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Abstract

We begin investigations of the level-rank duality of pure Chern-Simons theory
on the torus by counting the number of states on both sides of the duality.
We analyse a formula given in [1] for determining the dimensionality of the
Hilbert space of SU(N) Chern-Simons theory on the torus. We illustrate a
way to find the dimensions of the U(N) theory and show that it matches
with the answer expected from duality.
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Chapter 1

Introduction

Chern-Simons theory has proven to be a fruitful field of research in physics
and mathematics. It is a topological field theory, meaning that its Lagrangian
does not depend on the metric of the spacetime it is considered on. Its
non-abelian quantum version in three dimensions was first solved completely
by Witten [2] and in the process were obtained deep connections with 2-
dimensional rational conformal field theory and the Jones polynomial knot
invariants. We discuss some basic properties of the theory below.

1.1 The Lagrangian

The action for Chern-Simons theory is given by the integral of the Chern-
Simons 3-form.

L =
k

4π

∫
M

Tr(A ∧ dA+ A ∧ A ∧ A) (1.1)

In index notation it reads as follows [2]:

L =
k

8π

∫
M

εijkTr(Ai(∂jAk − ∂kAj) +
2

3
Ai[Aj, Ak]) (1.2)

Here, A is a gauge field valued in the Lie algebra of a compact simple gauge
group G on an odd-dimensional oriented manifold M . εijk is the antisym-
metric Levi-Civita symbol, with the convention ε012 = 1. A point to note is
that the Lagrangian shown above is independent of the metric, and hence
all observables in our theory will be topological invariants. Time evolution
is also trivial, as the Hamiltonian is zero.
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Under a gauge transformation of winding number m, the Lagrangian
changes by a total derivative and a term that is reminiscent of the Wess-
Zumino term.

δL =
k

4π
εijk∂iTr(∂jgg

−1Ak) +
k

12π
εijkTr(g−1∂igg

−1∂jgg
−1∂kg) (1.3)

The total derivative term vanishes on a manifold without boundary, say S3.
The second term is interesting. It is 2πk times the winding number density
of G, the integral of which can be shown to be an integer [3]. This winding
number calculates the number of times S3 winds around the gauge group.
In other words, it measures the π3 of the map M → G, which is usually
isomorphic to Z for compact simple gauge groups. As quantum field theory
requires the consistency of eiL , we deduce that k must be an integer. This
argument of the quantisation of k does not hold for the gauge group U(1),
which is not a simple group. In that case k turns out to be an integer because
of the presence of magnetic monopoles [4].

Thus, as far as gauge invariance goes, Chern-Simons theory is gauge-
invariant only under gauge transformations which are connected to the iden-
tity, i.e., of winding number 0.

The equations of motion of the Chern-Simons action are given by the
equation F = dA+A∧A = 0. Hence, the phase space of the classical theory
is the space of all gauge-inequivalent flat connections. It is also known as the
moduli space of flat connections.

1.1.1 4D in disguise

Three dimensional Chern-Simons theory can be viewed as a four-dimensional
theory in disguise [5]. The 3-form can be constructed out of a 4-form which
lives on a four-manifold. That form is

? F µνFµν =
1

2
εµνρσFµνFρσ (1.4)

for abelian gauge fields. Where

Fµν = ∂µAν − ∂νAµ
The non-abelian generalisation is

?F aµνF a
µν =

1

2
εµνρσF a

µνF
a
ρσ
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where F a
µν is the Yang-Mills field strength

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν .

We can write ?FF as a total derivative, so that its volume integral over the
4-manifold can be converted by Gauss’ law into a surface integral over its
boundary.

1

2
? F µνFµν = ∂µ(εµνρσAν∂ρAσ) (1.5)

1

2
? F µνaF a

µν = ∂µ(εµνρσAaν∂ρA
a
σ +

1

3
fabcAaνA

b
ρA

c
σ) (1.6)

The terms in brackets, whose divergences give ?FF , are the abelian and
non-abelian Chern-Simons terms respectively.

1.2 Observables
We need gauge invariant observables for our theory. Wilson lines serve the
purpose, with the additional benefit that they are topological (general co-
variant) as well, since one does not need a metric to define them. We take
an embedding of a circle C in M and compute the holonomy of the gauge
field Ai around C. We thus get an element of G, and we then take its trace
in an irreducible representation R.

WR(C) = TrRPexp

∫
C

Aidx
i (1.7)

P denotes that the exponential is path-ordered.
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Chapter 2

Quantisation

In this chapter, we will see how the quantisation of Chern-Simons theory
works out on different surfaces. To quantise the Chern-Simons thory, one
adopts the strategy of first chopping up M into pieces, solving the theory on
these pieces, and then gluing them back. M may have Wilson lines running
through it. We cut the manifold along a Riemann surface Σ. Near the cut,
M looks like Σ×R1.

The case of a manifold of the form Σ × R1 can be solved by the means of
canonical quantisation. It produces finite-dimensional Hilbert spaces HΣ. If
Wilson lines are present on Σ, we must consider marked points P1, ...., Pk
with a representation Ri attached to every Pi, since every Wilson line has an
associated representation.

WE decompose the exterior derivative (dt ∂
∂t

and d̃) and the gauge field (A0

and Ã) into spatial and temporal components and write the action as [1]

L = − k

4π

∫
dt

∫
Σ

Tr(Ã ∧ ˙̃A) +
k

2π

∫
dt

∫
Σ

Tr(A0F̃ ). (2.1)

Integrating over A0, we obtain the constraint F̃ = d̃Ã+ Ã ∧ Ã = 0.

2.1 Σ = S2

When Σ = S2, the Hilbert space is one dimensional. There exists only a
vacuum state. This is because the space of flat connections is trivial. Flat
connections depend on the fundamental group of the manifold. But the 2-
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sphere is topologically trivial (simply connected) and so every loop can be
shrunk to a point.

2.2 Σ = Disc without a source
F̃ = 0 implies that Ã can be set to zero by a gauge transformation in any
simply connected region [6]. But the whole disc is simply connected. Thus,
the constraint F̃ = 0 can be solved to give Ã = −d̃UU−1, for a single valued
function U : D × R → G. Note that Us are functions of time as well, as
the constraint F̃ = 0 is valid only on a spatial slice. Implementing this
transformation gives

L =
k

4π

∫
∂Σ

Tr(U−1∂φUU
−1∂tU)dφdt+

k

12π

∫
Σ

εijkTr(g−1∂igg
−1∂jgg

−1∂kg)

(2.2)
Here, φ is an angular coordinate on the boundary S1. This is the standard
Wess-Zumino functional plus an off–diagonal kinetic term. No gauge has
been fixed in the functional integral. By fixing a gauge, we can change the
value of U in the interior, and so the effective action depends only on the
boundary values of U .

Thus, the states in the spectrum are in representations of the loop group
LG. LG is defined as the space of continuous maps β : S1 → G. This is
because, as mentioned above, the degrees of freedom of U lie on the boundary
of the disc, which is S1. The phase space of the system is the space of based
loops LG/G because U is uniquely defined up to U → U ·W , for a constant
W ∈ G [2]. The symplectic structure is

ω =
k

4π

∮
Tr(U−1δU)

d

dφ
(U−1δU) (2.3)

Once we have the symplectic structure, we can get the Poisson bracket corre-
sponding to the Lagrangian and this enables us to quantise the theory. Upon
quantisation, the boundary Aφ become operators that satisfy the Kač-Moody
algebra [1]. The Kač-Moody algebra appears as the symmetry algebra when
over and above the conformal symmetry, the system enjoys a global symme-
try, which is G in this case.

The Lagrangian 2.2 is the chiral WZW Lagrangian. It is called chiral
because of the presence of the off-diagonal kinetic term. The full WZW
action is
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L =
k

4π

∫
∂Σ

Tr(U−1∂µUU
−1∂µU) +

k

12π

∫
Σ

εijkTr(g−1∂igg
−1∂jgg

−1∂kg).

It was investigated by Witten in [7] as a bosonization dual of free massless
fermions with non-abelian symmetry groups. This full action reduces to the
chiral action in light-cone coordinates. It was shown in [7] that quantisation
of the chiral WZW theory gives rise to the Kač-Moody current algebra, the
currents being g−1∂+g and g−1∂−g, in light-cone coordinates. These can be
obtained by effecting a small variation of the full WZW action and deter-
mining the equations of motion [7].

2.3 Σ = T 2

The most general solution of the constraint F̃ = 0 is

Ã = −d̃UU−1 + Uθ(t)U−1. (2.4)

θ is a Lie algebra valued one-form which depends only on t, i.e., the R1

coordinate. Plugging Ã back into the action, we get

L = − k

4π

∫
Tr(θ ∧ θ̇). (2.5)

This gives rise to the commutation relations

[θi1, θ
j
2] = −i2π

k
δij. (2.6)

i and j stand for the Lie algebra indices of the fields. θ1 and θ2 run along
the a and b cycles of the torus. The independent states are labelled by

λ ∈ ΛW

W n kΛR
, (2.7)

Here, ΛW and ΛR are the weight and root lattices of G [1]. This formula will
be analysed in detail later.
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Chapter 3

Canonical Quantisation of SU(N)
Chern-Simons theory on T 2 × R

We will derive an understanding of the quantisation of the theory with SU(N)
gauge group on the Torus. This will be important in looking at the distribu-
tion of states in the Hilbert space and help in understanding the level-rank
duality of the theory.

We look at the situation with a blind eye towards the statistics of the
Wilson lines. In other words, the behaviour of states under permutations is
ignored.

The gauge fields A and B are traceless diagonal matrices as they belong
to the su(N) Lie algebra. We work in the gauge A0 = 0. The Chern-Simons
action then reads as

S =
k

2π

∫
dt

N∑
i=1

ȧibi (3.1)

where ai and bi are the diagonal elements of A and B respectively, with the
constraints

∑
ai =

∑
bi = 0. As in the previous chapter, the lengths of

the cycles of the torus have been absorbed into the gauge fields. This gets
rid of the integral. Being defined along the cycles of T 2, ai and bi enjoy a
periodicity

ai ∼ ai + 2πθi

bi ∼ bi + 2πθi

θi = δim − δin.
(3.2)

10



We tackle the problem by first redefining A and B in the Cartan basis
H1, H2, . . . , Hn−1 as

A =
N−1∑
k=1

αkHk

B =
N−1∑
k=1

βkHk

(3.3)

Using the normalisation Tr(HkHk′) = δkk′ , the action now becomes

S =
k

2π

∫
dt

N−1∑
p=1

α̇pβp (3.4)

θi now needs to be expressed in the Cartan basis. The required object is
a diagonal matrix with 1 in the mth diagonal element and −1 in the nth,

i.e., δmm − δnn. We represent it by
N−1∑
p=1

Amnp Hp, and the αp and βp are now

periodic with

αp ∼ αp + Amnp

Given the action (4), we can write down the commutation relations

[αp, βq] = i
2π

k
δpq (3.5)

Now, let us look at the objects of interest in our theory, namely wavefunctions
and operators on Hilbert space. Consider the position-space wavefunction
e2iπζ1·α. The periodicity property of the αp forces the condition ζ1 ·Amn ∈ Z.
Amn, by our construction, resided in the root lattice of the gauge group
SU(N). Therefore, the condition above on ζ translates into the constraint
ζ1 ∈ λW , where λW is the weight lattice of G.

On to the operators. Consider the "momentum" operator e2iπζ2·β. This
operator should act in a well-defined fashion of the wavefunctions, i.e., it must
respect the periodicity property. The momentum 2πβ shifts the position α
by the amount 1

k
ζ2 (in accordance with the commutations relations 3.5).

This action is given by

e2iπζ2·βe2iπζ1·αe−2iπζ2·β = exp

(
2iπζ1 · ζ2

k

)
e2iπζ1·α
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So, if ζ1 ∈ kλR, where λR is the root lattice of G, then the action is
trivial, as ζ2 ∈ λW by the same argument as that for ζ1. This places an
additional constraint on ζ1; we must identify all those ζ1 that differ by k
times a root vector and likewise for ζ2.

The above rules give the Hilbert space of our theory as λW

kλR
.

We may now write the action of the position and momentum operators
on an abstract vector in the Hilbert space as follows:

|ζ〉 = e2iπζ·α

e2iπζ1·α |ζ〉 = |ζ + ζ1〉

e2iπζ2·β |ζ〉 = e2iπ ζ·ζ2
k |ζ〉

|ζ〉 ∼ |ζ + kR〉

(3.6)

We recover formula 2.7 by including permutations and identifying states
which differ by an action of the Weyl group, as they are gauge equivalent.
The Weyl group for SU(N) is SN , the permutation group of N elements. It
merely changes the order of the ais (or bis) in the A (or B) gauge fields via
a unitary transformation. We illustrate this by the SU(2) case.(

0 1
1 0

)(
a1 0
0 a2

)(
0 1
1 0

)
=

(
a2 0
0 a1

)
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Chapter 4

Level-rank duality

There is a remarkable duality between two different Chern-Simons theories.
It applies when the level k and the rank of the gauge group are interchanged in
a certain manner. We are looking at the duality on the torus as there already
are non-trivial states of pure Chern-Simons theory. We would eventually like
to see how these states interact with particle dynamics when matter is added
to the theory. The duality consists of the following two relations

(I) U(N)k ←→ (I) U(k)−sgn(k)N

SU(N)k ←→ (II) U(k)−sgn(k)N

(4.1)

(I) and (II) stand for Type I and Type II theory respectively. Type I U(N)
theory means that the gauge group is SU(N)k×U(1)Nκ. Type II U(N) the-
ory means that the gauge group is SU(N)k × U(1)Nk. κ is the renormalised
level k + sgn(k)N . Essentially, κ is the level on both sides of the Type I
duality and k is the level for the other statement of the duality.

Dualities help in easing out difficult calculations. Quantities computed
on both sides of the duality must be same for it to hold. The quantities
commonly used are the partition function of the theory, the free energy,
dimensionality of the Hilbert spaces, etc. Level-rank duality of Chern-Simons
theory has also been found to lift to a Bose-Fermi duality, wherein a theory
with fundamental bosons coupled to Chern-Simons theory is dual to fermions
coupled to the level-rank dual Chern-Simons theory. In this thesis, we check
that the level-rank duality of pure Chern-Simons theory indeed holds.
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4.1 Check for Type I duality

A check for the duality would be to show that the number of states obtained
for both theories are the same, i.e., the Hilbert spaces are of the same di-
mension on both sides.

Our action is

L =
κ

4π

∫
dt

∫
T 2

d2xεijAiȦj (4.2)

.
A1 and A2 are periodic gauge fields now. Let us take the lengths of the a and
b cycles of T 2 as l1 and l2 respectively. The gauge fields being u(N) matrices,
the constraint F̃ = 0 implies that they must be diagonal and independent
of space. Diagonality will ensure [A1, A2] = 0 and space-independence will
impose εij∂iAj = 0. These conditions together mean F̃ = 0.

As a result of A1 and A2 being independent of space, the area integral can
be carried out trivially in the action to give l1l2. These can be absorbed into
the gauge fields so that they are now periodic with period 2π. Set Ã1 = l1A1

and Ã2 = l2A2. This reduces the action (4.2) to

L =
κ

2π

∫
dtÃ1

˙̃A2

The antisymmetric ε symbol has been implemented and the action inte-
grated by parts to get it in the canonical form. This is why the 4π becomes
2π. The commutation relations therefore are

[Ã2
a
, Ã1

b
] =

2πi

κ
δab (4.3)

Now, we are dealing with the quantisation of a compact Hilbert space, in
which the coordinate and momenta both are compact and periodic. To this
end, we construct the κ× κ matrix operators U = eiÃ1 and V = eiÃ2 . Their
forms are chosen to be

Uµν = e
2πi
κ

(µ−1)δµν

Vµν = δµ,ν−1

(4.4)

The form given for V is that of the shift matrix. It looks like this
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0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

1 0 0 . . . 0

 (4.5)

U and V satisfy the relation V U = e
2πi
κ UV . After κ iterations of UV

on a state, we come back to the same state. Thus, the Hilbert space is κ
dimensional.

But, there is more work to be done. Certain phenomenological consid-
erations by Aharony et al. have shown that Chern-Simons theory describes
particles of fermionic statistics [8]. They identified states in the Hilbert space
that differed by permutations times their sign, i.e., by W×sgn(W ). We un-
derstand this in the following manner.

The information about about a particular fermion is contained in the Lie
algebra index a of the gauge fields Aai . There are N such a′s for U(N).
The particles being fermions, each κ can be occupied by at most one N .
The identification shown above means that the eigenvalues of the U matrix
can be interchanged among each other without any change in the physics of
the theory. So, the actual dimensionality of the Hilbert space is

(
κ
N

)
, where

κ = k + N . This formula is invariant under interchange of N and k, and
hence holds for the other side of the duality too.

4.2 Type II dualilty
The fact that the gauge fields now lie in the su(N) algebra complicates
matters, as this introduces the constraint of tracelessness. The U eigenvalues
are no longer on an equal footing, and so the straightforward analysis of the
previous section cannot be carried over. We dissect the formula 2.7 and see
what structure it gives.
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Chapter 5

Counting of SU(N) states

Using abstract techniques, Witten in [2] showed that the Hilbert space of
Chern-Simons theory on the torus is the space of vacuum conformal blocks
of the torus. The vacuum conformal blocks are characters of the Kač-Moody
algebra and so are labelled by allowed primary operators of the Kač-Moody
algebra. These characters are in turn labelled by representations of SU(N).
However, not every representation labels a character. Characters are labelled
by integrable representations, which are well-known to be labelled by Young
tableaux with no greater than k columns [9]. Note that for SU(N), the num-
ber of rows of these tableaux cannot exceed N − 1.

Putting this together, it follows that number of states of SU(N) Chern-
Simons theory on the torus is the number of Young tableaux of the above
description.

We use a recursion relation to find this number. Imagine our Young
tableaux with k columns, and cut out the last column. This leaves us with
a k − 1 column tableaux. The number of all possible tableaux, A(N − 1, k),
at each k can be found out by the equation

A(N − 1, k) =
N−1∑
j=1

A(j, k − 1) (5.1)

Using the fact that A(N − 1, 1) = N − 1, this gives the final answer as

A(N − 1, k) =
(N + k − 1)!

k!(N − 1)!
=

(
N + k − 1

k

)
. (5.2)

Our aim is to get this number from the counting formula given in [1].
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λW

W n kλR
, (5.3)

where λW and λR are the weight and root lattices of the gauge group respec-
tively, and W is the Weyl group. Let us construct these lattices for SU(N).
W for SU(N) is SN .

The weights of a Lie algebra are the eigenvalues of its fundamental rep-
resentation. This, for su(N), consists of the matrices themselves. We pick
a basis whose elements are diagonal matrices with ek = δkk. There are N
of these. But, as will be explained below, this system enjoys an invariance
under shifts by the identity matrix. Thus, let the eigenvalues, which can be
normalised to be positive integers, be labelled by m ∈ {0, 1, . . . , N − 1}.

A basis of the root lattice is determined by the Cartan subalgebra. For su(N),
this consist of traceless diagonal matrices, the basis for which is given by the
following N − 1 diagonal matrices

Ti = δii − δi+1,i+1

i ∈ {1, 2, . . . , N}
(5.4)

A typical such matrix would be diag(0, 0, . . . , 1,−1, 0, . . . , 0). Hence, a root
vector is given by the N -tuple (x1, x2, . . . , xN) such that the coordinates add
up to m = 0. This gives us a picture of the root lattice as being a hyper-
plane passing through origin. A weight vector is likewise obtained when the
coordinates add up to any other value of m.

Let us for a moment go back to chapter 3 Notice that if ζ1 is shifted
by the identity matrix, then we get the new wavefunction as e2iπ(ζ1·α+Tr(α)).
But, as α ∈ su(N), α is traceless. Thus, we must impose a quotienting of
λW by shifts by the identity element. This shift by the identity matrix in
each coordinate direction for λW has an interesting geometric interpretation.
Take the root lattice hyperplane (which is just the m = 0 component of the
weight lattice), and move by one unit in each coordinate direction. Take the
origin as the reference point. This action, when performed on all points of
the root lattice, gives us a hyperplane that is at a distance of N 2

√
N units

away from the origin. This hyperplane is supposed to be identified with the
root lattice. Doing this for every value of m, we find that our setup consists
of N hyperplanes having equations

∑
xi = m, with m ∈ {0, 1, . . . , N − 1}.
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Thus, for given values of m, N and k the following rules must be imple-
mented to find all the possible states that exist in the theory. The important
constraints to keep in mind are that states differing by k times a root lattice
vector must be identified and also that the sum of the coordinates of each
point must be non-negative.

1. The positive number k should not appear with any negative integer,
as under a kλR shift, the pair will reduce to a pair with the largest
number of lower modulus. Eg.: (k,−1 . . .) ∼ (0, k − 1, . . .).

2. k−1 should appear with an integer no lower than−1, as (k−1,−2, . . .) ∼
(−1, k − 2, . . .).

3. k − 2 should appear with an integer no lower than −2, and so on.

Now that we have the geometry clear, we would like to connect it with
the Young tableaux counting. We outline a simple approach which assigns
to each state given by 5.3 a Young tableaux, and vice versa.

5.1 The correspondence
We know that a tableaux with a single box transforms in the fundamental
representation of SU(N). Consider the centre of the SU(N) group. This is
given by ZN . Its elements are αI, where α is an N th root of unity and I is
the N ×N identity matrix. Under the action of the centre, a tableaux of n
boxes transforms with an eigenvalue

e
2πi
N
n

But, ZN is cyclic. So, we split the tableaux into equivalence classes with n
in the following classes

n ∈ 0, N, 2N, 3N, . . .

n ∈ 1, N + 1, 2N + 1, . . .

...
n ∈ N − 1, 2N − 1, 3N − 1, . . .

These equivalence classes are our planes that were constructed above. m = 0
corresponds to the first equivalence class, m = 1 to the next and so on. Now
we construct our tableaux.We illustrate the construction via a couple of ex-
amples.
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We assign the fundamental representation to the state (1, 0, 0, . . .). The
adjoint is assigned the state (1,−1, 0, 0, . . .). The adjoint of SU(N) looks as
follows.

(1, 0, 0, . . .) −→ for any N . (1,−1, 0) −→ for N = 3.

(1,−1, 0, 0) −→ for N = 4.

Taking cues from this, we formulate the rules of constructing a Young
tableaux given an allowed state. Let an arbitrary state be an N -tuple of the
form

(−b1,−b2, . . . ,−br, 0, . . . , 0, a1, a2, . . . , ap)

Here, ai and bi are positive and the numbers have been arranged in an
ascending order. Consider these two sets of numbers as giving two different
tableaux. The ais give a tableaux with ap boxes in the first row, ap−1 boxes
in the second row until we have a1 boxes in the last row. The ais can have
degeneracies, in which case rows of the same length will be repeated.

A "dual" tableaux for the bis is created in a similar way, except for the
distinction that now we start building from the bottom. Thus, the last
row has length b1, the row above has length b2 and so on. But here is the
important part. We subtract this tableaux from an N × b1 size tableaux and
obtain the final form required for our construction. For example, this dual
tableaux for the part (−3,−3 − 2,−1) of a state for N = 5 would look like
this

Once we have obtained the tableaux constructed out of the positive and
negative parts, we glue them together by placing the positive tableaux to the
right of the negative tableaux. This is the full tableaux for a given state.
For example, consider the state (−3,−3, 4, 2, 1, 1) for N = 6 and k = 7. The
sum of coordinates equals 2, and hence this lies on the m = 2 plane.

The positive tableaux is
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The negative tableaux is

Gluing these together gives . Note that the number of

boxes in the tableaux is 20, which modulo 6 is 2.

Let us do a consistency check. Across the junction between the negative
and positive parts, the number of column elements should decrease. But the
left of the junctions contains information of the number negative numbers in
the state, and likewise for the right side and positive numbers. Let ns be the
number of negative numbers in the state. Then the number of boxes in the
column to the left of the junction is N−ns. Let ps be the number of positive
numbers. Then

N − ns ≥ ps =⇒ ns + ps ≤ N

This is always true in a state. The equality is saturated by zeroes if required.
We need to check a few more things to be certain that the Young tableaux

we are constructing are indeed allowed by the theory.

1. Each tableaux has at most N − 1 rows.

• If there is at least one negative number is the state, then there is
at least one box less than N in the leftmost column of the dual
tableaux. This means that there will be at most N − 1 rows in
the whole tableaux.

• If there are no negative numbers in the state, then the state with
maximum number of rows is the one with N−1 ones. There can’t
be N ones, as this will get the sum of coordinates to be N and so
this would no longer be an allowed state. It would be degenerate
to a state in the m = 0 plane.

2. Each tableaux has at most k columns.

• The length of first and largest row of the tableaux is equal to
|ap| + |b1| or the value of the largest positive number plus the
modulus of the maximally negative number. Following the rules
outlined in list above this section, the possible pairs are (k, 0),
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(k− 1, | − 1|), (k− 2, | − 2|) and so on. Every time, the pairs sum
up to k. So, every tableaux can have at most k columns.

Below we show that there is a one-to one correspondence between states
and Young tableaux following our construction above. This amounts to show-
ing that every state gives rise to a Young tableaux and that every tableaux
gives a unique allowed state.

5.1.1 State to tableaux

This proof follows almost tautologically from the construction. Given an
allowed state

(−b1,−b2, . . . ,−br, 0, . . . , 0, a1, a2, . . . , ap)

we can construct a Young tableaux of the specified prescription for k ≥
|b1|+ |ap|.

5.1.2 Tableaux to state

This situation can be tricky depending on the number of boxes in the tableaux.
We must fix N first to remove ambiguity of tableaux, otherwise there will be
a many-to-one relationship between tableaux and states. For example, the
states (1,−1, 0, 0) and (2, 1, 1, 0) can come from the same tableaux. But if
N is set to be 4, then (2, 1, 1, 0) isn’t allowed as the sum of its coordinates
adds up to N .

To determine which state a tableaux corresponds to, it is imperative
to know where to make the cut which separates the positive and negative
parts.Every successive cut reduces the sum of coordinates of the correspond-
ing state by N . This can be seen by the following simple argument. Let
there be p boxes which have gone from the positive side to negative side to
a shift in the cut. They all lie in the same column. Thus the positive value
removed from the state is p, while the negative part added to the state value
is N − p. Summing these numbers gives the value by which the total value
of the state has decreased, N .

Now, assume that the tableaux has less than N boxes. Then any cut will
make the sum of coordinates of its corresponding state go negative, which is
not allowed. Thus, this kind of tableaux represents a state with only positive
entries, them being the number of boxes in each row of the tableaux. Note
that the number of boxes in the first row fixes a lower bound on the ks for
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which the tableaux may represent a meaningful state.

Now let the tableaux have more than N boxes. This means that it must
represent a state with negative entries present too. So we make cuts in the
tableaux starting from the left, and end at the one which gives the sum of
coordinates to be between 0 and N − 1. An example will be useful in clari-
fying matters.

Consider the same tableaux as before at N = 6 and k ≥ 7.

1. If no cuts are made, then the state obtained is (7, 5, 4, 4, 0, 0), which
adds up to 20, making it lie in the m = 2 equivalence class. But it is
not an allowed state in the theory.

2. Now make a cut between the first and second columns from the left.
That would give (6, 3, 3, 3) for the positive part and (−1,−1) for the
negative part, giving the full state as (6, 4, 3, 3,−1,−1) which sums up
to 14, lying in the same equivalence class as before but still not an
allowed state.

3. A further cut gives the state (5, 3, 2, 2,−2,−2), summing up to 8.

4. The next cut brings us to the actual state this tableaux corresponds
to, i.e., (4, 2, 1, 1,−3,−3). These coordinates sum up to 2 and by that
virtue, this allowed state represents the tableaux.

The other superfluous states generated by the tableaux lie in the same equiv-
alence class as the allowed one. In other words, by subtracting 1 from each
entry in the state as many times as required, it can be brought inside one of
the planes of the weight lattice.

Thus, we have shown that every state gives a unique Young tableaux, and
every tableaux gives a unique allowed state.

In the following sections and the appendix, we construct these states by
hand and the check that they indeed give the number of states expected from
the tableaux counting formula.

22



•

•

• •

•

•

−2 −1 1 2

−2

−1

00

1

2

Figure 5.1: N = 2, k = 3

5.2 N = 2, arbitrary k

This case can be presented through some figures shown on the following
pages. The blue line represents the root lattice (m = 0). The red dashed line
is the m = 1 component of the weight lattice. All dots, crosses and circles
represent states, with certain identifications. The black dots can be obtained
from the other points by permutations and hence are not included in the
final counting. On each line, points with crosses are identified, and similarly
for circles. The identification will be illustrated via an example.

Take (2,-1) in figure 5.2. Permute its coordinates to obtain (-1,2), shown
by a black dot. Now shift it by (4,-4) to obtain (3,-2). This completes the
modding out procedure of (5.3). Thus, (2,-1) and (3,-2) are to be counted
as one state. The green dots show states that go to themselves under the
identification.

There is always one such zero-length cycle on the m = 0 line. The other lies
on the same line if k is even, as then the remaining k − 1 states give rise to
k
2
− 1 pairs and the point (k

2
, −k

2
). For odd k, the k− 1 states apart from the

origin at m = 0 pair up, and the zero length cycle appears on the m = 1 line.
Thus, there are k+1

2
states on each line if k is odd. When k is even, there are

k
2

+ 1 states at m = 0 and k
2
states at m = 1. In both cases, we get k + 1

states in total, as required by (5.2).
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Figure 5.2: N = 2, k = 4
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Figure 5.3: N = 2, k = 5
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For N = 3 this analysis becomes quite cumbersome. It would be nice to
see if the cycles of states under permutations follow a specific curve. Higher
Ns require powers of visualisation beyond those possessed by ordinary mor-
tals. We thus rewrite the problem as one of algebra and solve it manually
for small values of N and k and provide conjectures for bigger values. We
see interesting structure depending on the value of m.

5.3 k = 2, arbitrary N

The formulation of the problem can be done as follows. We want the sum of
the coordinates of a point (which signifies a state) to be equal to a positive
integer m, where m signifies the order, from the origin, of the hyperplane
on which the point lies, starting from m = 0 for the plane passing through
origin, which is also the root lattice. Let xi ∈ Z be these coordinates.

N∑
i=1

xi = m

m = 0, 1, . . . , N − 1

xi ∼ xi + k

(5.5)

Another constraint that needs to be applied is that of invariance under per-
mutations, given by W in equation 5.3. The Weyl group for SU(N) is SN ,
which is the permutation group of N elements. While applying the third of
the constraints above, which imposes the quotient by kλR, one has to be a
little careful. Every time we shift a coordinate by k, we must shift another
by −k. This is imposed by the structure of the root lattice, the coordinates
of a point on which add up to zero. States are represented by an N -tuple of
coordinates xi, subject to the conditions above.

Let us examine the situation N = 4.
m States Number of states
0 (0,0,0,0), (1,-1,0,0), (1,-1,1,-1) 3
1 (1,0,0,0), (1,1,-1,0) 2
2 (1,1,0,0), (1,1,1,-1), (2,0,0,0) 3
3 (1,1,1,0), (2,1,0,0) 2

This gives the total number of states as 10, which is what was expected
from the Young tableaux formula 5.2, i.e., N(N+1)

2
.

The states for N = 5 look as follows.
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m States No. of states
0 (0,0,0,0,0), (1,-1,0,0,0), (1,-1,1,-1,0) 3
1 (1,0,0,0,0), (1,1,-1,0,0), (1,1,-1,1,-1) 3
2 (1,1,0,0,0), (1,1,1,-1,0), (2,0,0,0,0) 3
3 (1,1,1,0,0), (1,1,1,1,-1), (2,1,0,0,0) 3
4 (1,1,1,1,0), (2,1,1,0,0), (2,2,0,0,0) 3

Therefore, the total number of states is 15, as expected from (5.2).

Tables for N = 6 and N = 7 follow.

m States No. of states
0 (0,0,0,0,0,0), (1,-1,0,0,0,0), (1,-1,1,-1,0,0), (1,-1,1,-1,1,-1) 4
1 (1,0,0,0,0,0), (1,1,-1,0,0,0), (1,1,-1,1,-1,0) 3
2 (1,1,0,0,0,0), (1,1,1,-1,0,0), (1,1,1,-1,1,-1), (2,0,0,0,0,0) 4
3 (1,1,1,0,0,0), (1,1,1,1,-1,0), (2,1,0,0,0,0) 3
4 (1,1,1,1,0,0), (1,1,1,1,1,-1), (2,1,1,0,0,0), (2,2,0,0,0,0) 4
5 (1,1,1,1,1,0), (2,1,1,1,0,0), (2,2,1,0,0,0) 3

Table 5.1: k = 2, N = 6

m States No. of states
0 (0,0,0,0,0,0,0), (1,-1,0,0,0,0,0), (1,-1,1,-1,0,0,0), (1,-1,1,-1,1,-1,0) 4
1 (1,0,0,0,0,0,0), (1,1,-1,0,0,0,0), (1,1,-1,1,-1,0,0), (1,1,-1,1,-1,1,-1) 4
2 (1,1,0,0,0,0,0), (1,1,1,-1,0,0,0), (1,1,1,-1,1,-1,0), (2,0,0,0,0,0,0) 4
3 (1,1,1,0,0,0,0), (1,1,1,1,-1,0,0), (1,1,1,1,-1,0,0), (2,1,0,0,0,0,0) 4
4 (1,1,1,1,0,0), (1,1,1,1,1,-1), (2,1,1,0,0,0), (2,2,0,0,0,0) 4
5 (1,1,1,1,1,0,0), (1,1,1,1,1,1,-1), (2,1,1,1,0,0), (2,2,1,0,0,0) 4
6 (1,1,1,1,1,1,0), (2,1,1,1,1,0), (2,2,1,1,0,0), (2,2,2,0,0,0,0) 4

Table 5.2: k = 2, N = 7

We would like to draw the reader’s attention to a pattern here. If N is
even, then at each even m, we get N

2
+ 1 states. Any odd m has N

2
states.

If N is odd, then each m has N+1
2

states. This pattern is observed in ex-
plicit computations with higher values of N , and can in fact be rigorously
proven. Calculations are shown in the appendix. The key idea is to count the
1,−1 pairs and the number of 2s, with 2 not appearing with a -1, as a (2,-1)
combination is equivalent to (0,1), due a shift by 2 times a root lattice vector.
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States for k = 3 and higher have been shown in the appendix. An inter-
esting pattern is seen emerging in the number of states at each level m which
depends on the relationship between the numerical values of N and k.

5.4 Counting without statistics

The action of modding out by the Weyl group is an imposition of statistics
of the underlying states. In the case of SU(N), it turns out to be bosonic, as
one does not pick up a minus sign upon identifying states by permutations.
If one chooses to not impose statistics on the states and hence not mod out
by the Weyl group, then something remarkable happens. We get, for given
values of N and k, the same number of states at each m. That number is
kN−1, giving the total number of states as NkN−1.

This value can be calculated from the states shown previously by taking each
state and finding out its possible permutations. While doing so, it must be
kept in mind that some permutations are still related to others by a kλR
vector. Let us illustrate this fact by using the state (1,-1,1,-1) for k = 2. It
might be thought of as having 4!

2!2!
= 6 possibilities under permutations. But,

any state with a different positioning of 1s and -1s can be obtained by a kλR
shift. For example, (1,−1, 1,−1) −→ (−1, 1, 1,−1), while this new state was
among the 6 possibilities counted above. Thus, in essence, (1,−1, 1,−1) rep-
resents just one state even without taking permutations into account. This
mixing between the operations of W and kλR would explain the appearance
of the semidirect product in 5.3.

NkN−1 is a strange number to have for the dimension of the Hilbert space
of a theory. One would expect to be able to write it as a tensor product of
single particle Hilbert spaces. kN−1 does possess this feature. We do not
have a resolution for this conundrum yet.

5.5 U(N) counting

The U(N) state counting proceeds in the following manner. We have k num-
ber of states for each N . And the statistics are bosonic as shown above,
which means we can have any number of particles in a state. Imagine a
series on N circles, and insert k− 1 crosses in the spaces between the circles.
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Interpret the circles lying to the left of the first cross as the number of states
that can be occupied by the first cross. The number of circles between the
first and second crosses is the number of states that can be occupied by the
second cross. Going on in this fashion, the number of circles between the
(k − 1)th cross and the end is the number of states that can be occupied by
the kth cross. Thus we are led to finding out the number of ways in which
k − 1 crosses can be inserted in the spaces between N circles. The answer
for which is (

N + k − 1

k − 1

)
=

(
N + k − 1

N

)
(5.6)

This answer matches the one expected by the duality with SU(k)N

We would like to see this as some sort of combination of the SU(N)
and U(1) parts of U(N). The decomposition of U(N) actually occurs in the
following manner

U(N) =
SU(N)× U(1)

ZN
(5.7)

Work is underway to unravel the substructure of the U(N) theory.
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Chapter 6

Discussion

We have uncovered some structure of the Hilbert space of SU(N) Chern-
Simons theory on the torus. Apart from the usual N and k we can describe
states in terms of another parameter m, which arises because of the struc-
ture of the weight lattice of SU(N). We have shown that the duality holds
at least at the level of the Hilbert spaces.

Our aim is to add matter to the theory and see how it interacts with
these already existing states. We would like to see if a Bose-Fermi duality
holds for the torus like it does for the sphere. We can check this by writing
down the Schrǒdinger equation of the corresponding massive excitations on
both sides of the duality.

On a mathematical note, what was attempted in chapter 5 can be seen as
a genaralisation of the problem of finding out the partitions of a natural num-
ber. There exist approximation formulae for finding out the number of parti-
tions of a natural number, most notable the Hardy-Ramanujan-Rademacher
formula. We encountered the situation in which negative numbers were al-
lowed in the partition, along with a cap on the maximum absolute value
of any number in the partition. A solution of this problem would involve
techniques of modular arithmetic as well.
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Chapter 7

Miscellaneous

This chapter contains aspects of my reading which do not have any direct
connection to the project, but are interesting nonetheless.

7.1 The Jones polynomial

Witten [2] used the partition function or path integral (Z) of Chern-Simons
theory to derive the Jones polynomial invariant for knots on 3-manifolds.
By following procedures of surgery and Dehn twisting, one can obtain the
partition function on complicated manifolds, with and without Wilson lines,
which characterise knots now. One cuts the manifold in question along a
tubular neignbourhood of a Wilson line, performs a homeomorphism on this
surface, and glues it back in. After a number of iterations of this kind, one
can obtain S3 or S2 × S1, on which it is simple to do calculations.

We can calculate Z and get a wavefunction on our manifold. If a 3–
manifold M is the connected sum of two 3–manifolds M1 and M2, joined
along a 2–sphere S2, then the following equation holds:

Z(M)

Z(S3)
=
Z(M1)

Z(S3)
· Z(M2)

Z(S3)
(7.1)

Z(S3) denotes the partition function of S3 without any knots. The ratios
appearing in 7.1 above are the knot invariants given by Jones, and 7.1 says
that these invariants multiply when one takes disjoint sums of knots [2].

30



7.2 Connection to 1 + 1 dimensional RCFT
The Hilbert space of 2 + 1 dimensional Chern-Simons theory is in a one–to–
one correspondence with the space of conformal blocks of 2D RCFT. This
can be seen directly when the 2D manifold is D×R, as discussed before. The
Hilbert space of this theory furnishes representations of the Loop group LG,
which arise in 2d CFT. The conserved currents of the boundary (S1 × R)
Wess–Zumino–Witten theory obey the chiral Kač-Moody algebra [7]. The
topology of the spatial slice Σ (which was D for the situation just described)
has a role to play in how the 2D CFT will be obtained. If Σ is compact,
i.e., a manifold without boundary, then HΣ is identifiable with the space of
conformal blocks of the CFT on Σ. Conformal blocks are that part of CFT
correlators which is not fixed by the Ward identities. If Σ has a boundary,
then HΣ is a representation of the chiral algebra of the conformal field theory.

Thus, by considering different manifolds and boundaries, we can generate
other 2D CFTs.
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Appendix A

SU(N) state counting

A.1 Young tableaux formula
We know that A(N − 1, 1) = N − 1. This is a tableaux with just one column
of N − 1 boxes. Let N − 1 = p for convenience. Thus,

A(p, k) =

p∑
j=1

A(j, k − 1)

Let us find out the first few terms for the sum.

A(p, 2) =

p∑
j=1

A(j, 1)

=

p∑
j=1

j

=
p(p+ 1)

2

A(p, 3) =

p∑
j=1

A(j, 2)

=

p∑
j=1

j(j + 1)

2

=
p(p+ 1)(p+ 2)

3!

Therefore, we get
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A(p, k) = p+
p(p+ 1)

2!
+
p(p+ 1)(p+ 2)

3!
+ . . .+

p(p+ 1) . . . (p+ k − 1)

k!

This sum can be shown by induction to be

A(N − 1, k) =
(N + k − 1)!

k!(N − 1)!
(A.1)

A.2 Checks of the state counting (continued)

A.2.1 k = 3

Explicit computations lend further support to (5.3) by reproducing (5.2).

N = 3

m States No. of states
0 (0,0,0), (1,-1,0), (2,-1,-1), (1,1,-2) 4
1 (1,0,0), (1,1,-1), (2,-1,0) 3
2 (1,1,0), (2,0,0), (2,1,-1) 3

Formula 5.2 reduces to N(N+1)(N+2)
3!

here. The counting above matches
with the answer expected.

N = 4

m States Number of states
0 (0,0,0,0), (1,-1,0,0), (1,-1,1,-1), (2,-1,-1,0), (1,1,-2,0) 5
1 (1,0,0,0), (1,1,-1,0), (2,-1,0,0), (2,-1,1,-1), (-2,1,1,1) 5
2 (1,1,0,0), (1,1,1,-1), (2,0,0,0), (2,1,-1,0), (2,2,-1,-1) 5
3 (1,1,1,0), (2,1,0,0), (2,1,1,-1), (2,2,-1,0), (3,0,0,0) 5

The counting matches as expected. Notice that we get the same number
of states at each m.
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N = 5

m States No. of states
0 (0,0,0,0,0), (1,-1,0,0,0), (1,-1,1,-1,0), (2,-1,-1,0,0),

(2,-1,-1,1,-1), (-2,1,1,0,0), (-2,1,1,1,-1)
7

1 (1,0,0,0,0), (1,1,-1,0,0), (1,1,-1,1,-1), (2,-1,0,0,0),
(2,-1,1,-1,0), (-2,1,1,1,0), (2,-1,2,-1,-1)

7

2 (1,1,0,0,0), (1,1,1,-1,0), (2,0,0,0,0), (2,1,-1,0,0),
(2,1,-1,1,-1), (-2,1,1,1,1), (2,-1,2,-1,0)

7

3 (1,1,1,0,0), (1,1,1,1,-1), (2,1,0,0,0), (2,1,1,-1,0),
(2,2,-1,0,0), (2,-1,2,-1,1), (3,0,0,0,0)

7

4 (1,1,1,1,0), (2,1,1,0,0), (2,1,1,1,-1), (2,2,0,0,0),
(2,2,1,-1,0), (2,2,2,-1,-1), (3,1,0,0,0)

7

Again, we get the same number of states at each m. We will show one
more instance of this counting, that for N = 6, to drive home a point.

N = 6

m States No. of states

0
(0,0,0,0,0,0), (1,-1,0,0,0,0), (1,-1,1,-1,0,0), (1,-1,1,-
1,1,-1), (2,-1,-1,0,0,0), (2,-1,-1,1,-1,0), (2,-1,2,-1,-1,-
1), (-2,1,1,0,0,0), (-2,1,1,1,-1,0), (-2,-2,1,1,1,1)

10

1
(1,0,0,0,0,0), (1,1,-1,0,0,0), (1,1,-1,1,-1,0), (2,-
1,0,0,0,0), (2,-1,1,-1,0,0), (2,-1,1,-1,1,-1), (2,-1,2,-1,-
1,0), (-2,1,1,1,0,0), (-2,1,1,1,1,-1)

9

2
(1,1,0,0,0,0), (1,1,1,-1,0,0), (1,1,1,-1,1,-1),
(2,0,0,0,0,0), (2,1,-1,0,0,0), (2,1,-1,1,-1,0), (2,-
1,2,-1,0,0), (2,-1,2,-1,1,-1), (-2,1,1,1,1,0)

9

3
(1,1,1,0,0,0), (1,1,1,1,-1,0), (2,1,0,0,0,0), (2,1,1,-
1,0,0), (2,1,1,-1,1,-1), (2,-1,2,-1,2,-1), (2,2,-1,0,0,0),
(2,2,-1,1,-1,0), (-2,1,1,1,1,1), (3,0,0,0,0,0)

10

4
(1,1,1,1,0,0), (1,1,1,1,1,-1), (2,1,1,0,0,0), (2,1,1,-
1,1,0), (2,2,0,0,0,0), (2,2,1,-1,0,0), (2,2,1,-1,1,-1),
(2,2,2,-1,-1,0), (3,1,0,0,0,0)

9

5
(1,1,1,1,1,0), (2,1,1,1,0,0), (2,1,1,1,1,-1), (2,2,1,0,0,0),
(2,2,1,1,-1,0), (2,2,2,-1,0,0), (2,2,2,-1,1,-1),
(3,1,1,0,0,0), (3,2,0,0,0,0)

9

Notice the similarity of distribution of states between m = 3 and m = 6,
and also between m = 4 and m = 5. When N is a multiple of 3, we get
N(N+3)

6
+ 1 states at all m’s divisible by 3, and N(N+3)

6
states at all m’s not
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divisible by 3. When N is not a multiple of 3, we get (N+1)(N+2)
3!

states at
each m.

This pattern is observed for higher values of N as well. A calculation
that tries to show the dependence of the number of states on m for a given
N is shown in section A.3.2. Getting a final analytic expression has not been
possible due to the presence of numerous sub-cases and due to series which
are functionals of the integer-value function.

A.2.2 k = 4 and higher

One would naively expect the same kind of pattern to go through, with a
neat dependence of the number of states at each m respecting the splitting
of Ns as multiples or not of 4. We find a deeper structure. The same kind
of counting as above leads to the conjecture that there is an equal number
of states at each m only when N and k are coprime.

We are led to the coprime conjecture because of the distribution of states for
N = 4, N = 5, N = 6, and N = 8 for k = 4. They are as follows:

N Distribution of states
4 10, 8, 9, 8
5 14, 14, 14, 14, 14
6 22, 20, 22, 20, 22, 20
8 43, 40, 42, 40, 43, 40, 42, 40

The distribution forN = 4 is 10, 8, 9, 8, while that forN = 6 is 22, 20, 22, 20, 22, 20
and N = 8 goes as 43, 40, 42, 40, 43, 40, 42, 40. One sees a periodicity of 4,
while also seeing traces of a periodicity in 2, which is a factor common to
4, 6, 8 and 4.

A.3 Calculations using the lattice formula

A.3.1 k = 2 and arbitrary N

The essence of this calculation is to count the number of (1,-1) pairs and 2s
appearing in each state. The rest of the spaces will be saturated by 1s or 0s.
We will reduce the calculation to cases where N is either odd or even.
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Odd N

No 2s appear until m = 2. The number of 2s can be determined by the
remainder when m is divided by 2. Let S denote the total number of states
obtained. The order of appearance of a term reflects its contribution at the
respective m.

S =

(
1 +

N − 1

2

)
+

(
1 +

N − 1

2

)
+

(
1 +

(
N − 3

2
+ 1

))
+(

1 +

(
N − 3

2
+ 1

))
+

(
1 +

(
N − 5

2
+ 2

))
+(

1 +

(
N − 5

2
+ 2

))
+ . . .+

(
N − 1

2
+ 1

)
=2

(
N + 1

2

)
+ 2

(
N − 1

2
+ 1

)
+ 2

(
N − 3

2
+ 2

)
+ 2

(
N − 5

2
+ 3

)
+ 2

(
N − 7

2
+ 4

)
+ . . .+

(
N + 1

2

)
=2

(
N + 1

2

)
+ 2

(
N + 1

2

)
+ . . .

(
N − 1

2
times

)
+

(
N + 1

2

)
=
N(N + 1)

2

Even N

S =

(
N

2
+ 1

)
+

(
N − 2

2
+ 1

)
+

((
N − 2

2
+ 1

)
+ 1

)
+((

N − 4

2
+ 1

)
+ 1

)
+

((
N − 4

2
+ 1

)
+ 2

)
+

((
N − 6

2
+ 2

)
+ 1

)
+ . . .

=

((
N

2
+ 1

)
+

(
N

2
+ 1

)
+ . . .

)(
N

2
times

)
+

(
N

2
+
N

2
+ . . .

)(
N

2
times

)
=
N(N + 1)

2

The second step was obtained by clubbing together the odd and even num-
bered terms, as they respectively have the same form.

A.3.2 k = 3 and arbitrary N

We will present a formula for the number of states and then explain each
term.
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S =

(
1 +

[
N −m

2

])
+

[N −m
3

]
+

[N−m3 ]∑
q=1

[
(N − q)− (m+ 2q)

2

]+

[N+m
3 ]∑

q=1

([
(N − q)− |m− 2q|

2

]
+ 1

)
+

[m3 ]∑
q=1

([
m− 3q

2

]
+ 1

)
(A.2)

Here, [h] represents the integer part of a real number h. The first term
counts the number of states formed by just 1s and −1s. The solitary 1 stands
for the case with only 1s. The other term counts the number of (1,−1) pairs
that appear to make up the coordinates, whilst effectively adding zero to
their sum. The next big bracket signifies the presence of the set of numbers
(−2,−1, 0, 1) in a state. q represents the number of −2s. N − q counts the
effective number of coordinates left to be filled after q number of −2s have
been filled, and m− 2q is the remaining numerical value to be filled to make
to sum of coordinates to be m. The term not under the sum counts the
states with only −2s and 1s. The summed over term includes −1s as well.
Limits are decided by requiring the numerator to be positive. The third big
term counts states with coordinates from the set (2, 1, 0,−1). The modulus
function comes in as it is possible to have a 2 in states at all values of m, and
not just for those the ones which satisfy m > 2q. The last bracket denotes
involvement of 3 in a state. Once the number of 3s has been fixed, it is a
matter of counting the number of 2s, which is done by the term in the integer
valued function. The addition of 1 is for the purposes of counting states with
only 3s and 1s.

The goal is to add up these terms and get the formula required by the Young
tableaux procedure. We need to get rid of the variables q and m to achieve
this purpose. However, due to the existence of mod 2 and mod 3 in the
equation above, and not least due to the involvement of the integer valued
function, it is difficult to get rid of m, and we are reduced to giving the
answer as a bunch of cases and unsummed series.

Bracket 2

B2 =

[
N −m

3

]
+

[N−m3 ]∑
q=1

[
(N −m3q)

2

]
(A.3)
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N −m being even

B2 =

(
N −m+ 2

2

)[
N −m

3

]
−
(

2 + 3 + 5 + 6 + 8 + 9 + . . .

[
N −m

3

]
terms

)
N −m being odd

B2 =

(
N −m− 1

2

)[
N −m

3

]
−
(

1 + 3 + 4 + 6 + 7 + 9 + . . .

[
N −m

3

]
terms

)
Bracket 3

B3 =

[N+m
3 ]∑

q=1

([
(N − q)− |m− 2q|

2

]
+ 1

)
(A.4)

m > 2q

B3 =

[N+m
3 ]∑

q=1

([
(N −m+ q

2

]
+ 1

)

N −m being even

B3 =

(
N −m+ 2

2

)[
N +m

3

]
+

(
0 + 1 + 1 + 2 + 2 + 3 + 3 + . . .

[
N +m

3

]
terms

)
N −m being odd

B3 =

(
N −m+ 1

2

)[
N +m

3

]
+

(
0 + 0 + 1 + 1 + 2 + 2 + . . .

[
N +m

3

]
terms

)

m < 2q

B3 =

[N+m
3 ]∑

q=1

([
(N +m− 3q

2

]
+ 1

)

N +m being even

B3 =

(
N +m+ 2

2

)[
N +m

3

]
−
(

2 + 3 + 5 + 6 + 8 + 9 + . . .

[
N +m

3

]
terms

)
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N +m being odd

B3 =

(
N +m+ 1

2

)[
N +m

3

]
−
(

1 + 3 + 4 + 6 + 7 + 9 + 10 + . . .

[
N +m

3

]
terms

)
Bracket 4

B4 =

[m3 ]∑
q=1

([
m− 3q

2

]
+ 1

)
(A.5)

m being even

B4 =
(m

2
+ 1
) [m

3

]
−
(

2 + 3 + 5 + 6 + 8 + 9 + . . .
[m

3

]
terms

)
m being odd

B4 =

(
m+ 1

2

)[m
3

]
−
(

1 + 3 + 4 + 6 + 7 + 9 + 10 + . . .
[m

3

]
terms

)
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