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Abstract

The study of the collision dynamics of small spherical particles suspended
in a fluid has several applications, in industry as well as science. Of particular
interest to this study is the application to cloud droplets in the atmosphere.

The Cloud Droplet Growth Bottleneck problem is an attempt to explain
the rapid growth of cloud droplets from the size of a few microns to rain-
drops which are a few millimetres in diameter. The collision and consequent
coalescence of droplets is a major factor in this rapid growth and fluid turbu-
lence is touted to explain the enhancement of collisions of droplets. In this
study, we aim to explore the roles of vortices, or regions of fluid flow which
are roughly circular in direction, in creating collisions between particles sus-
pended in flow similar to atmospheric flows and their impact on the growth
of droplets.
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Chapter 1

Introduction

Overview

The work done in this study can be delineated into two primary fields of
research - fluid dynamics and cloud microphysics. Several aspects of these two
fields have been studied in detail with the ultimate aim of simulating growing
cloud droplets in a turbulent atmosphere to gain a clear understanding of rain
formation in warm clouds (clouds without ice).
This document is a detailed report of the work that has been done by the
author under the guidance of Prof. Rama Govindarajan and Prof. Samridhhi
Sankar Ray along with Dr. Jason Picardo at the International Centre of
Theoretical Sciences (ICTS), Bengaluru. The project has also entailed using
the high performance computing centre at ICTS and in the process, has
taught the author valuable skills in computational physics.
The main problem being tackled here is to understand the rapidity of onset
of rain in warm clouds (the statement of the problem will be discussed in
detail later). This work is also generally applicable to problems of relevance
to industry and science where spherical, massive particles with small radii
are suspended in a fluid and collisions between these suspended particles play
an important role. The manufacture of powder and formation of planets by
accretion of dust on to planetesimals are two of the several examples of such
applications.

An Outline of the Thesis

The thesis proceeds as follows. Chapter 2 describes the relevant microphysics
of clouds, ie., how cloud droplets grow via a) condensation and b) collisions
during gravitational settling. Following this, the chapter discusses the state-
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ment of the so called cloud droplet growth bottleneck problem, a failure in
explaining the observed rapidity of onset of rain in warm clouds.
In the Chapter 3, the fundamentals of fluid dynamics of the study are de-
scribed in detail with an introduction to the simplified Maxey-Riley equation
that describes the dynamics of a spherical particle suspended in a fluid. The
consequences of the Maxey-Riley equation for the positions and velocities of
the particles in various regimes will also be discussed.
Chapter 4 merges these two threads and describes the role of fluid dynamics
and turbulence in clouds. A summary of the work done during the period of
this study along with a few results are also discussed.
Chapter 5 discusses these results both, independently and in the context of
other work currently being undertaken by the fluid dynamics group at ICTS
to which the author has contributed. Following this, the applicability of the
work is discussed and the outlook for continuing work along the same lines
is touched upon.
The author hopes that the reader finds this document enjoyable and infor-
mative.
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Chapter 2

Cloud Microphysics

2.1 Clouds - An Introduction

A cloud is a collection of tiny water droplets that range in radius from a
few microns up to few millimetres. Droplets greater than 100 microns are
classified as drizzle droplets while droplets greater than 0.5 mm are classified
as rain droplets as these droplets tend to fall out of the cloud due to their
larger free-fall terminal velocities. They either reach the ground as rain,
evaporate before they reach the ground or are not allowed to fall by stronger
convective up-drafts below the cloud.

2.2 Cloud Droplet Activation

The formation of cloud droplets requires a solid particle (or aerosol) on to
which water vapour can condense at high enough concentrations of water
vapour in the atmosphere. This process of condensation of water on to an
aerosol is known as activation and the aerosol particle is called a cloud con-
densation nucleus (CCN). CCNs come in a variety of sizes (ranging from a
few nanometre to 100s of nanometre), shapes and chemical compositions.
The composition of CCNs play an important role in their activation with
hygroscopic CCNs being activated more easily.
Aerosols are essential for condensation of water vapour. Spontaneous conden-
sation of water vapour requires relative humidity of several hundred percent,
which is never observed in the atmosphere. Aerosol activation usually takes
place at a relative humidity of 98-102 %, which are routinely observed in the
atmosphere. Thus, in temperatures too high for formation of ice, activation
of CCNs is the only way cloud droplets are formed in the atmosphere.
Once activated, the resulting cloud droplets are a few microns in diameter

4



and are spherical in shape. These minute droplets grow and combine to
eventually become rain drops, if and when conditions are favourable. [1]

2.3 Growth of Cloud Droplets

2.3.1 Condensation Growth of Cloud Droplets

In their initial stages, cloud droplets grow almost solely by condensation of
water vapour on to the surface of the droplet, thus increasing the volume
of the droplet. To understand this process, we consider a single droplet
in a homogenous, isotropic environment with a constant temperature and
concentration of water vapour (relative humidity slightly greater than 100%).

Water Vapour Concentration at the Droplet Surface

To begin with let the initial radius a0 of the droplet be 2 microns and the
temperature of the droplet Td be equal to the ambient temperature T . At
the surface of the droplet, due to the presence of an interface between water
and air, there is constant evaporation and condensation of water with a
local equilibrium set-up. While studying the equilibrium characteristics of
spherical droplets over a micron in radius, we can ignore curvature effects
(dependence on radius a) and solute effects (dependence the chemical nature
of the condensation nucleus).
This vapour density at the surface (ρva) is merely given by the saturation
vapour density over bulk water. This is the well known Clasius-Clapeyron
equation

ρva =
e
L
Rν

( 1
273.15

− 1
Td

)

RνTd
∗ 611[kg m−3] (2.1)

Here, the latent heat of condensation of water L is assumed to be constant
over the given temperature range, giving the simple exponential form. Rν is
the universal gas constant for water vapour and 611 Pa is an experimentally
well measured value of equilibrium partial pressure of water vapour at 273.15
K. Td is in Kelvin.
Thus, the equilibrium concentration of water vapour at the surface of the
droplet is different from the background concentration. This leads to a con-
centration gradient. When the relative humidity is greater than 100%, the
background water vapour concentration is greater than that at the surface
of the droplet. This leads to diffusion of water vapour towards the droplet
and thus, condensation on to the droplet by Le Chatlier’s Principle.
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The Diffusion Equation

There is diffusion of water vapour towards the droplet due to the density dif-
ference between the surface of the droplet and the background. The density
profile of the vapour will follow the diffusion equation:

∂ρv
∂t

= D∇2ρv (2.2)

where ρv is vapour density (function of space and time) and D is molecular
diffusivity of water vapour in air. The boundary conditions are ρv(∞, t) = ρv
where ρv is the given or measured ambient vapour density and ρv(a, t) = ρva,
which can be calculated from equation (2.1).
We solve the Diffusion equation (2.2) assuming isotropic vapour density dis-
tribution. The solution with the given boundary conditions is a standard
result and is given by

ρv(r, t) = ρv + (ρva − ρv)
a

r

[
1− erf (

r − a
2
√
Dt

)

]
(2.3)

Here, erf (x) is the error function defined by erf (x) = 2√
π

∫ x
0
e−t

2
dt. From

this expression, the flux of vapour into the droplet surface is given by

−D
(
∂ρv
∂r

)
r=a

= D

(
ρv − ρva

a

)(
1 +

a√
πDt

)
(2.4)

For time t >> tc = a2

πD
. the final term in the above expression will be

negligible. For typical atmospheric and droplet conditions, tc ≈ 10−6 seconds
which is much smaller than typical times scales of diffusion. Thus, we can
drop this term and what survives is a time independent expression. We could
have arrived at the same expression from the steady-state diffusion equation

D∇2ρv = 0 (2.5)

So, the density flux of vapour at the droplet surface is simply

D
(ρv − ρva)

a

The condensation of water vapour on to the droplet can be treated as an
instantaneous process since, as stated previously, changes in vapour density
in the atmosphere happen slowly, over much larger time scales than the
condensation of water over the droplet. Thus, we can assume that any vapour
that diffuses towards the droplet immediately condenses. This is known as
the quasi-steady approach. The radius a can be treated as a constant in

6



calculations and the relevant equations will hold at each moment of time for
each a.
So, if we integrate the incoming flux over the volume, we get mass flux of
vapour which is equal to the change in mass of the droplet. If we denote by
m, the mass of the droplet,

dm

dt
= 4πa2D

(ρv − ρva)
a

(2.6)

giving
dm

dt
= 4πaD(ρv − ρva) (2.7)

Thermodynamics of the System

When water condenses on to the droplet, there is an associated release of
latent heat of condensation. This causes an increase in the temperature of the
droplet. If we assume that the atmosphere is an infinite bath of temperature
T , then the temperature of the droplet Td increases with condensation of
water and reduces by transport of heat away from the droplet.
We can once again use the diffusion equation to model the flow of heat away
from the droplet. With arguments identical to the previous section (skipped
here for brevity), we obtain for the flow of heat Q

dQ

dt
= 4πaK(T − Td) (2.8)

K is the thermal conductivity of air.
When the mass of the droplet changes due to condensation of water on it,
there is release of latent heat associated with it. We know that latent heat
is proportional to the change in mass. The thermodynamic equation for the
droplet will thus be

mc
dTd
dt

= L
dm

dt
+ 4πaK(T − Td) (2.9)

where m is mass of the droplet, c is the specific heat of liquid water and L
and K have already been defined. The last term is a direct substitution from
equation (2.8).
Substituting for change of mass from equation (2.7) and writing the mass of
the droplet as volume times density, we have

4

3
πa3ρlc

dTd
dt

= 4πaDL(ρv − ρva)− 4πaK(Td − T ) (2.10)
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with ρl being the density of liquid water. Simplifying for numerical integra-
tion, we get

dTd
dt

=
3LD

a2ρlc
(ρv − ρva)−

3K

a2ρlc
(Td − T ) (2.11)

Growth of the Droplet

Re-writing the mass change equation (2.7) as

dm

dt
= ρl4πa

2da

dt
= 4πaD(ρv − ρva) (2.12)

we have
da

dt
=

D

aρl
(ρv − ρva) (2.13)

The growth of the droplet slows down as the droplet gets bigger. Again, it
is important to keep in mind that ρva is a function of the temperature of the
droplet, the exact form given by equation (2.1)
For the system under consideration, we need to solve equations (2.11) and
(2.12) simultaneously by numerical methods with ambient vapour density ρv
and ambient temperature T treated as given constants. Several attempts
were made by the author to add simplifying assumptions to the equations
and make it more analytically tractable. However, these attempts yielded no
luck in making the equations analytically pliable.
There are a few characteristics of the growth of the droplet that can be stated
by looking at the equations

1. Since da
dt
∼ a−1, smaller drops grow faster than larger drops

2. Since da
dt
∼ −ρva and ρva as given by equation (2.1) increases with

increase in Td, hotter drops grow slower than colder drops. (Or if their
temperature is high enough, they can shrink by evaporation) [1, 2]

The equations were solved numerically for two cases, assuming zero release
of latent heat (which corresponds to a case where the droplet is in constant
heat equilibrium with the surroundings) and non-zero latent heat.
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Figure 2.1: Condensation growth of a droplet with latent heat L = 0 and
L = 2.5× 106 J kg−1 with a constant supersaturation of 2% and constant
ambient temperature of 273 K for a short run of 600 s or 10 mins.
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Figure 2.2: Semi-log plot of condensation growth of a droplet until it reaches
a size of 5 mm with the same conditions as above. Even under idealised
conditions, this takes several weeks.

2.4 Growth by Gravitational Settling

Since small drops (∼2 µm) grow rapidly compared to larger drops by con-
densation, activated cloud droplets initially grow chiefly by condensation of
water vapour on to the droplet. However, once they reach larger sizes, their
large sizes and the limited amount of water vapour present in the atmosphere
(having constant water vapour density is an idealisation), these droplets need
another way to quickly grow and form rain-drops.

The other way droplets grow is by coalescence of small drops to form
larger drops. This occurs chiefly by droplets falling under gravity at different
speeds due to difference in their masses, and hence sizes.

Droplets have a downward ’terminal velocity’ vt when falling under grav-
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ity, which is derived from the well-known Stokes law for drag on a sphere.

vt =
2a2ρp
9νρf

g (2.14)

where ρp is the density of the particle, which is water in this case. ρf
is the density of the fluid (air), ν is the kinematic viscosity of air, a is the
radius of the sphere and g is acceleration due to gravity.
To estimate the rate of growth of a typical droplet by gravitational settling,
assume a sea of droplets with radius of 10 µm (the typical radius until where
condensation growth is rapid and hence dominant) and a number fraction N
close to the typical measured value of 4× 108 droplets/m3. In this scenario,
the coalescence of any 2 droplets by a chance event would create a droplet
of radius 2

1
3 *10 µm (≈ 12.6 µm).

This droplet would thus fall faster than the other droplets and collide with
more droplets, leading it to grow even larger. However, it is observed that
these drops initially have a very low collision efficiency. The collision ef-
ficiency increases with increase in difference in radii between two droplets.
Let us denote by ε, the efficiency of collision of droplets, ie., the probability
that two droplets who have an overlap coalesce to form a bigger droplet.
Let ab denote the radius of the big droplet and vb denote its velocity while
a0 denotes the radius of the other droplets (10 µm in this case) and v0 de-
notes the terminal velocity of a droplet of radius a0. In unit time, the large
drop sweeps a cylinder of radius ab as it falls and collisions happen with all
droplets which overlap with this sphere. Thus, any droplet in a cylinder of
radius ab + a0 just under the droplet will collide with the large drop. We can
write

dV

dt
= εNπ(ab + a0)

2(vb − v0)(
4

3
πa30) (2.15)

V denotes volume of the big droplet. Strictly, the collision efficiency ε is a
function of ab

Re-casting this in terms of radius, we get

dab
dt

= ε
(ab + a0)

2(vb − v0)
3a2b

(2.16)

The relative velocity (vb−v0) can be rewritten using equation (2.14), thus
giving

dab
dt

= ε
(ab + a0)

2

3a2b
v0

(
a2b
a20
− 1)

)
(2.17)

This equation can be solved either numerically or analytically to give an
estimate for growth by gravitational settling. We can take the efficiency of
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collision ’ε’ to be the maximum possible value to obtain a lower limit on how
quickly a given droplet can grow to become a rain drop.

Figure 2.3: Time vs Radius plot for a droplet growing by gravitational set-
tling from a radius of 12.6 µm to 40 µm. The initial growth is slow. The
growth is obtained by solving equation 2.16 with ε = 1.
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Figure 2.4: Time vs Radius plot for a droplet growing by gravitational set-
tling from a radius of 12.6 µm to 5 mm. The growth is rapid after the droplet
reaches around 50 µm

2.5 Droplet Growth Bottleneck

The cloud droplet growth bottleneck is the failure to explain the rapidity of
onset of warm rain. Warm rain is rain from a cloud that does not contain
any ice while the onset of rain is when the cloud droplets grow large enough
to fall as rain. Observations show that cloud droplets grow from 10 microns
to 1 mm in about 10-15 minutes
Growth by condensation alone to a radius of around a millimetre, assum-
ing constant ambient temperature and an infinite reserve of water vapour,
would take several days as larger drops grow slower. Growth by gravita-
tional settling alone would require over an hour, despite assuming high colli-
sion efficiency (= 0.3 initially, unity after droplet reaches ≈ 20 µm) of small
droplets, assuming the droplet remains spherical throughout (large droplets
will deform and take up a different shape) and assuming Stokesian terminal
velocity throughout (Stokes drag is only a linear approximation to the drag
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on a sphere, valid for very small drops).

Range Tc Tg
10 µm to 20 µm 1 to 2 mins ∼ 1 hour
20 µm to 50 µm 20 to 30 mins ∼ 10 mins
50 µm to 1 mm 3 to 4 days ∼ 4mins

Table 2.1: Lowest time (ie. fastest) for a droplet to grow by condensation
(Tc) and gravity (Tg) obtained by solving the respective growth equations. The
simplifying assumptions include - assuming constant ambient temperature
and supersaturation, assuming the upper bound on collision efficiency for the
given range (from experimentally measured quantities) and assuming Stokes
drag on the spherical droplet for terminal velocity.

Until a size of about 10-12 microns, condensation growth occurs rapidly.
However, once all the droplets are activated and reach this size, their growth
due to condensation slows down for several reasons.

1. The growth rate of the radius of the droplet is inversely proportional
to the radius.

2. The water vapour in the atmosphere is depleted due to condensation
and this reduces the rate of condensation

3. Due to the contribution of heat by the condensation of water on to
every droplet, the ambient temperature cannot be treated as constant.
The temperature of the atmosphere rises as a result and this reduces
the rate of condensation

4. In reality, each droplet is exposed to fluctuating temperature and water
vapour. Thus while condensation occurs, evaporation occurs simulta-
neously for some droplets.

To reach from 10 microns to about a millimetre by gravitational settling re-
quires, even under ideal conditions, a little over an hour. The growth from
about 35-40 microns to a millimetre, under simplifying assumptions is rapid
and only takes a few minutes.
A poor 10 micron droplet, 15 minutes later, almost magically, acquires im-
mense water, grows and transforms and this parvenu eventually reaches the
earth as a life-giving raindrop The gap between 10 microns to 40 microns is
the fundamental gap in our understanding of cloud droplet growth and this is
known as the cloud droplet growth bottleneck. The mechanism for the quick
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onset of rain by this rapid growth of droplets by remains poorly understood
and is the subject of much research and speculation. [3, 4]
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Chapter 3

Fluid Dynamics

3.1 Introduction

The equation(s) describing the flow of a viscous, incompressible fluid is(are)
the well-known incompressible Navier-Stokes Equation(s) given as follows

∂tu + (u · ∇)u = −∇p+ ν∇2u + f ;

∇ · u = 0. (3.1)

where u is the velocity field of the fluid, t is time, p is the pressure, ν is the
fluid kinematic viscosity and f a large scale forcing which is the energy input
for the flow.
While finding exact, analytical solutions to the Navier-Stokes equations is a
centuries old problem, it is possible to solve the equations numerically and
this aspect will be discussed later.

3.2 Turbulence

An empirically observed ubiquitous characteristic of fluid flows is the devel-
opment of turbulence. To define turbulence is not straightforward. It is (most
often) a high Reynolds number (Re = Ul

ν
) phenomenon. U is a characteristic

velocity of the flow, and l is a characteristic length. After onset of turbulence,
the flow is no longer streamline and becomes chaotic and seemingly random.
Turbulent flows show features of all length scales.

3.2.1 Energy Cascade

In an on-average steady flow, we can write the instantaneous velocity field as
the sum of a time-averaged steady flow ū and an instantaneous perturbation
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u′. u′ is made of a collection of small vortices or eddies of a whole spectrum
of sizes.
The dissipation of the kinetic energy (per unit time per unit mass) by vis-
cosity of a fluid is ε = 2νSijSij where Sij is the strain rate tensor given
by 1

2
(∂ui/∂xj + ∂uj/∂xi). Dissipation is greater when velocity gradients are

greater, thus the smallest eddies are the most dissipative. In a turbulent
flow, we find eddies from the size of the order of the size of the flow (in other
words, at the scale of the forcing that is driving the flow) to the smallest
scale possible within the flow, which is the scale where the viscous dissipa-
tion completely dominates and all the energy is lost as heat. This smallest
scale is known as the Kolmogorov length scale while the largest length scale,
is known as the integral scale. [5]

Kolmogorov Microscales

According to the widely accepted Kolmogorov 1941 theory of turbulence, the
smallest scales of turbulence, now know as the Kolmogorov microscales, de-
pend only on ε, the average rate of kinetic energy dissipation per unit volume
in the flow, and ν, the kinematic viscosity of the fluid. By pure dimensional
analysis, we can set the smallest length and time scales respectively of the
flow as

η =

(
ν3

ε

) 1
4

; τη =
(ν
ε

) 1
2

Energy transfer happens in turbulent flows through eddies. The largest ed-
dies break-up to form smaller eddies, which further break-up, forming even
smaller eddies until their energy is lost to viscosity at the Kolmogorov scale.
This flow of kinetic energy from large scales to small scales is called the
energy cascade. [6]

3.2.2 Intertial Range

There is an empirical law of turbulence that at large Re, the expected value of
the square of the velocity difference of the fluid between two points separated
by a distance l goes as < (δl)2 >∝ l

2
3 . This can be shown to be equivalent to

saying that the energy spectrum follows E(k) ∝ k−5/3 where E(k) is kinetic
energy at length scale k.
This scaling law is observed in experiments over a large range of length scales
called the intertial range. The intertial range may be said to be the length
scales significantly smaller than the integral scale and significantly larger
than the Kolmogorov scale.
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3.3 Particles in a Flow

When particles are in a fluid, they respond to the flow of the fluid via a
drag force and are thus transported by the fluid. The dynamics of inertial

particles depend on their characteristic time scale τp = 2a2ρp
9νρf

, characterised

by the dimensionless Stokes number St = τp/τη, where τη is the Kolmogorov
time-scale associated with the flow. ρp and rhof are the density of the particle
and the fluid respectively.

The equation of motion for a single spherical particle is obtained by in-
tegrating over the surface of the particle the stresses acting on the particle,
for which we obtain [7]

ρp
dv

dt
= ρf

Du

Dt
+(ρp−ρf )g −9νρf

2a2

(
v − u− a2

6
∇2u

)
−ρf

2

(
dv

dt
− D

Dt

[
u +

a2

10
∇2u

])
.

(3.2)
Under the conditions of our interest of dilute suspensions, small droplets

(a << η), negligible buoyancy and ρp � ρf , this equation simplifies greatly
to,

dx

dt
= v;

dv

dt
= −v − u

τp
(3.3)

3.3.1 Preferential Concentration of Particles

Q-criterion

While the concept of vortex in fluid dynamics is well understood intuitively,
there is no universally accepted, rigorous definition for a vortex. It is, gen-
erally, a region of high vorticity. (Vorticity is defined as the curl of the fluid
velocity field) Highly rotational regions are associated with regions of high
vorticity.
The Q-criterion was introduced by Hunt, Wray and Moin (1998) to define
regions of high vorticity. First, we write the velocity gradient tensor Vij
as Vij = ∂ui

∂xj
. Every second order tensor can be expressed as the sum of a

symmetric and an anti-symmetric tensor.

Vij = Rij + Sij

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
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is the symmetric tensor and

Rij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
is the anti-symmetric part.
Q is defined as

Q =
1

2

[
| R |2 − | S |2

]
The Q-criterion defines a vortex as a region with Q > 0. | R |2 and | S |2 can
be interpreted as the degree of rotation and strain in the flow respectively.
Vortical regions are where the rotationality of the flow dominates over the
strain while non-vortical regions, or stretching regions are regions where the
straining nature of the flow dominates.

Preferential Concentration

When particles following the simplified Maxey-Riley equation (3.3) are sus-
pended passively in a fluid, they tend to preferentially cluster in regions of
low vorticity, corresponding to regions of high strain. Thus, particles are
evacuated from highly rotational (R dominated) regions of the flow. This
phenomenon can be understood as being caused the finite relaxation time of
the particle.
From equation (3.3), it is apparent that τp is a timescale for the particle to
respond to the flow (hence τp is known as the particle response time). When
τp tends to zero, the numerator also tends to zero. Thus, particles with very
small τp behave like ”tracer particles”, which follow the flow exactly.
The non-tracer behaviour of finite size, inertial particles is thus a conse-
quence of the finite response time to the flow. In highly rotational regions,
the particles thus experience a sling action and are thrown out of vortices.
In weaker rotation regions, the particles are still ejected from the vortex, but
more passively, until the particles reach a more quiescent region of the flow.
[8]
Simulations conducted by Dr. Jason R Picardo at ICTS in conjunction with
this study also indicate that particles initially in regions of higher vorticity
are ejected out of vortices far more rapidly than particles in regions of lower
vorticity. This fact will be revisited later in the discussion of the results and
potential applicability of the work described in this thesis.
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3.4 Computational Fluid Dynamics

A program to solve the incompressible Navier-Stokes equation for statisti-
cal, homogeneous and isotropic turbulence was designed by Dr. Samriddhi
Sankar Ray at ICTS. It uses the Galerkin approach to solving the Navier-
Stokes equation. (3.1) can be written in Fourier Space as(

d

dt
+ ν | k |2

)
ûk = −ikp̂k − ̂(u · ∇u)k + fk (3.4)

ik · ûk = 0 (3.5)

The pressure term p is eliminated by taking ik and dotting with (3.4) and
then using (3.5). Thus, we get(

d

dt
+ ν | k |2

)
ûk = ĉk − k

k · ĉk

| k |2
+ fk (3.6)

where ĉk = − ̂(u · ∇u)k. The Galerkin approach, or the Fourier Galerkin ap-
proximation, as it is known, involves terminating the sum of Fourier modes
at | k1 |, | k2 |, | k3 |, < N/2. N is the number of grid points taken over
the computational domain, appropriately chosen to resolve the Kolmogorov
scale. This is done as viscous dissipation doesn’t allow persistence of any
structures below this length scale. [9]
For the Fourier transforms, a Fast Fourier Transform package is used while
the code is solved ’pseudo-spectrally’. The pseudo-spectral method involves
performing multiplication operations in real space and derivates in Fourier
space, since the derivatives reduce to a simple multiplication in the latter.
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Chapter 4

Turbulence in Clouds

4.1 Is Turbulence the Answer?

One of the dominant ideas among cloud physicists to solve the cloud droplet
bottleneck is that turbulence in clouds significantly enhances the number of
collisions between droplets and thus accelerates the creation of large drops.
[3]
After all, as discussed previously, in turbulent flows, particles cluster in re-
gions of low vorticity, increasing the local density of particles and thus in-
creasing the likelihood of collisions. Additionally, collisions between particles
occur when there exist large gradients in the flow to bring particles together.
Turbulent flows abound with large velocity gradients.
To be noted is the central fact that the enhancement of collision rates need
not be great for the cloud system to evolve rapidly. Approximately one in
a million droplets undergoing runaway growth can trigger formation of rain-
drops.

4.1.1 Caustics Collisions and Vortices

The rate of collisions between particles suspended in turbulent flows is well
studied and there exist several studies exploring this particular question. Re-
cent studies have also, in particular, pointed to the collisions caused by rapid
ejection of particles from strong vortices.
When particles are in a strong vortex (region of high Q), they are ejected
out rapidly. This is known as the sling effect. Such rapidly ejected particles
can be the seed for multiple collisions upon exiting the vortical region and
meeting several particles in a more quiescent region of the flow, outside the
vortex. This is a meeting of two particles with vastly different trajectories
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and flow histories. Such a situation, where particles are highly decorrelated
from the flow and multiple particles arrive at the same point with very dif-
ferent velocities is known as caustics. This means that a ”field description”
of the particle density is not valid. [4]

4.2 Vortices in 3D Turbulence

Figure 4.1: Contours of regions with vorticity above a certain value. Coloured
regions have vorticity higher than the cut-off vorticity of

√
〈ω2〉Re. Simula-

tion performed by Dr. Jason Picardo at ICTS, Bengaluru.

The fundamental limitation of exploring the role of vortices (and turbulence
in general) is the finite availability of computational resources. The mea-
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sured Reynolds number of cloud turbulence can be as high as 10000 while
computational resources rarely allow simulations to achieve such high values.
A cut-off vorticity of

√
〈ω2〉Re is often used to to define regions of high vor-

ticity in a turbulent flow. Empirical studies of turbulent simulations have
shown that such regions of high vorticity in turbulent flows are organised into
thin tube-like vortical structures (see fig 4.1) with a small radius (≈ 5η, where
η is the Kolmogorov length scale) compared to the length of the tube-like
vortical structure (≈ L, where L is the integral length scale). [10]

4.3 The Burgers Vortex

A simple way to explore the role of vortices in enhancing collisions is to
independently study collisions around a stand-alone, model vortex, which
can be used to understand how collisions occur near vortices and to then
verify if similar behaviour is observed in actual turbulence simulations and
experiments.
The Burger’s vortex is a cylindrically symmetric vortex flow. It has been
shown that it very accurately models a tubular vortex, typical of the kind
seen in turbulent flows. The vorticity is maximum at the centre and falls off
with exponentially with increasing distance from the centre of the cylinder
about which the vortex is symmetric. The velocity flow field is given by

Vθ =
Γ

2πr

(
1− exp(−r

2

r2v
)

)
;

Vr = σr; Vz = 2σz (4.1)

Γ is the circulation of the vortex, rv is a characteristic radius and σ is
known as the stretching co-efficient, which induces a stretching flow outward
along the z-axis and radially inward. [5]
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Figure 4.2: The flow-field of the Burgers vortex in the radial and axial di-
rections. The radial flow features a rotational flow while the axial flow is a
stretching flow.

4.4 Collisions Around a Burgers Vortex

The main results of this study concern the particle trajectories and collisions
around a Burgers vortex. Since the vorticity of the Burgers flow is maximum
at the centre and decreases as we move away from the centre, particles closer
to the centre of the vortex are ejected much faster than particles that are
further away from the centre. This causes collisions in multiple ways

1. Particles initially at different distances from the centre can collide as
the inner droplet will overtake the outer droplet during ejection from
the region of high vorticity.

2. On rapid ejection from the region of high vorticity, the particle can
collide successively with relatively quiscent droplets outside the core of
the vortex

3. The ejection from vortices increases the local density of droplets away
from the centre of the vortex, thus making collisions more likely.

Previous studies on 2-D Burgers vortices (only radial) showed that character-
istic length for the Burgers vortex, known as the ”caustics radius” (rc), given
by 0.55

√
Γτp (See [11]). For the ”caustics collisions”, that is collisions of the
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type 1, we need the vortex radius to be smaller than the caustics radius, ie.
rv < rc. [11, 12]

4.4.1 Simulation of Burgers Vortex

To understand how particles behave near a Burgers vortex, a code was written
by the author that simulated a system of uniformly distributed particles,
initialised around a Burgers flow field. The particles followed the simplified
Maxey-Riley equation (3.3) and the flow-field was stationary.
The parameters were set to model cloud turbulence as closely as possible,
using measured parameters. To do this, the Burgers vortex parameters were
chosen to model a typical tubular, strong vortex in cloud turbulence.
The parameters chosen were

ν = 1.48× 10−5 m2 s−1 ε = 0.2m2 s−3 St = 0.01

Here, ν is the kinematic viscosity of air, ε is the energy dissipation per unit
volume per unit time and St is the ratio of the particle relaxation time
τp to the Kolmogorov fluid time scale τη. The Stokes number of 0.01 is
typical of small cloud droplets of the sizes of our interest. Specifying ε and
ν automatically set the Kolmogorov length scale and the time scale, η and
τη respectively.
Thus, we get the typical radius of the vortex to be of the order of rv ≈ 5η.
To set the circulation, we consider the well-known result that 〈ω2〉 = 2ε

ν
,

where the expectation value represents an average over space and consider
the above mentioned high-vorticity cut-off as a typical value for the vorticity
of the model vortex.
The dimension of vorticity ’ω’ is m s−1. Thus, using the typical vorticity of
a strong vortex defined by the cut-off in the above paragraph, we can elicit
a typical velocity scale by purely dimensional arguments, using

ω =
u

l

Here l is given by 5η and ω is given by√
〈ω2〉Re

and

〈ω2〉 =
2ε

ν

Having obtained the velocity scale of such a typical vortex, we can define a
typical circulation by Γ = ul using dimensional arguments.
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The stretching coefficient σ is given by σ = 4ν
l2

(see [5], page 250).
Using these parameters, we get, in appropriately scaled coordinates to make
the numbers more computationally tractable,

Γ = 36.7; rv = 0.2; σ = 0.16; rc ≈ 0.3

To compare this with a less intense vortex, we consider another vortex with
l = 10η and an appropriate value for sigma according to the formula above.
Such a vortex has rv = 0.4 in our working units. Such a vortex has a lower
vorticity at the centre of the vortex and the vorticity falls off much slower
compared to the original vortex. We will hence forth refer to the more intense
vortex (rv = 0.2) as the “thin vortex” while referring to the less intense vortex
(rv = 0.4) as the “wide vortex”. The particles were taken to be larger than
actual cloud droplets to obtain large number of collisions and thus better
understand the statistics of collisions.

Particles Around the Vortex

200000 particles are initialised with the same velocity as fluid in a 4 X 4 X
4 box around the centre of the vortex. These particles are allowed to evolve
according to equation (3.3) and collisions between the particles are detected
explicitly using a collision detection routine designed by the author, similar
to the collision detection algorithm of Sundaram and Collins [13]. This is
run for a short time, corresponding to 0.1τη. This is to account for the fact
that a real flow is constantly changing. Though tubular vortices are often
known to last far longer, in the interest of keeping the model realistic, the
run time was restricted to a fraction of τη.
The collisions were studied for both, the thin vortex as well as the wide
vortex. The simulation was performed with a monodisperse spectrum of par-
ticles as well as a polydisperse spectrum of particles. (Dispersity refers to
the distribution of their radii. A monodisperse spectrum of particles have
equal radii and a polydisperse spectrum of particles have particles of differ-
ent radius). The mean radii for both spectra were the same, while the radii
for the polydisperse spectrum followed a Gaussian distribtion with a small
standard deviation of 10% of the mean.
Additionally, every time a collision was detected between two droplets, the
droplets were coalesced to form a larger droplet with the total mass and mo-
mentum from the two droplets being conserved.
The results from these simulations are presented below in 4 plots. These
plots are the average over an ensemble of 50 runs.
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4.5 Collisions Around a Burgers Vortex

4.5.1 Collision Densities and Relative Velocities
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Figure 4.3: A plot of collision density (Average No. of collisions per unit
volume in the run-time) vs radius r where the collision occurs. This shows
a clear, localised spike in the number of collisions outside the ”vortex core”
region for the thin vortex, where particles are ejected out strongly. For the
wide, less intense vortex, a similar spike is not seen as particles are not ejected
as rapidly from the vortex, though a small spike is seen. This is indicative
that the caustics radius picture is valid for 3D as well.

Further simulations showed that the stretching and 3D nature of the model
serves only to increase the number of collisions, while the qualitative nature
of the collisions with respect to the radius at which collisions occur remains
nearly the same. For this purpose, a comparison was carried out with a
Burgers vortex with σ = 0, which is analogous to the 2D vortices studied in
[11] and [12], a plot of which is shown below.
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Figure 4.4: A plot of collision density for the same vortex radius (rv = 0.2)
and circulation (Γ = 36) with different values of the strain rate σ. We
have σ = 0 (Zero Stretching), σ = 0.16 (Thin Vortex) and σ = 0.5 (High
stretching) for comparison. It is clear that the stretching only enhances the
number of collisions and does not add other significant dynamic effects
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Figure 4.5: A plot of the absolute relative velocity of collision against the
radius at which the collision occurred. Each data point represents a collision.
If either of the particles involved in the collision originated from within the
core region (r < 0.35), the point is coloured red. Else, it is coloured green.
It is clear that almost all ”high relative velocity collisions” involve at least
one particle from within the core region. Also, all the collisions occurring
up to a radius ≈ 0.7 are coloured red, thus involving droplets from the core
region. This is compatible with the model that the chief cause for collisions
is the ejection of particles from the core of the vortex in a sling action.
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Figure 4.6: A plot of the absolute relative velocity of collision against the
radius at which the collision occurred. Each data point represents a collision.
If either of the particles involved in the collision originated from within the
core region (r < 0.35), the point is coloured red. Else, it is coloured green.
The first point to note is the lack of relatively high relative velocity collisions
compared to Figure 4.2. In addition, the “red collisions” involving droplets
from within the core region of the droplet dominate collisions up to a much
smaller distance from the centre. Here, it indicates that the wider, less intense
vortex does not eject particles as strongly as the more intense vortex.
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Figure 4.7: A plot of collision density vs radius of collision comparing the col-
lision characteristics of the polydisperse spectrum with that of the monodis-
perse spectrum in the wide vortex. Due to differences in size, the particles
respond differently to the flow according to equation (3.3). This lends itself
to more collisions in all regions of the flow and the number of collisions for
even a less intense vortex is vastly enhanced due to polydispersity. In real-
ity, cloud droplets are in fact polydisperse, thus very strong vortices aren’t
necessary to have a large number of collisions.

4.5.2 Large Droplets

To further understand the origin of colliding droplets, all droplets initially
within the caustics radius (rc ≈ 0.3) were initially tagged with ‘1’ while
droplets outside initially outside this cylinder of radius rc were tagged with
‘0’. Simultaneously, the same number of random droplets were given a sec-
ond tag of ‘0’ and ‘1’ respectively. (That is, if there were initially n droplets
within the caustics radius numbered ’1’, then n randomly taken droplets were
also tagged ’1’ and similarly with the number of droplets outside the caustics
radius). At every coalescence, the tag of the resulting droplet was given the
value of the sum of the tags of the two colliding droplets.
At the end of the monodisperse run, the tag of the larger particles (particles
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that had undergone at least one collision) were considered. The particles with
tags greater than one, that is, particles with at least one component from
within the core region, were counted and compared with the same number
of particles, randomly distributed across the domain by counting the second
tags of the large droplets as well.
For the thin vortex, the ratio of number of large droplets originating from
within the caustics radius to the number of large droplets originating from a
randomly tagged set of droplets was 2.86, while the same ratio for the wide
vortex was 0.15. This demonstrates clearly, the disproportionate participa-
tion of particles close to the vortex centre in collisions and is highly indicative
of collisions occurring due to ejection of vortices.
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Chapter 5

Discussion and Future Work

The above results regarding a Burgers vortex are promising. It is clear that
in a Burgers vortex in isolation, the mechanism of evacuation of vortices and
clustering of particles in non-vortical regions leads to an enhancement in col-
lisions. The large number of high relative velocity collisions in the region just
outside the core of the vortex and the disproportionate presence of particles
from the core region in collisions clearly demonstrates the same.
However, one must exercise a great deal of caution before staking any gen-
eral claims regarding the direct role of vortices in enhancing collisions in a
turbulent flow for several reasons. The Burgers vortex is a static flow-field
modeling a dynamic flow field. It is possible that the dynamics of a tube-like
vortex, even within its life-span, can dominate the properties of the vortex
and this dynamics is not captured by a simplistic measure used to visualise
the vortices. In addition, the fraction of volume occupied by such structures
in a turbulent flow-field and the frequency of their occurrence is subject to
much uncertainty. It is known empirically that with increasing Reynolds
number, the frequency of ”extreme events”, such as instances of very strong
and long-lived vortices, increases. This is known as intermittency and is a
fundamental property of turbulent flow-fields, but there are no exact scaling
laws to quantify the same for Reynolds numbers as high as those seen in
clouds. [5]
Simulations of 3D turbulence using the pseudo-spectral method described in
Section 3.4 are currently underway at ICTS, with location of collisions of in-
ertial particles, among other things, being investigated by Dr. Jason Picardo.
For this, the same collision detection routine written by the author is being
used and there is promising head-way made on the question of vortices and
collisions. Two early results are highlighted qualitatively here

1. The number of collisions outside regions of high vorticity is dispropor-
tionately larger than can be explained only by preferential concentra-
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tion. It could be that the disproportionately large number of collisions
arise from particles being ejected out of vortices and participating in
collisions in a Burgers-like mechanism.

2. The time for a particle to leave a vortical region is inversely proportional
to the strength of the local vorticity when it is ejected. In other words,
a particle in a region of larger vorticity reaches a region of low vorticity
faster than a particle in a region of lower vorticity leaves the vortical
region and enters a region of low vorticity. This suggests that strong
evacuation of vorticity is a reality and particles closer to the ”core”
regions of vorticity are in fact thrown out rapidly in such a way that
they can overtake the particles which are a little away from the local
maxima of vorticity.

While neither of these results is conclusive on the role vortices play in en-
hancing collisions in turbulent flows, they are certainly not incompatible with
the Burgers-like ejection mechanism as a source of large number of collisions
in turbulence. They are, one could argue, quite indicative of the same. Sim-
ulations are being carried out currently and perhaps more data from these
simulations can lend more hints on the exact mechanism for collisions in tur-
bulence and how much of a role vortices have to play.
If vortices play a significant role in enhancing collisions, there are several
potential implications. Most significantly, it could provide a simple way to
scale-up results from simulations of relatively low Reynolds number turbu-
lence to cloud turbulence as it would only require a study on the nature and
frequency of vortices in cloud turbulence to understand the collision rates
in clouds. A better understanding of how cloud droplets grow is central to
solving several problems related to the representation of clouds in General
Circulation Models, which model Global Climate. The dynamic effects of
clouds on atmospheric circulations and their feedback on to global climate
remains the least understood aspect of global climate models.
Further work being carried out currently by the author includes understand-
ing the exact trajectory of particles in a Burgers vortex, understanding the
effect of gravity on collisions in the Burgers vortex system and looking for
more clues from the simulations of 3D turbulence. Since working codes have
been built for both, the Burgers vortex and 3D turbulence and significant
experience in running these simulations has been garnered over the course of
this study, the scope for future work is promising and one can (in the humble
opinion of the author) afford to be optimistic about the same.
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