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Abstract

This project aims at investigating the behaviour of drift dynamics in financial models.

Earlier models used geometric Brownian motion (GBM) for capturing the behaviour of stock

prices. In 1973, Black, Scholes and Merton used the GBM model [5] for pricing European

style options and also gave a mathematical formula for the same. The flaw of this model

was it took several market parameters as volatility, drift, interest rate as a constant which

need not be the case with the actual market. Although this model was a flawed one, it

provided the much-needed base required in modelling the market and motivated further

research. To rectify these shortcomings, after a significant amount of research in the field of

mathematical finance, several models were proposed and one such, the Markov modulated

GBM model which takes the market parameters as a function of a Markov chain which

evolves according to a specific transition rate. This opens a wide range of possibilities and

ideas for research.

This project deals with surveying several of the key process involved in these models and

simulating several of them. Also, several numerical experiments related to the theoretical

results were carried out and analyzed. The problem of estimating the drift parameter in these

models was investigated using theoretical calculations and experimenting them numerically.
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Introduction

In the classical model of stock prices by Black-Scholes-Merton (BSM), which is assumed to

follow Geometric Brownian Motion, the drift and the volatility of the prices are held constant.

However, in reality, this is not the case, the empirical volatility varies over time. In regime

switching model, it is assumed that the market has finitely many hypothetical observable

economic states and those are realized for certain random intervals of time. In particular,

the volatility is assumed to depend on those regimes or states and the state transitions are

modelled by a pure jump process. The Market model with finite-state Markov regime is a

very popular choice.

In comparison with Markov switching, the study of semi-Markov (SM) regime switching

is relatively uncommon. In this type of models, one has an opportunity to incorporate some

memory effect of the market. In particular, the knowledge of past stagnancy period can be

fed into the option price formula to obtain the price value. Hence this type of models has

greater appeal regarding applicability than the one with Markov switching.

It is also shown in the literature that by considering such kind of general model, many

drawbacks of original Black-Scholes-Merton model can be fixed. While fixing the deficits, it

also retains the mathematical tractability. More precisely, the price function still solves a

parabolic PDE which can be computed numerically. Despite that, for a real-life application,

one must know the values of the coefficients which appear in the equation. Even for Black-

Scholes-Merton model, this is a challenge. For Markov and semi-Markov modulated GBM

(MMGBM and SMGBM respectively), the PDE involves a few more parameters which should

be estimated from the market data.

In this thesis, we put our concern on the parameter, called drift coefficient and its tran-

sition kernels of the related drift process, which is a Markov chain. Although these do not
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appear in the option price equation for regime switching GBM (MMGBM) but do appear

for regime switching Heston or Geometric Levy process. However, in this thesis, we do not

discuss these models and restrict ourselves to regime switching MMGBM only. The main

reason for this is that the exposition with restriction is within the scope of a time-bound

masters project and the study or result might find immediate application for more realistic

and complicated models.

Since in practice the regimes are not observed, the above estimation problem becomes

rather involved. Therefore, before attacking this real-life problem, we revisit the standard

theory of estimating transition parameter of an observed discrete-time Markov chain.

In above regards, we first look at being able to draw statistical inferences about the

transition probabilities obtained from the unbroken observations of Markov chains. For this

purpose, we look at Billingsley [3], and revisit the proof of important results from it and use

it to draw inference on our numerical experiment done on the simulation of discrete-time

Markov chain. More about the general aspects of statistical inferences from Markov chain

can be found in Grenander [11], Bartlett [2]. Further, we investigate upon continuous-time

Markov chain and semi-Markov processes and simulate them.

Now we return to the original problem. In the regime switching MMGBM one observes

only the stock price which is driven by a Markov chain and Brownian motion. Thus in a

sense, one can at most obtain a noisy observation of continuous-time Markov chain with

Gaussian noise. To understand the mathematical properties of such noise, we look in detail

at the chapter on the Brownian motion.

On the detailed study of Brownian motion, we revisit the definition and mathematical

properties of it. Also, alongside we studied geometric Brownian motion (GBM) and simu-

lated them using Box-Muller transform for generating normal random variables. Finally, we

present the mathematical details of the regime-switching model alluded above. Further, we

study several models which help in defining the main problem. We do not get into much

details of those and just look at their option pricing equations. We then look at methods

to simulate regime switching Markov modulated GBM. We use this simulation in further

numerical experiments to analyze the main problem.

To investigate the original problem, we restrict ourselves to binary regime case, or in

other words, we look at only 2-state Markov chain case. Henceforth, we look to validate
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our model of regime switching MMGBM. Then we try to succinctly answer the problem

of estimating the scale parameter coming from holding time distribution of continuous-time

Markov chain. Similar accounts can be found in [9]. Further, the estimation of drift dynamics

has 4 parameters namely, θ1, θ2, µ1, µ2 which are estimated using the knowledge of µ̄ which

is the time-series of partial observations of µ and is available to us. Then we discuss different

scenarios where the estimator has reasonably small Standard Error and also taking into the

picture the other case of large Standard Error. Then we estimate the scale parameter on a

live data. At last, we use the method of antithetic variates which is useful for reducing the

variance by inducing negatively correlated random variables and also helpful in reducing the

number of iterations used for simulation. We hope that these estimators and their variance

reductions would be effective even for the larger class of models including Heston, Jump

Diffusion models, and many more financial models.
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Chapter 1

Preliminaries

In this chapter, we are going to look into theorems concerning generating random variables for

the case when CDF might not be continuous and which will be relevant for the simulations

to follow. However, before that, we will take a look at the definition of rcll and upper

semicontinuous function useful for the theorems to follow. We have produced new proofs of

these theorems using real analysis and study of the Royden [15].

Definition 1.0.1 (rcll Function). Let (M,d) be a metric space and let E ⊆ R. A function

f : E →M is called a rcll function, if ∀ t ∈ E,

• the left limit f(t−) = limx↑t f(x) exists and

• the right limit f(t+) = limx↓t f(x) exists and equals to f(t).

In other words, f is right-continuous with left limits.

Using above definition, it is easy to see that all continuous functions are rcll and so

are all cumulative distribution functions. Now let us look forth to the definition of upper

semicontinuous function.

Definition 1.0.2 (Upper Semicontinuous Function). Suppose X is a topological space,

then the function G : X → R ∪ {−∞,∞} is said to be upper semicontinuous if ∀ α ∈ R,
G−1([−∞, α)) = {x ∈ X | G(x) < α} is an open set in X.
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Now using above definitions, we state and prove some theorems as under.

Theorem 1.0.1. If G is a upper semicontinuous on R and a non-decreasing function then

G−1([a, b)) = [c, d) for some real c, d.

Proof. We have the following assertion as a consequence of G being upper semicontinuous

and non-decreasing.

G−1([a, b)) = G−1((−∞, b) ∩ (−∞, a)c)

= G−1((−∞, b)) ∩ (G−1(−∞, a))c

= (−∞, d) ∩ (−∞, c)c

= [c, d)

for some real c, d. Hence proved.

Now we prove an essential theorem relating to semicontinuity. We elaborate more on this

by stating and proving it as under.

Theorem 1.0.2. If F : R→ R is non-decreasing then F←(u) : R→ R ∪ {−∞,∞} defined

by F←(u) = sup{x | F (x) ≤ u} is non-decreasing and upper semicontinuous.

Proof. By definition we have F←(u) = sup{x | F (x) ≤ u} which implies F← is non-

decreasing. Showing the upper semicontinuity is essentially the same as showing the set U :=

{u | F←(u) < λ} is open. Now let u0 ∈ U, which means that it satisfies sup{x | F (x) ≤
u0} < λ

′
< λ (for some λ

′
(by Archimedean property )). Thus if for some x, F (x) ≤ u0, then

x ≤ F←(u0) < λ
′
. Therefore, F (λ

′
) > u0 . This has further implication that ∃ u1 such that

u0 < u1 < F (λ
′
) (again by Archimedean property). From the definition of U, it is evident

that U is either of the form (−∞, β) or (−∞, β] for some β ≤ ∞ (if F← is bounded and

λ ≥ supF←(u)) then β = ∞). Hence to show U is open, given a u0 ∈ U, it is enough to

produce a u1(> u0) that lies in U. We claim that above u1 serves the purpose. Indeed, now

only remaining bit is to check if this u1 ∈ U. We can prove this part as follows. Now assume,

if possible λ
′
< F←(u1) which implies F (λ

′
) ≤ u1, but we already know from the earlier part

of the proof that by our choice u1 < F (λ
′
). Therefore we have arrived at the contradiction.

Hence, we must have F←(u1) ≤ λ
′
, which will imply that F←(u1) ≤ λ

′
< λ. Thus u1 ∈ U.

Hence proved the function F←(u) is non-decreasing and upper semicontinuous.
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Now we will state and prove the Theorem when CDF might not be continuous.

Theorem 1.0.3. Let X ∼ FX , i.e. FX is the CDF of a random variable X, and FX need

not be continuous or injection. Then

Y := F←(U) ∼ FX ,

where F← : [0, 1]→ R∪ {−∞,∞} given by F←(u) = sup{x | FX(x) ≤ u} ∈ R ∪ {−∞,∞}
and U ∼ U [0, 1], the uniform distribution on the closed interval [0,1].

Proof. Now F←(u) ∈ R ∀ u ∈ (0, 1). So, F←(U) ∈ R (almost surely). Since FX is up-

per semicontinuous and so F← is rcll and non-decreasing function. Therefore we have

(F←)−1([a, b)) = [c, d) for some real c, d if [a, b) ⊂ (0, 1). Now if [c, d) = (F←)−1([a, b)),

we have the following consequences which follow trivially from the above arguments,

i. F←(c) ≥ a, F←(c−) ≤ a,

ii. F←(d−) ≤ b, F←(d) ≥ b,

iii. d = sup{u | sup{x | FX(x) ≤ u} ≤ b},

iv. c = inf{u | sup{x | FX(x) ≤ u} ≥ a},

Now we claim that the following equalities hold,

FX(b) = d, (1.1)

FX(a) = c. (1.2)

We will prove only equation (1.1) as the proof of equation (1.2) is analogous. Let if possible,

FX(b) < d. Then using the right continuity of FX , ∃ ε > 0 such that FX(b + ε) < d. Hence

from (iii) ∃ u with FX(b + ε) < u ≤ d. From (iii) and monotonicity of F←, u ≤ d implies

F←(u) ≤ b. However, F←(u) ≤ b as FX(b+ ε) < u, b+ ε ≤ F←(u). So we have the following

relation as a result F←(u) ≤ b < b + ε ≤ F←(u). Hence we arrive at a contradiction.

Now let us consider the other case. If possible, assume d < FX(b). Then ∃ u′ such that

d < u
′
< FX(b). If e := sup{x | FX(x) ≤ u

′}, then FX(e−) ≤ u
′
< FX(b). Therefore,

from monotonicity of FX , F←(u
′
) ≤ e ≤ b and sup{x | FX(x) ≤ u

′} ≤ b. Hence using (iii)
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we have the following relation as result d < u
′ ≤ sup

u
{F←(u) ≤ b} = d, a contradiction.

Therefore, we must have FX(b) = d. Hence (1.1) is true as claimed.

Thus using equation (1.1) and equation (1.2), we obtain the following relation.

P(Y ∈ [a, b)) = P(G(U) ∈ [a, b))

= P(U ∈ (F←)−1([a, b)))

= P(U ∈ [FX(a), FX(b)))

= FX(b)− FX(a).

Hence Y ∼ FX .
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Chapter 2

Simulation and Statistical Inference

on Markov Chains

In this chapter, we are going to discuss the essential concepts of the Markov chain and the

methods to simulate them. We will discuss more upon the issue of simulating the Discrete-

time, Continuous-time Markov chains, as well as look at the Semi-Markov processes. We

will also look at the sequence generated from our algorithm of Discrete-time Markov chain

and try to obtain an Empirical Probability Matrix (EPM) and look for the results related to

its convergence to Transition Probability Matrix (TPM). We will see some critical theorems

which will shape the course of this chapter and will motivate our study of it.

2.1 Historical Development of Markov Chain

To find the historical roots of Markov chain an extensive literature survey regarding the life of

Andrey Markov and the origin of Markov chain was done. So starting with the development

of these chains to their use in modern day world will motivate us in our research on this

topic. Let us discuss the brief overview of this historical development.

To begin with, there were several historical events that shaped the development of Markov

chain. The discovery of these chains was not accidental but the outcome of several years of
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research and thoughts that Markov had put while reading through Russian literature. He

found out and recorded the patterns in vowels and consonants as he read the literature. The

methods used by Markov went beyond the realms of coin-flipping and dice-rolling (where

each event is independent of the other) to chains of linked events (where what happens next

depends on the current state of the system). If we consider the modern day scenario, the

discovery made by Markov has not gone obsolete instead it has become more vital fuel for

research. We discuss the importance of Markov chains with the help of many events. The

methods and techniques developed by Markov help in identifying genes in DNA, powering

algorithms for voice recognition, contextual computing, web search used by famous Tech-

Companies such as Google (using Page-rank algorithm which incorporates the idea of Markov

chains), Microsoft and many others to name. In other fields of Science, such as Physics

it helps in simulating and analysing the collective behaviour of particles in a system. In

Statistics, it is used for the process of withdrawing selected samples when we have a large

set of possibilities. Even the current most popular field of Machine Learning, Data Science,

Neuroscience use the Markov chains extensively. Hence it has become an exciting part of

research more than ever before to understand how and where these chains work.

In the context of above discussion, we are motivated to do some significant amount of

statistical analysis and research in the related field.

2.2 Simulation of Discrete-Time Markov Chain

In this section our main aim will be to discuss the concept of Discrete-time Markov chains in

details and further detailed analysis will be done. In this section, we will deal with discrete-

time, finite state Markov chain. In particular, we will state the definition of Stationary

Markov Chain and the method to simulate it.

Definition 2.2.1. A stochastic process { Xt: t ≥ 0} is called a stationary Markov Chain if

for all times n ≥ 0 and all states i0, i1, · · · , ik, · · · , in−1, in, ik ∈ S, we have:

P(Xn+1 = j|Xn = i,Xn−1 = in−1, · · · , X0 = i0) = P(Xn+1 = j|Xn = i) = Pij. (2.1)

Here Pij gives the probability that the chain, whenever in state i, moves next (one unit

of time later) into state j, and is referred to as transition probability. The square matrix
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P = (Pij), where i, j ∈ S is called the Transition Probability Matrix (TPM) . Since, when

leaving the state i the chain must move to one of the state j ∈ S, each row of P sums to

one (e.g., forms a probability distribution): For each i

∑
j∈S

Pij = 1.

Now moving on from the definition and dealing with the computational aspects of the

DTMC (we will refer to Discrete-Time Markov Chain in short as DTMC wherever possible).

We used the below-mentioned algorithm for simulating the DTMC, and we ran the code in

python language to generate the samples. We describe the algorithm as follows:

Algorithm 1 To simulate Discrete-time Markov Chain up to first N steps given a TPM,
initial state, state space = {1, · · · , k}

1. Choose an initial state, x0 = i, with probability Pi, i ∈ S.

2. for( n = 1 to N )
generate u ∼ U [0, 1] independently.
xn = F (u, xn−1).
end.

The output for the above algorithm is {x0, · · · , xN}, also U [0, 1] denotes (Uniform dis-

tribution on [0, 1]) and the Function F : [0, 1]× S → S is given by:

F (u, i) =



0, if u ≤ Pj0
1, if Pj0 < u ≤ Pj0 + Pj1
...

k − 1, if
∑k−2

m=0 Pjm < u ≤
∑k−1

m=0 Pjm(= 1).

The function F (u, i) can also be viewed in terms of quantile function and significantly

F (u, i) = F←(Xn|Xn−1)(u) = i where F←(u) = sup{x | F (x) ≤ u} or alternatively we have

F←(u) = inf{x | F (x) ≥ u} as they are essentially same except on measure zero set.

We can illustrate the behaviour of the above defined Function in the form of a figure 2.1 as

below. The horizontal axis has consecutive intervals of lengths Pj0 to Pjk−1
.
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Figure 2.1: F (u, i) vs u for fixed i.

An important mistake was observed in one of the books [6], the author has incorrectly

used the quantile function in his simulation of random variable. He has defined quantile

function in terms of min function which has a problem if we look at a step function.

Given a TPM Matrix ‘P ’, the above algorithm produces a random sequence in S. It is

easy to see from the definition of F , that

P(xn = i
′ | xn−1 = i, xn−2 = in−2, · · · , x0 = i0) = P(F (u, i) = i

′
) = Pii′ .

Thus we say that Algorithm 1 produces a Markov chain with a given TPM Matrix. The

empirical verification of the Markov chain is possible provided the chain is sufficiently large.

We define an Empirical Probability Matrix (EPM) as below.

Definition 2.2.2. Given a sequence of Markov chain simulated up to n steps. An empirical

probability matrix is

P̂ij =
fij
fi
,

where fij is the number of instantaneous transitions from i to j; fi is the number of exits

from state i. Hence
(
P̂ij
)
i,j∈S

is a probability matrix.

We will encounter the above terms in the upcoming sections as well where we will mean

the same.

Now we state an important result regarding the convergence of EPM (obtained from a
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sequence of DTMC) to TPM.

2.3 Theorem on the convergence of EPM:

We must discuss the convergence of EPM before talking about the rate of convergence. A

decent amount of time was spent in understanding the Theorem from research paper [3] by

Billingsley. Here in this part of the section, we will be stating that important theorem, and

we will reproduce the proof in a detailed manner.

2.3.1 Preliminaries

First and foremost, let us look at the statement of the Central Limit Theorem for Multidi-

mension which will be used in the proof to follow and then we will look at several definitions

which help in understanding the Theorem and further the subsequent discussion.

We now state Central Limit Theorem for Multidimension.

Theorem 2.3.1 (Central Limit Theorem for Multidimension). Consider Xi is a

random vector in Rk, with mean vector µ = E(Xi) and co-variance matrix
∑

(amongst

the components of the vector), and these random vectors are independent and identically

distributed while summation is being done component-wise. The Central limit theorem states

that when scaled, sums converge to a multivariate normal distribution. Let

Xi =


Xi(1)

Xi(2)

...

Xi(k)

 (2.2)

be the k-vector. The Xi means that it is a random vector not random variable. So now sum

of these random vectors as mentioned before component-wise is
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X1(1)

X1(2)

...

X1(k)

 +


X2(1)

X2(2)

...

X2(k)

 + · · · +


Xn(1)

Xn(2)

...

Xn(k)

 =


∑n

i=1[Xi(1)]∑n
i=1[Xi(2)]

...∑n
i=1[Xi(k)]

 =
n∑
i=1

Xi

and the average is

1

n

n∑
i=1

Xi =
1

n


∑n

i=1[Xi(1)]∑n
i=1[Xi(2)]

...∑n
i=1[Xi(k)]

 =


X̄i(1)

X̄i(2)

...

X̄i(k)

 = X̄n

and therefore

1√
n

n∑
i=1

[Xi − E(Xi)] =
1√
n

n∑
i=1

(Xi − µ) =
√
n(X̄n − µ).

The multidimensional central limit theorem states that

√
n(X̄n − µ)

D→ Nk(0,Σ),

where the co-variance matrix Σ equals to

Σ =



V ar(X1(1)) Cov(X1(1), X1(2)) Cov(X1(1), X1(3)) · · · Cov(X1(1), X1(k))

Cov(X1(2), X1(1)) V ar(X1(2)) Cov(X1(2), X1(3)) · · · Cov(X1(2), X1(k))

Cov(X1(3), X1(1)) Cov(X1(3), X1(2)) V ar(X1(3)) · · · Cov(X1(3), X1(k))
...

...
...

. . .
...

Cov(X1(k), X1(1)) Cov(X1(k), X1(2)) Cov(X1(k), X1(3)) · · · V ar(X1(k))


.

Now let us have a look at some of the definitions to enhance our understanding of the

Theorem to follow.

Definition 2.3.1 (Irreducible Markov Chain). A Markov Chain is said to be irre-

ducible if it is possible to reach state j from every other state i.
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Definition 2.3.2 (Periodicity). A state i is said to have period m if any return to the

state i occurs in multiple of m steps. More formally,

m = gcd{n > 0 : P(Xn = i | X0 = i) > 0}.

Here ‘gcd’ is the greatest common divisor provided the set is not empty. If m = 1 then

the state is said to be aperiodic.

Definition 2.3.3 (Transience). A state i said to be transient, if given that chain starts in

state i, there is a non-zero probability that the chain will never return to i.

Now we will take the discussion little further and define some terms. If we let the random

variable Ti be the first return time to state i:

Ti = inf{n ≥ 1 : Xn = i : X0 = i}.

r
(n)
ii = P(Ti = n) is the probability of returning to state i after n steps. Therefore, by the

definition of transience we have a state i is transient if

P(Ti <∞) =
∞∑
n=1

r
(n)
ii < 1.

Definition 2.3.4 (Recurrence). The recurrence is defined as the negation of transience

which means, a state i is recurrent if it is not transient.

Now we will see the meaning of mean recurrence time. As by name, the mean recurrence

time at the state i is the expected return time Mi defined as below.

Mi = E[Ti] =
∞∑
n=1

nr
(n)
ii .

Definition 2.3.5 (Positive Recurrence). A state i is positive recurrent if Mi is finite.

Definition 2.3.6 (Null-Recurrent). A state i is said to be null-recurrent if Mi is not

finite.

In other words, if a recurrent state i is not positive recurrent then it is null-recurrent.
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Definition 2.3.7 (Ergodicity). A state i is said to be ergodic if it is aperiodic and positive

recurrent.

Also an irreducible Markov chain is ergodic if it has an aperiodic state. Now we have

covered all the definitions necessary to understand the theorem but still some of the terms

may be unfamiliar so we will define them as under. We will also discuss the method of

sampling used in the theorem briefly.

We consider {xn}Nn=0 to be the sample from the simulated Markov chain with transition

probabilities Pij and initial probabilities Pi. If {a0, a1, · · · , aN} is a sequence of N + 1

states then the probability that x0, x1, · · · , xN is this sequence is Pa0Pa0a1 · · ·PaN−1aN . For

i, j = 0, 1, · · · , k − 1, let fij be the number of m, with 1 ≤ m ≤ N for which am = i and

am+1 = j; meaning it is the number of instantaneous transition from i to j.

We define fi. =
∑

j fij and f.j =
∑

i fij, where {fi.} and {f.j} are the frequency counts

of {a0, · · · , aN−1} and {a1, · · · , aN} respectively from which it follows:

fi. − f.i = δia0 − δiaN ,∑
ij

fij =
∑
i

fi. =
∑
j

f.j = N.

Here fi. denotes the number of exits from state i, and f.i denotes the number of entrances

to state i.

For the purpose of simpler notation, in the next section we will denote ‘fi.’ by ‘fi’.

2.3.2 Main Result:

Now let us state the Theorem 3.1 verbatim from research paper by Billingsley [3]. Here,

S will denote state space and s will denote its cardinality.
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Theorem 2.3.2 (Billingsley, 1961). In the stationary, ergodic case, the distribution of the

s× s dimensional matrix ξ = ξij converges as N →∞ to the normal distribution with mean

0 and the co-variance matrix (λij,kl), where

λij,kl = δik(δjlPij − PijPil).

Before proving the above Theorem we are going to discuss the following theorems which

form the essential pillars of the proof to follow. While most of these theorems have been

proved but some of them have only been stated to get the intended result.

We will now look forward to state a Lemma which provides us with tools in proving the

Theorem 2.3.2.

Lemma 2.3.3. Assume that the chain is stationary and ergodic and let ζ = (ζ1, · · · , ζs) be

the random vector with components

ζi =
fi −NPi
N

1
2

.

Then E{ζi} = 0

E{ζiζj} = αij + o
(

1
N

) (2.3)

where

αij = δijPi − PiPj + Pi
∞∑
m=1

(P(m)
ij − Pj) + Pj

∞∑
m=1

(P(m)
ji − Pi). (2.4)

Moreover, the weak law of large number holds:

p lim
N→∞

fi
N

= Pi. (2.5)

17



Proof. To prove equation (2.3), we define the random variable cm(i) as:

cm(i) =

1, if xm = i,

0, if xm 6= i.

Then fi =
∑N

m=1 cm(i). From the stationarity of the chain we have,

E{cm(i)} = 0(P(xm 6= i)) + 1(P(xm = i) = Pi).

so ,

E{ζi} =
E(fi)−NPi

N
1
2

=
NPi −NPi

N
1
2

= 0.

Now, we will prove the other part of equation (2.3) as under,

E{ζiζj} = E

[(
fj −NPj
N

1
2

)(
fi −NPi
N

1
2

)]

= E

[
(fj −NPj)(fi −NPi)

N

]

= E

[
(
∑N

l=1 cl(j)−NPj)(
∑N

m=1 cm(i)−NPi)
N

]

= N−1E

[
N∑
l=1

(cl(j)− Pj)
N∑
m=1

(cm(i) − Pi)

]

= N−1

N∑
l=1

N∑
m=1

E{(cl(i)− Pi)(cm(j)− Pj)}.

Hence,

E{ζiζj} = N−1

N∑
l=1

N∑
m=1

E{(cl(i)− Pi)(cm(j)− Pj)}. (2.6)

Again using stationarity we have,

E{(cl(i)− Pi)(cm(j)− Pj)} = P{xl = i, xm = j} − PiPj =


PiP(m−l)

ij - PiPj, if m > l

Piδij - PiPj, if m = l

PiP(l−m)
ji - PjPi, if m < l.
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So

E{ζiζj} = N−1

N∑
m=1

{
m−1∑
l=1

(PiP(m−l)
ij − PiPj) + (Piδij − PiPj) +

m+1∑
l=1

(PiP(m−l)
ij − PiPj)

}
. (2.7)

Resolving the first term inside bracket of equation (2.7) we have:

m−1∑
l=1

(PiP(m−l)
ij − PiPj) = Pi

m−1∑
l=1

P(m−l)
ij − (m− 1)PiPj.

Now we evaluate:
m−1∑
l=1

P(m−l)
ij = [P(1)

ij + P(2)
ij + · · ·P(m−1)

ij ].

So

N−1

N∑
m=1

{first Term} = N−1

(
N∑
m=1

Pi
m−1∑
l=1

P(m−l)
ij −

N∑
m=1

m−1∑
l=1

PiPj

)

= N−1Pi

(
N∑
m=1

[P(1)
ij + · · ·+ P(m−1)

ij ]−
N∑
m=1

(m− 1)Pj

)
.

We note that the right hand side of the equations has two summations. We first consider

the first of these summations and rearrange the terms so as to get simpler expression in the

following manner:

m = 1 : P(0)
ij (= 0)

m = 2 : P(1)
ij

m = 3 : P(1)
ij + P(2)

ij

... :
...

m = N : P(1)
ij + · · ·+ P(N−1)

ij .

It is now evident that

N∑
m=1

[P(1)
ij + · · ·+ P(m−1)

ij ] = (N − 1)P(1)
ij + (N − 2)P(2)

ij + · · ·+ P(N−1)
ij =

N−1∑
m′=1

(N −m′)P(m
′
)

ij .
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Similarly second summation inside the bracket is resolved.

N∑
m=1

(m− 1)Pj = Pj
N∑
m=1

(m− 1)

= Pj
[
0 + 1 + · · ·+ (N − 1)

]
=

N−1∑
m′=1

(N −m′)Pj.

Combining above evaluated terms we get first term of equation (2.7) as under:

N−1

N−1∑
m′=1

(N −m′)
(
PiP(m

′
)

ij − PiPj
)
.

Resolving second term of equation (2.7) we have:

N−1

N∑
m=1

(Piδij − PiPj) = N−1N(Piδij − PiPj)

= (Piδij − PiPj).

Resolving the third term inside bracket of equation (2.7) we have:

N∑
l=m+1

(PjP(l−m)
ji − PjPi) = Pj

N∑
l=m+1

P(l−m)
ji − (N −m)PjPi.

Now we evaluate:
N∑

l=m+1

P(l−m)
ji =

[
P(1)
ji + P(2)

ji + · · ·P(N−m)
ji

]
.

So

N−1

N∑
m=1

{third Term} = N−1

(
N∑
m=1

Pj
N∑

l=m+1

P(l−m)
ji −

N∑
m=1

N∑
l=m+1

PjPi

)

= N−1Pj

(
N∑
m=1

[
P(1)
ji + · · ·+ P(N−m)

ji

]
−

N∑
m=1

(N −m)Pi

)
.

We note that the right hand side of the equations has two summations. We first consider

the first of these summations and rearrange the terms so as to get simpler expression in the
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following manner:

m = N : P(0)
ji (= 0)

m = N − 1 : P(1)
ij

m = N − 2 : P(1)
ij + P(2)

ij

... :
...

m = 1 : P(1)
ij + · · ·+ P(n−1)

ij .

So we have,

N∑
m=1

[P(1)
ji + · · ·+ P(N−m)

ji ] = (N − 1)P(1)
ji + (N − 2)P(2)

ji + · · ·+ P(N−1)
ji =

N−1∑
m′=1

(N −m′)P(m
′
)

ji .

Similarly second summations inside the bracket simplifies as below:

N∑
m=1

(N −m)Pi = Pi
N∑
m=1

(N −m)

= Pi
[
0 + 1 + · · ·+ (N − 1)

]
=

N−1∑
m′=1

(N −m′)Pi.

So third term of equation (2.7) becomes:

N−1

N−1∑
m′=1

(N −m′)
(
PjP(m

′
)

ji − PjPi
)
.

Combining all of the above we have:

E{ζiζj} = N−1

N−1∑
m′=1

(N −m′)
(
PiP(m

′
)

ij − PiPj
)

+ (Piδij − PiPj)

+ N−1

N−1∑
m′=1

(N −m′)
(
PjP(m

′
)

ji − PjPi
)
.

(2.8)

Comparing the first term of the equation (2.8) with the first term of αij from the equation
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(2.4) of the Lemma 2.3.3, the terms differs by the amount

N−1Pi
∞∑

m=N

(
P(m)
ij − Pj

)
+N−1Pi

N−1∑
m=1

m
(
P(m)
ij − Pj

)
.

From the fact that in ergodic case of Markov chain ∃ constants γ and ρ, ρ < 1, such that∣∣∣P(N)
ij − Pj

∣∣∣ < γρN ,∀ i, j, and N.

This implies that the series mentioned
∑∞

m=1(P(m)
ij − Pj) and

∑∞
m=1 m(P(m)

ij − Pj) converge

absolutely. Therefore the difference in above equation is of the order o(1/N). Similarly the

second sum also differs and the result of equation (2.3) follows henceforth.

Now, to prove the weak law of large numbers, equation (2.5), the part which will be

needed for the proof of Theorem 2.3.2. We prove it as follows,

For weak law of large number to hold we must have:

lim
N→∞

P

[∣∣∣∣ fiN − Pi
∣∣∣∣ > ε

]
= 0.

The variance of the random variable fi =
∑N

m=1 cm(i) is derived using the relation that

V ar

(
N∑
i=1

Xi

)
=

N∑
i=1

N∑
j=1

Cov
(
Xi, Xj

)
.

So applying above relation to our use we have:
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V ar(fi) = V ar

N∑
m=1

cm(i) =
N∑
m=1

N∑
l=1

Cov
(
cm(i), cl(i)

)
=

N∑
l=1

N∑
m=1

E
{(
cl(i)− Pi

)(
cm(i)− Pi

)}
= NN−1

N∑
l=1

N∑
m=1

E
{(
cl(i)− Pi

)(
cm(i)− Pi

)}
= NE

[
ζiζi
]

(from equation (2.6))

= N
[
αij + o(1/N)

]
. (from equation (2.3))

So we have V ar
(
fi
N

)
= 1

N2V ar(fi) =
N [αij+o(1/N)]

N2 =
αij
N

+ o
(

1
N2

)
.

The variance of random variable fi
N

is
[
αij
N

+ o
(

1
N2

)]
. So the probability equivalent event

is:

PN

[∣∣∣∣ fiN − Pi
∣∣∣∣ > ε

]
= PN

[∣∣∣∣fi −NPi
∣∣∣∣ > Nε

]
.

Now, by Chebyshev’s inequality:

PN

[∣∣∣∣ fiN − Pi
∣∣∣∣ > ε

]
≤ V ar(fi)

(Nε)2
=

1

ε2
V arfi
N2

=
1

ε2

(
αij
N

+ o
( 1

N2

))
.

So as N → ∞ the above term → 0 which gives us:

lim
N→∞

PN

[∣∣∣∣ fiN − Pi
∣∣∣∣ > ε

]
= lim

N→∞

[
1

ε2

(
αij
N

+ o
( 1

N2

))]
→ 0.

So we have
fi
N

P→ Pi.

Hence proved Lemma 2.3.3.

We generate the process xn as mentioned in the algorithm for DTMC 1 as follows. Con-

sider an independent collection of random variables x1 and win (i = 0, 1, · · · , s; n = 0, 1, · · · )
such that

P{x1 = i} = Pi and P{win = j} = Pij.

The way of sampling is same as we did in the Function ‘F ’ of DTMC. Now by the way of
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sampling we have intuitively:

P{xk = ak, 0 ≤ k ≤ N} = Pa0Pa0a1 · · ·PaN−1aN . (2.9)

Now to prove the Theorem 2.3.2, a convergence theorem needs to be used which is stated as

below and proof of it can be referred to Section 20.6 of Cramér [8].

Theorem 2.3.4. Let ξ1, ξ2, · · · be a sequence of random variables with distribution functions

F1, F2, · · · . Suppose that Fn(x)→ F (x) as n→∞.
Let η1, η2, · · · be another sequence of random variables, and suppose that the

ηn
P→ c(constant). Put Xn = ξn + ηn ; Yn = ξnηn ; Zn = ξn

ηn
. Then the distribution functions

of Xn → F (x − c). Further if c > 0, then distribution functions of Yn → F
(
x
c

)
while the

distribution of Zn → F (cx).

We will try to use above theorems to leverage. Hence, consider the random vector

ηij :=
fij−fiPij
(NPi)

1
2

. This random vector will have the same distribution by Theorem 2.3.4 if it

can be proved that for each fixed i and j, the difference of

gij − bNPicPij
(N)

1
2

− fij − fiPij
(NPi)

1
2

(2.10)

goes to 0 in probability. Since the ratio of ξij and ηij goes to 1 in probability by the equation

(2.5), it will then follow by above Theorem 2.3.4 that ξ has a limiting distribution. Now we

need to show that equation (2.10) goes to 0 in probability. So we show it as below.

Let us define em as follows,

em =

1− Pij, if wim = j

−Pij, if wim 6= j.
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and put Sm = e1 + · · ·+ em.

E[em] = (1− Pij)Pij +−Pij(1− Pij)

= Pij − P2
ij − Pij + P2

ij

= 0.

σ2 = V ar[em] = (1− Pij)2Pij + (−Pij)2(1− Pij)

= (1 + P2
ij − 2Pij)Pij + P2

ij(1− Pij)

= Pij + P3
ij − 2P2

ij + P2
ij − P3

ij

= Pij − P2
ij = Pij(1− Pij).

Then the em
′s are iid with mean 0 and variance σ2 = Pij(1 − Pij), and the difference will

now become
(SbNPic − Sfi)

N
1
2

. (2.11)

Now we’ll require the Kolmogorov’s inequality for the remaining bit of the argument and we

will use it directly without proving. So we state it as below.

Kolmogorov’s Inequality: Let X1, · · · , Xn : Ω → R be independent random variable

defined on common probability space (Ω, F,P) with E[Xk] = 0 and VarXk < +∞, where

k = 1, · · · , n. Then for each c > 0 we have,

P
(
max
1≤k≤n

|Sk| ≥ c
)
≤ 1

c2
V ar[Sn] ≡ 1

c2

n∑
k=1

V arXk,

where Sk = X1 + · · ·+Xn.

Now to show that the equation (2.10) goes to 0 in probability is same as proving it for

the equation (2.11), for which we prove it as under.

Proof. Given ε > 0, choose n0 such that N ≥ n0, then

P{|fi − bNPic| > Nε3} < ε,
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which holds by equation (2.5). Now if N ≥ n0, then

P

{
|SbNPic − Sfi |

N
1
2

> ε

}

≤ P{|fi − bNPic| > Nε3}+ P

{
max

m−[NPi]≤Nε3
|SbNPic − Sm| > εN

1
2

}

≤ ε+ 2P

{
max

1≤m≤Nε3
|Sm| >

εN
1
2

2

}
≤ ε+ 2

( 4

ε2N
(Nε3σ2

)
= ε+ 2(4εσ2) = (1 + 8σ2)ε,

where the last inequality follows from the earlier stated Kolmogorov’s inequality and since ε

was arbitrary, equation (2.11) goes to zero in probability.

Now using the acquired knowledge from previous Theorems and Lemma we will prove

the Theorem 2.3.2 as below.

Proof of Theorem 2.3.2. Since the process produced by discussed algorithm will have

proper joint distribution by equation (2.9), so using it to compute the distributions of fij.

We already know (fi1, · · · , fis) is the frequency count of (wi1, · · · , wifi). By weak law of

large numbers (equation (2.5)), fi → NPi with high probability. It is better to compare

(fi1, · · · , fis) with the frequency count (gi1, · · · , gis) of
(
wi1, · · · , wbNPic

)
.

Now we have from the independence of array wiN and Central Limit Theorem for MultiDi-

mension 2.3.2 that the s2 random variables

(gij − bNPicPij)
(NPi)

1
2

are asymptotically jointly normally distributed with co-variance matrix given(λij,kl) by λij,kl =

δik(δjlPij − PijPil). Using Convergence Theorem 2.3.4 proved earlier we have that the s2 −
dimensional random vector with components ηij =

fij−fiPij
(NPi)

1
2

will have the same mentioned

distribution. Hence, proved Theorem 2.3.2.
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2.4 Rate of Convergence (Irreducible Discrete-Time

Markov Chain)

We have already built upon the Theorem 2.3.2 which is very strong, so we will look at a

special version of this and look at some experimental results and their numerical significance.

Now given a sequence of irreducible Markov chain obtained using the algorithm for DTMC,

we recall the way we defined an Empirical Probability Matrix in terms of empirical proba-

bilities as below. Following the notations introduced in earlier proved Theorem. We have,

Notations used:

fi. = number of exits from state i.

fij = number of instantaneous transitions from state i to state j.

We discuss the empirical probability once again before talking about the convergence.

We have by definition P̂ij =
fij
fi.

(gives the Empirical Transition Probability).

Now we will discuss about the theoretical way of defining rate of convergence of Empirical

Probability Matrix (obtained from given Markov chain)(EPM) to Transition Probability

Matrix (TPM) but before that we discuss more on the error estimate of this convergence.

P

(
P̂ij =

c

m

∣∣∣fi. = m

)
= P

(
fij = c

∣∣∣fi. = m

)[
as P̂ij =

fij
fi.

=⇒ fij = fi.P̂ij

]

=

(
m

c

)
Pcij(1− Pij)c (as fij ∼ Bin(m,Pij) .

Hence

E
(
P̂ij
∣∣∣fi. = m

)
=

m∑
c=0

c

m

(
m

c

)
Pcij(1− Pij)m−c

=
1

m

m∑
c=0

c

(
m

c

)
Pcij(1− Pij)m−c

=
1

m
mPij = Pij.
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Therefore P̂ij is an unbiased estimator of Pij.

For Variance using the equation V (X) = E(X2)− (E(X))2 we have :

V
(
P̂ij
∣∣∣fi. = m

)
=

m∑
c=0

( c
m

)2
(
m

c

)
Pcij(1− Pij)m−c − P2

ij

=

(
1

m2

m∑
c=0

c2

(
m

c

)
Pcij(1− Pij)m−c

)
− P2

ij

=
1

m2

(
mPij(1− Pij) + (mPij)2

)
− P2

ij

=
Pij(1− Pij)

m
.

Hence V
(
P̂ij
∣∣∣fi. = m

)
→ 0 as m →∞.

Since fi.
N

= stationary probability of ith state > 0.

lim
N→∞

fi. =∞ (almost surely).

Hence P̂ij is a consistent estimator of V
(
P̂ij
∣∣∣fi. = m

)
= E

(
|P̂ij − Pij|2

∣∣∣fi. = m
)

(squared

L2 norm of error)

=
Pij(1− Pij)

m
≤ 1

4m
.

Thus
∣∣∣∣∣∣P̂ij − Pij

∣∣∣∣∣∣
L2

=
√

Pij(1− Pij)m−
1
2 , we notice as N → ∞,m → ∞ linearly as (fi.)

N
=

πi, (πi ∈ R). Thus L2 error decays in order o(N−
1
2 ).

We have already obtained the entry-wise error estimate above but for the experimental

purpose we have used directly the norm of EPM(n) and TPM matrices.

Now we give a numerical analysis which shows the rate of convergence of the EPM to TPM.

We use the methods used in previously described DTMC algorithm 1 to generate the EPM

and perform the series of numerical operations to find out the rate of convergence. We define

the terminology to be used in the rate plot as below:

rN :=
|TPM − EPM (N)|
|TPM − EPM (2N)|

, αN := log2(rN).
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In the figure We denote the sum of the sequence {αN}N by αN . This particular sum is

more formally known as Cesàro sum. So in our use the Cesàro sum is αN = 1
n

n∑
p=1

αp. To

illustrate the reason for this to be Cesàro sum. Consider {αp}p to be the sequence of α’s.

Then,

for p ≥ 2, define ap := αp − αp−1, a1 = α1

So,
k∑
p=1

ap is a telescopic sum and hence we end up with αk.

Now, the Cesàro sum of
∑
an = 1

n

N∑
k=1

αk → αN .

Now, for large N , if α is the rate of convergence of {xN} to x, which are entries of EPM (N)

and TPM matrices respectively, then |x− xN | ∼ cN−α.

|x− xN |
|x− x2N |

≈ cN−α

c(2N)−α
= 2α.

or

α ≈ log2

(
|x− xN |
|x− x2N |

)
.

Hence, we obtain α.

In general:

|x− xN | = cN−α + o(N−α).

then

|x− xN |
|x− x2N |

=
cN−α + o(N−α)

c(2N)−α + o((2N)−α)

=
1

2−α + o((2N)−α)
cN−α

+
o(N−α)
cN−α

c(2N)−α

cN−α
+ o((2N)−α)

cN−α

.

Now above equation on right hand side has 2 terms. So considering first of these terms and

trying to resolve it we have:

o((2N)−α)

cN−α
→ 0 as N →∞.
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Now considering the second term. We first resolve numerator as below:

o(N−α)

cN−α
→ 0 as N →∞.

Now looking at denominator we have:

c(2N)

cN−α

−α

→ (fixed +ve quantity (bounded)) +
o((2N)−α)

cN−α
→ 0 as N →∞).

Hence the second term is 0.

So we have:

lim
N→∞

|x− xN |
|x− x2N |

=
1

2−α
.

so,

α = log2 lim
N→∞

(
|x− xN |
|x− x2N |

)
.

Since log function is continuous, so

α = lim
N→∞

log2

(
|x− xN |
|x− x2N |

)
.

or

α = lim
N→∞

αN , where αN = log2

(
|x− xN |
|x− x2N |

)
.

2.4.1 Numerical Experiment:

Now we have the following plot as a result of computation done by us on previously simulated

Discrete-time Markov chain sequence to obtain the EPM. We are considering the state space

to be S = {0, 1, 2}, the Transition Probability Matrix from [10] as follows,

TPM =

 0 0.67 0.33

0.5 0 0.5

0.33 0.67 0


to generate a chain of length N = 104.
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Figure 2.2: Estimation error & rate of convergence with increasing chain length.

Comment: The result in the theory asserts the rate to be 1
2

for large N . However, the

empirical verification of this is tricky as seen in the plot of αN in Figure 2.2. In Figure 2.2,

αN varies from 0 to 1. However, for large N (≥ 5000), the αN remains close to 1
2
. Also note

that due to truncation error we have problems related to round-off which has been tried

to fix by using the fixed point precision method (to be precise, the precision of 8 digits)

but still we may have these errors due to level of calculations performed on data. Also the

computation has been done by taking norm of EPM (N) and TPM matrices but in theory

we have done it component wise for these matrices. Now, the chaotic behaviour as seen in

the Figure 2.2 can be explained via following empirical computation. For each i, j ∈ S we

have:

αij(N) = log2

(
P̂ij

(N)
− Pij

P̂ij
(2N)
− Pij

)
CLT
≈ 1

2
log2

(
|N(0,

√
Pij(1− Pij(πiN)−

1
2 )|2

|N(0,
√
Pij(1− Pij(2πiN)−

1
2 )|2

)

≈ 1

2
log2

(
Pij(1− Pij)(πiN)−1χ1

Pij(1− Pij)(2πiN)−1χ2

)
.

≈ 1

2

(
log2(2F (1, 1))

)
,

where χ1 and χ2 in the above expression are denoting two independent χ2
1 random vari-
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able. Since χ1

χ2
∼ F (1, 1), therefore, we obtain the last term of above expression for p−value =

5%, we have P

(
F (1, 1) ∈

(
1

161
, 161

))
< 95% and so P(log2(F (1, 1) ∈ (−7.33, 7.34)) < 95%.

So we have,

αij(N) ≈ 1

2
log2

(
2F (1, 1)

)
=

1

2
+

1

2
log2(F (1, 1))

∈

(
1

2
− 3.67,

1

2
+ 3.67

)
.

Thus the asymptotic distribution of αij(N) has a large standard error.

2.5 Continuous-time Markov Chain

In this part we will go through the definition of Continuous-time Markov chain and the

method to simulate it. Before simulating we will also define the Q-matrix.

Definition 2.5.1. A stochastic process {X(t): t ≥ 0} is called a Continuous-time Markov

Chain if ∀ t ≥ 0, s ≥ 0, i ∈ S, j ∈ S,

P(X(s+ t) = j|X(s) = i, {X(u) : 0 ≤ u < s}) = P(X(s+ t) = j|X(s) = i) = Pij(t),

where Pij represents the probability that the chain will be in state j after t units of time given

it is in state i now.

Definition 2.5.2 (Q-matrix). A transition rate-matrix or Q-matrix is a matrix describing

the rate a continuous-time Markov chain moves between the states. The element qij(i 6= j)

denotes the rate of departing the state i and arriving at a state j whereas diagonal elements

qii = −
∑
j 6=i
qij. A Q-matrix satisfies the following conditions:

1. 0 ≤ −qii <∞.

2. 0 ≤ qij : for i 6= j.
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3.
∑
j

qij = 0 : ∀ i.

Now let us look at the way of simulating the Continuous-time Markov chain.

Algorithm 2 To simulate a Continuous-time Markov Chain, given a Q-matrix, Time-
Horizon, initial state:

1. Choose an initial state, say X0 = i0, set n = 0, t0 = 0.

2. Generate HX0 ∼ exp(−qX0X0), set t1 = HX0 .

3. while tn < T :
Xn+1 = F (x,Xn), x ∼ U [0, 1].

4. set n = n+ 1.

5. Generate HXn ∼ exp(−qXnXn) , set tn+1 = tn +HXn .

6. if tn+1 > T stop
else repeat from (3).

2.6 Semi-Markov Processes

We can now deduce what if the holding times H do not have an exponential distribution,

so then the resulting process {Xt : t ≥ 0} will not, in general, possess the Markov property;

it will not be a CTMC. Instead, it is called a Semi-Markov process having holding time

distribution, say ZXn . Now using Tanmay [13], we have the following definition.

Definition 2.6.1. A Semi-Markov process is a process {Xt}t≥0 that satisfies the following

properties:

1. Xt is a piece-wise constant rcll process with discontinuities at a discrete set {Tn}n≥1.

2. The transition probabilities satisfy:

P[XTn+1 = j, Tn+1 − Tn ≤ y|(X0, T0), (X1, T1), · · · , (XTn , Tn)] =

P[XTn+1 = j, Tn+1 − Tn ≤ y|XTn].
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Algorithm 3 To simulate a Semi-Markov process, given a Instantaneous Transition-rate
Matrix, Time-Horizon, initial state, general holding Time distribution, say ZXn :

Now let us look at the method we used for simulating the Semi-Markov process.

1. Choose an initial state, say X0 = i0, set n = 0, t0 = 0.

2. while tn < T :

Xn+1 = F (x,Xn), x ∼ U [0, 1].

3. Generate H ∼ ZXn,Xn+1 , set tn+1 = tn +H.

4. if tn+1 > T stop

else n = n+ 1

repeat from (2).
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Chapter 3

Brownian Motion

3.1 Development of Brownian Motion

Robert Brown was the first person to study the continuous irregular movement of pollen

grains suspended in fluid. Henceforth, the phenomenon was named after him as Brownian

Motion. In mathematics Brownian motion is described by the Wiener process, a continuous-

time stochastic process named after Norbert Wiener who studied this process in great details.

Let us now discuss more on the Brownian motion.

Definition 3.1.1. The random variables {Bt}t≥0, is said to be Standard Brownian Motion

if it satisfies the following conditions:

1. B0 = 0.

2. t→ Bt is almost surely continuous, i.e P{ω ∈ Ω
∣∣ the path t→ Bt(ω) is a continuous

function} = 1.

3. Bt has independent increments, i.e. ∀ t1, t2, · · · , tn, the Bt2 −Bt1 ,

Bt3 − Bt2 , · · · , Btn − Btn−1 are independent random variables. More precisely, for 0 ≤
s < t, Bt −Bs is independent of Bu, u ∈ [0, s].

4. Bt −Bs ∼ N(0, t− s) (for 0 ≤ s ≤ t), where N(µ, σ2) denotes the normal distribution

with mean µ and variance σ2.
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The Generalized Brownian Motion is W = {Ws : s ∈ [0,∞)} can be constructed from

Standard Brownian motion as Ws = µs+ σBs where Bs = {Bs : s ∈ [0,∞)} is the standard

Brownian motion and µ is the drift parameter and σ is the volatility parameter.

We have noticed that since Brownian Motion can take negative values, so using it to

model stock price dynamics is not a good idea. So the idea is to look for a non-negative

random variable. We introduce here the Geometric Brownian Motion, the non-negative

variant of Brownian motion. We recall it using [14] as below.

Definition 3.1.2 (Geometric Brownian Motion). Let {Bt}t≥0 be the standard Brownian

Motion, then

St = S0e
Wt , (3.1)

where Wt = µt + σBt is the generalized Brownian motion with drift and S0 is the initial

value.

Going back to equation (3.1), if we take logarithm both sides, it yields us the Brownian

Motion; Wt = ln
(
St
S0

)
= ln(St) − ln(S0). ln(St) = ln(S0) + Wt is normally distributed with

mean (µt + ln(S0)) and variance σ2t. Hence ln(St) − ln(Su) = Wt −Wu is independent of

ln(Sv) for v ∈ [0, u], i.e. St
Su

is independent of Sv for v ∈ [0, u].

Definition 3.1.3. A discrete-time stochastic process {Xn}n≥0 that satisfies for any time n,

E(|Xn|) <∞,

E(Xn+1|X1, · · · , Xn) = Xn,

is called a discrete-time martingale.

In other words, conditional expected value of future state, given all past observations,

is equal to the most recent observation. Let us look at the definition of continuous-time

martingale.

Definition 3.1.4. A continuous-time stochastic process {Xt}t≥0 is a continuous-time mar-

tingale if E(|Xt|) <∞ and E(Xt+h|Xs, 0 ≤ s ≤ t) = Xt for h ≥ 0, t ≥ 0.

Theorem 3.1.1. Brownian motion is a continuous-time martingale.
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Proof. To show that Brownian motion is a continuous-time martingale is same as showing

E(Bt|{Bu, u ∈ [0, s]}) = Bs. So, using Bt − Bs ∼ N(0, t − s), and independent to {Bu, u ∈
[0, s]}.

E(Bt|{Bu, u ∈ [0, s]}) = E(Bt −Bs +Bs|{Bu, u ∈ [0, s]})
= E(Bt −Bs|{Bu, u ∈ [0, s]}) + E(Bs|{Bu, u ∈ [0, s]})
= 0 + E(Bs|{Bu, u ∈ [0, s]})
= 0 +Bs

= Bs.

Hence Proved.

Before we begin with methods for simulation we will discuss about methods which can

be used to help us in performing the simulation efficiently.

3.2 Box-Muller Transform

As we saw in the first chapter, the method of simulation is dependent on the behaviour and

knowledge of function F (x) and also whether it is analytic and invertible. For the purpose of

simulating Brownian motion and other stochastic process, we will need to generate random

numbers from Normal Distribution, but the normal cumulative distribution function cannot

be inverted analytically. Hence our earlier used method will fail. So this particular problem

can be resolved by using a relatively simple method that allows us simulating two normal

random distribution from two uniform random numbers. This particular method is termed

as Box-Muller Transform.

Consider two random variables X,Y distributed as Standard Normal, and independent of

each another. The joint pdf then can be defined as:

h(x, y) =
1

2π
e−

(x2+y2)
2

37



Consider transformation of variables from Cartesian(x, y) into polar coordinates(r, θ) by:

x = r cos(θ)

y = r sin(θ).

The joint pdf g(r, θ) := h(x, y)|J |, J is the Jacobian. Hence,

g(r, θ) =
1

2π
re−

r2

2

for r ≥ 0, 0 ≤ θ ≤ 2π. This is the product of two pdf’s, namely Uniform distribution and

Rayleigh distribution. We know Rayleigh distribution is defined by:

f(x;σ) =
x

σ2
e
−x2
2σ2 , x ≥ 0

F (x;σ) = 1− e
−x2
2σ2 , x ∈ [0,∞)

where σ is the scale parameter of the distribution. We know a quantile function [7] is

defined by Q(p) = inf{x ∈ R : p ≤ F (x)}, and if F(x) is continuous and strictly monotonic

function then Q = F−1. In our case, we know the CDF, FX(x) is continuous and strictly

monotonic function, so we have FX(x) = P (X ≤ x) = p. So here we have p = 1− e r
2

2 which

resolves to r =
√
−2 ln(1− p) = G−1(p) and so R =

√
−2 ln(1− U) simulates the Rayleigh

distribution, given U ∼ U(0, 1). Also,

I(θ) =

 θ
(2π)

, 0 ≤ θ ≤ 2π

0, otherwise .

So θ = 2πV simulates a uniform distribution between 0 and 2π, where V ∼ V (0, 1). Hence,

we arrive at the formulas to simulate a pair of normal random variables X and Y :

X = R cos(θ) =
√
−2 ln(1− U) cos(2πV )

Y = R sin(θ) =
√
−2 ln(1− U) sin(2πV )

This method provides us with pair of Normal random numbers X, Y ∼ N(0, 1), we can use

it to our benefit by using both of them and thus we can reduce the number of times for

generating normal numbers by half the amount. Let us see the algorithm for generating

38



normal random numbers using Box-Muller Transform.

Algorithm 4 Generating Normal random numbers with given mean (m) and variance (s)

1. Generate 2 random numbers U, V , where U, V ∼ U [0, 1].

2. To generate pair Standard normal number, set X1 =
√
−2 ln(1− U) cos(2πV ) and

X2 =
√
−2 ln(1− U) sin(2πV ).

3. To generate Normal random number with given mean and variance, we set Z1 =
m+

√
sX1 and Z2 = m+

√
sX2.

3.3 Simulation of Brownian Motion

Now let us look at the method of simulating Brownian motion.

Algorithm 5 Method for simulating standard Brownian motion at times 0 = t0 < t1 < t2 <
· · · < tk :

1. Set a definite time increment ti − ti−1 = dt.

2. Sequentially generate normal random variable (using Box-Muller transform Algorithm
[4]) r1, r2, · · · , rk, with mean 0 and variance dt.

3. We have already set the time-increments dt, then by definition we can recursively define
realizations of Brownian motion as,

Bt1 = r1,

Bt2 = Bt1 + r2 = r1 + r2,

...

Btk =
k∑
i=1

ri.

We observe that to generate Brownian motion, we only need to generate normal random

variables using Box-Muller transform. Following plots are generated using above algorithm,
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where we have used discrete points for generating such points and to approximate with

continuous-time we have used small increments. Also we can check the Gaussian behaviour

of Brownian motion by plotting several realizations of Brownian motion as shown below.

(a) Brownian motion with t=10 units (b) 1000 realizations of Brownian Motion

Figure 3.1: Standard Brownian Motion Simulation with dt = 0.01

Next, we look at few more simulations which deal with General Brownian motion with

drift parameter µ, and volatility term σ and also we look at the method to simulate GBM.

Algorithm 6 Simulating the Brownian motion with drift µ and volatility term σ at times
0 = t0 < t1 < t2 < · · · < tk :

1. Set a definite time increment ti − ti−1 = dt.

2. Sequentially generate normal random variable (using Box-Muller transform Algorithm
[4]) r1, r2, · · · , rk, with mean 0 and variance dt.

3. We can then by definition recursively define,

Xt1 = σr1 + µdt,

Xt2 = Xt1 + σr2 + µdt = σ(r1 + r2) + 2µdt,

...

Xtk =
k∑
i=1

(
σri + µdt

)
= σ

k∑
i=1

(ri) + kµdt.
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Algorithm 7 Simulating Geometric Brownian motion (GBM) (with drift µ and variance
term σ) at times 0 = t0 < t1 < t2 < · · · < tk :

1. Set a definite time increment ti − ti−1 = dt.

2. Sequentially generate normal random variable (using Box-Muller transform Algorithm
[4]) r1, r2, · · · , rk, with mean 0 and variance dt.

3. Next we generate log-normal random variables Yi by setting Yi = e
σri+

(
µ− 1

2
σ2

)
dt

, i ∈
1, 2, · · · , k.

4. We can then recursively define,

St1 = S0Y1

St2 = St1Y2 = S0Y1Y2

...

Stk = Stk−1
Yk = S0

k∏
i=1

Yi.
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Chapter 4

Stochastic Models of Asset Price

Dynamics

Black-Scholes model was one of the early models to study and replicate the stock price

dynamics in great details, and it also gave the formula for pricing the European call and put

options. The model was first formulated through the hard work of Fischer Black and Myron

Scholes. They went on derive the equation, to say, partial differential equation, known as

Black-Scholes equation, governing the prices of options over time. Subsequently, the work

by Robert Merton during his study of Black-Scholes model by employing mathematics, he

formulated the Black-Scholes option pricing formula. For this work, Merton and Scholes

went on to win Nobel Prize in Economics in 1997. Let us first define few basic terms of

option pricing theory.

4.1 Basics of option pricing

In this section, we talk about some basic terms of option pricing theory which will be helpful

in the forthcoming sections.

Definition 4.1.1. An option is an agreement (contract) which gives owner the right, but

not obligation to buy (call) or sell (put) an underlying asset or financial instrument at a

specified strike price (K) at maturity time of the contract (T ), which is a specified date.
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The details mentioned in the definition have to be mentioned in the clause of the contract,

where by underlying asset can be a company stock, currency, commodity as silver, etc. A

simple example can be of a contract that binds two parties for a sale of a commodity such as

petrol or crude oil, four months from now. Now let us discuss the problem of option pricing

without getting into much detail.

Since while signing a contract the buyer of the option is transferring risk to the writer of

the option. He must pay him fairly to agree to the contract. Let us consider a stock, whose

value at maturity time T is ST . Now, if the writer has to buy the stock at maturity time

T to sell that to buyer as promised, he would lose CT = max(ST − K, 0) = (ST − K)+ as

mostly the option will be exercised only if the buyer gains some profit out of it. Hence, the

price of the option at maturity T is known to be CT . But the problem of pricing involves

that how much the buyer of the option should pay the writer of the option at time t = 0

for an asset worth (ST −K)+ at T , the answer depends on the statistical properties of ST .

There were several models which spanned out to solve this particular problem and we will

discuss few of them in detail.

4.2 Black-Scholes model

The stock prices, {St}t≥0 in BSM model follow geometric Brownian motion whose dynamics

is given by

dSt = µStdt+ σStdWt, S0 ≥ 0,

where Wt is a Brownian motion, and µ is percentage drift, and σ is percentage volatility.

The solution of above SDE is given by

St = S0e

(
µ− 1

2
σ2

)
t+σWt

.

The Black-Scholes equation is a PDE, which describes the price of the option over time

and also Black-Scholes model only talks about the European style of option pricing. If at

time t the stock price St = S and φ(S, t) is the price of derivative as a function of stock

price and time, r is the annualized risk-free interest rate, continuously compounded, µ is the

drift parameter, volatility σ is the standard deviation of stock returns per unit time, then φ
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satisfies the following PDE:

∂φ

∂t
+

1

2
σ2S2 ∂

2φ

∂S2
+ rS

∂φ

∂S
− rφ = 0.

The corresponding solution, known as Black-Scholes formula for call option price with strike

price K is,

C(St, t) = N(d1)St −N(d2)Ke−r(T−t),

d1 =
1

σ
√
T − t

[
ln

(
St
K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d2 = d1 − σ
√
T − t,

where N(.) is the CDF of Standard Normal distribution, T − t is the time to maturity, St

is the spontaneous stock price used for immediate settlement, and r and σ are as mentioned

above.

4.3 Drawbacks and many generalization

The Black-Scholes model has the following assumptions laid on it.

Assumptions:

1. There is no arbitrage opportunity (i.e. No opportunity of making risk-less profit exists.)

2. It is possible to borrow and lend cash at a known constant risk-free interest rate.

3. It is possible to buy and sell any amount, even fractional, of stock (which includes

short selling).

4. The above transactions do not incur any fees or cost (i.e., frictionless market).

5. The stock price follows a GBM with constant drift and volatility.

6. The underlying security does not pay a dividend.

With above assumptions, we can figure out the drawbacks of this model.
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Drawbacks of BSM model:

1. To begin with the model assumes the underlying factors to be known and also assumes

them to be constant throughout the life of option. But none of this is true in the real

world scenario, the underlying riskfree rate, volatility, and dividends are unknown and

they may change in short span of time with high variance and thus leading to high

fluctuation of option prices.

2. It assumes the stock prices have continuous sample paths, implying it fails to model

the opening gaps and jumps.

3. Also it is not suitable for pricing style other than European call options.

But even with these many drawbacks, the Black-Scholes model is widely popular as it is

simple and provides a ready-made value for the option. But for more accurate modelling of

option pricing, there have been many generalization over the years such as Heston model,

Jump Diffusion model, MMGBM model. We are going to discuss them briefly below.

4.3.1 Heston Model

Heston model, named as such after Steven Heston, is one of the key generalization to over-

come the drawback of BSM model. It is a model which assumes the volatility of the asset is

not constant, not deterministic, but rather it follows a random process, to be more precise,

a CIR process.

Model Description

The Heston model assumes the stock price, {St}t≥0 follows the dynamics given by equation

dSt = µStdt+
√
νtStdWt, S0 > 0,

where νt, the square of the instantaneous volatility, is a CIR process:

dνt = κ(θ − νt)dt+ σ
√
νtdW

′

t , ν0 > 0,

46



where dWtdW
′
t = ρdt. The parameters in the above mentioned equation represent the follow-

ing:

Figure 4.1: θ, νt vs
time (t)

1. θ is the long run mean of νt.

2. κ is the speed of mean reversion.

3. σ is the volatility of volatility.

Also, the following conditions need to be satisfied,

1. Feller condition: σ2 < 2κθ to assure non-negativity of ν.

2. Square integrability of S: σ ≤ κ
(2ρ+

√
2)+

.

Now if at time t, the stock price St is equal to S and the volatility
√
νt =

√
ν, then the locally risk minimizing price Ct of a call option with a maturity time T

and strike price K is given by,

Ct = φ(t, S, ν),

where φ satisfies the following PDE:

∂φ

∂t
+ rS

∂φ

∂S
+ (κ(θ − ν)− ρσ(µ− r))∂φ

∂ν
+

1

2
νS2 ∂

2φ

∂S2
+ ρσνS

∂2φ

∂S∂ν
+

1

2
σ2ν

∂2φ

∂ν2
− rφ = 0.

φ(t, S, ν) = (S −K)+ ∀S, ν.

For more extensive research on the related topic, one can refer [4]

4.3.2 Jump Diffusion Model

As previously discussed, BSM model assumed the stock prices to follow GBM and hence-

forth, it does not account for jumps which might be there in stock prices. Although for

47



longer time-horizon one may see continuous behaviour but for day scale jumps may be ob-

served. Therefore, we look more upon this using jump diffusion model [12]. The equation

for dynamics of stock prices is given by:

dSt = St

(
µdt+ σdWt +

∫
R
η(z)N(dz, dt)

)
,

where N(dz, dt) is a Poisson random measure on R× [0,∞) with intensity measure ν(dz)dt,

where ν is a finite Borel measure. W and N are assumed to be independent. The bounded

continuous function η : R → (−1,∞) is the jump size coefficient. Now, at time t, if the

stock price St is equal to S then the locally risk minimizing price Ct of a call option with a

maturity time T and strike price K is given by, Ct = φ(t, S), where

∂φ

∂t
+ (r + β1)S

∂φ

∂S
+

1

2
σ2S2 ∂

2φ

∂S2
+

∫
R
(β2(z)[φ(t, S(1 + η(z))− φ(t, S)]ν(dz) = rφ(t, S),

where,

β1 =
(µ− r)

∫
η2(z)ν(dz)− σ2

∫
η(z)ν(dz)

σ2 +
∫
η2(z)ν(dz)

,

β2(z) = 1−
(µ− r +

∫
(η(z)ν(dz))η(z)

σ2 +
∫
η2(z)ν(dz)

,

and φ(t, S) = (S −K)+.

More work on option pricing theory in regime-switching Jump Diffusion model can be

found in [1]

4.3.3 Regime Switching Model

By definition of Geometric Brownian motion we know, it follows the SDE dSt = µStdt +

σStdBt, where Bt is the Brownian motion, and µ (the drift), and σ (volatility) are constants.

The solution of this SDE and stock price comes out to be St = S0e

(
µ−σ

2

2

)
t+σBt

, but our

current discussion revolves around the Markov-modulated GBM under which we don’t as-

sume µ (drift) and σ (volatility) are constants instead we assume them to be function of
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Continuous-time Markov chain and so the SDE of Markov-modulated GBM becomes,

dSt = µ(X(t))Stdt+ σ(X(t))StdBt,

where X(t) is a Markov chain as discussed above. For example, say Market is in state 1 if

the instantaneous drift is less than 0.15 and in state 2 if that is greater or equal to 0.15, so

our chain will be a two state process and we can model our market using GBM as, either

dSt = µ(1)Stdt+ σStdBt,

or,

dSt = µ(2)Stdt+ σStdBt,

for a special case when σ(1) = σ(2) = σ and combining it together would result in equation

formally discussed as,

dSt = µ(X(t))Stdt+ σStdBt,

where X(t) is a Markov chain whose state space S = {1, 2}. The solution of this SDE is

given by

St = S0e

∫ t
0

(
µ(Xu)−σ

2

2

)
du+σBt

.

We can rewrite the above equation for St as under.

Sti+1
= Sti e

((
µi−σ

2

2

)
dt + σ(Bti+dt−Bti )

)
, (4.1)

where i ∈ S, and S is the state space.

4.4 Simulation of MMGBM

We will now look upon an algorithm to simulate MMGBM model as it is simpler than other

alternatives, using 2-state Continuous-time Markov chain to observe the dynamics of stock

prices. For the purpose of simulating MMGBM, the underlying rate transition matrix, Q

should be known to generate holding times from exponential distribution of continuous-time

Markov chain, and also to mention that the chain under our consideration is irreducible as
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it was in Chapter 2.

Algorithm 8 Simulating Markov-Modulated GBM (with drift µ and volatility σ) upto
Time-horizon T , given Q−matrix.

1. Choose an initial state, say X0 = i0, set n = 0.

2. Simulate a continuous-time Markov chain with a given Q-matrix, and the time-horizon
T as in Algorithm [2] and obtain transition times, say tn.

3. Simulate {Bui}i as in Algorithm [5] ∀ ui ≤ T , set ui = idt ∀ i.

4. Set a definite time-increment, say dt, and also u0 = 0, i = 0.

5. Define µi = µ(Xt), Xt is the underlying embedded markov chain for tn ≤ ui < tn+1, ∀
i such that ui ≤ T.

6. Compute Sui+1
= Sui exp

((
µi − σ2

2

)
dt + σ(Bui+1

− Bui)
)

, as in equation 4.1 until

ui+1 > T.

7. Set i = i+ 1.

8. ui = idt, go and iterate from step 4.

9. return Output (ui, Sui), i ≥ 1.

We obtain the following plot after simulating MMGBM. Here we have considered our

Q-matrix to be,

Q =

[
−0.33 0.33

0.5 −0.5

]
.
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Figure 4.2: MMGBM with 2 states: {0, 1}, and µ = {0.1, 0.2}, σ = {0.01}, T = 3 years,
S0 = 20 units, time increments dt = 1

(250×360)
= 1.1× 10−5 units.
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Chapter 5

Study of Drift Coefficient

In this chapter we will be looking to answer the question, “Why the calibration of µ is

important?” and to answer this question we are going to use the knowledge from the previous

chapter, from [16] about several models discussed there and see if we can investigate more

upon the question. Let us begin by reviewing those models in order again in regards to our

question.

BSM Model: For BSM model calibration of µ is irrelevant as Black-Scholes formula for

option pricing doesn’t involve µ.

Heston & Jump-Diffusion Model: In Heston and Jump Diffusion model, option-price

equation depends on the drift coefficient (µ). The knowledge of this coefficient is must to

find out the value of the option.

Last of all the option price equation discussed for Regime-Switching (generalizations to

Heston or Jump Diffusion) Model also involves the value of µ.

5.1 An approach to drift estimation

So as seen before that drift (µ) is involved in each of the modelling equations (Heston,

Jump-Diffusion), but the problem of estimating it was not discussed. In this section, we are

going to see the difficulty involved in estimating it through these models, although any of
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the mentioned models could be used, but for our purpose, we have used Regime-Switching

generalization of BSM Model. Several simulations were done in these regards alongside

the case study of empirically deriving the conditions for estimating µ. The first thing is

to validate the model and then look for the squeezed duration, by which we mean we will

compute the moving drift (same way as we calculate moving average) for suitable window

size and set a particular cutoff percentage. Henceforth, we look down how many times this

moving drift falls below the specified cutoff percentage. We then collect the duration data for

varying values of scale parameter θ of the exponential distribution, assuming the underlying

stochastic process is continuous-time Markov chain (so Holding times ∼ exp(θ) ). Let us

discuss the process in more details with the help of following steps:

1. First of all we run our algorithm for simulation of MMGBM(as in 8) for a fixed scale

parameter θ and then use it to produce simulated stock prices data for a given Time-

Horizon. This data would be minute-wise data, we do so by considering (250× 6× 60

minutes i.e., trading for 250 days, 6 hours = 6× 60 minutes.)

2. From this Stock prices data, we compute the relative return ri = Si−Si−1

Si−1
, we do so as

to see the relative change of stock prices over the day.

3. Now we choose a suitable windows size n, and then find out the moving drift over this

windows (or to say drift estimators, say µ̂j, at jth time) using µ̂j = 1
dt

1
n

n−1∑
i=0

rj−i.

4. For computing the duration data we define,

(a) Given µ̂j, let a0 = 0 and define,

bi−1 = min{k > ai−1 | µ̂k > 0},

ai = min{k > bi−1 | µ̂k < 0},

then squeezed duration is given by, di = bi − ai.

5. We will end up with several values of di’s for a particular scale parameter θ, say

{d1, d2, · · · , dL}, so one can find d̄ by taking mean of these values, that is, d̄ := 1
L

L∑
i=1

di.

More generally, we can define the squeezed duration as,
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Definition 5.1.1. An asset is said to be in p-squeeze at i-th time step if the empirical drift

µ̂j defined above is below cp, the p-th percentile of µ̂. We define for i = 1, 2, · · · , let a0 = 0

and define,

bi−1 = min{k > ai−1 | µ̂k > cp}
ai = min{k > bi−1 | µ̂k < cp}.

Therefore, the time durations for p-squeezes are {d1, d2, · · · , dL} and L = max{i|bi < ∞},
provided L ≥ 1 and squeezed durations are defined in similar manner as above. But, for our

purpose, we will use the formerly defined squeezed duration.

5.2 An estimator of drift and its demerits

In this section we are going to talk about complexity involved in discussing above steps. To

begin with we first simulate MMGBM, and then look at the standard error of drift estimator.

Now, for standard we will try to look at BSM model and check if the variance is small enough

to use for MMGBM model. We have the following for BSM model,

dSt = St[µdt+ σBt],

or

dSt = St[µdt+ σN(0, dt)],

by considering increments of size dt. Now stock prices return can be computed as,

ri =
Si − Si−1

Si−1

= µdt+ σN(0, dt), ri ∼ N(µdt, σ2dt).

Now consider the random variable µ̂
(n)
j , which is moving drift over a windows size n. Then

we have,

µ̂
(n)
j =

1

dt

1

n

n−1∑
i=0

rj−i, (5.1)
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where each of these rj−i are iid random variables and V ar(µ̂
(n)
j ) = σ2

ndt
. Now, if we consider

realistic values as per market model, we have σ = 0.2, dt = 1
250×360

= 1
90000

, and to find

suitable windows size n, we have, say we want V ar(µ̂) < 0.1, then we have,

(4× 10−2)(9× 104)

n
< 0.1,

3600

0.1
< n

n > 36000.

But, the problem with such a large windows size is that it will average out the expected

behaviour of changing drift parameter and hence this will not be healthy approach. This

shows that for large value σ, our method of estimating drift will fail, while if we consider σ =

0.01, and then choose a small windows size, say n = 20, we get V ar(µ̂) = (1×10−4)×(9×104)
20

=
9
20

= 0.45. Now, comparing it with σ = 0.2, we have, V ar(µ̂) = (4×10−2)×(9×104)
20

= 3600
20

= 180,

we get a very large variance, method fails. So, we can apply this method of estimation

only for small σ. This project investigated more upon the same that for large values of

σ, it is not useful to estimate drift in regime switching setting by this method. We obtain

the following Box plots for MMGBM model when we plot mean squeezed duration (Sqd)

of drift estimator against varying scale parameter θ of exponential distribution of 2-state

Continuous-time Markov chain.

(a) σ = 0.01, N = 50, n = 20, µ1 = −1.0,
µ2 = 2.0.

(b) σ = 0.2, N = 50, n = 20, µ1 = −1.0, µ2 = 2.0.

Figure 5.1: mean Squeezed duration (Sqd) vs θ ∈ [10, 100].

We can clearly, see for fixed µ values and window size n = 20, σ = 0.01, we observe
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monotonic increasing behaviour as expected, while a washed out behaviour for large σ as

0.2. So, from now on we will only look at the results where values of σ ≤ 0.01 and n = 20

as it would be beneficial for keeping the behaviour of mean squeezed duration from fading

away.

5.3 Estimation of scale parameter in MMGBM model

Now, given a data the problem of estimating scale parameter θ can be done by employing

the simulation technique which we will discuss in further details. For our purpose we have

restricted ourselves to Binary regime case and can use probability estimate p, also we have

considered 2-state, say {1, 2} Markov chain case only. Hence the drift dynamics has 4

unknown parameters, namely, µ1, µ2, θ1, θ2, but we know µ̄ which is the observable in form

time-series and is defined by µ̄ = θ1µ1+θ2µ2
θ1+θ2

. We can determine the value of µ from probability

estimate p using µ̄ = pµ1 + (1 − p)µ2. For our purpose if we consider µ1 = −1.0, then we

can obtain the value of µ2 for a particular value of µ̄ and probability estimate p. Now,

we proceed further to estimate our scale parameter. We discuss more on the method of

simulating and estimating the scale parameter. Our original estimator of θ is the mean of

N different mean squeezed durations obtained by simulation, that is running the simulation

N times to obtain as many values of d̄ for each θ. More precisely, if d̄ = 1
L

L∑
i=1

di, where di

are squeezed durations obtained from single simulation,then after N different independent

simulations we will obtain d̄1, d̄2, · · · , d̄N , then we set

m :=
1

N

N∑
i=1

d̄(i),

as the key value, to be used in deriving estimator Let us look at the algorithm for estimating

scale parameter theta. From now on, we will denote mean squeezed duration by mean(Sqd)

wherever required.
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Algorithm 9 Estimating θ for mean(Sqd)

1. Simulate MMGBM model, say for θ ∈ [θc, θd].

2. Use output from previous step to calculate mean(Sqd), say d̄ ∀ θ.

3. Repeat step 1 and step 2 for N times.

4. After obtaining N different values for each θ, obtain the mean value for each θ corre-
sponding to N measurements, to say obtain m value discussed for each corresponding
θ.

5. Fit linear regression line and obtain the slope, say a and intercept value, say b. The
equation of regression line passing through these points is of the form m = aθ + b.

6. Obtain the mean(Sqd), say m∗ from single simulation as in model validation.

7. Estimated θ value, say θ∗ is obtained by solving the equation, θ∗ = m∗−b
a

Let us look at the numerical experiment performed where we obtained 3 years data and

found mean of mean(Sqd), that is m value as discussed above, then we obtain regression fit

by performing above algorithm [9] for θ ∈ [1.0, 3.0, · · · , 19], σ = 0.01 and the time-horizon

= 3 years and N = 50 iterations.

The following are the values for linear regression fit performed on the simulated data.

Slope (Linear Fit) Intercept (Linear Fit)

0.55 3.66

We have the following plots to compare and infer from.

Now to empirically verify our estimation of scale parameter, we choose a particular θ

value, say θ = 7.0 from a single run of simulation and try to match it. The value of

mean(Sqd), m∗ = 7.86 was obtained from a single run of simulation corresponding estimated

θ∗ = 7.63 We can match it with the following plot of a single simulation. We observe that

the original scale parameter θ is very close to the estimate scale parameter but actually little

less than it.
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(a) Linear Regression fit on 50 iterations of
mean(Sqd)

(b) Single realization of above plot with same pa-
rameters

Figure 5.2: Comparing estimated scale parameter with original.
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Chapter 6

Variance Reduction of Estimator

In previous chapter we saw the method of obtaining mean(Sqd) for different θ and corre-

sponding box plots were obtained but we didn’t talk much about the variance between the

normal random variables used in MMGBM simulation, while using the classical variates can

lead to results having larger variance which can be reduced by employing the method on

Antithetic-Variates which will be discussed in next section. Further, we will look at the dif-

ference in the estimation of both these methods using simulation algorithms from previous

chapter.

6.1 Variance reduction method

In descriptive statistics, if we want to estimate, say an unknown mean µ = E(X) of a

distribution, we collect n iid random variables from the given distribution, X1, · · · , Xn and

use the formula for sample mean

X(n) =
1

n

n∑
j=1

Xj. (6.1)

Also, σ2 = V ar(X) denote the variance of the distribution, we can make a conclusion that

(6.2)
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Before we begin discussion about the method, we need to know the applicability and

reason of using this particular method. In our simulation, instead of collecting data, as was

the case with in classical statistics, instead we simulate the random variables and generate

iid X1, · · · , Xn r.v., so for applicability purpose, for sufficiently large n (say n = 105) and

we can then use central limit theorem and therefore, our method of constructing confidence

interval can also be used. Thus we can easily obtain confidence interval using this technique.

Now using more clever technique and using the simulation more smartly, we can get

better estimate of the confidence intervals. For this very purpose we will try to induce and

generate negatively correlated random variables X1, · · · , Xn, with same mean but smaller

variance, so variance of estimator in 6.1 will become smaller and thus leading to smaller

confidence interval and resulting in better estimates.

6.1.1 Method of Antithetic Variates

Let Xi denote the identically distributed random variables having the same mean µ and

variance σ2 but we are not assuming they are independent (since we want to have cor-

relation between our random variables). Let n = 2k, for some k ≥ 1, that is, n will be even.

Now

X(n) =
1

2k

2k∑
i=1

Xi =
1

k

k∑
i=1

Yi = Y (k), (6.3)

where each of Yi are defined by,

Y1 =
X1 +X2

2
,

Y2 =
X3 +X4

2
,

...

Yk =
Xn−1 +Xn

2
.

Also from equation (6.3), we can conclude that the two estimators Y (m) and X(n) for E(X)

are identical.
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Now, we will maximize this relation to our purpose as we will show in further steps, but

for following discussion we will use Y (k). Also, we have E(Yi) = E(X)+E(X)
2

= E(X) = µ

(since Xi all have the same distribution and hence the same mean). So letting Y = X1+X2

2

denote a generic Yi. Now we can re-frame our problem as to estimate µ = E(Y ). Now we

will compute variances,

V ar(Y ) =
1

4

(
V ar(X1) + V ar(X2) + 2Cov(X1, X2)

)
=

1

4

(
σ2 + σ2 + 2Cov(X1, X2)

)
=

1

2

(
σ2 + Cov(X1, X2)

)
.

Now, if we Cov(X1, X2) = 0, i.e. if Xi were iid, and thus the V ar(Y ) = σ2

2
(as previously),

and V ar(Y (k)) = σ2

n
. But our are assuming them to be dependent and correlated, so this

case is not possible.

But, now comes the other case of having Cov(X1, X2) < 0, V ar(Y ) < σ2

2
, V ar(Y (k)) < σ2

n

and so the variance will be reduced. So, our task will be: if somehow we can create some

negative correlation within each pair (X1, X2), (X3, X4), · · · , but the pairs themselves should

be iid (for the applicability of CLT) then V ar(Y (m)) will be reduced than the trivial way

of using iid random variables Xi’s.

We can generate a negatively correlated random variables for any distribution, say

FX(x) = P(X ≤ x) with inverse F−1(y), y ∈ [0, 1], so we could generate a negatively cor-

related pair as X1 = F−1(U), X2 = F−1(1 − U) and since we know F−1(y) is a monotonic

increasing function of y. The random variables U and (1-U) have a correlation with coeffi-

cient ρ = 1, and thus they are negatively correlated to a largest extent and thus monotonicity

preserves the property of negative correlation: ρX1,X2 < 0 (not -1 always though).

Generalizing the above fact, we can say that for a monotone function (increasing or

decreasing) g in each variable, it can be indeed shown that the pair of random variables

X1 = g(U1, · · · , Um) and X2 = g(1−U1, · · · , 1−Um) are negatively correlated and are called

as antithetic variates. One important thing to know is U1, · · · , Um and 1 − U1, · · · , 1 − Um
have the same distribution, then so will X1 and X2 have; they will have the same mean

E(X), but the only difference being they have induced negative correlation (whenever g is

monotone), henceforth the two are negatively related random variables (Cov(X1, X2) < 0),
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where each Ui ∼ U(0, 1). Now, let us look forth to algorithm for simulating antithetic

variates to estimate mean µ.

Algorithm 10 Algorithm for simulating antithetic variates to estimate mean µ = E(X),
where X = g(U1, · · · , Um) is a monotonic function in Ui

1. Generate uniform random variables U1, · · · , Uk, where U ∼ U(0, 1). To construct first
pair of antithetic variates, set X1 = g(U1, · · · , Um) and X2 = g(1− U1, · · · , 1− Um).

2. Now, generate independently m new iid uniform random variables and construct an-
other pair X3, X4 as before, and so on for further pair as we reach m (suitably large)
desired number of pairs.

3. Now use the estimate which we found previously,

Y (k) =
k∑
j=1

Yj,

where,

Y1 =
X1 +X2

2
,

Y2 =
X3 +X4

2
,

...

Yk =
X2k−1 +X2k

2
.

6.2 Implementation of antithetic method

In this section we will look at implementing antithetic methods in the context of MMGBM

simulation and compare it with method of using classical variates. First using we will

simulate MMGBM model using algorithm [8] for varying values of θ and then we will obtain

mean(Sqd) and repeat this for N1 iterations to obtain the N1 values of mean(Sqd) ∀ θ. But

since we want to observe the variance reduction in these mean(Sqd) values, we will find
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out mean of the N1 value of mean(Sqd) obtained and repeat this procedure, say N2 times

and by this method we will end up with N2 values. We will repeat the same procedure for

antithetic method but this time instead of taking Bt in MMGBM simulation we will use both

Bt and −Bt and repeat the simulation for N1
2

iteration rather than N1 iterations and carry

on as previously mentioned. We will again obtain N2 values for mean(Sqd) for antithetic

method. Now, next step will be to compare the Standard deviation of the values obtained

from classical variates with that of antithetic variates. Now, let us look at the numerical

experiment performed for the same. So in antithetic case, we will have m̃, i.e. the mean of

mean(Sqd) for N observations, precisely

m̃ =
1

N

N∑
i=1

d̄(i) (N is even) ,

as mentioned in previous section to apply antithetic property on simulation, where d̄(2i−1),

d̄(2i) are from antithetic pair respectively.

Numerical Experiment

As was mention previously, we are going to consider a value of σ which is less than 0.01.

For the purpose of numerical experiment we have considered θ from [5, 10, · · · , 100] and

σ = 10−2.5 ≈ 0.0032 , µ1 = −1.0, µ2 = 2.0, N1 = 50 iterations, N2 = 20 and window size as

mentioned in previous chapter will be fixed at n = 20. After this we will find out the values

of 20 different values of standard deviation for both classical variates and antithetic variates

and the difference of the corresponding values should be positive as classical variates should

have larger standard deviation than antithetic variates. First of all us try to envisage why

and how antithetic approach in this case will work.

Now for the considered experiment we have MMGBM model with 2-state Continuous-

time Markov chain governing the behaviour of it and σ is constant. So let us see the model

behaviour using following equations for antithetic behaviour considering equations where

we will have Wt and −Wt, negatively correlated random variables as the Brownian motion

process:

dS1
t = S1

t (µtdt+ σdWt),
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so solution of above SDE will be,

S1
t = S0e

∫ t
0

(µu−σ2)du+σdWu .

and second equation is,

dS2
t = S2

t (µtdt− σdWt),

and for this we have the solution,

S2
t = S0e

∫ t
0

(µu−σ2)du−σdWu .

Now for the drift estimator, we consider return from the two equations is,

r1
t = µtdt+ σdWt,

r2
t = µtdt− σdWt.

Assume ndt = ∆, where ndt is as in equation (5.1) and define 1
∆
σ(Wt+∆ − Wt) = Zt

∼ N
(

0, σ
2

∆

)
, ∀t. Now, writing drift estimator for both equations used above in terms of

integration we have,

µ̂t
1 =

1

∆

∫ t+∆

t

µtdt+ Zt,

where Zt ∼ N
(

0, σ
2

∆

)
as before. Similarly, we have:

µ̂t
2 =

1

∆

∫ t+∆

t

µtdt− Zt.

The moving average of actual drift (which is not observed) can then be defined as:

µ̂t
0 =

1

∆

∫ t+∆

t

µudu.

Hence µ̂t
1 and µ̂t

2 are negatively correlated noisy observation of µ̂t
0.
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Here we show one illustrative plot of µ̂t
0 and µ̂t

1 against t, where µ1 = −1.0, µ2 = 2.0, σ =

0.01. Here the smooth line corresponds to µ̂t
0, whereas the zig-zag line corresponds to µ̂t

1.

Interestingly, µ̂t
2 (which is not drawn) would just be the reflection of µ̂t

1 with respect to µ̂t
0.

Figure 6.1: Estimated behaviour of MMGBM model

Observation

We can observe the curve in which the duration is defined as the interval during which the

drift estimator falls below 0 and then moves up 0. To be more precise (i) shows the duration

of µ̂t
0, whereas (ii and (iii) gives that of µ̂t

1. The interval (i) is further denoted by [a0
i ,

b0
i ], whereas (ii) and (iii) by [a+

i , b+
i ]. Now, we can visualize it even further by assuming

the incoming points to arrive at time-axis to be a+
i , a

−
i of µ̂t

1 and µ̂t
2 and b+

i , b
−
i to be the

outgoing points coming from µ̂t
1 and µ̂t

2 respectively. Then, we have the following cases for

a+
i , b+

i and a−i , b−i .

a+
i > a0

i ⇐⇒ a−i < a0
i .

b+
i > b0

i ⇐⇒ b−i < b0
i .

There are only four cases possible and if the above two implications are true then the following

are also true,

a+
i < a0

i , and b+
i > b0

i ,

d+
i > d0

i ,

67



and also,

a−i > a0
i and b−i < b0

i ,

d−i < d0
i .

Now, we can see all possible four cases are covered, also both d+
i and d−i can’t be of the same

sign with above implications. We can then successively define d̄ and m, mean of mean(Sqd)

for our purpose.

Now, moving onto the numerical experiment we can graphically see the behaviour of the

Standard deviation of m, mean of mean(Sqd) with different values of θ as below.

Figure 6.2: Plot for Stdev diff (mean(Sqd)) vs θ

The following is the table for the values obtained doing numerical experiment with above-

mentioned values for parameters.
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Table 6.1: Numerical values for above experiment.

θ Stdev. (Classical) Stdev. (Antithetic) Stdev. (diff.)

5 0.0577367611 0.0359386832 0.0217980779
10 0.079494534 0.0313407427 0.0481537914
15 0.1009686248 0.0516524004 0.0493162245
20 0.0795935088 0.0701220665 0.0094714423
25 0.1318180055 0.0735437574 0.058274248
30 0.1451433792 0.084037411 0.0611059682
35 0.1124458149 0.079468698 0.0329771169
40 0.1685399351 0.0947249054 0.0738150297
45 0.1144421889 0.1073623293 0.0070798595
50 0.2462864286 0.0958376658 0.1504487627
55 0.2463423197 0.110849276 0.1354930438
60 0.1878360133 0.0991509208 0.0886850925
65 0.2027822357 0.1299753555 0.0728068802
70 0.1866740955 0.1254993606 0.0611747349
75 0.2079093798 0.1663525028 0.041556877
80 0.403347321 0.2215420894 0.1818052316
85 0.1409312091 0.2192182348 -0.0782870257
90 0.3229277453 0.2777608255 0.0451669198
95 0.2701569909 0.2052659026 0.0648910883
100 0.2290936326 0.2412089429 -0.0121153103

We can see most of the times difference between Standard Deviation of Classical variate

and antithetic is positive except few times. One explanation is that this negative Std.

Deviation will tend to change with different simulation each time and will be marginal.

Alternatively, it can be explained by assuming the Sqd mean for 50 iterations to be scattered

around a point, so when we use antithetic method then we end up closer to the actual

estimated mean value while in classical variates the chances of being far away from actual

mean are high, but there can be times when antithetic mean is little more far away from

actual mean than obtained. But even then this difference will be small, and we see from the

above plot that is indeed the case.
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Chapter 7

Conclusion

The problem of estimating drift requires the knowledge of several key asset pricing processes

as Markov chain, where for Discrete-time Markov chain we obtained empirical results and

studied the relevance about the theoretical results using [3], Brownian motion which were

studied in sufficient details in their respective chapters. Further, the way these processes are

beneficial in modelling the stock price dynamics were studied via several financial models,

and further we focused and restricted our approach to regime switching GBM and used

this model for the extensive study of drift dynamics and scale parameter estimation. The

knowledge of all these processes and models would have been incomplete without empirical

verification via computation codes. So, we had simulated most of the asset price processes

using several useful techniques for our analysis and study. Now, with many simulations

involved we also looked into much important methods of reducing variance using antithetic

approach and verified it empirically.

The content discussed, and numerical experiments performed in this thesis are a subset

of the broader pool, where we can study the semi-Markov modulated GBM with parametric

holding time distribution from a broader family of distribution functions, such as Gamma,

Weibull, Truncated exponential, Beta, etc. Now, this project has helped in the cause of

studying the well known MMGBM model which will help in studying the semi-Markov

modulated GBM. The course of the project helped in assimilating the ideas from the different

field of mathematics and finance which will be helpful for the further study of financial

models.
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