
0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         

 
 
 
 
                                 
 

                                        

                                 A Thesis submitted to 
Indian Institute of Science Education and Research Pune 
       in partial fulfilment of the requirements for the 
                 BS-MS Dual Degree Programme 
                                         by 
 

Arkajyoti Ghoshal 

Bs-Ms 5th year 

Dept. of biology 

Guided by: 

Dr. Sudhakaran Prabakaran 

University of Cambridge 

Dept. of Genetics 

Investigation of Mutations in the   
non-coding regions of the 

cancer genome 

 

 

 



1 
 

                                       Certificate 
 
This is to certify that this dissertation entitled ‘Investigation of mutations 
in the non-coding regions of the cancer genome’ should appear 
heretowards the partial fulfillment of the BS-MS dual degree programme 
at the Indian Institute of Science Education and Research, Pune 
represents study/work carried out by Arkajyoti Ghoshal at Indian Institute 
of Science Education and Research under the supervision of Dr. 
Sudhakaran Prabakaran, University of Cambridge, Department of 
Genetics , during the academic year 2017-2018. 
 
Student: Arkajyoti Ghoshal 

Signature: 

Supervisor: Dr. Sudhakaran Prabakaran 

Signature: 

Thesis Advisory Committee: Dr. Krishanpal Karmodiya 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 
 

 
 

                                      Declaration 
 

I, hereby declare that the matter embodied in the report titled 
“Investigation of mutations in the non-coding regions of the cancer 
genome” is the results of the investigations carried out by me at the 
Indian Institute of Science Education and Research, Pune under the 
supervision of Dr Sudhakaran Prabakaran and the same has not been 
submitted elsewhere for any other degree. 

 

 

Student: Arkajyoti Ghoshal 

Signature: 

Supervisor: Dr. Sudhakaran Prabakaran 

Signature:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

                                                      Acknowledgement 

 
I would like to thank my family and all the people associated with this 
project especially my supervisor Dr. Sudhakaran Prabakaran, who guided 
me through the difficult phases during the course of this project, my lab 
members including Narendra Meena, Matt Wayland, Felix Jackson and 
Chaitanya Erady. I am also thankful to my TAC member Dr. Krishanpal 
Karmodiya for his valuable insights during mid-term evaluation. Lastly, I 
would like to thank IISER for providing me this opportunity. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

 
 
 
                                 Abstract 
 
Encode shows that most of the human genome is biochemically active 
with respect to transcription, translation, etc. though most of the products 
and their roles are not yet known. Previous studies in our lab using 
whole genome sequencing, total RNA seq transcriptomics, and 
proteomics data, integrated in a compact framework developed by our 
own group called ‘Systems Proteogenomics’, has shown evidence of 
translation of protein-like products from the entire genome (Prabakaran, 
S. et al., 2014.). We hypothesize that most of these ‘protein-like’ 
products could be actively involved in maintaining our physiology as 
studies have indicated that 90% of disease-associated mutations are 
mapped to regions that are currently identified as ‘noncoding’ (St. 
Laurent et al., 2014). Here, we aim to investigate mutations in these 
noncoding regions that code for these protein-like products and develop 
a pipeline to validate them and try to understand their roles in context of 
development and progression of five different types of cancer, 
especially.  
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Introduction: 
After decades of research, curing cancer still remains a challenge and the complexity 
of the disease plays an important role. At the genetic level, cancer refers to any sets 
of mutation in the DNA of somatic cells that alter important physiological processes of 
the cell, including cell cycle progression and apoptosis inhibition, causing them to 
proliferate unchecked. With increased cell division, there is an accumulation of greater 
number of mutation (genomic instability), a trademark of cancer (1,2). There are two 
types of these mutations- driver and passenger. A driver mutation is one that gives a 
tissue and its clones selective advantage in a particular microenvironment (say tumor 
microenvironment) through increased survival or reproduction, leading to clonal 
expansion. (clones are sets of cells descending from a common ancestor). Passenger 
mutations are those who have no direct effect on the fitness of a clonal population with 
respect to its survival but often occurs in the same genome with driver mutations. As 
these are more frequent than driver mutations, separation of the driver mutations 
(information) from background passenger mutations (noise) is a very important step. 

Extensive studies have been carried out to understand the roles and significance of 
driver mutations in protein-coding regions. They are mostly oncogenic somatic 
mutations and include SNVs, indels, CNVs, etc. Their expression in a cell is often 
related to its acquisition of ‘hallmarks of cancer’ including unconstrained proliferation, 
replicative immortality, immune evasion (3). Much research has been done to 
understand the nature of these mutations at a computation and experimental level. 
However, most of these studied ‘driver’ mutation occur in the protein-coding regions 
(4,5). Previously, due to lack of techniques like WGS, most of the datasets used for 
these studies would mostly contain information of known proteins and markers.  The 
process of understanding the significance of these mutations is further complicated by 
the fact that ratio of functional driver mutation to biologically insignificant passenger 
mutations biased on the side of passenger mutations. Thus, separation of the driver 
mutations from background passenger mutations is a very important step. Filtration 
must be done carefully, without losing too much information and maintain a high 
degree of accuracy. 

Assimilating a complete list of such genes and their mutations is of utmost importance 
to understand a disease and design its therapeutics accordingly. This includes cancer 
too. This started off projects like Cancer Gene Census project (6). With increased 
technological tools, the nature of human molecular data improved and in-depth 
databases of cancer patient samples were created. One of them includes The Cancer 
Genome Atlas (TCGA) which is the most comprehensive database for cancer patient 
genome, covering both ‘coding’ and ‘non-coding’ region data for more than 30 different 
cancer types (7). 

Such databases are important sources of information, especially of the ‘non-coding’ 
regions of the human genome. This is mainly because prior to NGS, such detailed 
information regarding non-coding regions was difficult to capture and only recently 
have studies been started to understand the roles and significance of mutations in the 
non-coding regions and how they affect the development and progression of cancer. 

Our lab is one of such labs working to understand the roles of non-coding regions in 
diseases including cancer. Previous studies in our lab has shown evidence of 
translation of protein-like products from most of the human genome (8).  Such results 
along with results showing 90% of disease-associated mutations being mapped to 
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regions that are currently identified as noncoding regions (8) makes us speculates us 
that most of these protein-like products that we and few others have identified could 
be actively involved in maintaining normal human physiology.  We thus hypothesize 
that mutations in these regions might be responsible for cancer and if so, study the 
mutations and their roles in oncogenesis arising from different non-coding regions of 
the human genome. 

Our lab has developed a frame-work for studying these genomic regions and their 
associated mutations in order to understand their functional implication in diseases. 
Such a frame-work, called ‘Systems Proteogenomics’ using Whole Genome 
Sequencing, total RNA-seq transcriptomics and proteomics data to identify and 
categorize potential ‘onco-regions’ of the ‘non-coding’ genome and investigates the 
roles of mutations in cancer progress so as to devise suitable therapeutics for the 
disease. Details of the frame-work are provided in Materials and Methods section. 

Statistics show that currently in the world, 5 of the top ten most common cancer 
types include 1) Breast and 2) ovarian cancer (two of the highest affecting cancer 
types for females), 3) lung (the highest number of cases/mortality world-wide (9)), 4) 
prostate (similar for males) and 5) skin cancer (one of the highest affecting cancer 
types in world) (10,11) 

Thus, for our project we chose to focus on mutations involved in these 5 cancer types. 
Acquisition of datasets, processing, etc. are described in the Materials and Methods 
section in details. 

In the late 1960s, when people started finding out non-protein coding DNA sequences 
all across the genome, they classified them as ‘junk’ as they had no protein coding 
potential (12). With advent in technology like WGS, it was seen that protein coding 
regions or exons cover only 2-3% of the genome. While most of the non-coding 
genome actually do not code for any peptides, they might not without function. Such 
hypotheses are supported by observations showing that in ‘higher’ organisms like 
human, throughout evolution, at least 10% of non-coding regions (ncrs) are conserved 
evolutionarily (13) and most of the human genome show pervasive translation(15), as 
shown in our lab (8). Such regions include repeat elements, 3’ and 5’ UTRs, non-
coding RNAs and others. While, most of their functions are being actively checked for, 
the table below in Fig. 1 shows the different ncrs and propose their possible functions 
as found by researchers. 
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Figure 1: Function of different non-coding regions. This table lists the possible functions of ncrs 
(Source: Patrushev et al, 2014) 

 

However, one fascinating observation about ncrs come from GWAS studies and work 
done by St. Laurent et al (2014) showing that more that 90% of disease-associated 
mutations are mapped to ncrs (14). One can thus hypothesize that these regions are 
necessary for maintenance of healthy physiology and are thus important ‘peptide’ 
coding region of the genome, though annotated outside the known exons. 
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Our lab have been working on identifying and annotating such non-coding regions that 
show transcription and translational potential. We have built custom databases for 
such regions with resources curated from publications, online databases and 
experimental results. For my project, I have used 3 such regions. They are 1) Small 
ORFs or sorfs, 2) Denovo genes, 3) Pseudogenes (Translated, Transcribed and non-
transcribed). Details regarding these (e.g. number of ncrs, etc are mentioned in 
Materials and Methods section). 

As a brief outline for this project, I mapped mutations for 5 cancer types to these 4 
ncrs, selected particular ncrs and their mutations based on certain biological 
parameters and performed downstream analyses. The end product is a list of each 
type of ncrs and mutations that must be taken into consideration for these specific 
cancer type diagnosis. 

This framework can be integrated to other models say that takes up such ncrs, tries to 
predict its mutated protein structures and come up with pathways that can cause 
oncogenesis. This has a huge potential for therapeutic purposes and when combined 
with similar studies on known protein-coding genes, can theoretically combat cancer 
and many such disease types. 

 

Materials and Methods: 

 

A] Collection of Mutation Dataset 

 

- We downloaded the entire database of non-coding mutations from COSMIC 
v82(Catalogue of Somatic Mutations in Cancer) (16, download link provided). 
COSMIC is the world’s largest resource of high precision, (manually) expert curated 
database of somatic mutations pertaining to cancer (about 33 cancer types till v82). 
Datasets are collected from different sources as indicated in Fig. 2, taken from their 
website. These datasets provide a deep insight into the cancer genomic landscape 
from a somatic perspective. New and potentially significant data are continually 
captured and updated regularly. 
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                              Figure 2: Cosmic Database; overview and sources of data collection 

      

 

• After that, the file (.txt) was filtered for the 5 different cancer types using 
scripts written in Python (v3.7), individual cancer type datasets extracted and 
formatted to generate 5 .csv files. 

 

 

B] Formation of NCR datasets 

 

- There are 4 types of datasets as mentioned above, each of which has been curated 
and collected by our lab. 

- Sorfs or small open reading frames (Orfs) are orfs of length 100 to 300 nucleotides 
and produces ‘small proteins’ (avg. size of 100 amino acids (a.a.)) [Note: avg. coding-
region protein size in humans is about 500 a.a. (17)]. Initially unannotated as it was 
thought to be ‘non-coding’, with advent of techniques like ribosome profiling and deep-
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sequencing, it is now seen that many of such orfs are actively translated. With 
research, the importance of such peptides in maintain human physiology is being 
investigated and appreciated, as is the fact that many of such functional sorfs are 
evolutionarily conserved. (18,19). Two such public repositories containing validated 
sorfs are Sorfs.org and Smprot (20,21) from which another master’s student in our lab 
have curated and constructed a human sorf dataset containing 574212 entries. We 
used our own database for studies. 

- Denovo genes are active genes arising from previously non-coding regions via 
different mechanisms. They have high death rates but some of them can get integrated 
into the genomic network and become integrated part of it. Another student in our lab 
have built a database of 42 such experimentally validated Denovo genes which was 
used. 

- Pseudogenes are non-coding regions arising from coding genes by processes like 
a) duplication, during which mutational processes can render a copy/copies of a 
functional gene ‘disabled’ or b) retrotransposition of a functional mRNA (without 
start/stop sites) into the genomic cDNA via reverse transcription or may be coding 
regions lacking functional start/stop site. c) Sometimes, they can accumulate mutation 
to their flanking regions providing them with a working start/stop site or both and their 
functions maybe altered but they can become active again. Many labs are working on 
them, one of the foremost being Mark Gerstein’s lab ate Yale University and they have 
set up public databases like Pseudogene.org (http://pseudogene.org/index.html). 
Such databases were curated by our lab to obtain three types of datasets: Translated 
(34), Transcribed (540) and non-transcribed (1159) pseudogenes. I used all 3 types 
for my work. 

All these files were converted to .csv format and had alteast 4 common annotations 
including ‘Id’ (database specific), ‘Chromosome number’, ‘Start’ and ‘Stop’ positions 
(basically genomic co-ordinates) or formatted accordingly. 

 

Once these were established, several analyses were done as described below. 

 

1. Mapping of mutations to ncrs: For each of the 3 ncrs, genomic (g) co-
ordinates were matched to mutational (m) co-ordinates for same 
chromosome to see if a mutation lies within the region. Python script 
written for this purpose will be uploaded in our lab github account soon. 
For large datasets (e.g. sORFs), R Studio was used. (will also be 
available in github) 

2. Once such mapping was complete, resultant .csv files, containing the 
genomic co-ordinates as well as the mutational co-ordinates were 
counted (Python script) for the number of mutation in each ncr for all 
cancer types. This was then plotted for visualization as seen in Results 
section  

3. Next, we were interested in finding out how many of such ncrs were 
involved in the different cancer types. For this purpose, all the mapped 
datasets for each ncr was merged together for the different cancer types 
and a venn diagram was plotted using R studios. Thus ncrs relative to 
each type of mutation as well as common to different combinations of 



13 
 

the mutations were identified. All such files could be used for separate 
set of downstream analyses. The plots can be seen in Results section. 

 
4. Next, we decided to classify these mutations based on their impact in 

terms of ‘pathogenicity’ or disease-causing potential. For that, we used 
‘Functional Analysis through Hidden Markov Models’ or FATHMM 
scoring system. FATHMM’s web-server utilises the algorithm to predict 
effects of mutations in both coding and non-coding regions. FATHMM 
non-coding model (FMKL) uses functional annotations from ENCODE 
in tandem with Hidden Markov Models on nucleotides (HMM). It also 
utilizes annotations to learn to weigh significance of each such variants 
(eg SNPs) with high degree of confidence (23). However, the algorithm 
has been trained on  human gene mutation database (The HGMD 
database http://www.hgmd.cf.ac.uk/ac/index.php) which does contain 
somatic mutations as well. COSMIC is performing similar studies to 
create cancer specific FATHMM algorithm. According to current scoring 
system, nc FMKL are represented as a p value between 0 and 1. Scores 
<= 0.5 are classified as ‘neutral’, those above 0.5 as ‘deleterious’ and 
those above 0.7 as ‘pathogenic’. However, we chose to include all 
mutations with scores >0.5 to ensure incorporation of maximum number 
of ‘negative’ mutations that might not have been classified correctly by 
the current algorithm system. The machine learning algorithm currently 
uses 10 ‘feature groups’ including GC content and ‘100-Way Sequence 
Conservation’. 
 

5. Once the criterion was established, each ncr type was parsed for those 
ncrs with at least 1 pathogenic/deleterious mutation. This was plotted 
against their total mutation count to have a visualization of distribution 
of pathogenic mutation. See Results section for details. 

 

6. Pie charts were made using Python scripts to visualize proportions of 
pathogenic mutation contain ncrs for each cancer type. Also, length 
distribution of each ncr was plotted as number of nucleotides in x axis v 
number of ncr in y axis, after dividing the x axis into different bins of 
increasing length. See Results section for details. This gave us an idea 
for average size of each ncr and we compared it to known values to filter 
out extreme outliars. Also, since not much study has been conducted 
on ncrs, these results are important on their own, giving us an idea on 
the average length of the 4 ncr types. 

 

7. As a last step of this stage of study, we did Gtex profiling of the ncrs with 
pathogenic mutations. Gtex or Genotype-Tissue Expression is a project 
that started in 2010 and tries to better our understanding of genetic 
changes and their involvement in disease, in order to ‘with the ultimate 
goal of improving health care for future generations’ (24). It was 
supported by Director’s office at National Institutes of Health (NIH). Their 
database helps researchers co-relate between inherited gene 
expression changes and various diseases. It uses cutting edge research 
techniques to obtain and store organs and tissues and use them for later 
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studies. Thus far, it has obtained and analysed maximum number of 
samples for gene expression and variant identification at a truly 
unprecedented scale, as opposed to any such similar projects. 

 

Study criteria: The following table, taken from Gtex website (v7), shows the 
different criteria used during these studies. 

 
Figure 3: Study critera for Gtex Database 

 

Gtex database currently comprises, among other things, expression profile for about 
56,200 genes, along with their ensembl ids, for 53 tissue types. These tissue types 
and the number of samples involved, is depicted in Fig 4 
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Figure 4: Gtex V7 Sample Counts by Tissues                         (Source: Gtex website) 

 

 

Once the dataset was downloaded, Python scripts were written, that enables us to 
match Ensembl ids of these expressed genes to those of pathogenic mutation 
containing Denovo and Pseudogenes (note: Ensembl ids for sORFs are not currently 
accesible). The matched ids were plotted for their expression profiles (in terms of 
Transcripts per million or TPM) in y axis and the number of tissue types in the x axis. 
See Results section for details. This allows us to understand which of the ncrs are 
expressed in healthy/normal tissues and have a visualization of the overall expression 
profile of each such ncr. 

How such profiles can be co-related to diseases is discussed in ‘Future perspective’ 
section. 

 

 

Results 

 

a. Mapping of the ncrs to mutations 

 

The proof of concept that mutations related to each caner type might actually 
lie within the ncrs is shown in the plots below (Fig 5) 

 

 



16 
 

 
Figure 5: Map of Mutations to Denovo Genes (n=37).  

The bars in the y-axis represent the number of mutations for the different denovo gene ids shown 
in the x-axis. Different cancer types are color-coded as depicted in the legend and each cluster of 
bars in the x-axis depicts map of mutations for each denovo gene id. There are 37 such clusters. 

 

 

We initially started with 42 denovo genes among which 37 had atleast 1 type of 
mutation from the 5 cancer types confirming that oncogenic mutations lie in these 
regions and such ncrs should be annotated and investigated into. 

 

Fig 5,6 and 7 shows similar results for the three types of pseudogenes (translated, 
transcribed and non-transcribed respectively). Initially we started working with 34 
translated, 539 transcribed and 1159 non-transcribed pseudogenes and mapped 
mutations to 15, 191 and 353 of them respectively. 
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Figure 6: Map of Mutations to Translated Pseudogenes (n=15).  

The bars in the y-axis represent the number of mutations for the different pseudogene ids shown in 
the x-axis. Different cancer types are color-coded as depicted in the legend and each cluster of bars 
in the x-axis depicts map of mutations for each translated pseudogene id. There are 15 such 
clusters. 
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Figure 7: Map of Mutations to Transcribed Pseudogenes (n=191). The bars in the y-axis represent 
the number of mutations for the different pseudogene ids shown in the x-axis. Different cancer 
types are color-coded as depicted in the legend and each cluster of bars in the x-axis depicts map 
of mutations for each transcribed pseudogene id. There are 191 such clusters. 
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Figure 8: Map of Mutations to Non-Transcribed Pseudogenes (n=353).  

The bars in the y-axis represent the number of mutations for the different pseudogene ids shown in 
the x-axis. Different cancer types are color-coded as depicted in the legend and each cluster of bars 
in the x-axis depicts map of mutations for each non-transcribed pseudogene id. There are 353 such 
clusters. 

 

b. Distribution of ncrs across cancer types 

Next, we wanted to see how many of each ncr type is involved in different 
cancers. For this, we used the mapped datasets generated as mentioned above 
and plotted them as venn diagrams. The plots help us visualize this distribution 
as shown below. 

Fig.9 represents distribution of Denovo genes across cancer types. 
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Figure 9: Representation of Denovo Genes Unique and Common to five Cancer Types (n=37).  

The different regions of the venn diagram represents the number of denovo genes involved in 
causing that particular cancer type or its combination. This distribution is for 37 denovo genes. 

 

As shown above, out of the 37 denovo genes mapped to mutation, 13 are 
responsible in all 5, 2 exclusive to ovarian cancer and so on. Similarly, fig 10 to 12 
shows venn diagrams for each of the 3 pseudogene types. 
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Figure 10:  Representation of Translated pseudogenes Unique and Common to five Cancer Types 
(n=34).  

The different regions of the venn diagram represents the number of translated genes involved in 
causing that particular cancer type or its combination. This distribution is for 34 
translated  pseudogenes. 
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Figure 11: Representation of Transcribed pseudogenes Unique and Common to five Cancer Types 
(n=539).  

The different regions of the venn diagram represents the number of transcribed pseudogenes 
involved in causing that particular cancer type or its combination. This distribution is for 539 
transcribed pseudogenes. 
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Figure 12: Representation of non-transcribed pseudogenes Unique and Common to five Cancer 
Types (n=1159).  

The different regions of the venn diagram represents the number of non-transcribed pseudogenes 
involved in causing that particular cancer type or its combination. This distribution is for 1159 non-
transcribed pseudogenes. 

 

 
 

While we are currently working with all the mutated ncrs, we can always choose to 
work with any particular combination of ncrs e.g only those involved in individual 
cancer types or in 2/3/4/all cancer types. The results for all such combinations have 
been generated and will be used for analysis later on. 

 
 

c. Assigning ‘Pathogenicity’ to mutations 

Now, we were interested to know which of these mutations were actually significant 
and which are not. This was done using ‘pathogenicity scores’ assigned to each of the 
mutations, called ‘FATHMM (Functional Analysis through Hidden Markov Models) 
scores’. Details about this system is mentioned in the ‘Methods and Materials’ section. 
Such scores range between 0 to 1 and mutations above 0.5 are considered deleterious 
while those above 0.7 are considered outright pathogenic or capable of causing 
diseases. As mentioned above, we decided to work with scores >0.5 and used this 
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filter to parse out ncrs meeting this condition. Such ncrs were then plotted for their 
counts of pathogenic mutation against their total number of mutations from all cancer 
types. While we worked with all ncrs that have atleast 1 pathogenic mutation, one can 
essentially use this step to filter out ncrs based on number of minimum number of 
pathogenic mutation (say, atleast 5 pathogenic mutations present) and cancer types 
(say any combination of cancer as shown in the venn diagrams above). 

 

Fig. 13 shows such a plot for denovo genes. The x-axis indicates the denovo gene 
ids which are not shown (due to confidentiality) and y axis the number of mutations. 

 

 
Figure 13: Representation of Pathogenic Mutations vs all Mutations in Denovo Genes (n=19).  

The x-axis represents denovo gene ids and y-axis the number of mutations for each denovo gene. 
Each cluster (blue and saffron bar) is for one denovo gene and shows its corresponding count of 
pathogenic and total mutation respectively. 

 

 

Thus, as seen in Fig. 13, out of the 37 mutated denovo genes, 19 has atleast 1 
pathogenic mutation to them. Fig. 17 shows how many of these are from which 
cancer types and is represented as a pie chart. 
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Figure 14: Representation of Pathogenic Mutations vs all Mutations in Translated pseudogenes 
(n=8).  

The x-axis represents denovo gene ids and y-axis the number of mutations for each translated 
pseudogene. Each cluster (blue and saffron bar) is for one pseudogene and shows its 
corresponding count of pathogenic and total mutation respectively. 
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Figure 15: Representation of Pathogenic Mutations vs all Mutations in Transcribed pseudogenes 
(n=31). 

 The x-axis represents denovo gene ids and y-axis the number of mutations for each transcribed 
pseudogene. Each cluster (blue and saffron bar) is for one pseudogene and shows its 
corresponding count of pathogenic and total mutation respectively. 
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Figure 16: Representation of Pathogenic Mutations vs all Mutations in Non-Transcribed 
pseudogenes (n=39).  

The x-axis represents denovo gene ids and y-axis the number of mutations for each non-
transcribed pseudogene. Each cluster (blue and saffron bar) is for one pseudogene and shows its 
corresponding count of pathogenic and total mutation respectively. 
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Figure 17: Representation of Pathogenic Mutation per Cancer for Denovo Genes 

The values within braces indicate the counts of mutations and is preceded by the percentage value 
with respect to total number of mutation. For example, the red section indicates that of all 
mutations (153) involved in prostate cancer, 17 of them (or 20.24%) are pathogenic. 
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Figure 18: Representation of Pathogenic Mutation per Cancer for Translated Pseudogenes 
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Figure 19: Representation of Pathogenic Mutation per Cancer for Transcribed pseudogenes 
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Figure 20: Representation of Pathogenic Mutation per Cancer for Non-Transcribed 
pseudogenes 

 
 
 

d. Length Distribution of ncrs 

Since not much work has been done with ncrs (especially those shown here) before, 
average length of these are not clear. We decided to see their length distribution in 
order to have an estimation of the average length and use it as another filtration step 
to select for only those ncrs falling within their average length spectrum and eliminating 
the rest. Fig.21 shows such a distribution for denovo genes. 
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Figure 21:: Representation of length distribution for denovo genes; this is calculated based on 
all the 42 denovo genes, with an average length of 30746.74 nucleotides. This average was 
calculated by taking the arithmetic mean of lengths of all 42 denovo genes. Heavy bias 
towards the last bin indicates technical error in dataset generation. 

 

As seen in the figure above, sizes were broken into discrete bins of continuous 
intervals and while there is a heavy bias towards the 10k-1000k bin size, that can 
mostly be due to technical errors occurring during the dataset generation. For a 
perspective, the average size of a human gene is around 10-15k nucleotides, as 
shown in Fig.22 below 

 

 
Figure 22: Average gene size in humans (Adapted from Strachan and Read) 
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Ideally, ncrs are of smaller size; sORFS, for example, are defined as orfs with sizes 
between 100 to 300 nucleotides. Thus, size exclusion was not used as filtration. 
However, from our dataset, average denovo gene length, eliminating those above 10k 
range is 

 

Similarly, Figs. 23, 24 and 25 show length distribution for the 3 pseudogene types; 
average length for each case is 4137 nucleotides for 34 translated, 2848 nucleotides 
for 539 transcribed and 1160 nucleotides for 1159 non-transcribed pseudogenes. 

 

 
Figure 23: Representation of length distribution for translated pseudogenes; average length= 4137 
nucleotides (n=34). 

 This average was calculated by taking the arithmetic mean of lengths of all 34 translated 
pseudogenes 
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Figure 24: Representation of length distribution for transcribed pseudogenes. average length= 
2848 nucleotides (n=539). This average was calculated by taking the arithmetic mean of lengths of 
all 539 transcribed pseudogenes 

 

 

 
Figure 25: Representation of length distribution for non- transcribed pseudogenes; average length is 
1160 nucleotides (n=1159).  

This average was calculated by taking the arithmetic mean of lengths of all 1159 non-transcribed 
pseudogenes 
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Thus, it is seen that, for pseudogenes, average length can be thought to be 
(4137+2848+1160)/3 or 2715 nucleotides. This can be used later on as an estimate 
of average pseudogene length and to select for those whose length is identical to 
this value; making the filtration process more precise. 

 

e. Gtex Profiles of ncrs 

The last step of this project was to look into the Gtex expression profiles of the ncrs 
that have pathogenic mutations mapped to them. As mentioned in the ‘Materials and 
Methods’ section, Gtex is a database providing a list of genotypes collected across 
tissue samples of different individuals and their expression profiles shown in terms of 
Transcripts per million or TPM. 

Fig. 26 shows the expression profile for denovo genes 

 
Figure 26: Gtex profile for denovo genes (n=8).  

This is a surface plot with the 8 denovo gene ids on 1 axis, gtex tissue ids on another and the 
corresponding expression profiles of each denovo gene for each tissue type is represented on the 
third axis 

 

As mentioned above, there were 17 denovo genes with pathogenic mutations. When 
their ENSEMBL ids were mapped to the Gtex database, we found a positive hit for 8 
of them. Their expression levels were plotted. 

Similarly, Fig.  27-29 shows expression profiles for the 3 types of pseudogenes. 
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Figure 27: Gtex profile for Translated pseudogenes (n=16).  

This is a surface plot with the 16 transcribec pseudogene ids on 1 axis, gtex tissue ids on 
another and the corresponding expression profiles of each denovo gene for each tissue type 
is represented on the third axis. 

 

 



37 
 

 

Figure 28: Gtex profile for Transcribed pseudogenes (n=28).  

This is a surface plot with the 28 transcribed pseudogene ids on 1 axis, gtex tissue ids on another and 
the corresponding expression profiles of each pseudogene for each tissue type is represented on the 
third axis. 
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Figure 29: Gtex profile for non-transcribed pseudogenes (n=33).  

This is a surface plot with the 33 non-transcribed pseudogene ids on 1 axis, gtex tissue ids on another 
and the corresponding expression profiles of each pseudogene for each tissue type is represented on 
the third axis. 

 

 

 

 
 
 
 
 
 
 
 
Discussion and Future Perspective 

Our study shows that there is an immediate need to start investigating at great depths 
into the non-coding regions in context of not only cancer but most diseases. The very 
definition of ‘genes’ and ‘coding’ peptides must be readdressed and ‘micro-peptides’ 
produced from these ncrs must be investigated with respect to their mutation, 
functionality, etc. 

This thesis mainly tries to focus on the possible correlation between mutation in ncrs 
and their relevance in cancer, all the while trying to pinpoint ncrs that maybe  important 
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for this pathology. While many of these targets show expression in healthy tissues (as 
seen from Gtex profiling and discussed in section e of ‘Results’), it is unknown if these 
ncrs and their corresponding peptides are also expressed in their corresponding 
cancer tissues. This can be achieved using mass-spectrometry(MS) data of peptides 
from cancer tissue samples. 

MS data allows not only identification of proteins and peptides but also quantify their 
relative abundance and localization of post-translationally modified residues (eg 
phosphorylated) across biological samples. Recently, The Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) launched an initiative to understand the molecular 
basis of cancer (with respect to proteome), using samples from projects like TCGA 
and analyse their proteomic landscape. The CPTAC dataset includes 4 cancer types-
ovarian(TCGA-OV), breast(TCGA-BRCA), rectal(TCGA-READ) and colon (TCGA-
COAD). The pipeline used is Common Data Analysis Pipeline (CDAP) [26] 

The table below represents a statistical overview of the data for each cancer type and 
this will be used for our work later on. 

 

 
Figure 30: Statistics of CPTAC data  

[Note: the pipeline was validated using mass spectrometry dataset derived from yeast whole cell 
lysates] 

 

 

These data will be used to match cases genomic and transcriptomic data of atleast 2 
cancer types (breast and ovary) which were used in this study and to derive a possible 
correlation between target ncrs with respect to particular tissue types, their Gtex 
profiles and their corresponding CPTAC proteome profile, if any. This will help us 
understand how many of our target ncrs are actually present in cancer tissue samples. 

Once this pipeline is established, our lab will be collecting its own samples in 
collaboration of bio-banks across India and generate our own genomic, transcriptomic 
and proteomic data using actual experimental techniques (both novel and 
standardized) and analyse them as outlined above.  This ‘Systems Proteogenomic’ 
approach will help identify some key ncrs and their corresponding mutated peptides 
and their functions that may give rise to a particular cancer or cancers. 
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India is a country with high burden of both communicable and non-communicable 
diseases and large diversity of patients with respect to (disease) genotype and 
phenotype [25]. As such when it comes to complex disease like cancer, designing 
general therapeutics against a diverse population does not guarantee cure in all cases. 
Thus, a necessity to analyse this diverse germplasm and design 
‘personalized’/customized therapeutics based on individual genomic and/or 
environmental background is more important than ever and this workflow is a stepping 
stone for such an initiative. 

A brief overview of such approaches is summarized in Fig.31 below. 

 
Figure 31: A bridge between research and therapeutics [Adapted from N.K. Ganguly]. 

 How such cross-platform work can be done has been described in details in the texts above 

 

 

In developing countries like India, where there is a huge diversity of disease genotypes 
and phenotypes, success of this kind of approach will allow personalized treatment in 
a cost-efficient manner that will simultaneously increase the state of healthcare in the 
country and decrease the high cost of obtaining the same. 

One of the last steps of this project will be to predict the mutated structures of the 
peptides in silico and to identify the same in vivo. Bioinformaticians in our lab are 
already working on the in silico predictor algorithms for the different ncrs mentioned 
here. The last step will be to predict the change in behaviour of these peptides and 
which pathways they are involved in and how their change can possibly affect their 
biological interaction that might give rise to cancer, though how this will be achieved 
is yet to be pipelined. This will then be applied to target peptides obtained invivo and 
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the complete nature of mutations in ncrs and their influence on cancer initiation and 
progression can be understood. Such data, in collaboration with those already present 
on mutation in known protein coding regions will help provide a complete picture of the 
cancer genome and its diversity and help us eradicate the disease in future. 

It will be interesting to identify similar candidates for ncrs that do not produce peptides 
but work at transcript level (say rna-mediated silencing) and understand their 
contributions as well. 

Also, another necessary step will be to write new algorithms for pathogenicity 
classifier, using machine learning and training them on non-coding pathogenic 
mutations. All classifiers till date mostly train the algorithms on coding pathogenic 
mutations and this situation needs to be addressed in order to make the pipeline more 
precise. 

Overall, non-coding region biology is a rapidly developing field and understanding it at 
different levels is essential to address effective therapeutics against several diseases. 
Hopefully, this pipeline will be one of the first of its kind and can help the research 
community and medical community alike, thus improving the lifestyle of the common 
people. 
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