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Abstract

In this project we study two approaches to the structure theorem of automorphisms of

surfaces, one is a geometric method given by Thurston and second is a topological approach

developed by Allen Hatcher. The structure theorem classifies automorphism into one of

the following types, those that are either periodic, reducible or pseudo-Anosov. This is a

generalisation of the classification of automorphisms of a torus to higher genus surfaces. This

theorem is also used to study 3-manifolds.
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Introduction

In the theory of 3-manifold we study different types of decomposition of 3-manifolds into sim-
pler pieces to understand different structures and properties of these smaller parts and then
piece them together to get information about the whole manifold. One of the decompositions
that is very interesting to study is known as Heegard splitting. We can construct any closed
orientable 3-manifolds by gluing handle bodies of same genus g along their boundaries which
are closed orientable surfaces. Here, by handlebody we mean a tubular neighbourhood of a
finite graph in R3. To see that it is always possible to get a Heegard splitting of a manifold,
we use a theorem proved by Moise and Bing [EM] [RB] which shows that all closed ori-
entable 3-manifolds can be triangulated. For a given manifold, fix a triangulation and then
the set of all edges and vertices will form a graph K1. Now by thickening K1 and its dual K1∗

we get two handle bodies of the same genus and gluing these along their boundaries gives the
Heegard splitting of the manifold. In a Heegard splitting homeomorphic handle bodies are
glued along their boundaries M using the elements of mapping class group MCG+(M)(also
know as Aut(M)) which is the set of orientation preserving homeomorphisms of the surface
up to isotopy. Each element of this group gives an identification of the boundaries, which
gives a 3-manifold. Therefore a proper understanding of the homeomorphisms of surfaces is
required for studying 3-manifolds [MS] [JS].

The simplest closed surface is the two sphere S2 and its mapping class group has two
elements, one corresponding to the degree 1 map and the other one corresponding to the
degree -1 map. Thus we know that if we have two 3-manifolds with boundary as S2, we
have two different ways of gluing them together. For a torus, it is well known that the set
of all automorphisms of a torus T 2 upto isotopy, which is the mapping class group Aut(T 2),
is isomorphic to SL2(Z). We also know how different types of elements of this group act on
the torus. Thus when we identify two handle bodies along their toral boundaries we have a
good understanding of the resulting 3-manifold.

In this project to study the classification of automorphisms of closed orientable surfacesM
of genus g > 1 analogous to the classification of toral automorphisms. This generalisation to
higher genus surfaces to some extent was first developed by Nielsen in the early 20th century
and was then completed by Thurston in 1970’s. By an automorphism, we mean a orientation
preserving homeomorphism. For a torus T 2, Aut(T 2) is isomorphic to SL2(Z) i.e. for every
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element α of SL2(Z) there is a distinct homeomorphism hα in Aut(T 2) and vice versa.

Any element α ∈ SL2(Z) satisfies one of the following.

• |trace| = 2, trace = −2 or 2, this means both the eigen values of matrix are same
and is either +1 or −1. The homeomorphism of T 2 corresponding to such an element
is a reducible homeomorphism since they leave certain closed curves invariant and act
by dehn twists in the regular neighbourhood of these curves.

• |trace| < 2, trace = −1, 0 or 1, these elements have a finite order and the homeomor-
phism corresponding to these elements are periodic.

• |trace| > 2, these correspond to homeomorphisms which do not leave any closed simple
curve on torus unchanged. Let λ and λ−1 be the eigen values of the matrix and v and
w be the corresponding eigenvectors. Then the homeomorphism acts on the parallel
vector field F of v by stretching it to λF and on the parallel vector field F′ of w by
stretching it to λ−1F′. Such an automorphism is called Anosov automorphism.

As mentioned before higher genus surfaces also have a classification of automorphisms
analogous to the one above for torus called the structure theorem for automorphism of
surfaces. In this project we look at two different approaches to arrive at that theorem.

For the first approach, we study an exposition on Thurston’s original method by A.J.
Casson and S.A. Bleiler [CB] for closed surfaces, which is using hyperbolic geometry, study-
ing transverse measures on transverse singular foliation and this will be covered in part I.
There is a second more topological approach developed in a paper by Allen Hatcher [AH].
It uses Thurston’s definition of PL(M) as a completion of the projectivization of set of curve
systems in M and using this we arrive at a slightly weaker version of the structure theorem.
This approach will be covered in part II.

Part I begins with a study of hyperbolic plane geometry because later on we will see
that all the higher genus surfaces are hyperbolic. Therefore, before we can describe the clas-
sification of automorphisms of closed orientable surfaces we need to understand hyperbolic
spaces and this will be covered in chapter 1. We will initially discuss different models for
H2, its isometries, hyperbolic structures on surfaces, curves on hyperbolic surfaces and their
properties and some topological results regarding the area of hyperbolic surfaces.

It was seen by Nielsen that automorphisms of a surface upto isotopy is either periodic or
it leaves invariant a compact set which can be written as a union of geodesics. These sets
turn out be something known as geodesic laminations. Therefore in chapter 2 we will have
a discussion about geodesic laminations on surfaces and in chapter 3, their structure before
we start studying the action of the automorphisms.
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Once we have a fair understanding of geodesic laminations, its properties, and properties
of the principal regions of a lamination, in chapter 4, we then study the properties of differ-
ent types of automorphisms and construct certain transverse geodesic laminations invariant
under these automorphisms and their inverses, called stable lamination and unstable lami-
nation. In chapter 5 we see how we use cantor functions to construct singular foliations from
these above mentioned geodesic laminations, which are called stable singular foliation and
unstable singular foliation which are also transverse to each other. We next define transverse
measure on both this singular foliations and using this we define a pseudo-Anosov automor-
phism on a surface. Finally we show that every non-periodic and irreducible automorphism
of closed orientable hyperbolic surface is a pseudo-Anosov automorphism.

In part II we start with set of curve systems up to isotopy C S (M) and its projectivization
PS (M). This PS (M) is the set of rational points of a simplicial complex attached to
M called PS(M). This has a natural compactification which we denote as PL(M). This is
the projectivization of the polyhedron ML(M) and we define ML(M) using the train tracks
with the measures on them. We see in chapter 6 a result about the global structure of the
ML(M) and PL(M) which says that if ∂M 6= φ then PL(M) with correct topology is in
fact a ball. The non-integer points of ML(M) can be interpreted as the set of measured
laminations on M . Now in chapter 7 we see that measured laminations can be viewed as
length functionals on curves which gives a ”functional” topology on ML(M) and this is how
we get to the PL(M) as a completion of of PS (M). An homeomorphism of M would
then induce a homeomorphism of PL(M) which as mentioned before is a ball. Therefore by
Brouwer’s fixed point theorem there has to be a fixed point for this homeomorphism and
using this we arrive at the structure theorem for automorphisms of surfaces with boundaries.

This project was entirely a reading project where for the first part we read the book on
automorphisms of surfaces by Andrew Casson and Steven Bleiler [CB] and for the second
part we read the paper on measured lamination spaces of surfaces by Allen Hatcher [AH].
This report does not contain any original work.
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Chapter 1

Hyperbolic plane and Hyperbolic
surfaces

There are three types of geometries of constant curvature that we can have on 2-dimensional
manifolds. These are the Euclidean geometry better known as the plane geometry, spherical
geometry and hyperbolic geometry. We know that a torus can be given the constant 0
curvature metric which is an example of a closed surface with Euclidean geometry and to see
this, look at torus in its the polygonal representation, i.e. a square in E2 whose opposite sides
are identified. The 2-sphere is a surface with positive constant curvature and is an example
of a closed surface with spherical geometry. The examples for closed surfaces with hyperbolic
geometry are all closed surfaces with genus g > 1. We will show how these surfaces are given
hyperbolic geometry in section 1.2. But before that we need to understand some basics
of 2-dimensional hyperbolic geometry. We can study hyperbolic plane H2 using different
models. We will be discussing two models here, the Poincare disk model and the upper half
plane model.

1.1 Hyperbolic plane

1.1.1 Poincare disk model

We identify H2 with the interior of a unit disk centred at the origin in the Euclidean plane
E2 or the complex plane C. The boundary of the unit disk is defined as the circle at infinity
S1
∞. The metric on H2 is 2ds/(1− r2), where ds is the euclidean metric and r is the distance

of a point from the centre of the unit ball. The geodesics in H2 are the arcs of those circles
which intersect S1

∞ perpendicularly i.e if C is a circle that intersects S1
∞ perpendicularly

then C ∩H2 is a geodesic in H2 as shown in the figure 1.1.
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Figure 1.1: Poicare disk with
geodesics

Reflection of H2 about a geodesic C ∩H2 is an involution of H2 induced by the inversion
of E2 in C. Since inversions of E2 ∪∞ preserve angle and take circles in R2 ∪∞ to circles,
the reflection about C ∩H2 preserves angles and carry geodesics to geodesics.

Lemma 1.1.1. An isometry of H2 is a product of reflections.

The set of all isometries of the hyperbolic plane is a group with composition of maps as
the group operation.

Lemma 1.1.2. The group of isometries act transitively on H2. Also, the stabilizer of any
point in H2 is isomorphic to O(2).

Proof. Any point x in H2 other the origin can be carried to the origin by a single inversion
along some geodesic C ∩ H2 such that the centre of C lies on the line joining origin and x.
Thus any arbitrary point x in H2 can be carried to any other arbitrary point y in H2 in at
most two reflections. Now that we know group of isometries is transitive, we can say that the
stabilizer of any point is isomorphic to the stabilizer of origin since we can do a conjugation.
Now we will find the stabilizer of the origin, Stab(O). The reflections about the lines passing
through origin and the rotations with origin fixed are contained in this group of isometries
preserving O. Rotations can be expressed as a product of two reflections and these generate
the group O(2). Now if we can show that the O(2) is the whole of the stabilizer then we
are done. Every isometry extends uniquely to S1

∞. Let P be a point in H2 and let it be
the intersection point of two geodesic γ, γ′. Now if we have an isometry which extends to
identity on S1

∞ then it fixes the end points of these geodesics, so this isometry also fixes the
geodesic and hence it fixes P . Therefore this isometry has to be the identity. This shows
that O(2) is Stab(O).

Lemma 1.1.3. Let h : H2 −→ H2 be an orientation preserving isometry which is not
identity. Then it is exactly one of the following.
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• h has exactly one fixed point in H2, no fixed point on S1
∞ and it is called an elliptic

isometry.

• h has exactly two fixed points on S1
∞, no fixed point in H2 and is called hyperbolic

isometry.

• h has exactly one fixed point on S1
∞, no fixed point in H2 and is called parabolic

isometry.

Proof. By Brouwer’s fixed point theorem, there is atleast one fixed point for h : D2 −→ D2.

If an orientation preserving isometry has more than one fixed points in H2, then it
fixes every point on the geodesic joining the two points and the only orientation preserving
isometry which fixes a geodesic point-wise is the identity.

Now, if the fixed point is in the interior of the unit disk, then we can assume that it is
the centre and hence the isometries are rotations and are of the first type above.

If three or more points are fixed on the S1
∞, then again the isometry has to be the identity.

Now if an isometry h fixes two points on S1
∞, then it fixes a geodesic. This geodesic is the

axis of the isometry and the isometry acts like a translation by a hyperbolic distance d along
the axis. Since this translates geodesics perpendicular to axis to perpendicular geodesics, it
determines h on the whole of S1

∞ and thus it has exactly two fixed points. These kind of
isometries belong to second type of isometries above.
All the others belong to the third type of isometry.

1.1.2 Half-plane model of H2

In this model we identify the hyperbolic plane with the upper half plane of complex plane
C. The circle at infinity in this model is R ∪∞ and the metric on the upper half plane is
ds/y where y is the imaginary part. Here the geodesics are the vertical lines and the circles
meeting the real line in right angles as shown in figure 1.1.2. To convert the half-plane model
to the unit disk model we first do an inversion about the circle C−i,

√
2, where −i is the centre

of the circle and
√

2 is the radius, and then a reflection about the x− axis.

Now we want to to calculate the area of a triangle in hyperbolic plane. In the half-plane
model, an infinitesimal rectangle with Euclidean width dx and height dy has hyperbolic
width dx/y and height dy/y. Thus the infinitesimal area dA = (dx dy)/y2.

Lemma 1.1.4. Area of a triangle with one ideal vertex ∆α,β with angles α, β is π− (α+β).
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Figure 1.2: Upper half plane model
with geodesics

Figure 1.3:

Proof. Let us consider any triangle ∆α,β satisfying the above condition in D2 model and
rotate it so that the ideal vertex is (0, i) on the complex plane. On going to the upper-half
plane model we get ∆α,β such that two of its geodesic sides are perpendiculars to the real
axis and third can be centred at 0 by an isometry. We can make the radius to be 1 by
another isometry. Look at the figure 1.3. The radii are perpendicular to the circle, hence the
angles formed at 0 are also α, β. Since radius is 1, we have cos(π − α) = λ and cosβ = µ.
Therefore the area of the triangle is
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Figure 1.4:

area(∆α,β) =

∫
∆α,β

dx dy

y2
=

∫ µ

λ

dx

∫ ∞
√

1−x2

dy

y2

=

∫ µ=cosβ

λ=cos(π−α)

dx√
1− x2

, now substituting x = cosθ

=

∫ β

π−α

−sinθ dθ
sinθ

= π − α− β.

Theorem 1.1.5. Gauss-Bonnet A geodesic triangle ∆α,β,γ with angles α, β, γ has area
π − (α + β + γ).

Proof. By making one of the sides of the triangle ∆α,β,γ a perpendicular geodesic, we can
represent ∆α,β,γ as the difference of two triangles ∆δ,π−γ, ∆α,β+δ both of which have one ideal
vertex as shown in figure 1.4 we have

area(∆α,β,γ) = area(∆α,β+δ)− area(∆δ,π−γ)

= π − (α + β + δ)− π + (π − γ + δ), by the previous lemma

= π − (α + β + γ).

Corollary 1.1.5.1. An n-gon with angles α1, α2, ..., αn has an area (n − 2)π − (α1 + α2 +
...+ αn).
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Figure 1.5:

Proof. An n-gon with its interior can be broken up into n triangles such that each them
share two vertices and the side joining them with the n-gon and the third vertex lying inside
the n-gon which is common to all the triangles (an example an octagon is given in figure
1.5). The angle sum of all the triangles is α1 + α2 + ... + αn + 2π where 2π is the angle
at the inner vertex. The total area of the n − gon is the area of these n triangles. Area
= nπ − (α1 + α2 + ...+ αn + 2π) = (n− 2)π − (α1 + α2 + ...+ αn).

Theorem 1.1.6. The group of orientation preserving isometries of hyperbolic plane is iso-
morphic to PSL2(R).

Remark 1.1.7. A matrix

[
a b
c d

]
in PSL2(R) acts on the half plane in the following way

z −→ az + b

cz + d
.

This leaves the real line invariant.

Different kinds of isometries of H2 and their action can be seen by looking at the properties
of matrix in PSL2(R) representing the isometry. To see that, look at the equation of fixed
points,

z =
az + b

cz + d

Thus the equation is cz2 + (d− a)z − b = 0. The discriminant of this equation is (d− a)2 −
4c(−b) = (a+ d)2 − 4(ad− bc) = (trace)2 − 4.
Case 1: When |trace| < 2, then roots are complex and one of them is in H2 and is the only
one fixed point. This is the elliptic isometry. It represents rotations around the fixed point
in both the models.
Case 2: When |trace| > 2, then both the fixed points are distinct and lie on the real axis
or equivalently on the circle at infinity and hence it is the hyperbolic isometry. Up to a
conjugation we can represent all hyperbolic isometries of the half-plane as the isometry
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which fixes the points are 0, ∞ with the imaginary axis as its axis. When an isometry fixes

0, ∞ the matrix is

[
a 0
0 a−1

]
and it takes z → a2z. It is a dilation as shown in figure 1.6.

Figure 1.6: Dilation Figure 1.7: Translation

Case 3: When |trace| = 2, there is exactly one fixed point on the circle at infinity and it
is the parabolic isometry. We represent this in the half plane model by making ∞ the fixed

point. Then the matrix looks like

[
a b
0 a−1

]
where a = ±1 since a+ a−1 = ±2. Thus matrix

for a general element is

[
1 b
0 1

]
. This acts as a horizontal translation parallel to the real axiz

taking z → z + b. Parabolic isometries fixing ∞ leaves horizontal levels invariant and these
are called horolevels as shown in figure 1.7. In the disk model these are Euclidean circles in
D tangential to S1

∞ called horocycles.

1.2 Hyperbolic surfaces

1.2.1 Introduction

Definition A Hyperbolic structure on a surface F is defined using an atlas of charts where
each φα : Uα −→ H2 is such that φβφ

−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

is the restriction of an orientation preserving isometry of H2.

On torus (genus g = 1) we can define a constant curvature κ which is 0 everywhere which
can be clearly seen using the polygonal representation of torus which is a square, 4g − gon
with g = 1, in E2. Note that the angle sum of the vertices of the square is 2π and hence we
can define an smooth atlas of charts which give a constant zero curvature metric on torus
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Figure 1.8: Figure 1.9:

by gluing the sides using gluing isometries. For surfaces with genus g > 1, its polygonal
representations in E2, a regular 4g − gon, has angle sum of vertices greater than 2π and
hence we can not define a smooth atlas of charts with Euclidean metric and hence these
surfaces cannot have constant curvature κ = 0 (figure 1.8). Now if we take this regular
4g − gon on H2 which is very small and which is concentric with S1

∞ then it is almost like a
4g− gon in E2 because the angle sum will be greater than 2π (figure 1.9) and if we consider
a ideal regular 4g − gons concentric with S1

∞ then the angle sum will be zero. This means
there exists a 4g − gon whose area is in between the area of the two 4g − gons described
above and has an angle sum equal 2π.

Now we can define a smooth atlas of charts from this 4g− gon to the surface with genus
g which has a constant curvature κ < 0 by gluing the sides using gluing isometries.

The elements of group Γ generated by gluing isometries of this particular polygonal forms
a tiling of H2.

If a curve is locally (in a neighbourhood around every point) a pull back of some geodesic
in H2 under the chart maps, then it is defined to be a geodesic in F . If a surface F has a
metric defined by the pull back charts from H2 and it is a complete metric spaces under this
metric, then it is called a complete hyperbolic surface.

Lemma 1.2.1. Any geodesic on a complete hyperbolic surface can be extended indefinitely.

Proof. Let C be a bounded geodesic arc in F . Since F is complete, any set of points tending
towards any one of the ends of C is a Cauchy sequence and hence converges to a point, lets
say x1.Take a chart neighbourhood Ux1 such φ(x1) = 0 in H2. Now extend the geodesic
from 0 to the maximum geodesic extension possible in the chart neighbourhood φ(Ux). Pull

14



Figure 1.10:

back this extended geodesic using inverse of chart maps to extend C to a new bounded
geodesic arc, lets say C1. We can extend similarly towards the other end of C. By keeping
on repeating this process until we reach the maximal such extension, we will get the required
geodesic.

Theorem 1.2.2. Any complete, connected, simply connected hyperbolic surface is isometric
to H2.

Proof. Let F be a surface with all the properties described in the theorem. Consider these
two maps, the exponential map E : H2 −→ F and the developing map D : F −→ H2.
Suppose this developing map D with the following properties

1. D is a local isometry

2. D|U = φU

is well defined. Then D · E = 1H2 . This means E ·D is a retraction of F on to Im(E) and
hence Im(E) is closed subset of F . But Im(E) is open because of invariance of domain and
F is connected, it implies that E · D = 1F . Therefore every complete, connected, simply
connected, hyperbolic surface is isometric to H2.
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D can be constructed to be well defined using analytic continuation as shown in the
figure 1.2.1. Let γ be a path from A to B in F . Let γ be covered by a sequence of charts
U0, U1, ..., Un with φi : Ui → H2 and let xis be points in γ such that [xi, xi+1] ⊆ Ui. If the
maps do not agree on the intersection Uj+1 ∩Uj containing xj, then using a unique isometry
which can be determined by the given data a map can be found such that it agrees. Now
inductively doing it for each xi we can create chart maps which agrees on all the intersections
and hence on the whole path.
Set D(B) = φn(B)
By keeping on refining the charts it can be seen D(B) depends only on γ and not on any
specific chart maps. Since small homotopies do not leave the coordinate cover, two paths
γ1, γ2 which are homotopic define same value of D(B). Since F is simply connected D is
well defined.

The above theorem implies that the universal cover F̃ of every closed hyperbolic surface
F is isometric to H2 and from now on we will identify F̃ with H2.

F = F̃ /{deck translations} = H2/Γ. So Γ a subgroup of PSL2(R) is isomorphic to
π1(F ). Since π1(F ) acts freely, no element other than identity can leave a point in H2

invariant, therefore Γ−{1} can not have elliptic elements. We can also lift ε− neighbourhoods
of any point in F to H2 and hence Γ is discreet subgroup of PSL2(R). This means for a
compact F this epsilon is uniform for all points in F and this further implies that there
exists an ε′ > 0, where ε′ > 2ε, such that for every g ∈ Γ − {1} the hyperbolic distance
d(x, g(x)) > ε′. Now if Γ− {1} has parabolic elements, the points high up in the upper half
plane model moves arbitrarily small distances under parabolic elements and hence there is
a contradiction with uniformity of the ε. This shows us that Γ does not contain parabolic
elements either. Therefore, all the elements of Γ− {1} are hyperbolic.

1.2.2 Curves on hyperbolic surfaces

Definition Any closed curve on a surface which is not null homotopic is called essential .

Lemma 1.2.3. Every essential closed curve on a closed hyperbolic surface is freely homotopic
to a unique geodesic closed curve.

Proof. Let x be a point on a essential closed curve C in F. Let x̃ be a point on one of the
complete components C̃ of the lift of C in H2. Now there exists a g ∈ Γ − {1} such that
projection of [x̃, g(x̃)] wraps around C once.

Since g is hyperbolic, it has a geodesic axis γ̃ and the image γ is a closed geodesic curve
in F. Let ỹ be a point on γ̃, Ũ be any path from ỹ to x̃ and g(Ũ) is path from g(ỹ) to
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Figure 1.11:

g(x̃). As shown in the figure 1.11 the singular rectangle defined by the following edges ỹ to

x̃ along Ũ , x̃ to g(x̃) along γ̃, g(x̃) to g(ỹ) along g(Ũ) and finally g(ỹ) to ỹ along γ̃ projects
to an annulus in F which gives the free homotopy f : S1 × [0, 1] −→ F from C to a closed

geodesic curve γ. Let the lift of this map be f̃ : R× [0, 1] −→ H2, where f̃(R×{0}) = C̃ and

f̃(R× {1}) = γ̃. Let the end points of γ̃ be P,Q. To see the uniqueness, notice that ∃d > 0

such that the hyperbolic length of any arc f̃ : z × [0, 1] −→ H2 for all z ∈ R is less than d
because S1 is compact and therefore hyperbolic lengths f(z × I) is bounded. This implies
that in the euclidean metric on the Poincare disk the end points of both the curves converge
to P,Q and since there is a unique geodesic with these endpoints, γ is freely homotopic to
a unique closed curve.

Definition A closed 1-submanifold of a surface F is a disjoint union of simple closed curves.
If every component is essential and no two of them are homotopic then it is called a essential
1-submanifold.

Definition Two essential 1-submanifolds of C1, C2 are said to have minimal intersection if
they are transversal to each other and they do not have two subarcs A1, A2 of C1, C2 with
common endpoints such that the union A1 ∪ A2 bounds a disk in F .

Lemma 1.2.4. Let C1, C2 be an essential 1-submanifolds of F , a closed hyperbolic surface.
Then C2 is isotopic to an essential 1-submanifold which has minimal intersection with C1.
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Proof. Let C1, C2 be transverse. Assume they have non-minimal intersection then they will
have arcs A1, A2 such that ∂A1 = ∂A2 and A1 ∪ A2 bounds a disk D with int(D) disjoint
from C1 ∪ C2. Now by inner most disk argument we can push C2 across D to reduce the
number of intersections of C1, C2. By continuing this process for all such intersections we
will get an essential 1-submanifold isotopic to C2 which has minimal intersection with C1.

Lemma 1.2.5. Every essential 1-submanifold of a closed hyperbolic surface F is isotopic to
a unique geodesic 1-submanifold.

Proof. Every component of the essential 1-submanifold is homotopic to a unique closed
geodesic. Each of them are distinct because no two components are homotopic. Let the
union of these geodesic closed curves be γ. By replacing the components of the preimage of
C with geodesics having same endpoints we get the preimage of γ. Also notice that since
no two components C̃1, C̃2 of preimage of C intersect, the geodesics corresponding to them
also do not intersect. Therefore the preimage of γ is a disjoint union of geodesics.

The above lemma implies that C is isotopic to a essential 1-submanifold which has min-
imal intersection with γ. We will call this submanifold also as C for ease of notation. Let C̃
be one of the components of preimage of C. Since C ∩ γ has minimal intersection, C̃ has at
most one intersection with any component of preimage of γ.

The projection of C̃ is an essential closed curve in F and let its length be d. Then there
exists an hyperbolic isometry gd of H2 which translates points on C̃ by a distance d and with
axis of isometry being a component γ̃ of the preimage of γ which has the same endpoints as
C̃. This isometry leaves C̃ and this axis invariant. This means that if |C̃ ∩ γ̃| is not empty

then it contains infinitely many points, but since |C̃ ∩ γ̃| ≤ 1, C̃ ∩ γ̃ has to be empty.

Now if C̃ meets any other component γ̃′ of the preimage of γ then |C̃ ∩ γ̃′| has to be even

and also less than or equal to 1. Therefore |C̃ ∩ γ̃′| = 0. This means C ∩ γ is empty.

This means C and γ are homologous and they cobound a part of the surface, say N . Also
N has genus 0 because C and γ are homotopic and hence it is an annulus and orientable.
Therefore C and γ are isotopic.

Lemma 1.2.6. Suppose C1 and C2 are transverse essential 1-submanifolds of a hyperbolic
surface F and no component of C1 is isotopic to any component of C2. Then C1 and C2

have minimal intersection if and only if there exists a homeomorphism h : F −→ F isotopic
to the identity, such that h(C1) and h(C2) are both geodesic 1-submanifolds.

Proof. If both C1, C2 are geodesic 1-submanifolds, the preimages of components of C1, C2

will not intersect more than once in the universal cover. Hence they are transverse to each
other.
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Now for the converse, suppose C1, C2 have minimal intersections. Using the previous
lemma 1.2.6 we can assume that C2 is geodesic. By the same lemma we know that C1 is also
isotopic to a geodesic 1-submanifold γ1. But this isotopy must leave C2 invariant. We will
now construct this isotopy.

If C1 ∩ γ1 6= φ, then there are arcs A and α respectively which bound an inner most disk
D. If D ∩C2 6= φ, since C2 has minimal intersection with both C1 and γ1, it will be a union
of arcs across D with one end on A and the other end on α as shown in figure 1.12. Then
push A to α through the disk D leaving C2 invariant. After a sequence of pushes similar to
this across disks, C1 ∩ γ1 = φ.

Figure 1.12: Figure 1.13:

Now C1 and γ1 bound an annulus N like in the proof of the previous lemma. N ∩ C2 is
an union of arcs which join the two boundary components of N . Look at the figure 1.13.
We now choose an isotopy which is identity outside N and leaves these arcs of C2 invariant
inside N . This is the required homeomorphism which is isotopic to identity.

Definition Let the geometric intersection number, i(C1, C2), of C1, C2 be the minimum
value of |C ′1 ∩ C ′2| where C ′j is homotopic to Cj. Then we say that C1, C2 have minimal
intersection if and only if |C1 ∩ C2| = i(C1, C2).

Definition If two essential 1-submanifolds C1, C2 of F have minimal intersection and the
complement of C1 ∪ C2 is a collection disks then C1, C2 fill F .

There always exists two simple closed curves C1, C2 on F such that they fill F .

Theorem 1.2.7. Let F be a closed orientable hyperbolic surface and h : F −→ F be an
orientation preserving automorphism. If for every simple closed curve in F there exists a
k ∈ Z+ such that hk(C) ∼ C (∼ means homotopic) then there exists an n ∈ Z+ such that
hn is isotopic to identity. These are called periodic automorphisms.
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Proof. Let C1, C2 be two simple geodesic closed curves filling F . Let k1, k2 ∈ Z+ be such
that hk1(C1) ∼ C1 and hk2(C2) ∼ C2. hk(Ci) ∼ Ci where i = 1, 2 and k = k1 · k2. The
curves hk(C1), hk(C2) have minimal intersection. According to the lemma 1.2.7, since the
two curves have minimal intersection, there exists an homeomorphism g isotopic to identity
such g · hk(Ci) is a geodesic simple closed curve and hence g · hk(Ci) = Ci) where i = 1, 2.
This means g · hk(C1 ∩ C2) = C1 ∩ C2. Since this is a set of finitely many points we can see
that g · hk is a permutation of this points. Therefore for some m ≥ 0, (g · hk)m is fixes them
point-wise and hence it is isotopic to an homeomorphism f which is identity on C1 ∪ C2.
Now since g is isotopic to identity it implies f and hkm are isotopic. Since C1, C2 are filling
curves hence their complementary region is a union of disk and since f is isotopic to identity
on C1 ∪ C2, by Alexander’s trick f is isotopic to identity over the whole of F .

1.2.3 Few topological results about hyperbolic surfaces

Let χF be the Euler characteristic of the surface F. This section discusses how for hyperbolic
surface F with finite area, just knowing its Euler characteristic χF , which is a topological
invariant, we can determine the area of the F . Such relation only exists in the hyperbolic
surfaces.

Lemma 1.2.8. A compact hyperbolic surface with geodesic boundary has area −2πχF .

Proof. Let F = H2/Γ and P ∈ H2. For g ∈ Γ let Ug = {x ∈ H2|d(x, P ) ≤ d(x, g(P ))} be
the half plane corresponding to g. Let U = ∩g∈ΓUg. Now since F is compact ∃d such that
∀x ∈ H2, d(x, g(P )) ≤ d for some g. Therefore all points x in U are within a distance d of
P . Also, Fr(U) is contained in the union of Fr(Ug). Since {g(P )|g ∈ Γ} is discrete, only
finitely many g′s in Γ will satisfy the condition d(p, g(P )) ≤ 2d and this means intersection
of U with union of Fr(Ug) is finite. Thus Fr(U) has finitely many geodesic edges and hence
is a finite sided polygon which is called the Poincare polygon of F . Identification on the
edges by elements of Γ give F . Since the isometries always identify two edges, the number
of edges are even, i.e. of the form 2e. This identification gives us a decomposition of F
into one 2−cell, e edges and v vertices. Since the angle sum at each vertex is 2π, the area
of U = (2e − 2)π − 2πv (v is the number vertices after identification). Also notice that
χF = 1− e+ v, therefore e− 1 = v − χF . Thus the area of U = 2(e− 1)π − 2πv = −2χF .

If F has geodesic boundary components, the double of F, DF also has hyperbolic struc-
ture with area area(DF ) = 2 area(F ). If F is compact then χDF = 2χF . Since DF is closed
the lemma follows.

Lemma 1.2.9. An unbounded hyperbolic surface F with finite area is homeomorphic to a
closed surface minus a finite set and has area −2πχF .
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Proof. Let F = H2/Γ and P ∈ H2, here Γ may have non hyperbolic elements as well. Like
in the previous proof, for g ∈ Γ let Ug = {x ∈ H2|d(x, P ) ≤ d(x, g(P ))} be the half plane
corresponding to g and U = ∩g∈ΓUg. By the same arguments in the previous proof it can be
shown that Fr(U) is locally finite union of geodesic arcs even though U is not compact.

The Euclidean closure of U has only finitely many points on the circle at infinity. This
is because area of F and hence area of U is finite and if the closure contains n points on S1

∞
then U contains a n-gon which has (n − 2)π area which has to be less than area U . This
forces some upper bound on the number of points at the circle of infinity.

Each internal vertex v with angle αv has to be equidistant from at least 2 distinct trans-
lates of P and hence is a point of intersection of two distinct geodesic. This mean αv < π.
Let G be a finite sided polygonal in U with vertices of G being some subset of internal
vertices of U .

Area(G) = (n− 2)π − (angle sum of G)

nπ − (angle sum of G) = 2π + area(G)∑
v∈G

(π − αv) ≤ 2π + area(G)∑
v∈Int(U)

(π − αv) ≤ 2π + area(U)

Let us divide the vertices into two set A = {v|αv ≤ 2π/3} and B = {v|αv ≥ 2π/3}. First
observe that A is finite because

∑
(π − αv) converges. Among all the vertices of U going to

a same vertex in F after identification, there can be at most two elements of B and there
has to be at least one element of A since angle sum has to be 2π. This shows that U has
finitely many vertices. We get F by identifying edges in pairs and removing ideal vertices
from U ∪ {ideal vertices}.

F has a cell decomposition with one 2-cell, e edges, v vertices after identifications and
removal of ideal vertices.

area(U) = (n− 2)π − angle sum
= (2e− 2)π − 2πv

= 2(e− 1− v)π

= −2χF

Theorem 1.2.10. A complete hyperbolic surface F with finite area and geodesic boundary
is homeomorphic to a compact surface minus a finite set and has area −2πχF + πχ∂F .
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Proof. On doubling F the area of double of F, DF , is double of the area of F and χDF =
2χF − χ∂F . Therefore area of F = 1

2
(−2πχDF ) = −2πχF + πχ∂F

Corollary 1.2.10.1. The area of any complete hyperbolic surface with a totally geodesic
boundary is nπ, n ∈ Z+.
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Chapter 2

Geodesic Laminations

Every non-periodic automorphism preserves a closed subset known as geodesic lamination.
In this chapter we develop some concepts about geodesic lamination.

2.1 Geodesic Laminations

Definition A curve on a complete hyperbolic surface F is a geodesic if and only if its the
image of a complete geodesic in H2 ∼= F̃ . If a geodesic has no self transverse intersection on
F then it is defined as a simple geodesic.

Definition A closed, non-empty subset of F which is a disjoint union of simple geodesic is
defined to be a geodesic lamination L of F .

The figure 2.1 and figure 2.2 are some examples of geodesic laminations.

Let F be a surface and ∀x ∈ F we have the set of all the non-oriented geodesic segments
of length two units centred at x. Then F and this set at each point on F together forms the
projectivized tangent bundle PT (F ) of F . Let x be some point of F , then (x, σ) ∈ PT (F )
gives a unique geodesic passing through x.

We can construct a PT (F ) of F w.r.t a given atlas of charts in the following way. Look
at the figure 2.3.

• Fix a horizontal line Q passing through H2 ∼= F̃ .
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Figure 2.1: Lamination with 3 closed leaves

Figure 2.2: Lamination with a spiralling leaf

• For every point x ∈ Ux ⊂ F , where Ux is the chart neighbourhood of φU , and a geodesic
γ passing through x, look at its image in the universal cover H2.

• We define the direction of γ at x as the angle the tangent of φU(γ) at φU(x) makes
with Q or a line parallel to Q passing through φU(x).

Figure 2.3:

Therefore (x, dirγx) ∈ PT (F ), where dirγx is the direction of γ at x.
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We can define a topology on PT (F ) using the chart chart maps from F by taking inverse
image of chart neighbourhood under the projection map p. This forms a basis for the
topology on PT (F ).

(x, σ) ε PT (F ) ⊃ p−1(U) ∼= U × RP 1

↓ p ↓ p ↓ p ↓ p
x ε F ⊃ U

1U−→ U

Lemma 2.1.1. If L = ∪x∈Lγx is a geodesic lamination and γx, γy are either disjoint or they
coincide ∀ x, y ∈ L. Then the direction of γx at x w.r.t. a given chart varies continuously
with x.

Proof. For a geodesic leaf γ, if the direction w.r.t a fixed chart changes discontinuously at
some point x ∈ γ it means that there are two directions at that point. Then, with respect
to each direction there is a geodesic through the point x. This would mean that the lift of
geodesic leaves will intersect with each other in H2. But by the definition of a lamination
this cannot happen.

Lemma 2.1.2. The closure of any disjoint union of geodesics on F is a lamination.

Proof. Consider a sequence of points xn ∈ L converging to some point x ∈ F and let γn
be the leaf passing through xn (in the given decomposition in to geodesics). Since the set
of direction is homeomorphic to RP 1 which is a compact set, the sequence of directions of
γn at xn, dirγxn , has a subsequence which converges to dirγx as n → ∞. Consider a leaf γ
through x with this direction at x. The directions are measured through a fixed chart about
x. If y is a point on γ at a signed distance d from x and yn is at distance d from xn then
yn → y. Hence γ is contained in L̄ and it is a union of geodesics.

Now to show that they are disjoint assume the contrary. So there exists γ, γ′ ∈ L̄ which
intersect at some point x ∈ F . Then for β, β′ ∈ L passing through arbitrarily close to x with
directions approximating the directions of γ, γ′. If the approximation is sufficiently close
then it can be seen that β, β′ will also intersect. By similar arguments it can be shown that
each leaf of L̄ is simple. Thus L̄ is a geodesic lamination.

Lemma 2.1.3. A geodesic lamination in a closed orientable hyperbolic surface F is nowhere
dense and can be expressed in a unique way as a disjoint union of geodesics.

Proof. By Poincare-Hopf theorem, a closed hyperbolic surface F which has negative Euler
characteristic can not have a continuously varying line field defined on all of F . This implies
that L is a proper subset of F.

Let L̃ be the lift of L in H2. Now, L̃ = ∪x∈L̃γx and γx, γy either coincide or are disjoint

for all x, y ∈ L̃. Let there be an arc α in L̃ transverse to γx at x ∈ α as shown in figure 2.4.
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Define Φ : α × R → H2 such that (y, t) → y + t ∈ γy. Orientation of normal to α is fixed.

Thus by lemma 2.1.1 Φ is continuous. Φ(α× R) ⊂ L̃. For any d > 0, there exists an z ∈ γx
such that hyperbolic d-neighbourhood U of z is contained in Φ(α× R).

Figure 2.4:

If d is the diameter of the Poincare polygonal of F then under the projection U is mapped
onto F which means L = F but this is a contradiction. Therefore L has empty interior and
in nowhere dense.

By the same argument it can be shown that L can be expressed as the union of geodesics
in a unique way.

Definition Let A, B be two closed subsets of a compact set X such that A ⊂ Nε(B)
and B ⊂ Nε(A). Then we say that the Hausdorff distance between A and B, dH(A,B), is
dH(A,B) ≤ ε.

Hausdorff distance defines a metric on 2X , where 2X is the set of all non-empty closed
subsets of X. The topology of 2X is dependent on the topology of X and not on the metrics
on X. 2X is compact because it is totally bounded and complete.

Theorem 2.1.4. The set of all geodesic laminations on a closed orientable hyperbolic surface
Λ(F ) is compact under the Hausdorff distance.

Proof. Since Λ(F ) ⊂ 2F , we need to show that Λ(F ) is a closed subset i.e. if a sequence of
laminations Ln is converging to a compact set L, then L has to be a lamination. If x ∈ L,
then there are xn ∈ Ln nearby such that xn converge to x. If for each Ln, let γn be the
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leaf containing xn then some subsequence γni converge to a geodesic γ passing through x.
If the direction doesn’t converge then we can find some other subsequence which converges
to some other leaf through x. Hence a convergence in Λ is not sufficient and a convergence
in Λ̂, which will be defined later on, needs to be shown i.e. the directions also converge.
Remember the topology given on PT (F ).

Remark 2.1.5. • PT (F ) is a 3-manifold with p : PT (F )→ F continuous.

• Since PT (F ) is compact and metrizable, 2PT (F ) is also compact and metrizable.

• For every geodesic γ in F, there is a section to PT (F ) corresponding to it whose image
is γ̂ = {(x, dirγx)|x ∈ γ}. Every point of PT (F ) lies on a unique γ̂.

Let L̂ = ∪γ∈Lγ̂ and Λ̂(F ) = {L̂|L ∈ Λ(F )} then we have the following:

L̂ ⊂ PT (F )
p ↓ bijection ↓ p
L ⊂ F

Lemma 2.1.1 says that the direction varies continuously with x hence the maps p−1 is
continuous on L which implies that p is a homeomorphism. Thus L̂ is compact and L̂ ∈ 2PT (F )

for all L ∈ 2F . Hence Λ̂ ⊆ 2PT (F ). p induces a bijective continuous map p∗ : Λ̂ → Λ The
first thing that needs to be shown is that Λ̂ is closed in 2PT (F ) and that would imply Λ is
compact. Let L̂n ∈ Λ̂ → A ∈ 2PT (F ). It needs to be shown that A = L̂ for some L ∈ F .
p(A) = L is non-empty, compact and hence belongs to 2F .

For every x ∈ L, x = p((x, σ)), where (x, σ) ∈ A ⊂ PT (F ), there exists (xn, σn) ∈ L̂n →
(x, σ). Then xn → x and the direction of σn at xn converges to direction of σ at x. The
extention γ of σ is also belongs to L and can be shown the same way as it was done in lemma
2.1.2. Also L is a disjoint union of geodesics. Thus we get that Λ̂ is closed in 2PT (F ). This
also shows that p−1

∗ is continuous.

Lemma 2.1.6. Hausdorff distance on 2F and 2PT (F ) define the same topology on Λ(F ).

Proof. In the previous proof we have seen that both p∗ and p−1
∗ are continuous and bijective.

Therefore p∗ is a homeomorphism. This implies the required result.

Definition We say a leaf γ of L is isolated if for all x ∈ γ, ∃ Ux a neighbourhood of x such
that (Ux, Ux ∩ L) is homeomorphic to (disk, diameter).

The set L−{isolated leaves} is closed subset of L and hence it’s also a lamination. This
is called a derived lamination of L. We denote this set with L′.
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Lemma 2.1.7. If L′ is empty then L is a finite union of simple closed geodesics and L is
an isolated point in Λ(F ).

Proof. L′ = φ means all leaves of L are isolated. Thus L is a closed 1-submanifold of F i.e
it is a disjoint union of simple closed geodesics. To see that L is an isolated point in Λ(F )
it needs to be checked if any other lamination L∗ lies in a close neighbourhood of L. There
exists an ε > 0 for which the closure ε-neighbourhood of L is a disjoint union of annuli.
Let L∗ be such that d(L,L∗) < ε. Let γ∗ be a leaf in the ε neighbourhood of L thus in a ε

neighbourhood of a closed simple geodesic C. Now for some lift γ̃ of γ, d(γ̃, C̃) < ε but the

only geodesic in this neighbourhood is C̃. So γ = C ⊂ L and L∗ ⊆ L. Now it can be seen
that L∗ = L because every component of ε neighbourhood of L contains a point of L∗.

Definition We call a lamination L perfect if L′ = L.

2.2 Action of homeomorphisms on geodesic lamina-

tions

Theorem 2.2.1. Let h : F1 −→ F2 be a homeomorphism of closed orientable hyperbolic
surfaces with lift h̃ : H2 −→ H2 to the universal cover. Then h̃ has a unique continuous
extension over H2 ∪ S1

∞.

Proof. Isometries of H2 extend over S1
∞ as they are uniformly continuous w.r.t the Euclidean

metric on the Poincare disk. It needs to shown that for any γ, a geodesic in H2, h̃(γ)

converges to a point on S1
∞. Without loss of generality h̃(0) = 0. Since both h̃, h̃−1 are

lifts of continuous maps they are uniformly continuous w.r.t. hyperbolic metric. This means
there exists a k > 0 such that

d(x, y) ≤ 1/k ⇒ d(h̃(x), h̃(y)) ≤ 1 and

d(h̃(x), h̃(y)) ≤ 1/k ⇒ d(x, y) ≤ 1

Subdivide a geodesic joining x, y into k equal subintervals, then

d(x, y) ≤ 1⇒ d(h̃(x), h̃(y)) ≤ k (2.2.1)

Similarly for any integer n > 0

d(h̃(x), h̃(y)) ≤ n⇒ d(x, y) ≤ nk (2.2.2)
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The map h̃ should not be spiralling or else there will be no limit for h̃. Let Pt be a point
at distance t from 0 and Qt = h̃(Pt). Choose a reference line through 0 for the direction.
The angle θt of the geodesic at Qt must have a limit as t → ∞. Notice that (2) says since
every point on (Pt, Pt+1) has distance greater than t from 0, all point on the arc QtQt+1 will
be at distance t/k from 0 while (1) implies that d(Qt, Qt+1) ≤ k. This means all points on
arc QtQt+1 has distance t/k− k from 0. If we take t ≥ 2k2 then the distance will be at least
t/2k.

Figure 2.5:

Take a circle centred at 0 with radius t/2k as shown in figure 2.5. Let Rt be the intersec-
tion of the geodesic segment 0Qt with the circle. The radial projection of QtQt+1 to RtRt+1

decreases the hyperbolic length.
Therefore

k ≥ d(Qt, Qt+1) ≥ arcRtRt+1 = |θt+1 − θt| sinh(t/2k)

since sinh x = ex−e−x
2
≥ ex

4
, ∀ x ≥ 1

|θt+1 − θt| ≤ 4ket/2k if t ≥ 2k2

Thus for u ≥ t ≥ 2k2,

|θu − θt| ≤
u∫

t−1

4ke−s/2kds = C(k)e−t/2k

Hence lim
t→∞

θt exists and let it be θ. Now by choosing the point on S1
∞ which makes angle θ
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with the reference line as the end point of γ we have defined a extension of h̃.

Figure 2.6:

We need to check if this a continuous extension. Let a neighbourhood of h̃(x) be an 2ε
section in the exterior on a circle of radius ρ centred at 0. We need to get the neighbourhood
of x that was mapped into the above set. If we choose this neighbourhood to lie in the
exterior a circle such that the image of this circle is in the exterior of the circle with radius
ρ and width is as determined by the continuity of h̃ at A. Then we need the radius to be
max(kρ, t0) where t0 > 2k2 and Ce−t0/2k < ε/3 .

Lemma 2.2.2. Given two homotopic homeomorphisms h0, h1 : F1 −→ F2 of closed ori-
entable hyperbolic surfaces and a lift h̃0 of h0, there exists a lift h̃1 of h1 such that h̃0 = h̃1

on S1
∞.

Proof. Let H : F1 × I −→ F2 be an homotopy between h0 and h1. Let H̃ be the lift of H
with H̃0 = h̃0. Since H is uniformly continuous in hyperbolic metric, the hyperbolic lengths
of arcs H̃(a × I) is bounded. Thus the Euclidean distance between h̃0, h̃1 tends to 0 as

x→ S1
∞. Hence ∀ y ∈ S1

∞, h̃0(y) = h̃1(y).

A unit tangent bundle of F is defined as the set {(x, σ)|x ∈ F and σ is oriented geodesic
segment of length 2 centred at x}. It the double cover of PT (F ).

Lemma 2.2.3. Let Y = {(a, b, c)|a, b, c are distinct points of S1
∞ in couter-clockwise direction

}. If F = H2/Γ is a closed orientable hyperbolic surface, then UT (F ) = Y/Γ.

Proof. Every point (a, b, c) ∈ Y gives a point x ∈ H2 with an oriented direction which gives
an unique geodesic σ as shown in the figure 2.7.
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Figure 2.7:

(a, b, c) ∈ Y UT (H2) 3 (x, σ)

Y/Γ UT (F ) 3 (p(x), σ)

p
q

p p

f

Let ab be a geodesic from a to b and x be the foot of the perpendicular from c to ab. Let σ ⊂ ab
be the length 2 segment centred on x. It can be seen from the diagram above q is a continuous
surjection from Y to UT (F ) and this defines the homeomorphism f : Y/Γ→ UT (F ).

Theorem 2.2.4. Every orientation preserving homeomorphism h : F1 −→ F2 of closed ori-
entable hyperbolic surfaces induces a homeomorphism ĥ : UT (F1) −→ UT (F2) between their
unit tangent bundles. If two homeomorphisms are homotopic then their induced homeomor-
phisms are equal, that is if h ∼ k then ĥ = k̂. If h1 : F1 −→ F2 and h2 : F2 −→ F3 are

homeomorphisms, then ĥ2 · ĥ1 = ĥ2 · h1. ĥ takes lifted geodesics to lifted geodesics.

Proof. Given a homeomorphism h : F1 −→ F2 where Fi = H2/Γi it induces an isomorphism

of groups h∗ : Γ1 −→ Γ2. Let lift of h be h̃ : H2 −→ H2. By theorem 2.2.1 this lift gives an
orientation preserving map h̃|S1

∞ : S1
∞ −→ S1

∞ which induces h̄ : Y −→ Y . Now if g1 ∈ Γ1,

then h̃g1 = g2h̃ where g2 = h∗(g1) ∈ Γ2. This implies that h̄ induces ĥ : Y/Γ1 −→ Y/Γ2

which by lemma 2.2.3 induces ĥ : UT (F1) −→ UT (F2). This is dependent on the lift of h.

If h ∼ k then by lemma 2.2.2 ∃ k̃ such that h̃|S1
∞ = k̃|S1

∞ hence h̄ = k̄ which implies that

ĥ = k̂. We can choose h̃2 · h1 to be equal to h̃2 · h̃1 which gives h2 · h1 = h̄2 · h̄1 : S1
∞ −→ S1

∞

and hence ĥ2 · h1 = ĥ2 · ĥ1.
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Theorem 2.2.5. Any orientation preserving homeomorphism h : F1 −→ F2 of closed ori-
entable hyperbolic surfaces induces an homeomorphism h̄ : Λ(F1) −→ Λ(F2). If h ∼ k then
h̄ = k̄. If h1 : F1 −→ F2 and h2 : F2 −→ F3 are homeomorphisms then h2 · h1 = h̄2 · h̄1.

Proof. For L ∈ Λ(F1) let h̄(L) = ∪γ∈Lh̄(γ). If γ1, γ2 are two leaves of lift of L in H2

with endpoints a1, b1 and a2, b2 respectively. Then h̃(a1), h̃(b1) does not separate h̃(a2)h̃(b2)

because a1, b1 does not separate a2, b2 and h̃ preserves order on S1
∞. Therefore the leaves of

h̄(L) are disjoint and simple.

Since ĥ : UT (F1) −→ UT (F2) is continuous (theorem 2.2.4) and the lift of L, L̂ ⊂ UT (F1)
is compact ĥ(L̂) ⊂ UT (F2) is compact. Because the projection map pi : UT (Fi) −→ Fi is
continuous h̄(L) ⊂ F2 is compact and is a lamination.

Λ̂1 ⊂ 2UT (F1) 2UT (F2)

Λ1 ⊂ 2F1 2F2 ⊃ Λ2

p1∗ p1∗

ĥ∗

p2∗

h̄

In the above diagram ĥ∗ is continuous which implies that h̄·p1∗|Λ̂1 = p2∗ ·ĥ∗ is continuous and
hence h̄ is continuous. Similarly we can show the same for ¯h−1. Thus h̄ is a homeomorphism.
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Chapter 3

Structures on Geodesic Laminations

In this chapter we will be discussing the properties of different types of geodesic laminations
of closed orientable hyperbolic surfaces, the properties of its complementary regions and
some results about the derived laminations of a geodesic lamination.

3.1 Principal region

Let F be a closed hyperbolic surface and L be a geodesic lamination on F .

Definition Any component of F − L is called a principal region of L.

Lemma 3.1.1. If U is a principal region for L and Ũ is its lift in H2, then
¯̃
U is a contractible

hyperbolic surface with geodesic boundary.

Proof. Since Ũ is the lift of U , a component of F −L, it is a component of H2− L̃. For any
two points a, b ∈ Ũ which are distinct there cannot be a leaf γ̃ of L̃ which separates the
two points. This implies that there exists a geodesic path joining these two points and lies
completely inside Ũ . Therefore Ũ is hyperbolically convex.
All points on the Fr(U) lie on some leaf γ̃ of L. Let N be the hyperbolic convex hull of a

point a ∈ Ũ with γ̃. Then N − γ̃ ⊂ Ũ and further γ̃ ⊂ ¯̃
U . This means

¯̃
U is hyperbolically

convex set with geodesic boundary.

Remark 3.1.2. The map from π1(U) −→ π1(F ) is injective.

Definition Let U be a principal region of L and γ a leaf of L which satisfies the following.
∀x ∈ γ there exists an ε neighbourhood of it such that at least one of the components of
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Nε(x) − 2ε, where 2ε ⊂ γ centred at x, is contained U . Then such a leaf γ is defined as a
boundary leaf of U .

Lemma 3.1.3. The boundary leaves of L are dense in L.

Proof. Let x be a arbitrary point on an arbitrary leaf γ of L. We know that L is nowhere
dense in F , hence we can find a point y arbitrarily close to x in F − L. The first point of
intersection of geodesic path from y to x with L lies on a boundary leaf. This shows that
the set of boundary leaves are dense in L.

We will now look at some features of the union of principal regions of L and their
boundary leaves. We know that Ũ is simply connected hence it is a universal cover of U ,
that is U = Ũ/ΓU where ΓU = g ∈ Γ| g(U) = U . Usually the interior of the closure of a

principal region U is not U . We find a away around it by defining VU =
¯̃
U/ΓU which is

a hyperbolic surface with geodesic boundary with interior homeomorphic to U . Let the
G = tU VU .

Lemma 3.1.4. For each L of F , there are finitely many principal regions and each of them
have finitely many geodesic boundary components.

Proof.

ar(G) = ar(G− ∂G) = ar(F − L) ≤ ar(F )

because G is a hyperbolic surface with geodesic boundary and has finite area. Since each
component of G has an area at least π (Area of a complete hyperbolic surface with finite
area and with geodesic boundary is −2πχF + πχ∂F )), there are only finitely many such
components each with finitely many boundary components.

The boundary leaves and boundary components are not in one to one correspondance.

Definition A complete hyperbolic surface homeomorphic to S1 × [0, 1] − A, where A is a
finite set and A ⊂ S1 × {1}, with finite area and geodesic boundary is called a crown.

Lemma 3.1.5. Let L be a geodesic lamination without closed leaves on F . Then any prin-
cipal region U of L is of exactly one of following kinds:
(i) a finite sided ideal polygon or
(ii) U has a compact core U0 such that U−U0 is isometric to finite disjoint union of interiors
of crowns.
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Figure 3.1:

Proof. For a principal region U of L, let Ũ be one of the components of its lift in H2. No
boundary leaf of U is closed. Theorem 1.2.10 implies that every boundary leaf β0 of Ũ has
two adjacent boundary leaves β1, β−1 having a endpoint in common with β0. When Ũ is not
finite sided polygon all the leaves βn, n ∈ Z, are all distict. But U has only finitely many
boundary leaves. This means there is a deck translation g leaving Ũ invariant with gβ0 = βn
for some n > 0. For each boundary leaf β0, let W be the smallest convex set containing all
translate βn. The crown set of β0 is defined as W − ∂W . The crown set of two boundary
leaves either coincide or are disjoint. Notice that the image of a crown set is isometric to a
crown in U . Ũ0 = Ũ − Ũ∞ where Ũ∞ is the union of crown set for all boundary leaves.

Ũ0 is hyperbolically convex and is the universal cover of U0. U0 has a compact frontier
of finitely many disjoint simple closed geodesics and hence U0 is a simple closed curve or a
compact connected surface with geodesic boundary and it is unique.

Let U be a surface which is homeomorphic to a closed annulus with a point removed
from both of its boundary components as in the figure 3.2. It can be constructed from a
finite sided polygon in H2 with two vertices on S1

∞ by identifying two of its edges as shown

in the figure 3.1. The universal cover Ũ is obtained by repeating the polygon via the gluing
isometry along its axis. The image of the axis of the isometry after the identification, which
is a closed curve, forms the core U0 of U . Observe that U − U0 is a disjoint union of two
crowns both of which have the associated set of points on S1, A, to be a singleton set.

Lemma 3.1.6. Let L be a geodesic lamination without any closed leaves. Then no point on
S1
∞ can be an endpoint of infinitely many leaves of L̃, the lift of L in H2.

Proof. Let x ∈ S1
∞ be an endpoint of infinitely many leaves and hence an endpoint of

infinitely many boundary since they are dense in L̃. This implies that there exists some
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Figure 3.2:

g ∈ Γ − 1 which leaves x invariant and let its axis be C̃. For a leaf γ̃ with one endpoint x,
∪n∈Zgn(γ̃) contains C̃ which means L̃ also contains C̃. But this would mean that there is a
closed curve in L.

3.2 Derived lamination and its properties

As defined before L′ is the derived lamination of L.

Lemma 3.2.1. Every closed leaf C in a geodesic lamination of F has a neighbourhood N
such that L′ ∩N ⊂ C.

Proof. Let F = H2/Γ and L̃ be the lift of L in H2. Let C̃ be one of the components lift of

C and g be an element of Γ with C̃ as axis and which translates points on C̃ by a distance
d. Then there exists an ε such that for any γ̃ which is at a distance less than ε from C̃ the
distance of the feets of perpendicular from the endpoints of γ̃ on to C̃ is greater than d.
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Figure 3.3:

So gγ̃ and γ̃ will intersect transversally. Look at the figure 3.3. Let this ε neighbourhood
be Ñ which maps to N . If any γ̃ meets Ñ then it has an endpoint in common with C̃.
The proof of the previous lemma shows that there are finitely many leaves between γ̃ and
gγ̃. This shows that since these leaves are isolated they don’t belong to L̃′ and hence do
not belong to L′. Therefore there exists a neighbourhood of C with the above mentioned
properties.

Theorem 3.2.2. Let L be a geodesic lamination on F and L1 be a sublamination of L, then
L′ ∩ L1 is a union of components of L′.

Proof. Define L2 =union of all non-closed leaves of L1 ∩ L′. Since there is a neighbourhood
for any closed leaf C in L that contains only C according to the lemma 3.2.1, we get L2 is
closed and hence is a lamination without closed leaves. If L′ ∩U is contained in the core U0

of U , where U is a principal region of L2. Then L′ − L2 which the collection of all closed
leaves is equal to L′ ∩ V0 where V0 is the union of cores of all principal regions of L2. Since
V0 is compact L′ ∩ V0 is compact and hence L2 is open is L′. Thus we have L2 is both open
and closed in L′ and that L′ ∩ L1 = L2 ∪ {isolated leaves} is both open and closed in L′.

Let H2 be the lift of F , L̃ be the lift of L, L̃′ be the lift of L′ and Ũ be the lift of U . For
any leaf of L̃, leaf ∩ Ũ is in Ũ . It is a union of finitely many diagonals if Ũ is finite sided
polygon and thus each one of them is isolated, Ũ ∩L′ = φ. The other case is if U has a core
U0 such Ũ ∩ Ũ0 is the covering and Ũ − Ũ0 is a universal cover of a crown. It can be seen
that a leaf has one end in such a component if Ũ ∩ L̃ is contained in Ũ0. The lemma 3.1.6
implies that such a leaf is isolated and we have Ũ ∩ L̃′ ⊂ Ũ0 as required.
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Corollary 3.2.2.1. For any lamination L, L′′′ = L′′ and for a lamination without closed
leaves L′′ = L′.

Proof. By the lemma 3.1.3 L′ has only finitely many components K1, K2, ..., Kr. L′′ =
K ′1∪K ′2∪ ...∪K ′r. Let L1 = L′′ then by the above theorem L′′ = K1∪K2∪ ∪Ks where s ≤ r
after renumbering. So K ′i = Ki(i ≤ s) thus L′′′ = K ′1∪K ′2∪ ...∪K ′s = K1∪K2∪ ...∪Ks = L′′.
Now if L′′ 6= L′ it would mean that s < r hence K ′r is empty and by the lemma 2.1.7 Kr is
a disjoint union of finitely many simple closed curves. Therefore when L′′ 6= L′ there is at
least one closed leaf.

Corollary 3.2.2.2. Every leaf of L is dense in L if and only if L is connected and L′ = L

Proof. γ be a leaf of L and L1 = γ̄ ⊂ L. By the theorem, a L being connected and L′ = L
would imply that γ is dense in L. If every leaf is dense in L, then L′ = L and is connected.

Lemma 3.2.3. Let F1 and F2 be two surface and L a geodesic lamination on F1. Let
h : F1 −→ F2 be a homeomorphism, then (ĥ(L))′ = ĥ(L′) and for any principal region U
of L there is an unique ĥ(U) for ĥ(L) whose bourdary leaves are precisely the images of
boundary leaves of L under ĥ. If U has core U0 then the core of ĥ(U) is ĥ(U0) such that its
frontier is the image of frontier of U0 under ĥ.

Proof. The idea of the proof is that the notions of isolated leaves, boundary leaves, core of
a pricipal region can all be defined in terms of the cyclic ordering of points on S1

∞ and this
is preserved by ĥ in a way similar to that of the theorem 2.2.4
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Chapter 4

Automorphisms of surfaces

We study some results about non-periodic irreducible automorphisms. We then construct
two laminations for a given non-periodic irreducible automorphism h where one of them,
stable lamination, is invariant under h and the second one, unstable lamination, is invariant
under h−1.

4.1 Properties of Automorphisms

Definition An automorphism h : F −→ F of a closed orientable hyperbolic surface is called
periodic if for some positive integer n, hn is homotopic to identity.

Definition An automorphism h : F −→ F of an closed orientable hyperbolic surface is
called reducible is it leaves an essential 1-submanifold invariant.

If hn is homotopic to identity, there exist g isotopic to h such that gn is identity.
For a hyperbolic surface F , h is an reducible automorphism if and only if there exist a
geodesic 1-submanifold C of F such that ĥ(C) = C.

Lemma 4.1.1. Let h : F −→ F induce a map between the first homology group, h∗ :
H1(F ) −→ H1(F ). Let the matrix of this map with respect to some fixed basis be A. If the
characteristic polynomial χh(t) of A is irreducible over Z, has no roots of unity as zeroes,
and is not a polynomial in tn for any n > 1, then h is irreducible and non-periodic.

Proof. Suppose the automorphism h is periodic, then hn∗ = I which means that the charac-
teristic polynomial χA has the roots of unity as its roots.
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If h is reducible then that would mean that h(C) = C after some homotopy for some
essential 1-submanifold C. Let us assume it to be essential geodesic 1-submanifold (lemma
1.2.6). There are two cases for such an h, either some component of C does not separate F
or the other case where all the components of C separate F .
Case 1: Let C1 be a component of C which does not separate F . Since for some n > 0
hn∗ [C1] = [C1], 1 is an eigenvalue of A and hence A has roots of unity as its roots.

Figure 4.1:

Case 2: Let F0 be a component of F −C which has its frontier a single component of C.
Given Fr = hr(F0) there exists a minimum positive n such that Fn = F0. Thus

H1(F ) = H1(F0)
⊕

H1(F1)
⊕

...
⊕

H1(Fn−1)
⊕

H1(G)

where G is F minus all the Fi’s. h∗ permutes all Fi’s in a cyclic order. So A for n = 4
would look like the following.

A =


0 0 0 B 0

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 0 C


χA = |A− tI| = |B − tnI||C − tI|, since we know χA is irreducible and F0 is at least genus
1, we have χA = |B − tnI| which is a polynomial in tn.

Therefore if h∗ of an automorphism h satisfies all of the required conditions then it can
be neither periodic nor reducible.
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Definition If L1, L2 are two laminations then L1 t L2 be the set of transverse intersection
points of L1 and L2.

Lemma 4.1.2. If h : F −→ F is a non-periodic automorphism of a closed orientable
hyperbolic surface, then ĥ(L) = L for some L ∈ Λ(F ).

Proof. By the theorem 1.2.7 we know that since h is non-periodic there exists some simple
closed geodesic curve C such that for all n > 0 ĥn(C) 6= C. Since Λ(F ) is compact the
sequence ĥn has a converging subsequence ĥni . Let this sequence converge to K. Since
each of the ĥn is distinct K is not an isolated point in Λ(F ). This means K ′ is non-empty
(lemma 2.1.7). For some fixed r > 0, ĥni+r(C) converges to ĥr(K) and |ĥni(C)∩ ĥni+r(C)| =
|C ∩ ĥr(C)| = Nr. If |K t ĥr(K)| > Nr then for every Nr + 1 points a small neighbourhood
will contain at least one point of ĥni(C) ∩ ĥni+r(C) for a sufficiently large ni. This is not
possible hence |K t ĥr(K)| ≤ Nr. It follows that K t ĥr(K ′) is empty.

For r, s such r 6= s, ĥr(K ′) and ĥs(K ′) have no transverse intersections. E = ∪rĥr(K ′)
is non empty disjoint union of simple geodesics. By lemma 2.1.2 L = E is the required
lamination.

Corollary 4.1.2.1. There is a lift k̃ of some positive power of h such that its restriction on
S1
∞ has two fixed points.

Proof. Since there exists a L such that ĥ(L) = L, given any oriented boundary leaf γ of L,
for some n > 0 ĥn(γ) = γ to itself. Let γ̃ be some component of the lift of γ and let j̃ some
lift of ĥn. Then there exists a deck translation g of H2 such j̃(γ̃) = gγ̃. Then there is a

k̃ = g−1j̃ which also a lift of ĥn which maps γ̃ to itself and hence fixes its endpoints on S1
∞.

This is the required lift.

Lemma 4.1.3. If h : F −→ F is an irreducible automorphism and ĥ(L) = L for some
L ∈ Λ(F ), then each component of F − L′ is contractible and each leaf of L is dense in L′.

Proof. The union of closed leaves is a geodesic 1-submanifold. Since ĥ(L) = L it has to leave
this invariant. But h is irreducible hence the set of all closed leaves of L is empty. All the
component of F − L is contractible. Otherwise these principal regions will have non-empty
compact cores by lemma 3.1.5 and the union of all these cores, let it be V0, have as frontier
FrV0 which is a geodesic 1-submanifold invariant under ĥ and hence is empty.

Since ĥ leaves L′ invariant F − L′ is also contractible. This implies L′ is connected. If
γ is a leaf and L1 = γ̄, then by lemma 2.1.7 L′1 ⊆ L1 ∩ L′. By theorem 3.2.2, γ is dense in
L′.

Definition Let L be an geodesic lamination of on an orientable surface, and let L̃ be the
lift of L. A stable interval (of L) is a closed interval I ⊂ S1

∞ such that for any two points

P,Q ∈ IntI there is a leaf δ̃ ⊂ L̃ whose endpoints separate P and Q from ∂I.
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Remark 4.1.4. Let k̃ be a lift of hm where h : F −→ F is non-periodic and irreducible
and k̃(I) = I for some stable interval I of L where ĥ(L) = L. Then the endpoints of I are
contracting fixed points and z is an expanding fixed point.

Lemma 4.1.5. Every irreducible, non-periodic automorphism h : F −→ F satisfies the
following. There is a L ∈ Λ(F ) such that ĥ(L) = L. If a lift k̃ of a positive power of h maps

a stable interval onto itself, then the restriction of k̃ to I has a fixed point z ∈ IntI such
that for all P ∈ I − z, k̃(P ) converges to a point in ∂I.

Proof. Consider the lamination in constructed in lemma 4.1.2. L̂ = L and K t L = φ,
where K was the limit of ĥni(C) for some simple closed curve C. Let k̃ be lift of hm for some

m > 0 and let I be an stable interval which is invariant under k̃. The geodesic γ̃ joining the
endpoints of this stable interval is a leaf of L̃. Since every leaf of L is dense in L′ (lemma
4.1.3), the image γ of γ̃ is dense in L′ and C ∪ L′ 6= φ so C ∪ γ 6= φ. This means that some

component C̃ of the lift of C will one endpoint A ∈ IntI and the other endpoint B 6∈ I.
k̃n(A), k̃n(B) converge to A∞, B∞ with A∞ ∈ I and B∞ 6∈ IntI. To see that A∞ ∈ ∂I

let us assume to the contrary that A∞ ∈ IntI. This means there is a leaf δ̃ ⊂ L̃ whose
endpoints separate A∞ and ∂I. Recall that ĥni(C)→ K and k̃ is the lift of hm.

There must be infinitely many ni is some residue class modulo m so that ĥmqi(C) must

converge to ĥr(K) for some sequence qi → ∞ and some integer r. The geodesic C̃∞ with

endpoints A∞, B∞ is a lift of a leaf of ĥr(K) which meets δ̃ transversely. Since K and hence
ĥr(K) has no transverse intersection with L our assumption is wrong. Hence A∞ ∈ ∂I and

it is a contracting fixed point of the restriction of k̃ to I. If U ⊂ I which has A, A∞ as
its endpoints then notice that k̃ moves every point of U closer to A∞. Now there exists
another open set which is a neighbourhood V of the other endpoint of I such V and k̃(V )

are disjoint from U . Such a V can be found because h̃ is continuous and restricts to identity
on ∂I. Because I is a stable interval, there exists a leaf δ̃ such that one of the endpoints
X ∈ U and the other endpoint Y ∈ V . Notice that k̃(X) and k̃(Y ) separate X, Y from ∂I.

Let us consider the sequences k̃−n(X), k̃−n(Y ) with limit points X∞, Y∞. It can be shown
X∞ = Y∞ which is then equal to z since all points of I other than z = X∞ = Y∞ move
towards ∂I. Assume that X∞ 6= Y∞, then J = S1

∞ − {X∞, Y∞} and J 6⊂ I is also a stable

interval J with k̃(J) = J with both endpoints expanding fixed points (this is because they
were ). But as shown before for a stable interval at least one of the endpoints have to be
contracting endpoint. This is a contradiction and hence the assumption that X∞ 6= Y∞ is
wrong.

Theorem 4.1.6. If h : F −→ F is a non periodic irreducible automorphism then any lift
of hm, m > 0, has finitely many fixed points on S1

∞ which are alternately expanding and

contracting. There is unique perfect lamination Ls, invariant under ĥ, such that L̃s contains
the geodesics joining consecutive contracting fixed points of any lift of a positive power of h.
Every leaf of Ls is dense in Ls.
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Remark 4.1.7. Ls is the stable lamination of h. The stable lamination of h−1 is called
unstable lamination Lu.

Proof. Let L be the lamination described in the previous lemma. The lemma 4.1.3 states
that if lamination L is fixed under an irreducible automorphism then every leaf of L is dense
in L′, which all leaves of L′ are dense in L′ hence L′ is perfect. Let k̃ be the lift of hm, for
some m > 0. Then one of the following happens.
Case 1: k̃ fixes the endpoints of a boundary leaf of L̃′. Then that leaf γ̃ is the frontier of a
unique component Ũ of H2 − L̃′ since L′ is perfect. Ũ is finite sided polygon as lemma 4.1.3
implies and k̃ fixes all vertices of Ũ . The closure of S1

∞−{vertices of Ũ} are stable intervals

of L and the vertices of Ũ are the contracting fixed points of k̃ and there is one expanding
fixed point between two vertices. There are no other fixed points of k̃.

Figure 4.2:

Case 2: k̃ fixes the endpoints of a non-boundary leaf of L̃′. In this case the closure of
S1
∞ less the endpoints of the leaf are two stable intervals where the endpoints of the leaf are

contracting points and expanding fixed points are the only pair of fixed points separating
them.
Case 3: k̃ does not fix both endpoints of any leaf. Let x ∈ S1

∞ be a point fixed by k̃. By

lemma 3.1.6 it can not be an endpoint of any leaf of L̃′ and that any geodesic with x as
an endpoint meets L̃′ transversely. Let U(γ̃) be the component of S1

∞ − {endpoints γ̃} not

containing x, then U(γ̃) for all the leaves of L̃′ form a cover of S1
∞ − x. Also for two leaves

γ1, γ2 of L̃′, U(γ̃1), U(γ̃2) are either disjoint or nested. Therefore, any compact subset of

S1
∞−x is contained in one of the U(γ̃). Now there will be a leaf such that U(γ̃)∩k̃(U(γ̃)) 6= φ.

This means given that A, B are the two endpoint of this leaf, the sequences k̃(A), k̃n(B)

will converge to the same point which will be a contracting fixed point of k̃|S1
∞ . Similarly
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Figure 4.3:

the sequences k̃−n, k̃−n also converge to an expanding fixed point.

As required in the statement of the theorem, all the three cases have alternately con-
tracting and expanding fixed points of k̃ on S1

∞. This means L′ satisfies all the properties

of Ls. Now to see this observe that given that γ̃ is a boundary leaf of L̃′ then its endpoints
are fixed by some lift k̃ of hm for some m > 0 (Corollary 4.1.2.1). Recollecting from the case
1, we know these are the consecutive contracting fixed points. Since γ is dense in L′, any
lamination satisfying the properties of Ls coincides with L′.

Lemma 4.1.8. For an irreducible, non-periodic automorphism h of F and an essential closed
curve C in F , hm(C) is homotopic hn(C) if and only if m = n.

Proof. We can take C to be a geodesic closed curve. Assume the contrary to the conclusion
of lemma 4.1.8. Let K = ∪ĥq(C) is a finite union of geodesics then the preimage of K is a
closed subset of H2. This can be seen from the following argument.
Let γ̃ be a lift of a leaf of Lu with endpoints X, Y ∈ S1

∞ which k̃ the lift of hm fixes (for some

m). C t Lu 6= φ and since γ is dense in Lu, some lift C̃ of C will have non empty intersection

with γ̃. If A,B are the endpoints of C̃, then the sequences k̃n(A), k̃n(B) will converge to

A∞, B∞ which are contracting fixed points of k̃|S1
∞ . The geodesic A∞B∞ is either a leaf of L̃s

or is contained in H2− L̃s (theorem 4.1.6). But A∞B∞ is in the preimage of K which implies
that for some q ∈ Z ĥq(C) does not meet Ls transversely, which is a contradiction.

Theorem 4.1.9. Let h : F −→ F be an irreducible, non-periodic automorphism. Then there
exists an m > 0 such that for any simple closed curved C in F , limn→∞ ĥmn converges to a
lamination KC where KC is one of the finitely many laminations containing Ls.

Proof. The homotopy classes hn(C) are all distinct for different n ∈ Z according to the
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previous lemma which implies each of the closed geodesics ĥn(C) are also distinct. Just as
in the lemma 4.1.2 let ĥni → K ∈ Λ(F ), then Ls = (∪r∈Zĥr(K ′))′ contains a leaf of K.
Since each leaf of K is dense in Ls, K ⊇ Ls. There are only finitely many laminations
K1, K2, ..., Kn since complement of Ls in Ki is a finite union of diagonals of the principal
regions of Ls. There is an m which depends on h and not on C such that ĥm fixes Ki. Thus
ĥmn(C) converges to one of the finitely many Ki’s as n→∞.
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Chapter 5

Pseudo-Anosov Automorphisms

In this final chapter of part I we will study the pseudo-Anosov automorphisms of closed
orientable hyperbolic surface. We will show that all non-periodic irreducible automorphisms
are pseudo-Anosov. To show this we need to understand the structure of such an automor-
phism and to study this Thurston introduced invariant measures on the stable and unstable
laminations. Using cantor function we will construct two singular foliations transverse to
each other from the stable and unstable lamiantions. Now by studying these foliations using
the transverse measures on these foliations we will see that each isotopy class of non-periodic
irreducible atomorphism is represented by a pseudo-Anosov automorphism leaving these fo-
liations invariant.

5.1 Singular Foliation

Lemma 5.1.1. Let h : F −→ F be a non-periodic irreducible automorphism of a closed
oriented hyperbolic surface. Then h is isotopic to a homeomorphism h′ which satisfies
h′(Ls) = Ls and h′(Lu) = Lu.

Proof. Let h̃ : H2 −→ H2 be the lift of h : F −→ F which has been extened to H2 ∪ S1
∞

continuously. Given the lift L̃s, L̃u of Ls, Lu, the restriction of h̃|S1
∞ induces a bijection h̃′

on L̃s∩ L̃u. This is continuous because the angle of intersection between leaves of L̃s, L̃u are
bounded away from 0 and π. This function can be extended linearly over each interval of
L̃s− L̃u and L̃u− L̃s with respect to the hyperbolic metric. This gives a continuous bijective
map over all of L̃s ∪ L̃u which is also uniformly continuous.

Closure of regions of F − (Ls ∪ Lu) are 2k − gons where for k ≥ 3 there is only such
region for each k in the complementary region of Ls and hence finitely many in all. For k = 2
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case there there are infinitely many. h̃′ can be extended over the non-rectangular regions by
π1(F ) equivariant choice of homeomorphism. By setting up grids on rectangles formed by

the correspondence between opposite sides using hyperbolic distance we can extend h̃′ over
them.

Figure 5.1:

A linear extension of h̃′ over the grids (see figure 5.1 below) give a continuous extention

of h̃′ : H2 −→ H2. h̃′ induces the homeomorphism h′ : F −→ F which leaves Ls and Lu

invariant. Since the lifts of both h and h′ induce the same action on S1
∞, which implies they

are homotopic and hence isotopic.

Definition A singular foliation F on a surface F is a disjoint union of leaves whose union
if the whole of F . For a discrete finite set S in F the chart, all points x ∈ S have a chart
φ : U −→ R2 which maps U ∩ F to Wk, where Wk is a singularity with k ”separatrices” (see
figure 5.3). This set S is the set of all singular points. For any x ∈ F − S the chart maps
φ : U −→ R2 takes U ∩ leaves to horizontal intervals.

Figure 5.2:
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Definition A separatrix of a singular foliation F is a maximal arc which begins at a singu-
larity and is contained in a leaf of F.

Figure 5.3: Wk for k = 4

If two singular foliations which have the same singular set and at every other point the
leaves are transverse to each other then they are said to be transverse singular foliations. At
the singular point the foliations should form the standard Vk model as shown in the figure
5.5 below.

Figure 5.4: Figure 5.5: Vk for k = 4

Lemma 5.1.2. If h : F −→ F is a non-periodic irreducible automorphism then h is isotopic
to an automorphism h∗ : F −→ F such that h∗(F

s) = Fs and h∗(F
u) = Fu for some pair of

transverse singular foliations Fs, Fu.
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Proof. Consider the following equivalence relation on F . x ∼ y if one of the following is true:

1) x, y belong to the closure of the same component of F − (Ls ∪ Lu).

2) x, y belong to the closure of the same component of Ls − Lu.

3) x, y belong to the closure of the same component of Lu − Ls.

4) x = y.

F/ ∼ is homeomorphic to F and the laminations Ls, Lu are mapped to the transverse
singular foliation Fs,Fu.

Figure 5.6:

Let π : F −→ F/ ∼ be the projection map. Let x ∈ F be a point which is on a non-
boundary leaves γ ⊂ Ls and δ ⊂ Lu. Let σ, τ be short closed segments of the leaves γ, δ
centred at x. The cantor function associated bet the cantor sets σ ∩ Lu and τ ∩ Ls are
α : σ −→ [−1, 1] and β : τ −→ [−1, 1] such that α(x) = β(x) = 0. For some small ε, α, β
induce a homeomorphism φ : U −→ [−ε, ε]× [−ε, ε], where U is rectangular neighbourhood
of π(x). φ · π takes the components of U ∩ Ls to horizontal intervals and the components of
U ∩ Lu are taken to vertical intervals.

Now if x belongs to a component of Ls−Lu or Lu−Ls, the map to [−ε, ε]×[−ε, ε] is formed
from two half-charts. Let x ∈ δ in Lu − Ls then a half chart map takes the region starting
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from intersection of δ with boundary leaf of Ls closest to x and maps it to [−ε, ε]× [−ε, 0].
The rectangle components of F − (Ls ∪ Lu) are mapped using quarter charts, for 2k-gons
(1/2k)th charts and so on. The associated charts for 2k-gon give standard Vk model and
hence give rise to singularity.

Figure 5.7:

Now, π can be approximated by a homeomorphism Θ from F onto F/ ∼ and it can be
seen that π maps Ls, Lu to Fs,Fu respectively on F/ ∼. Let Fs,Fu be Θ−1 ·π(Ls), Θ−1 ·π(Lu)
respectively. The lemma 5.1.1 states that for an h which is non-periodic and irreducible,
there exists h′ a homeomorphism which preserves the stable and unstable lamination. This
h′ induces an homeomorphism h′′ of F/ ∼ which preserves the image π(Ls), π(Lu). Thus
h∗ = Θ−1 · h′′ ·Θ : F −→ F .

5.2 Pseudo-Anosov Automorphism

Definition Let there be a non-negative Borel measure for each transverse arc α to a singular
foliation F denoted as µ|α with the following properties:

1. If β is a subarc of α, then µ|α restricted to β gives µ|β.

2. Given two arcs α0, α1 both transverse to F and are related by a homotopy α : I×I −→
F where α(I × 0) = α0, α(I × 1) = α1, and α(a× I) is on some leaf of F for all a ∈ I,
then µ|α0 = µ|α1 .

Then such a measure is called a transverse measure on F.
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Definition If an automorphism h acts on a pair of transverse singular foliations Fs,Fu

equipped with transverse measures µs, µu such that

h(Fs, µs) = (Fs, λµs)

h(Fu, µu) = (Fu, λ−1µu)

for some λ > 0, then it is called an pseudo-Anosov automorphism.

h(µ) above denotes the transverse measure given by the equation h(µ)|h(α) = µ|α. If h(µ)
was defined by the equation h(µ)|α = µ|h(α) then λ−1 will replace λ in the above definition.
As a consequence of the definition above (h1 · h2)(µ) 6= h2(h1(µ)) and rather (h1 · h2)(µ) 6=
h1(h2(µ)).
The automorphism h∗ in the lemma 5.1.2 is a pseudo-Anosov automorphism. The lemmas
that will be used to prove the next theorem will give a construction of transverse measure
on Fs, Fu.

Let h∗ be the automorphism in lemma 5.1.2. Let h be the abbreviation of h∗ for the
further discussions.

Lemma 5.2.1. The foliations Fs,Fu have no closed leaves. Each separatrix of the above
foliations is dense in F and has only one singular point. Let α be a separatrix of Fu starting
at singularity s. There is an m > 0 such that for σ ⊂ α, hm(σ) ⊂ σ and hm(x) ∈ (s, x) ⊂
σ ∀x ∈ σ. After replacing h with h−1, the above results hold for separatrices of Fs.

Lemma 5.2.2. There are closed sets A, B ⊂ F with the following properties.

1. A is a union of closed arcs each of which are contained in some separatrix of Fs.

2. B is a union of closed arcs each of which are contained in some separatrix of Fu.

3. Every component of F − (A∪B) is carried to (0, 1)× (0, 1) by a homeomorphism which
takes leaves of Fs to horizontals and leaves of Fu to verticals.

4. h−1(A) ⊂ A.

5. h(B) ⊂ B

Proof. B ∩ σ is closed subarc of a separatrix σ of Fu which has the singuarity of σ as one of
its endpoints. Every separatrix has such an arc which is in B. Let it be βσ. Using lemma
5.2.1 we can choose βσ such h(βσ) ⊂ βh(σ). This shows that B is a set as defined in condition
2. by construction and it also satisfies condition 5. .

The A as required by condition 1. is the union of closed arcs in F . Each of these arcs lies
on a leaf of Fs, has some point in F as one end and an endpoint of βσ as the other endpoint
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and lies in F − B. Consider a point x in one of the component U of F − (A ∪ B), then x
lies on some closed subarc of some leaf of Fs which has its endpoints on βσ1 and βσ2 of B.
From the construction of A it can be seen that βσ1 and βσ2 do not depend on the choice
of x. Therefore every point in U lies on some subarc of a leaf of Fs with endpoints on the
same two arcs βσ1 and βσ2 . The set of all interior points of U form a set homeomorphic to
(0, 1)× (0, 1) and hence the condition 3. is satisfied.

Figure 5.8:

If some component of A doesn’t contain a singularity point then the sets A, B need
to be readjusted so that all components of A and B have singularity points. Once this is
achieved the conditions 1. and 4. will also be satisfied. Let α be a closed arc in A without
any singularity point then its endpoints lie on the interior of βσ1 and βσ2 . This contains an
endpoint of some βσ ⊂ B. By shrinking βσ towards its singuarity α is translated to a parallel
arc α′ both A and B are modified. Continue doing this until α′ lands completely on another
component of A. This operation reduces the number components of A and hence we get A
after a finite repeation of this process. The conditions 1. and 4. follow.

Definition Let ρ : I × I −→ F be a map which is an embedding on the interior, maps
(point × I) to a subarc of a leaf of Fu and maps (I × point) to a subarc of a leaf of Fs.
Then ρ is called a rectangle R. For a rectangle R, let ∂uR denote ρ(∂I × I) and ∂sR denote
ρ(I × ∂I).

Figure 5.9:
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Corollary 5.2.2.1. There is a decomposition of F into a finite union of rectangles R1, ..., Rn

with the following properties.

1. If i 6= j then IntRi ∩ IntRj = φ.

2. h(
n⋃
j=1

∂uRj) ⊂
n⋃
j=1

∂uRj.

3. h−1(
n⋃
i=1

∂uRi) ⊂
n⋃
i=1

∂uRi.

It is called the Markov partition for h.

Now, after building all the required tools we are finally ready to understand the structure
theorem of automorphisms of surfaces given by Thurston for closed surfaces.

Theorem 5.2.3. Every non-periodic irreducible automorphism of a closed orientable hyper-
bolic surfaces is isotopic to a pseudo-Anosov automorphism.

Proof. We will now construct the transverse measures µs, µu on Fs,Fu such that

h(Fs, µs) = (Fs, λµs)

h(Fu, µu) = (Fu, λ−1µu)

. From the previous lemma we know that F can be broken up into union of rectangles. To
each of these rectangle Ri the measure µs will assign a ’height’ yi which will be called the µs

measure of a vertical cross section of Ri and the measure µu will assign a ’width’ xi which
will be called the µu measure of a horizontal cross section of Ri. We will determine necessary

conditions on the xi and yi. Since h(
n⋃
j=1

∂uRj) ⊂
n⋃
j=1

∂uRj, for some rectangle Rj, h(Ri)∩Rj

consists of finitely many subrectangles S1, ..., Saij . Let A be a square matrix [aji]. Since
each of the vertical cross sections of h(Ri) have h(µs) measure equal to yi and we require

h(µs) = λµs height of of each Sk is λ−1yi. Rj =
n⋃
i=1

(h(Ri) ∩Rj).

yj =
n∑
i=1

ajiλ
−1yi.

Therefore the column vector y = (yi) is an eigenvector of A with eigenvalue λ. The column
vector x = (xi) is a eigenvector of At with eigenvalue λ−1.

Lemma 5.2.4. The matrix A has an eigenvector y with yi > 0, ∀i, corresponding to an
eigenvalue λ > 1.
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Figure 5.10:

Proof. If C is the cone of vectors in Rn with non-negative coordinates, the extention of
brouwer’s fixed point theorem would imply that the transformation by matrix A which maps
C to itself has a fixed point. This is the required eigenvector with no negative coordinates.
Now to see that it has all coordinates positive note that if some coordinate yi = 0 then there
is a yj 6= 0 since y 6= 0. This means ijth entry of A is zero which implies that hm(Ri) is

disjoint from Rj for all m > 0. But
∞⋃
m=1

hm(Ri) contains a separatrix of Fs which dense in F

by lemma 5.2.1 and hence cannot miss Rj which is a contradiction. Hence every coordinate
of y is strictly positive. Also, for some m > 0 all the entries of Am are strictly positive
integers which shows that λ corresponding to y is strictly greater than 1.

Back to the proof of theorem 5.2.3. Let α be a closed arc transverse to Fs. Then for each

m > 0, α =
n⋃
i=1

α ∩ hm(Ri) and let ui,m denote number of components of α ∩ hm(Ri). We

can see that the ”length” of α =
n∑
i=1

λ−myiui,m.

Now with this in mind define

µs(α) = lim
m→∞

n∑
i=1

λ−myiui,m.

The limit exists because the ”error” in the above sum arises only from the components
of α ∩ hm(Ri) which have the endpoints of α in it. This defines a measure µs transverse
to Fs such that h(µs) = λµs. We can construct µu transverse to Fu by applying similar
construction on h−1 such that h−1µu = λ̄µu for some λ̄ > 0. Then h(µu) = λ̄−1µu. Let
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µ = µs × µu be the product measure on F . µ(F ) = xty is finite and non-zero. Therefore

µ(F ) = [h(µ)](F )

= [h(µs)× h(µu)](F )

= [λµs × λ̄−1µu](F )

= λλ̄−1[µs × µu](F )

= λλ̄−1µ(F )

This means λ̄ = λ.
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Part II
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Chapter 6

Curve systems

In this chapter we start the second approach to the structure theorem of automorphisms of
surfaces which was developed by Allen Hatcher [AH]. Let M be a compact surface. We study
curve systems on M and define train tracks. Using these train tracks with their measures
we define ML(M). We then see the global structure of ML(M).

6.1 The complex of curve systems

Let us consider a surface M , which may contain boundary components. A subset of M which
is a union of following types of disjointly embedded curves is called curve system:

• simple closed curves which do not bound disks and are not isotopic to boundary, or

• arcs whose endpoints lie on ∂M which, relative to their endpoints, are not isotopic to
arcs of ∂M .

The set of the isotopy classes of curves systems in M is denoted by C S (M). If Ci’s
are connected, non-isotopic curve systems in M and if niCi denotes ni parallel copies of Ci,
then every curve system can be written as n0C) + n1C1 + ... + nkCk, where C0, C1, ..., Ck
are some subcollection of curve systems in M . Let of the projective isotopy classes of curve
systems, PS (M), be the set constructed by identifying a non-empty curve system with all
its positive parallel copies in M .

Given a curve system C S (M), we can construct a simplicial complex PS(M) such that
the k-simplices of this complex bijectively corresponds with the isotopy classes of (k + 1)-
tuple [C0, C1, ..., Ck]. We get the faces of such a k-simplex by deleting some Ci’s from the
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Figure 6.1: Figure 6.2:

Figure 6.3: Figure 6.4:

above (k + 1)-tuple. Those points of PS(M) which have rational (equivalently integral)
projective barycentric coordinates is the PS (M).

PS(M) are usually infinite simplicial complexes and hence non-compact. But we can
always give a natural compactification PL(M), which is a finite polyhedra, to PS(M).

Example Let M be a pair of pants. Since any simple closed curve will be isotopic to ∂M
the types of isotopy classes of curves are the six arcs which are of two types, the one which
has both the endpoints lying on the same boundary component and the other which has
endpoints on two different boundary components. Hence PS(M) has 6 vertices and they
span four 2-simplices as shown in the figure 6.1
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Figure 6.5:

Example If M is a once punctured torus, the circles and arcs upto isotopy are given by
their classes in H1(M,∂M) which can be geometrically interpreted as slopes in Q ∪ {∞}.
The PS(M) is shown in the figure 6.2. It is the whole square minus the irrational points on
its boundary. If [C0, C1] is an edge from a rational point on the perimeter of the square then
C0 ⊂M is a circle and C1 is an arc with the same slope. The 2-simplices [C0, C1, C2] which
fill up the interior of the square are such that Ci’s have different slopes.

Example Let M be a twice punctured RP 2. Look at its polygonal representation i.e. a
square with no vertices and boundaries are identified in anti-podal way. The PS(M) is as
shown in the figure 6.3.

Example M be the Klein bottle with one point removed. The PS(M) is very similar to
the complex of once punctured torus. The difference is this is simpler because it has lesser
combinations of slopes (isotopy classes of curves). See figure 6.4.

6.2 Train tracks

A train track τ ⊂ M is a compact submanifold which is transverse to ∂M , except at some
finite number of points known as branching points where one leaf splits into two leaves such
that at those points all the three arcs meeting there have the same tangent direction. Locally
it looks as shown in the figure 6.5. We say that a train track is good if it doesn’t have any
of the complementary regions shown in the figure 6.6.

We can define a measure on τ by assigning a value αi ≥ 0 on the ith non-singular arc and
at the branching points by defining branching equations αi = αj + αk so that the measures
add up. The set of these measures (α1, ..., αn) is a cone C(τ) in Rn. If a measure α for a
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Figure 6.6:

train track has all coordinates integers then we get a curve system Cα which has αi parallel
copies of the ith non-singular arc. We say Cα is carried by τ .

Lemma 6.2.1. Let τ be good and let Cα be a curve system carried by τ , then Cα ∈ C S (M).

Proof. Let N(τ) be a fibered neighbourhood of the train track where the fibers are transverse
to the curve system Cα. Extend the tangent line field of Cα to the whole of N(τ) which can
then be extended to the whole of M which transverse to ∂M . This can be done because the
line field is transverse to the fibers of N(τ) and tangent to ∂N(τ)− ∂M . This extension to
the whole of M has singularities. Now each of these singularities has an index. The sum of
the indicies at all the singularities of the line field is twice the Euler characteristic χM . For
M to contain a good track its χM has to be negative.

Now if Cα contains a circle bounding a disk we can see that the index inside the disk
is positive. But since this is a complementary region of a good track the singularities must
have a negative total index. So, Cα can not circles bounding disks. Similarly it can not have
arcs isotopic to ∂M .

6.3 Standard tracks

Let M be a surface, possibly with boundary. Let Si ’s be a collections of disjoint circles
cutting along which gives a decomposition of M into pair of pants P1, ..., Pn where n =
−χM > 0. If M is non-orientable some Si’s will be one sided and have a Mobius band
neighbourhood, let S̃i be the boundary of this neighbourhood.

Let C ∈ C S (M) be a curve system in M which has a decomposition as described
above. Isotope C such that it has minimum intersection with Si’s. Now C has two types of
components which are disjoint, C ′ which are parallel to Si’s and C ′′ ∩ Pj is a curve system
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Figure 6.7:

in C S (Pj). Each of these systems C ′′ ∩ Pj is carried by one of the four basic tracks shown
in the figure 6.7. There are two types of connectors using which we can construct back C
across a two sided Si. They are the one shown in the figure 6.8. These connectors are there
to allow twisting of C along them. If Si is one sided then no non-trivial twisting can happen
along it. So the connector in figure 6.9 is sufficient to carry C ′′ if it meets this Si.

All the 2t4n (t is the number of two sided Si ’s) tracks in M with all their subtracks are
called standard tracks. These standard tracks are sufficient to carry both C ′′ and C ′ which
are parallel to two sided Si’s. If some component of C ′ is parallel to one sided Si’s then we
include Si to the set of standard tracks and it is disjoint from τ .

6.4 The polyhedra ML(M) and PL(M)

For every standard track, C(τ) is the cone of measures of τ where if τ ′ ⊂ τ be a subtrack
then C(τ ′) form the faces of C(τ). With all these identifications we get the polyhedron
ML(M). Now by deleting the 0 ∈ ML(M) and going modulo scalar multiplication, we get
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Figure 6.8: Figure 6.9:

the projectivized finite polyhedron PL(M). The simplicial complex PS(M) can be linearly
embedded into the cells on PL(M). The face [C0, ..., Ck] embeds into the projectivization of
cone of measures of τ which carries C0 ∪ ... ∪ Ck.

Let MLZ(M) be the set of points of ML(M) with integer coordinates. For some closed
curve γ in M , iγ : C S (M) −→ [0,∞) assigns to each curve system C the minimum number
of intersection it has with curves homotopic to γ.

Lemma 6.4.1. Let γ be a closed curve transverse to C, iγ(C) = |C ∩ γ| iff no arc of γ −C
can be homotoped relative to its endpoints into C.

Proof. Let us assume we can reduce the number intersection points of γ with C by a ho-
motopy H : S1 × I −→ M where H(S1 × 0) is γ and also assume that this homotopy is
transverse to C. Because of this H−1(C) ends up being a 1-dimensional sub-manifold of
S1× I which must contain at least one arc with both endpoints on S1× I. The innermost of
these are the arcs which will get homotoped into C by H relative to their endpoints because
they will cut off a half disk in S1 × I.

Theorem 6.4.2. The map MLZ(M) −→ C S (M) is a bijection.

Proof. Clearly, every element of C S (M) can be given integral measures and hence, has a
preimage in MLZ(M) which shows that this map in surjective. The implication of the lemma
6.4.1 is true for an simple closed curve γ in M . Hence iγ(C) = the minimum of the number
of intersection points of C with all embedded closed curves isotopic to γ.

Lemma 6.4.3. Given two curve systems corresponding to distinct points of MLZ(M), they
can be distinguished by their intersection number with one of the loops γi in a finite collection
of loops γm embedded in M .

Proof. First fix a decomposition of M into collection pair of pants. Let the first set of loops
γm be the boundary components of all the Pjs. These curves include ∂M , Si’s and the S̃i’s.
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Figure 6.10:

Figure 6.11:

The boundary weights aj, bj, cj of a curve system C ∩ Pj gives the intersection numbers of
C at boundaries of Pj. If there is a difference in even one of these weights for any two curve
systems, they can be distinguished from each other, this being the simplest case.

Now if there is twisting along some two sided Si, we add a two new curves to the set of γm
to detect the twist parameters e1 and e2. The two sides of Si can belong to the same pair of
pants or to two different pair of pants and the first of the two new loops γm1 added will look
like as shown in the fig 6.10. The intersection with this γm will give some ei. But this does
not distinguish between the direction of the twist along the Si. So, to further distinguish we
add the second new loop γm2 which we obtain by doing a Dehn twist on γm1 along the Si.
Using the figure 6.11 we can identify the direction of the twist.

Now, if we have a one sided Si, then we need to check only for simple closed curves in C
which are parallel copies of Si. That can be measured by adding a loop to the set γm which
is as shown in the figure 6.12. In this case twisting cannot happen.

These are all the loops we need to distinguish between two curve systems.

The above lemma gives us the injectivity.
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Figure 6.12:

Figure 6.13:

Before we had seen that PS(M) embeds linearly into PL(M), now, we can see further
that the set PS (M) (which the set point of PS(M) with rational barycentric coordinates)
is in a bijective correspondence with the rational points of PL(M). This set is dense in
PL(M) and hence rational points are dense in C(τ).

6.5 The Global structure of ML(M) and PL(M)

Let M be a surface, possibly with boundary, where χ = χM and b be the number of boundary
components.

Theorem 6.5.1. ML(M) is piecewise linearly homeomorphic to R−3χ−b × [0,∞)b and pre-
serves scalar multiplication. The weights at the b boundary components of M contribute to
the [0,∞) factors in the above expression. Thus the projectivized polyhedra PL(M) becomes
piecewise linearly homeomorphic to the join of a sphere S−3χ−b−1 and a simples ∆b−1.
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Figure 6.14:

Proof. If M is an orientable surface without any boundary components, then it’s easy to see
that the decomposition into pair of pants can be arrived at using exactly −3χ/2 Si ’s and
if it has boundary components then there are −3χ − b two sided Si’s. If a surface without
boundary has n one-sided Si’s then it has (−3χ− n)/2 two-sided Si’s so as to get a pair of
pants decomposition. Now if such a surface has boundary components also, then it will have
(−3χ− (n+ b))/2 two sided Si’s. We will prove the result in the theorem using induction on
k which is the number splitting circles Si’s. For a pair of pants, k = 0, ML(M) is [0,∞)3 and
hence the results holds. Now if we have two disjoint surfaces, the ML(M) for the disjoint
union is the product of the ML(M)’s of the two components. Now, we can go on inductively
to prove the result.

Let M ′ be a surface which we get by splitting M along a Si. If it is a two sided Si, then
M ′ has two boundary components more than M with weights (d1, d2) which takes value in
[0,∞)2. But to get M , we identify these two boundaries hence their weights are set equal
i.e. d1 = d2 = d. Now, new weights e1, e2 are introduced while passing from M ′ to M
which are the twisting factor about the Si. Thus new set of weight coordinates are (d, e1)
and (d, e2) each of which lies in [0,∞)2 quadrants as shown in the left image in the figure
6.13. If d = 0 or e1 = e2 = 0, the two alternative subtracks in the figure 6.8 coincide and
hence the quadrants [0,∞)2 get identified to give a R2 as shown in the image on right in the
figure 6.13. Overall the following happens while going from M ′ to M , a subproduct [0,∞)2

in the second factor of R−3χ−b × [0,∞) shifts to an R2 in the first factor.

Now if there is a one sided Si, then to go from M ′ to M we join a Mobius band along the
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S̃i. If d ∈ [0,∞) is the boundary weight of M ′ at S̃i, then as shown in figure 6.9 the weight
will become 1

2
d along the new track in M . If d = 0, then we will have a new weight e ≥ 0

measuring the width of the track which we get by adding a number of parallel copies of Si.
Both this weight define the same subtrack when both are zero i.e [0,∞) = {d} intersects
with [0,∞) = {e} at the origin and nowhere else and their union ends up being an R factor.
Thus going from M ′ to M in this case shifts an [0,∞) factor to R factor in R−3χ−b× [0,∞)b.
This completes the induction.

Example Let M be a once-punctured torus. Let S1 be the splitting circle which gives
the pair of pants P1. Here the weights on the boundary components of P1 which will get
identified to give S1 must match. Therefore, out of the eight combination formed by of four
basic train track and two connectors, we will only need the combinations of the two basic
tracks as shown in the figure 6.14. These four basic tracks cover ML(M). Each of these
corresponds to a ’octant of R3’ component in ML(M) and the projectivization of this yields
PL(M) = S1 ∗∆0 which is an piecewise linear identification of four 2-simplices as shown in
the figure 6.14.

68



Chapter 7

Measured laminations

We will now try to see what kind of topological objects are the non integral points of ML(M)
and the irrational points of PL(M). This turns out to be the set of measured laminations
on M and then we show that its bijective to ML(M). After this we have finally give the
proof of the structure theorem.

7.1 Construction of measured laminations

Let τ be a train track with a positive measure α ∈ C(τ) and let N(τ) be a fibered neighbour-
hood of τ . Look at the decomposition of N(τ) into a union of rectangles each of which lies
on some ith non-singular arc and has height αi. These rectangles are glued together at their
vertical edges using the branch equations αi = αj+αk. Let Nα be the foliation of N(τ) given
by the horizontal lines in the rectangles. The singularities of Nα are at the cusps on ∂N(τ).
The finitely many singular leaves of Nα which end at these cusps are cut and slitting open
Nα. Thus we eliminate all the singularities. When the weights are rational, these singular
leaves are compact and this cutting open process is finite and ends giving a thickening Lα of
the curve system on M with the product foliation. But Nα may have non compact singular
leaves and the slitting should be fast enough so that the process ends. This resulting object
which lies in N(τ) and is transversal to the fibers is called measured laminations.

We can also look at every Nα’s isotopy class where there is a representative upto isotopy
and slit only along the compact arcs in leaves, instead of slitting non-compact leaves.

We assign ML (M) to the set of equivalence classes of measured laminations which are
carried by good train tracks. By factoring out all the scalar multiples from non empty Nα’s
gives the projectivization PL (L) of the ML (M).
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Remark 7.1.1. • Elements of ML (M) are the equivalence classes upto isotopy because
two Nα’s are equivalent iff they slit open to isotopic Lα’s.

• Collapse M−Nα onto a suitable spine. This will define over the whole of M a singular
foliation Fα whose all singular points have negative index. By collapsing those leaves
which join singularities we define an equivalence relation which will recover ML (M).

Let N̄α be an unique representative, upto isotopy, in some equivalence class of ML (M)
which we can realize slitting of compact subarcs of non compact singular leaves by isotopy
and hence the above element has all it’s compact singular leaves slit completely. Parallel
compact leaves form a foliation of some components of N̄α and it looks like a thickening of
some curve system in M . The non compact singular leaves form a dense set in the rest of
components and these components do not have any compact leaves. Observe that the Lα
intersects the vertical fibers of N(τ) in intervals and Cantor sets. Also notice that because
the non compact leaves of N̄α ends in cusp points which are in the interior of M it cannot
meet ∂M and hence only the compact leaves meet the ∂M .

7.2 Length functions

Let loop γ be a PVH, piecewise vertical or horizontal, i.e. loops homotopic to γ meet some
Nα either vertically (in fibers of N(τ)) or horizontally ( in the leaves of Nα). We define the
length of such a loop to be the total length of all the vertical segments. Next we define
lγ(Nα) to be the infimum of the lengths of all the PVH homotopic to γ. We also call
these loops PTH, piecewise either transverse to or horizontal to Nα. lγ(Nα) is linear with
respect to scalar multiplication on α and is constant for an equivalence class. Therefore
lγ : ML (M) −→ [0,∞). When α is integral lγ(Nα) = iγ(Sα), where Sα is the curve system
associated with α ∈ C(τ). lγ is an extension of iγ which is defined on C S (M) to ML (M).
If some αi = 0 in some α, it means α is positive on some subtrack of τ i.e. on some face of
C(τ). Thus lα defines a function from C(τ) −→ [0,∞).

Theorem 7.2.1. For a good train track τ and some loop γ in M , the function lγ : C(τ) −→
[0,∞) is piecewise linear.

Proof. Take γ to be in minimal position with τ . Also γ should be composed of finitely many
smoothly immersed segments which lie either in τ or in M − τ . Now choose a loops from
the homotopy class of this γ which have the minimum number of segments outside τ and
among these loops choose a loop which has the least number of segments inside τ . Now
consider that Nα on collapsing which we get τ . Let γ1 be the curve which collapses to γ.
Now by making the moves on the loop γ1 as shown in the figure 7.1 we can make γ1 taut
without changing it from being a PVH. γ1 in this position has the minimum length within
its homotopy class.
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Figure 7.1:

Figure 7.2:

Once γ1 is taut it varies continuously with α, thus lγ(Nα) is a continuous function over
α.

Look at a segment of γ1 whose projection into γ lies in τ . This segment of γ1 lies inside
a string a rectangles, where the height of these are given by αi’s, and moves monotonically
as shown in the figure 7.2. The difference in height between any two horizontal edges in
this string of rectangles is linear with respect to αi’s and has Z coefficients. Now where ever
two rectangles meet they have one horizontal edge at same level and these therefore define
a hyperplane in C(τ). The length of the segment which moves monotonically up or down in
the regions between these hyperplanes is Z-linear and is the difference between the value of
the horizontal edges. This shows that lγ is piecewise linear.

Consider a collection of n loops and a map C S (M) −→ [0,∞)n where the coordinates
are the associated intersection number function iγ. The collection of loops is called injective
if this function is injectice.

Lemma 7.2.2. For an injective collection of loops γ, the map l : ML(M) −→ [0,∞)n where
the coordinates are the associated length functions lγ is a piecewise linear homeomorphism
onto its image.

Proof. The function l is Z-linear over all of ML(M) and also over all the finitely many
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polyhedral cones which form ML(M), especially l is Q-linear. Suppose l is non injective
on one cone this would mean it would be non injective over all the rational points. This
would in turn mean that even for integer points l is non injective which would contradict
the condition given in the statement of the theorem. If l takes points in two distinct cones
to one point then it would do the same for a pair of integer points but this cannot happen
by lemma 6.4.3. Since l is injective on all ML(L) and linear on all the finitely many cones
which cover ML(M), it is a piecewise linear homeomorphism onto its image.

Lemma 7.2.2 implies that the image of l is independent of choice of pairs of pants used to
define ML(M). It turns to be the closure of the rays which start at origin and pass through
the images of integer points MLZ(M) = C S (M) under the map l. This means, since
lγ : C(τ) −→ [0,∞) are continuous for all good train tracks τ , l(ML(M)) = l(ML (M)).
As a consequence, ML(M) has well-defined piecewise linear structure over Q and this is
independent of the choosen decomposition of M into pairs of pants. Even the PL(M) gets a
well-defined, intrinsic, piecewise projective Q-linear structure because piecewise linear maps
leave scalar multiplication invariant.

By considering the map l : ML(M) −→ [0,∞)∞ whose coordinates are lγ which are the
associated length functions of all the embedded loops we can get a proper description of
ML(M) i.e. the one independent of any kind of choices. Further we get that PL(M) is the
closure of the projectivization of the map i : C S (M) −→ [0,∞)∞ where the coordinates
are intersection number functions iγ.

Theorem 7.2.3. The map ML(M) −→ML (M) is a bijection and hence l : ML (M) −→
[0,∞)∞ is injective.

7.3 Structure theorem of automorphisms of surfaces

without boundary

We developed all the topological machinery in the previous chapter as well as this chapter
to prove the following theorem.

Theorem 7.3.1. Suppose ∂M 6= φ, then a diffeomorphism f : M −→ M , upto isotopy, is
of one of the following.

1. f has finite order

2. f leaves invariant an essential one submanifold

3. f maps a measured lamination in the int(M) to itself with some scaling.

72



Proof. Given a diffeomorphism f : M −→ M a homeomorphism of ML (M) is induced
by it. It is given by some permutation of coordinate length functions. This also gives a
homeomorphism of PL (M). If ∂M 6= φ, PL (M) is a ball and as a result of Brouwer’s
fixed point theorem there exist some Lα ⊂ M such that f(Lα) = Lλα where λ > 0. Now if
Lα ∩ ∂M = φ, then we have case 3.. If Lα meets ∂M then the leaves which meet ∂M are
compact. These are arcs which remain invariant under f and form a curve system C. Let
the surface that we get after cutting M along be M ′. By removing those components of M ′

which are either disks or annulus with one of its boundaries a boundary circle in ∂M we
get M ′′. If M ′′ 6= φ then those circles in ∂M ′′ which are not contained in ∂M gives a finite
collection on circles which are invariant under f and we get the case 2.. If M ′′ = φ then f
can be isotoped to a homeomorphism which has finite order.

Remark 7.3.2. • In the case 2. by cutting the surface M along the invariant essential
1-submanifold we will get subsurfaces which are less complex and then inductively we
can understand the action of f on M . But this processes causes lose of information
about the Dehn twist’s along these circles.

• In case 3. Lα which is invariant under f has no compact leaves and M−Lα is composed
of disks with finite cusp on the boundary and atmost one puncture (component od ∂M)
in the interior.
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Chapter 8

Conclusion

In this project we studied the structure theorem of automorphisms of surfaces using two
different methods. The structure theorem says that an automorphism of a hyperbolic surface
is exactly of one of the following types: periodic, irreducible or pseudo-Anosov.

In part I we studied a geometric approach. We first studied hyperbolic plane geome-
try, hyperbolic surfaces and some results about curves on these surfaces. Then we studied
geodesic laminations and constructed transverse singular foliations corresponding to an au-
tomorphism on the surface. Then we defined transverse measures on these singular foliations
and finally studied the structure theorem of automorphisms of surfaces.

In part II we looked at a more topological approach for the same theorem. We studied
curve systems on a surface using train tracks with the measures on them. Using this we
further studied the properties of ML(M) and PL(M). We saw the bijection between the
set of measured laminations and ML(M) and then using all this we studied a second proof
of the structure theorem of automorphisms of surfaces with boundary.
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