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Abstract 
Geophysical data modelling involves parameter estimation of the modelled system 
using mathematical relationship describing the physical process. Most of these 
relationships are inherently non- linear and requires solving them through a process of 
linearization or using any of the nonlinear search algorithm. Estimating model parameter 
from the geophysical data is not only unique, but also dependent on the initial model. 
Apart from these, the data error adds to the parameter estimation complexity.  

Some of these issues have been addresses through robust statistics incorporating 
apriori information related to data and model covariance through their probability density 
function and search through global optimisation.  

In this thesis, we look at the various denoising algorithm and implement the best 
approach to model gravitational field data from India in terms of Earth parameters. 

Using this approach, we can retrieve the original signal from a noised signal upto a 
great extent with a decent signal to noise ratio. 
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Chapter 1 
 
Introduction 
 

The main focus of this thesis is the implementation of inverse theory to estimate 
geophysical parameters and analysis of various time series using inverse problems.  

In 1929, The concept of inverse problems was first introduced and discovered by 
physicist “Viktor Ambartsumian”. 

An inverse problem can be structured as: 

Data → Model Parameters 

The inverse problem is the “inverse” to the forward problem which relates the model 
parameters to data: 

Model Parameters → Data 

The most common method to solve inverse problems is least square methods. 

The purpose of Geophysical inversion is to look for models which explains geophysical 
observations. The solution of non-linear models are carried out by global optimisation. 
We have tried various global optimisation algorithms to find the “one” which can 
optimise the large data sets effectively and requires less time. 

One can get a clear understanding of the context and a detailed study on inverse theory 
and its applications in the books titled ‘Global optimisation methods in geophysical 
inversion’ by ‘Sen M.K. and Stoffa P.L.’ and ‘Time series analysis and Inverse theory for 
geophysicists’ by ‘David Gubbins’. 

Inverse theory is applicable to various fields of geophysics including seismic 
attenuation, determination of velocity structure of the earth, ocean circulation, 
earthquake location, signal correlation etc. 

Our topic of concern is, ‘Signal correlation’, in other words; to observe the similarities 
between the original signal and the signal which obtain after denoising. 

During the Progress of thesis, we will study various algorithms used for denoising the 
signal which will give us an insight about their advantages and limitations. So that we 
would be able to consider the appropriate algorithm according to nature of different 
signals. 
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The seismological data which is used in this project to test various algorithms, is taken 
from the IRIS (Incorporated Research Institutions for Seismology). 

The central goal of the project is to contribute an effective approach to handle and 
remove the noise which gets developed by certain factors viz. background data, 
measurement error, spurious readings that can corrupt the seismological data which 
might result in loss of information. 
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Chapter 2 
 

Preliminaries 
 
Some of the important definitions and concepts used repetitively in the Project: 

 

1. Relation between model parameter and data: 

Data: 𝑑𝑑 =  [𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4, … 𝑑𝑑𝑁𝑁]𝑇𝑇  

Model Parameters: 𝑚𝑚 =  [𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4, … 𝑚𝑚𝑀𝑀]𝑇𝑇  

    𝐺𝐺𝑚𝑚 = 𝑑𝑑 

Where, 𝐺𝐺 = data kernel 

A standard linear inverse problem is often represented by the above mentioned 
equation. 

Model parameters & data have analogs which are the continuous functions represented 
as 𝑚𝑚(𝑥𝑥) & 𝑑𝑑(𝑥𝑥), where 𝑥𝑥 is an independent variable. ‘Continuous inverse theory’ exists 
between these two ends having a continuous model function and discrete data. 

 

Different representations of this relation: 

 

(i) ‘Continuous inverse theory’: 

𝑑𝑑𝑖𝑖 =  �𝐺𝐺𝑖𝑖(𝑥𝑥)  𝑚𝑚(𝑥𝑥) 𝑑𝑑𝑥𝑥 

 

(ii) ‘Discrete inverse theory’: 

𝑑𝑑𝑖𝑖 =  �𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖=1
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(iii) ‘Integral equation theory’: 

𝑑𝑑(𝑦𝑦) =  �𝐺𝐺(𝑦𝑦, 𝑥𝑥)  𝑚𝑚(𝑥𝑥) 𝑑𝑑𝑥𝑥 

 
The applicability of these theories depend upon whether the data "𝑑𝑑" and model 
parameter "𝑚𝑚" are discrete parameters or continuous functions. 

Least square solution of the linear inverse problem: 

Consider the linear inverse problem: 

     𝑑𝑑 = 𝐺𝐺𝑚𝑚 

             𝑑𝑑 − 𝐺𝐺𝑚𝑚 = 𝐸𝐸 

    (𝑑𝑑 − 𝐺𝐺𝑚𝑚)𝑇𝑇(𝑑𝑑 − 𝐺𝐺𝑚𝑚) = 𝑒𝑒𝑇𝑇𝑒𝑒 = 𝐸𝐸 

If 𝐺𝐺 is not a square matrix then we take, 

    𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 =  [𝐺𝐺𝑇𝑇𝐺𝐺]−1𝐺𝐺𝑇𝑇 𝑑𝑑 

 

 

 

2. Well posed problem: 

This term was given by a mathematician, ‘Jacques Hadamard’. According to him, a 
system of equation is said to be well posed if it satisfies the following properties: 

(i) Existence of solution, 

(ii) Uniqueness of solution, 

(iii) Behaviour of the solution alters continuously with initial conditions. 

 If any of the condition is violated then the problem is said to be “ill posed”. 
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3. Singular value decomposition: 

Assume 𝐴𝐴 is a 𝑚𝑚 × 𝑛𝑛 matrix whose entries comes from the field of real numbers or 
complex numbers, let’s call it 𝐾𝐾, Then there exists a factorization which is defined as a 
‘singular value decomposition’ of 𝐴𝐴  having the form as follows: 

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉∗ 

Where,  

         𝑈𝑈 is an 𝑚𝑚 ×  𝑚𝑚 unitary matrix (if 𝐾𝐾 =  ℝ, unitary matrices are orthogonal matrices). 

         Σ is a diagonal 𝑚𝑚 × 𝑛𝑛 matrix with non – negative real numbers on the diagonal. 

         𝑉𝑉 is an 𝑛𝑛 × 𝑛𝑛 unitary matrix over 𝐾𝐾, and 
             𝑉𝑉∗ is the conjugate transpose of 𝑉𝑉. 
The diagonal entries 𝜎𝜎𝑖𝑖 of Σ are known as the singular values of 𝐴𝐴. The diagonal matrix, 
Σ, is uniquely determined by 𝐴𝐴. 

 

4. Signals and systems: 

(i) Signals: 

(a) Continuous time signal (speech signal) : 

        

The signals which are defined for every instants of time are termed as continuous time 
signal. 

      Eg.   𝑓𝑓(𝑡𝑡) =  sin 𝑡𝑡                                                                                                                         
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(b) Discrete time signal: 

 

 

The signals which are defined at only certain instants of time or discrete instants of time 
are termed as discrete time signal. 

    Eg. Stock market index 

- Multi-dimensional signal 

𝑋𝑋[𝑛𝑛,𝑚𝑚] 

Where, 𝑛𝑛 - array no. in horizontal direction 

            𝑚𝑚 – array no. in vertical direction. 

(ii) Systems: 

Systems processes signals by producing an output signal in response to an input signal. 

→ For continuous time: 

𝑥𝑥(𝑡𝑡)  ⟶  𝑆𝑆𝑦𝑦𝑆𝑆𝑡𝑡𝑒𝑒𝑚𝑚  ⟶ 𝑦𝑦(𝑡𝑡)  

 

→ For discrete time: 

      𝑥𝑥[𝑛𝑛] ⟶  𝑆𝑆𝑦𝑦𝑆𝑆𝑡𝑡𝑒𝑒𝑚𝑚  ⟶ 𝑦𝑦[𝑛𝑛] 

 

Types of systems: 

 

- Linear  ⟶     Time invariant 
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- Non – Linear ⟶ Time – varying 

Domains for analysis and representation: 

- Time domain: 

 → 𝑋𝑋(𝑡𝑡)  

 → 𝑋𝑋[𝑛𝑛]  

- Frequency domain: 

 → Fourier transform 

 → Laplace transform 

 →  z - transform 

Continuous – time sinusoidal signal: 

𝑋𝑋(𝑡𝑡) = 𝐴𝐴 cos(𝜔𝜔0𝑡𝑡 +  𝜙𝜙)  

Where, 𝐴𝐴 –  Amplitude 

            𝜔𝜔0 −  Frequency 

            𝜙𝜙 −   Phase 

Periodic: 

𝑋𝑋(𝑡𝑡) = 𝑥𝑥(𝑡𝑡 +  𝑇𝑇0 )  

               𝐴𝐴 cos(𝜔𝜔0𝑡𝑡 +  𝜙𝜙) =  𝐴𝐴 cos(𝜔𝜔0𝑡𝑡 + 𝜔𝜔0𝑇𝑇0 +  𝜙𝜙)  

                                              𝑇𝑇0 =  
2 𝜋𝜋𝑚𝑚
𝜔𝜔0

 

  

𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 =
2 𝜋𝜋
𝜔𝜔0

 

Unit impulse function: Discrete time 

𝛿𝛿[𝑛𝑛] = 𝑢𝑢[𝑛𝑛] − 𝑢𝑢[𝑛𝑛 − 1]   

Where, 𝛿𝛿[𝑛𝑛] − unit impulse 

𝑢𝑢[𝑛𝑛] –  unit step 

Unit step function: Continuous time 

𝑢𝑢(𝑡𝑡) = �0, 𝑡𝑡 < 0
1, 𝑡𝑡 > 0 
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∗ Note – Impulse function is derivative of step function: 

𝛿𝛿(𝑡𝑡) =  
𝑑𝑑𝑢𝑢(𝑡𝑡)
𝑑𝑑𝑡𝑡

  

𝛿𝛿∆(𝑡𝑡) =  
𝑑𝑑𝑢𝑢∆(𝑡𝑡)
𝑑𝑑𝑡𝑡

  

                                                     𝛿𝛿(𝑡𝑡) =  𝛿𝛿∆(𝑡𝑡) 𝑎𝑎𝑆𝑆 ∆ → 0     

 

5. Convolution Sum: 

 

�𝑦𝑦[𝑛𝑛] = � 𝑥𝑥[𝑘𝑘] ℎ[𝑛𝑛 − 𝑘𝑘]
+ 

𝑘𝑘= −

� = 𝑥𝑥[𝑛𝑛] ∗ ℎ[𝑛𝑛] 

 

6. Convolution integral: 

 

�𝑦𝑦(𝑡𝑡) = � 𝑥𝑥()ℎ(𝑡𝑡 −  )𝑑𝑑
+

−
� = 𝑥𝑥(𝑡𝑡) ∗ ℎ(𝑡𝑡) 

Where, 

𝑥𝑥() = 𝑃𝑃𝑛𝑛𝑖𝑖𝑢𝑢𝑡𝑡 

ℎ(𝑡𝑡 −  ) = 𝑃𝑃𝑚𝑚𝑖𝑖𝑢𝑢𝑖𝑖𝑆𝑆𝑒𝑒 𝑃𝑃𝑒𝑒𝑆𝑆𝑖𝑖𝑃𝑃𝑛𝑛𝑆𝑆𝑒𝑒 

 

7. Properties of convolution: 

(i) Commutative: 

𝑥𝑥[𝑛𝑛]  ∗  ℎ[𝑛𝑛]  =  ℎ[𝑛𝑛]  ∗  𝑥𝑥[𝑛𝑛] 

𝑥𝑥[𝑡𝑡]  ∗  ℎ[𝑡𝑡]  =  ℎ[𝑡𝑡]  ∗  𝑥𝑥[𝑡𝑡] 

(ii) Associative: 

               𝑥𝑥 ∗  {ℎ1 ∗  ℎ2}  =  {𝑥𝑥 ∗  ℎ1}  ∗  ℎ2 

(iii) Distributive: 

𝑥𝑥 ∗  {ℎ1 +  ℎ2}  =  𝑥𝑥 ∗  ℎ1 +  𝑥𝑥 ∗  ℎ2 

∗ Note – I have referred [2], [3], [4], [9], [10], [11] for definitions mentioned in preliminaries. 
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Chapter 3 
 

Methods of Denoising 
 
Numerous denoising methods have been proposed which are used according to the 
nature of signal or data sets. We will give a glance at some of the algorithms which I 
came across during my project. 

 

3.1   Singular Value Decomposition (SVD)  
In the preliminaries, I’ve already given an insight about the singular value decomposition 
and its computation.   

Methodology: 

Let the original signal be  𝑥𝑥(𝑛𝑛)  and the noise signal be  𝑦𝑦(𝑛𝑛)  . 

Take a portion of noise signal of  𝑁𝑁 length  

Consider  ℎ(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑦𝑦(𝑛𝑛) 

 Where, 𝑛𝑛 = 0,1,2, … ,𝑁𝑁 − 1  

Now, write it in the form of Hankel matrix of order  (𝑁𝑁 −𝑀𝑀 + 1 )  × 𝑀𝑀 

 

 

𝐻𝐻 = �
ℎ(0) ⋯ ℎ(𝑁𝑁 −𝑀𝑀)
⋮ ⋱ ⋮

ℎ(𝑀𝑀 − 1) ⋯ ℎ(𝑁𝑁 − 1)
� 

We can apply singular value decomposition on the 𝐻𝐻 matrix. 

 

𝐻𝐻 = 𝑈𝑈Σ𝑉𝑉∗ 
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Where,  

𝑈𝑈 is an orthogonal matrix of order (𝑁𝑁 −𝑀𝑀 + 1) × 𝑀𝑀 

𝑉𝑉 is an orthogonal matrix of order 𝑀𝑀 × 𝑀𝑀 

 Σ is diagonal matrix of order 𝑀𝑀 × 𝑀𝑀 

The entries of Σ are Σ0  ≥  Σ1 ≥  …  ≥   Σ𝑀𝑀−1 

Now, construct  Σ� by removing the lower power (noise portion of the signal) or keeping 
only the largest 𝐾𝐾 entries of Σ 

Define: 

 

X� =  𝑈𝑈Σ�𝑉𝑉∗ 

It can be considered as the ‘Hankel matrix’ of the estimated signal  𝑥𝑥�(𝑛𝑛) 

On taking average of the entries of X� over the diagonal, we get 

𝑥𝑥�(𝑗𝑗) =  �𝑋𝑋�𝑖𝑖 ,𝑖𝑖−1

𝑖𝑖

𝑖𝑖=0

 

Limitations: 

(i) This method works on the assumption that original signal  𝑥𝑥(𝑛𝑛) and noise signal 𝑦𝑦(𝑛𝑛)   
should have low ‘cross correlation’. 

(ii) The noise added to the signal should be ‘white Gaussian noise’. 

(iii) It doesn’t work on large datasets as the size of the matrix (which is supposed to be 
decomposed using SVD) goes to square of data length. 

(iv) It is relatively slow with order (𝑚𝑚𝑛𝑛2) . 

 

 

3.2   Least Square Fit 
It is the most common method used in regression analysis. The main application of 
least square method is to minimize the sum of squared residuals in order to achieve the 
best fit in data fitting. 

Let the noisy signal be 𝑥𝑥(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) be the desired signal after denoising. 
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We need to minimise: 

𝑚𝑚𝑃𝑃𝑛𝑛𝑥𝑥  ‖𝑥𝑥 − 𝑦𝑦‖22 +  𝜆𝜆 ‖𝐷𝐷𝑦𝑦‖22 

The first order difference for 𝑦𝑦(𝑛𝑛) is: 

𝑥𝑥(𝑛𝑛) = 𝑦𝑦(𝑛𝑛) − 𝑦𝑦(𝑛𝑛 − 1) 

After taking the differential of the above equation, we get the second order differential of 
this signal which is given by, 

𝑥𝑥(𝑛𝑛) = 𝑦𝑦(𝑛𝑛 − 1) − 2𝑦𝑦(𝑛𝑛) + 𝑦𝑦(𝑛𝑛 − 1)  

𝑆𝑆  is a second order differential square matrix that can be defined using the above 
equation. 

Similarity between 𝑦𝑦(𝑛𝑛) and 𝑥𝑥(𝑛𝑛) is attained when the term ‖𝑥𝑥 − 𝑦𝑦‖22  is minimized and 
smoothness of 𝑦𝑦(𝑛𝑛) is attained when the term is ‖𝐷𝐷𝑦𝑦‖22 is minimised. 

Smoothness depends on the controlling parameter, 𝜆𝜆 > 0 

At 𝜆𝜆 = 0, 

𝑥𝑥(𝑛𝑛) = 𝑦𝑦(𝑛𝑛) 

For higher values of  𝜆𝜆, the signal will be denoised more efficiently. 

The expression for denoising of signal using ‘Least square’ is given by, 

𝑦𝑦 = (𝐼𝐼 + 𝜆𝜆 𝑆𝑆𝑇𝑇𝑆𝑆) −1 𝑥𝑥 

Where, size of  𝐼𝐼(𝐼𝐼𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡𝑃𝑃𝑡𝑡𝑦𝑦 𝑚𝑚𝑎𝑎𝑡𝑡𝑃𝑃𝑃𝑃𝑥𝑥) = 𝑆𝑆 

Limitations: 

(i) This method is highly sensitive towards outliers. Few outliers in the data sets can 
highly affect the result obtained by this analysis. 

(ii) With the increase in data ranges, it becomes complicated to get a linear model for 
inherently nonlinear processes that fits the data effectively. 

(iii) If the data is not normally distributed then test statistics can come up as erratic. 
 

3.3   Digital filter 
Consider an input signal 𝑥𝑥 and output signal (denoised signal) 𝑦𝑦. 

It filters or smoothens the input signal using a rational transfer function in 𝑍𝑍 −  Transform 
domain which is defined by, 
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𝑦𝑦(𝑧𝑧) =
𝑏𝑏(1) + 𝑏𝑏(2)𝑧𝑧−1 +  … + 𝑏𝑏(𝑛𝑛𝑏𝑏 + 1)𝑧𝑧−𝑛𝑛𝑏𝑏𝑋𝑋(𝑧𝑧)

1 + 𝑎𝑎(2)𝑧𝑧−1 + … + 𝑎𝑎(𝑛𝑛𝑎𝑎 + 1) 𝑧𝑧−𝑛𝑛𝑎𝑎
 

Where, 

            𝑛𝑛𝑎𝑎 −  feedback filter order 

            𝑛𝑛𝑏𝑏 −  feedforward filter order 

            𝑏𝑏 −  Numerator Coefficient 

            𝑎𝑎 − Denominator Coefficient 

After getting the numerator and denominator coefficient, the denoised signal can be 
obtained by using the following syntax in MATLAB : 

𝑦𝑦 = 𝑓𝑓𝑃𝑃𝑖𝑖𝑡𝑡𝑒𝑒𝑃𝑃(𝑏𝑏, 𝑎𝑎, 𝑥𝑥) 

It worked efficiently on the seismological data, I have used for removing the noise as 
compare to other mentioned methods. It is also relatively easier to apply and smoothens 
the large data sets in less time.  

 

3.4   rQRD (Random Quick response Denoising)  
Algorithm (as proposed by L. Chiron et al): 

Consider a time series 𝑇𝑇 with rank 𝑃𝑃 and order 𝑀𝑀 that returns 𝑇𝑇�  a denoised 
approximation of 𝑇𝑇. 

Require: 𝑇𝑇,𝑃𝑃,𝑀𝑀  𝑃𝑃 ≤ 𝑀𝑀 ≤ 𝑖𝑖𝑒𝑒𝑛𝑛𝑙𝑙𝑡𝑡ℎ(𝑇𝑇)/2 

Require: Function 𝑅𝑅𝐴𝐴𝑁𝑁𝐷𝐷𝑅𝑅𝑀𝑀:𝑛𝑛,𝑖𝑖 ↦  Ω                                → Ω a 𝒩𝒩(0,1) 𝑛𝑛 × 𝑖𝑖 𝑚𝑚𝑎𝑎𝑡𝑡𝑃𝑃𝑃𝑃𝑥𝑥     

Require: Function 𝑄𝑄𝑅𝑅:𝐴𝐴 ↦ 𝑄𝑄,𝑅𝑅                                           → the 𝑄𝑄𝑅𝑅 decomposition of 𝐴𝐴 

  𝐿𝐿 ← 𝐿𝐿𝐸𝐸𝑁𝑁𝐺𝐺𝑇𝑇𝐻𝐻(𝑇𝑇) 

  𝑁𝑁 ← 𝐿𝐿 −𝑀𝑀 + 1  

 for 𝑃𝑃 ← 1,𝑀𝑀    𝑗𝑗 ← 1,𝑁𝑁    do 

   𝐻𝐻𝑖𝑖𝑖𝑖 ← 𝑇𝑇𝑖𝑖+𝑖𝑖−1               →   𝐻𝐻 is a 𝑀𝑀 ×  𝑁𝑁 matrix 

 end for 

 Ω ←  RANDOM(N, P)  

 𝑌𝑌 ← 𝐻𝐻Ω  

 (Q, R) ← QR(Y)  
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 𝐻𝐻� ←  Q𝑄𝑄∗H 

 for 𝑖𝑖 ← 1, 𝐿𝐿 do 

  𝑇𝑇𝑙𝑙�   ←  〈𝐻𝐻𝑖𝑖𝑖𝑖〉𝑖𝑖+𝑖𝑖=𝑙𝑙+1  

 end for 

 return  𝑇𝑇�  

The matrices 𝐻𝐻 and 𝐻𝐻� are the largest objects stored in memory. This represents a 
memory burden proportional to 𝑅𝑅(𝑀𝑀𝑁𝑁)  ≤  𝑅𝑅(𝐿𝐿2). 

The slowest step is the computation of  𝐻𝐻� = 𝑄𝑄𝑄𝑄∗𝐻𝐻 in 𝑅𝑅(𝑃𝑃𝑀𝑀𝑁𝑁) while the computation of  
𝑇𝑇�  is in 𝑅𝑅(𝐿𝐿𝑀𝑀). This results in a theoretical time dependence in 𝑅𝑅(𝑃𝑃𝑀𝑀𝑁𝑁 +  𝐿𝐿𝑀𝑀). 

 

3.5   urQRD (Uncoil Random Quick Response denoising)  
Algorithm (as proposed by L. Chiron et al): 

Consider a time series 𝑇𝑇 with rank 𝑃𝑃 and order 𝑀𝑀 that returns 𝑇𝑇�  a denoised 
approximation of 𝑇𝑇. 

Require: 𝑇𝑇,𝑃𝑃,𝑀𝑀  𝑃𝑃 ≤ 𝑀𝑀 ≤ 𝑖𝑖𝑒𝑒𝑛𝑛𝑙𝑙𝑡𝑡ℎ(𝑇𝑇)/2 

Require: Function 𝑅𝑅𝐴𝐴𝑁𝑁𝐷𝐷𝑅𝑅𝑀𝑀:𝑛𝑛,𝑖𝑖 ↦  Ω                              → Ω a 𝒩𝒩(0,1) 𝑛𝑛 × 𝑖𝑖 𝑚𝑚𝑎𝑎𝑡𝑡𝑃𝑃𝑃𝑃𝑥𝑥 

Require: Function 𝑄𝑄𝑅𝑅:𝐴𝐴 ↦ 𝑄𝑄,𝑅𝑅                                         →  the QR decomposition of 𝐴𝐴 

Require: Function 𝐹𝐹𝐻𝐻𝐻𝐻:𝐻𝐻,𝑀𝑀,𝑇𝑇 ↦ 𝑌𝑌  

Require: Function 𝐹𝐹𝐻𝐻𝑀𝑀:𝐻𝐻,𝑀𝑀,𝐴𝐴 ↦ 𝐵𝐵 

  𝐿𝐿 ← 𝐿𝐿𝐸𝐸𝑁𝑁𝐺𝐺𝑇𝑇𝐻𝐻(𝑇𝑇)   

 𝑁𝑁 ← 𝐿𝐿 −𝑀𝑀 + 1 

 Ω ← 𝑅𝑅𝐴𝐴𝑁𝑁𝐷𝐷𝑅𝑅𝑀𝑀(𝑁𝑁,𝑃𝑃) 

 𝑌𝑌 ←  𝐹𝐹𝐻𝐻𝑀𝑀(𝑋𝑋,Ω) 

 (𝑄𝑄,𝑅𝑅) ← 𝑄𝑄𝑅𝑅(𝑌𝑌) 

 𝑈𝑈 ←  [𝐹𝐹𝐻𝐻𝑀𝑀(𝑇𝑇,𝑄𝑄∗)]∗ 

 for 𝑖𝑖 ← 1,𝑃𝑃  do 

  𝑄𝑄(𝑝𝑝) ←  {𝑄𝑄1,𝑝𝑝 , … ,𝑄𝑄𝑀𝑀,𝑃𝑃} 

  𝑈𝑈′(𝑝𝑝) ←  {𝑈𝑈𝑝𝑝,𝑁𝑁 ,𝑈𝑈𝑃𝑃,𝑁𝑁− 1  … ,𝑈𝑈𝑃𝑃,1}  



 

16 
 

  𝑊𝑊(𝑝𝑝) ←  {0, … ,0 �����  ,𝑄𝑄1
(𝑝𝑝), … ,𝑄𝑄𝑀𝑀

(𝑝𝑝) , 0, … ,0���  }  

         N – 1 values                    N – 1 values                                                                                                                                              

  𝑍𝑍(𝑝𝑝) ← {𝐹𝐹𝐻𝐻𝐻𝐻(𝑊𝑊(𝑝𝑝),𝑈𝑈′(𝑝𝑝)} 

 end for 

  𝑍𝑍 ← ∑ 𝑍𝑍(𝑘𝑘)𝐾𝐾   
𝑘𝑘=1  

 for 1 ← 1, 𝐿𝐿 do 

  𝑇𝑇�𝑙𝑙  ←  𝛼𝛼𝑙𝑙 𝑍𝑍𝑙𝑙   𝑤𝑤𝑃𝑃𝑡𝑡ℎ  𝛼𝛼𝑙𝑙 = �
1/𝑖𝑖  1 ≤ 𝑖𝑖 ≤ 𝑀𝑀

1/𝑀𝑀  𝑀𝑀 < 𝑖𝑖 < 𝑁𝑁
1

𝐿𝐿−𝑙𝑙+1
  𝑁𝑁 ≤ 𝑖𝑖 ≤ 𝐿𝐿

    

  

 end for 

 return  𝑇𝑇�  

The matrices 𝑌𝑌,𝑄𝑄 and 𝑈𝑈 are the largest objects stored in memory. This represents a 
memory burden proportional to 𝑅𝑅(𝑃𝑃𝐿𝐿).  

The slowest step is the loop on 𝑃𝑃 for the computation of  𝑇𝑇�   and its processing time is 
proportional to 𝑅𝑅(𝑃𝑃𝐿𝐿 log(𝐿𝐿)).  

The algorithms ‘rQRD’ and ‘urQRD’ differs only on the grounds of processing speed and 
implementation but they are similar in terms of results. Due to additional complexity, 
‘urQRD’ is slower for small datasets but ‘urQRD’ easily works on less computer memory 
footprint and can be applied to a much larger datasets which makes this algorithm more 
robust and fast. 
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Chapter 4 
 

Applications using Seismological data 
 

I have applied the denoising algorithms after adding noise on the seismological data 
taken from IRIS to obtain a better signal to noise ratio. 

Signal to Noise Ratio is defined as, 

𝑆𝑆𝑛𝑛𝑃𝑃 = 10 × log10 �
𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠𝑛𝑛𝑎𝑎𝑙𝑙
𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖𝑒𝑒𝑒𝑒

� 

Where,  

 𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠𝑛𝑛𝑎𝑎𝑙𝑙  =  Power of signal =  rms(signal)2  

 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖𝑒𝑒𝑒𝑒  =  Power of noise =  rms(noise)2    

 

All simulations were carried out in MATLAB. 

The filter I used for this purpose is Digital filter because of its reliability over large 
datasets. 

Computation: 

1. Station: L01_2014.082.18.20.01.e 

s = readsac('L01_2014.082.18.20.01.e'); 

        → Open the sac file 

z = awgn(s.DATA1,4,'measured'); 

        → Adding noise  

 window size = 3; 

 b = (1/window size)*ones(1,window size); 

 a = 1; 

denoised signal = filter(b,a,y); 

              → Removal of noise using moving average filter   
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Moving average filter works on filter function which is defined by, 

𝑦𝑦(𝑛𝑛) =  
1

𝑤𝑤𝑃𝑃𝑛𝑛𝑑𝑑𝑃𝑃𝑤𝑤 𝑆𝑆𝑃𝑃𝑧𝑧𝑒𝑒
(𝑥𝑥(𝑛𝑛) + 𝑥𝑥(𝑛𝑛 − 1) +  … + 𝑥𝑥(𝑛𝑛 − (𝑤𝑤𝑃𝑃𝑛𝑛𝑑𝑑𝑃𝑃𝑤𝑤 𝑆𝑆𝑃𝑃𝑧𝑧𝑒𝑒 − 1)) ) 

Where,  

 𝑦𝑦 = 𝑃𝑃𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑡𝑡 

 𝑥𝑥 = 𝑃𝑃𝑛𝑛𝑖𝑖𝑢𝑢𝑡𝑡 

By assigning the window size, we evaluate the ‘numerator coefficient’ and ‘denominator 
coefficient’ of ‘Rational Transfer Function’. 

figure(1) 

subplot(4,1,1),plot(s.DATA1),xlim([4*10^4,5*10^4]) 

title('Original Signal from station L01 2014.082.18.20.01.e') 

        → Plotting the original signal 

subplot(4,1,2),plot([s.DATA1 z]),xlim([4*10^4,5*10^4]) 

title('Noisy Signal') 

       → Plotting the Noisy signal 

subplot(4,1,3),plot(denoised signal),xlim([4*10^4,5*10^4]) 

title('De-noised Signal - Signal to noise ratio = 4') 

      → Plotting the Denoised signal 

subplot(4,1,4),crosscorr(s.DATA1,denoised signal, 1*10^4) 

      → Plotting the Cross Correlation between Original signal and denoised signal. 

 



 

20 
 

Calculating lag between two signals : 

[c, lag]=xcorr(s.DATA1,denoised signal); 

[maxC,I] = max(c); 

lag = lag(I); 

The “lag” between ‘s.DATA1’ and ‘denoised signal’ turns out to be  −1  

The similar computation follows for all the rest of tested stations. 
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2. Station: L01_2014.092.23.22.47.e 

 

 

Lag = −1  
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3. Station: 'L01_2014.093.01.58.30.e 

 

 

Lag = −1  
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4. Station: L01_2014.093.02.43.13.e 

 

 

Lag = −1  
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5. Station:  L01_2014.135.08.16.34.e 

 

 

 

Lag = −1  
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6. Station:  L01_2014.152.10.07.12.e 

 

 

Lag = −1  
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7. Station: L01_2014.174.20.53.09.e 

 

 

Lag = −1  
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8. Station: L01_2014.175.03.15.36.e 

 

 

Lag = −1  
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9. Station L01_2014.180.05.56.31.e 

  

 

Lag = −1  
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10. Station: L01_2014.183.05.53.29.e 

 

 

Lag = −1  
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11. Station: L01_2014.198.11.49.33.e 

 

 

Lag = −1  
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Chapter 5 
 

Results and Discussions 
 
The Digital filter I used as a denoising method is able to retrieve the original signal upto 
the signal to noise ratio per sample equal to 4 𝑑𝑑𝐵𝐵 .  

Furthermore decrement in the signal to noise ratio (snr) leads to information loss and 
|𝑖𝑖𝑎𝑎𝑙𝑙| between two signals starts increasing. 

I initiated the computations by adding noise in the seismological data taken from 
different locations, by fixing at a higher value of signal to ratio. Then after the removal of 
noise using digital filter the “lag” value between the two times series came out to be 0 
which means there is a perfect correlation between original signal and denoised signal. 
In other words the original signal was perfectly retrieved after removal of noise. 

The next task was to scrutinize the “lag” values by keep reducing the signal to noise 
ratio or to check the confidence limit (signal retrieving capacity) of the opted denoising 
algorithm. 

According to the plots mentioned, if we reduce signal to noise ratio below 4 𝑑𝑑𝐵𝐵 then the 
lag value starts increasing and we won’t be able to recuperate the signal completely and 
consequently the information will be erroneous. 

The nature of noise being added to the signal can also effect the signal differently and 
we might get a distinct confidence limit. 

We are now able to handle different types of noise that can be developed in a signal 
due to various reasons. 

When seismologists collects the seismological data from different location then it’s very 
important for them to keep the information preserved so that appropriate predictions can 
be made about earthquakes. But sometimes the data which is collected over a course 
of time gets corrupted by noise that might have generated due to circumstantial 
conditions. In order to regain the information, Moving average filter can be used as an 
effective algorithm for smoothening of signal as it’s easily applicable on large data sets 
and it can be handled according to the nature of signal. 
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Chapter 6 
 
Conclusion 
 
These methods of denoising plays a significant role not only in keeping the information 
stored in seismological data (which helps in quantifying and detecting risks of 
earthquakes) conserved but also they are useful in various fields such as medical 
imaging. Information stored in an image which might have corrupted by noise, can be 
retrieved using the ‘digital filter’. 

However, as discussed earlier, there have been proposed many methods of denoising, 
one of them which can be reserved as a future scope of this project, is “Stacking and 
Denoising with Discrete Orthonormal S – Transform”. 

I will present a glimpse of this algorithm. 

It works on S – Transform which is similar to that of Fourier transform as it decomposes 
the data from time domain to frequency domain. The only difference is that it enables 
better time resolution of high-frequency signal. 

At first, every component, 𝑥𝑥𝑚𝑚,  taken from station, 𝑃𝑃, at location 𝑃𝑃𝑖𝑖 having particle 
displacement, 𝑥𝑥𝑚𝑚(𝑃𝑃𝑖𝑖 , 𝑡𝑡), is divided into 𝑁𝑁𝐾𝐾 smaller segments then every segment is cross 
correlated with each component, 𝑥𝑥𝑛𝑛 taken from another station. 

Now after stacking, the stacked cross correlation is defined by, 

𝐶𝐶𝑚𝑚𝑛𝑛�𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖 , 𝑡𝑡� =  �� 𝑥𝑥𝑚𝑚(𝑃𝑃𝑖𝑖 , 𝑆𝑆)
𝑒𝑒𝑘𝑘+1

𝑒𝑒𝑘𝑘

𝑁𝑁𝑘𝑘

𝑘𝑘=1

𝑥𝑥𝑛𝑛(𝑃𝑃𝑖𝑖 , 𝑡𝑡 + 𝑆𝑆)𝑑𝑑𝑆𝑆 

The derivative of this cross correlation is related to Green’s function as, 

�̇�𝐶𝑚𝑚𝑛𝑛�𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖 , 𝑡𝑡� = 𝑏𝑏[𝐺𝐺𝑚𝑚𝑛𝑛�𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖 , 𝑡𝑡� −  𝐺𝐺𝑚𝑚𝑛𝑛�𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖 ,− 𝑡𝑡�] 

Where, 

            𝐺𝐺𝑚𝑚𝑛𝑛�𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑖𝑖 , 𝑡𝑡� is Green’s function. 

Then the designed algorithm “time frequency filter” is applied to smoothen the signal. 
The benefit of using this method is that it permits for noise in same pass-band as signal 
can be precluded from signal so long as it’s temporally parted from arrivals. 
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