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Abstract 

 

Identification of transcription and translation from noncoding regions augmented the 

complexity of the genome, a problem further compounded by novel open reading 

frames (ORFs) present within noncoding as well as genic regions with as of yet 

unclear functions. In this study, we investigated two novel ORFs: short ORFs 

(sORFs) and alternative ORFs (altORFs), within mouse naive B and T cells. We 

established evidence of transcription for 2721 sORFs and 4251 altORFs and found 

3604 sORFs and 2104 altORFs to be translated. We also identified 289 sORFs and 

980 altORFs as differentially expressed (DE) between B and T cells. Furthermore, 

PCA analysis indicated that transcript expression levels of these novel ORFs are 

significant and sufficient to distinguish between the two cell types. Additionally, 

differential methylation (DM) analysis of these differentially expressed novel ORFs 

and protein-coding transcripts allowed us to identify 117, 139 and 1398 DMRs 

upstream, downstream and within the body of DE sORFs, 199, 257 and 28497 near 

DE altORFs and 1712,1679 and 24910 near protein-coding transcripts. Moreover, 46 

sORFs containing DMRs were identified in the upstream and downstream regions of 

protein-coding transcripts indicating that expression of DE protein-coding transcripts 

might be affected by sORFs. Also, we found no evidence of LINE/SINE repeat 

elements regulating expression of DE sORFs. Here, we present a framework for a 

systematic investigation of transcription and translation from novel ORFs that could 

be utilised to ascertain their functions or identify potential diseases variants present 

within them.  
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Introduction 

 

The information within genes to be translated into a protein is present in one of the 

six possible reading frames: +1, +2, +3, -1, -2 or -3, where + and – designate 

opposite chromosome strands. One of these six reading frames called an open 

reading frame (ORF) or canonical ORF, contains a continuous stretch of codons 

bound by start and stop sites that get transcribed and translated into a protein. The 

current annotated ORFs are the most well studied genomic components, but they 

comprise only about 2-3% of the total genome. Until recently, the remaining 98% of 

the genome was dubbed as ‘junk DNA’ because they presented no evidence of 

apparent protein-coding or biochemical functions (St. Laurent, et al., 2014).   

Primarily, attribution of functions to genomic regions was done by modifying the 

genotype of an organism and studying the resultant changes in the phenotype.  This 

method failed to ascribe functions to noncoding regions as the forward genetic 

screens used were focused on protein-coding regions. Moreover, modifications 

introduced in noncoding regions, which were at best considered regulatory elements, 

conferred phenotypic changes that were too small to be detected, a problem further 

intensified by the redundancy in noncoding sequences (Kapranov and St. Laurent, 

2012). An unbiased study to identify RNAs transcribed in the human genome using 

tiling arrays with randomly selected RNA fragments and various other sequencing 

methods initiated by ENCODE, provided the first evidence of pervasive transcription 

of the human genome (Birney et al., 2007). These transcripts which were stable 

enough to be detected but whose functions could not be ascertained were annotated 

as 'dark matter' RNAs. 

Further research in this area led to the identification and classification of several 

such dark matter transcripts including but not limited to long noncoding RNAs 

(lncRNAs), microRNAs (miRNAs) and small nucleolar RNAs (snoRNA).  Now, 

databases dedicated to cataloguing noncoding RNAs, for example, NONCODE 

database, exist for several organisms (Zhao et al., 2015). Interest in these regions 

burgeoned with the finding that ~90% of genome-wide association study (GWAS) 

hits or disease variants are present within noncoding regions (St. Laurent, et al., 
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2014). Moreover, the involvement of noncoding transcripts in regulating diseases like 

cancer, neurodegenerative disorders and autoimmune diseases garnered further 

interest (Hrdlickova et al., 2014). For example, multiple lncRNAs have been 

implicated for their role in cancer wherein their upregulation or downregulation can 

increase or slow down cancer development by interfering with cellular processes like 

DNA repair (Hrdlickova et al., 2014). Thus, the focus is shifting from protein-coding 

genes to include noncoding elements in the hope of identifying crucial disease 

variants or single nucleotide polymorphisms (SNPs) that can be targeted for disease 

diagnosis and developing therapeutic strategies (St. Laurent, et al., 2014).  

Now, there is also a growing understanding that these noncoding regions do harbour 

the potential to code for proteins and protein-like products (Prabakaran et al., 2014). 

In a previous study of mouse neurons at our lab, translations from several of these 

noncoding regions including 5’UTRs, 3’UTRs, introns, pseudogenes etc. were 

identified (Prabakaran et al., 2014). Thus, for regions which were labelled as ‘junk 

DNA’ or noncoding regions, evidence for transcription, translation and their 

significance in terms of hosting several disease-associated variants highlights the 

importance of studying these regions. Moreover, this also calls for a change in or 

revision of current genome annotations. 

Additionally, transcription and translation are not limited to the information encoded 

by one ORF of a protein-coding gene as previously believed. Using techniques like 

ribosome footprint profiling, proteogenomic analysis and computational studies, 

several novel ORFs within these protein-coding genes as well as within noncoding 

regions have been identified in humans and other organisms. Furthermore, proteins 

or protein-like products from these novel ORFs seem to contribute to proteomic 

diversity (Raj et al., 2016; Gong et al., 2014). For example, in lower organisms like 

bacteria and viruses with smaller genomes, coding capacity is optimised by utilising 

leaky ribosome scanning to initiate translation from multiple AUGs allowing for 

translation from several novel ORFs (Gong et al., 2014). Therefore, the idea that one 

CDS (coding sequence) codes for only one protein no longer holds true (Mouilleron, 

Delcourt and Roucou, 2016). Although novel ORFs have been identified, our 

knowledge on the subject is still limited and so in this project we focus on the study 

of two novel ORFs: sORFs and altORFs, using proteogenomic analysis. 



 

 

Fig. 1: Genomic regions containing nov

(C) depicting different genomic regions including the coding sequence of a gene 

(CDS), 5’ and 3’ UTRs as well as a kink to denote the location of noncoding genes 

far and near from the gene. (B) sORFs (black rect

UTRs, CDS of a gene and noncoding regions. (C) altORFs (blue rectangles) are 

present in the 5’ and 3’ UTRs, in CDS of a gene or are found overlapping the CDS 

and the 5’ or 3’ UTRs. 
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been identified (Olexiouk V, et al., 2016). The location of sORFs within the genome 

can be within the 5’ or 3’ untranslated region
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regions (Hellens et al., 2016) (Fig. 1B).

Although significant numbers of sORFs are present within the genome, they 

remained undetected because of their small size or expression levels (Basrai, M.A. 

et al., 1997). Even though computational predictions to identify ORFs within a 

genome exist, they employ thresholds of 100 aa as the minimum length resulting in 

the inability of such tools to detect sORFs (Kastenmayer, 2006; Hanada et al., 2010). 

Creation of programs explicitly designed to identify sORFs like sORFfinder (Hanada 

et al., 2010), as well as identification of their translated products using ribosome 
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of growth and development in plants and their ability to activate transcription factors 

to regulate Drosophila development has raised interest in sORFs (Kastenmayer, 

2006; Kondo, T. et al., 2010; Hanada, K. et al., 2013; Hellens et al., 2016). 

Another novel ORF of interest is alternative open reading frame (altORF). They, like 

canonical open reading frames, contain codons demarcated from the remaining 

genomic sequence by start and stop codons but the start codons used are different 

and therefore altORFs code for an alternative protein (Vanderperre, Lucier and 

Roucou, 2012). Another difference between altORFs and canonical ORFs is in their 

length wherein altORFs have a median length of 57 aa in humans, but the median 

length for proteins from canonical ORFs is 344 aa (Vanderperre et al., 2013). 

Furthermore, altORFs can be present entirely within the CDS but in an alternative 

reading frame relative to the canonical ORF, within the 3’ or 5’ UTRs or overlapping 

the UTRs and the CDS (Vanderperre et al., 2013) (Fig. 1C). In organisms with small 

genomes like viruses, altORFs are common and are employed as an alternative 

protein generating mechanism to increase the diversity of the virus proteome 

(Vanderperre, Lucier and Roucou, 2012). Studies on altORFs have additionally 

revealed that they are significantly conserved and therefore possibly play an 

important role in an organism (Vanderperre, Lucier and Roucou, 2012). There is also 

evidence for translated products of altORFs cooperating with proteins encoded by 

canonical ORFs to regulate the latter’s function (Samandi et al., 2017). Moreover, 

altORF proteins have also been identified as potential biomarkers and therapeutic 

targets for diseases like cancer (Vanderperre, Lucier and Roucou, 2012). Finally, an 

estimated average of 3.88 altORFs is present for one mRNA (Vanderperre et al., 

2013). Thus, altORFs are important regions of the genome that require further 

investigation.  

Although sORFs and altORFs have been identified and research work to discover 

their functions is being carried out, we focus on investigating their presence and 

possible functions within mouse naive B and T cells using proteogenomic analysis. 

Proteogenomic analysis involves discerning the identity of a protein by mapping 

MS/MS spectra of the isolated proteome to a custom reference protein database, 

generated using information from transcripts identified for that particular organism 

(Nesvizhskii, 2014). This approach is much better than the current proteomic 

analysis, which relies on mapping peptide spectra to known protein databases like 



 

UniPort, as it allows for the identification of sample

products. Furthermore, proteogenomic analysis is different from ribo

in that the latter uses information of ribosomes attached to RNAs to identify actively 

translated RNAs (Ingolia, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Workflow depicting major steps involved in this project. (mPLsORF database 

stands for mouse Prabakaran Lab sORF database).
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Throughout this study, our definition of noncoding regions include lncRNAs, introns, 

intergenic regions, pseudogenes, UTR’s as well as alternative frames in exonic 

regions relative to canonical ORFs (i.e. +2, +3 frame if canonical ORF is assumed as 

+1 frame).  

In this study, we created our own sORF and altORF databases with information 

curated from online databases. Additionally, we isolated transcripts and proteins 

from our mouse samples and used computational tools and proteogenomic analysis 

to evaluate evidence for transcription and translation of sORFs and altORFs. Next, 

we asked the question whether sORF and altORF transcript expression levels are 

differentially expressed between B and T cells. If they are differentially expressed, it 

could hint towards the fact that these novel ORFs are involved in cell-specific 

functions.  Moreover, we performed a PCA analysis to evaluate if the transcript 

expression levels of these novel ORFs is sufficient to distinguish between the two 

cell types in question thereby verifying whether expression levels from noncoding 

regions are significant enough to differentiate between cell types. Finally, we identify 

differentially methylated regions (DMRs) in B and T cells and evaluate whether 

sORFs and altORFs are regulated by methylation. Similarly, we evaluate whether 

differentially expressed sORFs and altORFs are regulated by repeat elements like 

LINEs and SINEs and whether protein-coding genes are regulated by sORFs. The 

focus is not on what type of methylation and therefore the exact nature of regulation 

but rather we try to identify the possibility of such a regulation taking place. 

This work (Fig. 2) highlights the emerging importance of noncoding regions as well 

as novel ORFs in the genome.  Initially considered to have no function, we also show 

from their expression levels as well as differential methylation studies that they could 

be important components of the cell. This project lays a foundation for several other 

works performed in our lab including predicting sORF structures, identifying cancer 

mutations that map to sORFs and evaluating sORFs to identify potential pathogenic 

variants (mutations that increase predisposition to a disease) thereby aiding in the 

development of diagnostic markers for diseases. 
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Materials and Methods 

 

1. Sample information  

Cells extracted from the spleen of 3 Male and 3 Female C57BL-6J mice were FACS 

sorted to isolate resting B and naive CD4+ T cells. Total RNA was extracted from 

each of the 12 samples (3 B-male, 3 B-female, 3 T-male and 3 T-female). Proteins 

were collected from each of the 12 samples, but those from the same sub-group (B-

male, B-female, T-male or T-female) were pooled together to gather sufficient protein 

for further analysis. DNA was extracted from resting B and naive CD4+ T cells 

isolated from 2 Male and 2 Female C57BL-6J mice. This work was done in Dr. 

Fergusson-Smith’s lab at the University of Cambridge. (GEO accession: GSE94671; 

Ferguson-Smith et al., 2017). 

 

2. Data analysis 

We utilised a cloud-based platform Cancer Genomics Cloud 

(www.cancergenomicscloud.org) for data analysis. We used the CGC platform for 

read quality checks, read alignment, SAM to BAM file conversion and coordinate to 

nucleotide sequence conversion using FastQC, HISAT2, Picard SortSam and 

Bedtools GetFasta respectively which are tools already available in CGC. For 

transcript assembly, we uploaded and used StringTie in CGC. For differential 

expression analysis, Ballgown a Bioconductor package was used. Further analysis 

involving processing data and creating plots were done using a combination of R and 

UNIX shell bash commands. 

 

3. Creation of transcriptomic database and identifying differential expressed 

transcripts 

Library preparation of total RNA collected from the 12 mouse samples was 

performed using Illumina stranded total RNA library prep kit. Paired-end sequencing 

of reads was performed using the Illumina HiSeq 2500 platform (GEO accession: 

GSE94671; Ferguson-Smith et al., 2017). This work was done in Dr. Ferguson’s lab. 

Quality of sequenced reads was determined using FastQC which was run with 



 

default settings. Primary assembly sequence and comprehensive

files for C57BL-6J, release version M12, was used as the reference genome for our 

analysis (GENCODE, 2016).
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recommended by the HISAT-StringTie-Ballgown pipeline, StringTie –merge was run 

on all the 12 sample GTF files and the reference genome to generate a final merged 

transcript file containing a list of non-redundant transcripts (Pertea et al., 2016). 

Although StringTie can assemble novel transcripts, the –merge step can cause a 

loss of some of the identified novel transcripts.  This step is still recommended to 

ensure that a transcript identified as novel is not an incompletely assembled 

transcript by verifying for its presence across all samples. 

This merged transcript GTF file, our transcriptomic database, along with the 12 BAM 

files containing aligned reads were used for a second StringTie run with parameters 

‘-Be’ to calculate transcript FPKM values for each sample (Pertea et al., 2016).The 

12 CTAB output files were used by Ballgown, an R/Bioconductor package, to carry 

out differential expression analysis (Frazee AC et al., 2017). Ballgown’s ‘stattest’ 

function performs a log2 transformation on the library-normalised FPKM values, fits 

the data to standard linear models and calculates p and q values for the transcripts 

(Frazee AC, 2017). Transcripts with q values (number of significant results that are 

false positives) < 0.01 were called differentially expressed. The sequencing analysis 

pipeline was set up in CGC by Dr. Matt Wayland, and Ballgown analysis was done 

by Mr. David Chong. My task involved verifying read assembly by HISAT2 and 

performing transcript assembly using StringTie. 

 

4. Creation of B and T cell-specific transcriptomic databases 

We used the StringTie –merge results to create our cell-specific transcriptomic 

databases. If a transcript’s gene is identified from the reference genome, the 

corresponding gene id, transcript id and gene name are generated by StingTie 

otherwise a random gene and transcript id with the prefix ‘MSTRG’ is listed out for 

each transcript (Pertea et al., 2016). We define novel transcripts as those without a 

corresponding gene name and annotated/known transcripts as those which have 

been assigned a reference gene by StringTie. Furthermore, we merged the 

information in the 12 CTAB files containing transcript FPKM values with the merged 

transcript file to create the final transcriptomic database. 

This transcriptomic database was then filtered to remove duplicates based on 

chromosome number, transcript start and end coordinates and strand information. 
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Additionally, the database was filtered to remove transcripts with ‘0’ FPKM values for 

all the 12 samples. The remaining transcripts were categorised into four sub-groups: 

B-male, B-female, T-male or T-female, based on whether at least one out of three 

samples corresponding to a sub-group had a non-zero FPKM value. Finally, the 

transcripts were categorised into B or T cell based on whether the transcript was 

present in at least one of the two sub-groups corresponding to a particular cell-type. 

All the transcripts that were present in B cells were extracted to create a B cell-

specific transcriptomic database, and similarly, all transcripts present in T cells were 

used to create T cell-specific transcriptomic database. 

The transcript coordinates in B and T cell-specific transcriptomic databases were 

used to extract the corresponding nucleotide sequence from the reference genome 

using Bedtools Getfasta available in CGC (Quinlan and Hall, 2010). Bedtools 

Getfasta was run with default settings and with the name parameter =”True”, which 

ensures that the name column of the input BED file is used as the header for the 

output FASTA file (Quinlan and Hall, 2010). The output FASTA files generated for B 

and T cells are our B and T cell-specific nucleotide databases. Transcripts in our B 

and T cell-specific nucleotide databases were analysed computationally in 6 frames 

to determine all possible translated products and create a custom reference protein 

database. The resulting peptide sequences were catalogued as B and T cell-specific 

proteogenomic databases. 

 

5. Creation of sORF database 

Mouse Prabakaran Lab sORF database (mPLsORF) was created using information 

curated from two sources: sORFs.org and SmProt (Olexiouk V, et al., 2016; Hao Y, 

et al., 2017). sORFs.org is a repository that contains a list of sORFs which have 

been computationally predicted and experimentally verified using ribosome profiling 

(Olexiouk V, et al., 2016). We exported mouse sORFs from sORFs.org with default 

filters except for FLOSS classification which was set to ‘GOOD’ and ‘EXTREME’. 

SmProt contains a list of experimentally validated small peptides identified in several 

species including mouse (Hao Y, et al., 2017). We extracted mouse sORFs from 

SmProt with filter parameters set to ‘ALL’. The downloaded information from SmProt 

did not provide chromosome information for sORFs. A macros code was, therefore, 
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run on the SmProt website to specifically extract this chromosome information which 

was available on the webpage but not in the downloaded TXT file. Furthermore, 

each sORF obtained from SmProt has a designated id with the format 

‘SPROMUSXXXX’, but two sORFs had a wrong id beginning with ‘PROMUS’ which 

was manually corrected. Also, two sORF entries were not from mouse but from 

human and rat and were subsequently removed from further analysis.  

Both databases had several duplicate entries which were removed by filtering them 

based on chromosome location and amino acid sequence. Finally, we assigned a 

unique sORF id with the format ‘mPLsORFXXXXXXXXXX’, where X denotes a 

number, to each sORF entry and created our sORF database with the following 

columns: “Organism_name”, “Source_database”, “Chromosome_number”, 

“Start_coordinate”, “End_coordinate”, “Strand”, “Amino_acid_sequence”.  There are 

still a few sORFs in our database with the same chromosome coordinates, but these 

duplicates were not removed because their corresponding amino acid sequences 

were different. A length distribution for sORFs in mPLsORF database, as well as a 

pie chart depicting the proportion of different sORF annotations, was also created. 

Using the sORF information in our mPLsORF database, we constructed FASTA 

headers which combined with their respective amino acid sequences generated our 

sORF fasta database. 

6. Creation of altORF database 

Information for altORFs identified in mouse was downloaded from Roucou’s lab, 

Université de Sherbrooke, Canada (Vanderperre et al., 2013). Of the altORFs 

identified, a few had multiple chromosome numbers assigned to it. These were 

removed from our dataset to generate a file compatible with tools used for 

downstream analysis. There are a few altORFs in our database with the same 

chromosome coordinates which were retained owing to a difference in their amino 

acid sequences. Additionally, a plot displaying length distribution of altORFs in our 

database was also generated. As done for sORFs, information available in our 

altORF database was used to create FASTA headers and the corresponding amino 

acid sequence was used as the FASTA sequence to generate our altORF fasta 

database. 
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7. Identifying evidence for transcription of novel ORFs in B and T cells: 

GTF files for sORFs, altORFs and B and T cell transcripts were created and sorted 

first according to their chromosome number and then according to their start 

coordinates in ascending order. Bedtools intersect was used to identify coordinate 

overlap between sORFs or altORFs and B or T cell transcripts. The following 

parameters were used for this run: parameter -‘f’ = 0.99, signifying only 

sORFs/altORFs that overlap 99% of the transcript coordinates will be called; 

parameter -‘wo’ to generate information on the sORF or altORF, the transcript it 

matches to and the total number of nucleotide overlap between the two; parameter –

‘s’ to only map sORFs to transcripts if they are from the same strand (Quinlan and 

Hall, 2010).  altORFs were run without the –‘s’ parameter because the altORF 

database contains no strand information. Thus, there is a possibility that more 

altORFs with evidence of transcription are being identified than if the -s parameter 

was used. altORF and sORF ids were extracted from the output TXT files generated 

by bedtools getfasta and filtered to create a unique list of sORFs or altORFs with 

evidence of transcription. 

 

8. Differential Expression Analysis: 

Differential expression analysis was performed using Ballgown. The identified 

differentially expressed (DE) transcripts, called if the transcript q value was less than 

0.01, were categorised into four: protein-coding transcripts identified using transcript 

annotation information from Ensembl BioMart (Ensembl Biomart, Ensembl genes 

91), sORF transcripts identified as DE transcripts that mapped to sORFs, altORF 

transcripts which are DE transcripts that mapped to altORFs and finally transcripts 

that belonged to none of these three categories. DE sORFs and altORFs were 

categorised into B-male, B-female, T-male, T-female, B cells or T cells depending on 

their FPKM values.  

We performed PCA to determine if sORF/altORF transcript expression levels could 

distinguish between cell types and different genders of the same cell type. For this, 

we used FPKM values of transcripts that map to sORFs and altORFs for each of the 

12 samples, log2 normalised the data using a pseudo-count of 1 (log2(number+1)) 

and centred the data around its median by subtracting the median from each data 



 

point. The final normalised dataset was then run using the R function prcomp (R core 

team (2015), version 3.2.3, function prcomp) with scale and centre parameters set to 

“FALSE”. PCA plots for B VS T cells and Male VS Female cells were plotted along 

two principal component axes: PC1 and PC2. Similarly, PCA plots were generated 

for known transcripts. 

 

9. Proteogenomic Analysis

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Proteogenomic workflow to identify novel proteins in our sample. Mas

analysis generated peptide spectra of proteins identified in our sample which is then 

mapped to one of the three databases shown in blue. Proteins identified by mapping 

to these three databases and that were retai

labelled as known proteins, sORF proteins or altORF proteins. Remaining peptide 

spectra which did not map to any of the three databases were searched against B 

and T cell-specific proteogenomic database to identify novel proteins in our sample.
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: Identifying evidence for translation of novel ORFs 

Proteogenomic workflow to identify novel proteins in our sample. Mass-spec 

analysis generated peptide spectra of proteins identified in our sample which is then 

mapped to one of the three databases shown in blue. Proteins identified by mapping 

ned after applying a 1% FDR cutoff were 

labelled as known proteins, sORF proteins or altORF proteins. Remaining peptide 

spectra which did not map to any of the three databases were searched against B 

specific proteogenomic database to identify novel proteins in our sample. 
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Proteins obtained from the four sub-groups (B-male, B-female, T-male or T-female) 

were run on a gel, protein bands were cut out following which proteins were 

extracted. Mass-spectrometry analysis of the isolated proteins generated peptide 

spectra for proteins identified in our sample. This experimental work was carried out 

by Ruchi, a visiting scientist in Prabakaran lab at the University of Cambridge. The 

peptide spectra were then mapped to proteins in UniProt database (UniProt, 2017), 

sORF fasta database, as well as the altORF fasta database and only those within 

top 1% FDR cutoff, were retained (Fig. 4). This workflow allowed us to identify known 

proteins, sORF protein-like products and altORF proteins present in our sample. 

The output file with details about sORF, altORF or known proteins identified in our 

sample along with their protein abundance and FDR values were filtered to remove 

‘cRAP’ which are proteins that are either contaminants or were introduced 

accidentally. Next, only those proteins with ‘Medium/High’ FDR values were retained. 

Finally, entries with no abundance values for all the four sub-groups were removed. 

After filtering, sORFs, altORFs and known proteins with evidence of translation in our 

mouse samples were generated. The unmapped spectra form each of these 

analyses (peptide spectra mapping to UniProt, sORF database and altORF 

database) was searched against the B cell and T cell proteogenomic database (Fig. 

4). We also compared sORF and altORF ids identified with evidence of transcription 

or translation to determine the intersection which denotes sORFs or altORFs with 

evidence of transcription and translation in mouse B and T cells. 

 

10. Differential methylation analysis 

DNA isolated from our samples were pooled together before library preparation and 

subjected to oxidation and bisulfite treatment. After library preparation, whole 

genome oxidative bisulfite sequencing was performed using Illumina HiSeq 2500 

platform (GEO accession: GSE94674, Ferguson-Smith et al., 2017). The sequenced 

reads are then aligned using Bismark which can output a BEDGRAPH file with 

information on the methylated loci or CpGs. (Krueger F., 2011). This work was done 

in Dr. Ferguson’s lab. 

To identify DMRs between B and T cells we used the bsseq package (Hansen KD, 

2012). The BEDGRAPH file containing methylated loci is first converted to a BS-
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object, a file format used by bsseq functions, using an R script (Hansen KD, 2012). 

An additional smoothening step is applied to this data using the function BSmooth 

which calculates methylation estimates for a genomic region utilising a minimum of 

200 smoothening windows wherein each window contains at least 20 methylation 

loci (Hansen KD, 2012). After smoothening, we select for CpGs with a minimum 

coverage of two in at least three out of four samples corresponding to a cell type. 

Here, the coverage is defined as the sum of methylated and unmethylated reads 

corresponding to a CpG locus. The function BSmooth.tstat with parameter 

‘estimate.var’ set to “group2” or B cell uses t-statistics to compare CpGs between the 

two groups (B cell and Tcell). The resulting BSseqTstat object is fed as an input to 

the function dmrFinder and using an alpha value of 0.05, differentially methylated 

regions (DMRs) between B cell and T cell were determined. This output was further 

filtered to retain only those DMRs containing at least 3 CpGs spaced within 300bp of 

each other (Hansen KD, 2012).  

To evaluate whether differential methylation regulates the expression of protein-

coding transcripts, sORFs and altORFs, DMRs identified between B and T cells were 

mapped to upstream, downstream regions (3000 bp window) and the body (within 

start and stop coordinates of transcripts) of DE protein-coding transcripts, DE sORFs 

and DE altORFs using bedtools intersect. To explore the possibility of regulation of 

sORFs and altORFs by repeat elements like LINE or SINE, we mapped mouse 

LINE/SINE (downloaded from repeatmasker.org for mm10), to upstream and 

downstream regions (3000 bp window) of DE sORFs, altORFs and protein-coding 

transcripts and then mapped DMRs to any LINE/SINE identified. Furthermore, to 

evaluate if sORFs regulate expression of protein-coding transcripts, we mapped 

6248 sORFs to upstream and downstream regions of protein-coding transcripts and 

investigated if DMRs are present within any identified sORFs.  The sample 

collection, bisulfite sequencing, Bismark alignment were done in Dr. Fergusson-

Smith’s lab at the University of Cambridge. Mapping of LINE/SINE to sORF/altORF 

and mapping of sORF to protein-coding transcripts was performed by Mr. Narendra 

Meena. My task involved identifying DMRs between B-male and T-male, creating 

files with a list of protein-coding transcripts, sORFs and altORFs and identifying 

DMRs near protein-coding transcripts DE sORFs and DE altORFs. 

 



 

 

1. Creation of cell-type specific 
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No. of transcripts No. of transcripts No. of transcripts No. of transcripts No. of transcripts 
after after removing without FPKM = '0' after in cell-specific

StringTie merge unlocalised contigs for all 12 samples duplicate removal transcriptomic database
B cell: 101767
T cell: 99552

164491 164274 111417 109441

DE transcripts after DE transcripts after DE transcripts after
Ballgown analysis removing unlocalised contigs removing duplicates

12138 12079 12009

Fig. 5: Identifying transcripts in our sample. (A) The workflow from sequencing reads 

to identification of differentially expressed transcripts along with the number of reads 

or transcripts identified at each stage. (B) Proportion of different types of aligned 

reads (y-axis) for each sample (x-axis). Concordant alignment  (black) refers to 

reads that aligned to the reference genome with a specified orientation (forward-

reverse) and within a specific distance with respect to each other. Other alignment  

(dark grey) contains reads that mapped concordantly >1 times, discordant aligments 

as well as single read of a mate pair that aligned atleast 1 time. Unaligned (light 

grey) refers to reads that aligned to the genome 0 times. (C) Number of transcripts 

(y-axis)  in each sample (x-axis) identified after two StringTie runs. Transcripts 

identified after first StringTie run are shown first amongst the two bars corresponding 

to one sample. Transcripts identified after StringTie merge is denoted by the second 

and smaller bar for each sample. Transcripts were colourcoded dark grey if they are 

novel and black if they are annotated. (D) Number of transcripts (y-axis) in each cell 

–specific transcriptomic database (x-axis) Transcripts were colourcoded dark grey if 

they are novel and black if they are annotated 

 

 

 

 

Table 1: No. of transcripts identified at different filtering stages of B and T cell-

specific transcriptomic database creation. Unlocalised contigs refers to transcripts 

assembled from reads which map to regions whose chromosome number is known 

but the exact order and orientation of these regions within the chromosome is 

unknown. 

 

 

Table 2: No. of DE transcripts identified after different stages of filtering. 
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Our first goal is to systematically investigate evidence for transcription and 

translation of novel ORFs from mouse B and T cells. This mandates that we isolate 

and identify transcripts and proteins from the same mouse samples thereby also 

requiring that we create our own transcriptomic database for B and T cells. 

Furthermore, since our interest lies in investigating transcripts from noncoding 

regions, we collected total RNA from our samples, i.e. without a poly-A selection as 

some noncoding transcripts do not have a poly(A) tail.(Zhang et al., 2014). Our 

samples, therefore, contain rRNAs which we did not deplete post-sequencing as our 

initial analysis showed evidence of sORFs within rRNAs (data not shown).  There 

are several programs and pipelines available to assemble transcripts from 

sequenced reads, but we chose the HISAT-StringTie-Ballgown pipeline as it requires 

less memory and is therefore much faster than prevalent tools utilised for the same 

analysis (Pertea, M. 2016). 

Read alignment: ~73 million sequenced reads of total RNA from our samples were 

aligned to the reference genome using HISAT2 resulting in ~50 million aligned reads 

(Fig. 5A). The alignment rate for our samples ranges from ~50-80% averaging at 

~68% (Fig. 5B). 

Transcript Assembly: An average of ~194000 transcripts was assembled for each of 

our samples by StringTie. Merging the transcripts across the 12 samples resulted in 

a total of ~164,000 transcripts which after filtering amassed to ~109,000 transcripts 

(Fig. 5A, Table 1). Comparing the number of transcripts before and after running 

StringTie –merge as seen in Fig. 5C, there is a loss of a significant amount of 

transcripts, mostly novel whereas an increase in the number of annotated transcripts 

is observed across all samples. 

Creating cell-type specific transcriptomic database: Based on the transcript FPKM 

values ~101,000 transcripts in B and ~99,000 transcripts in T cell-specific 

transcriptomic database were identified (Fig. 5A).  The number of annotated and 

novel transcripts is similar between B and T cells, but this is not representative of the 

number of transcripts common to both these cells (Fig. 5D). Of the 109441 

transcripts, 91878 transcripts are common to B and T, 9889 are unique to B and 

7674 are unique to T cells. 
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Identifying differentially expressed transcripts: ~12,000 transcripts were identified as 

differentially expressed between B and T cells called using a q value of less than 

0.01, using Ballgown (Fig. 5A, Table 2). 

An observation that immediately stands out from Fig. 5C is the difference in the 

number of transcripts identified before and after the StringTie –merge run. Here, 

annotated transcripts refer to transcripts for which a reference gene has been 

determined by StringTie. StringTie –merge functions to create a non-redundant set 

of transcripts by comparing assembled transcripts across all samples (Pertea, M. 

2016). So, the significant decrease in the number of novel transcripts can be 

because these transcripts are present in only a few samples subsequently leading to 

their elimination after the merge step. Also, some of the novel transcripts could be 

incompletely assembled transcripts which after the merge step, wherein required 

read information for complete assembly is gathered from other samples, leads to a 

decrease in the number of novel transcripts. This can lead to an increase in the 

number of annotated transcripts if the completely assembled transcript is ascribed a 

reference gene by StringTie. Thus, although the merge step results in reduction of 

number of potential novel transcripts, it is recommended as it ensures that the 

generated merged transcripts, both novel and annotated, are genuine as determined 

by comparing read information across multiple samples.   

Approximately 12000 DE transcripts were identified between B and T cells (Fig. 5A; 

Table 2). Although one might expect a number greater than the sum of 9889 

transcripts unique to B cells and 7674 transcripts unique to T cells, a total of ~17000 

transcripts to be differentially expressed, we identified only 12000. This is probably 

because of the parameter we set (qval <0.01), due to which some of the FPKM 

values for the ~17000 weren’t statistically significant to be considered differentially 

expressed. From literature we know how B and T, especially the activated versions 

of these cells have different genomes due to somatic hyper-mutations, DNA 

rearrangements and recombinations (Smith M. 2016) yet an interesting observation 

is the similarity between the transcriptome of resting B and naive T cells, ~80% as 

determined by our analysis. From our data, we cannot comment on the similarity 

between the transcriptome of activated forms of B and T cells, but it suggests the 

possibility that most differences between B and T cell transcripts arise after their 

activation. Through this work, we successfully created our cell-specific transcriptomic 



 

database and identified differentially expressed transcripts between the two cell 

types under consideration. 

2. Creation of mPLsORF database

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6:  Creation of mPLsORF database. 
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Information on sORFs that have been computationally and experimentally verified is 

available online. Even though there is evidence for translation of these sORFs, a 

systematic study of their expression in mouse B and T cells has not been performed. 

Furthermore, to conduct such an investigation, curating information from several 

sources was not sufficient due to different cataloguing methods and a large number 

of duplicates. Thus, we resorted to the creation of our own sORF database. 

Information for our database was curated from two online sources: sORFs.org and 

SmProt containing 11,27,154 and 15,581 mouse sORFs, respectively. (Olexiouk V, 

et al., 2016; Hao Y, et al., 2017). We pre-processed these two databases extensively 

because of a large number of duplicates present within and between the two source 

databases and assigned a unique sORF id to each entry in the final filtered list. Our 

final sORF database contains a total of 454,120 sORFs with 440,136 entries from 

sORFs.org and 13,984 entries from SmProt (Fig. 6A). A snippet of the mPLsORF 

database is shown in Fig. 6B which in addition to the sORF ids and the genomic 

coordinates of the sORFs contains the amino acid sequences of their peptides 

curated from the two source databases.  

Fig. 6C shows a plot of the length distribution of sORFs within the mPLsORF 

database. As expected, sORF length, in terms of the number of amino acids present 

in sORF peptides, varies from 2-100 aa. Also, most sORFs in our database have a 

length ranging from 10-20 aa. Using sORF annotations available from the two source 

databases, we plotted a pie chart to highlight the proportion of different types of 

sORF annotations present in the mPLsORF database (Fig. 6D). Only 

402733/454120 sORFs were plotted owing to the lack of annotation information for 

the remaining sORFs. The three most abundant annotations are exonic sORFs, 

meaning sORFs located within the exonic part of a gene (Olexiouk V, et al., 2016) 

comprising ~52% of the total sORFs followed by ~30% sORFs located on lncRNAs 

and ~11% located in 5’UTRs of a gene. The remaining annotations comprise < 3% of 

total sORFs.  

Although we extensively filtered out sORFs before compiling them into the 

mPLsORF database, there are still a few sORFs with the same chromosome 

location which had to be retained because of different corresponding amino acid 

sequences potentially representing alternatively spliced versions of each other. 
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Furthermore, a significant drop from 1,142,735 to 454,120 sORFs after extensive 

processing highlights the requirement for the creation of our own sORF database. 

From the pie chart depicting different annotation types of sORFs (Fig. 6D), one can 

infer that sORFs are present in both genic and noncoding regions. A similar 

distribution of sORFs that are transcribed and translated in our samples was also 

obtained (Fig. 10) indicating transcription and translation occurs from both genic and 

noncoding regions of the genome. Although most sORFs are localised in exonic 

regions, they are not necessarily in-frame with the exons that are translated into 

known proteins. Thus, exonic sORFs could be from +2 or +3 reading frame of an 

exon (thus noncoding by our definition), assuming +1 reading frame corresponds to 

translation of known proteins. Therefore a significant amount of sORFs are present 

within noncoding regions.  

Several small peptides with lengths <20 aa are involved in signalling in Arabidopsis 

(Murphy et al., 2012). Thus given most sORF peptides are small, it is interesting to 

speculate their involvement in signalling albeit the exact mechanisms or the nature of 

signalling is not known. In our lab, to investigate possible sORF functions, we 

evaluated their amino acid sequences to identify potential binding sites for known 

protein domains using an online tool called Prosite (Sigrist et al., 2009). Interestingly, 

the preliminary results hint towards the possible involvement of sORFs in signalling, 

given their binding partner are mostly kinases or phosphatases (work not shown). 

 
3. Creation of altORF database 

In addition to sORFs, we investigate transcription and translation of altORFs in our 

samples. A list of altORFs identified in mouse, downloaded from Roucou’s lab 

(Vanderperre et al., 2013) was used for our analysis. Some of these altORFs had 

unclear chromosome location wherein two or more chromosome numbers were 

attributed to the same altORF. To facilitate optimal downstream analysis, we filtered 

the downloaded list of altORFs as described in Fig. 7A and identified 2,15,320 

altORFs for further use. A length distribution plot for altORFs after the filtering 

process is shown in Fig. 7B.  altORF length, in terms of the number of amino acids in 

altORF peptides, varies from 29 to 1538 amino acid with a median length of 59 aa 

and about 90% of altORFs have a length <150 aa.  
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Fig. 7: Creation of altORF database. (A) Steps involved in creation of altORF 

database along with the number of altORFs at each step. (B) Length distribution plot 

for altORF encoded peptides. 

 

In the paper published by Roucou’s lab (Vanderperre et al., 2013), the median length 

of human altORFs is cited as 57 aa as opposed to 344 aa for known proteins. This 

paper (Vanderperre et al., 2013) also claims that altORFs are highly conserved 

sequences explaining the small difference in median length seen between human 

altORFs (57 aa) and mouse altORFs (59 aa). Additionally, even after the filtering 

step, there were some altORFs with the same chromosome coordinates which were 

retained because of difference in corresponding amino acid sequence, indicating the 

possibility of alternative splicing of altORF transcripts. In comparison to the 

mPLsORF database, the altORF database does not have any associated strand 

information as it was not available in the downloaded source. This work allowed us 

to establish a list of altORFs along with their chromosome location and amino acid 

sequence, for further use. 

4. Proteogenomic Analysis 

To identify proteins isolated from our mouse samples, their peptide spectra were 

mapped to three databases: known protein database from UniProt (UniProt, 2017), 

sORF fasta database and altORF fasta database. After the mapping, proteins were 

filtered using a 1% FDR cutoff. We, therefore, identified 1850 known proteins, 3604 



 

sORF proteins and 2104 altORF proteins in our mouse samples which were used for 

further analysis (Fig. 8). Proteins which did not match any of the three databases 

and thus whose identity is unknown are further evaluated by mapping their spectra to 

amino acid sequences in our B and T cell

Although peptide spectra are usually mapped to known protein databases in 

proteomic analysis and to pr

introduced an additional step wherein the spectra are mapped to sORF and altORF 

fasta databases.   This workflow thus allows for the identification of novel proteins 

that are not sORF, altORF or known pro

spectra to B and T cell proteogenomic databases. This work is currently being 

performed in our lab. 

 

 

 

 

 

 

 

Fig. 8: Proteogenomic workflow used to identify proteins in mouse samples by 

mapping peptide spectra generat

three databases (UniProt, altORF and sORF databases) individually. 

5. Evidence for transcription and translation of sORFs

B and T cells 

After the successful creation of the sORF database, a

cell-specific transcriptomic database, we evaluated if there is evidence for 

transcription and translation of these novel ORFs in mouse B and T cells. We utilised 

bedtools intersect for coordinate mapping such that a positive ove

ORFs and B or T cell transcripts indicates that a transcript is encoded by a genomic 

sORF proteins and 2104 altORF proteins in our mouse samples which were used for 

further analysis (Fig. 8). Proteins which did not match any of the three databases 

hus whose identity is unknown are further evaluated by mapping their spectra to 

amino acid sequences in our B and T cell-specific proteogenomic database. 

Although peptide spectra are usually mapped to known protein databases in 

proteomic analysis and to proteogenomic databases in proteogenomic analysis, we 

introduced an additional step wherein the spectra are mapped to sORF and altORF 

fasta databases.   This workflow thus allows for the identification of novel proteins 

that are not sORF, altORF or known proteins, by mapping the unmatched peptide 

spectra to B and T cell proteogenomic databases. This work is currently being 

Proteogenomic workflow used to identify proteins in mouse samples by 

mapping peptide spectra generated by mass-spectrometry analysis to each of the 

three databases (UniProt, altORF and sORF databases) individually. 

Evidence for transcription and translation of sORFs and altORFs

After the successful creation of the sORF database, altORF database and B and T 

specific transcriptomic database, we evaluated if there is evidence for 

transcription and translation of these novel ORFs in mouse B and T cells. We utilised 

bedtools intersect for coordinate mapping such that a positive overlap between novel 

ORFs and B or T cell transcripts indicates that a transcript is encoded by a genomic 
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sORF proteins and 2104 altORF proteins in our mouse samples which were used for 

further analysis (Fig. 8). Proteins which did not match any of the three databases 

hus whose identity is unknown are further evaluated by mapping their spectra to 

specific proteogenomic database. 

Although peptide spectra are usually mapped to known protein databases in 

oteogenomic databases in proteogenomic analysis, we 

introduced an additional step wherein the spectra are mapped to sORF and altORF 

fasta databases.   This workflow thus allows for the identification of novel proteins 

teins, by mapping the unmatched peptide 

spectra to B and T cell proteogenomic databases. This work is currently being 

Proteogenomic workflow used to identify proteins in mouse samples by 

spectrometry analysis to each of the 

three databases (UniProt, altORF and sORF databases) individually.  

and altORFs in mouse 

ltORF database and B and T 

specific transcriptomic database, we evaluated if there is evidence for 

transcription and translation of these novel ORFs in mouse B and T cells. We utilised 

rlap between novel 

ORFs and B or T cell transcripts indicates that a transcript is encoded by a genomic 



 

region designated as sORF or altORF and thus we assume that the transcript is a 

sORF or altORF transcript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Evidence for transcription and translation of sORFs

Identifying sORFs with evidence for transcription by mapping sORF coordinates in 

mPLsORF database to B/T cell transcriptomic database, along with the number of 

sORFs/transcripts at each step.

mapping peptide spectra of proteins to sORF fasta database along with the number 

of peptides at each step. 

Identifying evidence for translation of altO

region designated as sORF or altORF and thus we assume that the transcript is a 

sORF or altORF transcript.  

or transcription and translation of sORFs and altORFs

Identifying sORFs with evidence for transcription by mapping sORF coordinates in 

mPLsORF database to B/T cell transcriptomic database, along with the number of 

sORFs/transcripts at each step. (B) Identifying evidence for translation

mapping peptide spectra of proteins to sORF fasta database along with the number 

 (C) Identifying evidence for transcription of altORFs 

Identifying evidence for translation of altORFs. 
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region designated as sORF or altORF and thus we assume that the transcript is a 

and altORFs (A) 

Identifying sORFs with evidence for transcription by mapping sORF coordinates in 

mPLsORF database to B/T cell transcriptomic database, along with the number of 

evidence for translation of sORFs by 

mapping peptide spectra of proteins to sORF fasta database along with the number 

Identifying evidence for transcription of altORFs (D) 



 

lncRNA
37.07%

pseudogene
0.22%

5UTR
19.54%

3UTR
0.60%

Total no. of entries identified after 
mapping sORFs to peptide spectra

No. of sORFs after Filter 1: remove 

4030

 

 

 

 

 

 

Fig. 10: (A) Identifying sORFs with evidence of both transcription and translation

Identifying altORFs with evidence of both transcription and translation

 

 

 

 

 

 

 

Fig. 11: Proportion of sORFs (4494/

sORFs with evidence of transcription or translation in mouse B and T cells.

 

 

 

 

Table 3: Different filtering steps employed as well as the number of sORF peptides 

identified at each step of identification of sORFs with evidence of translation.

 

exonic
40.79%

intronic
0.58%

intergenic
1.20%

No. of sORFs after Filter 1: remove 
‘cRAP’

No. of sORFs after Filter 2: Select 
sORFs with 'High' FDR

No. of sORFs after Filter 3: Remove 
sORFs with no abundance values  

3988 3988

Identifying sORFs with evidence of both transcription and translation

ORFs with evidence of both transcription and translation

Proportion of sORFs (4494/6248) with different annotations. These

sORFs with evidence of transcription or translation in mouse B and T cells.

Different filtering steps employed as well as the number of sORF peptides 

identified at each step of identification of sORFs with evidence of translation.
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exonic

intronic

lncRNA

pseudogene

5UTR

3UTR

intergenic

No. of sORFs after Filter 3: Remove 
sORFs with no abundance values  

3604

Identifying sORFs with evidence of both transcription and translation (B) 

ORFs with evidence of both transcription and translation 

with different annotations. These are 

sORFs with evidence of transcription or translation in mouse B and T cells. 

Different filtering steps employed as well as the number of sORF peptides 

identified at each step of identification of sORFs with evidence of translation. 
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Total no. of entries identified after 
mapping altORFs to peptide spectra

No. of altORFs after Filter 1: 
remove ‘cRAP’

No. of altORFs after Filter 2: 
Remove altORFs with no 

abundance values  
2323 2289 2104

Evidence in mouse B and T cells Total No. of unique sORFs
sORFs with evidence of transcription 2721
 sORFs with evidence of translation 3604

 sORFs with evidence of transcription & translation 77
 sORFs with evidence of transcription or translation 6248

Evidence in mouse B and T cells Total No. of unique altORFs
altORFs with evidence of transcription 4251
 altORFs with evidence of translation 2104

 altORFs with evidence of transcription & translation 78
 altORFs with evidence of transcription or translation 6433

 

 

 

Table 4: Different filtering steps employed as well as the number of altORF peptides 

identified at each step of identification of altORFs with evidence of translation. 

 

 

 

 

Table 5: Total number of sORFs identified with evidence of transcription or 

translation in mouse B and T cells 

 

 

 

 

Table 6: Total number of altORFs identified with evidence of transcription or 

translation in mouse B and T cells 

In the overlap between 454,120 sORFs and 101,767 B cell or 99,552 T cell transcript 

coordinates, we identified 2595 sORFs in B cells and 2535 sORFs in T cells with 

evidence of transcription which upon comparison revealed, 2721 unique sORFs in 

mouse B and T cells with evidence of transcription (Fig. 9A). Similarly, in the overlap 

between 215,320 altORFs and 101,767 B cell or 99,552 T cell transcript coordinates, 

we identified 4019 altORFs in B cells and 3944 altORFs in T cells with evidence of 

transcription that further led to the identification of 4251 unique altORFs in mouse B 

and T cells with evidence of transcription (Fig. 9C). Moreover, to identify evidence of 

translation of novel ORFs we used peptide spectra mapping results from our 

proteogenomic analysis and filtered them first to remove contaminant ‘cRAP’ 

proteins then filtered the entries to select for only proteins with high FDR values and 

finally removed protein entries with zero abundance across all samples (Table 3, 
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Table 4). This allowed for the identification of 3604 sORFs and 2104 altORFs with 

evidence of translation in mouse B and T cells (Fig. 9B, Fig. 9D). 

Comparing sORFs identified with evidence of transcription and translation we found 

77 sORFs with evidence of both transcription and translation in our samples and a 

total of 6248 sORFs with evidence of transcription or translation (Fig. 10A; Table 5). 

A similar comparison for altORFs revealed 78 altORFs with evidence of both 

transcription and translation and 6433 unique altORFs with evidence of either 

transcription or translation (Fig. 10B; Table 6). Furthermore, annotations for 4494 out 

of 6248 sORFs with evidence of transcription or translation showed that the most 

abundant sORF annotations are exonic (~40%) followed by lncRNAs (~37%) and 

5’UTRs (~19%) while the remaining annotations amount to only a mere ~3% (Fig. 

11).  

From our data, we observe that more altORF transcripts were identified compared to 

sORF transcripts. Although this could mean that more altORF transcripts are indeed 

present in the cell, there is another factor that needs to be considered. The only 

difference in parameters used for sORF coordinate vs altORF coordinate mapping to 

transcripts using bedtools intersect was the use of ‘–s’ parameter that takes into 

consideration the strand information for elements being mapped to each other 

(Quinlan and Hall, 2010). For altORFs without any strand information, we had to 

forgo this parameter thereby introducing the possibility that more altORFs are being 

identified with evidence of transcription than if the ‘–s’ parameter were imposed. 

Thus, there is a possibility of overrepresentation of altORFs with evidence of 

transcription, but with the current dataset, we cannot resolve this issue. Even then, a 

subset of these altORFs is transcribed within B and T cells.  

Although for sORFs in the mPLsORF database there is evidence for translation, the 

cells in which said translation is observed varies from mouse embryonic stem cells to 

fibroblasts, and very few in comparison are from B cells (Olexiouk V, et al., 2016). 

This prompted us to investigate translation of sORFs in B and T cells. So, although 

our sORF database has 4,54,120 sORFs since most of them are from different cell 

lines, we obtained only 2721 sORFs with evidence of transcription. This small 

number is also dependent on the transcript assembly done by StringTie which as 

mentioned before can lead to the loss of novel transcripts after the merge step. All 
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we can claim with this data in hand is that we identified a subset of sORFs in B and 

T cells that have evidence of transcription.  

Another observation that immediately stands out is the discrepancy between the 

numbers of transcribed vs translated novel ORFs. Mainly, why are there fewer sORF 

transcripts compared to sORF proteins and why is there double the number of 

altORF transcripts compared to altORF proteins? Possible reasons for this, although 

not exhaustive, are discussed. The possibility that one transcript codes for multiple 

proteins after undergoing alternative splicing can lead to the identification of a larger 

number of proteins than transcripts. Also, some sORF transcripts possibly have very 

low abundances or a short half-life reducing chances of their identification. Finally, 

loss of novel transcripts during the read alignment and transcript assembly process 

due to inherent limitations of the transcript assembly tool used ( StringTie merge in 

creating a non-redundant transcript set can cause loss of novel transcript unique to a 

particular sample) (Pertea et al., 2016) or we lost some possible transcripts at the 

alignment stage where we aligned the genome not to a cell-specific reference 

genome, which is unfortunately not available, but rather to a strain-specific reference 

genome. Our analysis is unable to distinguish between these speculated reasons, 

and therefore the exact cause of the discrepancy between identified transcripts vs 

proteins may be one or a combination of reasons mentioned above. 

Also since only 77 sORFs and 78 altORFs with both evidence of transcription and 

translation have been identified, it implies that we have identified a few novel ORF 

transcripts without their corresponding proteins and a few novel ORF proteins 

without their corresponding transcripts. One reason could be that although the 

peptides are present, their small size (as small as 2 aa) makes it difficult to isolate 

and study them and further they may not pass the FDR filter imposed.  We also don’t 

know if all sORFs and altORFs are translated, so another possibility that needs to be 

considered is that not all novel ORF transcripts have corresponding proteins and 

instead these transcripts possibly exert their functions at the RNA level. For 

example, miRNAs bind to complementary RNAs and silence the expression of the 

latter (Wahid et al., 2010). As for peptides without corresponding transcripts reasons 

mentioned in the previous paragraph, are potential causes. Finally, through this 

work, we were able to ascertain the presence of transcribed and translated sORFs 

and altORFs in mouse B and T cells. 
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6.  Differential expression analysis of sORFs and altORFs

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Proportion of different types of tr

transcript datasets (x-axis)

after StringTie merge. DE transcripts are differentially expressed transcripts 

identified using Ballgown analysis. Transcrip

in black; sORF transcripts are represented by white bars; altORF transcripts are 

shown as dark grey and transcripts not belonging to these 3 categories and labelled 

‘unidentified transcripts’ are coloured light grey.

 

 

 

 

 

Table 7: Different types of transcripts in 

differentially expressed transcripts list

type is shown. 

 

32606 3562

1821 154

16086 1786

63754 7009

Transcriptomic database DE transcripts

Transcript Source ->

Unidentified transcripts

Transcripts mapping to 
altORFs

Transcripts mapping to sORFs

Transcripts annotated 
'protein_coding'

Transcriptomic database
Transcripts annotated 'protein_coding' 32606

Transcripts mapping to sORFs 1821
Transcripts mapping to altORFs 16086

63754

Differential expression analysis of sORFs and altORFs 

Proportion of different types of transcripts (y-axis) identified from different 

axis). Transcriptomic database indicates transcripts identified 

merge. DE transcripts are differentially expressed transcripts 

analysis. Transcripts annotated protein coding are marked 

in black; sORF transcripts are represented by white bars; altORF transcripts are 

shown as dark grey and transcripts not belonging to these 3 categories and labelled 

‘unidentified transcripts’ are coloured light grey. 

types of transcripts in our transcriptomic database and 

differentially expressed transcripts list along with the number of transcripts of each 
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Fig. 13: Classification of differentially expressed tra

transcript, DE sORF transcripts and DE altORF transcripts into B and T cell based 

on transcript FPKM values 

 

We identified evidence for transcription and translation of two novel ORFs namely 

sORFs and altORFs in mouse B and T ce

differences in their transcript expression levels between B and T cell and whether 

this information can be used to distinguish between the two cell types. Here, we work 

with two transcript datasets, one our transcri

merge and the other a list of differentially expressed (DE) transcripts produced after 

Ballgown analysis. Transcripts were categorised as protein coding by extracting 

biotype information for their ensembl transcript i

Biomart, Ensembl genes 91). 

 

Classification of differentially expressed transcripts, DE protein coding 

transcript, DE sORF transcripts and DE altORF transcripts into B and T cell based 

 

We identified evidence for transcription and translation of two novel ORFs namely 

sORFs and altORFs in mouse B and T cells. Next, we explore the possibility of 

differences in their transcript expression levels between B and T cell and whether 

this information can be used to distinguish between the two cell types. Here, we work 

with two transcript datasets, one our transcriptomic database generated by 

merge and the other a list of differentially expressed (DE) transcripts produced after 

analysis. Transcripts were categorised as protein coding by extracting 

biotype information for their ensembl transcript ids from ensembl biomart (Ensembl 

Biomart, Ensembl genes 91).  
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Fig. 14: PCA analysis of transcript expression levels of known, sORF and altORF 

transcripts. Top panel contains PCA analysis distinguishing between B cells (black) 

and T cells (red). Bottom panel indicates PCA analysis is unable to distinguish 

between male (black) and female (

transcript expression levels

We identified 32606 and 3562 protein

DE transcript lists respectively. 1821 and 16086 transcripts from the transcriptomic 

database mapped to sORFs and altORFs in comparison to 154 and 1786 DE 

transcripts that mapped to sORFs and altORFs respectively. The identity of 63754 

transcripts from the transcriptomic database and 7009 DE transcripts could not be 

ascertained (Table 7). From Fig. 12 we observe that the proportion of different 

transcript annotation is almost the same for the transcripts in the transcriptomic 

database and those which are differentially expressed. Also, most transcripts are 

unidentified transcripts with the next common annotation being protein

followed by altORF and sORF transcripts. 

sORF Transcripts 

PCA analysis of transcript expression levels of known, sORF and altORF 

transcripts. Top panel contains PCA analysis distinguishing between B cells (black) 

). Bottom panel indicates PCA analysis is unable to distinguish 

between male (black) and female (red) of a particular cell-type based on the 

transcript expression levels 

We identified 32606 and 3562 protein-coding transcripts in the transcrip

DE transcript lists respectively. 1821 and 16086 transcripts from the transcriptomic 

database mapped to sORFs and altORFs in comparison to 154 and 1786 DE 

transcripts that mapped to sORFs and altORFs respectively. The identity of 63754 

s from the transcriptomic database and 7009 DE transcripts could not be 

ascertained (Table 7). From Fig. 12 we observe that the proportion of different 

transcript annotation is almost the same for the transcripts in the transcriptomic 

ich are differentially expressed. Also, most transcripts are 

unidentified transcripts with the next common annotation being protein

followed by altORF and sORF transcripts.  
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altORF Transcripts 

PCA analysis of transcript expression levels of known, sORF and altORF 

transcripts. Top panel contains PCA analysis distinguishing between B cells (black) 

). Bottom panel indicates PCA analysis is unable to distinguish 

type based on the 

coding transcripts in the transcriptomic and 

DE transcript lists respectively. 1821 and 16086 transcripts from the transcriptomic 

database mapped to sORFs and altORFs in comparison to 154 and 1786 DE 

transcripts that mapped to sORFs and altORFs respectively. The identity of 63754 

s from the transcriptomic database and 7009 DE transcripts could not be 

ascertained (Table 7). From Fig. 12 we observe that the proportion of different 

transcript annotation is almost the same for the transcripts in the transcriptomic 

ich are differentially expressed. Also, most transcripts are 

unidentified transcripts with the next common annotation being protein-coding 
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To evaluate whether there are any DE transcripts uniquely expressed in B or T cells, 

we classified the transcripts depending on their FPKM values. If FPKM values 

corresponding to a transcript were zero for all samples of a particular cell type, the 

transcript was deemed absent in that specific cell. 898 DE transcripts unique to B 

cells and 808 DE transcripts unique to T cells were identified with 10303 common to 

both cell types. Of the 3562 protein-coding DE transcripts 279 were unique to B and 

181 unique to T with 3102 common to both. Similarly, 24 DE transcripts in B, 16 in T 

and 250 in both were identified for sORF transcripts whereas 19 altORF DE 

transcripts in B, 18 in T and 943 in both B and T cells were identified (Fig. 13). 

Furthermore, we did a PCA analysis of transcript expression levels of known 

transcripts, sORF transcripts and altORF transcripts. Although the transcript 

expression levels could distinguish between B cell and T cell, it could not distinguish 

between the male and female of the same cell type (Fig. 14).  

Some of the transcripts annotated as unidentified (Fig. 12) contain long intergenic 

noncoding RNAs (lincRNA), small nucleolar RNAs (snoRNA), mitochondrial RNA 

(mt-RNA) etc. The nature of the remaining unidentified transcripts without ensembl 

transcript ids could not be determined. Thus the unidentified category includes 

transcripts from noncoding regions and other transcripts whose identity could not be 

ascertained. Also, as seen from Fig. 13, almost 88% of DE transcripts are common 

to both cell types and only a very small fraction is unique to either cell type. It is 

known that there are differentially expressed genes between B and T cells (Painter 

et al., 2011) and therefore the identification of differentially expressed protein-coding 

transcripts is expected but what is interesting is that sORFs and altORFs are 

differentially expressed as well. Moreover, our PCA analysis showed that sORFs and 

altORFs are differentially expressed between B and T cells and their transcript 

expression levels are sufficient to distinguish between these two cell types. Thus, 

novel ORFs, as well as transcripts from noncoding regions, can distinguish between 

B and T cells. We traced back the original cell line for a few of the sORFs from 

sORFs.org which were exclusively expressed in B or T cells. Interestingly, these 

sORFs were identified in mouse fibroblasts, mouse brain cells and even mouse stem 

cells (Olexiouk V, et al., 2016). 

It is interesting to speculate the functions of these sORFs identified in B and T cells 

as well as different cell lines like mouse fibroblasts, mouse brain cells and mouse 



41 
 

stem cells. Are some sORFs involved in regulation of common cellular processes 

explaining why they are prevalent in multiple cell types or do sORFs regulate cell-

specific processes and thus are uniquely expressed in only some cell types? Maybe 

it is a combination of both.  Also, proteins encoded by altORFs add to the diversity of 

the proteome of a cell (Vanderperre et al., 2013), thus possibly allowing B and T cell 

in addition to known mechanisms of increasing diversity at the genomic level 

(Smith,M., 2016), to increase diversity at the proteome level too. These are all 

speculations which need to be further worked on but our data clearly reveals that 

there is differential expression of sORFs and altORFs between mouse B and T cells 

and that sORF and altORF transcripts can be used to distinguish between these two 

cell types. 

7. Differential methylation analysis  
 

 

Table 8: Number of DMRs identified in upstream, body and downstream regions of 
DE sORFs, DE altORFs and DE protein-coding transcripts  

 

 

Table 9: Number of LINE/SINE repeat elements identified in upstream and 
downstream regions of DE sORFs, DE altORFs and DE protein-coding transcripts 

 

 

Table 10: Number of DMRs identified within LINE/SINE repeat elements found in the 
upstream and downstream regions of DE sORFs, DE altORFs and DE protein-
coding transcripts 

 

 

Table 11: Number of sORFs identified in upstream and downstream regions of DE 
protein-coding transcripts and the number of DMRs found within these sORFs. 
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In our attempt to identify regulation of novel ORFs by differential methylation we first 

identified 140,929 DMRs between B cells and T cells using bsseq package. We then 

mapped these DMRs to the upstream, body and downstream regions (3000 bp 

windows upstream and downstream) of DE sORFs, altORFs and protein-coding 

transcripts (DE elements). We identified 117 DMRs in the upstream, 139 in the 

downstream region and 1398 in the body of DE sORFs, 199 DMRs in the upstream, 

257 DMRs in the downstream region and 28497 in the body of DE altORFs and 1712 

DMRs in the upstream, 1679 DMRs in the downstream region and 24910 in the body 

of DE protein-coding transcripts (Table 8).  

To evaluate the possibility of regulation of DE elements by LINE/SINE repeat 

elements, we mapped LINE/SINE to upstream and downstream regions of these DE 

elements. 453 and 330 unique LINE/SINE elements were found in the upstream and 

downstream regions of DE sORFs, 2533 and 2494 unique LINE/SINE elements in 

the upstream and downstream regions of DE altORFs and 6972 and 6255 unique 

LINE/SINE elements were found in the upstream and downstream regions of DE 

protein-coding transcripts (Table 9). Furthermore, mapping DMRs to these 

LINE/SINE elements identified near DE elements resulted in the identification of 0 

and 1 DMRs within LINE/SINE in the upstream and downstream regions of DE 

sORFs, 3 and 11 DMRs within LINE/SINE in the upstream and downstream regions 

of DE altORFs and 21 and 18 DMRs within LINE/SINE in the upstream and 

downstream regions of DE protein-coding transcripts (Table 10). Additionally, to 

evaluate if differentially methylated sORFs regulate expressions of DE protein-

coding transcripts, we first mapped sORFs to upstream and downstream regions of 

protein-coding transcripts and then mapped DMRs to these sORFs. We thus 

identified 4 and 1 DMRs in sORFs upstream or downstream to protein-coding 

transcripts (Table 11). 

From this analysis, we identified DMRs in the upstream and downstream regions of 

DE elements. We also determined the presence of LINE/SINE repeat elements near 

these DE elements and furthermore identified DMRs within these repeat elements. 

Finally, we found sORFs in the upstream and downstream regions of protein-coding 

transcripts and these sORFs contained DMRs within them. Thus, we have only 

identified DMRs in the regions mentioned above. Since the presence of DMRs does 

not guarantee regulation of transcript expression further work regarding identifying 
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significant and functional DMRs is required. For example, we could generate multiple 

random sets of DMRs and overlap it to DE elements and use this information to 

evaluate whether the DMRs identified near DE elements are significant. We could 

also undertake comparative genomics studies to identify any cis-regulatory regions 

in genomic regions containing DMRs. One observation that clearly stands out from 

our data is the lack of DMRs in LINE/SINE near sORFs highlighting the likelihood 

that sORFs are not regulated by repeat elements. 

Conclusion 

We investigated transcription and translation of two novel ORFs in mouse naive B 

and T cells. Using transcript coordinate mapping to novel ORFs and proteogenomic 

analysis, we identified evidence for transcription and translation of sORFs and 

altORFs in mouse B and T cells. Furthermore, we determined that sORF and altORF 

transcripts are differentially expressed between B and T cells and their transcript 

expression levels are significant and sufficient enough to distinguish between the two 

cell types. Additionally, to understand the regulation of these DE transcripts, we 

identified differentially methylated regions between B and T cells and found evidence 

for their localisation within upstream, body and downstream regions of DE sORFs 

and DE altORFs. Also, LINE/SINE elements were found near these DE novel ORFs, 

and although a few DMRs within these repeat elements near DE altORFs were 

identified, we found no significant evidence of DMRs in LINEs/SINEs present near 

DE sORFs indicating that DE sORFs are not regulated by repeat elements. Finally, 

we identified sORFs containing DMRs in the upstream and downstream regions of 

DE protein-coding transcripts. Although we identified DMRs within several upstream 

and downstream regions of DE elements further work is required to establish 

whether or not the genomic regions under consideration are involved in regulation of 

DE elements. This work in addition to providing a framework for a systematic 

analysis of novel ORFs highlights novel ORFs and their transcribed and translated 

products as significant components of the genome. Using results obtained from this 

work, sORF structure predictions and identification of disease variants within sORFs 

were conducted. Future work would involve identification of novel transcripts in our 

sample using the proteogenomic workflow described in this study and a rigorous 

analysis to determine whether DE protein-coding transcripts are regulated by sORFs 

thus ascribing a potential function to sORFs in mouse B and T cells. 
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