

for formula 

Constancy 

stability 

Fluctuation index 

(FI) 

 

𝐹𝐼 = (1/(𝑇 × 𝑁̅ )) × ∑|𝑁′𝑡+1 − 𝑁′𝑡|

𝑇−1

𝑡=0

 

Dey & Joshi 

2006 

Persistence 

stability 

Extinction 

probability (EP) 

 

EP = tex /T 
- 

Genetic 

stability 

Effective 

population size (Ne) 

 

𝑁𝑒 = 𝑇/ ∑ 1/𝑁′𝑡

𝑇

𝑡=1

 

Allendorf & 

Luikart 2007 

Abundance Average population 

size (N̅) 

 

1

'
T

t

t

N N T


  

- 

Economic 

Cost 

Effort magnitude 

(EM) 

 

𝐸𝑀 = (1/(𝑇 × 𝑁̅ )) × ∑|𝑁𝑡 − 𝑁′𝑡|

𝑇

𝑡=1

 

Hilker & 

Westerhoff 

2005; Sah et al. 

2013 

Economic 

Cost 

Effort frequency 

(EF) 
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*Nt and N’t are the population sizes before and after external perturbation in the tth generation 

respectively. tex and teffort are total number of extinction events and the number of generations 

when external perturbation was required respectively. T denotes the length of the time series. 

 

2.3 Unperturbed populations and experimental replicates 

Apart from the BLC and TOC lines, we also had two sets of populations that were kept 

unperturbed, and maintained as mentioned in section 2.1. These two sets were called C1 and 

C2, and they served as unperturbed reference populations for BLC and TOC respectively. 

This pairing was done at the time of the experimental set up. The dynamics of the C1 and C2 

populations have already been reported previously (Tung et al., 2016). When the C1 or C2 

populations went extinct, they were reset by adding 4 males and 4 females from outside, 

which contributed to the effort magnitude (see below) of these populations. There were no 

needs for separate resets in the BLC and TOC lines, since the control methods automatically 

ensured that the extinct populations were rescued. All flies that were used for restocking were 
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maintained as mentioned in Appendix S1, except for the fact that they were provided with ~5 

ml of larval food. Overall, there were four treatments (BLC, TOC, C1 and C2) in this study 

and each consisted of 5 replicate populations. 

 

 

2.5 Statistical analyses  

For statistical analyses, BLC and TOC were compared against the corresponding reference 

populations, C1 and C2, respectively. The data for the various indicators of stability along 

with the effort magnitude and frequency were subjected to separate one-way ANOVAs using 

STATISTICA®v5 (StatSoft. Inc., Tulsa, Oklahoma).We also computed the effect size of the 

difference between the means as Cohen’s d (Cohen, 1988) using a freeware Effect Size 

Generator (Devilly, 2004). Following standard recommendations (Cohen, 1988), the value of 

effect size (d) was interpreted as large, medium and small when d>0.8, 0.8>d>0.5 and d<0.5 

respectively. 

 

2.6 Simulations 

In order to test the generalizability of our empirical results, we used the Ricker model 

(Ricker, 1954) for biologically-realistic simulations of the dynamics of the unperturbed 

populations. This model is given as Nt+1=Nt*exp(r*(1-Nt/K)), where r, K and Nt denote 

intrinsic growth rate, carrying capacity and population size at time t respectively. The two 

control methods, Both Limiter Control (BLC) and Target Oriented Control (TOC) were 

imposed according to the following mathematical form (Tung et al., 2014): 

BLC: N’
t
= max [L, min [N

t
 , U]] 

TOC: N’
t
= max [0, c

d 
×Ʈ+ (1 - c

d
) ×N

t
)] 

where N
t
 and N’

t
 are the population sizes before and after perturbation in the tth generation. 

N
t+1

 = f(N’
t
), where f stands for Ricker model. U and L are the upper and lower thresholds of 

BLC while Ʈand c
d
 represent target and control intensity of TOC respectively. min[] and 

max[] stand for minimum and maximum operators. 

Parameter values: We fit the Ricker model to the unperturbed experimental time-series (C1 

and C2) and obtained a mean r and K of 2.6 and 34 respectively. These values of r and K 

were then used to simulate the dynamics of unperturbed and controlled populations. 

Matching the experimental values, upper (U) and lower (L) threshold for females in BLC 
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were kept at 10 and 4 whereas the target (Ʈ) and control intensity (c
d
) for TOC were fixed at 

30 and 0.7 respectively. 

Stochasticity and lattice effect: Since noise can significantly influence the dynamics of 

perturbed populations (Dey and Joshi, 2007), we incorporated noise to both the parameters, r 

and K, in each iteration. Following an earlier study (Tung et al., 2016) we picked the r and K 

values from uniform distributions of 2.6 ±0.5 and 34±15 respectively. Real organisms always 

come in integer numbers (lattice effect, as described in Henson et al., 2001), a constraint that 

can potentially affect the dynamics of the systems. We incorporated the lattice effect in our 

simulations by rounding off the number of organisms as well as the values of the 

perturbations in each generation to the nearest integer less than the actual value. The Ricker 

model, when initiated with a non-zero value, does not take zero-values and hence can never 

show extinctions. However, the same is not true for the integerized model. Therefore, we set 

reset rules similar to the experiment for our simulations: when the unperturbed populations 

went extinct, the population size was reset to 8. No resets were necessary for the simulations 

incorporating BLC and TOC as both control methods involved restocking steps. 

The magnitudes of external perturbation to be applied were computed by assuming a 1:1 sex 

ratio. Thus, for BLC, the control method was implemented only when half the population size 

fell below 4 or exceeded 10. For TOC, the amount of perturbation was estimated by 

subtracting the population size before perturbation (Nt) from the calculated post perturbation 

population size (N’t) and then only half of the calculated perturbation value was actually 

realised in each generation. 

To summarize, the sequence of steps in the simulation is given as: 

N’t-1 → [FUNC]→ [INT]→[EXT]→Nt → [CTRL] → N’t 

where N’t and Nt are the population sizes after and before application of perturbation in the tth 

generation, and FUNC, INT,  EXT and CTRL represent the population recursion (here Ricker 

model), integerization, stochastic extinction and control (here BLC and TOC) functions 

respectively. The initial population size for all the simulations was set to 10, which was the 

same as the starting population size in the experiments. Each simulation was run for 100 

iterations. From the resulting time series, fluctuation index, extinction probability, average 

population size, effective population size, effort magnitude and effort frequency were 

computed. All calculations, except extinction probability, were performed on the time series 

of the N’t values. All figures (Fig. 4.7 and 4.8) represent means over 100 independent 
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replicates for each treatment and the error bars represents standard error around the means. 

This means that our simulations represent the dynamics of the populations over a longer time 

scale and larger number of replicates than what was performed in the experiments. This was 

important to study the long term behaviour of the populations and to ensure that our 

experimental results are not mere statistical artefacts. However, it is also important to 

ascertain whether we get back the same results if the simulations are repeated for the same 

number of replicates and number of generations as our experiments. Therefore, we also 

repeated all simulations for 14 generations and 5 replicates. Since there were no qualitative 

differences between the two cases, we chose to report the former set of simulations (i.e. 100 

iterations and 100 replicates) here, as they represent the dynamics over a slightly longer 

timescale. 

 

3. RESULTS 

 

Figure 4.2. Population size distributions for unperturbed and BLC populations.  A. 

Unperturbed (C1).  B. BLC populations. Each distribution was plotted by pooling the data from all 

5 populations over 14 generations. The bin size is 5 when the population size is in the range 0-20, 

and 20 otherwise. BLC made the distribution more symmetric and increased the measures of 

central tendencies (mean and median). 

 

3.1 Both Limiter Control (BLC) 

 In the absence of control (i.e. for C1), population size distribution was observed to be 

positively skewed with a long right hand tail (Fig. 4.2A). When BLC was applied, the 

distribution became more symmetric with a higher mean and higher median population size 

(Fig. 4.2B). The absence of extreme values was reflected in terms of constancy and 

persistence. Compared to the C1 populations, the BLC populations had significantly reduced 

population fluctuation (Fig. 4.3A; F1,8=56.83, p = 0.00007, d = 4.77) as well as extinction 

probability (Fig. 4.3B; F1,8=26, p=0.0009, d= 3.23). Thus, both constancy and persistence 
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stability were significantly enhanced and so were effective population size (Fig. 4.3C; 

F1,8=18.65, p = 0.003, d = 2.73) and average population size (Fig. 4.3D; F1,8=23.21, 

p=0.001,d = 3.05). However, there was a steep cost to the attainment of this stability. BLC 

required significant effort magnitude (Fig. 4.3E, F1,8=574.56, p < 10-8,d= 15.16) and 

perturbations happened in almost every generation (Fig. 4.3F). Interestingly, although BLC 

involves both culling and restocking, here we found that culling events occurred more 

frequently than restocking ones (Fig. 4.4B) and are larger in magnitude (Fig. 4.4A). All the 

differences in means reported for BLC had large effect sizes (i.e. d > 0.8, see Table 4.2 for 

95% CI around d). 

 

 

 

 

Figure 4.3. Empirical results for the effects of BLC. C1 represents corresponding unperturbed 

populations. Each bar represents a mean over 5 replicate populations. Error bars denote standard 

error around the mean and * denotes statistical significance (p< 0.05). BLC decreased A. 

Fluctuation index and B. Extinction probability significantly. It increased C. Effective 

population size and D. Average population size although at the cost of significantly high E. 

Effort magnitude and F. Effort frequency. See text for possible explanations. 
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3.2 Target Oriented Control (TOC) 

The population size distribution of C2, like C1, had a long right hand tail (Fig. 4.5A). TOC 

prevented population sizes from taking extreme values, which made the distribution more 

symmetric with higher mean and median values (Fig. 4.5B). Thus, not surprisingly, TOC also 

increased both constancy and persistence stability by significantly decreasing fluctuation 

index (Fig. 4.6A; F1,8= 31.16, p= 0.001, d= 3.5) and extinction probability (Fig. 4.6B;F1,8= 

32, p= 0.0005,d= 3.58) respectively. Interestingly, although TOC increased the effective 

population size of the controlled populations significantly (Fig. 4.6C; F1,8= 30.7, p= 0.001, d= 

3.5), it had no effect on the average population size (Fig. 4.6D; F1,8=0.13, p=0.73, d= 0.23). 

Like BLC, the stability attained by TOC came at a high cost in terms of effort magnitude 

(Fig. 4.6E, F1,8=  

 

Figure 4.4. Magnitude and frequency of culling and restocking perturbation. Each bar 

represents a mean over 5 replicate populations and error bars denote standard error around the 

mean. C1 and C2 represent the unperturbed populations for BLC and TOC respectively. BLC 

mainly incurred culling perturbation w.r.t. both A. Effort magnitude and B. Effort 

frequency.TOC incurred more culling for. C.Effort magnitude, but similar amount of D. Effort 

frequency (see text for possible explanation and implications). 
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921.16, p <10-8, d= 19.2) and frequency (Fig. 4.6F, F1,8= 591.4, p <10-8, d= 15.4). Unlike 

BLC though, in TOC, culling and restocking happened with almost similar frequency (Fig. 

4.4D) and the effort magnitude for culling was only slightly greater than that for restocking 

(Fig. 4.4C). All the differences in means reported for TOC had large effect sizes (i.e. d> 0.8) 

except that for average population size, where it was found to be small (i.e. d< 0.5; see Table 

4.3 for 95% CI around d).  

 

Table 4.2. Summary statistics of the dynamics after applying BLC 

BLC 
Mean ±SE 

for C1 

Mean ±SE 

for BLC 

ANOVA 

F(1,8) 

ANOVA   

p value 

Effect size 

± 95% CI 
Inference 

Fluctuation index 1.28± 0.09 0.41± 0.07 56.83 0.00007 4.77± 2.43 Large 

Extinction probability 0.19± 0.04 0 26 0.0009 3.23± 1.88 Large 

Effective population size 6.8± 0.67 44.6± 8.7 18.65 0.003 2.73± 1.72 Large 

Average population size 37.5± 0.84 60.3± 4.68 23.21 0.001 3.05± 1.82 Large 

Effort magnitude 0.04± 0.01 0.5± 0.02 574.56 <10-8 15.16± 6.76 Large 

Effort frequency 0.17± 0.03 0.92± 0.03 250.9 <10-6 10.02± 4.6 Large 

 

* C1 is unperturbed reference populations corresponding to BLC populations respectively. Cohen’s d 

statistic (± 95% confidence interval) was considered as the measure for effect size and interpreted as 

small, medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 and d > 0.8 respectively. 

 

Table 4.3. Summary statistics of the dynamics after applying TOC 

TOC 
Mean ±SE 

for C2 

Mean ±SE 

for TOC 

ANOVA 

F(1,8) 

ANOVA   

p value 

Effect size 

± 95% CI 
Inference 

Fluctuation index 1.24± 0.08 0.69± 0.05 31.16 0.001 3.5± 1.98 Large 

Extinction probability 0.13± 0.01 0.01± 0.01 32 0.0005 3.58± 2 Large 

Effective population size 8.08± 1.33 25.4± 2.83 30.7 0.001 3.5± 1.97 Large 

Average population size 39.7± 3.94 41.9± 4.6 0.13 0.73 0.23± 1.24 Small 

Effort magnitude 0.03± 0.006 0.32± 0.007 921.16 <10-8 19.2± 8.5 Large 

Effort frequency 0.13± 0.02 0.96± 0.03 591.4 <10-8 15.4± 6.9 Large 

 

* C2 is unperturbed reference populations corresponding to TOC populations. Cohen’s d statistic (± 

95% confidence interval) was considered as the measure for effect size and interpreted as small, 

medium and large for 0.2 < d < 0.5, 0.5 < d < 0.8 and d > 0.8 respectively. 

 



80 

 

 

Figure 4.5. Population size distributions of the unperturbed and TOC populations.  A. 

Unperturbed (C2). B. TOC populations. Each distribution was plotted by pooling the data from all 

5 populations over 14 generations. The bin size is 5 when the population size is in the range 0-20, 

and 20 otherwise. TOC reduced the skewness and overall range of the population size distribution. 

 

 

Figure 4.6. Empirical results for the effects of TOC. C2 represents the unperturbed populations. 

Each bar represents a mean over 5 replicate populations. Error bars denote standard error around 

the mean and * denotes p< 0.05. TOC decreased A. Fluctuation index and B. Extinction 

probability and increased C. Effective population size significantly, although it did not alter D. 

Average population size. TOC incurred significantly high E. Effort magnitude and F. Effort 

frequency. See text for possible explanations. 
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3.3 Simulations 

For both BLC and TOC, the outputs of the simulations using Ricker model under biologically 

realistic conditions followed the same trends as the experimental results (cf Figs. 4.3 and 4.6 

with Figs. 4.7 and 4.8 respectively). The sole exception to this observation was the average 

population size for BLC. In experimental populations, BLC had significantly higher average 

population size than the unperturbed populations, whereas in simulations they have similar 

values (cf Figs. 4.3D and 4.7D). 

 

 

 

 

 

Figure 4.7. Simulation results for the effects of BLC.  C represents unperturbed populations. Each 

bar represents a mean over 100 replicate populations and error bars denote standard error around the 

mean. A. Fluctuation index, B. Extinction probability, C. Effective population size, D. Average 

population size, E. Effort magnitude and F. Effort frequency. 
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Figure 4.8. Simulation results for the effects of TOC. C represents unperturbed populations.Each 

bar represents a mean over 100 replicate populations and error bars denote standard error around the 

mean. A. Fluctuation index, B. Extinction probability, C. Effective population size, D. Average 

population size, E. Effort magnitude and F. Effort frequency. 

 

 

4. DISCUSSION 

Here we empirically studied the effects of two control methods in terms of inducing stability 

in unstable biological populations. However, it should be noted that this study does not 

concern itself with a quantitative comparison of the relative efficiency of these two methods 

and it is not possible for us to make statements like- “method 1 is 20% more efficient than 

method 2”. This is because it has already been shown numerically that most control methods 

are capable of inducing any desired level of stability with the correct choice of the value of 

the control parameter (Tung et al., 2014). Thus, comparisons of relative efficiency are 

meaningful only when both methods are compared for similar values of a performance index, 

e.g. say a 50% enhancement of constancy as compared to the dynamics of the unperturbed 

populations (Tung et al., 2014). Clearly, in an experimental scenario, it is almost impossible 

to choose such parameter values a priori and therefore direct comparison of the efficiencies 

of the methods are improper. Hence, the goals of this study are to validate whether the 

methods can induce stability or not and to gain a biological understanding of the mechanisms 

by which these methods work. Thus, we prefer intuitive explanations based on how the 
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control methods affect the population size distributions, instead of mathematically rigorous 

theorems and lemmas on how stability is attained.  

 

4.1 Both Limiter Control 

Population size distribution and constancy: In the absence of any control, the distribution of 

population sizes had a long tail towards the right and about 49% of the values lay between 0-

20 (Fig. 4.2A). As a result, the mean was much larger than the median which was also 

reflected as a high value for skewness (Fig. 4.2A). This kind of a distribution is a 

characteristic of populations undergoing high amplitude oscillations in sizes, which is known 

to be a feature of Drosophila populations subjected to a combination of low levels of larval 

nutrition and high levels of adult nutrition (Mueller, 1988; Mueller and Huynh, 1994). This is 

because high adult nutrition boosts the fecundity of the flies which allows them to overcome 

the negative effects of density-dependence on fecundity at high population densities in a 

given generation (say t). As a result, a large number of eggs are laid, which leads to an 

overcrowding in the larval population of the next generation (t+1). Now, if the amount of 

larval nutrition available is less, the larval mortality is greatly increased, which in turn causes 

a crash in the adult numbers in generation t+1.  However, the high fecundity of the flies 

ensures an immediate recovery from this trough in adult population size in the next 

generation (t+2), and thus the high-amplitude cycles continue (Mueller and Joshi, 2000). Not 

surprisingly, the constancy stability of such dynamics is low (Mueller and Huynh, 1994; 

Mueller and Joshi, 2000; Sheeba and Joshi, 1998). 

 

When BLC was applied, the distribution became more symmetric as the right hand tail was 

curtailed and only 10.6% of the values lay in the range of 0-20 (Fig. 4.2B). Consequently, the 

mean came closer to the median and the value of the skewness was reduced (Fig. 4.2B). 

There were two reasons for this. Firstly, by definition, BLC ensured culling of individuals 

when the population size was above the upper threshold. Secondly, the presence of an upper 

threshold prevented over-crowding in the adult stage. This reduced the number of eggs laid in 

the next generation, ensuring lower egg-to-adult mortality and thus reducing the amplitude of 

population crashes (Fig 4.9). This is the biological equivalent of truncating the stock-

recruitment curve (Hilker and Westerhoff, 2005) and is known to reduce population size 

variability (Fryxell et al., 2005; Tung et al., 2016). Thus, not surprisingly, the fluctuation 

index of the BLC populations was found to be significantly lower than the corresponding 

unperturbed ones (Fig. 4.3A). However, this enhanced constancy came at a cost. 



84 

 

 

 

Figure 4.9. Empirical time-series of population sizes over generations. a, b, c and d represent the 

post-perturbation time-series for C1, BLC, C2 and TOC respectively. Five symbols represent the 

five independent replicate populations of each treatment. 
 

Effort magnitude and frequency: Implementation of BLC required interventions in almost 

90% of the generations (Fig. 4.3F) to the tune of ~30 individuals per generation (Fig. 4.3E). 

This implies that the effort required for BLC is likely to be prohibitively expensive for any 

real world application. Interestingly, although BLC provides for both culling and restocking, 

our data shows that ~99% of the total effort magnitude (Fig. 4.4A) and ~91% of the effort 

frequency (Fig. 4.4B) involved culling. This suggests that, at least for the parameter values 

used here, the culling part of BLC had a more significant impact on the dynamics. This is 

consistent with a recent empirical study (Tung et al., 2016) which shows that culling to a 

fixed upper threshold, aka Upper Limiter Control or ULC (Hilker and Westerhoff, 2005), is 

capable of significant reduction in fluctuation in population sizes by itself. Thus, it is 

tempting to think of the restocking part of BLC as superfluous in terms of affecting the 

stability properties of populations. However, this simple line of reasoning was found to be 

erroneous, when we examined other kinds of stability. 
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Persistence stability: An unperturbed Drosophila population can become extinct in two 

different ways. Firstly, as discussed above, large breeding population sizes in generation t can 

lead to extinction in the next generation (i.e. t+1), due to population crashes. Secondly, when 

the breeding population size is small, there is always a possibility of extinction in the next 

generation due to demographic stochasticity like all individuals being of the same sex or very 

low fecundity of the few available females etc (Lande, 1988). In other words, both large and 

small breeding population sizes can lead to extinctions in the next generation. Although 

culling reduces the frequency of population crashes, it does not completely ameliorate it and 

therefore is unlikely to be a sufficient condition to increase persistence. This line of reasoning 

is supported by recent experimental results that showed that although ULC could cause some 

reduction in extinction probability, the effect was not statistically significant (Tung et al., 

2016). BLC ameliorates this problem by putting a threshold to the lower values that the 

population can attain, and thus was more successful in promoting persistence (Fig. 4.3B). In 

fact, no extinctions happened in any of the 5 replicates that were controlled using BLC, 

which is also consistent with past theoretical studies (Tung et al., 2014). 

Effective and average population size: A fluctuating population tends to lose genetic 

variability whenever it experiences population crashes (Allendorf and Luikart, 2007). This 

can in turn lead to inbreeding-like effects, thus increasing the probability of extinction 

(Bijlsma et al., 2000). We quantified the effects of BLC on the genetic stability by estimating 

the effective population size (Ne) as the harmonic mean of the population time series which is 

sensitive to low population numbers. BLC was found to significantly increase the Ne by about 

3 times (Fig. 4.3C). Interestingly, a previous study that employed an upper threshold of 10 

individuals (i.e. the same as the upper threshold of our BLC), failed to find a significant 

increase in Ne (see U2 of Fig 2B in Tung et al., 2016). This was primarily because there was a 

large variation in terms of the change in Ne which is in turn consistent with the observation 

that culling reduces the frequency of crashes in Drosophila populations, but does not 

ameliorate them totally. As BLC also ensures that the lower population size never goes below 

a pre-determined threshold, it completely rules out population crashes, thus causing a 

significant increase in Ne. 

Somewhat counter intuitively though, BLC also increased the average population size (Fig. 

4.3D). Earlier theoretical studies have indicated that populations whose distributions have a 

long right tail (Fig. 4.2A) do not show an increase in average population size upon culling 

(Hilker and Westerhoff, 2005). This prediction has also been verified by a recent study which 
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employed the same level of culling as our current experiments (Tung et al., 2016). The only 

difference between the ULC treatment of the previous study (Tung et al., 2016) and our 

experiments is the restocking applied at very low magnitude (Fig. 4.4A) and frequency (Fig. 

4.4B). However, this is insufficient to explain the observed increase in average population 

size as, unlike the harmonic mean, the arithmetic mean is not affected too much by low 

values in the population time series. Thus, it is not clear at this point as to why we observed 

an increase in the average population size in our experiments.    

Simulations: Our simulations were able to capture all the trends of the empirical data (cf Fig. 

4.3 and Fig. 4.7) except the one about average population size (Fig. 4.7D). Our simulation 

results predict no increase in average population size, which is consistent with earlier 

theoretical (Hilker and Westerhoff, 2005) and empirical (Tung et al., 2016) studies on the 

effects of culling. This result remained unaltered when the length of the time-series was 

increased up to 10000 generations, indicating that it is not due to any transient effect. 

 

To summarize, at the level studied in this experiment, BLC enhanced all aspects of stability 

(constancy, persistence, effective population size) and average population size of unstable 

Drosophila population at the cost of very high effort. 

 

4.2 Target Oriented Control (TOC) 

Population size distribution and constancy stability: TOC is a two parameter control method 

in which a population is perturbed (i.e. culled or restocked) towards a pre-determined 

threshold (Dattani et al., 2011). For this experiment, the threshold was fixed at 30 and each 

generation, 70% of the difference between the threshold and the present population size was 

either culled or restocked when the population size was greater or lesser than 30 respectively. 

Consequently, TOC was also able to reduce the frequency of extreme values in the 

population size distribution (Fig. 4.5B). However, as can be seen from Fig 4.9, TOC was not 

very effective in ameliorating the extreme values in the distribution (i.e. population booms 

and crashes) which was reflected in the difference between the mean and the median and the 

high value of skewness for TOC (Fig. 4.5B).The presence of greater number of extreme 

values might also be a result of the intentionally induced experimental noise, which was 

incorporated to put TOC to a more stringent test. Nevertheless, TOC was able to cause a 

significant reduction in fluctuation index (Fig. 4.6A). 

 



87 

 

Effort magnitude and frequency: By its very design, application of TOC is expected to 

require culling or restocking except for the rare cases when population size would be exactly 

equal to the target value. Therefore, the effort frequency was found to be close to 1 (Fig. 

4.6F). More crucially, there was a qualitative difference in terms of the pattern of the effort 

magnitude. Both culling and restocking were almost equally represented in the 

implementation of TOC in terms of magnitude (Fig. 4.4C) as well as frequency (Fig. 4.4D). 

This difference in the relative frequency of culling and restocking between the two methods 

can again be explained by the population size distributions. In BLC, culling to a fixed upper 

threshold (10 females in our experiment) reduces the frequency of population crashes and 

therefore, leads to few opportunities for restocking. This is reflected by the fact that there are 

few values towards the left in Fig. 4.2B. Hence, almost the entire effort in terms of both 

magnitude (Fig. 4.4A) and frequency (Fig. 4.4B) is devoted to culling. On the other hand, by 

definition, TOC requires restocking whenever the number of individuals is less than the target 

(= 30). Clearly, for the parameter values investigated in this study, TOC was not very 

effective in checking increases in population sizes (Fig. 4.5B) and hence experienced some 

amount of population crashes. Thus, it is reasonable to assume that it would be difficult for 

TOC to promote persistence.  

 

Persistence stability, Ne and average population size:  Although TOC significantly reduced 

the extinction probability of the populations (Fig. 4.6B), it was not able to ameliorate 

extinctions altogether. The level of TOC investigated in this study was sufficient to induce a 

significant increase in effective population size (Fig. 4.6C). As expected from previous 

numerical studies (Fig. 5B of Dattani et al., 2011) and our own simulations (Fig. 4.8D), we 

found no difference in the average population size of the TOC populations (Fig. 4.6D).  

 

In short, our study found that TOC increased constancy, persistence and Ne of unstable 

Drosophila populations, but had no effect on average population size.  

 

4.3 Generalizability 

First principle derivations show that when organisms are randomly distributed over space and 

experience scramble competition, the population time series follows the Ricker dynamics 

(Brännström and Sumpter 2005). Since these two conditions are true for species from a large 

number of taxa, it is not surprising that the Ricker model has been shown to be a good 

descriptor of the dynamics of, inter alia, bacteria (Ponciano et al., 2005), fungi (Ives et al., 
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2004), ciliates (Fryxell et al., 2005), insects (Sheeba and Joshi, 1998) and fishes (Denney et 

al., 2002). Together, these organisms represent an overwhelming majority of the biodiversity 

found on this planet, at least a fraction of which has already been recorded to be extinct 

(Baillie and Butcher, 2012). Our stochastic Ricker-based simulations were able to capture 

almost all the trends of the empirical data (cf Figs. 4.3 and 4.6 with Figs. 4.7 and 4.8 

respectively), which indicates that these results are likely to be robust to noise and 

generalizable to other species. 

 

4.4 Caveats and Conclusions 

Although we demonstrate that BLC and TOC can increase constancy, persistence and genetic 

stability of real biological populations, a number of caveats should be considered before 

extrapolating the results to field populations. Our experiments and simulations were 

performed on spatially unstructured, single species populations. However, most natural 

populations exist in multi-species communities and inhabit patchy habitats connected via 

migration. The dynamics of the population in such cases are expected to be more complex 

(Hanski, 1999) and it is not possible to infer how much of our results would be applicable to 

those scenarios. Moreover, while calculating the effort of implementation, we have ascribed 

similar weightage to both culling and restocking. But this may not be the situation in the wild, 

where depending on the context, culling might be easier than restocking or vice versa. 

Additionally, during restocking, individuals coming from outside may harbour new genetic 

variation and thereby alter the genetic makeup of the native population. Thus the effects of 

culling and restocking on the standing genetic variation may be fundamentally different, 

something that is ignored when Ne is used as a proxy for estimating how fast the population 

loses its variation. Furthermore, both these methods demand good estimates of the population 

sizes which might be an economically expensive affair to begin with. Finally, one must never 

lose sight of the biology of the controlled species as improper control can be disastrous for 

the ecosystems (Pyke, 2008). 

The primary insight of our study is that it is possible to attain multiple aspects of stability 

simultaneously, using two-parameter methods like BLC and TOC. Prior empirical studies 

(Dey and Joshi, 2013; Sah et al., 2013; Tung et al., 2016) on single-parameter methods have 

failed to attain this kind of simultaneous stability. This makes two-parameter methods more 

attractive in terms of management of unstable populations, in spite of their being  a lot more 

labour-intensive.   
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CHAPTER 5 

 

 

 

Understanding Drosophila dynamics through a 

stage-structured individual-based model 

 

 

 

Highlights 

 Construction of a stage-structured, individual-based model for Drosophila dynamics. 

 The model is able to reproduce and explain several aspects of the dynamics of 

Drosophila populations, including those from two independent experiments.  

 The effects of unequal sex-ratio and sex-specific culling on population dynamics are 

greatly influenced by fecundity. 

 Interaction between juvenile food levels and adult fecundity determines efficiency of 

Sterile Insect Technique in controlling population sizes. 

 

 

 

 

 

 

 

 

 

Adapted from: Tung, S., Rajamani, M., Joshi, A., Dey, S. Understanding the dynamics of 

laboratory populations of Drosophila melanogaster: Long-term experiments meet individual-

based modelling. bioRxiv (2017) 138446. 
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1. INTRODUCTION 

The laboratory ecology of Drosophila melanogaster has been investigated for more than half 

a century, leading to considerable understanding of various density-dependent effects on the 

population dynamics of laboratory cultures of this species (reviewed by Mueller, 1985; 

Mueller and Joshi, 2000). Briefly, three density-dependent feedback loops ― effects of larval 

crowding on larval survivorship and subsequent adult fecundity, and effects of adult 

crowding on adult fecundity ― are thought to be the primary drivers of the dynamics of 

discrete generation cultures of D. melanogaster (reviewed in Mueller and Joshi, 2000). 

Several recursions incorporating one or more of these density-dependent feedback 

mechanisms have also been proposed to model the dynamics of laboratory cultures of D. 

melanogaster (Bakker, 1961; De Jong, 1976; Nunney, 1983; Prout and McChesney, 1985; 

Rodriguez, 1989). Mueller (Mueller, 1988) explicitly incorporated all three density-

dependent feedback mechanisms into a single recursion as:  nt+1 = ½ . G(Nt). F(Vnt). W(Vnt). 

V.nt, where nt and Nt represent the number of eggs and adults in generation t, respectively, V 

is the density-independent probability of larval viability, W(Vnt) and F(Vnt) are the functions 

representing the effects of larval density on larval survivorship and adult fecundity, 

respectively, and G(Nt) is the function reflecting the effect of adult density on adult fecundity. 

This model remains the most detailed abstraction of D. melanogaster dynamics in the 

literature, and gave rise to several interesting predictions that were subsequently verified 

empirically (Mueller and Huynh, 1994; Mueller and Joshi, 2000; Sheeba and Joshi, 1998).  

Despite this rich body of work, several aspects of Drosophila population dynamics in the 

laboratory still remain poorly understood. For example, although we know about the role of 

larval and adult nutrition in affecting population stability, it is still not clear if and how 

various life-history-related parameters, like egg hatchability and critical minimum size for 

pupation, interact with these nutritional regimes (although see Mueller and Bitner, 2015). 

Moreover, there is little theoretical or empirical understanding of how these nutritional 

regimes affect the various aspects of the population size distribution (mean, skewness and the 

position of the various quantiles) in Drosophila. There are two primary reasons for these 

lacunae. First, the absence of empirical datasets of sufficient length (although see Mueller et 

al., 2000) over multiple nutritional regimes precludes meaningful investigation of population 

size distributions. Second, most models of Drosophila dynamics are deterministic, which 

rules out a theoretical exploration of the population size distributions, except in the chaotic 

regime. This has limited the study of the dynamics of Drosophila populations to stability 
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properties (coefficient of variation, autocorrelations) and average population sizes, thus 

missing out on several interesting aspects of the dynamics with potentially large explanatory 

power. 

In order to fill in some of these gaps in our understanding, we simulated Drosophila 

population dynamics using an individual-based model to generate time series data from four 

different nutritional regimes. These simulations were analogous to a previous 49-generation 

long laboratory experiment, where populations of Drosophila melanogaster were subjected to 

four different nutritional regimes. We then compared the experimental data with our 

simulation results to show that our model is able to capture various qualitative and 

quantitative aspects of Drosophila population dynamics in the laboratory.  We then 

demonstrated the usefulness of our model for understanding the dynamics of laboratory 

populations of D. melanogaster in three ways. First, we used it to resolve a discrepancy 

between observations from an earlier study and our results. Second, we used it to generate 

clear predictions about how various life-history-related parameters affect the dynamics of the 

populations under the various nutritional regimes. Third, we used data from a previous 

experimental study to validate some of these predictions.  

After establishing the bonafides of our model as a descriptor of Drosophila dynamics, we 

briefly compared its various features and predictions with those arising from models and 

experiments on other species. We then used our model to investigate various facets of a major 

question, namely the effects of unequal numbers of males and females on population 

dynamics. Simple models of population dynamics often assume that the entire dynamics can 

be understood in terms of the number of females in the population (May, 1976). Over the last 

few decades, the consequences of relaxing this assumption has been extensively investigated 

both theoretically and experimentally (reviewed in Rankin and Kokko, 2007). This line of 

study helps us understand the dynamics of those populations in which the two sexes face very 

different rates of mortality due to natural or anthropogenic reasons (Berec et al., 2016; 

Halvorsen et al., 2017; Perlman et al., 2015). Moreover, one of the highly successful pest 

eradication strategies, the Sterile Insect Technique (SIT), explicitly depends on altering the 

sex ratio of the population (Dyck et al., 2005). In nature, the amount of food available would 

obviously vary across space and time and this, in principle, can modulate the effects of sex 

ratio on the dynamics. Yet, the interaction of food and sex ratio in shaping the dynamics in 

general and stability in particular, has remained relatively poorly understood. Our simulations 

suggested that this interaction is best understood in conjunction with the density-independent 
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fecundity of the organisms. In a nutshell, the effects of changing the sex ratio on population 

stability and average size are dependent on certain aspects of the provided nutrition and not 

others. However, when it comes to SIT, the efficacy of the program depends more critically 

on the food provided over a large and biologically relevant parameter range. 

 

2. MATERIALS AND METHODS 

2.1 Laboratory ecology of Drosophila melanogaster: 

In laboratory cultures of D. melanogaster, if the larval crowding is high, the mean amount of 

food available per larva is reduced. As a result, a large proportion of larvae are unable to 

attain the critical body mass needed for successful pupation, thus increasing larval mortality 

(Bakker, 1961). Since the body size of the adults depends mainly on the amount of resources 

gathered during the larval stage, the adults emerging out of crowded cultures are generally 

small in size (Marks, 1982) and exhibit low fecundity (Chiang and Hodson, 1950). Adult 

fecundity is also reduced with increasing density of adults in a culture and this is generally 

attributed to increased interference with egg laying (Pearl, 1932). Interestingly, this negative 

effect of adult density on fecundity can be ameliorated to a substantial degree by supplying 

the adults with excess amount of live yeast paste (Mueller and Huynh, 1994). Since survival 

and fecundity are the major factors affecting the growth rate of a population, it seems 

plausible that these three density-dependent feedback loops ― effects of larval crowding on 

larval survivorship and subsequent adult fecundity, and effects of adult crowding on adult 

fecundity ― play a major role in determining the dynamics and stability of D. melanogaster 

populations in the laboratory (Mueller and Joshi, 2000). 

2.1 Experiment 

The 49-generation experiment under four different nutritional regimes has been reported 

earlier (Dey, 2007). Here, we have used that data to for calibrating and validating my model. 

Since a basic understanding of the design of this experiment would aid the understanding of 

the simulations and subsequent analysis, the relevant experimental details are presented in 

Appendix I. 
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2.2 Statistical analyses 

Distributional properties of the experimental time series of adult populations were assessed 

using the mean, median, 5th, 10th, 25th, 75th, 90th and 95th percentiles in box plots (Zar, 1999). 

The constancy stability (Grimm and Wissel, 1997) of the populations was measured as the 

fluctuation index (FI; Dey and Joshi, 2006) which is given as: 

t T-1

t 1 t

t 0

1
FI N N

T N







  


  

where N is the mean population size over T generations and Nt+1 and Nt are the population 

sizes at the (t+1)th and tth generations, respectively. This formulation suggests that FI 

increases when the variance of the time series is increased, or the mean or the strength of 

autocorrelation of the time series is decreased. 

In order to investigate the effects and interaction of larval and adult nutritional levels on 

constancy stability, the FI data were subjected to a two-way analysis of variance (ANOVA) 

with larval nutrition (fixed factor, two levels: Low and High) crossed with adult nutrition 

(fixed factor, two levels: Low and High). All statistical analyses were performed using 

STATISTICA® v5 (StatSoft. Inc., Tulsa, Oklahoma). 

2.3 The model and simulations 

2.3.1 Model formulation  

The model can be divided into two modules: pre-adult and adult. For a given generation t, the 

pre-adult module takes the number of eggs and the total amount of larval food as input and 

computes the number of viable adults and the body size of each of those adults as an output. 

The output of the pre-adult module and the nature of the adult food available act as inputs for 

the adult module and the output is the total number of eggs produced that form the input for 

the pre-adult module in generation t +1. Thus, although our model produces the adult 

numbers in each generation, structurally it is an egg-to-egg recursion. This modelling strategy 

has been employed earlier (Mueller, 1988), and is preferred over an adult-to-adult recursion. 

This is because, due to density-dependent mortality, for a given amount of larval food, the 

relationship between adult numbers and the corresponding number of eggs from which they 

have arisen is single-humped (Chiang and Hodson, 1950). Consequently a given number of 

adults can arise from very different number of eggs (Prout and McChesney, 1985). Thus, for 

example, assuming say 10% mortality at low crowding, 10 eggs will always lead to ~9 adults. 
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However, if one sees 9 adults, this could have arisen from 10 eggs (assuming 10% mortality 

at low crowding) or 100 eggs (assuming say 91% mortality at high crowding). Thus, tracking 

the adult numbers is never sufficient for the purpose of modelling Drosophila dynamics 

(Prout and McChesney, 1985).     

2.3.1.1 Pre-adult module:  

Step 1: Obtaining number of larva (numlarva) from the number of eggs (numegg): 

This module starts with a given number of eggs (numegg) and assumes that only a fixed 

fraction (hatchability) of them will hatch into larvae, due to density-independent mortality. 

Thus, the number of viable larvae is given by  

numlarva = hatchability× numegg  …………………..(1) 

where 0 ≤ hatchability ≤1. Reasons like intrinsic poor viability of the eggs, environmental 

stresses (say some toxins in the environment) or other ecological/random stochastic factors, 

can make hatchability < 1. However, under normal laboratory conditions, hatchability 

generally remains above 0.9 (Bakker, 1961). Therefore, we have taken hatchability = 0.98 

and kept it same for all the simulations throughout the study (unless explicitly mentioned 

otherwise). 

Note that here we consider hatchability as a density-independent parameter because there is 

no experimental evidence to suggest that hatchability is affected by egg density. However, 

hatchability can be easily made a function of egg or adult density, without affecting the other 

parts of the model.  

Step 2: Obtaining the body size of each larva 

In a Drosophila culture, the newly hatched larvae eat the larval food provided and grow in 

size and body mass. Although in the strict sense, size and mass are different quantities, for 

the sake of simplicity, we use them interchangeably to indicate biological growth. Due to 

among-individual variation in traits like larval feeding rate, food-to-biomass conversion 

efficiency etc., a distribution of larval body sizes ensues at the end of the larval growth period   

(Bakker, 1961). When the number of larvae in the food is increased, the amount of food 

available per larva, on an average, is reduced which, in turn, reduces the average body-size 

attained at the end of the larval stage (Chiang and Hodson, 1950; Miller and Thomas, 1958). 

Following a previous study (Bakker, 1961) we assumed the distribution of larval body sizes 
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at the end of feeding to be normal with a mean (mean_size) that was an increasing function of 

the total amount of larval food (food), but a decreasing function of the number of larvae 

(numlarva). Specifically,  

mean_size = x1 × (1-1/(x2 +exp (-x3×numlarva + food))) …..……(2) 

where x1, x2 and x3 are parameters (non-negative constants) and exp is the exponential 

function. The function is a logistic function of 'food - x3 × numlarva', which has an upper 

limit x1 and lower limit x1(1-1/x2). Thus, theoretically, x1 could be defined as the maximum 

possible average body size (theoretically attained when number of larvae is very small and  

 

 

Figure 5.1. Schematic diagram of the model processes. 
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amount of food is close to infinite) and 1/x2 as the maximum fractional reduction in average 

body size (theoretically attained when the number of larvae is infinitely large and the amount 

of food is vanishingly small). We arbitrarily assigned x1 = 2.5 and x2 = 1. The parameter x3 

determines the rate of decline of mean_size with increasing the number of larvae for a given 

value of food. The values of x3 and low-high values of food were calibrated systematically 

(see section 2.3.2) to match the observed empirical pattern of larval viability and body size 

for different egg densities with a fixed amount of larval food (Chiang and Hodson, 1950; 

Rodriguez, 1989). Note that here our intention was to adopt a function that can mimic the 

general qualitative features of the relationship between mean_size, food and numlarva. 

Equation 2 is just one function that fulfills this criterion and potentially many others would 

have also served our purpose (for example, logistic function of food/numlarva or variants 

thereof). 

For the sake of simplicity, standard deviation (sigma_size) of the body-size distribution was 

kept as a density-independent constant (=0.45). Computationally, once numlarva is 

calculated from equation 1, each larva is assigned a body size value by drawing random 

numbers from a normal  N(mean_size, sigma_size2) distribution. The absolute function 

(abs(x) = -x if x < 0 else x) is used to avoid any negative value of body size. 

Step 3: Larval body size assignment, critical mass cut off and adult body size 

In order to complete metamorphosis and become an adult, Drosophila larvae, like those of 

many other holometabolous insect species (Davidowitz et al., 2003), need to attain a critical 

minimum size before pupation (Bakker, 1961; Robertson, 1963). To incorporate this 

phenomenon into our model, we considered a (deterministic) cut off, critical size (mc), to be a 

density-independent constant (following Mueller, 1988) and compared the size of each larvae 

against it.  All larvae whose body sizes were less than mc were considered to have failed in 

becoming adults. The number of remaining larvae was considered to be the adult population 

size (numadult) of the current generation.  

Empirical studies indicate a positive correlation between larval and adult body size in 

Drosophila (Bakker, 1961). Therefore, we considered adult body size to be a linear function 

of larval body size, i.e.  

size_adulti = x4×size_larvai …………………………..(3) 
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where size_adulti  and size_larvai denote the body size of the ith larva and the corresponding 

adult respectively (size_larvai > mc) and x4 is a parameter (= 1.0 for the sake of simplicity), 

which maps larval size to adult size. Note that x4 is necessarily a positive quantity as it relates 

the body size of larvae to those of adults (both of which are positive). The nature of equation 

3 ensures that heavier larvae lead to heavier adults, irrespective of the value of x4. 

Thus, the pre-adult module takes a life-history variable (numegg) as an input and gives two 

life-history related variables, number of adults (numadult) and the distribution of the adult 

body sizes (size_adulti), as output.  

Recently, it has been discovered that Drosophila larvae can exhibit cannibalism under 

conditions of extreme food deprivation (Vijendravarma et al., 2013). However, we chose not 

to incorporate this phenomenon in the model since the extent of cannibalism among the 

larvae under the level of crowding found in our populations is still not known. More 

critically, there is no evidence till date to indicate that this is a density-dependent 

phenomenon. If we assume larval cannibalism to be density-independent, then this 

phenomenon can be easily incorporated into our model by multiplying numadult with 

another constant. 

2.3.1.2 Adult module:  

Step 1: Assigning a gender to each individual 

The first task in this module is to assign a gender to each adult individual. In this study 

(unless explicitly mentioned otherwise), sex-ratio was considered to be independent of adult 

numbers and was always taken to be 1:1, so each adult was assigned to be female with 

probability 0.5 and male otherwise. However, due to the inherent stochasticity of the process, 

the realized sex ratio could deviate slightly from 1:1, which is biologically realistic, 

particularly in small populations of the kind that we are studying.  Drosophila is a sexually 

dimorphic species with the females being significantly larger than the males. Therefore, 

ideally, only the heaviest individuals should have been designated as females. However, we 

ignore this complication in our model and assign sex irrespective of adult body size.  

Step 2: Calculating the total number of eggs produced by all females  

After the assignment of sex, fecundity of the females is computed based on their body size 

and current adult density. In many holometabolous insects, including Drosophila, fecundity 

or egg laying ability is positively correlated with the body size of the females (Honěk, 1993). 
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Prior studies have assumed that the fecundity of Drosophila females scale linearly on a ln-ln 

scale (Mueller, 1988), which implies that slight increases in body size values in the upper 

range can lead to large increases in fecundity. This is somewhat unrealistic as larger flies 

would also require to expend substantial amount of energy in body maintenance and therefore 

it is more likely that the rate of increase of fecundity would eventually slow down with 

increasing body size. This relationship could be modelled in many ways and we chose to use 

the logarithmic function to represent the effects of female body size on adult density-

independent fecundity. Finally, live yeast paste is known to boost female fecundity 

irrespective of the density (Mueller and Huynh, 1994). This phenomenon, is incorporated by 

adding a density-independent constant (adnut) which denotes the fecundity boost due to yeast 

supplement to the adults (for not yeasted, adnut = 1; for yeasted, adnut >1).  Taken together, 

the adult density-independent component of fecundity of the ith female can be represented as:  

addens_ind_feci = adnut×x5×ln(x6+sen_adsize×size_adulti)……………(4) 

where sen_adsize is the strength of relationship between female-fecundity and adult body size 

and x5 and x6 are scaling parameters. It should be noted here that in the above formulation, 

two of the constants (adnut and x5) can easily be combined to create a single constant. 

However, we refrain from that in order to retain the ease of biological interpretation.  

 

Another important factor that reduces per capita female fecundity in insects is adult density 

(Mueller, 1988; Rich, 1956). Following an earlier study (Mueller, 1988) we modelled this 

relationship as: 

addens_eff =  (1/(1+sen_adden×numadult))…………………..(5) 

where sen_adden is the sensitivity of female-fecundity to adult density. This hyperbolic 

function denotes negative feedback of adult density on adult fecundity, a relationship which 

is found not only in Drosophila (Mueller and Huynh, 1994; Rodriguez, 1989) but in many 

other species as well (Băncilă et al., 2016; Michael and Bundy, 1989). This negative feedback 

automatically makes population growth negatively density dependent and such negative 

feedback is known to be a necessary condition for population regulation (Turchin, 1999). The 

values of x5, x6, sen_adsize and sen_adden were determined by an extensive search over the 

parameter space in order to match the experimentally observed fecundity of a healthy female 

fly as well as to satisfy a previously observed pattern of female fecundity versus adult density 
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for both yeasted and un-yeasted conditions (Fig 2 in Mueller and Huynh, 1994; Fig 6.5 in 

Mueller and Joshi, 2000). 

Combining equations 4 and 5, the fecundity of the ithfemale is given as:  

feci = addens_ind_feci × addens_eff……………(6) 

such that the number of eggs in the next generation, 

numeggt+1= Σi feci……………………………(7) 

Thus, the adult module takes two life-history related parameters from the output of the pre-

adult module and returns the number of eggs in the next generation as the output. This output 

then serves as the input for the pre-adult module for the next generation, and thus the 

iterations continue. 

An earlier version of this model, and its correspondence with the experimental data, has been 

reported in the Master’s Thesis of one of the authors (Tung, 2012). 

2.3.2 Model calibration: 

The calibration of the individual-based model was attained in three sequential steps.  

2.3.2.1 Step 1. Calibrating the pre-adult module: 

Previous studies have shown that the value of mc is around half the maximum larval size that 

is physiologically attainable (reviewed in Prasad and Joshi, 2003). Since we had already fixed 

the maximum value of the mean larval size (i.e. mean_size) at 2.5, we started with an initial 

value of mc = 1.25. Further, we arbitrarily started with x3 = 0.01. We then simulated steps 1 

and 2 combined (see section 2.3.1.1) to obtain the effects of numegg (range 1-1500) on 

larval viability and larval body size, for different amounts of food (range 0.5-6.0). The upper 

limits on the ranges of numegg and food roughly correspond respectively to the upper ranges 

in egg numbers typically seen and the amount of food (in mL) typically used in Drosophila 

vial populations in the laboratory (Dey et al., 2008).  This set of simulations allowed us to 

narrow down the values of food to a range that roughly corresponded to the patterns and 

values of larval survivorship (Bakker, 1961; Mueller and Joshi, 2000; Rodriguez, 1989) and 

body size (Bakker, 1961; Chiang and Hodson, 1950; Rodriguez, 1989) in Drosophila 

laboratory populations. The correspondence between simulation results and prior 

experimental data were judged by visual pattern-matching as per standard methodological 

recommendations (Railsback and Grimm, 2011).  
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2.3.2.2 Step 2. Calibrating the adult module: 

We next fine-tuned the parameters of the adult module, such that the fecundity of the female 

flies matched those of our flies (Dey et al., 2008). For the un-yeasted condition, we fixed 

adnut = 1, so that addens_ind_feci in the LHS of eq 4 represented the adult density-

independent fecundity of females. We arbitrarily fixed x6 = 2 and simulated eq 4 across a 

range of values for size_adult. This range for size_adult was obtained from the larval module 

(after the calibration described above) for different values of numegg. Our aim was to obtain 

a value for x5 and range for sen_adsize that that led to a matching of the empirically observed 

qualitative patterns of addens_ind_fec with increasing size_adult (Chiang and Hodson, 1950; 

Robertson, 1957; Rodriguez, 1989) (also see section 2.3.1.2 above). We then calibrated the 

sen_adden parameter in eq 5 by visually matching the simulation results to the existing 

empirical patterns of adult density-dependent female fecundity decline (Fig 2 in Mueller and 

Huynh, 1994, Fig 6.5 in Mueller and Joshi, 2000).  

At this stage, we had ranges of parameter values based on prior studies that roughly matched 

various life-history patterns from different prior single-generation experiments. We now used 

these ranges to calibrate the model for the various population dynamics indices for our 

experimental dataset. 

2.3.2.3 Calibrating for our dataset: 

Using the ranges of the various parameter values obtained above, we simulated 49-generation 

long time series experiments to fine tune the parameter values for food, adnut, sen_adden and 

sen_adsize. For this, we crossed the ranges of these parameter values to obtain a total of 

129,920 parameter combinations (i.e. 8 values of food × 58 sen_adden × 20 sen_adsize × 14 

adnut) and for each combination, we ran 50 replicate simulations. From these 50 replicate 

time series for each parameter combination, we computed the means of the average 

population size, FI, coefficient of variation (CV), and first and second autocorrelation lags of 

the simulation output. We then obtained the corresponding indices for the eight replicates 

each of LL and HH regimes of the experimental time series. The match between the 

simulation and experimental data was judged by computing the absolute of the percentage 

deviation between the simulation mean and experimental mean for each index and summing 

them up over the five indices. This led to a set of parameter values for which the sum over all 

deviations were minimized separately for the LL and the HH regimes. We then simulated the 
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HH and LL time series regimes for these parameter values and did minor heuristic 

adjustments to obtain better matches (judged visually as per standard recommendations 

Railsback and Grimm, 2011) with the various indices of the dynamics of the experimental 

populations. 

The above calibration process relied on fixing some parameters (e.g. x1, x2 etc.) arbitrarily as 

constants, some based on prior experimental results (e.g. mc), and tuning the values of the 

other parameters to best match certain properties of the experimental data. Thus, the values of 

the best-fit parameters could be potentially very different if a different set of properties of the 

experimental data were chosen or the arbitrary constants were set to some other values. This 

is an inherent feature of pattern-oriented modelling. Since the main aim of this study was to 

vary these parameters and observe the corresponding effects on the dynamics, our calibration 

goal was not to arrive at impeccable parameter estimates but to derive a set of values that 

enabled our model to reasonably describe multiple facets of the empirical dynamics.  

It should be noted here that once the values of food were obtained for the LL and HH 

regimes, we used the same values for the LH and HL regime. In other words, the LL and HH 

regime were equivalent to “training” datasets while the LH and HL regimes were equivalent 

to “prediction” datasets. This allowed us to avoid the issue of circularity in terms of 

parameterization and judging model performances. The final values of all the parameters 

used are presented in Table 5.1. 

Table 5.1: List of parameters used in the model 

Parameter Description Value 
food Amount of larval food present 1.76 (LL and LH) and 

2.56 (HL and HH) 

adnut Quality of adult nutrition/fecundity 

booster 
1 (LL and HL), 1.29 

(HH) and 1.49 (LH) 

hatchability Egg-to-larval viability 0.98 
m

c
 Critical mass i.e. the minimum mass/size 

required to become a viable adult 
1.1 (JB) and 1 (FEJ) 

sen_adden The coefficient of sensitivity of female-

fecundity to adult density 
0.17 

sen_adsize The coefficient of sensitivity of female-

fecundity to adult size 
1.7 
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sigma_size Standard deviation of larval body size 

distribution 
0.45 

x
1
 Parameter 2.5 

x
2
 Parameter 1 

x
3
 Parameter 0.009 

x
4
 Parameter 1 

x
5
 Parameter 85 

x
6
 Parameter 2 

 

2.3.3 Simulations:  

To investigate the population size distributions for each nutritional regime (LH, HH, HH or 

HL), we simulated eight replicate runs of the model with 49 generations in each replicate, to 

keep parity with the experimental data. However, none of our conclusions changed when the 

length of the time series was increased (see section 2.6 for discussion).  Every simulation run 

started with 18 eggs.  When there was extinction in any generation (i.e. numadult = 0), the 

time series was reset with four females with body size =2×mc. Following previous studies 

(Sah et al., 2013; Tung et al., 2014), we also incorporated additional demographic 

stochasticity in the model by considering a 50% chance of extinction, whenever population 

size went below eight. If extinction occurred due to demographic stochasticity, the population 

was reset in the same way as mentioned above.  

We also explored the effects of wide ranges of life-history related parameters (hatchability, 

mc, sen_adden, sen_adsize) on population stability. For each value of a given parameter, we 

took an arithmetic mean of FI measured over 100 replicate time-series, each of which was 

100-generations long. All other conditions of the simulations were identical to those in the 

previous paragraph.  

Our empirical data revealed that the HL regime had a greater average population size and 

lower FI compared to the HH populations (see section 3.5 for details) whereas an earlier 

study (Mueller and Huynh, 1994) had shown that the population size of HH was greater than 

that of HL and the two regimes had similar constancy stability. In order to investigate this 

discrepancy between the two results, we simulated our model with five different values of 

larval food ranging from 3.0 to 7.0 in step size of 1.0. Each value of larval food level (food) 

was crossed with two values of adnut – 1.0 and 1.29- which represented the presence and 
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absence respectively of yeast for the adults. For each food × adnut combination, we simulated 

eight 49-generation long time-series, and obtained the corresponding population size 

distributions, and FI and egg-to-adult viability values. All other parameter values were 

identical to the earlier simulations (Table 5.1).  

2.4 Comparisons with a previous model: 

Our model is similar to a previous model of the population dynamics of Drosophila 

melanogaster (Mueller, 1988), with three major differences. First, the previous model was 

fully deterministic, while ours is stochastic and individual-based (for larvae and adults). This 

feature allowed us to study the various properties of the population size distributions and 

compare them with the experimental data, which would not have been possible with a 

deterministic model (except perhaps for chaotic dynamics). This also allowed us to account 

for certain biological features that can have a major impact on population dynamics. For 

example, allotting the sex of every individual using a uniform distribution allowed us to 

account for demographic stochasticity in the number of females, even though the expected 

sex ratio was 1:1. The previous model, being deterministic, assumed that a fixed fraction of 

the individuals in the population were females.  

Second, we considered female fecundity to be a logarithmic function of female body size, 

whereas in the previous study, it was modelled as a power law.  This implies that in the 

previous study, when body size was large, small differences in size translated into large 

differences in fecundity, which was not the case with our model.  

The third difference relates to the way effects of adult density on adult fecundity was 

modelled. In the previous model, low nutrition for adults refers to a condition where a dilute 

solution of yeast is provided (Mueller and Huynh, 1994), as a result of which, yeast is not 

limiting at low densities and the fecundity of the flies is as high as the case when yeast is 

provided (see Fig 2 of Mueller and Huynh, 1994). For this reason, in the previous model, the 

effects of adult nutrition are conceptualized solely as a density-dependent reduction of 

fecundity, assuming that when densities are low, the fecundities are the same. However, in 

our study, low food for adults means no yeast at all and consequently, the density-

independent fecundity of our non-yeasted flies is much lower. That is why, we model the 

effects of adding yeast using the parameter adnut (which determines how much the fecundity 

is boosted due to yeast supplement) and assume that the density-dependent reduction in 

fecundity is similar in magnitude for both yeasted and non-yeasted flies. The latter condition 
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is not a property of our model but gets imposed because we chose to use the same value of 

sen_adden for both LL and HH. Thus, this difference is simply a result of modelling 

strategies and the data used for model formulation and calibration.    

Overall, as stated above, our model is more appropriately considered as a consequential 

extension of the earlier model (Mueller, 1988), rather than a completely new model. 

2.5 Role of extinction in the present study: 

Persistence, or the ability to resist extinction, is an important aspect of the dynamics of any 

population (Grimm and Wissel, 1997). Prior empirical studies have suggested that extinction 

plays a crucial role in determining the dynamics of laboratory populations of Drosophila 

melanogaster (Dey and Joshi, 2006; Dey and Joshi, 2007). However, most of these studies 

have been conducted on the LH regime, under extremely low levels of larval food which 

leads to high extinction frequencies. For example, Dey and Joshi (Dey and Joshi, 2006) 

provided ~ 1mL of larval food and observed a per generation extinction probability of ~0.37. 

However, the current empirical study used ~2mL of food in the low food regimes, which led 

to a per generation extinction frequency of 0.06 (± 0.0067 SEM) in LH and 0.03 (± 0.01 

SEM) in LL populations. The two other regimes did not suffer any extinctions at all. 

Therefore, there was no way for us to compare the regimes in terms of extinctions, which is 

why we chose to neglect extinction in this study, including in the process of model 

calibration. Interestingly, even though we neglected extinction during model calibration, the 

observed values of extinction frequency from the simulations for parameter values mentioned 

in Table 5.1, were fairly close to the experimental values (LH: 0.069 ± 0.013 SEM; LL: 0.003 

± 0.003 SEM; HL and HH: 0). We note here that these values refer to the extinction 

probabilities under parameter values that were close to our experimental conditions (i.e. 

Figure 5.4). When we studied the effects of changing the parameter values, it is entirely 

possible that the amount of extinctions observed were very different. Therefore, in principle, 

for every figure showing the effects of changing a parameter on constancy stability (here, FI), 

a corresponding graph on persistence stability (in the form of extinction probabilities or some 

related measure) can also be investigated. Although important in its own right, such an 

investigation is clearly out of scope of this paper which focuses primarily on dynamics in 

terms of constancy stability. 
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2.6 No evidence of transients in our experiments and simulations: 

Due to logistic constraints, most observed population dynamics time series tend to be short. 

However, it is well known that the transient behavior of population dynamics models can be 

very different from the equilibrium behaviors (Hastings, 2004; Hastings and Higgins, 1994). 

In this study, to keep parity with our experiments, we had limited the length of each 

simulated time series to 49. To investigate if the long-term behavior of these time series was 

any different from the short-term behavior, we simulated the dynamics in each regime for 

1000 generations, and computed all the quantities represented in Figure 5.4 for the last 49 

generations (Figure 5.2). Comparing generations 1-49 with generations 952-1000 revealed no 

major differences in either the population-size distributions or FI. This suggests that the 

transient dynamics in our model are almost indistinguishable from the longer-term dynamics.  

Although their absence is re-assuring from a modelling perspective, transients are very much 

expected from a biological standpoint. This is because experimental evolution studies suggest 

that in Drosophila melanogaster, even 10-15 generations is often sufficient for noticeable 

divergence in life-history related traits that can affect the dynamics (for examples see Prasad 

and Joshi, 2003). Therefore, all else being equal, one would expect at least some of the 

stability determining parameters to evolve during the course of the experiment, which in turn 

is expected to lead to transient dynamics in a long time-series.  Yet, we did not incorporate 

any evolution in our model, which meant that the various life-history parameters detailed in 

Table 5.1, remained constant in a particular simulation run. This was because it has been 

previously shown that at least over 45 generations, there are no observable changes in 

stability determining demographic parameters in laboratory populations of D. melanogaster 

(Mueller et al., 2000). Thus, we felt that it was safe to ignore changes in life-history related 

parameters in the context of our empirical data and, therefore, did not incorporate their 

evolution in our model. However, we note that the structure of our model is such that it can 

be very easily extended to incorporate the evolution of stability-determining parameters and 

the effects of such evolutionary change on population dynamics. 
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Figure 5.2. Population size distribution and constancy stability of short and long term 

dynamics. Blue boxes and bars represent the data for long term dynamics (generation 951-1000), 

where transients are excluded, whereas the grey shaded boxes and bars represents short term 

dynamics (generation 1-49). (A) Descriptive statistics of the population size distributions for long 

and short term dynamics in four regimes. Red dashed lines = means, thin black lines = medians, 

edges of the boxes=25th and 75th percentiles, whiskers=10th and 90th percentiles and the circles 

outside = 5th and 95th percentiles of the distributions. (B) Average (± SEM) fluctuation index of the 

population size distributions for long and short term dynamics in four regimes. In both panels, there 

are no systematic differences in population size distributions and constancy stability between the 

short- and long-term dynamics. 

 

2.7 36-generation simulation and experiment 

To validate one of the predictions arising from our model, we compared our model output 

with the dynamics of four Drosophila populations selected for faster development and early 

reproduction (henceforth called FEJ1-4) for ~125 generations (Dey et al., 2008; Prasad et al., 

2003). The FEJ1-4 lines were derived from four ancestral populations (JB1-4), which served as 

controls in that experiment. Incidentally, one of these JB populations is the ancestor for the 

32 populations used in the present study. For each FEJi or JBi (i ϵ 1-4) population 

(represented by single vial cultures), there were four replicates each under HL and LH 

regimes. Thus, there were 16 FEJ populations and 16 JB populations, that experienced the 

LH regime and similarly 16+16 that experienced the HL regime. The maintenance details of 

this 36-generation long experiment are given elsewhere (Dey et al., 2008) and are similar to 

the experimental protocol of the present study.  

The rationale and the details of the model recalibration are presented in the section 2.7.1. It 

should be noted here that the empirical FI values are those reported in Figure 5.8a of the 

earlier study (Dey et al., 2008) and are being re-plotted here only to facilitate comparison 
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with the simulation results. The population size distribution data from these experiments is 

being reported for the first time here. 

2.7.1 Model Recalibration for the dynamics of the FEJ-JB populations: 

To use the time-series data from an earlier experiment (Dey et al., 2008), we first re-

calibrated our model by reducing the value of mc of FEJs from 1.1 to 1.0. This is because it 

has been suggested that due to selection for faster pre-adult development, the FEJs had a 

lower value of mc (Prasad et al., 2001). Moreover, to keep parity with the experimental data, 

we used 16 replicates each of FEJ and JB in both HL and LH nutritional regimes, and each 

replicate was simulated for 36 generations. Every other detail of the parameter values and the 

simulation were identical to those mentioned above. We then compared the population size 

distributions and FI values of the simulations against those observed from the empirical data 

2.8 Simulating the dynamics of sex-biased populations 

We investigated the dynamics and stability of populations under three scenarios where there 

could be unequal numbers of males and females, namely systematic distortion of sex ratio, 

sex-specific culling and the sterile insect technique (SIT). In all these cases, relevant 

alterations were made in the adult module while the pre-adult module was kept unchanged. 

a) Distortion of sex ratio: To simulate sex ratio distortions, we varied the probability of a 

given adult to be a female in the adult module, while keeping the rest of the model 

unchanged. We studied the effects of these various sex ratios at two different levels of 

density-independent basal fecundity, namely high [(adnut × x5) =1.49 × 85] and low [(adnut 

× x5) = 1.49 × 17)]. For each sex ratio × fecundity combination, we also studied the effects of 

low and high levels of food to the juvenile stage (food = 1.76 and 2.56 respectively). For each 

sex ratio × fecundity × food combination, we ran 100 replicate time series, each of which was 

100 generations long. The mean (±SEM) of average population size and fluctuation index 

over these 100 replicates was plotted. 

b) Sex-specific culling: This was similar to the above case except that in every generation, 

after the gender was assigned to the adults, we explicitly removed a fixed percentage of males 

or females from the population. The effect of adult crowding on adult fecundity was 

computed after the culling.  

c) Sterile insect technique (SIT): This is a popular pest control technique (Dyck et al., 2005), 

wherein large numbers of sterile males of the pest species are introduced into the population. 
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These sterile males compete with the fertile ones for potential mating partners, thereby 

bringing down the number of successful matings which can lead to offspring. The number of 

females that mate with fertile males is directly proportional to the ratio of number of fertile: 

sterile males and inversely proportional to the competitive ability of the sterile males 

(Knipling, 1955). For the sake of simplicity, we considered the proportion of females 

producing eggs for the next generation as a linear function of the fertile/sterile male ratio. 

Thus, proportion of egg laying females = min((num_fertile/(β×num_sterile)), 1), 

where num_fertile and num_sterile are the number of fertile and sterile males in the 

population, β is the competitive ability of the sterile males and min() is the minimum 

function. In this section, we studied the interaction of density-independent female fecundity 

with the amount of juvenile food available in determining the efficacy of SIT.  

In our model, low values of food or high female fecundity can lead to extinctions due to 

larval overcrowding. This creates a problem in terms of judging the efficacy of introducing 

sterile males to cause extinction. Therefore, we first investigated the extinction probabilities 

over a large number of combinations of larval food (food, range = 0.5 - 3.0, step size = 0.2) 

and density-independent fecundity (i.e. adnut × x5, range = 1 - 150, step size = 5) in the 

absence of any introduced sterile males. For each food × fecundity combination, we 

computed the probability of extinction within 10 generations over 10 replicates and plotted 

the average extinction probability (Figure 5.15). We then limited our explorations on the 

efficacy of SIT to only those food × fecundity combinations where the probability of an 

extinction event within the first 10 generations was less than 0.1. For each food × fecundity 

combination, we sought to compute the minimum number of sterile males that would lead to 

an extinction within 10 generations. Therefore, we increased the number of sterile males in 

step size of 1 and simulated 10 generation long time-series for each food × fecundity × sterile 

male number combination till there was an extinction. For a given food × fecundity 

combination, this step was repeated 100 times and the average number of sterile males that 

were needed to cause extinction was recorded. 

 

3. RESULTS AND DISCUSSION 

3.1 Experiments: Larval and adult nutritional regimes interact to shape the adult 

dynamics  
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There was a significant interaction between the larval and adult nutrition (F1, 28= 17.92, p= 

0.0002) suggesting that enhancing the fecundity of flies (through a supply of yeast) causes a 

much greater increase in FI when the amount of larval food is limiting (i.e. LL and LH) than 

when it not limiting (i.e. HL and HH) (Figure 5.3). This is because although both LL and LH 

experience substantial larval crowding, the greater fecundity of the LH flies leads to higher 

larval crowding even with moderate adult population sizes which, in turn, causes regular 

population crashes. On the other hand, even when there are population crashes, the greater 

fecundity of the LH flies ensures a high population size in the next generation. Together, 

these two effects ensure large amplitude oscillations in LH population sizes, and a 

substantially larger FI than the LLs (Tukey’s HSD p = 0.00016). On the other hand, although 

the fecundity of females in the HH populations is larger than those in the HLs, the non-

limiting amount of larval food ensures that the population crashes are only marginally more 

severe in the former. This leads to a much lower (although statistically significant; Tukey’s 

HSD p = 0.00017) increase in FI in the HH populations, compared to the HL populations 

(Figure 5.3).  

 
Figure 5.3. Effects of larval and adult nutrition on constancy stability. Interaction of larval and 

adult nutrition to determine constancy stability of population is statistically significant. High adult 

nutrition destabilizes population more when larval nutrition is low. Error bars = 95% CI. 
 

3.2 Experiments: The differences in the dynamics of the populations are reflected in 

their population size distributions and FI 

We began our investigation by examining the distribution of population size which is 

ultimately related to the temporal dynamics of populations (Figure 5.5). Both larval and adult 

nutritional levels were found to affect the population size distributions (Figure 5.4A, the 
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white boxes). Specifically, when larval food is low, population size distributions have lower 

values of mean, median, 25th percentiles and 75th percentiles, compared to when larval food is 

high (cf LH with HH and LL with HL in Figure 5.4A). Interestingly, irrespective of the level 

of larval nutrition, providing yeast to the adults reduced the population sizes (cf LH with LL 

and HH with HL in Figure 5.4A). Moreover, in the LH and HH regimes (Figure 5.4A), the 

population size distributions are much more skewed to the left (i.e. median < mean), which is 

indicative of crashes in population numbers from various medium to high population sizes 

(see also figure 4 in Dey and Joshi, 2013). All these observations are due to the fact that low 

levels of larval food or increased adult fecundity increase the larval crowding by reducing the 

per-capita food available to the larvae. Consequently, fewer larvae are able to acquire a body 

size greater than mc, which reduces the egg-to-adult survivorship, and hence the adult 

population sizes. Interestingly, the mean and the median population sizes were very close for 

the HL populations, but not so for the other three (Figure 5.4A). This showed that the 

population size distributions of HL had little or no skew, while the other three regimes 

exhibited positive skewness. This implied that in spite of having a larger average population 

size compared to the other three regimes, the HL populations exhibited lower amplitude 

fluctuations relative to their own mean population size. Thus, not surprisingly, the HL 

populations were found to have the lowest FI (Figure 5.4B) amongst the four regimes. 

 
Figure 5.4. Population size distribution and constancy stability of experimental and simulated 

time-series. (A) Descriptive statistics of the population size distributions. Red dashed lines = 

means, thin black lines = medians, edges of the boxes=25th and 75th percentiles, whiskers=10th and 

90th percentiles and the circles outside = 5th and 95th percentiles of the distributions. White boxes 

represent experimental data while grey shaded boxes are for simulated time-series. (B) Average (± 

SEM) FI of the experimental and simulated time-series in the four regimes. Both plots suggested a 

good agreement between the experiments and the simulations. The populations in the HL regime 

were the most stable with highest average population size while those in the LH regime were the 

least stable with lowest population size. 
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Figure 5.5. Representative empirical time-series of population size over 49-generations for 

LH, HL, LL and HH regimes respectively. 
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Figure 5.6. Representative simulation time-series of population size over 49-generations for 

LH, HL, LL and HH regimes respectively. 
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Post-hoc tests (Tukey’s HSD) on FIs in the four nutritional regimes revealed all pair-wise 

differences to be significant with the rank order: LH > HH > LL > HL (Figure 5.4B, the 

white bars). Although these four regimes have never been studied together till date, subsets of 

them have been studied in all kinds of combinations. Thus, it has been shown that in terms of 

constancy stability LH< HL~HH (Mueller and Huynh, 1994), LH< HL  and LH< LL (Dey 

and Joshi, 2013). Our results (Figure 5.4B) are in excellent agreement with all these studies 

except those of Mueller and Huynh (1994) who showed theoretically and empirically, that the 

constancy stability of HL and HH were not different. Moreover, Mueller and Huynh (Mueller 

and Huynh, 1994) also predicted the average population size of the HH regime to be much 

larger than that of the HL regime, which also did not match our observations (Figure 5.4A). 

We resolve this issue later in this study (section 3.5) using our individual-based model of 

Drosophila dynamics. 

3.3 Simulations: High level of correspondence between the experimental data and the 

model output 

The simulation results (grey bars) matched the various salient features of population size 

distribution (Figure 5.4A) and population stability (Figure 5.4B) in the empirical observations 

in all four nutritional regimes. To the best of our knowledge, there are no models of 

Drosophila dynamics whose predictions have been verified in this detail with experimental 

data. This is more a reflection on the paucity of good quality long time series data, rather than 

any shortcoming on the part of the modelers. In fact, in the context of dynamics of laboratory 

populations of D. melanogaster, our 49 generation data-set is perhaps the second-longest in 

the literature in terms of number of generations.  

Although the model did an excellent job in capturing the various aspects of the experimental 

data (cf Figure 5.5 and 5.6; also Figure 5.7), these details (and therefore the parameter values 

that lead to them) are obviously experiment-specific and shall vary across studies. Therefore, 

the usefulness of our model is more in terms of the mechanistic understanding that it 

generates about how the dynamics is affected by the interaction of various life-history and 

environmental variables. That was our next object of investigation. 
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Figure 5.7. Autocorrelation coefficients of empirical and simulation time-series. For four 

regimes, we have computed first five autocorrelation lags, averaged over eight replicates for both 

(A) empirical and (B) simulation time-series. Error bars indicate SEM. 

 

3.4 Simulations: The effects of various life-history related traits on dynamics 

3.4.1 Hatchability (hatchability) and critical size (mc): 

Our model predicted that with decreasing hatchability of the eggs up to moderate values, 

population FI decreases (i.e. constancy stability increases) in all four regimes (Figure 5.8A). 

This is because a reduced hatchability in generation t is conceptually equivalent to reduced 

fecundity in generation t-1, which is known to be a stabilizing factor (Mueller, 1988). As 

expected, the destabilizing effects of increasing hatchability are more pronounced where the 

larval crowding is already very high (LH) and are mildest where larval crowding is the lowest 

(i.e. HL). Interestingly when hatchability values are very low (~.35 or less), further 

reductions lead to a decline in the average population size without greatly affecting the 

variation in population sizes over time (Figure 5.9). Since the expression for FI includes the 

average population size in the denominator, this leads to a minor increase in the FI values for 

very low values of hatchability. 

Like hatchability, increasing larval critical size (mc) also has a negative effect on constancy 

stability (Figure 5.8B). This works in two ways. First, all else being equal, increasing mc 

means that fewer larvae would be able to attain mc, which would reduce larval survivorship. 

This is analogous to reducing survivorship through reduced larval food amount, which is a 

destabilizing factor. Secondly, increasing mc means on an average, the surviving adults would 

have a greater body size, which would translate into larger fecundity and thus, destabilize the 
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dynamics. Conversely, decreasing mc is always expected to stabilize the dynamics (Mueller, 

1988): a prediction that we return to in section 3.6. 

 
Figure 5.8. Effect of varying life-history related parameters of the model on constancy 

stability. Each point represents average (± SEM) fluctuation index of 100 replicates of 100-gen 

long simulated time series. Error bars are too small to be visible. (A) In all four regimes, as 

hatchability reduces, larval density also reduces and thus populations become more stable. (B) As 

critical size increases, the populations become more destabilized. (C) Increasing the sensitivity of 

female-fecundity to adult density (sen_adden) increases constancy stability in all regimes except 

LH.  (D) Increasing the sensitivity of female-fecundity to adult body size (sen_adsize), reduces 

constancy stability in all regimes except LH. See section 3.4.2 for explanations for the anomalous 

behaviors in the LH regime.  
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Figure 5.9. Effect of varying hatchability on population size distribution in four regimes. Red 

squares = means, thin red lines = medians, edges of the boxes=25th and 75th percentiles of the 

distributions. 

 

3.4.2 Sensitivity of female fecundity to adult density (sen_adden) and adult body size 

(sen_adsize): 

Increasing adult density is known to negatively affect female fecundity in Drosophila 

melanogaster (Mueller and Huynh, 1994). In our model, sen_adden determines the strength 

of this effect, such that for same adult density, greater sen_adden results in reduced 

fecundity. This in turn enhances larval survivorship, by increasing the amount of food 

available per capita, which has a stabilizing effect on the dynamics. On the other hand, 

sen_adsize determines the strength of the positive correlation between body size and 

fecundity, such that increasing sen_adsize will increase fecundity, thereby reducing larval 

survivorship, ultimately leading to destabilized dynamics. In a nutshell, an increase in 

sen_adden and decrease in sen_adsize is expected to lead to a stabilization of the population 

dynamics. Our simulation results agreed with this prediction in all the regimes except LH 

(Figure 5.8C and 5.8D). In the LH regime, both sen_adden and sen_adsize seemed to have 
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little effect on FI, even though, reducing sed-adden and increasing sen_adsize caused the 

total egg number to go up (Figure 5.10A and 5.10C). The reason for this unintuitive 

behaviour was revealed when we investigated the effect of these two parameters on the egg-

to-adult survivorship. Increasing sen_adden (Figure 5.10B), or decreasing sen_adsize (Figure 

5.10D), hardly affected the egg-to-adult viability in the LH regime. This is because the 

reduced levels of larval food ensured that even with low fecundity, there was substantial 

larval crowding in this regime (as evidenced by the low levels of egg-to-adult viability) so 

that there was almost no effect of changing sen_adden or sen_adsize on larval mortality. As a 

result, the destabilizing effect of increasing fecundity was not seen in the LH populations. 

Another interesting observation from Fig 5.8C is that at low values (< 0.14) of sen_adden, 

HH has a much larger FI than LH, despite having similar levels of average egg number (Fig 

5.10A). This is because for low values of sen_adden, the egg-to-adult viability of LH is lower 

than that of HH (Fig 5.10B), due to the fact that the amount of larval food for the former 

regime is much less than that of the latter. Consequently, greater number of adults can be 

supported by HH, which makes higher amplitude fluctuations in population sizes more likely, 

thereby increasing the values of FI.  
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Figure 5.10. Effect of varying sen_adden and sen_adsize on the average egg number and egg-

to-adult viability. Each point represents average (± SEM) fluctuation index of 100 replicates of 

100-gen long simulated time series. Error bars are too small to be visible. Effects of sensitivity to 
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adult density (sen_adden) on A. Average egg number and B. Egg-to-adult viability. Effects of 

sensitivity to adult size (sen_adsize) on C. Average egg number and D. Egg-to-adult viability.  

Note that in B and D LH is the least affected by increases in the parameter values. See text (section 

3.4.2) for explanation. 

 

The primary insight from the above observations is that even in the highly simplified 

dynamics under laboratory conditions, the environment can interact with the life-history 

related traits of the organisms to lead to very counter-intuitive effects on the dynamics.  

3.5 Simulations and Experiments: Population dynamics is shaped jointly by the quality 

and quantity of nutrition  

 
Figure 5.11. Simulations on effects of varying larval nutrition on population dynamics. (A) 

Population size distributions for the simulated time-series under low adult nutrition or adnut 

(cyan) and high adnut (orange) conditions for different levels of larval food amount (food). White 

dotted lines = means, thin black lines = medians and the circles outside = 5th and 95th percentiles of 

the distributions. The relative positions of the population size distribution of low adnut and high 

adnut regimes reverses as the larval food amount increases. (B) Average (± SEM) fluctuation index 

of the low adnut and high adnut regimes become comparable, when the level of larval food is high. 

(C) Although the low adnut regimes have greater average (± SEM) egg-to-adult viability than the 

high adult nutrition (adnut) regime for low values of larval food (food), the viabilities become 

comparable as food increases. Error bars are too small to be visible here. 
 

As stated already, one of our empirical results did not match the observations of an earlier 

study (Mueller and Huynh, 1994). We found that HL populations had greater constancy 

stability and average size than the HH populations whereas Mueller and Huynh (Mueller and 

Huynh, 1994) reported that the HH populations had similar constancy stability but much 

greater average size than the HL populations. The primary difference between the two 

experiments was in terms of the amount of food given to the larvae. In the experiment of 

Mueller and Huynh (Mueller and Huynh, 1994), the HL and HH larva got 40 mL of food in a 

250 mL bottle while in our experiment the corresponding larva got ~6 mL food in a 37 mL 

vial. Consequently, the adult population sizes in the HL and HH regime varied in the range of 

~40-240 in our experiment, but ~ 400-1600 in the previous experiment.  
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To investigate whether the differences in the larval food amount could explain the observed 

discrepancies, we simulated the HH and HL regime for different levels of larval food, 

keeping all other parameters the same as in the earlier simulation. We found that as the level 

of larval food increased, the relationship between the population size distribution of HH and 

HL reversed (Figure 5.11A). Furthermore, with increasing value of larval food, the FI in the 

HH regime reduced and approached the value seen in the HL regime (Figure 5.11B). The 

underlying mechanisms behind these observations can be understood as follows.  

Due to the availability of yeast paste to the adults in the HH regime, the per-capita fecundity 

of the females is very high. Consequently, when the amount of larval food is relatively less 

(as in our experiment) there is larval crowding which reduces the survivorship in the HH 

regime. Therefore, with increasing levels of food, the survivorship increases (as in Figure 

5.11C), which is manifested as increased population size in the HH regime (Figure 5.11A, 

orange boxes). The HL populations also face some amount of larval crowding at lower levels 

of food. However, since they do not have increased fecundity at high adult population sizes 

(due to the absence of yeast), the increase in population size plateaus off at a much lower 

level of food (Figure 5.11A, cyan boxes).   

In order to visualize the effects of increased food amount on constancy stability, we need to 

appreciate that reduced larval crowding has two opposing effects on the dynamics. First, it 

stabilizes the dynamics by increasing larval mortality. At the same time, it can destabilize the 

dynamics by increasing the body size of the females at eclosion. As the larval food level 

increases, both these factors come into play. However, as there are upper bounds to both 

survivorship (=1) and the body size of the flies (= the physiological limit of body size), 

beyond a certain amount of larval food, both these factors cease to play a major role, and the 

FI in both regimes become similar. This can be clearly seen in Figure 5.11B and explains 

why in the presence of large amount of larval food, HL and HH populations have similar 

constancy, as reported previously (Mueller and Huynh, 1994). When the amount of larval 

food is relatively small (while still being high, compared to LH or LL regimes), the 

destabilizing effect of reduced survivorship overpowers the stabilizing effect of diminished 

fecundity due to reduced body size. This is because there is a minimum value for the body 

size (= mc), which automatically places a lower bound on the fecundity of the flies 

irrespective of the level of larval crowding. Since the HH populations experience greater 

larval crowding than the HL populations, they are expected to exhibit lower constancy, as 

seen in our experiments (Figure 5.4B, white bars) and simulations (Figure 5.4B, grey bars).  



120 

 

In the Drosophila population dynamics literature, labels like LH and HL have typically been 

used as qualitative descriptors to signify the levels of larval crowding (highly crowded versus 

un-crowded) and state of adult nutrition (yeasted versus un-yeasted). As described in the 

Introduction section, this categorization has broad explanatory power in terms of the nature of 

the dynamics: LH leads to high amplitude oscillations while HL leads to relatively stable 

dynamics. However, the above comparison between the HL and HH regimes from the two 

different studies shows that changing just one environmental parameter (here, the absolute 

quantity of otherwise ‘high’ larval food) can lead to a rich array of dynamics. This again 

highlights how the actual values of the environmental parameters interact with life-history 

related traits in determining population dynamics.  

3.6 Simulations and Experiments: Reduction in mc is one way for population stability to 

evolve 

 
Figure 5.12. Validating model predictions on JB and FEJ populations. (A) Descriptive 

statistics of the population size distributions of experimental and simulated JB and FEJ populations. 

Red dashed lines = means, thin black lines = medians, edges of the boxes=25th and 75th percentiles, 

whiskers=10th and 90th percentiles and the circles outside = 5th and 95th percentiles of the 

distributions. White boxes represent experimental data while grey shaded boxes denote simulated 

time-series. Average (± SEM) FI of JB and FEJ populations corresponding to the experimental and 

simulated time-series under (B) LH and (C) HL regimes. Experimental data shows that in both the 

regimes, FEJs have lower FI than the JBs, as predicted by the model. Simulated FEJ populations 

capture well the empirical trends for population size distribution and constancy stability. 

 

One of the predictions of our model is that decreasing mc should lead to stabilization of the 

dynamics (Figure 5.8B and Section 3.3.1). This prediction is consistent with earlier 

theoretical studies (Mueller, 1988) and has been empirically validated using laboratory 

populations of D. melanogaster (Dey et al., 2008; Prasad et al., 2003). These earlier 

experiments used a population of flies (FEJs) that had evolved reduced mc as a correlated 

response to selection for faster development and early reproduction. Consequently, they were 

found to have reduced FI compared to the corresponding ancestral control populations (JBs). 

In order to see whether our model was capable of recovering the other features of the 
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dynamics from the earlier experiment (Dey et al., 2008), we set a slightly lower value of mc 

for the FEJs and kept all other parameters the same as in the previous simulations (Table 5.1). 

Our model was again able to capture the trends in the distributional properties (Figure 5.12A) 

and the FI values (Figure 5.12B and 5.12C) of JB and FEJ populations in both regimes. The 

empirical data in Figure 5.4 and Figure 5.12 are from two completely independent 

experiments done at different times. The fact that our model is able to predict the major 

features of the latter data-set based on parameterizations done for a subset of the former 

shows that our parameterization was robust. However, we again emphasize here that the main 

focus of this part of the study was to gather insights about how the various life-history and 

environmental parameters interact, and the excellent quantitative match between the data and 

the model is essentially a secondary, though greatly encouraging, result. 

3.7 Comparison with experiments and models on other species 

Since our model is based on fairly generic life-history features (see section 2.3.1), it is 

reasonable to assume that it would be a good predictor of the dynamics across a wide range 

of taxa. For example, in another dipteran, the pitcher-plant mosquito (Wyeomyia smithii) 

increased larval food amounts reduces larval mortality and increases adult fecundity (Istock 

et al., 1975). Furthermore, in the same species, adult fecundity is positively and negatively 

affected by increased levels of adult food and adult crowding respectively (Istock et al., 

1975). Since these are exactly the processes that govern the dynamics of Drosophila 

laboratory populations, it can be safely predicted that the dynamics of W. smithii, under 

different nutritional levels, will be well captured by our model. Unfortunately, we could not 

locate any studies on the population dynamics of this species to verify this prediction.  

Paucity of studies in the literature was not the problem with the widely-studied crustacean 

genus Daphnia. In this system, increasing food concentration increases size at maturity and 

fecundity (Boersma and Vijverberg, 1995; Rinke and Vijverberg, 2005), as well as the slope 

of the body length-clutch size relationship (Rinke and Vijverberg, 2005), which is equivalent 

to increasing the value of sen_adsize in our model. An IBM incorporating these relationships 

predicted increased amplitude of fluctuations in population sizes with increasing 

concentration of food (Vanoverbeke, 2008), which agrees well with experimental 

observations (McCauley et al., 1999) and our results (Figure 5.8D). Simulation studies on 

another crustacean (Armadillidium vulgare) showed that increased level of food also 

increases the population size (Rushton and Hassall, 1987), which is consistent with our 



122 

 

observations (Figure 5.11A). It should be noted here, though, that all these Daphnia 

experiments and models deal with continuous culture systems, as opposed to the discrete 

generation systems investigated in our study. Moreover, in these systems, the adults and the 

juveniles share the same food, whereas in our model, the effects of the larval food 

(determined by the parameter food) is different from the effects of the adult nutrition 

(modeled using adnut). In spite of these non-trivial differences, the primary mechanism by 

which food amounts affect the life history, and thereby the dynamics, remain alike.  

Moving away from the arthropods, not surprisingly, leads to more serious departures from the 

insights gathered from our study, although some broad patterns are still discernible. For 

example, an IBM for the fish yellow perch (Perca flavescens) showed that increased food 

(forage fish) amount leads to larger body size, higher fecundity and lower adult abundance 

(Rose et al., 1999). However, in the same study, when the amount of food was increased for 

another fish, walleye (Sander vitreus), the model predicted larger body size, lower fecundity 

and higher adult abundance. This difference was partly due to the fact that the life-history 

parameters and the ecological food-bases of the two fishes were very different. Although the 

authors did not report the effects of these food manipulations on the population dynamics, it 

is clear that changing the levels of food can affect the population size, which appears to be a 

fairly robust observation in this context.  In a comprehensive review covering 138 species, 

including reptiles, birds and small mammals, Boutin reported that adding food to the 

environment typically leads to 2-3 fold increase in population density but little or no change 

in the population dynamics (Boutin, 1990; although see Klenner and Krebs, 1991 and 

references therein). More importantly, litter or clutch sizes are hardly affected by food 

supply, except when there is severe food shortage due to natural reasons or severe 

overpopulation (Boutin, 1990).  

There can be several reasons for the differences between the observations of these vertebrate 

studies and ours. First, there is no reason to expect that a model based on arthropod life 

history can accurately capture the population dynamics of vertebrates. Second, it is very 

difficult to estimate the parameter space for the vertebrate systems that is analogous to the 

parameter space used in our model. Third, all the vertebrate studies quoted here are on natural 

populations with multiple sources of food and other ecological interactions, at least some of 

which can interact with the effects of food manipulation in non-intuitive ways (e.g. Klenner 

and Krebs, 1991). 
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The above account suggests that there are substantial differences between how food levels 

affect the dynamics of insects / crustaceans on one hand and higher vertebrates on the other. 

Not surprisingly, our model is a better descriptor of the former. With that knowledge, we 

were in a position to go beyond laboratory populations of D. melanogaster and investigate 

the general consequences of various demographic processes for population dynamics. For the 

purpose of this study, we chose to investigate the effects of unequal numbers of males and 

females, and particularly its interaction with the amount of food available, on population size 

and stability. 

3.8 Simulations: The effects of sex-ratio and sex-specific culling are greatly influenced 

by fecundity but not by levels of juvenile food 

 
Figure 5.13. Effect of varying sex-ratio and sex-specific culling on population dynamics for 

low nutrient scenario. Effect of varying sex-ratio and sex-specific culling on population dynamics 

under low nutrient levels. A) Fluctuation index and B) Average population size as a function of the 

expected fraction of females in the population. C) Fluctuation index and D) Average population 

size as a function of the percentage of females culled. E) Fluctuation index and F) Average 

population size as a function of the percentage of males culled. Closed and open circles denote high 

and low levels of density-independent adult fecundity. See section 3.8 for explanations. Each point 

represents average (± SEM) fluctuation index or population size of 100 replicates of 100-gen long 

simulated time series. Error bars are too small to be visible. 
 

Theoretical studies have typically neglected the effects of sex ratio on the stability of 

population dynamics (although see Johnson, 1994), an important lacuna that we address here. 

We found that when the baseline fecundity is high, the FI of the population is highest when 

the sex ratio is close to 1:1 and reduces when the sex ratio becomes more skewed (closed 

circles in Figure 5.13A). This is consistent with the observation that population growth rate 

typically maximizes either when both sexes are present in equal proportions or when the 



124 

 

proportion of females is slightly higher (Jenouvrier et al., 2010; Miller and Inouye, 2013). 

However, although equal or female-biased sex ratios are also expected to maximize the 

average population size (Rankin and Kokko, 2007; Schmickl and Karsai, 2010), our model 

showed that the maximum population size was reached when the proportion of females in the 

population was ~15%, i.e. when the population was male-biased (closed circles in Figure 

5.13B). This general pattern was not altered irrespective of the amount of food given to the 

larvae (cf Figure 5.13 with Figure 5.14).  

 
Figure 5.14. Effect of varying sex-ratio and sex-specific culling on population dynamics for 

high nutrient scenario. Fluctuation index and average population size were computed as the 

proportion of females (A and B), percentage of female culling (C and D) and male culling (E and 

F) increases in the population respectively. Each cases were investigated at two levels of density-

independent fecundity. Here, each point represents average (± SEM) fluctuation index or 

population size of 100 replicates of 100-gen long simulated time series. Error bars are too small to 

be visible. 

 

To explain this observed discrepancy, we note that many of the previous studies on effects of 

sex ratio assume the mating success of the females to be a function of the number of available 

males (Jenouvrier et al., 2010; Rankin and Kokko, 2007; Schmickl and Karsai, 2010). 

Although applicable for strictly monogamous species, this assumption need not always be 

true for insects like D. melanogaster where both males and females mate multiple times 

(although see Vahl et al., 2013), and a single mating can sustain high lifetime fecundity of a 

female, unless the proportion of males is extremely low. That is the reason our model 

assumed that all females contributed to the egg numbers of the next generation, irrespective 

of the number of males in the population (we relax this assumption in the next section). 

Consequently, male numbers can only have negative effects on the number of eggs in the 

next generation through the density-dependent reduction in fecundity. On the other hand, 
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each female in the population has a positive effect on the number of eggs in the next 

generation through its fecundity, and a negative effect through its contribution to the density-

dependent reduction in fecundity (eq. 4). The sex ratio leading to the maximum population 

size is thus determined as an interaction between these two opposing effects. When female 

fecundity is high and not male-limited, this number is much lower than what is expected 

when these two conditions are not met. This explains why, in our model, the maximum 

population size is attained under male-biased conditions. When the number of females in the 

population is increased beyond this threshold, the number of eggs in the next generation 

increases, which, in turn, results in more intense larval crowding. Conceptually, this is similar 

to boosting the fecundity by supplying yeast to the adults which reduces the average 

population size (Figure 5.4A), as can be seen by comparing LL with LH and HL with HH in 

Figure 5.4A.  

When the density-independent fecundity was low (open circles in Figure 5.13A and 5.13B) 

there was monotonic increase and decrease in average population size (Figure 5.13B) and FI 

(Figure 5.13A), respectively, with increasing proportion of females in the population. This 

trend was clearly different from the high fecundity case (cf open circles and closed circles in 

Figure 5.13A and Figure 5.13B), indicating that fecundity itself can alter the effects of sex 

ratio on population dynamics. To the best of our knowledge, this effect has previously not 

been reported in the literature and can be understood as follows. When the per capita female 

fecundity is low, the number of eggs in the next generation is reduced and the average size of 

the population is therefore limited more by the total number of eggs produced than the larval 

density-dependent mortality. Moreover, under such circumstances, the populations are also 

more vulnerable to demographic stochasticity, which leads to an increase in FI. 

Consequently, with increases in proportion of females, both the average size of the 

population and the population stability increases.  

Sex-specific mortality or culling of the adult individuals: In a population, sexes often suffer 

unequal mortality rates. This can happen due to, inter alia, sex-biased predation (Boukal et 

al., 2008) or human preference for a given sex for commercial or other purposes. We 

modeled this phenomenon using our model by explicitly culling a fixed percentage of a sex in 

each generation and, not surprisingly, found that female (Figure 5.13C-D) and male (Figure 

5.13E-F) culling have very different effects on the dynamics. The patterns observed in Figure 

5.13C-F can be explained by noting that female culling increases the ratio of males in the 

population and vice versa, and the subsequent effects on FI and average population size can 
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be deduced based on Figure 5.13A-B. One interesting point to note is that when the female 

fecundity is high, culling of females can increase the average population size, a phenomenon 

that is termed as the Hydra effect in the population dynamics literature (Abrams, 2009). 

However, when female fecundity is low, increasing the fraction of females culled reduces 

population size, which is consistent with recent theoretical and empirical data on the beetle 

Callosobruchus maculatus (Snyder et al., 2014). Moreover, although changing the amount of 

juvenile food led to changes in the numerical values of the average population size and FI, 

the corresponding patterns remained unaltered (cf Figure 5.13C-F and Figure 5.14C-F), 

suggesting that the effects of changes in sex-ratio on population dynamics are not altered by 

juvenile nutrition. 

To summarize, different amounts of juvenile food affects the interaction of sex ratio and 

population dynamics quantitatively but not qualitatively. However, in species like 

Drosophila, where adult fecundity can be increased by giving external food (equivalent to 

increasing adnut), adult food levels will play a role in determining the qualitative and 

quantitative effects of unequal numbers of sexes on the dynamics. 

3.9 Simulations: Fecundity and nutrition levels interact to determine the efficacy of 

Sterile Insect Technique (SIT)  

One of the major applications of skewed sex-ratios has been in the context of SIT, wherein a 

large number of sterile individuals (typically males) are released into an insect pest 

population (Klassen, 2005). These sterile individuals compete with the fertile individuals, 

thus reducing their reproductive fitness, which ultimately leads to effective suppression of 

population density or complete eradication of the pests (Knipling, 1955). This method has 

been successfully used to eradicate several pest species like melon fly, Tsetse fly, 

screwworm, Mexican fruit fly and West Indian fruit fly (see Dyck et al., 2005 for a 

comprehensive review). Not surprisingly, the consequences of releasing large number of 

sterile males have been extensively investigated in the theoretical population dynamics 

literature (reviewed in Barclay, 1980) primarily using simple non-linear models (e.g. 

Berryman et al., 1973). These studies have typically not incorporated the details of life-

history or environmental variables like food amount on the efficacy of SIT. In fact, we could 

locate very few individual or agent-based models on SIT in the literature (Isidoro et al., 2009; 

Lin et al., 2015; Stone, 2013). Simple models predict that when the fecundity of females is 

high, introducing sterile males can increase the pest population size (Berryman et al., 1973), 
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whereas the present study shows that changes in larval food amount can affect the dynamics 

of populations. Therefore, we used our model to explore the interaction of the amount of food 

and fecundity of the pests on the expected number of individuals needed for a successful pest 

eradication using SIT.  

 
Figure 5.15. Probability of extinction within 10 generations in food × density-independent 

fecundity space. For each combination of food and fecundity values, we computed average 

probability of extinction within first 10 generations over 10 replicates and plotted according to the 

adjacent colour index. 
 

Following prior studies (Knipling, 1959), we assumed that the number of females that get 

fertilized and lay eggs is a function of the ratio of fertile to sterile males in the population (see 

section 2.5). As noted earlier, neither our fly populations nor our model-derived time series 

underwent too many extinctions. However, for this set of simulations, we needed to consider 

parameter values of food and density-independent fecundity (i.e. adnut × x5 in equation 3) 

that were very different (greater as well as lesser) than what was applicable for our fly 

populations. Consequently, the extinction rates no longer remained negligible which in turn 

meant that sterile male induced extinctions needed to be distinguished from endogenous 

extinctions. Therefore, we first simulated the probability of extinction over 10 generations for 

various combinations of fecundity and food values (Figure 5.15). From this set, we used only 

those fecundity-food combinations which had less than 10% probability of going extinct 

without any perturbation to estimate the minimum number of sterile insects to be introduced 

that could lead to population extinction within 10 generations with a 90% probability (Figure 

5.16).  
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Figure 5.16. Effect of varying food and density-independent fecundity of the model on sterile 

male technique. For each combination of food and density-independent fecundity, this graph 

denotes the minimum number of sterile males needed to induce extinction within 10 generations 

with 90% certainty. Each point here is an average value obtained from 100 replicate simulations 

and plotted according to the adjacent colour index. Broadly, when fecundity is low, required 

number of sterile males does not depend on the amount of available food. But, for higher fecundity 

values, food and fecundity together determine the required number of sterile males needed for the 

desired level of extinction. For this analysis, we have considered only those food × fecundity 

combinations, where the basal probability of extinction is <10%. 
 

Thus, the lower the number of males needed to induce extinction, the higher was the 

efficiency of SIT. We found that when density-independent fecundity is <~40, changing the 

amount of food had no effects on SIT efficiency. However, beyond this range, the efficiency 

of SIT reduced with the amount of food available, and the effect became more prominent as 

fecundity increased. The reason for this observation can be understood when we consider the 

effects of increasing the amounts of food for different fecundity levels. When fecundity is 

low, larval crowding is less and therefore, increasing the amount of food does not increase 

the population size. Consequently, the number of sterile males needed to bring extinction is 

also unaffected. However, when the fecundity is high, there is considerable larval crowding. 

Consequently, increasing the amount of food increases the average population size (as seen in 

Figure 5.11A) which in turn reduces the efficiency of SIT. Thus we find that the efficiency of 

SIT depends on an interaction between the amount of food available to the larva and its 

density independent fecundity (which can be altered by environmental factors). To the best of 

our knowledge, this interaction has not hitherto been reported. It should be noted here, that 

for our flies, the values of density independent fecundity (i.e. adnut × x5) considered were 85 
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and ~125 for un-yeasted and yeasted conditions respectively. Therefore, the observed 

interaction between food and fecundity happens in a parameter range for fecundity (>~40) 

which is very relevant biologically. Another point regarding these results is the order of 

magnitude of the population sizes. In nature, pest population sizes would typically be in 

orders of 105-107 whereas in our simulations, the population sizes were in orders of 101-102. 

This is because it is known that SIT is typically much more effective at low population sizes 

and therefore any application of SIT in the field is typically preceded by a chemical treatment 

that greatly reduces the population size (Klassen, 2005). Thus, although the population sizes 

in our simulations are smaller than what would be experienced in a real-world application of 

SIT, they are off by no more than 1-2 orders of magnitude. Nevertheless, we believe that our 

results are still relevant to SIT application since the purpose of our study was not to model 

the application of SIT to a particular real world population of a specific insect pest species, 

but rather to derive insights about how outcomes of sterile male release could possibly be 

affected by nutrition × fecundity interactions. 

 

4. CONCLUSION 

Mathematical modeling of the dynamics of laboratory populations has a long and venerable 

history (Kingsland, 1995; Mueller and Joshi, 2000) and has been extensively done for several 

model systems like Tribolium (Costantino et al., 1997), Callosobruchus (Tuda and Shimada, 

2005), protists (Holyoak et al., 2000), mites (Benton and Beckerman, 2005) etc. Depending 

on the objectives of their investigation, these studies have employed different kinds of 

modeling tools, ranging from simple deterministic difference equations, to coupled 

differential equations and individual-based models (reviewed in Mueller and Joshi, 2000). 

The value of our study is first in the close correspondence between empirical observations 

and simulation results, and second in terms of the insights gained regarding the interaction of 

the environmental factors (larval and adult food level) with life-history related traits to 

determine population dynamics and stability. Our model was able to replicate several 

predictions about the dynamics of insects and crustaceans. Given that these two taxa 

represent about 70% of all animal species on earth (Zhang, 2011), one can be reasonably 

confident that the general insights derived from this study are broadly applicable.   
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CHAPTER 6 

 

 

 

Simultaneous evolution of multiple dispersal 

components and kernel in laboratory populations of 

Drosophila melanogaster 

 

 

 

 

Highlights 

• Rapid, simultaneous evolution of dispersal propensity, ability and kernel in flies. 

• Evolution of long-distance dispersers (LDDs) leading to 67% greater spatial extent.  

• Context dependent sex-biased dispersal exists in Drosophila melanogaster. 

• Male and female flies respond similarly to selection for greater dispersal. 

 

 

 

 

 

 

 

Adapted from: Tung, S., Mishra, A., Shreenidhi, P. M., Sadiq, M. A., Joshi, S., Sruti, V. S., 

Dey, S. 2017. Simultaneous evolution of multiple dispersal components and kernel. Oikos 

127, 34–44. 
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INTRODUCTION 

Climate change (reviewed in (Root et al., 2003) and various human activities (Vitousek et al., 

1997) have led to massive habitat loss and fragmentation, which in turn have affected many 

natural populations all over the world. These effects include, inter alia, loss of biodiversity, 

increase in extinction probability, modified species interaction patterns within a community, 

decrease in the average length of the trophic chains and reduced reproductive success 

(reviewed in Fahrig, 2003). Dispersal is one of the ways by which organisms can cope with 

such stresses as it allows them to increase their survival probability by tracking favorable 

environmental conditions (Travis et al., 2013). As a result, evolution of dispersal and its 

consequences have been a major focus of research in evolutionary ecology for the last few 

decades (reviewed in Bowler and Benton, 2005; Clobert et al., 2012; Ronce, 2007). 

According to the classical theoretical literature, dispersal could evolve due to three primary 

reasons, namely, inbreeding avoidance (Charlesworth and Charlesworth, 1987), reduction of 

kin-competition (Gandon, 1999) and spatio-temporal environmental heterogeneity (McPeek 

and Holt, 1992). However, substantial bodies of empirical and theoretical work over the last 

few decades suggest that the picture may not be so simple after all (reviewed in Bonte et al., 

2012). 

In terms of movement, the phenomenon of dispersal is often subdivided into three stages, 

namely emigration from the natal habitat, inter-patch movement and immigration into the 

destination patch (Bowler and Benton, 2005). The environment experienced during each of 

these stages, and the corresponding behavioral and physiological attributes needed to tackle 

them, can be very different. Consequently, in terms of life-history, dispersal is actually a 

composite trait, made up of components like propensity (i.e. the fraction of dispersers leaving 

the current habitat) which is primarily related to emigration, and ability (i.e. the mean 

distance travelled) which is primarily related to inter-patch movement.  Evidently, which 

component(s) of dispersal evolve(s) is contingent upon the nature of the selection pressure 

faced by each component, the costs associated with them, how these costs interact with each 

other and how they are countered by the organisms (Bonte et al., 2012). For example, in 

laboratory populations of C. elegans, dispersal propensity evolves when patch fitness is 

varied by externally imposed extinctions (Friedenberg, 2003). However, the same trait fails to 

evolve when patch fitness is altered by varying resource density (Friedenberg, 2003). 

Similarly, spatially correlated extinctions select for long distance dispersers in the spider mite 

(Tetranychus urticae) but randomly distributed local extinctions do not (Fronhofer et al., 
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2014). To complicate matters further, although the various components of dispersal are 

related to each other, evolution of a given component does not necessarily make an organism 

better in terms of another component. For example, in spider mites, artificial selection can 

increase dispersal propensity (Yano and Takafuji, 2002) but not dispersal ability (Bitume et 

al., 2011). In the same organism, when selection is imposed in the form of  spatially 

correlated extinctions, the frequency of long distance dispersers (LDDs) increases but 

dispersal propensity is reduced (Fronhofer et al., 2014).   

Thus, for any organism under a given ecological scenario, a complete picture of dispersal 

evolution is possible only when all the dispersal components are simultaneously investigated. 

Unfortunately, most empirical studies typically focus on the evolution of any one of the 

several components of dispersal (Bitume et al., 2011; Friedenberg, 2003; Keil et al., 2001; 

Ogden, 1970; Tien et al., 2011; Yano and Takafuji, 2002; although see Fronhofer et al., 

2014). This makes it somewhat difficult to envisage how the evolutionary responses to the 

individual components of dispersal ultimately come together to affect the distribution of 

dispersal distances of individuals, i.e. the dispersal kernel (Nathan et al., 2012). 

The kernel is one of the most frequently used descriptors of the outcome of dispersal in the 

ecological and the evolutionary literature (reviewed in Nathan et al., 2012). Empirical studies 

suggest that dispersal kernels in natural populations are often “fat-tailed” (Clark et al., 2005; 

Van Houtan et al., 2007).  This implies that many natural populations have a larger number of 

long-distance dispersers or LDDs, i.e. individuals who disperse far more than the mean 

dispersal distance of the population than what is expected by a Gaussian function.  The 

presence of LDDs can impact several ecological phenomena like range advance (Phillips et 

al., 2008), effects of habitat fragmentation (Van Houtan et al., 2007), invasive potential (Kot 

et al., 1996) and disease spread (Rappole et al., 2006). Thus, evolution of the kernel in 

general, and the fraction of LDDs in particular, is a major topic of interest in the context of 

dispersal evolution (reviewed in Hovestadt et al., 2012). Unfortunately, although it is easy to 

conceptualize a dispersal kernel, it is not experimentally simple to measure it. Moreover, the 

observed dispersal kernel is a product of the phenotype of the organism and the environment 

through which dispersal is happening. Differentiating between these two effects is not always 

a straightforward task. Not surprisingly, therefore, although theoretically well-investigated 

(e.g. Phillips et al., 2008; Starrfelt and Kokko, 2010), we are aware of only one empirical 

study that has demonstrated kernel evolution (Fronhofer et al., 2014).   
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Another factor that can play a role in the evolution of dispersal in a population is sex. Sex-

biased dispersal (SBD) is well-documented in the animal kingdom, particularly among birds 

and mammals (reviewed in Pusey, 1987), and also insects (Bennett et al., 2013; Lagisz et al., 

2010). Although SBD is hypothesized to be primarily driven by the mating system of the 

species (Greenwood, 1980), recent studies have challenged this claim (Mabry et al., 2013; 

Trochet et al., 2016). One major complication here is that SBD has often been investigated in 

the context of any one component of dispersal like propensity or ability (Clutton‐Brock and 

Lukas, 2012). However, the presence or absence of SBD for one dispersal component (say 

propensity) does not allow us to make any predictions about it in the context of another 

dispersal component. Moreover, potentially, the realization of SBD for a given dispersal 

component itself can be environment-dependent. To take a hypothetical example, one sex (for 

example, males) might show greater dispersal ability only under resource limitation and not 

when resources are plentiful. Clearly, this context-dependence of SBD has consequences for 

gene flow across the habitats and how that affects the standing variation (Prout, 1981). It can 

also potentially alter the evolutionary outcome depending on whether resources were 

available or not during the selection process. Thus, in order to obtain a more detailed picture 

of SBD in a given species, it is again critical to simultaneously investigate multiple dispersal 

components in different environments.  

To address some of the issues discussed above, we subjected four large, replicate populations 

of Drosophila melanogaster to directional selection for increased dispersal. Our selection 

protocol mimicked increasing habitat- fragmentation over generations, with starvation and 

desiccation stress being the primary inducer of dispersal. The selected populations rapidly 

evolved to have significantly greater dispersal propensity and ability, irrespective of the 

presence or absence of starvation/desiccation stress. To the best of our knowledge, this is the 

first report of condition-dependent selection leading to the evolution of phenotype-dependent 

dispersal.  We then describe the impact of these evolutionary changes on the shape of the 

dispersal kernel and how that affected the spatial extent. We also investigate whether there 

was sex-bias in different dispersal components and whether selection caused the two sexes to 

respond differently. Finally, we briefly discuss some of the eco-evolutionary implications of 

our results and why some of them do not match with previous observations in the literature.  
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METHODS 

Ancestral populations: The experimental populations used in this study were derived from 

four independent large (breeding size of ~2400) laboratory populations of Drosophila 

melanogaster (DB1-4) which in turn trace their ancestry to four outbred populations called 

JB1-4. The detailed maintenance regime and ancestry of the JB1-4 populations has been 

described elsewhere (Sheeba et al., 1998). The maintenance regime of the DB1-4 populations 

are similar to the JB1-4, except that the former set of flies are introduced into population cages 

on the 12th day after egg collection  

From each DBi population (where i∈ [1, 4]), we derived two populations: VBi (short for 

‘vagabond’, subjected to selection for dispersal) and VBCi (corresponding no-dispersal 

control). Thus VB and VBC populations that share a numerical subscript (e.g. say VB1 and 

VBC1) were related by ancestry (DB1 in this case), and hence were always assayed together 

and treated as blocks in statistical analyses. 

Maintenance regime of experimental populations: The adults of both VBs and VBCs were 

maintained in plexi-glass population cages (25 cm × 20 cm ×15 cm) at a high adult number 

(~2400 individuals) to avoid inbreeding. Following earlier protocols, both the larvae and the 

adults were maintained at 25°C and constant light conditions (Sheeba et al., 1998). The flies 

were made to oviposit on petri-plates containing banana-jaggery medium for 12-16 hours. 

After oviposition, we cut small strips of the medium, each containing ~60-80 eggs, and 

introduced them individually into 35 ml plastic vials that had ~6 ml of the same banana-

jaggery medium.  This ensured that the larvae were raised under low to moderate level of 

crowding, and there was no confounding effect of density-dependent selection (Joshi, 1997). 

The adults started emerging by the 8th-9th day after egg collection and on the 12th day, the VB 

populations underwent selection for dispersal (see below). Since at 25°C temperature, all 

normally developing adults eclose by 10th -11th day, our selection protocol ensured that there 

was no inadvertent selection for faster larval development (Prasad et al., 2001). After the 

imposition of selection, the flies were transferred to the population cages and immediately 

supplied with excess live yeast- paste to boost their fecundity. Around 40 hours after this, the 

flies were supplied with a fresh petri-plate containing banana-jaggery medium for 

oviposition. The eggs so collected formed the next generation and the egg-laying adults were 

discarded, ensuring that adults from two different generations never co-exist. Thus, both VBs 

and VBCs were maintained under 15-day discrete generation cycles. For each VB population, 
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we collected eggs in 80 vials (thus leading to approximately 4800 adults) while for VBCs, the 

corresponding number of vials was 40. This ensured that after selection (see next section), the 

breeding population of the VB populations was similar to that of the VBCs. 

Selection protocol: The apparatus for selection for dispersal consisted of three components: 

a source, a path and a destination. The source was an empty transparent cylindrical plastic 

container of diameter 11 cm and height 16 cm with a funnel attached to one end (Fig. 6.1). 

The diameter of the broad end of the funnel matched that of the source, while the diameter of 

the exit to the stem was 1.8 cm. The path connecting the source with the destination consisted 

of a transparent plastic tube of inner diameter ~1 cm. The destination too was a cylindrical 

plastic container (diameter 11 cm and height 16 cm) and contained a supply of moisture in 

the form of a strip of wet cotton. The end of the path protruded ~10 cm inside the destination 

(Fig. 6.1). This protrusion helped in reducing the rate of backflow as, after getting out of the 

path, the flies typically spent most of their time on the walls or floors of the container, and 

hence mostly failed to locate this aperture. To make the overall setup compact, the path was 

coiled (in the horizontal plane). The length of the path was 2 m at the beginning of the 

selection, but was increased intermittently. By generation 33, when the last set of assays were 

performed, the path length had reached 10 m. 

 

Figure 6.1. Schematic diagram of the selection and assay setup. The source and the destination 

are transparent plastic containers. The path is a transparent plastic tube. The path protrudes ~10 cm 

inside the destination; this protrusion considerably reduces backflow of the flies. Here, all the three 

parts-- the source, path and the destination are detachable. The tiny objects oriented randomly 

inside the setup denote the flies. The length of the path increased from 2m to 10m during the 33 

generations of selection reported here. 

 

In order to impose the selection, on the 12th day after egg-collection, ~2400 adults (coming 

out of 40 vials) of a given VBi population were placed in a source, which was then connected 

to the destination via the path. The entire setup was placed in a well-lit room maintained at 25 

°C. Since the source had no moisture, the flies experienced desiccation. Pilot runs with the 

ancestral DB populations had shown that under these environmental conditions, a subset of 

the flies tended to move through the opening towards the destination. Pilot studies also 
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showed that very few flies dispersed in the presence of food in the source and therefore we 

decided to impose selection in the absence of food. The flies were allowed to disperse for six 

hours or until roughly 50% of the population reached the destination (whichever happened 

earlier). The arbitrary cut-off of six hours was chosen because assays in the lab had 

demonstrated that under desiccating conditions, there was almost no mortality during the first 

six hours (S. Tung personal observations).  Only the flies that reached the destination were 

allowed to breed for the next generation. Since the imposed selection allowed ~50% of the 

flies to breed, there were two independent “source-path-destination” setups, with ~2400 flies 

in the source, for each VBi population. Post-selection, the dispersed flies in the two 

destination containers for a given VBi population were mixed and transferred to a population 

cage. They were then supplied with live-yeast paste and after ~40 hours, eggs were collected 

(as mentioned above). The VBCs were maintained similarly as the VBs except two major 

differences. Firstly, after transferring the flies into the source, the exit was blocked by a 

cotton plug and the flies were allowed to desiccate for 3 hours or till 25% of the VBs reached 

their destination (whichever was earlier). Following the protocol for the VB flies, the VBC 

flies were then supplied with a moist cotton plug for the remaining duration of VB dispersal. 

This controlled for the inadvertent desiccation experienced by the VB flies in the source and 

the path, as part of the selection protocol. It should be noted here that there was almost zero 

mortality in the VBC flies during this time, thus ensuring that the selection pressure for 

desiccation resistance was at best, mild. Secondly, all the flies in the VBC populations were 

allowed to breed, thus ensuring no selection for dispersal.  

Assays: 

All assays were performed after relaxing the selection on both VB and VBC populations for 

one generation. For this, the VB and VBC flies were transferred directly into the 

corresponding cages on the 12th day after egg collection. The progeny of these flies, 

henceforth referred to as the relaxed populations, were used for the assays. This common-

rearing ensured that influence of phenotypic plasticity or non-genetic parental effects were 

ameliorated. Additionally, to remove any extraneous influence due to larval crowding, egg 

density was kept to ~50 eggs on ~6mL food in each vial. Furthermore, as the assays for each 

of the four blocks required us to sex and count ~12,000 flies, it was not logistically possible 

to assay more than two blocks in a given generation. Therefore, each assay was conducted 

over two successive generations and it is the latter value which is reported in the paper (i.e. 

for the tth generation assay, VB1-VBC1 and VB2-VBC2 were assayed in generation t-1 while 
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VB3-VBC3 and VB4-VBC4 were assayed in generation t). For example, for the 33rd 

generation assays, block 1 and 2 were assayed during the 32nd generation of selection, while 

block 3 and 4 were assayed during the 33rd generation and so on. This is not a problem in 

terms of our statistical analysis as block was explicitly recognized as a random factor in our 

ANOVA. 

Dispersal assay in presence and absence of food: This assay was performed thrice- after 

10, 20 and 33 generations of selection in order to assess the difference in dispersal propensity 

and ability between the VBs and the VBCs. The assay-setup was similar to the selection setup 

(see ‘Selection protocol’ above and Fig. 6.1) except for the length of the path. The path-

length was 10 m for the assay performed after 10 generations of selection and for the rest it 

was 20 m. Furthermore, to obtain the distribution of the location of the files after dispersal, 

the path was divided into multiple detachable sections: 20 sections of length 0.5 m each for 

the first 10 m and followed by 10 sections of length 1 m each for the rest (1 m sections were 

not present when the path-length was only 10 m). The destination container (a 250 ml plastic 

bottle) did not contain food or water but had a long protrusion of the path into it, to reduce the 

backflow of flies. On the 12th day after egg collection, ~2000 adult flies were introduced into 

the source container and were allowed to disperse for 6 hours. During this interval, the entire 

setup was kept undisturbed under constant light and at a temperature of 25˚C. After the end 

of dispersal run, the setup was dismantled; the openings of the source, the destination, and 

each section of the path were secured carefully with cotton plugs, and labelled appropriately. 

The flies were then heat killed and the location (in terms of the distance from the source) and 

sex of each fly was recorded. For each VBi and VBCi population, there were three such 

replicate kernel setups.  

We performed two kinds of kernel assays: a) with an empty source and b) in the presence of 

~20 ml banana-jaggery medium in the source. The former set of assays was performed after 

10 and 20 generations of selection while the latter set of assays happened after 33 generations 

of selection. In total, these assays involved segregating according to sex and scoring of ~140, 

000 flies. 
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Dispersal components  

a) Dispersal propensity 

The proportion of total flies in the source that initiated dispersal was taken as the dispersal 

propensity (Friedenberg, 2003). Thus propensity = (Number of flies found outside the source/ 

Total number of flies). 

b) Dispersal ability 

The dispersal ability was computed only on the flies that left the source, based on the section 

of the path in which they were found after 6 hours. All flies found in a given section of the 

path were deemed to have travelled the distance between the source and the midpoint of the 

section. The destination container was considered as a part of the last path-section. Thus 

mathematically, 
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where, ni is the number of flies found in the ith path-section, xi is the distance of the mid-point 

of this section from source and y is the total number of path-sections (here y = 30, see Section 

‘Dispersal kernel assay in presence and absence of food’ for details). Since dispersal ability is 

measured only on the flies that came out of the source, the measure of propensity and ability 

were independent of each other. 

Measures of dispersal kernel and spatial extent: Dispersal kernels of the VB/VBCs were 

characterized using the various percentiles of the distribution. Change in the mean distance 

travelled, in principle, can shift the kernel without changing its shape. We eliminated this 

effect by computing the percentiles after subtracting the mean distance travelled in a given 

kernel replicate from the distance travelled by each individual in the replicate. Thus for each 

replicate, mean-subtracted distance travelled by each individual (i.e. xi -∑ xi /n), where xi is 

the distance travelled by ith individual and n is the number of individuals that initiated 

dispersal in that replicate, was used for computing percentiles. To investigate shape, we 

calculated the higher moments of the dispersal kernel like standard deviation, skew and 

kurtosis (where the kurtosis of a normal distribution was taken to be zero).  
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To further characterize the kernel data obtained from the dispersal kernel assay in presence of 

food, were fitted with the negative exponential distribution y=ae-bx, where x is the distance 

from the source, y is the frequency of individuals found at x, and a, b are the intercept and 

slope parameters respectively. For this we pooled the data of the three replicates for each of 

the four populations of VB and VBC, estimated the frequency for each distance, natural log-

transformed all values and fitted the equation ln(y) = ln(a) – bx using linear regression. The 

estimated R2 values (Table 6.1) ranged between 0.67 and 0.99 and the residuals showed no 

major trends. The value of population extent was estimated as b-1. ln (a/ 0.01), i.e. the 

distance from the source beyond which 1% of the population is expected to disperse.   

During the linear regression, we observed that one data point in the kernel of the VB3 

population seemed to be an outlier. Excluding this point from the kernel considerably 

improved the fit (R2 = 0.26 became R2 = 0.91) and the distribution of the residuals improved 

considerably. However, removing this outlier reduced the mean value of the spatial extent of 

VBs from 32.6 m to 28.01m. Incidentally, there were no changes in terms of the statistical 

significance in the Mann-Whitney U-tests for a, b or the spatial extent irrespective of whether 

the outlier is included or excluded. Therefore, in this study, we chose to report the value of 

population extent omitting the outlier. Note that this removal only makes our estimate of the 

spatial extent of VBs more conservative.  

Statistical analyses: Since VBi and VBCj that shared a subscript (i.e. i = j) were related to 

each other by ancestry, they were analyzed together as a block. Data for dispersal propensity 

and dispersal distance were subjected to separate three-factor mixed-model ANOVA with 

selection (VB and VBC) and sex (male and female) as fixed factors and block (1-4) as a 

random factor. The propensity data, being fractions, were arcsine-square root transformed 

(Zar, 1999) before analysis. The standard deviation, skew, kurtosis, a, b and spatial extent 

data for each population were computed after pooling the data for the corresponding three 

measurement replicates. For these six quantities, we used separate Mann-Whitney U (MWU) 

tests to compare the VBs and the VBCs. The effect sizes (Cohen’s d) for the differences 

between VBs and VBCs for these six quantities were estimated. Following standard 

recommendations (Cohen 1988), the value of effect size (d) was interpreted as large, medium 

and small when d>0.8, 0.8>d>0.5 and d<0.5 respectively. All statistical analyses were 

performed using STATISTICA® v5 (StatSoft. Inc., Tulsa, Oklahoma). 
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RESULTS 

Rapid, simultaneous evolution of dispersal propensity and ability: After 10 generations 

of selection, the VB populations were found to have significantly greater dispersal propensity 

(Fig. 6.2a, F1,3= 148.1, P= 0.001) and dispersal ability (Fig. 6.2b, F1, 3= 41.32, P= 0.008) 

compared to the VBCs. This suggests that compared to the controls, in the selected 

populations, a larger fraction of flies initiated dispersal and those dispersers travelled farther. 

It was interesting to note that only 10 generations of selection was sufficient to produce a 

significant divergence for these dispersal traits. We repeated the experiment after 20 

generations of selection and the VB populations again had a significantly higher propensity 

(Fig. 6.2c, F1,3= 22.68, P= 0.02) and ability (Fig. 6.2d, F1,3= 68.8, P= 0.004) than the 

corresponding VBCs. 

 

Figure 6.2. Evolution of dispersal propensity and ability. (a, c and e) Propensity refers to the 

fraction of the total population that disperses from the source. (b, d and f) Ability refers to the 

mean distance travelled by those individuals that come out of the source. The selected populations 

(VBs) had significantly greater propensity and ability compared to the controls (VBCs) in all the 

assays performed after 10 (a, b), 20 (c, d) and 33 (e, f) generations of selection. Food was present 

in the source container for the assay performed after 33 generations of selection (e, f). Each bar is a 

mean over four replicate populations each of which had three independent replicates. Error bars 

represent standard errors around the mean (SEM). * denotes P < 0.05 for the main effect of 

selection in the ANOVA. 

 

Selected flies dispersed more even in the absence of stress: After 33 generations of 

selection, we again measured the dispersal traits of VBs and VBCs. The experimental set-up 

was identical to the previous assays mentioned above except each source now contained a 

supply of moisture and nutrition such that the flies were neither starved, nor desiccated. This 
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removed two of the major proximate reasons for dispersal present during the process of 

selection. However, even in the presence of food in the source, the VB populations were 

found to have significantly greater dispersal propensity than VBCs (Fig. 6.2e, F1,3= 60.78, P= 

0.004) and ability (Fig. 6.2f, F1, 3= 15.23, P= 0.03) compared to the VBCs.  

 

Figure 6.3. Evolution of location and shape parameters of dispersal kernel. (a) Overall 

dispersal kernel of VB and VBC populations. Each bar represents the average frequency of flies 

counted in the corresponding distance-bin for the four populations of each of VB and VBC. Error 

bars= standard error. (b) 5th to 95th percentile for the mean-subtracted kernels of VB and VBC 

populations. The error bars represent standard errors around the mean. In few cases the error bars 

are too small to be visible. Each percentile point represents data pooled over four VB or VBC 

populations each of which had three independent measurement replicates. (c) Standard deviation, 

(d) Skew and (e) Kurtosis of the dispersal kernels. Each point (triangle for VBC and circle for VB) 

represents data from one replicate population, pooled over three independent kernel measurements. 

Together these panels indicate that the dispersal kernels of VBs have become flatter and their tails 

have become fatter. * denotes P<0.05 for Mann-Whitney U-tests. 

 

Taken together, the above results imply that multiple components of dispersal had rapidly and 

simultaneously evolved in the selected populations, and this difference was observable 

irrespective of the presence or absence of a proximate reason for them to disperse. We next 

investigated the implications of these changes in dispersal components, on the spatial 

distribution of the organisms, i.e. the dispersal kernel (Nathan et al., 2012). 
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Figure 6.4. Fitted kernels of VB and VBC populations. In each panel, the frequency of 

individuals dispersed (scaled by total number of dispersed individuals) is plotted against the 

corresponding dispersal distances for each population. The three points at each dispersal distance 

correspond to the three measurement replicates of a population. The red dashed line is the negative 

exponential curve fitted to the pooled data of the corresponding population. Note, for VB3, the 

frequency value at dispersal distance 20 was considered as outliers and not considered during 

fitting. 

 

Evolution of dispersal kernel and increased frequency of LDDs in the selected 

populations: There was a clear difference between the distributions of the dispersal distances 

of the VBs and the VBCs (Fig. 6.3a), suggesting that the VB kernel had evolved due to 

selection. All the higher percentiles (75 onwards) of the dispersal kernel of VBs were greater 

than the corresponding percentiles of VBCs (Fig. 6.3b) which indicates the presence of a 

greater number of Long-Distance-Dispersers (LDDs) in the selected populations. This also 

suggested that the overall kernel shape has changed, which was supported by the fact that VB 

populations had a significantly greater standard deviation (Fig. 6.3c, MWU= 0.0, P= 0.02, d= 

4.45), lesser positive skew (Fig. 6.3d, MWU = 0.0, P= 0.02, d= 1.79) and more negative 

kurtosis (Fig. 6.3e, MWU= 0.0, P= 0.02, d= 2.23) compared to the VBCs. For all these shape 
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statistics, effect sizes of the differences between VB and VBC populations were large (i.e. d > 

0.8). When we fit a negative exponential distribution, (y=ae-bx) to the data (Fig. 6.4), we 

found that the values of the intercept parameter a (Fig. 6.5a, MWU= 0.0, P= 0.02, d= 3.77) 

and the slope parameter b (Fig. 6.5b, MWU = 0.0, P= 0.02, d= 4.17) for the VB kernels were 

significantly lower than the VBCs (see Table 6.1 for R2 values). This indicates a general 

flattening of the shape and fattening of the tail of the kernel in the selected populations. 

The mean spatial extent of the VBs and VBCs were found to be 28 m and 16.8 m respectively 

which implies an increase of 67% (Fig. 6.5c, MWU= 0.0, P= 0.02; d= 5.67). In other words, 

if we compare the top 1% of the dispersing individuals, VBs travel ~67% greater distance 

than VBCs. This implies an increase in the proportion of LDDs in the population (i.e. the 

fatness of the tail of the distribution). The fact that this increase was obtained after only 33 

generations of selection suggests that evolvability of the kernel cannot be ignored in medium 

to long-range forecasts of phenomena like the rate of range expansion, disease spread and 

invasion speed. 

Table 6.1. R2 values of the fitted kernels 

Populations R2 

VB1 0.67 

VB2 0.73 

VB3 0.91 

VB4 0.65 

VBC1 0.97 

VBC2 0.97 

VBC3 0.99 

VBC4 0.98 
 

 

It should be noted here that the Mann-Whitney U test (MWUT) compares the ranks of the 

observations across two groups (Zar, 1999). This implies that for any number of tests, as long 

as the sample sizes and the relative ranks are the same, the U- and P-values will be identical. 

This is what is happening for the six MWUTs in Figs 6.4c-e and Fig 6.5. There are absolutely 

no overlaps between the VB and VBC values in any of these figures, as a result of which, in 

all the MWUTs, the ranks for one group is 1,2,3,4 and that for the other is 5, 6, 7, 8. Not 

surprisingly, all of them yield exactly the same values of U and P. 

In short, our results indicate that even if we account for the increased mean, the shape of the 

dispersal kernels of the VBs had evolved to be substantially different from that of the VBCs.  
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Figure 6.5. Evolution of the parameters of dispersal kernel and the spatial extent. Dispersal 

kernel parameters were estimated by fitting the negative exponential y=ae-bx
, where x is the distance 

from the source and y is the frequency of individuals found at x. Estimated values of (a) a and (b) b 

are significantly lower for VBs than VBCs. (c) Using the fitted curve, spatial extent of each of VB 

and VBC populations was computed by finding the distance from the source, beyond which 1% of 

the population is expected to reach. Spatial extents of VBs were greater than VBCs, indicating an 

increase in LDDs in the population. Each point (triangle for VBC and circle for VB) represents data 

from one replicate population, pooled over three independent kernel measurements. * denotes 

P<0.05 for Mann-Whitney U-tests. 

 

Drosophila dispersal is sex-biased but both sexes respond similarly to selection: In 

presence of stress (performed after 20 generations of selection), males had greater ability to 

disperse than females (Fig. 6.6b, F1,3= 16.28, P= 0.027), although in terms of dispersal 

propensity both the sexes performed equally (Fig. 6.6a, F1,3= 3.47, P= 0.16). Interestingly, 

when assayed in the absence of stress after 33 generations, the trend reversed. Here we found 

that females had significantly lower propensity than males (Fig. 6.6c, F1,3= 21.59, P= 0.019) 

but the ability of both the sexes was not different from each other (Fig. 6.6d, F1,3= 2.23, P= 

0.23). Given the presence of sex-biased dispersal in ability and propensity (albeit in different 

environments) we continued to investigate whether individuals of both the sexes responded 

equally to selection for dispersal. But we did not find any significant treatment × sex 

interaction in presence of stress with respect to dispersal propensity (Fig. 6.7a, F1,3= 1.98, P= 

0.25) or ability (Fig. 6.7b, F1,3= 0.52, P= 0.52). In the absence of stress too, the interaction 

term was not significant in case of either propensity (Fig. 6.7c, F1,3= 0.21, P= 0.68) or ability 

(Fig. 6.7d, F1,3= 2.2, P= 0.24). 
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Figure 6.6. Sex-biased dispersal in the presence and absence of food.  Dispersal (a) Propensity 

and (b) Ability in the absence of food in the source container. Dispersal (c) Propensity and (d) 

Ability in the presence of food in the source container. Males had significantly greater dispersal 

ability in the absence of food, but significantly higher propensity in the presence of food in the 

source. This shows that the expression of sex-biased dispersal can vary depending on which 

component is being measured and the environmental condition under which dispersal takes place. 

Error bars represent standard errors around the mean (SEM) and * denotes P<0.05 for the main 

effect of sex in the ANOVA. 

 

 
Figure 6.7. Selection × Sex interaction for dispersal propensity and ability in the presence and 

absence of food. Here none of the sex × selection interactions were statistically significant, thus we 
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could not conduct post-hoc tests for pairwise comparisons of each groups. However, dispersal 

propensity (A) and ability (B) of both the sexes of VB populations were greater than those in VBCs 

in absence of food in the source. Similarly, even in presence of food in the source, males and 

females of VB populations had higher dispersal propensity (C) and ability (D) than VBCs. This 

showed that both sexes in VB responded equivalently to the selection for dispersal. The error bars 

represent standard errors around the mean (SEM). 

 

DISCUSSION 

During dispersal, various physiological and behavioral attributes pertaining to the different 

dispersal stages (i.e. emigration, travel and arrival/settlement) (Bowler and Benton, 2005; 

Cote et al., 2010) interact with each other and the external environment. These interactions 

can lead to a variety of costs  for the organism (Bonte et al., 2012). In order to evolve greater 

dispersal, organisms need to optimize over various physiological or genetic constraints to 

minimize the overall fitness cost of dispersal. For example, when the conditions are 

unfavorable and the cost of dispersal is less than the cost of staying back in the natal patch, 

enhanced dispersal propensity is likely to evolve (Friedenberg, 2003). However, when the 

cost of travelling or settlement is very high, dispersal propensity might fail to evolve, even if 

there is reduced fitness in the natal patch (Cheptou et al., 2008). As the number of factors and 

interactions that affect dispersal is very high, evolution of dispersal turns out to be a complex 

phenomenon. Thus, it becomes difficult to predict which components of dispersal would 

evolve and which would not, under the influence of various ecological circumstances.  

Not surprisingly therefore, there is a large variation in the outcomes of experimental 

evolutionary studies on dispersal. For example, in spider-mites (Tetranychus urticae), it has 

been shown that dispersal propensity evolves when direct selection is imposed on dispersal 

rate (i.e. those who disperse early are selected) (Yano and Takafuji, 2002). Interestingly, in 

the same model system, propensity fails to evolve when selection is imposed directly on 

propensity (Tien et al., 2011) or on dispersal ability (Bitume et al., 2011). Another study with 

the same model organism (Fronhofer et al., 2014) showed that spatially-correlated extinctions 

favored the evolution of long-distance dispersers (LDDs) which is related to increased 

dispersal ability. However, in the same experiment, dispersal propensity did not evolve. This 

was because, positive spatial-correlation of extinction, in the absence of a significant increase 

in dispersal ability, substantially increases the cost of leaving the current habitat. A 

theoretical study on the evolution of passive dispersal of seeds on a fragmented landscape 

also suggests that spatial autocorrelation of nearby habitats can lead to the evolution of long-

distance dispersal, but not propensity (Hovestadt et al., 2001). To summarize, all these 



147 

 

selection studies suggest that multiple components of dispersal (here propensity and ability) 

cannot evolve together.  

Multiple dispersal components can evolve simultaneously under condition-dependent 

selection: In our study, only the first 50% of the adults that reached the destination were 

allowed to breed. Thus, there was a direct selection for dispersal propensity (i.e. the tendency 

to leave the source patch). Moreover, as the length of the path increased over generations, 

there was also a direct selection on dispersal ability (i.e. the ability to travel the required 

distance). Consequently, within 10 generations of selection, dispersal propensity (Fig. 6.2a) 

and ability (Fig. 6.2b) of the selected lines (VBs) was significantly greater than the controls 

(VBCs). We measured these two components of dispersal again after 20 generations of 

selection and reached an identical conclusion (Figs 6.2c and 6.2d). Both these assays were 

performed under conditions similar to the selection (i.e. no food in the source) which 

increases dispersal propensity of the flies (cf Fig. 6.2c and Fig. 6.2e), presumably due to 

starvation and desiccation stress. Thus, the dispersal, in this case was condition-dependent 

(sensu (Denno and Roderick, 1992; Matthysen, 2005), i.e. primarily driven by external cues. 

The simultaneous evolution of dispersal propensity and ability in VBs was interesting 

because, in earlier studies, multiple components of dispersal had failed to evolve together 

(Bitume et al., 2011; Fronhofer et al., 2014; Tien et al., 2011; Yano and Takafuji, 2002). Our 

results also differ from theoretical (North et al., 2011) and field (Baguette et al., 2003; 

Cheptou et al., 2008; Schtickzelle et al., 2006) studies which predict that increased habitat 

fragmentation should have a negative effect on dispersal propensity. This apparent 

discrepancy is resolved when we observe that in some of these studies, the mortality during 

the travelling phase is so high that individuals with lower dispersal propensity have greater 

fitness even with habitat destruction (Baguette et al., 2003; Cheptou et al., 2008; although see 

Schtickzelle et al., 2006). In our study, since ~50% of the flies were able to reach the 

destination, the cost of dispersal was not prohibitively high. This allowed dispersal propensity 

to evolve, as predicted in some of the earlier theoretical studies (Heino and Hanski, 2001; 

Zheng et al., 2009).  

Phenotype-dependent dispersal can evolve even under condition-dependent selection: 

After demonstrating the evolution of condition-dependent dispersal, we next investigated the 

evolution of phenotype-dependent dispersal. This refers to dispersal tendencies that are 

intrinsic to the organisms (Clobert et al., 2009), and thus independent of the dispersal cues. 
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For this set of assays, we placed a food plate (which also provided moisture) in the source. 

Thus, the flies in the source experienced no starvation or desiccation stress, which removed 

the two major proximate reasons for dispersal experienced during the process of selection. 

Even under these conditions, a significantly greater proportion of VBs dispersed (Fig. 6.2e) to 

a larger average distance (Fig. 6.2f) than the VBCs.  

This result is important because all previous experimental evolution studies have both 

imposed and assayed for phenotype-dependent selection (Bitume et al., 2011; Fronhofer et 

al., 2014; Keil et al., 2001; Ogden, 1970; Tien et al., 2011; Yano and Takafuji, 2002). The 

evolution of phenotype-dependent dispersal in such studies is intuitive. However, our results 

suggest that phenotype-dependent dispersal can evolve rapidly as a result of selection for 

condition-dependent dispersal. The presence of such constitutive dispersers will evidently 

affect the dispersal-related properties of a population which in turn can affect a large number 

of community- and ecosystem- level processes including range expansion (Travis and 

Dytham, 2002), invasion (Kot et al., 1996; Shaw and Kokko, 2015), spread of diseases 

(Rappole et al., 2006) and community dynamics (Leibold et al., 2004). The other aspect of 

dispersal that would affect these processes is the dispersal kernel. 

Evolution of dispersal kernel and LDDs in the selected populations: In principle, two 

populations can have very different dispersal kernels because of underlying evolved 

differences in the phenotype, or the environment, or both. Thus, in order to demonstrate the 

evolution of the kernel due to phenotypic evolution in the populations, it is important to 

control for the environment in which dispersal is assayed. We achieved this in our study by 

making the path through which the flies moved completely homogeneous and devoid of any 

potential environmental feature (like food or predators). More importantly, both the VBs and 

VBCs experienced the same environment during dispersal. Thus, all the differences observed 

between the kernels of these two populations were attributable to the underlying phenotypic 

differences. Evidently, we cannot claim this kernel to be the “natural kernel” of the flies as 

there are potentially infinite numbers of such “natural kernels” (one for every environmental 

state). However, this study showed that for a given environment, condition-dependent 

selection for dispersal can alter the location and shape of the kernel (Fig. 6.3 and Figs. 6.5a-b) 

and enhance the fraction of LDDs in the population (Fig. 6.5c), even when there is no 

proximate reason for dispersal. This is an interesting point because the shape of the dispersal 

kernel is often considered to be a static entity in much of the theoretical literature (Chapman 

et al., 2007; Krkošek et al., 2007). Our results are thus in line with more recent theoretical 
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(Phillips et al., 2008; Starrfelt and Kokko, 2010) and empirical studies (Fronhofer et al., 

2014) that considered the possibility of evolving kernel shapes. 

Our results also showed that the skew and kurtosis of the selected populations had reduced 

compared to the controls (Fig. 6.3d and Fig. 6.3e) which is consistent with observations on 

invasive cane toad populations in Australia and results of mathematical modelling on the 

same species (Phillips et al., 2008). For both studies, the change in the kernel shape 

parameters can be attributed to the increased frequency of LDDs in the population.  

Sex-biased dispersal exists in Drosophila: Although there are many examples of sex-biased 

dispersal (SBD) among birds and mammals (reviewed in Pusey, 1987), relatively few cases 

of SBD have been reported among insects like butterflies (Bennett et al., 2013) and ground 

beetles (Lagisz et al., 2010). It has been shown that Drosophila pachea exhibits SBD while 

D. nigrospiracula and D. mojavensis do not (Markow and Castrezana, 2000). However, to the 

best of our knowledge, no prior study has looked at SBD in Drosophila melanogaster. 

Therefore, our first aim was to see whether SBD exists at all in this species. 

When there was no food in the source, the males had a greater ability to disperse (Fig. 6.6b), 

but there was no sex-bias in dispersal propensity (Fig. 6.6a). Interestingly, the situation was 

reversed when there was food in the source, i.e. there was no difference in ability (Fig. 6.6d), 

but the males had greater dispersal propensity (Fig. 6.6c). These results highlight two major 

issues in studying SBD. First, the presence of SBD for any one component of dispersal is no 

guaranty for the presence of SBD for another dispersal component (Clutton‐Brock and Lukas, 

2012).  Second, the fact that SBD for propensity and ability were seen in the absence and 

presence of food respectively, illustrates that the manifestation of SBD for a given dispersal 

component can be condition-dependent. Taken together, these observations suggest that 

across-study comparisons of SBD are not possible, until and unless they refer to the same 

dispersal component, under similar environmental conditions.  

One potential complication with these experiments is that the dispersal assays in presence and 

absence of food were not conducted at the same time. Thus, in principle, it is possible that the 

differences between the results in presence and absence of food are due to the selection that 

happened during the intervening time. Although we failed to come up with any biological 

reasoning, we could not logically rule it out either.  Note that our first observation (SBD for 

one component does not guaranty SBD for another) remains unaffected by this complication. 
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Both sexes respond similarly to selection for dispersal in Drosophila: Prior studies have 

shown that selection can lead to sex-specific effects on dispersal-related traits (Legrand et al., 

2016). Therefore, our next major question was whether selection had made dispersal more 

sex-biased in the VB populations. This kind of a bias was expected because of an inherent 

asymmetry in our selection protocol: non-dispersing males could, in principle, pass their 

genes to the next generation by impregnating dispersing females, while the females had no 

such option in terms of their evolutionary contribution. This implied a potentially stronger 

selection pressure on the females for dispersal-related traits, which could lead to a sex × 

selection interaction for propensity or ability. In short, VB females were expected to diverge 

more from the VBC females than the VB males from the VBC males.   

The sex × selection interaction was not statistically significant irrespective of the presence or 

absence of food (Fig. 6.7). Unfortunately, we could not conduct post-hoc tests for these 

differences, as the sex × selection effect was not significant in either ANOVA. However, it 

can be safely said that there was no evidence to support that the males had responded less to 

selection for either dispersal ability or propensity. There can be at least two potential (and 

mutually non-exclusive) reasons for this observation. First, in Drosophila, there is substantial 

evidence for last male precedence, i.e. when the females mate multiple times, the last male to 

mate sires more offspring (reviewed in Parker, 1970). Thus, the males that mated with the 

females after dispersal could have had much greater fitness than those that mated before 

dispersal. This could considerably increase the selection pressure on the males to disperse and 

explain why the males maintained their advantage in terms of propensity and ability in the 

VB populations. The other possibility is that dispersal traits are controlled by the same loci in 

both females and males in D. melanogaster, such that it is not possible for the sexes to 

respond differently to selection for dispersal. Interestingly, in terms of trends, the VB males 

always had greater dispersal propensity and ability than the VBC males (Fig. 6.7). This 

suggests that, irrespective of its relative magnitude with respect to the females, there was 

substantial positive selection pressure on VB males for dispersal components. 

Caveats: In this study, we selected for ambulatory dispersal in fruit flies. It is well known 

that this is not the primary mechanism by which fruit flies disperse in nature (Dobzhansky, 

1973) and we had no intention of examining that topic in a laboratory study. Our aim here 

was to investigate, given a mode of movement, how various aspects of dispersal interact and 

evolve. One can potentially argue that in our kernel assays the flies had not attained their 

equilibrium distribution of dispersal distances after six hours, which could potentially 
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invalidate our kernel measures. But, it should be noted that dispersal kernel has been defined 

as the "distribution of the post-dispersal locations relative to the source point" (Nathan et al., 

2012). However, for constantly moving organisms like our fruit flies, it is impossible to 

define when dispersal has ended, particularly when they are still in the path. That is why we 

had to impose a temporal cut-off for the kernel assays, which is consistent with similar 

empirical studies in the literature (Bitume et al., 2011; Markow and Castrezana, 2000; Ogden, 

1970). Thus, the problem (of organisms not settling down) is intrinsic to the study of the 

dispersal kernel of any actively moving organism that does not settle to make nests or occupy 

territories, and there is no way to obtain the equivalent of an equilibrium "distribution of the 

post-dispersal locations" for such animals.  Moreover, we still believe that the kernel that we 

measured gives valuable information about dispersal evolution, for the following reasons. 

First, our study compared the dispersal of the VBs and the VBCs under identical conditions 

which means that all comparative statements about the various aspects of the kernel (Figs 6.3 

and 6.5) are valid, irrespective of whether the kernels were static or not. Second, looking at 

the individual kernels (Fig 6.4) it is clear that there is relatively little variation across the 

three replicates for any given population (VB or VBC). The same is true for the various shape 

parameters across the four replicates of the VBs or the VBCs (Figs 6.3c-e and 6.5). This 

suggests that even if the populations have not attained their equilibrium distribution of 

dispersal distance, they are probably fairly close to it. This is not surprising as other 

experiments in our laboratory have shown that ~90% of the flies that leave the source in VBs 

and VBCs, do so within the first 90 minutes (Tung et al, manuscript under preparation). This 

implies that most of the flies spend ≥4.5 hours on the path, which is ~66% of the total 

dispersal time. To summarize, we believe that even if we cannot demonstrate that we have 

measured dispersal kernel at equilibrium, this is a problem inherent with most active 

dispersers, it does not change any of the conclusions of our study, and our measured kernels 

are probably very close to the equilibrium any way. 

Implications of our results: There is a growing realization that multiple components must 

be investigated simultaneously to obtain a complete picture of dispersal evolution (Bonte et 

al., 2012). However, there is no theoretical or empirical expectation about the relationship 

between the various dispersal components, i.e. evolution of propensity does not let us predict 

anything about the evolution of ability and vice versa. Given this scenario, our result about 

the concurrent evolution of multiple dispersal components can be taken as a null model. In 

other words, whenever a particular component of dispersal is seen not to evolve, elucidating 
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the reasons for that can become the focus of an investigation. Furthermore, our study shows 

that under gradual directional selection of moderate intensity and in the absence of 

conflicting selection pressures, dispersal can evolve rapidly, and substantially. Such 

conditions are expected to be fairly common in nature, particularly in regions where climate 

changes or habitat degradations are gradual but steady. More critically, our results indicate 

that once evolved, these traits can express themselves even in absence of the proximal 

stresses (i.e. become phenotype-dependent). This could lead to organisms with intrinsically 

high rates of dispersal. On one hand, this could reduce the chances of local extinction (Brown 

and Kodric-Brown, 1977; Forney and Gilpin, 1989) and ensure greater gene flow among 

populations (Vilà et al., 2003). While on the other, this could increase the invasiveness of 

species (Kot et al., 1996; Neubert and Caswell, 2000), increase the rate of spread of diseases 

(Keeling et al., 2001) and induce instability in metapopulation dynamics through enhanced 

synchrony between neighboring subpopulations (Dey and Joshi, 2006). Figuring out the 

magnitude by which different dispersal components evolve and how that affect these 

ecological processes will be a major challenge not only for ecologists but also for ecological 

economists and conservation biologists (Buoro and Carlson, 2014).   



153 

 

CHAPTER 7 

 

 

 

Evolution of dispersal syndrome and its 

corresponding metabolomic changes 

 

 

 

 

Highlights 

 Activity, aggression, and exploration evolved as correlated response to dispersal 

selection. 

 Dispersal selected flies had similar body size, fecundity and longevity as the controls. 

 Increased glucose, AMP and NAD levels suggest enhancement of cellular respiration 

in the selected flies. 

 The selected lines had higher levels of neuropeptides related to aggression and 

exploration. 

 

 

 

 

 

Adapted from: Tung, S., Mishra, A., Gogna, N., Sadiq, M. A., Shreenidhi, P. M., Sruti, V. S., 

Dorai, K., Dey, S. 2017. Evolution of dispersal syndrome and its corresponding 

metabolomics changes. bioRxiv (2017) 178715.  
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1. INTRODUCTION 

Dispersal affects several ecological and evolutionary processes (Clobert et al., 2012) and is 

one of the early responses of mobile organisms under environmental stresses. Faced with the 

spectre of global climate change and large-scale anthropogenic habitat destruction, fates of 

several natural populations depend, at least in part, on their dispersive abilities. Not 

surprisingly therefore, evolution of dispersal and its consequences on the organisms 

themselves have become major topics of investigation over the last two decades (reviewed in 

Ronce, 2007). 

There are two somewhat different ways by which this issue has been investigated in the 

dispersal literature. The first approach involves comparing the behavioural or life-history 

attributes of dispersers with those of the non-dispersers in a given population (e.g. Ronce and 

Clobert, 2012). Such studies have led to the conclusion that very often (although not always) 

certain suites of behavioural and life-history traits are closely associated with dispersers 

(reviewed in Clobert et al., 2009). For example, in terms of behaviour, dispersers typically 

exhibit greater exploratory tendencies (Cote et al., 2010; Korsten et al., 2013) and are more 

aggressive (Duckworth and Badyaev, 2007), whereas in terms of life-history, the dispersers 

are often larger in size (Dingle et al., 1980) and have greater fecundity (Ebenhard, 1990). The 

primary motivation for investigating such suites (also called dispersal syndromes) is the 

assumption that associations between dispersal-related traits are expected to affect the genetic 

and demographic outcomes of dispersal (Clobert et al., 2009; Ronce and Clobert, 2012). 

While the assumption is fairly intuitive, the robustness of the dispersal syndrome is not, a fact 

that has been amply noted in the literature (Ronce and Clobert, 2012). This is primarily 

because dispersal is a complex process and what exactly evolves can be rather sensitive to 

differences in the nature of the selection pressure (Bonte et al., 2012). For example, in spider 

mites, selection applied through spatially correlated extinctions leads to an increase in the 

frequency of long distance dispersers (LDDs) even though the fraction of individuals 

dispersing (i.e. dispersal propensity) is reduced (Fronhofer et al., 2014). However, dispersal 

propensity does evolve when there is a direct selection on dispersal (Yano and Takafuji, 

2002). Evidently, there is no reason to expect the same set of behaviour or life-history traits 

to have evolved in these two experiments, even though some attribute of dispersal had 

evolved in both cases.  
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The second approach to study the consequences of dispersal evolution is experimental 

evolution, which seeks to exercise greater control over the various selection pressures 

affecting dispersal, even at the cost of simplifying some of the ecological interactions. From a 

large number of studies in the last few years (Fronhofer et al., 2014; Matsumura and 

Miyatake, 2015; Yano and Takafuji, 2002), it is clear that under most laboratory conditions, 

dispersal can evolve reasonably fast. Surprisingly though, most laboratory experimental 

evolution studies report that life-history traits like longevity and fecundity do not evolve 

(Bitume et al., 2011; Li and Margolies, 1994) as a correlated response to selection for 

dispersal. Unfortunately, the experimental evolution studies have often not focused on the 

various behavioral attributes (although see Matsumura and Miyatake, 2015; Matsumura et al., 

2016), which makes it difficult to compare the observations with those from association 

studies. 

Another major question in this context is the underlying mechanism of dispersal evolution. 

Although a lot is known about the anatomical or physiological changes associated with 

dispersal phenotypes (reviewed in Zera and Brisson, 2012), we have relatively lesser 

understanding of what happens at the molecular level. Two genes that have been fairly 

conclusively shown to be related to dispersal in insects are the glycolytic enzyme 

Phosphoglucose isomerase (Pgi) in the Glanville fritillary butterflies (Niitepõld et al., 2009) 

and the cGMP-dependent protein kinase called foraging (for) gene in Drosophila 

melanogaster (Osborne et al., 1997). In C. elegans, three genes, namely G-protein coupled 

receptors npr-1 (de Bono and Bargmann, 1998) and tyra-3 (Bendesky et al., 2011) and rol-1 

(Friedenberg, 2003) have also been shown to have a connection with dispersal phenotypes. 

Although these are valuable insights, it is not always clear whether these genes would be the 

ones whose frequencies would change during dispersal evolution. More critically, given the 

complexity of dispersal, it is intuitive to assume that in any given species, dispersal evolution 

will probably involve changes in a fairly large number of genes and metabolic pathways. 

Therefore, a promising approach would be to look at the changes at the level of the 

metabolome and correlate that with the corresponding behavioural and life-history changes. 

Although this approach has been successfully used in the context of adaptation to stresses 

(Sørensen et al., 2017) or circadian profiles of metabolites (Gogna et al., 2015), to the best of 

our knowledge, it has never been attempted in the context of dispersal evolution.  

Here we address some of these issues using four large, outbred populations of Drosophila 

melanogaster that have been selected for increased dispersal. These populations have evolved 
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significantly greater dispersal propensity and ability (i.e. distance covered by the dispersers) 

and a larger fraction of Long-Distance Dispersers (LDDs) in the population (Tung et al., 

2017). In this study, we investigate three correlated behavioural traits (locomotor activity, 

exploration and aggression) and three life-history traits (body size, fecundity and life-span). 

We find that while all three behavioural traits have evolved significantly, none of the life-

history traits had been altered due to selection for dispersal. We then investigate the 

metabolomic changes in the selected flies using non-targeted NMR spectroscopy and connect 

them with the corresponding behavioural and life-history changes.  

 

2. MATERIALS AND METHODS 

2.1 Ancestry and maintenance of the experimental populations 

In this experiment, we used eight large (breeding size of ~2400) outbred laboratory 

populations of Drosophila melanogaster, four of which were subjected to selection for 

increased dispersal over 49 generations (called VB1-4) and the other four populations served 

as corresponding controls (VBC1-4). VB and VBC populations that share a numerical 

subscript (e.g. VB1 and VBC1) were related by ancestry (Tung et al., 2017), and hence were 

always assayed together and treated as blocks in statistical analyses.  

Both VBs and VBCs were maintained on a 15-day discrete generation cycle at 25°C and 

constant light conditions. In each generation, ~60-80 eggs were collected in clear plastic vials 

containing ~6 mL of standard banana-jaggery food (following Sheeba et al., 1998). For each 

VB and VBC population, we collected eggs in 80 and 40 vials respectively. After 12 days 

from the day of egg collection, the adults were collected and subjected to the selection 

protocol (see section 2.3). Immediately after this, the adults of a given population were 

transferred to a plexi-glass cages (25 cm × 20 cm ×15 cm) and provided with yeast 

supplement along with standard banana-jaggery food. After ~40 hours, eggs were collected 

for the next generation. The adults were discarded after oviposition, thus ensuring that 

individuals of two successive generations never co-exist.  

2.2 Selection procedure  

The apparatus used for selection has three components- a source, a path and a destination 

(see Chapter 6 and Tung et al., 2017 for detailed description). In order to impose selection on 

VBs, the adults collected from 40 vials (~2400) were introduced into a source container. 

Thus, for each VB population, two source containers were used. Each source was then 
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connected to a path consisting of a plastic tube of inner diameter ~1 cm, which led to the 

destination container. The source and path did not contain any source of food or moisture, 

and the flies dispersed through the path into the destination, which contained a strip of moist 

cotton as a source of moisture. The process was continued until ~50% (visual estimation) of 

the population reached the destination or for six hours (whichever happened earlier). The 

arbitrary cut-off of six hours was chosen based on the result of a prior assay in the lab that 

under such condition, the flies do not die due to desiccation stress during the first six hours 

(S. Tung personal observations).  

Similar to VBs, adults coming from the 40 vials of each VBC populations were maintained in 

separate source containers but they were not allowed to disperse. They were also provided 

with a moist cotton plug, after 25% of the VBs reached their destination or 3 hours 

(whichever was earlier).  

At the end of this process, for VBCs, all the flies from respective source containers were 

transferred to the cages, thus ensuring that there was no selection for dispersal. For each VB 

population, only the flies which reached the destination in the two selection setups were 

transferred into a cage and allowed to breed for the next generation. Thus, the breeding 

population size of VBs and VBCs remained comparable in each generation. 

Starting from 2 m, the length of the path was increased intermittently over generations in 

order to intensify the selection for grater dispersal ability. By generation 67, when the last set 

of assays were performed, the path length had reached 20 m.  

2.3 Assays: 

Prior to any assay, both VB and VBC populations were maintained under identical rearing 

conditions for one generation to ameliorate the influence of phenotypic plasticity or non-

genetic parental effects. The progeny of these flies were used for the assays. Moreover, for all 

the assays, egg density was always maintained at ~50 eggs on ~6mL food in each vial to 

avoid any confounding effect of larval crowding on the life-history and behavioural traits 

measured. 

2.3.1 Locomotor activity assay 

After 49 generations of selection, locomotor activity of the selected and control lines were 

checked both in the presence and absence of food using Drosophila Activity Monitoring 

(DAM2) data collection system (Trikinetics Inc, Waltham, MA). The activity for a given fly 

was estimated as the average number of times the fly crossed the IR beam of Drosophila 

activity monitor per hour, while, continuous inactivity for five minutes or more was 
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considered as sleep/rest (Chiu et al., 2010; Hendricks et al., 2000). For each VB/VBC 

population, we measured the activity of only male flies as in females laying of eggs on the 

tubes could affect the accurate measurement of locomotor activity (Chiu et al., 2010). We 

performed this assay both in presence and absence of food. For the activity assay in the 

presence of food, on the 11th day from the day of egg collection, between 1830 h -1930 h, 

single adult male flies were aspirated into glass activity tubes of 5 mm diameter, containing 

standard banana-jaggery food at one end. We preferred aspiration over CO2 anaesthesia to 

avoid any lingering effects of anaesthetization on the activity of the flies (van Dijken et al., 

1977). Details of the preparation of the tubes and the cleaning of the same can be found 

elsewhere (Chiu et al., 2010). The selected populations were always assayed along with their 

matched control populations (i.e. VB1 was assayed with VBC1 and so on) and there were 30-

32 replicates for each population. Activity data were collected for 30 hours and were divided 

into two parts - i) first 6 hours and ii) next 24 hours. The first set captured the activity-rest 

pattern immediately after introduction of the flies in the tube, while the next set measured the 

steady state activity-rest pattern, after 6 hours of acclimatization, for a complete 24-hour 

cycle.  For the entire duration of recording, the monitors containing the activity tubes were 

kept undisturbed inside an incubator maintained at 25 °C and constant light.  

Locomotor activity assay in the absence of food was similar to the one mentioned above 

except that no food was provided and both ends of the activity tubes were secured with clean, 

dry cotton plugs. The setup for this assay was done on the 12th day from the day of egg 

collection between 1200 h-1300 h which roughly corresponds to the time at which selection 

was imposed during the regular maintenance of VBs. Moreover, in the no-food case, 

locomotor activity was recorded only for 6 hours from the time of setup as, after this period, 

the flies become stressed and slowly start dying due to desiccation. 30-32 flies were assayed 

for each of the VB and VBC populations. 

For each of these datasets, average number of activity counts per hour was calculated as a 

measure of the activity level of the flies and the fraction of time the flies did not show any 

activity count was computed as an indicator of the sleeping/resting duration. In other words, 

the activity level of a fly is the total number of activity counts while it was not 

resting/sleeping. Thus, mathematically, the activity level of a fly was independent of the 

fraction of time it spent in resting/sleeping. In order to assess the quality of rest/sleep, for the 

24-hour dataset, we computed the average length of uninterrupted rest/sleep bout and 

duration of the longest rest/sleep bout for each of the flies.  
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2.3.2 Exploration assay 

This assay was performed after 53 generations of selection. For each VB or VBC population, 

we used 10 replicate vials each containing around 50 eggs / 6ml of banana-jaggery food. The 

assay was performed on the 12th day after egg collection.  The male flies were aspirated from 

the egg-collection vials and introduced into the experimental arena (modified from Soibam et 

al., 2012) where their activity was recorded using a video camera. The experimental arena 

was made of a clear polycarbonate petri dish lid with an inner diameter of 10 cm. A small 

hole was drilled into the centre of the lid to introduce flies into the setup. The lid was placed 

on top of a blank sheet of paper which contained the traces of two concentric circles. The 

outer circle was of the same diameter as the petri dish lid while the inner circle divided the 

total area of the lid into two zones: the outer containing one third of the total area while the 

inner one enclosing two-thirds of the area (Liu et al., 2007) of the lid. 32 replicates were 

assayed for each sex of all the VB and VBC populations. After the flies were introduced into 

the arena, they were given one minute to acclimatize to the new environment. They were then 

observed for the next 10 minutes and the number of times they entered the inner zone, 

considered as the number of exploratory trips, was recorded. 

2.3.3 Male-male aggression assay 

The aggression assay was performed after 52 generations of selection. For this assay, the flies 

were reared under low levels of larval crowding (~50 eggs in 6-8ml banana-jaggery food). 

Freshly eclosed males were collected and reared in social isolation (i.e. one male per vial) till 

the day of assay (following Yurkovic et al., 2006). We used 6 wells of a twelve-well culture 

plate (Corning®, NY, USA) as the assay apparatus, where each well served as the enclosure 

for one replicate of the aggression assay. A small plastic cup containing regular banana-

jaggery medium was affixed at the centre of each well. A freshly decapitated female was 

stuck to the middle of the food cup using yeast paste. The food and the female served as 

defendable resources and potential reasons for conflict. Following an earlier protocol, VB and 

VBC males were colour-coated with daylight fluorescent pigments (DayGlo) for easy 

identification (Dickens and Brant, 2014). On the 12th day from egg collection, two males (one 

VB and one VBC) were introduced into the setup and their interaction was recorded for 45 

minutes using a video camera. 30 such replicates were assayed for each of the four 

populations of VBs and the corresponding VBCs. Individual wells were visually isolated 

from each other using cotton to ensure no visual cues were being exchanged between 

replicates. Uniform lighting and constant temperature (25°C) were maintained.  
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The scoring for aggression was done after an initial five-minute acclimation period. For each 

of the replicates, the number of successful chase-aways from the food cup was recorded. A 

successful chase-away is defined as one in which one male completely chases the other male 

away from the top surface of the food cup (Yurkovic et al., 2006). Earlier studies have shown 

that in Drosophila a male that manages to complete three consecutive successful chase-aways 

usually manages to successfully chase away the other male in all future encounters (Yurkovic 

et al., 2006). Therefore, we used this criterion to identify the winner of each fight from all the 

blocks.  

2.3.4 Body size assay 

Dry body weight of the adults was measured as a proxy for body size after 49 generations of 

selection. For a given population, ~50 eggs were introduced into food vials containing ~6-8 

mL of standard banana-jaggery medium. After 12 days from the day of egg collection, the 

adult flies were collected, sorted by sex, killed by flash freezing and stored at -80 °C till 

weighing. The flies were then dried at 60°C for 72 hours and (after thawing to room 

temperature) weighed to the nearest 0.1 mg in batches of 20 males or 20 females. Five 

batches of males and females were weighed for each of the four VB and VBC populations. 

2.3.5 Female fecundity assay 

Female fecundity of the selected (i.e., VB1-4) and the control (i.e. VBC1-4) populations were 

assayed after 53 generations of selection. Female fecundity was assayed both during early 

and late life. For early life fecundity, we used 15-day (post egg collection) old females, which 

is the same age at which the eggs are collected for the selection lines. Late life fecundity was 

measured on 33-day (post egg collection) old females. This is because, in Drosophila, it is 

known that during this time female fecundity reduces substantially due to aging but does not 

plateau out (Hanson and Ferris, 1929; Mueller et al., 2007). On the day of assay, flies were 

anaesthetized under mild CO2 and one male and one female each were introduced into a 50 

mL centrifuge tube containing a food cup. The tube had provision for aeration and the food in 

the food cup provided a surface for laying eggs. 40 such replicate setups were made for each 

VBi and VBCi (where i ∈ 1-4) population. The setups were left undisturbed for 12 hours in a 

well-lit environment maintained at 25ºC and ambient humidity. At the end of 12 hours, the 

flies were discarded and the eggs laid on the food were counted under a stereo microscope. 

Since fecundity is largely determined by the body size of the females (Honěk, 1993) which is 

in turn critically dependent on larval density (Prout and McChesney, 1985), we maintained a 
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constant egg density (~50 eggs per vial containing ~6-8 mL of standard banana-jaggery 

food), while collecting eggs for generating the flies for this assay.  

2.3.6 Longevity assay 

Longevity assay was performed after 51 generations of selection in a constantly lit 

environment maintained at 25ºC. We initiated the assay by introducing 10 freshly eclosed, 

unmated individuals of the same sex into a food vial containing ~6 mL standard banana-

jaggery food. 10 such replicate setups were prepared for males and females separately from 

each of the VB/VBC populations. Thus in total, we measured the life-span of 1600 flies in 

this assay. The alive flies were counted daily at a particular time (arbitrarily set at 1500 h) 

and every alternate day, they were transferred into fresh food vials, till the last individual 

died. Flies that escaped or died during transfers were not included in the analysis.  

2.4 Metabolomic study using NMR spectroscopy 

2.4.1 Sample preparation: After 67 generations of selection, NMR spectroscopy was 

performed on one block of selected-control populations (VB4-VBC4). For each VB/VBC 

population, we used 11 replicates, each of which comprised of 30 males. Samples were 

prepared following established protocols (Gogna et al., 2015). The flies were first flash-

frozen in liquid nitrogen, transferred to pre-labelled microfuges containing 0.5 mL of 50% 

acetonitrile solution, homogenized using a battery run homogenizer and centrifuged at 10000 

rpm for 10 min at 4ºC. The supernatant was then transferred to another set of pre-labelled 

microfuge tubes, lyophilized and stored at -80ºC, to be used for NMR experiments. Prior to 

the NMR experiments, the samples were rehydrated in 500 ml of 50 mM phosphate buffer 

prepared using D2O (pH 7.4), containing 1 mg/ ml of 3-(trimethylsilyl)-propionic acid-D4, 

sodium salt (TMSP) as a chemical shift reference and transferred to 5mm NMR tubes.  

2.4.2 NMR spectroscopy: NMR spectra were recorded on a Bruker Biospin 600 Avance-III 

spectrometer operating at a 1H frequency of 600.13 MHz at 300 K using a 5 mm QXI probe. 

Gradient shimming was performed prior to signal acquisition to optimize magnetic field 

homogeneity. 1D 1H NMR spectra were acquired using the water suppressed Car–Purcell–

Meiboom– Gill (CPMG) spin-echo pulse sequence optimized with a spin -echo delay t of 300 

ms and n= 400 and a total spin–spin relaxation delay (2nt) time of 240 ms to achieve 

attenuation of fast-relaxing broad signals from larger molecules. The proton spectra were 

collected with a 90-degree pulse width of 9.15 ms, a relaxation delay of 2 s, 16 scans, 16 K 

data points and a spectral width of 7211.54 Hz. Data were zero-filled by a factor of 2 and the 
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FIDs were multiplied by an exponential weighting function equivalent to a line broadening of 

1 Hz prior to Fourier transformation. For resonance assignment and metabolite identification, 

two - dimensional NMR spectra were recorded, including 1H–1H correlation spectroscopy 

(COSY) and 1H– 13C heteronuclear and homonuclear single quantum coherence spectroscopy 

(HSQC, HMQC). 2D 1H–13C HMQC and HSQC spectra were obtained with a spectral width 

of 12 ppm and 200 ppm in the proton and carbon dimensions respectively, 1 K data points, 32 

scans, 256 t1 increments and a recycle delay of 1.5 s. The COSY spectra were acquired with 

a spectral width of 12 ppm in both dimensions, 2 K data points, 32 scans and 128 t1 

increments. Metabolite fingerprinting for the Drosophila NMR spectra was done by checking 

identified metabolite peaks with standard NMR metabolite data deposited in databases such 

as MMCD (http://mmcd.nmrfam.wise.edu) and BMRB (http://www.bmrb.wise.edu). The 

NMR chemical shift assignments of several significant metabolites were further confirmed by 

recording the NMR spectra of pure compounds. For analysis of metabolites, single peak 

integrals for individual metabolites were chosen with minimal overlaps with peaks from other 

compounds.  

2.4.3 Data Analysis: Multivariate statistical analysis was performed using SIMCA14.0 

software (Umetrics, Umea, Sweden). Prior to analysis, all the spectra were converted into the 

ASCII format and imported into MATLAB for alignment using the Icoshift algorithm 

(Savorani et al., 2010). Spectral regions between 4.6 and 4.8 ppm were excluded from the 

analysis, to prevent errors due to any residual peak from the suppressed water signal. Data 

were normalized to the total area to compensate for possible differences in signal-to-noise 

ratios between spectra and to prevent separation due to variations in the amounts of sample. 

After importing the data into SIMCA, the data was Pareto-scaled and first analysed using the 

unsupervised pattern recognition method of principal component analysis (PCA), which 

helped to remove outliers, defined in the data as observations located outside the 95% 

confidence region of the Hotelling’s T2 ellipses in the PCA score plots. Such outliers were 

excluded from further analysis. PCA was followed by the supervised pattern recognition 

method of orthogonal projections to latent structure-discriminant analysis (OPLS-DA), which 

maximizes the class discrimination. The OPLS-DA scores and loadings plots were used to 

identify the metabolites responsible for separating VB and VBC flies. The quality of the 

model was described by R2X and Q2 values, explaining the variance explained (indicating 

goodness of fit) and variance predicted by the model (predictability) respectively. The 

significance test of the model was performed using CV- ANOVA (cross-validated ANOVA) 
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in the SIMCA software, where a p -value of 0.01 was considered to be statistically significant 

to validate the OPLS-DA model. Permutation analysis was also performed on the best model 

using 1000 permutation tests with a threshold p-value of 0.05 indicating that none of the 

results were better than the original one. t-tests coupled with Bonferroni corrections (to limit 

the family-wise error rate to 0.05) were performed to check for statistical significance of the 

differences in the metabolite levels between the VB and VBC flies.  

The work described in sections 2.4.2 and 2.4.3 was performed by Navdeep Gogna and Dr. 

Kavita Dorai in the latter’s lab at Indian Institute of Science Education and Research Mohali. 

2.5 Statistical analyses 

VBi and VBCj that shared a subscript (i.e. i = j) were assayed and analysed together as a 

block as they were related to each other by ancestry. For locomotor activity, the fraction of 

time spent resting/sleeping (arcsine-square root transformed), average sleep bout, length of 

the longest sleep bout and female fecundity data, we used two factor mixed-model ANOVA 

with selection (VB and VBC) as fixed factor crossed with block (1-4) as a random factor. 

Three-factor mixed-model ANOVA was performed for adult exploration, dry body weight 

and longevity data with selection (VB and VBC) and sex (male and female) as fixed factors 

and block (1-4) as a random factor, crossed with each other. For the aggression data, we used 

Mann-Whitney U tests to compare the performance of VB and the VBC males. The value of 

effect size (Cohen’s d) was interpreted as large, medium and small when d≥0.8, 0.8>d≥0.5 

and d<0.5 respectively (Cohen, 1988). All the above statistical analyses were performed 

using STATISTICA® v5 (StatSoft. Inc., Tulsa, Oklahoma).  

The NMR spectral data were analysed using standard procedures (see section 2.4). The 

spectral data were normalized to total area, Pareto scaled and subjected to Principal 

Component Analysis to identify and remove the outliers. This was followed by Orthogonal 

Projections to Latent Structure-Discriminant Analysis (OPLS-DA) to identify the metabolites 

responsible for separating VB and VBC flies. The significance test of the model was 

performed using CV- ANOVA (cross-validated ANOVA). Further, permutation analysis was 

performed on the best model using 1000 permutation tests with a threshold P-value of 0.05, 

which indicated that none of the results was better than the original one. The average level of 

the metabolites in the selected and control populations, were compared using Student’s t-

tests, followed by Bonferroni correction, thus restricting the family-wise error rate to <0.05.  
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3. RESULTS 

3.1 VBs are restless but rest less  

During the first 6 h after set-up, the VB populations had significantly greater locomotor 

activity irrespective of the absence (Fig. 7.1A, F1, 3=60.3, 0.004) or presence (Fig. 7.1C, F1,3= 

423.3, P=0.0003) of food. Moreover, of the total duration of 6 h, the VBs spent significantly 

less time in rest/sleep, both in the absence (Fig. 7.1B, F1, 3=50.4, P=0.006) and presence (Fig. 

7.1D, F1, 3=386.9, P=0.0003) of food. Interestingly though, when assayed in the presence of 

food over a duration of 24-h after the initial 6 h of acclimatization, although the difference in 

activity persisted (Fig. 7.1E, F1, 3= 59.9, P= 0.004), the VBs spent similar amount of time in 

rest/sleep as the VBCs (Fig. 7.1F, F1, 3= 5.47, P=0.1). The length of average sleep bouts (Fig. 

7.2A, F1, 3=2.2, P=0.23) and maximum sleep bouts (Fig. 7.2B, F1, 3=4.7, P=0.12) of the VBs 

and the VBCs were also comparable. 

 

Figure 7.1. Locomotor activity-sleep profiles in the presence and absence of food. In the 

absence of food during the first 6 h after introduction (A) Locomotor activity of VBs was 

significantly greater than the VBCs although (B) duration of rest was significantly lower. In 

the presence of food during the first 6 h, similar results were obtained for (C) locomotor 

activity and (D) rest. After acclimatization for 6 h, over the next 24 h, the VBs had 

significantly greater (E) locomotor activity but similar levels of (F) sleep duration as the 

VBCs. The error bars represent standard errors around the mean (SEM) and * denotes P<0.05. 
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Figure 7.2. Average and maximum sleep bout over 24 hours post acclimatization. Over 24 

hours in presence of food, (A) average sleep bout and (B) maximum sleep bout, are similar for both 

VBs and VBCs. The error bars represent standard errors around the mean (SEM) and * denotes 

P<0.05. 
 

3.2 Selection for dispersal leads to greater exploratory behaviour and aggression 

Selection regime had significant effects on adult exploratory behaviour, when the flies were 

introduced into a novel environment and the VB flies had significantly greater tendency to 

explore a novel area than the VBC flies (Fig. 7.3A, F1, 3=11.96, P=0.04). Although we failed 

to find a selection × sex interaction (F1, 3=0.009, P=0.93), for both sexes, the VB flies 

exhibited greater exploratory behaviour than the corresponding VBC flies (Fig. 7.4). 

Furthermore, we found significant effect of selection on male aggression (Mann-Whitney 

U=0.0, P= 0.02) in all the four blocks: VB males were found to be significantly more 

aggressive than the VBC males with large effect size (d = 2.05) in one-to-one fight for food 

and mate present in the arena (Fig. 7.3B).  

 

Figure 7.3. Exploration and aggression behavior of VBs and VBCs. (A) VB flies commenced 

significantly more number of exploratory trips than VBCs. The error bars represent standard errors 

around the mean (SEM). (B) VB males were more aggressive as they won significantly more number 

of fights against VBC males. Both these results were consistent across all the four blocks. * denotes 

P<0.05. 
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Figure 7.4. Exploratory behavior of males and females in VBs and VBCs. For both sexes, VBs 

performed more exploratory trips than VBCs. Error bars= SEM around the mean. 
 

3.3 Selection for dispersal does not lead to changes in dry body weight, fecundity or 

longevity 

The mean dry weight of VBs and VBCs were found to be comparable (Fig. 7.5A, F1, 3= 0.76, 

P=0.45). Although Drosophila females are known to be heavier than males, we did not find 

any significant selection × sex interaction (F1, 3= 2.1, P=0.24) in our study suggesting that 

selection did not affect the dry weight of the two sexes in VB and VBC flies differentially. 

There was no significant difference between the fecundity of the VB and VBC flies with 

respect to either early fecundity (Fig. 7.5B, F1, 3= 0.25, P=0.65) or late fecundity (Fig. 7.5B, 

F1, 3= 0.2, P= 0.68), indicating the absence of a trade-off between increased dispersal ability 

and reproductive output. We also did not find any trade-off between dispersal and longevity: 

the average life-span of VBs was found to be similar to that of the VBCs (Fig. 7.5C, F1, 3= 

4.9, P=0.11). 

3.4 Selection for dispersal leads to changes in the metabolome profile 

OPLS-DA scores plot (Fig. 7.6) documents the differences in the metabolite profile of the 

selected and control flies. Fig. 7.7 shows the colour coded coefficient loadings plot used to 

identify the metabolites responsible for differentiating both VB and VBC flies. The variance 

explained by the model (R2X) was 0.968 and the variance predicted by the model (Q2) was 

0.953, showing that the model was effective and had a good predictive accuracy. The 

credibility and robust nature of the model were also confirmed by testing the statistical 

significance of the model with CV-ANOVA (p-value <0.01) and permutation test (p-value 

<0.05). The metabolites, which were significantly different between the selected and control 

flies in t-test followed by Bonferroni correction, are tabulated in Table 7.1. 
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Figure 7.5. Life-history traits of VBs and VBCs. Cleveland-box plots show (A) dry body weight, 

(B) early-late fecundity and (C) longevity profiles of VB and VBC populations were not different 

from each other. The points represent the pooled data for all the replicates of VB and VBC 

populations with small random jitter along X-axis. The edges of the box denote 25th and 75th 

percentiles, while the black solid lines and blue broken lines represent the median and mean 

respectively. 
 

  

 

 

 
Figure 7.7. OPLS-DA score plot derived from 1D 1H NMR spectra of VBs and VBCs. 
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Figure 7.7. OPLS-DA loading plot obtained from the analysis of 1D 1H NMR spectra 

of VBs and VBCs. Metabolites that are indicated above and below the baseline are present 

in higher quantity in VB and VBC flies respectively. 

 

 

 

Table 7.1: List of metabolites altered during the course of selection for increased 

dispersal. 
 

Metabolites p value Effect size 

(Cohen’s d) 

Fold change in VB 

(VB/VBC) 

Tryptophan 1.15E-06* 3.77 3.27 

AMP 6.93E-06* 3.16 2.63 

3-HK 9.54E-07* 3.86 2.5 

Octopamine 5.81E-08* 3.88 2.26 

Phenylalanine 1.50E-06* 3.58 1.95 

NAD 4.04E-08* 4.8 1.82 

Tyrosine 6.19E-08* 3.96 1.73 

Histidine 2.73E-05* 2.72 1.71 

Glucose 2.41E-07* 4.18 1.65 

ATP 1.06E-06* 3.69 1.57 

Sucrose 2.15E-04* 2.39 1.48 

Citric acid 1.57E-04* 2.15 1.36 

Lactic acid 6.89E-05* 2.26 1.35 

Glutamine 9.71E-04 1.94 1.27 

Tyramine 5.57E-03 1.46 1.15 

Serotonin 1.58E-02 1.16 1.15 

Dopamine 1.63E-01 0.73 1.1 

Fatty acid 2.14E-04* 2.49 0.77 
 

Only those metabolites are shown that were either significantly different between the VBs and the 

VBCs or the fold change was >1. The p-values for a given metabolite were obtained from t-tests 

between the VBs and VBCs. * indicates that the differences were statistically significant even after 

Bonferroni correction at the 0.05 level. All effect size values are large (i.e. d>0.8), except for 

dopamine, where it is medium (i.e. 0.5<d<0.8). Note that the AMP: ATP ratio for the VBs and 

VBCs were 0.43 and 0.26 respectively. 
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4. DISCUSSION 

4.1 Selection for dispersal leads to similar patterns of activity but different patterns of 

rest in the short and long time-scale 

During the first 6 h after introduction to a new environment (same duration for which the flies 

are allowed to disperse during selection), the selected populations had greater locomotor 

activity than the controls (Fig. 7.1A and 7.1C), and spent lesser time in rest (Fig. 7.1B and 

7.1D). This observation is consistent with previous results (Hanski et al., 2006; Matsumura et 

al., 2016) and also with the fact that the VBs were under intense selection to reach a new 

environment within the first 6 h of introduction to the source (Tung et al., 2017). 

Consequently, maximizing the amount of activity and minimizing the resting period during 

that time would be of obvious advantage to the VB flies. More interestingly though, we found 

similar activity/rest patterns in the absence and presence of food (cf Figs 7.1A with 7.1C and 

7.1B with 7.1D), which suggests that the increased activity is independent of starvation or 

desiccation cues. This is again consistent with earlier observations that the dispersal 

propensity and ability differences between VBs and VBCs were observed irrespective of the 

presence or absence of food (Tung et al., 2017). However, when we measured the activity of 

these flies over 24 h, after allowing a period of 6 h to acclimatize, although the VB males 

were found to be significantly more active than VBC males (Fig. 7.1E), the percentage of 

time spent resting was not different between these two lines (Fig. 7.1F). In other words, the 

VB flies rest lesser during the period that corresponds to the time when they face selection, 

but revert to normal levels of rest once that phase is over. During the latter period, the quality 

of the rest/sleep of the flies, as measured by the length of average bout of sleep (Fig. 7.2A) 

and maximum bout of sleep (Fig. 7.2B), during 24 h, was also found to be similar in VBs and 

VBCs. Thus, although the VBs are more active, it seems unlikely that they would face 

negative effects of rest-deprivation in the long run. To the best of our knowledge, this is the 

first demonstration that dispersers also modulate their rest-patterns temporally in way that 

could reduce the negative effects of rest-deprivation (Huber et al., 2004; Kayser et al., 2015). 

 Increased activity of dispersers can positively correlate with another important behavioural 

trait, namely exploratory tendency (Cote et al., 2010) which is what we investigated next.  

4.2 The evolution of dispersal led to simultaneous evolution of exploratory behaviour  

Dispersers often have greater exploratory tendency (Cote et al., 2010; Korsten et al., 2013) 

which is thought to be beneficial for finding new habitats. In our selection protocol, there was 

no sensory cue in the path connecting the source to the destination. Therefore, only those flies 
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(of either sex) could disperse successfully that took the risk of getting into the path and then 

continuing along it, implying that exploratory tendency was under strong positive selection. 

Therefore, it was no surprise that the dispersal-selected VBs were more exploratory in nature 

than the VBCs (Fig. 7.3A), and the result was consistent across both sexes (Fig. 7.4).   

Elevated exploratory tendency can be important during range expansion as the individuals 

present at the range edges are more likely to experience environments different from their 

native and/or previously introduced habitats. For example, Kenyan house sparrows that were 

present at a range expansion front were found to be significantly more exploratory (Liebl and 

Martin, 2012). Interestingly, in many species, exploration is also found to be strongly related 

to invasion (Cote et al., 2010; Rehage et al., 2005; Russell et al., 2010), which involves 

conflict/confrontation with the native species. Consequently, aggression is another 

behavioural trait strongly correlated with exploration (Dingemanse and de Goede, 2004; 

Verbeek et al., 1996) and often closely related to personality-dependent dispersal (Cote et al., 

2010). Thus we next investigated the effect of dispersal evolution on aggression.  

4.3 Male-male aggression evolved as a correlated response to selection for dispersal 

Aggression is an important trait that influences an individual's ability to retain resources and 

mates or gain new ones (O'Riain et al., 1996). Not surprisingly, several studies have reported 

a strong association between dispersal tendencies and aggression (Duckworth and Badyaev, 

2007; Wahlström, 1994) which is consistent with our observations (Fig. 7.3B). However, 

while enhanced aggression might be a factor for the dispersal success in some of the natural 

populations (Duckworth and Badyaev, 2007), in our system, the dispersing flies have no 

obvious fitness advantage for being more aggressive, as they did not have to compete with 

any native individuals at the destination. Thus, in our experiment, aggression evolved as a 

correlated response of dispersal evolution, most likely due to changes at the 

biochemical/physiological levels.  

4.4 Dispersal-selected lines have comparable body size as that of the controls 

One life history trait that could potentially explain the increased levels of dispersal, 

locomotor activity and aggression in the VBs is adult body size. Bigger organisms are 

expected to have greater energy reserves and, in general, body size is positively correlated 

with dispersal (Dingle et al., 1980; Sutherland et al., 2000; although see Gu and 

Danthanarayana, 1992). Moreover, in Drosophila melanogaster, it is known that larger males 

win significantly more aggressive encounters compared to smaller males (Partridge and 

Farquhar, 1983). However, we failed to find a significant difference in body weight, a proxy 
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for body size, between VBs and VBCs (Fig. 7.5A) which suggests that the increased 

aggression and locomotor activity in VBs were not mere artefacts of differences in body sizes 

between the two populations. This result also highlights that how a trait evolves (here, no 

change in body size) due to a particular selection pressure may not always be inferred from 

existing trait-associations (here, the general observation that body size and dispersal are 

positively correlated).    

In Drosophila, body size is generally considered to be a good proxy for the total amount of 

resources available to an organism. Our results suggest that the selected flies have similar 

levels of resources compared to the controls (Fig. 7.5A), but at the same time, display 

elevated levels of activity (Figs 7.1A, 7.1C and 7.1E). Given that the kind of nutrients 

available to both populations are the same, one way for the selected flies to manage this feat 

would be to alter the pattern of resource allocation among the various traits (van Noordwijk 

and de Jong, 1986). To investigate this possibility, we measured two crucial life-history traits, 

namely fecundity and longevity.  

4.5 Selection for dispersal does not affect fecundity or longevity  

The relationship between dispersal and fecundity has been somewhat controversial in the 

literature. On one hand, flight ability/ dispersal has been shown to be negatively correlated 

with fecundity in several insects including Drosophila (Roff, 1977), long-winged crickets 

(Roff and Fairbairn, 2007) and aphids (Dixon et al., 1993).  This is thought to be due to 

energy limitation, as allocation of resources to the muscles reduces the availability of the 

same for reproductive functions. On the other hand, several investigators have reported a 

positive correlation between dispersal and fecundity (Hanski et al., 2006, reviewed in Rankin 

and Burchsted, 1992), which is possible if the dispersers are also the physically superior 

organisms of the population who abound in resources (Bonte and de la Peña, 2009). 

However, our results differed from both these expectations and there was no significant 

difference between the fecundity of the VB and the VBC populations either in early life or 

late life (Fig. 7.5B), which is consistent with an earlier dispersal evolution study on spotted-

mites (Fronhofer et al., 2014). The lack of difference in fecundity between the VBs and the 

VBCs might be explained if we assume that the selected flies allocate a fixed amount of 

resources to reproductive functions and this amount has not been affected by selection for 

dispersal. While there are several theoretical studies in support of both assumptions (de Jong 

and van Noordwijk, 1992; Mezey and Houle, 2005), it is difficult to conclusively demonstrate 



172 

 

them using our data. Therefore, we shifted our attention to a crucial body maintenance trait, 

namely longevity. 

In Glanville fritillary butterflies, higher dispersal and mobility correlate strongly with higher 

flight metabolic performance (Hanski et al., 2004). Since a strong negative correlation 

between life-span and metabolic rate has been reported across various taxa (reviewed in 

Rattan, 2008), dispersers are expected to have a shorter life-span, which was actually 

observed in a previous study on tropical butterflies (Tufto et al., 2012). However, in our 

study, we did not find any significant difference in longevity between the dispersal-selected 

and the control populations, a result which is consistent over all four populations and both the 

sexes (Fig. 7.5C). One reason for this might be the nutrient-rich laboratory conditions under 

which the flies were reared during selection, which ensured that resources were never 

limiting, and therefore did not lead to the expected trade-offs between dispersal ability and 

fecundity or longevity. If true, then this would suggest that the patterns of trait correlation 

that would evolve under selection for dispersal would depend closely on, inter alia, the 

resource availability, which would obviously vary greatly across populations under natural 

conditions. Thus, even for the same species, it might be difficult to predict the outcomes of 

dispersal evolution under various scenarios.  

 

 

4.6 Selected flies have elevated levels of cellular respiration 

There was a clear difference between the overall metabolite profiles of the VB and VBC flies 

(Fig. 7.6 and 7.7) and the levels of 14 metabolites were significantly different between these 

two populations (Table 7.1). Most notably, the glucose levels of VBs were significantly 

higher than the VBCs and glucose is the primary proximate source of energy in the cell 

through the process of cellular respiration.  Moreover, the VBs had greater levels of citric 

acid, nicotinamide adenine dinucleotide (NAD) and adenosine monophosphate (AMP), all of 

which are critically associated with cellular respiration (Fig. 7.8). Finally, the VBs also had 

significantly greater amounts of lactic acid. It is known that when the demand for energy is 

more than what cellular respiration can generate (e.g. during intense muscular activity) 

glucose undergoes anaerobic oxidation via lactic acid fermentation to produce ATP. True to 

this observation, the ATP levels in VBs was significantly higher than the VBCs (Table 7.1). 

However, the AMP: ATP ratio, which is an indicator of levels of cellular energy crunch 

(Hardie and Hawley, 2001), is much higher for VBs. This suggests that, in spite of the greater 
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levels of ATP, the VBs are in a more energy-depleted state than the VBCs (Table 7.1). Taken 

together, these results suggest that the VBs have elevated levels of both aerobic and 

anaerobic cellular respiration and produces significantly more ATPs, which is consistent with 

the fact that they disperse to longer distances (Tung et al., 2017) and have greater locomotor 

activity (Figs 7.1A, 7.1C and 7.1E).  

4.7 Selected flies have elevated levels of octopamine and precursors for other 

neurotransmitters 

The VBs also had increased levels of four amino acids, namely histidine, phenylalanine, 

tyrosine and tryptophan (Table 7.1). The metabolic break-down products of all these amino 

acids form intermediates of citric acid cycle or their precursors and therefore play a role in 

energy production (Voet and Voet, 2011). More interestingly, phenylalanine and tyrosine act 

as precursors for octopamine and dopamine (Brandau and Axelrod, 1972), while tryptophan 

is a precursor for serotonin (Stone and Darlington, 2002). In Drosophila, increased levels of 

octopamine not only enhances aggression (Zhou et al., 2008) but also leads to greater activity 

(Yellman et al., 1997). This was consistent with the observation that octopamine levels had 

significantly increased in VBs (Table 7.1). Similarly, serotonin levels are also known to be 

positively correlated with activity (Yellman et al., 1997) and aggression (Dierick and 

Greenspan, 2007). Dopamine can elevate the activity level in flies (Yellman et al., 1997) 

although its relationship with aggression is not as straightforward as for the other molecules 

(Alekseyenko et al., 2010). Combining these evidences with the fact that the VBs are more 

active (Fig. 7.1A, 7.1C and 7.1E) and aggressive (Fig. 7.3B), strongly suggests that the levels 

of serotonin and dopamine have also increased in course of evolution for dispersal. We did 

detect an increase in the levels of both these neurotransmitters (Table 7.1), although the 

increase was not statistically significant after Bonferroni correction. 
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Figure 7.8. Alterations in metabolic pathways. Schematic diagram of the interactions 

between the metabolites that were found significantly changed in the VBs in the NMR data. 

Upright and inverted triangles adjacent to a metabolite denote whether its level had increased 

or decreased respectively. Filled and open triangles represent statistically significant and 

non-significant changes respectively (see Table 7.1 for values). 

 

It should be noted here that apart from the three neurotransmitters discussed above, there are 

many more which can also potentially modulate fly behaviour. For example, it is known that 

increased levels of insulin (Belgacem and Martin, 2006; Luo et al., 2014) and tachykinin 

(Asahina et al., 2014) can either reduce aggression or activity or both. Unfortunately, 

although a comprehensive investigation of the changes in the levels of the various 

neurotransmitters in these flies would be of immense interest, it is also outside the scope of 

the present study.  

 

4.8 Selected flies have reduced levels of fatty acids 

The end-product of the main route of tryptophan metabolism is nicotinamide (Stone and 

Darlington, 2002), which subsequently produces NAD, a key element of cellular respiration 

(Khan et al., 2007). One of the main intermediates of the tryptophan-NAD pathway, 3-

hydroxykynurenine (3-HK), is also found to be significantly higher in VBs, suggesting that 

the pathway has been enhanced in these flies. 3-HK is associated with free-radical generation 

and neural degeneration in flies (Savvateeva et al., 2000) which is consistent with the slightly 
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lower (although not significant) longevity of the VB flies (Fig. 7.5C). Histidine, another 

amino acid with elevated levels in the VBs, is known to be coregulated with AMP (Rébora et 

al., 2005). Abundant supply of AMP and depletion of ATP (Table 7.1) increases the 

AMP:ATP ratio, which in turn is expected to activate AMP-activated protein kinase (AMPK) 

(Hardie and Hawley, 2001). AMPK typically functions to facilitate the depletion of fat 

storage (Sinnett and Brenman, 2016) which is corroborated by the observation that VBs had 

significantly lower levels of fatty acid (Table 7.1). AMPK also controls the normal secretion 

of adipokinetic hormone (AKH) (Braco et al., 2012). AKH in turn stimulates locomotor 

activity and helps in maintaining a hyperglycaemic state in the body (Bharucha et al., 2008): 

two facts that are consistent with our observations on VBs. 

Taken together, it is evident that the changes at the behavioural and life-history level are well 

correlated with the underlying metabolomic changes (Fig. 7.8). 

 

5. CONCLUSIONS  

Our study shows that in terms of relationship between dispersal and behavioural traits, there 

is excellent correspondence between the insights derived from association studies on field 

populations and experimental evolution studies. One reason for this might be that active 

dispersal is intimately related to locomotion which shares common control mechanisms with 

aggression and exploration via neurotransmitters like octopamine and serotonin. This 

automatically leads to the prediction that in passively-dispersing organisms, this trait-

association is likely to breakdown. Incidentally, we also show that in terms of life-history 

traits, the correspondence between field and laboratory studies is poor. One reason for life-

history traits not evolving in experimental evolution studies might be the fact that nutrition is 

typically non-limiting under laboratory conditions and therefore the organisms can increase 

expenditure in energy-intensive activities without paying major life-history costs. If true, then 

one can predict that artificial selection for dispersal under nutrient-limiting conditions would 

lead to a very different pattern of changes in life-history traits. Whether these changes would 

mimic the ones from field studies remains to be seen. Finally, our study gives the first 

glimpses of the metabolome-level changes that accompany dispersal evolution. This is best 

thought of as an over-view of the myriad changes that can occur when dispersal evolves and 

the complex ways by which they can affect the various traits of the organism. Establishing 

the robustness of these metabolic level changes (particularly under field conditions) and 

connecting them to the corresponding genes is going to be one of the next big challenges in 

dispersal ecology.   
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Rapid changes in global climate coupled with wide-spread habitat degradation, pose a severe 

threat to biodiversity on earth. Much of these environmental changes are happening so 

rapidly that that a large number of species simply cannot evolve to adapt quickly enough. 

Some of these species can avoid extinction only with some help from us humans. The others 

can do so by dispersing to more favorable areas. In this thesis, I have examined some possible 

strategies for the former and the evolutionary consequences of the latter. 

1. Theoretical and empirical investigations of control methods for stabilizing 

population dynamics 

Although a number of methods have been proposed in the theoretical literature for stabilizing 

biological populations (Corron et al., 2000; Dattani et al., 2011; Hilker and Westerhoff, 2005, 

2007; McCallum, 1992; Sah et al., 2013), they have rarely been implemented in practice. 

This is partly because these methods have often been proposed and investigated in the context 

of very different stability concepts and population dynamics models. Since there are no 

comparisons of their relative efficiencies under different ecological scenarios, it becomes 

difficult to choose a suitable method for any given case. More importantly, the majority of 

these methods had not been validated empirically, even under controlled laboratory 

conditions, let alone in natural populations. Thus, given that the survival of the threatened 

species is at risk, the reluctance of the practitioners of conservation and population 

management to try these methods under field conditions is understandable.  I have tried to 

address both these issues in the first part of my thesis. 

In Chapter 2 I have compared six popular population stability methods under a common 

theoretical platform. I show that although all the six methods can control population 

dynamics, their efficiencies vary in terms of the different aspects of stability (Grimm and 

Wissel, 1997). In other words, if a given control method performs well in terms of one aspect 

of stability (say constancy), that does not automatically guarantee its superior performance 

for another aspect of stability (say persistence). Unfortunately, these various aspects of 

stability are not entirely independent of each other. For example, if a population is 

undergoing high-amplitude oscillations, then it is very likely to face bottlenecks, which in 

turn will reduce the amount of genetic variation available, thus affecting its persistence. 

Therefore, in any real-life scenario, it is not always desirable to improve one kind of stability 

at the expense of another. Furthermore, practically speaking, it is not possible to ignore the 

economic aspects of any conservation measure. Therefore, while setting intervention goals, it 
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is imperative to think of a composite measure that is able to integrate these various concerns. 

Unfortunately, the current population dynamics literature lacks such a treatment. One of the 

primary messages from my theoretical (Chapter 2) and empirical (Chapter 3-4) results is that 

there is no simple solution to this problem. Methods that are good in terms of enhancing 

constancy can be bad in terms of getting persistence and vice versa. When it comes to two-

parameter methods that can do both, the cost of implementation can be prohibitively 

expensive. I used a number of simplifying assumptions in reaching these conclusions (listed 

in section 3.5 of Chapter 2). For example, in my study, the performance score of the methods 

depends on the relative weightage given to different aspects of stability. But those relative 

weights can eventually vary based on the ecological or economic context of the population in 

question. Moreover, the calculation of costs of implementation of these methods can change 

based on the relative difficulty of culling vs restocking for different species. Consequently, 

the exact quantitative outcome of this study might alter for different species × environment 

combinations.  However, there is no reason to expect that relaxing those assumptions would 

somehow lead one method to be superior to all others. Therefore, the search for usable 

methods for stabilizing natural populations continues.  

2. Investigating the determinants of population dynamics and stability: A Drosophila 

model 

The above conclusions were reached using the simple, but widely applicable Ricker model of 

population dynamics (Ricker, 1954). Although this choice of model increased the 

generalizability of my results, the simplicity of the Ricker function also prevented me from 

obtaining mechanistic insights about how the various determinants of the dynamics are 

affected by the control methods. For this, I needed a more detailed model of population 

dynamics that explicitly incorporated the details of the different density-dependent processes 

and individual life-history traits in governing population stability (Chapter 5). Therefore, I 

built an individual-based, stage-structured model of Drosophila dynamics which, 

nevertheless, included parameters that were common to the life-history of several 

holometabolus insects, and therefore carried some level of generality. After calibrating the 

parameters using data from laboratory populations of Drosophila, the model captured almost 

all the aspects of the dynamics observed in an experiment with real flies under four different 

nutritional regimes.  
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I then used this model to investigate how nutrition levels interact with demographic factors 

(like the presence of an unequal number of males and females in the population) and life-

history traits (like fecundity and density-sensitivity) to affect population dynamics. These 

simulations showed that the effects of unequal sex-ratio and sex-specific culling are greatly 

influenced by fecundity but not by levels of juvenile nutrition. I also found that the efficiency 

of a widely-used pest control method (Sterile Insect Technique; see Dyck et al., 2005 for a 

comprehensive review) depends on a complex interaction between levels of juvenile nutrition 

and density-independent adult fecundity. Therefore, in the context of eradicating a pest 

species, accruing information related to the nutritional resource available for the juveniles 

and the fertility of the adult insects are important factors for efficient implementation of this 

technique.  

There are several ways in which this individual-based model can be extended to answer 

various ecological and evolutionary questions. For example, incorporating heritable variation 

in the life-history parameters can allow one to study the influence of dynamic evolutionary 

changes on ecological dynamics (Pelletier et al., 2009; Schoener, 2011). By appropriately 

plugging in the various trait-correlations, this model can then be used to predict the outcomes 

of experimental evolution studies, particularly in the context of density-dependence 

(DeAngelis and Mooij, 2005). These predictions can then be compared with the observations 

from the rich body of literature available on this topic (Cameron et al., 2013; Kinnison and 

Hairston, 2007; Turcotte et al., 2011). Finally, this model can also be used to understand the 

mechanistic basis of how different control strategies affect population stability.  

3. Evolution of dispersal components, kernel, syndrome and associated metabolomic 

changes: The Drosophila story 

In the last part of my thesis, I have studied different aspects of dispersal evolution and its 

consequences on other life-history and behavioural traits. The process of dispersal consists of 

multiple stages like emigration, movement and immigration (Bowler and Benton, 2005). 

Consequently, the trait of dispersal consists of components related to each of these stages, 

like dispersal propensity (i.e. the proportion of individuals dispersed), dispersal ability (i.e. 

the average distance travelled by the dispersed individuals) and settlement efficiency (i.e. 

what fraction of the dispersers who reach a new patch are able to settle and reproduce). 

Evidently, in order to obtain a complete picture of evolution of dispersal as a trait, it is 

important to investigate the evolution of these individual components of dispersal (Bonte et 
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al., 2012), as well as their interaction. However, in practice, the relationship between the 

various dispersal components remains less investigated and understood.  

I used a series of experiments on Drosophila melanogaster populations, which were 

artificially selected for higher dispersal to report the first empirical demonstration of the 

simultaneous evolution of multiple components of dispersal. This is noteworthy because none 

of the previous studies on dispersal evolution found that multiple dispersal components can 

evolve together. This happened because, unlike some of these earlier studies (Bitume et al., 

2011; Friedenberg, 2003; Keil et al., 2001; Ogden, 1970; Tien et al., 2011; Yano and 

Takafuji, 2002; Fronhofer et al., 2014), there was moderate positive selection pressure for 

both propensity and ability in my selection protocol (Chapter 6). Consequently, we were able 

to show, that in principle, it is possible to have multiple dispersal components evolve 

together.  Thus, the results of this study can be taken as a null model, such that whenever a 

particular component of dispersal is seen not to evolve, elucidating the reasons for that can 

become one of the goals of the investigation.  

In my selection protocol, there was gradual directional selection of moderate intensity and the 

absence of conflicting selection pressures across the various dispersal stages. Such conditions 

are expected to be common in nature, particularly in regions where climate changes or habitat 

degradations are gradual but steady. This suggests that dispersal is likely to be under positive 

selection in many parts of the world. More importantly, I found that once evolved, the 

enhanced dispersal propensity and ability persists even in the absence of the proximal stresses 

(i.e. become phenotype-dependent). Finally, I show that selection for dispersal leads to the 

evolution of three traits related to the invasive potential of a species, namely enhanced 

activity, exploration and aggression (Chapter 7). This is consistent with results obtained from 

single-generation association studies on natural populations (Cote et al., 2010; Duckworth 

and Badyaev, 2007; Hanski et al., 2006; Korsten et al., 2013). Taken together, all these 

results are perhaps cause for some alarm. It is obviously difficult to conclude that selection 

for dispersal under various natural conditions would lead to similar correlated responses as I 

found in my study under laboratory conditions. However, even if a small fraction of the 

natural populations show similar evolutionary outcomes as those in this study, the number of 

invasive species in the nature will likely increase. This is consistent with the empirical 

finding that invasive species are often found in disturbed habitats (Lee and Gelembiuk, 

2008), which presumably also have a positive selection for dispersal. Note that for invasive 

species to arise this way, it would not be necessarily needed for a non-native species to be 
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introduced and then “invade” into a new area. An increase in aggression, explorative 

tendencies and locomotor abilities can potentially turn even native species into invaders. This 

can in turn destabilize existing ecosystems. Thus, the potential increase in invasiveness of 

species due to selection for dispersal needs to be carefully investigated in natural populations. 

Although there was close correspondence between my results and those obtained from single-

generation association studies in terms of behavioural traits like aggression, the same was not 

true for the life-history traits (Chapter 7). The dispersal selected lines had similar body 

weight, fecundity and longevity as the controls, suggesting the absence any major life-history 

trade-off. One potential reason for this discrepancy might be the fact that nutrition is typically 

non-limiting under laboratory conditions. Therefore, in such scenarios, the organisms can 

afford to increase expenditure in energy-intensive processes like dispersal and locomotor 

activity without paying any major costs with respect to other life-history traits. Following this 

hypothesis, one can predict that artificial selection for dispersal under nutrient-limiting 

conditions might lead to a very different pattern of evolution in life-history traits. Whether 

these changes would be similar to those observed in field studies, remains to be seen.  

The observations from the phenotypic assays led to predictions about putative mechanisms 

that were confirmed through untargeted metabolomic fingerprinting using NMR spectroscopy 

(Chapter 7). The selected flies evolved greater amounts of glucose, AMP and NAD, 

suggesting elevated levels of cellular respiration. At the same time, levels of 

neurotransmitters, such as octopamine, serotonin and dopamine, which are related to 

aggression and exploration, had increased. Thus, the experiments presented here give the first 

glimpses of the metabolome-level changes that accompany dispersal evolution. This is best 

thought of as an overview of the myriad changes that can occur when dispersal evolves and 

the complex ways by which they can affect the various traits of the organism. Establishing 

the robustness of these metabolic level changes (particularly under field conditions), and 

connecting them to the corresponding genes, is going to be one of the next big challenges in 

dispersal ecology. Moreover, many of these metabolites are known to be closely associated 

with learning (Dudai et al., 1987; Hammer and Menzel, 1998), metabolic syndromes (Roeder, 

2005), stress (Hammen, 2005) and depression (Ries et al., 2017; Weiss et al., 1981). It will be 

interesting to investigate if there is any collateral effect of dispersal evolution on these 

important physiological conditions.  
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Finally, the rapid evolution of multiple components of dispersal and the kernel, expressed 

even in the absence of stress, without any perceivable life-history trade-off indicates that 

dispersal evolution cannot be ignored while investigating a large number of eco-evolutionary 

processes like range expansion, disease spread, evolution of invasive species and stability of 

spatially structured populations. 

To summarize, the results of my theoretical studies and Drosophila-based investigations have 

led to several interesting insights, predictions and possible avenues for further work. I finish 

this thesis with the hope that these will be useful not only for ecologists in general and 

dispersal biologists in particular, but also for various practitioners of ecosystem management.  
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APPENDIX I 

 

Description of the 49-generation time-series experiment  

In order to facilitate the understanding of the simulations and subsequent analysis present in 

Chapter 5, here I briefly describe the basic design of the 49-generation time-series 

experiment. The complete details of this experiment have been reported elsewhere (Dey, 

2007). 

The experiment was comprised of thirty-two populations of D. melanogaster, each 

represented by a single vial (9 cm h  2.4 cm dia.) culture. These populations were derived 

from a long standing, large outbred population (JB1), maintained on a 21-day discrete 

generation cycle. Details of the ancestry and maintenance protocol of the JB populations can 

be found elsewhere (Sheeba et al., 1998), and are not germane to this study. These 32 

populations were randomly allotted to one of four nutritional regimes, such that there were 

eight populations per regime. Following established norms (Mueller and Huynh, 1994; 

Mueller et al., 2000) these regimes were called HH, HL, LH, LL — where the first letter 

indicates the quantity of larval food and the second letter represents the status of adult 

nutrition. In case of larval food, H and L denoted ~6 mL and ~2 mL of banana-jaggery 

medium per vial, respectively, whereas in the case of adult nutrition, H and L referred, 

respectively, to the presence and absence of live yeast paste supplement to banana-jaggery 

medium. Thus, for example, HL denotes a nutritional regime comprising of ~6 mL medium 

per vial for the larvae, but no live yeast paste supplement for the adults, and so on.  

Each population was initiated (generation 0) with eight male and eight female flies, and from 

this point onwards (except for extinction) there was no direct control on the number of adults 

in a vial. After oviposition in the vial for 24 hours (day 0), the adults were counted and 

discarded and the eggs formed the next generation. Once the adults started eclosing in these 

vials, they were transferred to adult collection vials every day with a change of medium every 

alternate day. Strict vial-to-vial correspondence was maintained between the egg vials and 

their corresponding adult collection vials. The process of adult collection continued until 18 

days after day 0, after which the flies were conditioned for three days in the presence / 

absence of live yeast paste. The live yeast paste is known to boost the fecundity of the 

females (Chippindale et al., 1993) and reduce the effect of adult density on adult fecundity 

(Mueller and Huynh, 1994).  On day 21 after egg collection, the adults were transferred to 
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fresh food vials containing ~2 mL or ~6 mL of banana-jaggery medium for a duration of 24 

hours. After this, the adults were counted and discarded, while the eggs laid during this 

period formed the next generation. If there were no adults in a population, then an extinction 

event was recorded and the population was rescued by allowing four female flies from the 

ancestral JB1 population to lay eggs for 24 hours. All extinction were recorded in the adult 

time series as 4 individuals (i.e. the number of rescuing females). 
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