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Abstract
The objective of this thesis is the study of Motivic homotopy theory and Voevodsky’s con-

struction of triangulated category of motives. We will construct a model category called the

motivic model category which will be the Bousfield localization of level wise model structure

on simplicial presheaves on smooth schemes over a base. As an application of this theory,

we will look at the representability results for Nisnevich torsors in Motivic homotopy cat-

egory. In the second part, we will focus on Voevodsky’s triangulated category of motives.

We will define the motivic cohomology and the category of effective motives. Then we will

give a brief overview of the relationship between modules over motivic cohomology spectrum

and Voevodsky’s category of motives. This provides a relationship between motivic stable

homotopy theory and the theory of motives.
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Chapter 1

Model categories

In this section we give a background of model categories, which is a tool for doing homotopy

theory. A model category the notion of a ’homotopy category’ associated to it. Our motivic

homotopy category is the homotopy category of some model category, which we will build.

One advantage of model categories is that it gives a way to compute maps in the homotopy

category. We refer to [10] and [8] for this section.

1.1 Basic notions and results

Definition 1.1.1. For a category C:

1. A map f : A → B in C is said to be retract of a map g : C → D in C if there is a

commutative diagram of the form

A C A

B D B

f g f

where the compositions of horizontal arrows are identity.

2. A functorial factorization is an ordered pair (α, β) of functors C→ → C→ such that

every map f in C can be factored as f = β(f) ◦ α(f). Here C→ is the arrow category

with objects as maps in C and maps are commutative squares.
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3. Suppose we have the following diagram.

A C

B D

i

f g

j

we say that f has left lifting with respect to g (or g has right lifting wrt f) if there is

an h : B → C such that hf = i and gh = j

A category is said to be complete if it has all small limits. Dually, it is said to be

cocomplete if it has all small colimits. A category is said to be bicomplete if it is both

complete and cocomplete.

Definition 1.1.2. A model category is a bicomplete category C with three classes of maps

called weak equivalences, fibrations and cofibration which satisfy the following axioms.

MC1 If f and g are morphisms such that gf is defined and two of f ,g and gf are weak

equivalences, then so is the third one.

MC2 Weak equivalences, fibrations and cofibrations are closed under compositions and taking

retracts(f is a retract of g and if g is a weak equialence(resp. cofibration or fibration)

then so is f .

MC3 A trivial cofibration is a map which is both a cofibration and a weak equivalence(we

define trivial fibrations similarly). Then the trivial cofibrations have left lifting property

with respect to fibrations and trivial fibrations have right lifting property with respect

to cofibrations

MC4 There exists two functorial factorization (α, β) and (γ, δ) such that for any morphism

f , α(f) is a trivial cofibration, β(f) is a fibration, γ(f) is a cofibration and δ(f) is a

trivial fibration.

As a model category is bicomplete, we have both the initial object 0 and final object

? in our category. We call an object X, in a model category C, to be fibrant if the map

X → ? is a fibration and is said to be cofibrant if the map 0 → X is a cofibration. By

axiom MC4, we can factorize any map f : Y → ? as Y → RY → ? such that Y → RY is a

trivial cofibration and RY → ? is a fibration and this factorization is functorial. RY is called

the fibrant replacement of Y and R is called the fibrant replacement functor. Similary we
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can define cofibrant replacement QY and cofibrant replacement functor Q using functorial

factorization for the map 0→ Y .

Remark. If C is a model category then we have an obvious model structure on pointed

category C? with weak equivalences, fibrations and cofibrations defined by forgetting the

point. Refer to [[10], prop 1.1.8]

Lemma 1.1.3. Suppose C is a model category. Then a map is a fibration(resp.trivial fibra-

tion) if and only if it has right lifting property with respect to all trivial cofibrations(resp.

cofibrations. Dually, a map is a cofibration(resp. trivial cofibration) if and only if it has left

lifting property with respect to all trivial fibrations(resp. fibrations)

Proof. Refer to [[10], Lemma 1.1.10]

The above lemma implies that cofibrations(resp. trivial cofibrations) are closed under

pushouts. Dually, fibrations(resp.trivial fibrations) are closed under pullbacks.

The advantage of working with model category is that there is a set theoretically well

defined notion of localization with respect to weak equivalences. We call this localized cate-

gory the homotopy category. In this section we explicitly define the underlying relation of

homotopy. But this homotopy relation is an equivalence relation only for the full subcategory

of objects that are both cofibrant and fibrant.

Definition 1.1.4. Let C be a model category and X be an object of C.

• A cylinder object X × I for X is a factorization of the map ∇ : X
∐
X → X into a

cofibration X
∐
X → X × I followed by a weak equivalence X× → X

• A path object XI for X is a factorization of the map X → X×X into a weak equivalence

X → XI followed by a fibration XI → X ×X

We know that cylinder and path objects exist for all X because of the functorial factor-

izarions.

Now we can define left and right homotopies using the cylinder and path objects. The

two definition need not coincide(i,e if two maps are left homotopic then they need not be

right homotopic)
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Definition 1.1.5. Let f, g : X → Y be two maps in a model category C.

• We say that they are left homotopic if there is a map H : cyl(X) → Y from some

cylinder object of X such that Hi0 = f and Hi1 = g where, i0 and i1 are the two

possible maps X → X
∐
X → cyl(X).

• We say that they are right homotopic if there is a map H : X → path(Y ) from some

path object of Y such that p0K = f and p1K = g where, p0 and p1 are the two possible

maps path(Y )→ Y × Y → Y .

We say that the maps are homotopic if they are both left and right homotopic. A map

f : X → Y is said to be a homotopy equivalence if there is a map g : Y ×X such that fg is

homotopic to idY and gf is homotopic to idX .

The next proposition([[10], Corollary 1.2.6]) describes that under certain conditions, the

idea of left and right homotopies coincide.

Proposition 1.1.6. Let C be a model category and let X be cofibrant and Y be fibrant.

Then the left and right homotopies coincide and are equivalence relations on HomC(X, Y ).

Furthermore, they do not depend on the choice of a cylinder or a path object.

The next theorem is an analogue of the Whitehead’s theorem.

Theorem 1.1.7. Suppose C is a model category. Then a map between objects that are both

cofibrant and fibrant is a weak equivalence if and only if it is a homotopy equivalence.

A model category is said to be left proper if the weak equivalences are preserved under

cobase change along cofibrations. Dually, a model category is said to be right proper if the

weak equivalences are preserved under base change along fibrations. It is called proper if it

is both left and right proper.

Remark. If C be a model category, then the pointed category C∗ has an obvious model

structure [[10], prop 1.1.8]. If C is left or right proper then so is C∗

Now we will define the homotopy category of a model category. Refer to [[10], 1.2] for a

definition of localization in a general context.

Definition 1.1.8. Let C be a model category. The homotopy category Ho(C) of C is a

category with objects same as C but

HomHo(C(X, Y ) = HomC(RQX,RQY )/ ∼
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where ∼ is the homotopy relation. The canonical functor γ : C → Ho(C) is called the

localization functor is the identity on objects and takes a map f : X → Y to RQ(f) :

RQX → RQY

Remark. The localization functor is the localization of C with respect to weak equivalences

and is universal in the following sense. For any functor F : C → D which takes weak

equivalences in a model category C to isomorphisms in D, there exists a unique functor

G : Ho(C)→ D such that F = G ◦ γ. Refer to [[10], lemma 1.2.2].

Remark. Notice that if f : X → Y is a weak equivalence then RQ(f) : RQX → RQY is

also a weak equivalence and hence a homotopy equivalence by Theorem 1.1.7 and thus is an

isomorphism in Ho(C).

1.2 Quillen functors

In this section we will study the maps between model categories which we call Quillen

adjunctions. We will show that these maps induce maps on the homotopy categories. We

will also look a condition under which Quillen adjunctions lead to an equivalence of homotopy

categories.

Definition 1.2.1. Let C and D be two model categories

1. We call a functor F : C → D a left Quillen functor if it is a left adjoint and if

it preserves cofibration and trivial cofibration. Dually, a functor G : D → C is right

Quillen functor if it is a right adjoint and preserves fibrations and trivial fibrations.

2. Suppose we have an adjunction F : C � D : G such that F is a left Quillen functor,

then it is called a Quillen adjunction.

Remark. We get an equivalent definition if G is a right Quillen functor in the above defintion.

This statement follows from the lemma [[10], lemma 1.3.4]

Here is a useful lemma. Refer to [[10] 1.1.12] for a proof.

Lemma 1.2.2. (Ken Brown’s lemma) Suppose C is a model category and D is a category

with a notion of weak equivalence which satisfies the two out of three axiom. If a functor

F : C → D takes trivial cofibrations between cofibrant objects to weak equiavalences, then F

takes weak equivalences between cofibrant objects to weak equivalences. The dual statement

for fibrations also holds true.
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Remark. Note that a left Quillen functor preserves cofibrant objects and by Ken Brown’s

lemma it preserves weak equivalences between cofibrant objects. The dual statement holds

true for a right Quillen functor.

The Quillen adjunction describe above induces maps at the level of homotopy categories

as follows.

Corollary 1.2.3. Let F : C � D : G be a Quillen adjunction. The composite map F ◦ Q
induces a functor

LF : Ho(C)→ Ho(D)

which we call the total left derived functor. Dually, G ◦R induces a functor

RG : Ho(D)→ Ho(C)

which we call the total right derived functor. Furthermore, the functors

LF : Ho(C)� Ho(D) : RG

form an adjoint pair.

Proof. The existence of the functor LF follows immediately follows from the previous remark

and by the fact that the homotopy category is a category obtained by localizing C with

respect to weak equivalences. The adjointness follows from [[10], Lemma 1.3.10]

Definition 1.2.4. A Quillen adjunction F : C � D : G is said to be a Quillen equiv-

alence if , for all cofibrant X in C and fibrant Y in D, a map f : FX → Y is a weak

equivalence in D if and only if φ(f) : X → GY is a weak equivalence in C. Here, φ :

Hom(FX, Y )→̃Hom(X,GY ) is the bijection for the adjoint pair (F,G).

The following proposition [[10], prop 1.3.13] shows that Quillen equivalences induce ad-

joint equivalences of homotopy categories

Proposition 1.2.5. Suppose F : C � D : G be a Quillen adjunction. Then the following

statements are equivalent:

1. The composite X → GFX → GRFX is a weak equivalence for all cofibrant X, and

the composite FQGX → FQX → X is a weak equivalence for all fibrant X.

2. LF : Ho(C)� Ho(D) : RG is an equivalence of categories.
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3. F : C � D : G is a Quillen equivalence

Proof. See [[10], prop 1.3.13]

The following is an important corollary of the above theorem.

Corollary 1.2.6. Suppose F : C � D : G be a Quillen adjunction. Then the following

statements are equivalent:

1. F : C � D : G is a Quillen equivalence.

2. For every fibrant object Y in D, the map FQGY → Y is a weak equivalence and if

f : X → Y is a map between cofibrant objects such that F (f) : FX → FY is a weak

equivalence, then f is a weak equivalence.

3. For every cofibrant object X in C, the map X → GRFX is a weak equivalence and

if g : X → Y is a map between fibrant objects such that G(g) : GX → GY is a weak

equivalence, then g is a weak equivalence.

1.3 Cofibrantly Generated Model Categories

Proving that a category has a model structure is usually very difficult. The axioms are a

bit redundant in the sense that we only need to specify weak equivalences and fibrations (or

cofibrations) and the cofibrations(or fibrations) are determined by left (or right) lifting with

respect to trivial fibrations (or trivial cofibrations). This section is devoted to minimizing

the number of axioms that need to be checked. One of the important theorems which we

won’t be stating here is the small object argument [[10], Theorem 2.1.14]

Definition 1.3.1. Let I be a class of maps in a cocomplete category C.

1. I − inj is the class of maps in C which have right lifting with respect to all maps in I.

2. I − cof is the class of maps in C which have left lifting with respect to all maps in

I − inj.

3. A map is called a relative I-cell complex if it is a transfinite composition of pushout

of maps in I. We denoted these maps as I-cell

7



Definition 1.3.2. Let C be a model category. C is called a cofibrantly generated model

category if there exist two sets of maps called the generating cofibrations I and generating

trivial cofibrations J , with the following axioms.

1. I and J satisfy the hypothesis of small object argument. [[10], Theorem 2.1.14]

2. A map is a trivial fibration if and only if it has right lifting with respect to every map

in I

3. A map is a fibration if and only if it has right lifting property with respect to every map

in J

Example: The model category of simplicial sets sSet is a cofibrantly generated model

category with

I = {∂∆n → ∆n|n ∈ N}

and

J = {Λn
k → ∆n|n > 0, 0 ≤ k ≤ n}

. See [[10], 3.6.5].

Here is a theorem which will help in recognizing cofibrantly generated model categories.

[[10], Theorem 2.1.19]

Theorem 1.3.3. Suppose C is a category with all small limits and colimts. Let W be a

subcategory of C and I and J are set of maps in C satisfying the following conditions:

1. The subcategory W has two out of three property and is closed under retracts

2. Both I and J satisfy the hypothesis of the small object argument.

3. J − cell ⊆ W ∩ I − cof

4. I − inj ⊆ W ∩ J − inj

5. Either W ∩ J − inj ⊆ I − inj or W ∩ I − cof ⊆ J − cof

Then C has a cofibrantly generated model structure, such that W is the class of weak

equivalences, I is the set of generating cofibrations and J is the set of generating trivial

cofibrations.

8



Remark. Notice that every cofibrantly generate category satisfies these axioms. Hence the

theorem above gives an if and only if condition.

One advantage of cofibrantly generated categories is that it is easier to check whether

adjoints are Quillen functors.

Theorem 1.3.4. Let C and D be two model categories and C is cofibrantly generated with

generating cofibrations I and generating trivial cofibrations J . Let

F : C � D : G

be an adjoint pair. Then they are Quillen adjunctions if and only if F (f) is a cofibration for

f ∈ I and is a trivial cofibration for f ∈ J

Proof. See [[10], lemma 2.1.20]

1.4 Simplicial model categories

The model categories which we will consider will have an extra structure namely, it will be

enriched over simplicial sets such that the enrichment is compatible with the model struc-

ture. One of the main tool in this section will be that of Bousfield localization which is a

way to add more weak equivalences to a sufficiently nice model category.

Definition 1.4.1. (Simplicial model category) A model category C is called a simplicial

model category if there is a mapping space functor

Map : Cop × C → sSet

and an action of simplicial sets,

⊗ : sSet× C → C

satisfying the following conditions:

• Let X ∈ C and K,L ∈ sSet then (K × L)⊗X ∼= K ⊗ (L⊗X) and ∆0 ⊗X ∼= X

• We have adjoint functors

⊗X : sSets� C : Map(X, )

9



and

K ⊗ : C � C : ( )K

for all X, Y ∈ C and K ∈ sSets.

• MC5 For every cofibration i : X → Y in C and fibration p : E → B in C,

Map(Y,E)→Map(X,E)×Map(X,B) Map(Y,B)

is a fibration in sSets which is a weak equivalence if either i or p is a weak equivalence.

Let us first discuss the case of simplicial sets. For details refer to [[11], II. 2-3]. Let X

and Y be simplicial sets, then we can define another simplicial set called the simplicial

mapping space MapsSets(X, Y ) such that

MapsSets(X, Y )n := HomsSets(X ×∆n, Y )

. In this case, we have K ⊗ L = K × L and thus we get the adjunction

Map(K,L)n ∼= HomsSets(∆
n),Map(K,L) ∼= HomsSets(∆

n ⊗X, Y )

Here the first equivalence comes from Yoneda lemma and other by using the adjunctions.

Remark. Let C be a simplicial model category. Then

HomC(X, Y (K)) ∼= HomC(K ⊗X, Y ) ∼= HomsSets(K,Map(X, Y ))

. Hence we have an adjoint pair

Map( , Y ) : C � sSetsop : Y ( )

Remark. We could have formulated MC5 in terms of one of the adjoints of Map(X, Y )

(namely, Y ( ) or K ⊗ ). We call these SM7a and SM7b respectively. Refer to [[11], II

corollary 3.12 and Proposition 3.13] for a proof.

We will state (SM7b). For a cofibration j : X → Y ∈ C and a cofibration i : K → L

∈ sSets then the map

K ⊗ Y
∐
K×X

L⊗X → L⊗ Y

10



is a cofibration in C which is trivial if either i or j is trivial.

We prove that the adjoints in Definition 1.4.1 are infact Quillen adjunctions

Theorem 1.4.2. Let C be a simplicial model category. Then

1.

K ⊗ : C � C : ( )K

is a Quillen adjunction

2. For a cofibrant X ∈ C,

⊗X : sSets� C : Map(X, )

is a Quillen adjunction

3. For a fibrant Y ∈ C,

Map( , Y ) : C � sSetsop : Y ( )

is a Quillen adjunction.

Proof. Notice that every simplicial set K is cofibrant. Using (SM7b) we get that K⊗X →
K ⊗Y is cofibration(trivial cofibration) for every cofibration(trivial cofibration) f : X → Y .

This proves that K ⊗ is left Quillen. Similarly, (MC5) implies that Map(X, ) is right

Quillen for cofibrant X ∈ C follows from MC5 and Map( , Y ) is left Quillen for fibrant Y .

One advantage of working with a simplicial model category is that the weak equivalences

can be detected at the level of mapping spaces.

Lemma 1.4.3. Let f : X → Y be a map in a simplicial model category C. Then f is a

weak equivalence if and only if the induced map

map(f, Z) : map(Y, Z)→ map(X,Z)

is a weak equivalence in simplicial sets for every fibrant object Z in C.

Proof. Refer to [[11], II.Lemma 4.2]

Now we describe the idea of a Bousfield localization. Throughout this subsection we

assume that C is a simplicial model category and map(X, Y ) := Map(QX,RY ), where Q is

a cofibrant replacement functor and R is a fibrant replacement functor. Note that because

of axiom MC5, for a fibrant object Y ∈ C, map(X, Y ) is weak equivalent to Map(QX, Y ).

11



Definition 1.4.4. Let S be a class of morphisms in C. A fibrant object Z in C is said to be

S-local if for every morphism f : X → Y in C the morphism

map(f, Z) : map(Y, Z)→ map(X,Z)

is a weak equivalence of simplicial sets.

A morphism f : X → Y is said to be a S-local weak equivalence if for every S-local

object Z, the morphism

map(f, Z) : map(Y, Z)→ map(X,Z)

is a weak equivalence of simplicial sets.

Remark. Every f ∈ S is an S-local weak equivalence which is clear by the definition of an

S-local object and every weak equivalence in C is an S-local weak equivalence which follows

from Lemma 1.4.3

Definition 1.4.5. (Left Bousfield localization) Let S be a class of morphisms. A model

structure LSC on C is called a left Bousfield localization of C w.r.t S if:

• weak equivalences in LSC are S-local weak equivalences

• cofibrations in LSC are cofibrations in C.

The following theorem gives the existence of left Bousfield localizations under certain

conditions. Note that the theorem requires the model category to be cellular model category

but one can find the definition in [Hir, Chapter 12] or [[10], chapter 2]

Theorem 1.4.6. Let C be a left proper cellular model category and let S be a set of mor-

phisms. Then the left Bousfield localization with respect to S exists and has the following

properties.

1. LSC is a left proper cellular simplicial model category

2. The fibrant objects of LSC is exactly the S-local objects in C

Proof. Refer to [Hir, Theorem 4.1.1]

12



Chapter 2

Unstable motivic homotopy category

We will formulate unstable motivic homotopy category by ’refining’ the levelwise projective

model structure on simplicial presheaves on SmS to include the Nisnevich topology and we

will contract A1 by Bousfield localization. The homotopy category of our model category

will be equivalent to Morel-Voevodsky’s construction under the assumption that the base

scheme is Noetherian with finite Krull dimension.

2.1 Simplicial presheaves with descent

Let C be an essentially small category. Let sPre(C) be the functor category Func(Cop, sSets).

These can also be considered as simplicial objects in the category of presheaves over C. This

has a levelwise projective model structure given by the following data:

• Levelwise weak equivalences: A map f : F → G is a levelwise weak equivalence if for

every X ∈ SmS, F(X)→ G(X) is weak equivalence of simplical sets.

• Levelwise fibrations: A map f : F → G is a levelwise fibration if for every X ∈ SmS,

F(X)→ G(X) is a fibration of simplical sets.

• Projective cofibrations: A map f : F → G is a projective cofibration if it has left lift-

ing property w.r.t levelwise fibrations that are also levelwise weak equivalences(trivial

levelwise fibrations)

Proposition 2.1.1. The category of simplicial presheaves with weak equivalences, fibrations

and cofibrations given as above is a combinatorial left-proper simplicial model category.

Proof. Refer to [[9], Proposition A.2.8.2]. See [[9], Remark A.2.8.4] for left properness.
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We will ’refine’ the above model structure to reflect the topology (Nisnevich topology in

our case). To achieve this we start with Voevodsky’s definition of cd-structures, which is a

convenient way to topologize a category. We then construct a ’t-local ’ model category by

inverting the t-covering sieves via the process of Bousfield localization.

Definition 2.1.2. (cd-structures) Let C be a small category with an initial object φ. A

cd-structure on C is a collection P of commutative diagrams such that if Q ∈ P and Q
′

is

isomorphic to Q, then Q
′ ∈ P .

Let P be a cd-structure on C. The Grothendieck topology tP generated by P is the coarsest

topology such that:

• The empty sieve covers φ

• Let Q ∈ P be a square of the form

W X

Y Z

then the sieve generated by X → Z and Y → Z is a tP -covering sieve of Z

Here are the few examples of the cd-structures which we will be using throughout.

• The Zariski cd-structure on SmS is given by squares of the form

U ×X V U

V X

where, U → X and V → X are open embeddings such that U
⋃
V = X.

• The Nisnevich cd-structure on SmS is given by squares of the form

U ×X V U

V X
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where, U → X is an open embedding and V → X is an etale map such that V ×X
Z → Z is an isomorphism, with Z being the complement of U with reduced induced

subscheme structure.

• The affine Zariski cd-structure on the category of smooth affine schemes over a base S

Smaff
S is given by squares of the form

Spec(Rfg) Spec(Rg)

Spec(Rf ) Spec(R)

where f, g ∈ R and generate the unit ideal.

• The affine Nisnevich cd-structure on the category Smaff
S of smooth affine schemes over

a base S is given by squares of the form

Spec(Af ) Spec(A)

Spec(Bf ) Spec(B)

where, f ∈ B and Spec(A) → Spec(B) is etale such that it induces an isomorphism

A/f ∼= B/f

Remark. The theorems [[3], 2.3.2] and [3], 2.1.3] show that the cd-structures generates

the Nisnevich and Zariski topologies.

Let C be a small category and t be a Grothendieck topology on C. Let St be the set of

covering sieves of the form R → X considered as simplicial presheaves with representable

X.

Theorem 2.1.3. Left Bousfield localization of sPre(C) with respect to St exists. We will

denote this category by LtsPre(C).

Proof. This follows because sPre(C) is a left proper, combinatorial simplicial model category.

See Theorem 1.4.6.

Definition 2.1.4. We say that a simplicial presheaf F satisfies t-descent(or is t-local) if

it is St-local.(See Definition 1.4.4) and we call a morphism of simplicial presheaves F → G
a t-local weak equivalence if it is an St-local weak equivalence.
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There is a convenient way to characterize t-local objects in terms of pre-topologies.

Let U = { Ui → X} i∈I be a family of maps in C. The ’Čech nerve’ Č(U) is a simplicial

presheaf over C such that Č(U)n :=
∐
Ui0...in where Ui0...in := Ui0 × ...× Uin

Theorem 2.1.5. Let (C, τ) be a small Grothendieck site and Covτ be the family of coverings

(i,e U ∈ Covτ (X) if U is a cover of X in the sense of Grothendieck topology). Let

S = { Č(U)→ X|X ∈ C,U ∈ Covτ (X)}

A simplicial presheaf F ∈ sPre(C) is τ -local if and only if it is S-local.

Proof. See [[3], Lemma 3.1.3]

We give a description of fibrant objects in the LτsPre(C) in terms of cd-structures via a

property called P -excision. Our main aim will be to state a variant of theorem by Voevodsky,

which states that under certain conditions the notions of P -excision and τ -descent coincide.

Definition 2.1.6. Let C be a small category with an initial object φ. Let P be a cd-structure

on C. We say that F ∈ sPre(C) satisfies P − excision if:

• F(φ) is a contractible simplicial set

• F(Q) is homotopy Cartesian for every Q ∈ P .

Remark. The notion of excision appears in [1] and [12] as Brown-Gersten property and

Voevodsky calls it P -flasque in [13].

Now we state the variant of a theorem by Voevodsky [13]. The proof is given in [[3],

3.2.5]. Notice that the examples of cd-structures mentioned earlier satisfy the hypothesis of

this theorem.

Theorem 2.1.7. Let C be a small category with strictly initial object. Let P be a cd-structure

on C such that:

• Every square in P is cartesian

• Pullback of squares in P exists and belong to P
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• For every square in P of the form

W X

Y Z

Y → Z is a monomorphism.

• For every P-square of the form above

W X

W ×Y W X ×Z X

∆ ∆

is also in P

Let F be a simplicial presheaf on C. F satisfies P-excision if and only if it satisfies

τ -descent.

2.2 Site with an interval and SingI-construction

Definition 2.2.1. Let C be a small category. A representable interval object in C is a

quadruple (I,m, i0, i1) consisting of a presheaf I on C, a map m : I × I → I and maps

i0, i1 : ∗ → I, satisfying the following conditions:

1. for every X ∈ C, X × I is representable

2. m(id× i0) = m(i0× id) = i0p and m(id× i1) = m(i1× id) = id where, p : I → ∗ is the

canonical map.

3. the map i0
⊔
i1 : ∗

⊔
∗ → I is a monomorphism.

Definition 2.2.2. A simplicial presheaf F over C is called I-invariant if for all X ∈ C, the

projection map X× I → X induces a weak equivalence F(X)→ F(X× I) of simplicial sets.

In other words, F is SI-local where, SI is the set of all projections X × I → X.
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For a representable interval object I we can define a cosimplicial presheaf I• on C with

In := I×n. We define a functor SingI : sPre(SmS)→ sPre(SmS) as follows

SingI(F(X)n := (F(X × In))n

We have a natural map F → SingI(F) which is an SI-weak equivalence and SingI(F) is

SI-local. [Refer to, [1], 2.3.5 and 2.3.8]

Theorem 2.2.3. Consider the commutative diagram of bisimplicial sets

F12 F1

F2 F0

such that it is levelwise homotopy cartesian. If π0(F0) and π0(F1) are constant simplicial

presheaves then,

diag(F12) diag(F1)

diag(F2) diag(F0)

is homotopy cartesian.

Proof. See [[3],4.2.1]

Using the above theorem, we immediately get the following result. [[4], 2.2.1]

Theorem 2.2.4. Let C be a small category. Consider a homotopy fiber sequence of simplicial

presheaves over C

F → G → H

such that π0(H) is I-invariant. Then

SingI(F)→ SingI(G)→ SingI(H)

is a homotopy fiber sequence.
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Proof.

F(X × I•) G(X × I•)

∗ H(X × I•)

is levelwise homotopy cartesian. As π0(H) is a I-invariant, π0(H)(X × I•) is levelwise

constant. The statement follows from Theorem 2.2.3.

2.3 A1-homotopy category

Let SmS be the category of smooth schemes over a quasi compact and quasi separated base

S. We consider the simplicial presheaves on SmS under Nisnevich topology. As noted before,

the cd- structure in given by the squares of the form

U ×X V V

U X

π

with U → X being an open immersion and π is etale such that, V ×X Z ∼= Z where Z is the

complement of U with reduced induced subscheme structure.

Definition 2.3.1. The category LNissPre(SmS) is called Nisnevich local model cat-

egory and we will denote it by SpcS. We have a map sPre(SmS) → SpcS given by the

identity map. We denote the left derived functor of this map as LNis.

By the theorem [[8], Proposition 3.4.1], we know that the fibrant objects in Nisnevich

local model category are precisely the levelwise fibrant objects that satisfy τ -descent.

We perform a further left Bousfield localization of SpcS to get the A1-homotopy category.

Let I be the class of maps X ×S A1 → X in SpcS where X is a representable presheaf.

As SmS is essentially small, we have a subset J ⊆ I containing maps X ×S A1 → X for

every representative element of isomorphism class in SmS.

Theorem 2.3.2. The left Bousfield localization of SpcS with respect to the set of maps J

exists. We denote this as SpcA
1

S .
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Proof. The Bousfield localization exists as SpcS inherits a simplicial, combinatorial, left

proper model structure from sPre(SmS)

This is usually called the A1 model structure on the presheaf category and the homotopy

category the unstable A1 homotopy category.

Remark. Fibrant objects in SpcA
1

S will be precisely the fibrant objects in SpcS which are A1-

invariant (i,e F(X)→ F(X ×S A1) is a weak equivalence of simplicial sets for all X ∈ SmS)

Remark. We denote [X, Y ]A1 as the set of maps in homotopy category of SpcA
1

S from X to

Y . Similarly [X, Y ]Nis be the set of maps in homotopy category of SpcS from X to Y and

[X, Y ]s be the set of maps in homotopy category of sPre(SmS)

2.4 Stable motivic homotopy theory

In this section we will recall Jardine’s category of motivic spectra and motivic symmetric

spectra. There is a ’stable’ model structure on these categories which makes them a proper

closed simplicial model categories. We will show a Quillen equivalence between these two

model categories and the homotopy category will be the motivic stable homotopy category.

The motivation behind motivic symmetric spectra is that there is a well defined smash prod-

uct at the level of spectra, making it into a symmetric monoidal category.

The ’sphere’ we consider the spectra will be a combination of topological and Algebro-

geometric spheres. Let S1 be the simplical presheaf which takes every U ∈ SmS to the

simplicial set ∆n/∂∆n. Let Gm := A1 − {0} considered as a simplicial presheaf. We define

the Tate-object T := S1 ∧ (Gm, 1). Notice that homotopy pushout of

Gm *

*

is S1 ∧ Gm and now in SpcA
1

S , we can replace one of the * with A1 and hence T is weakly

equivalence to A1/(A1 − 0) in SpcA
1

S .

Definition 2.4.1. The category of motivic spectra is defined as follows. A motivic spectrum

consists of a sequence of pointed simplicial presheaves E0, E1, ..., En, ... with ’bonding maps’
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σn : T ∧En → En+1. A map between spectra f : E → F is a collection of maps fn : En → Fn

such that it commutes with the bonding maps. We denoted this category as SptT (SmS).

We have a levelwise model structure on spectra which makes it a proper simplicial model

category. We will refine this model category by adding more weak equivalences. Our defini-

tion differs from that of Morel-Voevodsky. They define stable weak equivalence using stable

homotopy groups. But both the categories turn out to be Quillen equivalent.

We say a map between spectra f : E → F is:

• A level cofibration if fn : En → Fn is a cofibration in SpcA
1

S for all n > 0

• A level fibration if fn : En → Fn is a fibration in SpcA
1

S for all n > 0

• A level weak equivalence if fn : En → Fn is a weak equivalence in SpcA
1

S for all n > 0

Let cofibrations be maps which have left lifting with respect to level fibrations that are

also level weak equivalences.

Theorem 2.4.2. The category SptT (SmS) with class of cofibrations, levelwise fibrations and

level wise weak equivalences forms a proper closed simplicial model category.

Proof. Refer to [[14], 2.1]

Let J be the fibrant replacement functor in this model category. For a simplicial presheaf

we have the T-loop space functor ΩT which is right adjoint for T-smash ∧ T .

ΩT (X) = Hom∗(T,X)

. In general, the functor Hom∗(K, ) is a right adjoint of the functor ∧K for any K ∈
sPre(SmS). This induces a loop space functor ΩT : SptT (SmS) → SptT (SmS) taking a

motivic spectrum E to ΩT (E) defined as

ΩT (E)n = ΩT (En) = Hom∗(T,En)

with bonding maps T ∧ ΩT (E)n → ΩT (En+1) given by taking a adjoint of the composition

map

T ∧ ΩT (En) ∧ T id∧ev−−−→ T ∧ ΩT (En+1)→ En+1
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Here ev is the evaluation map Hom∗(T,En)∧T → En, which in turn is the map correspond-

ing to idHom∗(T,En) via the adjunction

Hom(Hom∗(T,En),Hom∗(T,En))
∼−→ Hom(Hom∗(T,En) ∧ T,En)

There is another functor Ωl
T which is called the fake loop space functor[[14], 2.3], which

is defined as follows: Ωl
T (E)n = ΩT (En) and the bondings maps are adjoints of the map

ΩT (σ∗n) : ΩT (En)→ ΩT (Hom∗(T,En+1))

where σ∗n is the adjoint of the map En ∧ T ∼= T ∧ En
σn−→ En+1

Because of the bonding maps above, we have maps

E → Ωl
T (E[1])→ (Ωl

T )2(E[2])→ ...

where, E[m]n := Em+n. Let QT (E) denote the colimit of the above diagram. The functor

QT is called the stabilization functor. We have a natural map η : E → QT (E).

Definition 2.4.3. A map f : E → F between motivic spectra is

• A stable weak equivalence if the natural map QT (JE) → QT (JF ) is a levelwise weak

equivalence. The functor J is the fibrant replacement in the level wise model structure

(i,e JE is levelwise fibrant)

• A stable fibration if it has right lifting property with respect to maps that are simulta-

neousy cofibrations(in the level wise model) and stable weak equivalences.

With the above maps, the category of T-spectra has a proper simplicial model structure.

This is proved in [[14], Theorem 2.9]

Theorem 2.4.4. The category SptT (SmS) of motivic spectra along with stable weak equiv-

alences, stable fibrations and cofibrations forms a proper simplicial model category.

We now consider the category of motivic symmetric spectra[[14], chap.4]. The motivation

behind symmetric spectra is that there is a well defined smash product on it, with respect to

which it becomes a symmetric monoidal category. We have a stable model structure, with
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respect to which the category is Quillen equivalent to the stable model category of motivic

spectra.

Definition 2.4.5. A motivic symmetric spectra is a motivic spectra E with an action of sym-

metric group Σn×En → En such the maps T∧p×Em → Em+p is Σp×Σm-equivariant(action

of Σp×Σm on Em+p comes from viewing Σp×Σm as a subgroup of Σm+p). A map of motivic

symmetric spectra f : E → F is a map of motivic spectra which is levelwise equivariant. We

denote this category as SptΣT (SmS).

We have a levelwise model structure similar to motivic spectra, with levelwise weak

equivalence, levelwise cofibration and injective fibrations, which are the maps with right

lifting with respect to levelwise cofibrations that are levelwise weak equivalences, resulting

in the following theorem.[[14], theorem 4.2]

Theorem 2.4.6. The category of SptΣT (SmS) with levelwise weak equivalence, levelwise cofi-

bration and injective fibrations forms a proper closed simplicial model category.

We have a forgetful functor U : SptΣT (SmS) → SptT (SmS) with left adjoint V , which

is called the symmetrization functor. This functor takes cofibrations in motivic spectra to

level cofibration in symmetric spectra[[14], Lemma 4.3]. This allows us to define the stable

model structure on SptΣT (SmS)
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Chapter 3

Affine representability results in

A1-homotopy theory

3.1 Representability result for Nisnevich G-torsors

Aim of this section is to prove the following theorem.

Theorem 3.1.1. Suppose F → G → H is a homotopy fiber sequence of pointed simplicial

presheaves over SmS satisfying the following conditions:

1. G and H satisfy Nisnevich excision.

2. π0G and π0H are A1-invariant on affine schemes.

Then, F is A1-naive(See section 3.1.2).

We will further specialize this theorem to the case of Nisnevich G-torsors. Using this, we

prove affine representability of Nisnevich G-torsors under the assumption that H1
Nis( , G)

is A1-invariant.

3.1.1 Affine Zariski(Nisnevich-)descent

We introduced affine Zariski and affine Nisnevich cd-structures in definition 2.1.2. Also,

we considered the Grothendieck topology generated by the cd-structures. The following

theorem shows that the topology generated by affine Nisnevich(Zariski-)squares is in fact

the Nisnevich(Zariski-)topology restricted to the category Smaff
S of affine schemes over the

base S.
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Theorem 3.1.2. The topology τaffNis generated by affine Nisnevich cd-squares coincides

with the Nisnevich topology on Smaff
S .

Proof. Refer to [[3], Proposition 2.3.2]

Let i : Smaff
S → SmS be the inclusion functor. This induces adjunction of the form

i∗ : sPre(SmS)
 sPre(Smaff
S ) : i∗

which is a Quillen adjunction as i∗ preserves cofibrations and weak equivalences. Let (i∗,Ri∗)

the total derived functors on the homotopy category.

Lemma 3.1.3. The functor Ri∗ is fully faithful

Proof. Proving Ri∗ is fully faithful is equivalent to proving that the counit map i∗Ri∗ →
id is an isomorphism. Recall that Ri∗ is a right Kan extension given by Ri∗F(X) =

holimY ∈Smaff
S /XF(Y ) where X ∈ SmS and F ∈ sPre(Smaff

S ). So if X is affine, then

Ri∗F(X) ∼= F(X) ,because X is the final object in the category Smaff
S /X.

Lemma 3.1.4. Let τ be Zariski or Nisnevich topology. The functors i∗ and Ri∗ preserve

τ -local objects and is an equivalence when restricted to full subcategories of τ -local objects in

Ho(sPre(Smaff
S ) and Ho(sPre(SmS)).

Proof. The claim that i∗ preserves τ -local objects immediately follows from the characteri-

zation of local objects in terms of Čech descent(Theorem 2.1.5). Since Map(G,Ri∗(F)) '
Map(i∗(G),F), Ri∗ preserves τ -local objects iff for every covering sieve R → X on SmS,

i∗(R) → i∗(X) is a τ -local weak equivalence. It is easy to check that for a presheaf consid-

ered as a constant simplicial presheaf, being τ -local is same as being a τ -sheaf. Hence, i∗

sends covering sieves to isomorphism of τ -sheaves. This is in turn equivalent to i∗ preserving

τ -sheaves of sets which follows by [[16], Exp 3, 2.2]. Thus the derived adjunction (i∗,Ri∗)

makes sense when restricted to full subcategories of τ -local objects, with the right adjoint

Ri∗ being fully faithful. Now it’s enough to prove that i∗ is conservative.

Let f be a morphism of τ -local simplicial presheaves over SmS such that i∗(f) is a weak

equivalence. Since every separated scheme admits a τ -cover whose Čech nerve consists of

affine schemes, it follows that f is a weak equivalence on Smsep
S and since every scheme admits

a τ -cover whose Čech nerve consists of separated schemes, f becomes a weak equivalence on

SmS.
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Theorem 3.1.5. Let F be a simplicial presheaf on SmS.

• If F satisfies affine Zariski excision, then, F(X) → RZarF(X) is a weak equivalence

for every X ∈ Smaff
S . Here RZar is a the fibrant replacement in the Zariski-local model

category.

• If F satisfies Nisnevich excision, then RZarF is Nisnevich-local.

Proof. As F satisfies affine Zariski excision, it is affine Zariski-local by theorem 2.1.7, i∗(F)

is Zariski local as i∗ preserves Zariski-local objects. Hence, the map i∗(F) → RZari
∗(F) is

a weak equivalence. By previous lemma, i∗(RZarF) is Zariski-local. Hence, i∗(RZarF) →
RZari

∗(RZarF) is a weak equivalence. Consider the following diagram,

i∗(F) i∗(RZarF)

RZari
∗(F) RZari

∗(RZarF)

As Ri∗ preserves Zariski-local objects by previous lemma, i∗ preserves Zariski-local weak

equivalences, the bottom horizontal map in the diagram above is a weak equivalence and

hence the top horizontal map is a weak equivalence by 2-out of-3 property. This proves the

first part.

For the second part, notice that as F is Nisnevich local, i∗(F) is also Nisnevich local.

By the first part, i∗(RZarF) is Nisnevich local. Now, Ri∗i
∗(RZarF) ∼= RZarF because Ri∗

is fully faithful. As Ri∗ preserves Nisnevich local objects, RZarF is Nisnevich local.

The following lemma develops a relationship between affine Zariski(resp. affine Nisnevich)

excision and SingA
1

functor. The statement is true in a more general context. See [[3] 4.2.3].

Lemma 3.1.6. Let F be a simplicial presheaf on Smaff
S . If π0(F) is A1-invariant and if

F satisfies affine Zariski(resp. affine Nisnevich) excision then, SingA
1
(F) satisfies affine

Zariski(resp. affine Nisnevich) excision.

Proof. See [[3], 4.2.4]

Remark. If I is a small diagram and F: I → sPre(SmS) such that F(i) satisfies affine

Zariski(resp. affine Nisnevich) excision for every i ∈ I. Then holim(F (i)) satisfies affine
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Zariski(resp. affine Nisnevich) excision. This is a consequence of commutativity of homotopy

limits.

3.1.2 Naive A1-homotopy classes

Let F be a simplicial presheaf on SmS. We have a canonical map

π0(SingA
1

)F(X)→ [X,F ]A1

The left hand side is called the set of naive A1-homotopy classes of maps from X to F .

It is the equivalence class of set of maps X → F by the equivalence relation generated by

A1-homotopies. In general this need not be a bijection for all X ∈ SmS even if F is a

representable presheaf.

Definition 3.1.7. Let F be a simplicial presheaf on SmS and let F̃ be the fibrant replacement

in SpcA
1

S . F is said to be A1- naive if the canonical map SingA
1F(X) → F̃(X) is a weak

equivalence for all X ∈ Smaff
S .

Lemma 3.1.8. Let F be a Zariski-local simplicial presheaf on SmS. If F is A1 invariant

on affines then it is A1-invariant for all schemes.

Proof. Consider the map F → F( ×A1). This is a map between Zariski local simplicial

presheaves such that i∗(F) → i∗(F( ×A1)) is a weak equivalence between Zariski local

objects. Hence F → F( ×A1) is a weak equivalence by the argument in the proof of

Lemma 3.4.

Theorem 3.1.9. Let F be a simplicial presheaf on SmS. Let us suppose that:

• F satisfies affine Nisnevich excision

• π0(F) is A1-invariant on affine schemes.

Then RZarSing
A1F is Nisnevich-local and A1-invariant and the canonical map

π0F(X)→ [X,F ]A1

is an isomorphism for X ∈ Smaff
S
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Proof. SingA
1F satisfies affine Nisnevich excision by Lemma 3.1.6. Hence RZarSing

A1F is

Nisnevich local and the map SingA
1F(X) → RZarSing

A1F(X) is a weak equivalence for

X ∈ Smaff
S by theorem 3.1.5. Hence we have that RzarSing

A1F is A1-invariant on affines

because SingA
1F is A1-invariant. So by applying the previous lemma, we conclude that

RzarSing
A1F is A1-invariant. As π0(F) is A1-invariant,

π0Sing
A1F(X) ∼= π0F(X) ∼= [X,F ]A1

for all X ∈ Smaff
S .

Now we give a criteria for a sheaf to be A1-naive in terms of the SingA
1

functor.

Theorem 3.1.10. A simplicial presheaf F is A1-naive iff SingA
1
(F) satisfies affine Nisnevich-

excision.

Proof. Suppose F is A1-naive then SingA
1
(F) is weak equivalent to F̃ when restricted to

affine schemes. Hence it is Nisnevich-local(As, F̃ is the Nisnevich-local, A1-invariant replace-

ment of F . Hence SingA
1
(F) has affine Nisnevich excision by theorem 2.1.7

For the converse, let’s assume that SingA
1F satisfies affine Nisnevich excision. This

implies that the canonical map SingA
1F(X) → RZarSing

A1F(X) is a weak equivalence for

all X ∈ Smaff
S by Theorem 3.1.6 and RZarSing

A1F is Nisnevich-local. Also, RZarSing
A1F

is A1-invariant by Theorem 3.1.9. This implies that, RZarSing
A1F ' F̃ and hence F is

A1-naive.

We are now ready to prove the theorem mentioned at the beginning.

Theorem 3.1.11. Suppose F → G → H is a homotopy fiber sequence of pointed simplicial

presheaves over SmS satisfying the following conditions:

1. G and H satisfy Nisnevich excision.

2. π0G and π0H are A1-invariant on affine schemes.

Then, F is A1-naive.

Proof. By the theorem 2.2.4,

SingA
1F(X)→ SingA

1G(X)→ SingA
1H(X)
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is a homotopy fiber sequence for X ∈ Smaff
S . As both G and H satisfy affine Nisnevich

excision, both SingA
1G and SingA

1H also satisfy affine Nisnevich excision by lemma 3.1.6.

As a consequence of the commutativity of homotopy limits (look at the remark after lemma

3.1.6) SingA
1F also satisfies affine Nisnevich excision. Hence, F is A1-naive by the previous

theorem.

The following result is not need for the rest of this section but we state it because it is

interesting and is closely related to the previous results. See [[3], Theorem 2.2.5] for a proof.

Theorem 3.1.12. Let F → G → H be a homotopy fiber sequence of pointed simplicial

presheaves on SmS. If:

• H satisfies affine Nisnevich excision

• π0(H) is A1-invariant on affine schemes.

Then F → G → H is an homotopy fiber sequence in SpcA
1

S .

3.1.3 Application to G-torsors

We will specialize the general representability result in the case of G-torsors for some group G.

Definition 3.1.13. Let (C, τ) be a small Grothendieck site and let G be τ -sheaf of groups

on C. Let X ∈ C. A G-torsor over X is a triple (E , π, a) where E is a τ -sheaf on C, with

a right action a : E × G → E of G and a map π : E → X which is G-equivariant for trivial

action on X such that:

1. (free-action) the morphism E × G → E ×X E coming from projection and the map a,

is an isomorphism.

2. (local triviality) The collection of maps U → X such that E ×X U → U has a section

is a τ -covering sieve of X (We call a map τ -locally split if it satisfies this condition)

The collection of G-torsors over X ∈ C can be assembled into a category Torsτ (G)

fibered in groupoids over C (Refer to [18] for the definition). Let BTorsτ (G) be the simpli-

cial presheaf such that BTorsτ (G)(X) is the nerve of the groupoid of sections of Torsτ (G)

over C/X. You can think of this as the groupoid of G-torsors over X but the definition has

functoriality built into it.
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The category Torsτ is a stack for topology τ and this implies that BTorsτ (G) satisfies

τ -descent by [[18], Theorem 3.9]

Let us denote BG as the pointed simpicial presheaf such that BGn := G×n with the face

map

di(g0, ..., gn−1) =


(g0, ..., gi−1gi, ...gn−1) if 0 < i ≤ n− 1

(g1, ..., gn−1) if i = 0

(g0, ..., gn−2) if i = n

.

and the degeneracy maps

si(g0, ..., gn−1) =


(g0, ..., gi−1, e, gi...gn−1) if 0 < i ≤ n− 1

(e, g0, ..., gn−1) if i = 0

(g0, ..., gn−1, e) if i = n

.

BG is the quotient of an objectwise contractible simplicial presheaf EG, BG = G/EG,

with G acting freely on BG. This defines a G-torsor EG → BG, which is classified

by a map BG → BTorsτ (G). The simplicial presheaf EG is given by EGn := G×n+1,

with face maps di(g0, ..., gn) the projection omitting gi, and the degeneracy sj(g0, ...gn) =

(g0, ..., gi−1, gi, gi, gi+1, ..., gn). The G action on EGn is g · (g0, . . ., gn) = (g · g0, . . ., g · gn).

Let BτG be the τ -local replacement of BG. As BTorsτ (G) is τ -local, we get a map

BτG→ BTorsτ (G)

. The next lemma shows that the above map is infact a weak equivalence.

Lemma 3.1.14. Let (C, τ) be a small site and G be a τ -sheaf of groups on C. Then:

1. The map BτG→ BTorsτ (G) is a weak equivalence.

2. There is a natural isomorphism H1
τ ( , G) ∼= π0(BτG)( )

3. There is a canonical weak equivalence RΩBτG ' G. Here, RΩ is the right derived

functor of the loop space functor.

Proof. Refer to [[4],lemma 2.3.2]
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There is a relationship between the first non-abelian cohomology group and groupoid of

G-torsors. We advise the reader to refer [[17], III. 4] for an explanation.

Let G be an S-group scheme and let X be an S-scheme. By a G-torsor over X we will

mean the same as Definition 3.13 with C being the category of S-schemes with τ being the

fppf topology. If G is affine over S, any G-torsor over X is automatically representable by

an S-scheme. [See [17], III, theorem 4.3].

But if we restrict to the case where X and G are in SmS, then taking C to be SmS and

τ to be the etale topology, we get an equivalent definition of torsors. This is because of the

following lemma.

Lemma 3.1.15. Let G be an affine S-group scheme. Let π : E → X be a torsor over X with

X ∈ SchS. If G→ S is finitely presented, flat , or smooth, then so is π : E → X

Proof. It follows from the fact that the properties are preserved under base change and are

fppf-local on target. [See [4], lemma 2.3.3]

Now we state and prove the affine representability for Nisnevich locally trivial G-torsors

under the assumption that H1
Nis( , G) is A1-invariant on Smaff

S

Theorem 3.1.16. Let G is a finitely presented smooth S-group scheme. If H1
Nis( , G) is

A1-invariant on Smaff
S , then

• The simplicial presheaf RZarSing
A1
BNisG is Nisnevich-local and A1-invariant

• For every affine X ∈ Smaff
S , the canonical map H1

Nis( , G) → [X,BG]A1 is bijective

and functorial with respect to X.

Proof. The statements follows from Theorem 3.1.9 because BNisG is Nisnevich local, hence

satisfying the affine Nisnevich excision by Theorem 2.1.7 and π0(BNisG) ∼= H1
Nis( , G) by

Lemma 3.1.14 and hence is A1-invariant. Also, BG→ BNisG is a weak equivalence in SpcA
1

S ,

which means that [X,BG]A1
∼= [X,BNisG]A1 .

3.2 A formalism for homotopy invariance

We have proved the representability result under the assumption that H1
Nis( , G) is A1-

invariant. In this section, we prove that the above assumption holds under some hypothesis
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on the group scheme G.

3.2.1 Recollections on group schemes

In this section, we recollect a few definitions about group schemes and state a condition

under which the group schemes are linear. We will only consider group schemes over spec

of a ring R. Many of our the theorems for group schemes over Spec(R) become very simple

when R is a field. In general, there is a tradeoff between the assumptions on the group

scheme and the base ring we work with.

Definition 3.2.1. We write GLn,R for the general linear group scheme over R and Gn,R

for GL1,R. A linear R-group scheme is a group scheme over R with a finitely presented

closed immersion group homomorphism G→ GLn,R.

We refer the reader to [[4]] and [19] for the definition of reductive, split and isotropic

R-group schemes.

The following theorem gives a criteria for an R-group scheme to be linear. Refer to [[4],

Proposition 3.1.3] for the theorem and references for a proof.

Theorem 3.2.2. Let G be a reductive R-group scheme. Then G is a linear R-group scheme

if one of the following assumption holds:

1. R is Noetherian and regular

2. G is split

Notice that if R is a field then G is linear by the above theorem.

3.2.2 The local-to-global principle

In this section we will provide an analogue of Quillen’s local to global principle for tor-

sors under linear R-groups schemes. The main result is the multivariable analogue of [[25],

Theorem 1], which was formulated by Quillen to prove the Serre’s conjecture(Quillen-Suslin

theorem). Refer to [20] for an account of Serre’s conjecture and [[20], Chapter V] for Quillen

patching.
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The important result we will need from this section is that for a reductive R-group scheme

G, local to global principle holds when R is regular Noetherian or G is split.

The following is a generalization of the lemma [[20], Lemma 1]. Refer to [[4], section 3.2]

Lemma 3.2.3. Let G be a linear R-group scheme for a commutative ring R. Let g ∈ R

and let f(t) ∈ G(Rg[t]) such that f(0) = 1 ∈ G(Rg). There exists an integer s ≥ 0 such

that for any c, d ∈ R with c− d ∈ f sR, we have h(t) ∈ G(R[t]) with h(0) = 1 and such that

hg(t) = f(ct)f(dt)−1 ∈ G(Rg[t])

Proof. See [[4], Lemma 3.2.1]

Lemma 3.2.4. Let G be a linear R-group scheme for a commutative ring R. Given g0, g1 ∈ R
such that g0R+g1R = R, and f(t) ∈ Gf0f1 [t] with f(0) = 1, then there exists hi(t) = G(Rfi [t])

for i = 0, 1 with hi(0) = 1 such that f(t) = h0(t)(h1(t))−1

Proof. See [[4], Lemma 3.2.2]

Let G be a linear R-group scheme for a commutative ring R.For a commutative R-algebra

A, by a G-torsor over A we mean a G-torsor over specA. By assumptions our torsors are

fppf-locally trivial.

We say that a G-torsor over A[t1, ..., tn] is extended from A if it is pulled back from a

G-torsor over A.

Lemma 3.2.5. Consider a commutative ring R. Let P be a G-torsor over R[t]. The set

Q(P) consisting of g ∈ R such that P|SpecRg [t] is extended from Rg forms an ideal of R

Theorem 3.2.6. (Local-to-global principle) Let G be a linear R-group scheme for a commu-

tative ring R. If P is a G-torsor over R[t1, ...., tn], then

An The set Q(P) consisting of g ∈ R such that P|SpecRg [t1,...tn] is extended Rg is an ideal

in R.

Bn If P|SpecRm[t1,...,tn] is extended for every maximal ideal m ⊂ R, then P is extended

Proof. The statement (A1) holds by previous lemma. We now show that (An) =⇒ (Bn).

It is enough to check that if P satisfies the hypothesis of (Bn), then Q(P) is a unit ideal.
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Let P0 be the pull back of P along the zero section map SpecR → SpecR[t1, ..., tn] and

let P ′ be the pullback along the map SpecR[t1, ...tn]→ SpecR.

By the hypothesis in (Bn), P|SpecRm[t1,...tn] is extended for every maximal ideal m ⊂ R.

Hence we know that there exists an isomorphism φ : P|SpecRm[t1,...tn] → P
′|SpecRm[t1,...tn]. As

G-torsors over affine base are finitely presented by lemma 3.1.15, there exist f ∈ R − m

such that φ is the localization of an isomorphism of G-torsors over SpecRg[t1, ...tn]. Hence

it follows that g ∈ Q(P − m) and that Q(P) is not contained in any maximal ideal. So

Q(P) = R

Now we show that (A1) =⇒ (An). We use induction on n. Let’s assume that (An) is true

and hence Bn is true by the previous argument. Consider Q(P) for (An). It is easy to check

that R.Q(P) ⊂ Q(P) so we need to show that for g1, g2 ∈ Q(P), g1 +g2 ∈ Q(P). Let us write

g = g1+g2. Let P|tn be the restriction of P along the map of schemes induced by the quotient

map R[t1, ...tn]→ R[t1, ...tn−1]. We apply (A1) on the map R[t1, ...tn]→ R[t1, ...tn−1][tn] and

conclude that Pg is extended from (P|tn)g. Now it is enough to prove that (P|tn)g is extended

from Rg. As (Bn−1) holds, it suffices to show that (P|tn)g is extended for every maximal

ideal in Rg. Let p be the preimage of m under the localization map R → Rg. Since g /∈ pg,

it follows that one of g0 and g1 is not in p. Let’s assume that g0 /∈ p. But by assumption,

Pg0 is extended from (P0)g0 . Hence, the restriction of (P|tn)g to m is extended from (P0)p,

which proves our claim.

By Theorem 3.2.2, A reductive R-group scheme G is linear when R is regular Noetherian

or if G is split. Hence local-to-global principle hold in those cases by the previous theorem.

3.2.3 A formalism for homotopy invariance

Lemma 3.2.7. Let k be an infinite base field. Suppose F be a functor from the category of

k-algebras to the category of pointed sets satisfying the following conditions:

A1 F commutes with filtered colimit of rings with flat transition morphisms.

A2 For every field extension L/k the map

F(L[t1, ..., tn]→ F(L(t1, ..., tn))
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has trivial kernel for all n ≥ 0.

A3 For any smooth k-algebra A, any etale A-algebra B, and for any g ∈ A such that

A/gA ∼= B/gB the map

ker(F(A)→ F(Ag))→ ker(F(B)→ F(Bg))

is a surjection.

Let B be the localization of a smooth k-algebra at a maximal ideal and KB = Frac(B). then

the map

F(B[t1, ..., tn]→ F(KB(t1, ..., tn))

has a trivial kernel for all n ≥ 0

Proof. See [[4], Proposition 3.3.4]

Now we prove the A1-invariance of the functor H1
Nis( , G) for affine schemes.

Theorem 3.2.8. Let G be a isotropic reductive k-group scheme(See [[4], 3.3.5] for the defi-

nition) for an infinite field k. For any smooth k-algebra A, the map

H1
Nis(SpecA,G)→ H1

Nis(SpecA[t1, ..., tn], G)

is a bijection for all n ≥ 0.

Proof. Our aim is to show that every Nisnevich locally trivial G-torsor P over A[t1, ..., tn]

is extended from A. By Theorem 3.2.2 and local-to global principle, it is enough to show

that, for every maximal ideal m ∈ A, the G-torsor Pm over Am[t1, ..., tn] is extended from Am.

See [[4], theorem 3.3.7] which shows that the functor A 7→ H1
Nis(SpecA,G) from k-

algebras to pointed sets satifies the axioms A1-A3. Hence by theorem 3.2.7, it suffices to

show that Pm is trivial over Frac(Am)(t1, ..., tn). This follows from the fact that a field has

no non trivial Nisnevich covering sieve.
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Chapter 4

The triangulated category of motives

In this section we describe Voevodsky’s construction of triangulated category of motives and

motivic cohomology. The main idea of the construction is the introduction of the category

of finite correspondences. We compute motivic cohomology as the cohomology of certain

sheaves with transfer.

4.1 Finite correspondences

In this section we construct an additive category Cork of finite correspondences over a field

k. The idea of finite correspondences is motivated from Grothendieck’s smooth correspon-

dences. Instead of considering rational equivalence classes, we consider the cycles themselves

to define the morphism in the category Cork. Before we proceed to define the category of

finite correspondence, we will recall a few basic ideas about algebraic cycles.

4.1.1 Algebraic cycles

We recall the definition of algebraic cycles on the category Schk of schemes over a field k.

Our main aim would be to define push forward of cycles. We refer to [24] for this subsection.

Definition 4.1.1. Let X ∈ Schk. An algebraic cycle(of dimension n) on X is an element

of the free abelian group Zn(X) generated by the closed integral subschemes W of X with

dimkW = n. So an algebraic cycle is of the form ΣiniWi where Wi is a closed integral

subscheme of X with dimension n. We write Z∗(X) for the graded group ⊕nZn(X) and an

element of this group is called the algebraic cycle on X
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If X is locally equi-dimensional, we can define Zn(X) the free abelian group generated

by the closed integral subschemes of X with codimension n.

We define the support of an algebraic cycle ΣiniWi to be the union ∪i|Wi| and denote it

by |W |.

We can define push forward of cycles along proper maps. Let f : X → Y be a proper

morphism. Then for an integral closed subscheme W of X, f(W ) is an irreducible closed

subset of Y and an integral closed subscheme on Y with the reduced induced subscheme

structure. Also, we have that k(W ) is a finitely generated field extension of k(f(W )) because

of the map at the level of stalks (Here,k(W ) is the stalk at the generic point of W , which is

always a field). We have the push forward f∗(W ) ∈ Zn(X) by

f∗(W ) =

0 if dimkW > dimkf(W )

[k(W ) : k(f(W ))] · f(W ) if dimkW = dimkf(W )
.

This gives a push forward map on cycles f∗ : Zn(X)→ Zn(Y ) by linearity.

4.1.2 Finite correspondences and presheaves with transfer

We will follow [[2]] for this section and follow the conventions in it. We consider the category

of smooth separated schemes Sm/k. An algebraic cycle on a scheme X is the formal Z-

linear combination of irreducible closed subsets of X. For every irreducible closed subset

W , we have an integral closed subscheme W̃ determined by the reduced induced subscheme

structure on W .

Definition 4.1.2. Let X be a smooth connected scheme over k and Y be any separated

scheme over K. An elementary correspondence from X to Y is an irreducible closed subset

W of X × Y such that its associated integral subscheme is finite and surjective over X.If

X is non-connected then we define the elementary correspondence from X to Y to be an

elementary correspondence from a connected component of X to Y.

The group of finite correspondences Cor(X, Y ) from X to Y is defined as the free abelian

group generated by the elementary correspondences from X to Y.

Remark. For a morphism f : X → Y in Sm/k, the graph Γf is an elementary correspondence

from X to Y as Γf → X is an isomorphism and Γf → Y is closed because Y is separated.
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The category of finite correspondence Cork is the category with objects as smooth

schemes over k and with morphims as Cor(X, Y ) for X, Y ∈ Sm/k. We now define compo-

sitions in this category.

Given elementary correspondences V ∈ Cor(X, Y ) and W ∈ Cor(Y, Z), we can form the

intersection product [T ] = (V × Z) · (X ×W ) in X × Y × Z(See [24] for the definition of

intersection product). The composition W ◦ V of V and W is the push forward of [T ] along

the map p : X × Y × Z → X × Z. The push forward p∗[T ] is finite over X × Z. This is a

finite correspondance from X to Z by [[2], lemma 1.4]

It follows that Cork is an additive category with a zero object φ and disjoint union as

a coproduct. By the remark above, we have a faithful functor Sm/k → Cork defined by

identity on objects and takes a map f : X → Y in Smk to its graph Γf .

We have a tensor product on Cork which is defined as the product of underlying schemes

X ⊗ Y := X × Y

. If we have elementary correspondences W1 from X1 to Y1 and W2 from X2 to Y2, then the

cycle associated to V ×W gives a finite correspondence from X1⊗Y1 to X2⊗Y2. This makes

Cork into a symmetric monoidal category

Definition 4.1.3. A Presheaf with transfer is a contravariant additive functor F :

Coropk → Ab from the category of finite correspondences to the category of Abelian groups.

The category of presheaves with transfer PST(k) is a category with objects as presheaves

with transfer and morphisms as natural transformation.

The following is a lemma a special case of a result for functor categories. Refer to [[6]

1.6.4] and [[6] exercises 2.3.7 and 2.3.8]

Theorem 4.1.4. The category PST(k) is an abelian category with enough injectives and

projectives.

By the Yoneda lemma, we have that the following functor

Smk → Cork → PST(k)

. We denote this functor as Ztr : Smk → Cork and Ztr(X) is the presheaf with transfer

represented by X such that Ztr(X)(U) = Cork(U,X). We write Z for Ztr(Spec(k)) and
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hence we have a map Ztr(X)→ Z for every X ∈ Smk

For a pointed scheme (X, x), we define Ztr(X, x) as the cokernel of the map x∗ : Z →
Ztr(X) coming from the point x : Spec(k) → X. The map x∗ splits the map Ztr(X) → Z,

we have Ztr(X) = Ztr(X, x)⊕ Z

Let (Xi, xi) be pointed schemes in Smk. We define Ztr(X1 ∧ ... ∧Xn) as:

Coker(⊕iZtr(X1 × ...X̂i...×Xn)
id×...xi...×id−−−−−−−→ Ztr(X1 × ...×Xn))

We use the cosimplicial scheme ∆• to define a chain complex associated to a presheaf

with transfer. Recall that ∆n = Speck[x0, ..., xn]/(Σn
i=0xi = 1)

Let F be a presheaf with transfer. We associate a simplicial presheaf with transfer C•F

defined as (C•F (U)n = F (U × ∆n). We define a chain complex C∗F with CnF (X) =

F (X ×∆n) and the differentials given by taking alternating sum of the face maps in ∆•.

For a simplicial abelian group A, we associate a normalized chain complex ADK• such that

ADKn = ∩i=0,...nker(di) with di : An → An−1 and the differentials ∂i : ADKn → ADKn−1 given by

the restriction of d0. Hence, for a simplical presheaf C•F , we have the so-called normalized

chain complex CDK
• F which is quasi isomorphic to C∗F .

In the construction of the triangulated category of motives, homotopy invariant presheaves

play a central role. Notice that this notion is similar to the notion of A1-invariant simplicial

presheaves defined in the previous chapters.

Definition 4.1.5. A presheaf F of abelian groups is said to be homotopy invariant if for

every projection of the form X ×A1 → X, the map F (X)→ F (X ×A1) is an isomorphism.

Definition 4.1.6. We say that two finite correspondences f, g ∈ Cor(X, Y ) are A1-homotopic

if there exists a correspondence H ∈ Cor(X ×A1, Y ) such that the restriction to X × 0 and

X × 1 is f and g respectively. We say that a map f : X → Y is an A1-homotopy equiv-

alence if there exists a map g : Y → X such that g ◦ f and f ◦ g are A1-homotopic to

identity.

Lemma 4.1.7. Let f : X → Y is an A1-homotopy equivalence with an homotopy inverse
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g : Y → X. Then, f∗ : C∗Ztr(X) → C∗Ztr(Y ) is a chain homotopy equivalence with the

chain homotopy inverse g∗ : C∗Ztr(Y )→ C∗Ztr(X) induced by g.

Proof. Refer to [[2], lemma 2.26]

The category PST(k) has a tensor product structure. Notice that if F and G are in

PST(k), we can define F ⊗ G(X) = F (X) ⊗Z G(X). But this construction does not have

transfers. Hence we need a more complicated construction.

Let F be a presheaf with transfer. Let ZF be the set of pairs of the form (X, s ∈ F (X))

for X ∈ Smk. By Yoneda lemma, sections s ∈ F (X) are in bijection with maps Ztr(X)→ F

in PST(k). There is a canonical surjection

⊕(X,s)∈ZF
Ztr(X)→ F . . . .(*)

. This is because of universality of coproduct and surjection comes from noticing that F (Y )

is in bijection with maps Ztr(Y )→ F .

We can iterate this construction on the kernel of the map (*) and get a resolution

L•(F )→ F . We define tensor product on representables as Ztr(X)⊗tr Ztr(Y ) = Ztr(X ×Y )

and on presheaves with transfer F and G as F ⊗tr G = H0(Tot(L•(F )⊗tr L•(G)))

We define Hom presheaves to be:

Hom(F,G)(X) = HomPST (k)(F ⊗tr Ztr(X), G)

The functor F ⊗tr is the left adjoint of Hom(F, ). [[2], lemma 8.3]

4.1.3 Tensor triangulated categories

Before we proceed, we recall a few basic definitions on triangulated categories. One basic

example of a triangulated category is the derived category of an Abelian category. One

main idea that we will briefly outline is that of localizations in triangulated category. The

Voevodsky’s category of effective motives will be the localization of some derived category.

We consider an additive category C with a notion of shift, which is an auto equivalence

Σ : C → C. We write X[1] := ΣX. An additive functor F : C → D between additive
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categories with shift is said to be graded if F (X[1]) = F (X)[1].

Let C be an additive category with shifts. A triangle in C is a sequence of maps

X
f−→ Y

g−→ Z
h−→ X[1]

. A morphism between triangles is a commutative diagram of the form

X Y Z X[1]

X
′

Y
′

Z
′

X
′
[1]

f g h

f

f
′

g
′

h
′

Definition 4.1.8. A triangulated category is an additive category A with shifts, together

with a collection D of triangles called the distinguished triangles in C such that they satisfy

the following axioms:

TC1 D is closed under isomorphism of triangles

TC2 Every X
f−→ Y extends to a distinguished triangle X

f−→ Y → Z → X[1] and A
id−→ A→

0→ A[1] is a distinguished triangle.

TC3 X
f−→ Y

g−→ Z
h−→ X[1] is a distinguished triangle if and only if Y

g−→ Z
h−→ X[1]

−f [1]−−−→
Y [1] is distinguished.

TC4 Given a commutative diagram with distinguished triangles as rows

X Y Z X[1]

X
′

Y
′

Z
′

X
′
[1]

f g h

f
′

g
′

h
′

there exists morphism h : Z → Z
′

such that

X Y Z X[1]

X
′

Y
′

Z
′

X
′
[1]

f g h

f

f
′

g
′

h
′

is morphism of triangles.
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TR5 (Octahedral axiom) Given distinguished triangles X
f−→ Y

g−→ Z
′ h−→ X[1], Y

u−→ Z
v−→

X
′ w−→ Y [1] and X

u◦f−−→ Z
a−→ Y

′ b−→ X[1], there exists a distinguished triangle

Z
′ k−→ Y

′ l−→ X
′ m−→ Z

′
[1]

such that v = l ◦ a, h = b ◦ k, m = g[1] ◦ w, w ◦ l = f [1] ◦ b, k ◦ g = a ◦ u

Definition 4.1.9. A tensor triangulated category is a triangulated category C with

symmetric monoidal tensor product ⊗ with natural isomorphisms X⊗Y [1]
∼=−→ (X⊗Y )[1]

∼=←−
X[1]⊗ Y for X, Y ∈ C such that the following condition is satisfied:

TTC1 For any distinguished triangle X → Y → Z → X[1] and any C ∈ C, the following

triangle is distinguished

X ⊗ C → Y ⊗ C → Z ⊗ C → X[1]⊗ C

The idea of Verdier localization is a way to construct new triangulated categories by

inverting a set of morphisms.

Let us consider a full additive subcategory B of a triangulated category C. B is called a

thick subcategory of C if

• B is closed under taking direct summands.

• Let X → Y → Z → X[1] is a distinguished triangle. Then if two out X, Y, Z are in

B, then so is the third.

Let B be a thick subcategory of a triangulated category C. Let W be the collection of

maps f : X → Y in A such that when it is completed to a distinguished triangle X
f−→ Y →

Z → X[1], Z lies in B. This forms a multiplication system of morphisms [[6],10.3.4]. We

can form a localised category C[W−1] = C/D with the same objects as C and maps

HomC[W−1](X, Y ) = lim
X′→X∈S

HomC(X
′
, Y )

Refer to [[6], 10.3.7] for a general construction of localized categories.

Let LS : C→ C/D be the canonical functor.
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Theorem 4.1.10. (Verdier) Let B be a thick subcategory of a triangulated category C. Then

C/B is a triangulated category such that

• T is a distinguished triangle if and only if it is isomorphic to the image of a distin-

guished triangle in C under LW

• The functor LW is universal. If F : C → D is an exact functor such that F (B) is

isomorphic to 0 for all BinB, then F factors through LS uniquely.

• B is the subcategory of objects in C that become isomorphic to zero in the localized

category C/B

Remark. Let C be a tensor triangulated category. If the thick subcategory B is such that

A ⊗ B is in B whenever A or B is in B then, the localized category C/B is also tensor

triangulated with the tensor product inherited from C.

4.2 The triangulated category of motives

In this section we will define motivic cohomology groups, which will be Zariski-hypercohomology

with respect to some chain complexes described below.

Definition 4.2.1. We define the motivic complex Z(n) for every n ≥ 0 as the following

complex of presheaves with transfer:

Z(n) := C∗Ztr(G∧nm )[−n]

. Here Gm is (A1 − 0, 1) and the shifting convention [−n] means (C[−n])i = Cn+i for a

bounded above chain complex C• for i > n and Ztr(G∧qm ) if i = n. The differential dC[−n] :

(C[−n])i → (C[−n])i−1 is given by (−1)ndC : Cn+i → Cn+i−1

Now we recall a few definitions related to hypercohomology. Details can be found in [[17],

Appendix C].

Let us consider the global section functor, Γ(X, ) : Sh(X)→ Ab from category of sheaves

over a scheme X to the category of abelian groups. This functor is left exact. Let C• be a

bounded below cochain complex of sheaves. This admits a quasi isomorphism I• such that
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In’s are injective. The hypercohomology groups are the hyper right derived functors of the

global section functor.

Hn(X,C•) = RnΓ(X,C•)

There are spectral sequences that connect ordinary sheaf cohomology to hypercohomology

[[17], Appendix C].

Ep,q
1 = Hq(X,Cp) =⇒ Rp+qΓ(X,C•)

and

Ep,q
2 = Hp(X, (Hq(C•)) =⇒ Rp+qΓ(X,C•)

Definition 4.2.2. Let X ∈ Smk. The (p, q)th motivic cohomology group Hp,q(X,Z) is

the pth Zariski-hypercohomology of the motivic complex Z(q)

Hp,q(X,Z) = Hp
Zar(X,Z(q))

We say that a presheaf with transfer F is a Nisnevich sheaf with transfer if the

underlying presheaf is a Nisnevich sheaf on Smk. We denote this by ShvtrNis. We have a

notion of tensor product ⊗Nis on this category which is defined as the sheafification of the

tensor product on underlying presheaves.

F ⊗Nis G = a(l(F )⊗tr l(G))

where, a is the sheafification functor and l is the forgetful functor. This makes ShvtrNis into

a symmetric monoidal category.

We have an internal hom on ShvtrNis defined as follows.

Hom(F,G)(X) = HomShvtrNis
(F ⊗Nis Ztr(X), G)

.

Consider the category of bounded above cochain complexes Ch−(A) for an abelian cat-

egory A. A map f : X → Y is called a quasi-isomorphism if it induces isomorphisms on

cohomology groups

Hn(f) : Hn(X)→ Hn(Y )

for all n ≥ 0. The derived category D−(A) of A is the localization of Ch−(A) with respect

to quasi-isomorphisms. This category has a canonical triangulated structure.[[6], Chapter

10]
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In the construction of the triangulated category of motives, we consider the derived

category D−(ShvtrNis) of Nisnevich sheaves with transfer.

First notice that the category Ch−(PST(k)) has a tensor product defined as:

(F ⊗G)n := ⊕i+j=nF i ⊗tr Gj

.

We can define it similarly for Ch−(ShvtrNis).

F ⊗Nis G = aNis(l(X)⊗ l(Y ))

. This induces a derived tensor product at the level of the derived category which is

computed as follows. Consider F,G ∈ Ch−(ShvtrNis). Consider left resolutions L•(F ) →
F and L•(G) → G. Then the derived tensor product is the Nisnevich sheafification of

L•(F )⊗tr L•(G)

Theorem 4.2.3. The triangulated category D−(ShvtrNis) along with ⊗LNis is a tensor trian-

gulated category.

Proof. See [[2], 8.17 and 14.2]

Now we will define the triangulated category of effective motives DM−
eff (k).

Definition 4.2.4. Let EA1 be the smallest thick subcategory of D−(ShvtrNis) which contains

the cone of

Ztr(X ⊗ A1)→ Ztr(X)

for every projection X × A1 → X. We define the triangulated category of effective motives

DM−
eff (k) as

DM−
eff (k) := D−(ShvtrNis)/EA1

the Verdier localization of the derived category D−(ShvtrNis) with respect to EA1.

The category DM−
eff (k) is a tensor triangulated category (See [[2], Lecture 14]). We can

write DM−
eff (k) := D−(ShvtrNis)[W

−1
EA1

] where, WEA1 are class of maps whose cone lies in EA1

Definition 4.2.5. Let X ∈ Smk. The motive M(X) associated to X is the image of X

under the map M : Smk → DM−
eff (k) which is defined as the composition

Smk → PST(k)→ ShvtrNis → Ch−(ShvtrNis)→ D−(ShvtrNis)→ DM−
eff (k)
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The triangulated category of motives DM−(k,Z) is obtained from DM−
eff (k) by inverting

the Tate twist operation X 7→ X ⊗LNis Ztr(1).

Now we state a theorem, which states that the full subcategory of A1-local complexes in

D−(ShvtrNis) is equivalent to DM−
eff (k).

Definition 4.2.6. An object A in D− := D−(ShvtrNis) is said to be A1-local if HomD−( , A)

takes maps in WEA1 to isomorphisms. We write L for the category of A1-local objects.

Proposition 4.2.7. The category L of A1-local objects is equivalent to the full subcategory

of complexes in D−(ShvtrNis) with homotopy invariant cohomology sheaves

Proof. Refer to [[2], Proposition 14.8]

The category L has a tensor product defined as follows. Let A,B ∈ L, then A ⊗L B =

TotC∗(A⊗L
tr B)

Theorem 4.2.8. The category (L,⊗L) is tensor triangulated and the canonical functor L →
DM−

eff (k) is an equivalence of tensor triangulated categories.

Proof. See [[2], Theorem 14.1]

Hence, DM−
eff (k) is the full subcategory of D−(ShvtrNis) with homotopy invariant coho-

mology sheaves.

4.3 Modules over motivic cohomology

In this section we will give a brief overview of the relationship between modules over mo-

tivic Eilenberg-Maclane spectrum (the spectrum which represents motivic cohomology in the

motivic stable homotopy category) and Voevodsky’s big category of motives DMk . This

section is based on [21].

One of the main results towards this relationship is the following monoidal Quillen equiv-

alence.

MSStr � ChSStrGtr
m[1]

Here, MSStr is the motivic symmetric spectrum with transfer(Definition 4.3.3) and ChSStrGtr
m[1]

is the symmetric Gtr
m[1] of unbounded chain complexes of presheaves with transfer (See Def-

inition 4.3.4)
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We define the category Mtr of motivic spaces with transfers as the simplicial objects in

the category of presheaves with transfer. This category is symmetric monoidal with respect

to the tensor product ⊗tr defined levelwise as the tensor product of presheaves with transfer.

See Definition 4.8.

We have a forgetful functor U : Mtr → sPre(Sm/k) , which has a left adjoint ( )tr

that is strict symmetric monoidal. Refer to [[21], Lemma 2.1]. This category has a model

structure [[21], Def 2.5 and Theorem 2.6] makes it into a left proper, combinatorial, simplicial

model category. Here is a theorem that characterizes the weak equivalence and fibrations.

Proposition 4.3.1. A map between motivic spaces with transfer is a motivic weak equiva-

lence(or motivic fibration) if and only if it a weak equivalence(or fibration) in SpcA
1

k .

Proof. Refer to [[21] Lemma 2.7]

One of our main objects of discussion will be motivic symmetric spectra with transfers.

For the definition of T-specta and T-symmetric spectra See section 2.5.

Definition 4.3.2. A motivic spectrum MStr with transfers E is a sequence (E0, E1, ...) of

motivic spaces with transfer with bonding maps T tr ⊗tr En → En+1 for n ≥ 0

We have a Quillen adjunction

ZtrN : MS�MStr : U

where U is the forgetful functor. The left adjoint ZtrN is obtained by applying the transfer

functor ( )tr, which is strict symmetric monoidal[[21], Lemma 2.1].

Similarly we can define motivic symmetric spectra.

Definition 4.3.3. A motivic symmetric spectrum with transfers is a motivic spectrum with

transfer E = ((E0, E1, ...), Σn : T tr⊗trEn → En+1) together with an action of the symmetric

group Σn on En such that the iterated bonding maps

((T )tr)⊗
trp ⊗ Eq → Ep+q

is Σp × Σq-equivariant. With the evident notion of morphism, this defines the category of

motivic symmetric spectra with transfer, MSStr
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We have a Quillen adjunction of the form

ZtrΣ : MSS�MSStr : UΣ

, where MSS is motivic symmetric spectra (See section 2.5).

Definition 4.3.4. Consider Chtr := Ch(PST(k)) the unbounded chain complexes of presheaves

with transfer. We can construct a symmetric spectra by taking suspension with respect to

...→ Gtr
m → 0. We denote this category as ChSStrGm[1].

Theorem 4.3.5. There is a Zig-zag of monoidal Quillen equivalences between MSStr and

symmetric Gtr
m[1]-spectra of unbounded chain complexes of presheaves with transfer.

Proof. The proof follows from constructing a chain of Quillen equivalences. Refer to the

discussion after [[21], Theorem 2.9]. Each of these Quillen equivalences have been proved in

[[21], section 2].

Consider Chtr∼ be the category of unbounded chain complexes of Nisnevich sheaves with

transfer. Sheafification yields a left Quillen equivalence Chtr → Chtr∼, which extends to a

left Quillen functor ChSStrGtr
m

[1]→ ChSStr∼Gtr
m

[1] by [[23], Theorem 9.3].

Because weak equivalences in Chtr∼ are quasi isomorphisms, the category Ho(Chtr∼) is

equivalent to the derived category of Nisnevich sheaves with transfers. By Theorem 4.19,

DMeff is the full subcategory of Ho(Chtr∼) consisting of homotopy invariant homology

sheaves (Notice that in our definition of Theorem 4.19, we had considered cochain com-

plexes). Hence, DMeff is equivalent to homotopy category Chtr∼mo of chain complexes whose

homology sheaves are homotopy invariant (Refer to [[21], section 2.3] for precise was of de-

scribing Chtr∼mo as a localization of Ho(Chtr∼. Also, refer to Proposition 4.2.7, Theorem 4.2.8

and Definition 4.2.5 for a comparison)

By the discussion in [[21], section 2.3], category ChSStr∼Gm[1] is equivalent to Voevodsky’s

big category of motives DMk. Also, refer to [[15], Theorem 10.96 and example 10.97] for a

more general construction.

We now describe the idea of motivic cohomology as a ring spectrum and define the cate-

gory of modules over it.The definition of motivic cohomology spectrum used here is slightly
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different from Voevodsky’s motivic Eilenberg MacLane spectrum[See [5]].

The motivic cohomology spectrum MZ is the motivic symmetric spectrum

MZ := (U(Specktr+ ),U(T )tr,U(T∧2)tr....)

. The structure maps of are obtained

T ∧ U(A)tr → U(T )tr ∧ U(A)tr → U(T tr ⊗tr Atr)→ U(T ∧ Atr)

Here, U is the forgetful functor Mtr → sPre(Smk) and A = T∧n. This definition is weakly

equivalent to Voevodsky’s by [[22], Section 4.2]. This is a commutative ring spectrum with

multiplication map MZ ∧MZ→ MZ determined by U(Atr) ∧ U(Btr)→ U(Atr ⊗tr Btr)→
U(A ∧B)tr and the unit map S→MZ is determined by A→ U(Atr).

Definition 4.3.6. An MZ module is a motivic symmetric spectrum E with a action MZ ∧
E → E which is compatible with the multiplication map and unit map for MZ. We denote

this category as MZ−mod.

This category is symmetric monoidal and the forgetful functor MZ−mod→MSS is a

lax symmetric monoidal with a strict symmetric monoidal left adjoint, which is MZ ∧ :

MSS→MZ−mod. There is a functor ψ : MSStr →MZ−mod defined as E 7→MZ∧UΣ(E)

where, UΣ(E) is the underlying motivic symmteric spectrum of a motivic symmetric spec-

trum with transfer E. This has a left adjoint φ such that this is a Quillen adjunction (See

[[21] lemma 2.37]).

This adjunction is in fact a symmetric monoidal Quillen equivalence, which is the main

result that we need.

Theorem 4.3.7. Suppose k is a field of characteristic zero. Then there is a strict symmetric

monoidal Quillen equivalence

φ : MZ−mod�MSStr : ψ

Proof. See [[21], Theorem 5.5]

From the discussion above, Ho(MSStr) is equivalent to DMk. We have a Quillen ad-
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junction of the form

ZtrΣ : MSS�MSStr : UΣ

which gives adjunctions at the level of homotopy categories

DMk � SH(k)

.This parallels the case in topology where we have an adjunction between the derived category

of abelian groups and the stable homotopy category.
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