Characteristic classes

A Thesis

submitted to
 Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme

by

Sudhir Kumar

IISER PUNE

Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA.

April, 2018

Supervisor: Dr. Vivek Mohan Mallick
(c) Sudhir Kumar 2018

All rights reserved

Certificate

This is to certify that this dissertation entitled Characteristic classestowards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune represents study/work carried out by Sudhir Kumar at Indian Institute of Science Education and Research under the supervision of Dr. Vivek Mohan Mallick, Assistant Professor, Department of Mathematics, during the academic year 2017-2018.

Dr. Vivek Mohan Mallick

Committee:
Dr. Vive Mohan Mallick

Dr. Steven Spallone

This thesis is dedicated to my teachers.

Declaration

I hereby declare that the matter embodied in the report entitled Characteristic classes are the results of the work carried out by me at the Department of Mathematics, Indian Institute of Science Education and Research, Pune, under the supervision of Dr. Vivek Mohan Mallick and the same has not been submitted elsewhere for any other degree.

Sudhir Kumor

Sudhir Kumar

Acknowledgments

I would like to express my gratitude to Dr. Vivek Mohan Mallick for his continuous guidance, support and valuable suggestions. I would like to thank IISER Pune and Mathematics department for giving me opportunity to learn Mathematics. I would like to thank Dr. Steven Spallone for being in my advisory committee and for giving important suggestions during mid-year evaluation. I am grateful to Jyotirmoy Ganguly, Rohit Joshi and Neeraj Desmukh for giving their valuable time for discussions. I would like to thank Aakash Verma and SriRam Chandra for always being ready for discussions. I would like to thank all my friends. At last I would like to thank my family for their love.

Abstract

Many topological spaces exist as the total spaces of real vector bundles over some base spaces. Topological properties like Hausdorffness, connectedness, the first axiom of countability, path connectedness, local connectedness of the total space of a vector bundle can be studied by knowing these topological properties of the base space. We want to classify vector bundles up to vector bundle isomorphism. It is very difficult to classify vector bundles using topological properties. We would be using algebraic topology concepts like singular homology and singular cohomology of base space to classify vector bundles. We have used axioms of Stiefel-Whitney classes to classify some vector bundles.

Contents

Abstract xi
1 Smooth manifold 1
1.1 Some problems from smooth manifold 1
2 Vector bundle 3
2.1 Vector bundle 3
2.2 Constructing new vector bundles 10
3 Singular homology theory 19
3.1 Singular theory 19
3.2 Chain complexes 21
3.3 Relative homology 24
3.4 The exact homology sequence 25
3.5 The excision theorem 29
3.6 Mayer-Vietoris sequence 31
4 Cohomology 33
5 Stiefel-Whitney classes 35

Chapter 1

Smooth manifold

1.1 Some problems from smooth manifold

Let M be a smooth manifold. We will denote the set of all smooth functions from M to \mathbb{R} by $C^{\infty}(M, \mathbb{R})$.

Exercise 1. Show that $C^{\infty}(M, \mathbb{R})$ can be made into a ring, and for each $x \in M$, we will get a ring homomorphism $C^{\infty}(M, \mathbb{R}) \rightarrow \mathbb{R}$ whose kernel is a maximal ideal in $C^{\infty}(M, \mathbb{R})$. If M is compact, show that every maximal ideal in $C^{\infty}(M, \mathbb{R})$ is the kernel of some homomorphism mentioned above.

Solution. For any $f, g \in C^{\infty}(M, \mathbb{R})$, define

$$
\begin{aligned}
f+g: M & \rightarrow \mathbb{R} \\
x & \mapsto f(x)+g(x)
\end{aligned}
$$

and

$$
\begin{aligned}
f g: M & \rightarrow \mathbb{R} \\
x & \mapsto f(x) g(x)
\end{aligned}
$$

With the addition and multiplication defined above, $C^{\infty}(M, \mathbb{R})$ is a ring.

For $\mathrm{x} \in M$, define

$$
\begin{aligned}
\phi: C^{\infty}(M, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto f(x)
\end{aligned}
$$

Then ϕ is a ring homomorphism and is also surjective. Therefore, $C^{\infty}(M, \mathbb{R}) / \operatorname{kernel}(\phi)$ is isomorphic to \mathbb{R}.

Since \mathbb{R} is a field, $\operatorname{Kernel}(\phi)$ is a maximal ideal. If ϕ is defined for $x \in M$, we will denote $\operatorname{kernel}(\phi)$ by m_{x}. Suppose m is a maximal ideal in $C^{\infty}(M, \mathbb{R})$ such that $m \neq m_{x}$ for all $x \in M$. Since $m \neq m_{x}$ for all $x \in M$, there exists a $f_{x} \in C^{\infty}(M, \mathbb{R})$ for each $x \in M$ such that $f_{x}(x) \neq 0$. Since $f_{x} \neq 0$, there exists a neighborhood U_{x} of x such that $f_{x}(y) \neq 0$ for all $y \in U_{x}$. Since $M=\bigcup_{x \in M} U_{x}$ and M is compact, $M=\bigcup_{i=1}^{n} U_{x_{i}}$ for some natural number n. Define $f=f_{x_{1}}^{2}+\ldots .+f_{x_{n}}^{2}$. Then $f \in m$ and $f \neq 0$ for all $x \in M . f \neq 0$ for all $x \in M$ implies f is invertible. Therefore $m=C^{\infty}(M, \mathbb{R})$. This is a contradiction.

Chapter 2

Vector bundle

2.1 Vector bundle

Let E and B be topological spaces. Let Λ, I and J be index sets. Let \mathbb{R} and \mathbb{Z} denote the real numbers and ring of integers respectively.

Definition 2.1.1. An n-dimensional vector bundle over B is a surjective continuous map $\pi: E \rightarrow B$ satisfying the following conditions,

1. For each $x \in B, \pi^{-1}(x)$ is an n-dimensional vector space over \mathbb{R}.
2. For each $x \in B$, there exists a neighborhood U_{α} of x and a homeomorphism $h_{\alpha}: U_{\alpha} \times$ $\mathbb{R}^{n} \rightarrow \pi^{-1}\left(U_{\alpha}\right)$ such that for each $y \in U_{\alpha}$, the restriction of h_{α} on $\{y\} \times \mathbb{R}^{n}$ is a linear isomorphism of $\{y\} \times \mathbb{R}^{n}$ with $\pi^{-1}(y)$.
E is known as total space of the vector bundle, B is known as its base space, π is known as its projection, $\pi^{-1}(x)$ is known as fiber over x and $\left(U_{\alpha}, h_{\alpha}\right)$ is known as local trivialization at x.
$h_{\alpha y}$ will denote the restriction of h_{α} on $\{y\} \times \mathbb{R}^{n}$.
Example 1. $B \times \mathbb{R}^{n}$ is an n-dimensional vector bundle over B. It is called trivial bundle. We will denote the n-dimensional trivial vector bundle over B by ε^{n}

Example 2. Let M be an n-dimensional smooth manifold. Then the tangent bundle of M is an n-dimensional vector bundle of M.

Example 3. Let E be the tangent bundle of S^{n} for $n \geq 1$. We have $E=\{(x, v) \in$ $\left.S^{n} \times \mathbb{R}^{n+1} \mid<x, v>=0\right\}$ where $<,>$ is the dot product on \mathbb{R}^{n+1}. Here $\pi: E \rightarrow S^{n}$ is given by $(x, v) \mapsto x$. Let $U_{i}=\left\{x \in S^{n} \mid x_{i} \neq 0\right\}$ for $1 \leq i \leq n+1$. Then $h_{i}: U_{i} \times \mathbb{R}^{n} \rightarrow$ $\pi^{-1}\left(U_{i}\right)$ is given by $(x, v) \mapsto\left(x, f_{i}(v)-<x, f_{i}(v)>x\right)$ where $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ is given by $\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n}\right)$. Therefore E is an n-dimensional vector bundle of S^{n}

Remark 2.1.1. Let $\pi: E \rightarrow B$ be an n-dimensional vector bundle with a local trivialization $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$. Define g_{α} and g_{β} as the restriction of h_{α} and h_{β} respectively on $U_{\alpha} \cap U_{\beta} \times$ \mathbb{R}^{n} whenever $U_{\alpha} \cap U_{\beta} \neq \phi$. Then g_{α}, g_{β} are homeomorphism and restriction of g_{α}, g_{β} on $\{a\} \times \mathbb{R}^{n}$ is a linear isomorphism of $\{a\} \times \mathbb{R}^{n}$ with $\pi^{-1}(a)$ for each $a \in U_{\alpha} \cap U_{\beta}$. Therefore the following composition $U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \xrightarrow{g_{\alpha}} \pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right) \xrightarrow{g_{\beta}^{-1}} U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$ will give a homeomorphism $g_{\beta}^{-1} g_{\alpha}: U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$. We will denote it by $g_{\beta \alpha}$. Since the restriction of $g_{\beta \alpha}$ on $\{a\} \times \mathbb{R}^{n}$ is a linear isomorphism of $\{a\} \times \mathbb{R}^{n}$ with itself, we can write $g_{\beta \alpha}$ as

$$
\begin{aligned}
g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} & \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \\
(a, r) & \mapsto\left(a, \tau_{\beta \alpha}(a) r\right)
\end{aligned}
$$

where $\tau_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ is a continuous map. If $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq 0$, we get a commutative diagram

This implies that $g_{\gamma \beta} \circ g_{\beta \alpha}=g_{\gamma \alpha}$ and $\tau_{\gamma \beta} \circ \tau_{\beta \alpha}=\tau_{\gamma \alpha} . \tau_{\beta \alpha}$ is known as transition function.
Exercise 2. Let B be a topological space. For a given open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of B satisfying the following conditions,

1. If $U_{\alpha} \cap U_{\beta} \neq \phi$, then there is a homeomorphism $h_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$ with $h_{\gamma \beta} \circ h_{\beta \alpha}(x, r)=h_{\gamma \alpha}(x, r)$ for $(x, r) \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \times \mathbb{R}^{n}$.
2. $P_{1}\left(h_{\alpha \beta}(x, r)\right)=x$, where $(x, r) \in U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$ and P_{1} is the projection map on the first coordinate.
3. For each $x \in U_{\alpha} \cap U_{\beta}$, the restriction of $h_{\alpha \beta}$ on $\{x\} \times \mathbb{R}^{n}$ is a linear isomorphism of $\{x\} \times \mathbb{R}^{n}$ with itself; i.e. there exists a transition function.

There exists a vector bundle $\pi: E \rightarrow B$ for which $\left\{h_{\alpha \beta}\right\}_{\alpha, \beta \in \Lambda}$ are the transition functions.

Solution. Let $F=\bigsqcup_{\alpha \in \Lambda} U_{\alpha} \times \mathbb{R}^{n}$. For each U_{α}, define $h_{\alpha \alpha}=I_{\alpha}$ where I_{α} is the identity function on $U_{\alpha} \times \mathbb{R}^{n}$. Define an equivalence relation on F by $(x, v) \sim(x, w)$ if and only if there exists an $h_{\alpha \beta}$ such that $h_{\alpha \beta}(x, v)=(x, w)$. Let E be the quotient space resulting from the equivalence relation.

Define

$$
\begin{aligned}
\pi: E & \rightarrow B \\
(x, v) & \mapsto x
\end{aligned}
$$

and

$$
\begin{aligned}
f_{\gamma}: V_{\gamma} \times \mathbb{R}^{n} & \rightarrow \pi^{-1}\left(V_{\gamma}\right) \\
(x, v) & \mapsto[x, v]
\end{aligned}
$$

where V_{γ} is an element of the open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of B and $[x, v]$ is the equivalence class of (x, v). Then we can define the inverse map of f by

$$
\begin{aligned}
f_{\gamma}^{-1}: \pi^{-1}\left(V_{\gamma}\right) & \rightarrow V_{\gamma} \times \mathbb{R}^{n} \\
{[x, r] } & \mapsto(x, s)
\end{aligned}
$$

where (x, s) is an element of $V_{\gamma} \times \mathbb{R}^{n}$ that belongs to the equivalence class $[x, r]$. If $U_{\alpha} \cap U_{\beta} \neq 0$, then the composition $U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \xrightarrow{f_{\alpha}} \pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right) \xrightarrow{f_{\beta}^{-1}} U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$ is the map $h_{\alpha \beta}$. Therefore $\pi: E \rightarrow B$ is a vector bundle with the transition functions $\left\{h_{\alpha \beta}\right\}_{\alpha, \beta \in \Lambda}$.

2.1.1 Bundle map

Definition 2.1.2. A bundle map between two n-dimensional vector bundles $\pi_{1}: E_{1} \rightarrow B_{1}$ and $\pi_{2}: E_{2} \rightarrow B_{2}$ is a continuous map $F: E_{1} \rightarrow E_{2}$ for which there exist a continuous map $f: B_{1} \rightarrow B_{2}$ such that the below digram is commutative and restriction of F on $\pi_{1}^{-1}(b)$ is a linear isomorphism of $\pi_{1}^{-1}(b)$ with $\pi_{2}^{-1}(f(b))$.

f is called a map covered by a bundle map from E_{1} to E_{2}

Definition 2.1.3. Two vector bundles $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ are said to be isomorphic if there exists a bundle $F: E_{1} \rightarrow E_{2}$ which is a homeomorphism and f is the identity map of B.

Example 4. For $n \geq 1$, let $E=\left\{(x, v) \in S^{n} \times \mathbb{R}^{n} \mid v=r x, r \in \mathbb{R}\right\}$. Then $\pi: E \rightarrow S^{n}$ given by $(x, v) \mapsto x$ is a 1-dimensional vector bundle. It is called normal bundle over S^{n}. $h: E \rightarrow S^{n} \times \mathbb{R}$ given by $(x, v) \mapsto(x,<x, v>)$ is a homeomorphism. $\left.h\right|_{\pi^{-1}(x)}: \pi^{-1}(x) \rightarrow \mathbb{R}$ given by $v \mapsto<x, v>$ is a linear isomorphism for all $x \in X$. Therefore normal bundle of S^{n} is isomorphic to the trivial bundle for all $n \geq 1$.

Lemma 2.1.1. Let $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ be two vector bundles. If $f: E_{1} \rightarrow E_{2}$ is a continuous map which maps $\pi_{1}^{-1}(b)$ linearly isomorphic to $\pi_{2}^{-1}(b)$ for each $b \in B$, then f is a homeomorphism.

Proof. f is a bijective map. Let $f^{-1}: E^{\prime} \rightarrow E$ be the inverse of f. We need to show that f^{-1} is continuous. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ and $\left\{\left(V_{i}, g_{i}\right)\right\}_{i \in I}$ be local trivializations of π and π^{\prime} respectively. For $e \in E$ with $\pi(e)=b$ and $f(e)=e^{\prime}$, choose U_{α} and V_{i} for $\alpha \in \Lambda$ and $i \in I$ such that $b \in U_{\alpha} \cap V_{i}$. Define $f^{\prime}=\left.f\right|_{\pi^{-1}\left(U_{\alpha} \cap V_{i}\right)}: \pi^{-1}\left(U_{\alpha} \cap V_{i}\right) \rightarrow \pi^{\prime-1}\left(U_{\alpha} \cap V_{i}\right)$. f^{\prime} is continuous and bijective as f maps $\pi^{-1}(b)$ linearly isomorphic to $\pi^{\prime-1}(b)$. Then we get a
commutative diagram

We can write $h_{i} \circ f^{\prime} \circ h_{\alpha}^{-1}$ explicitly as

$$
\begin{aligned}
h_{i} \circ f^{\prime} \circ h_{\alpha}^{-1}: U_{\alpha} \cap U_{i} \times \mathbb{R}^{n} & \rightarrow U_{\alpha} \cap U_{i} \times \mathbb{R}^{n} \\
(a, r) & \mapsto\left(a, \tau_{i \alpha}(a) r\right)
\end{aligned}
$$

where $\tau_{i \alpha}(a) \in \mathrm{GL}_{n}(\mathbb{R})$. Then we can define

$$
\begin{aligned}
\left(h_{i} \circ f^{\prime} \circ h_{\alpha}^{-1}\right)^{-1}: U_{\alpha} \cap U_{i} \times \mathbb{R}^{n} & \rightarrow U_{\alpha} \cap U_{i} \times \mathbb{R}^{n} \\
(a, r) & \mapsto\left(a, \tau_{i \alpha}(a)^{-1} r\right)
\end{aligned}
$$

$\left(h_{i} \circ f^{\prime} \circ h_{\alpha}^{-1}\right)^{-1}$ is continuous because the inverse map from $\mathrm{GL}_{n}(\mathbb{R})$ to $\mathrm{GL}_{n}(\mathbb{R})$ is a continuous map. Therefore $f^{\prime-1}=h_{\alpha}^{-1} \circ\left(h_{i} \circ f^{\prime} \circ h_{\alpha}^{-1}\right)^{-1} \circ h_{i}$ is continuous. This implies that f^{-1} is continuous on a neighborhood of e^{\prime} for each $e^{\prime} \in E^{\prime}$. Therefore f^{-1} is continuous.

Corollary 2.1.2. Let $\pi: E \rightarrow B$ be an n-dimensional vector bundle with a local trivialization $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$. If a vector bundle $\pi^{\prime}: E^{\prime} \rightarrow B$ is constructed with $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ using exercise 2, then the vector bundles $\pi: E \rightarrow B$ and $\pi^{\prime}: E^{\prime} \rightarrow B$ are isomorphic.

Proof. Define

$$
\begin{aligned}
h: E & \rightarrow E^{\prime} \\
e & \mapsto\left[h_{\alpha}^{-1}(e)\right]
\end{aligned}
$$

where $e \in \pi^{-1}\left(U_{\alpha}\right)$ for some $\alpha \in \Lambda$ and $\left[h_{\alpha}^{-1}(e)\right]$ is the equivalence class of $h_{\alpha}^{-1}(e) . h$ is well defined because of the transitivity of transition function. h also maps $\pi^{-1}(b)$ linearly isomorphic to $\pi^{\prime-1}(b)$ for each $b \in B$. Let $q: \bigsqcup_{\alpha \in \Lambda} U_{\alpha} \times \mathbb{R}^{n} \rightarrow E^{\prime}$ be the quotient map. For any open set U^{\prime} of $E^{\prime}, q^{-1}\left(U^{\prime}\right)$ is open and $q^{-1}\left(U^{\prime}\right)=\bigsqcup_{\alpha \in \Lambda} V_{\alpha} \times R_{\alpha}$ with $V_{\alpha} \times R_{\alpha}$ open subset $U_{\alpha} \times \mathbb{R}^{n}$ for each $\alpha \in \Lambda$. Therefore $h^{-1}\left(U^{\prime}\right)=\cup_{\alpha \in \Lambda} h_{\alpha}\left(V_{\alpha} \times R_{\alpha}\right) . h^{-1}\left(U^{\prime}\right)$ is open as each h_{α} is a homeomorphism. This implies that h is continuous. Using lemma 2.1.1, we get that h is a homeomorphism.

Corollary 2.1.3. Let $\pi: E \rightarrow B$ be an n-dimensional vector bundle with a local trivialization $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$. If all the transition functions of $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ map to the identity element of $\mathrm{GL}_{n}(\mathbb{R})$, then $\pi: E \rightarrow B$ is isomorphic to the trivial vector bundle.

Proof. Define $h: E \rightarrow B$ by $h(e)=h_{\alpha}^{-1}(e)$ if $e \in \pi^{-1}\left(U_{\alpha}\right)$. Then $\left.h\right|_{\pi^{-1}\left(U_{\alpha}\right)}=h_{\alpha}$ and $\left.h_{\alpha}\right|_{\pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right)}=\left.h_{\beta}\right|_{\pi^{-1}\left(U_{\alpha} \cap U_{\beta}\right)}$. Therefore h is continuous. Lemma 2.1.1 implies that h is a vector bundle isomorphism.

2.1.2 Section of a vector bundle

Definition 2.1.4. A section of a vector bundle $\pi: E \rightarrow B$ is a continuous map $S: B \rightarrow E$ with $S(b) \in \pi^{-1}(b)$ for each $b \in B$.

Section of the tangent bundle of a smooth manifold M is called a vector field on M.
Example 5. $S: B \rightarrow E$ given by $x \mapsto h_{x}(x, 0)$ is a section of vector bundle $\pi: E \rightarrow B$ where h_{x} is a local trivialization defined for a neighborhood of x. It is called zero section.

Definition 2.1.5. A section S of vector bundle $\pi: E \rightarrow B$ is called nowhere zero if $S(b)$ is a non-zero vector of $\pi^{-1}(b)$ for all $b \in B$.

Definition 2.1.6. k sections S_{1}, \ldots, S_{n} of a vector bundle $\pi: E \rightarrow B$ is called nowhere dependent if $S_{1}(b), \ldots, S_{k}(b)$ are linearly independent for each $b \in B$.

Theorem 2.1.4. An n-dimensional vector bundle $\pi: E \rightarrow B$ is isomorphic to the trivial vector bundle if and only if there exist n sections S_{1}, \ldots, S_{n} such that the set $\left\{S_{1}(b), S_{2}(b), \ldots, S_{n}(b)\right\}$ is a basis of $\pi^{-1}(b)$ for each $b \in B$.

Proof. An n-dimensional vector bundle $\pi: E \rightarrow B$ is isomorphic to the trivial vector bundle. Then there exists an isomorphism $h: B \times \mathbb{R}^{n} \rightarrow E$.

Define

$$
\begin{aligned}
S_{i}: B & \rightarrow E \\
b & \mapsto h(b,(0, \ldots, 1,0, \ldots, 0))
\end{aligned}
$$

where 1 is at $i^{\text {th }}$ position. Then S_{1}, \ldots, S_{n} are nowhere dependent sections.
Conversely, let $S_{1}, S_{2}, \ldots, S_{n}$ be n sections such that the set $\left\{S_{1}(b), S_{2}(b), \ldots\right.$, $\left.S_{n}(b)\right\}$ is a basis of $\pi^{-1}(b)$ for each $\mathrm{b} \in \mathrm{B}$.

Define

$$
\begin{aligned}
h: B \times \mathbb{R}^{n} & \rightarrow E \\
\left(b,\left(x_{1}, \ldots, x_{n}\right)\right) & \mapsto\left(b, S_{1}(b) x_{1}+\cdots+S_{n}(b) x_{n}\right)
\end{aligned}
$$

h is continuous because s_{i} 's are continuous. From lemma 2.1.1, we get that h is a homeomorphism. Therefore h is a vector bundle isomorphism.

2.1.3 Subbundle of a vector bundle

Definition 2.1.7. A vector bundle $\pi_{1}: E_{1} \rightarrow B$ is called a subbundle of a vector bundle $\pi: E \rightarrow B$ if $E_{1} \subset E$ and $\pi_{1}^{-1}(b)$ is a vector subspace of $\pi^{-1}(b)$ for each $b \in B$.

Exercise 3. For a given vector bundle $\pi: E \rightarrow B$, show that the projection map $\pi: E \rightarrow B$ is a homotopy equivalence.

Solution. We need to show that there exists a map $f: B \rightarrow E$ such that $\pi \circ f$ is homotopic to I_{B} and $f \circ \pi$ is homotopic I_{E} where I_{B} and I_{E} are the identity maps of B and E respectively. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in A}$ be a local trivialization of $\pi: E \rightarrow B$. Take f to be the zero section. We will get $\pi \circ f=I_{B}$. Define

$$
\begin{aligned}
H:[0,1] \times E & \rightarrow E \\
(t, e) & \mapsto h_{\alpha}(b,((1-t) v))
\end{aligned}
$$

whenever $\pi(e)=b \in U_{\alpha}$ and $h_{\alpha}(b, v)=e$. The function H is defined because \mathbb{R}^{n} is a convex set. H is continuous because each h_{α} is a continuous function. Therefore H is a homotopy between I_{E} and $f \circ \pi$.

Exercise 4. If $\pi: E \rightarrow S^{n}$ is an 1-dimensional vector bundle over S^{1}, then it is either isomorphic to Möbius bundle or trivial bundle.

Solution. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ be a local trivialization of $\pi: E \rightarrow S^{1}$. From the open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$, we will always get an open cover $\left\{V_{i}\right\}_{i \in I}$ such that V_{i} 's are connected and for each $i \in I, V_{i} \subset U_{\alpha}$ for some α. If $V_{i} \subset U_{\alpha}$ for more that one α, then fix an α and define $g_{i}=\left.h_{\alpha}\right|_{V_{i}}$. Therefore we get a local trivialization $\left\{\left(V_{i}, g_{i}\right)\right\}_{i \in I}$ of $\pi: E \rightarrow S^{1}$. Since S^{1} is compact, the open cover $\left\{V_{i}\right\}_{i \in I}$ has a finite subcover. Let $\left\{V_{j}\right\}_{j=1}^{n}$ covers S^{1}. Then $\left\{\left(V_{j}, f_{j}\right)\right\}_{j=1}^{n}$ is a local trivialization of $\pi: E \rightarrow S^{1}$. Choose V_{k} from $\left\{V_{j}\right\}_{j=1}^{n}$ with $V_{k} \nsubseteq V_{j}$ for $k \neq j$. Let $A=\bigcup_{1 \geq j \leq n, j \neq k} V_{j}$. Using exercise 2 and $\left\{\left(V_{j}, f_{j}\right)\right\}_{1 \geq j \leq n, j \neq k}$, we get an 1-dimensional vector bundle $\pi_{1}: E_{1} \rightarrow A$ with the local trivialization $\left\{\left(V_{j}, f_{j}\right)\right\}_{1 \geq j \leq n, j \neq k}$. Since A is contractible, $\pi_{1}: E_{1} \rightarrow A$ is a trivial bundle. Let $h: \pi_{1}^{-1}(A) \rightarrow A \times \mathbb{R}$ be a vector bundle isomorphism. Now we have $\left\{(A, h),\left(V_{k}, h_{k}\right)\right\}$ as a local trivialization of $\pi: E \rightarrow S_{1}$. $A \bigcap V_{k}=N_{1} \bigcup N_{2}$ where N_{1} and N_{2} are disjoint open sets. There are following four possibilities of the transition function $\tau: N_{1} \bigcup N_{2} \rightarrow \mathrm{GL}_{1}(\mathbb{R})=(\mathbb{R} \backslash\{0\})$

$$
\begin{align*}
& \tau(a)=1 \forall a \in N_{1} \bigcup N_{2} \tag{2.1}\\
& \tau(a)=-1 \forall a \in N_{1} \bigcup N_{2} \tag{2.2}\\
& \tau(a)=\left\{\begin{array}{l}
1 \text { for } a \in N_{1} \\
-1 \text { for } a \in N_{2}
\end{array}\right. \tag{2.3}\\
& \tau(a)=\left\{\begin{array}{l}
-1 \text { for } a \in N_{1} \\
1 \text { for } a \in N_{2}
\end{array}\right. \tag{2.4}
\end{align*}
$$

as τ is continuous. The first two cases implies that $\pi: E \rightarrow S^{1}$ is trivial and the last two cases implies that $\pi: E \rightarrow S^{1}$ is the Möbius bundle.

2.2 Constructing new vector bundles

2.2.1 Restriction of a vector bundle on a subspace of the base space

Let $\pi: E \rightarrow B$ be an n-vector bundle and A be a subspace of B. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ be a local trivialization of $\pi: E \rightarrow B$. Define $E_{1}=\pi^{-1}(A), \pi_{1}=\left.\pi\right|_{\pi_{1}^{-1}(A)}, V_{\alpha}=A \cap U_{\alpha}$ and $g_{\alpha}=$ $\left.h_{\alpha}\right|_{V_{\alpha} \times \mathbb{R}^{n}}$ for each $\alpha \in \Lambda$. Since the restriction of h_{α} on $\{a\} \times \mathbb{R}^{n}$ is isomorphic to $\pi^{-1}(a)$ for
each $a \in V_{\alpha}, g_{\alpha}: V_{\alpha} \times \mathbb{R}^{n} \rightarrow \pi_{1}^{-1}\left(V_{\alpha}\right)$ is well defined and is also a homeomorphism. Therefore $\pi_{1}: E_{1} \rightarrow A$ is an n-dimensional vector bundle with a local trivialization $\left\{\left(V_{\alpha}, g_{\alpha}\right)\right\}_{\alpha \in \Lambda}$.

2.2.2 Induced vector bundle

Let $\pi: E \rightarrow B$ be an n-dimensional vector bundle and $f: A \rightarrow B$ be a continuous map. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ be a local trivialization of $\pi: E \rightarrow B$. Define $E_{1}=\{(a, e) \in A \times E \mid f(a)=$ $\pi(e)\}$. Define $\pi_{1}: E \rightarrow B$ as $\pi_{1}((a, e))=a$. Let $V_{\alpha}=f^{-1}\left(U_{\alpha}\right)$. Define

$$
\begin{aligned}
g_{\alpha}: V_{\alpha} \times \mathbb{R}^{n} & \rightarrow \pi_{1}^{-1}\left(V_{\alpha}\right) \\
(a, v) & \mapsto\left(a, h_{\alpha}(f(a), v)\right)
\end{aligned}
$$

Then g_{α}^{-1} is given by

$$
\begin{aligned}
g_{\alpha}^{-1}: \pi_{1}^{-1}\left(V_{\alpha}\right) & \rightarrow V_{\alpha} \times \mathbb{R}^{n} \\
(a, e) & \mapsto\left(a, p\left(h_{\alpha}^{-1}(e)\right)\right)
\end{aligned}
$$

where $p: U_{\alpha} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined as $p(b, v)=v$.
g_{α} and g_{α}^{-1} are continuous because these maps are compositions of continuous maps. Therefore $\pi_{1}: E_{1} \rightarrow A$ is an n-dimensional vector bundle with a local trivialization $\left\{\left(V_{\alpha}, g_{\alpha}\right)\right\}_{\alpha \in \Lambda}$. $f^{*} \pi: f^{*} E \rightarrow A$ will denote the induced bundle $\pi_{1}: E_{1} \rightarrow A$. This vector bundle is known as the vector bundle induced by f.

Lemma 2.2.1. Let $\pi_{1}: E_{1} \rightarrow A$ and $\pi_{2}: E_{2} \rightarrow B$ be two n-dimensional vector bundles and $F: E_{1} \rightarrow E_{2}$ be a bundle map. If $f: A \rightarrow B$ be a map covered by the bundle map F, then the induced bundle $f^{*} \pi_{2}: f^{*} E_{2} \rightarrow A$ and $\pi_{1}: E_{1} \rightarrow A$ are isomorphic.

Proof. Define

$$
\begin{aligned}
\phi: E_{1} & \rightarrow f^{*} E_{2} \\
e & \mapsto\left(\pi_{1}(e), F(e)\right)
\end{aligned}
$$

ϕ is continuous because π_{1} and F are continuous. Since restriction of ϕ on $\pi_{1}^{-1}(a)$ is a linear isomorphism of $\pi_{1}^{-1}(a)$ with $\left(\{a\} \times \pi_{2}^{-1}(f(b))\right)=\left(f^{*} \pi_{1}\right)^{-1}(a)$ for each $a \in A, F$ is a vector
bundle isomorphism. The previous statement follows from the lemma 2.1.1.

2.2.3 Cartesian product of vector bundles

Let $\pi_{1}: E_{1} \rightarrow A$ and $\pi_{2}: E_{2} \rightarrow B$ be two vector bundles of dimensions m and n respectively. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ and $\left\{\left(V_{i}, g_{i}\right)\right\}_{i \in I}$ be local trivializations of $\pi_{1}: E_{1} \rightarrow A$ and $\pi_{2}: E_{2} \rightarrow B$ respectively. Define

$$
\begin{aligned}
\pi: E_{1} \times E_{2} & \rightarrow A \times B \\
\left(e_{1}, e_{2}\right) & \mapsto\left(\pi_{1}\left(e_{1}\right), \pi_{2}\left(e_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
H_{\alpha, i}: U_{\alpha} \times V_{i} \times \mathbb{R}^{m} \times \mathbb{R}^{n} & \rightarrow \pi_{1}^{-1}\left(U_{\alpha}\right) \times \pi_{2}^{-1}\left(V_{i}\right) \\
\left(a, b, v_{1}, v_{2}\right) & \mapsto\left(h_{\alpha}\left(a, v_{1}\right), h_{i}\left(b, v_{2}\right)\right)
\end{aligned}
$$

Then $\pi: E_{1} \times E_{2} \rightarrow A \times B$ is an $(m+n)$-dimensional vector bundle with a local trivializations $\left\{\left(U_{\alpha} \times V_{i}, H_{\alpha, i}\right)\right\}_{\alpha \in \Lambda, i \in I}$.

Whitney sum

Let $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ be two vector bundles. Let $\tau=\{(a, b) \in B \times B \mid a=b\}$. Let $\pi^{\prime}: E_{1} \times E_{2} \rightarrow B \times B$ be the Cartesian product of vector bundles $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$. Since $\tau \subset B \times B$, we get the restriction vector bundle $\pi^{\prime \prime}: E^{\prime} \rightarrow \tau$ of $\pi^{\prime}: E_{1} \times E_{2} \rightarrow B \times B$. A map $f: \tau \rightarrow B$ given by $f(b, b)=b$ is a homeomorphism. Therefore $f \circ \pi^{\prime \prime}: E^{\prime} \rightarrow B$ is a vector bundle. The vector bundle $f \circ \pi^{\prime \prime}: E^{\prime} \rightarrow B$ is known as the Whitney sum of $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ and is denoted by $\pi_{1} \oplus \pi_{2}: E_{1} \oplus E_{2} \rightarrow B$. We can write $E_{1} \oplus E_{2}$ and $\pi_{1} \oplus \pi_{2}$ explicitly as $E_{1} \oplus E_{2}=\left\{\left(v_{1}, v_{2}\right) \in E_{1} \times E_{2} \mid \pi_{1}\left(v_{1}\right)=\pi_{2}\left(v_{2}\right)\right\}$ and

$$
\begin{aligned}
\pi_{1} \oplus \pi_{2}: E_{1} \oplus E_{2} & \rightarrow B \\
\left(v_{1}, v_{2}\right) & \mapsto \pi_{1}\left(v_{1}\right)=\pi_{2}\left(v_{2}\right)
\end{aligned}
$$

Lemma 2.2.2. Let $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ be two subbundles of a vector bundle $\pi: E \rightarrow B$. If the direct sum of $\pi_{1}^{-1}(b)$ and $\pi_{2}^{-1}(b)$ is equal to $\pi^{-1}(b)$ for each $b \in B$, then
$\pi_{1} \oplus \pi_{2}: E_{1} \oplus E_{2} \rightarrow B$ is isomorphic to $\pi: E \rightarrow B$.

Proof. Define

$$
\begin{aligned}
h: E_{1} \oplus E_{2} & \rightarrow E \\
\left(e_{1}, e_{2}\right) & \mapsto e_{1}+e_{2}
\end{aligned}
$$

h is well defined because $\pi_{1}\left(e_{1}\right)=\pi_{2}\left(e_{2}\right)=\pi\left(e_{1}+e_{2}\right) . h$ is also continuous. Lemma 2.1.1 implies that h is a vector bundle isomorphism.

2.2.4 Euclidean vector bundle

Definition 2.2.1. Let $\pi: E \rightarrow B$ be a vector bundle. If there exists a continuous map $\nu: E \oplus E \rightarrow \mathbb{R}$ such that restriction of ν over $(\pi \oplus \pi)^{-1}(b)$ is a symmetric, positive definite, bilinear form for each $b \in B$, then $\pi: E \rightarrow B$ is called euclidean vector bundle.
ν is called euclidean metric on $\pi: E \rightarrow B$. If B is a smooth manifold, then a euclidean metric on the tangent bundle of B is called Riemannian metric and B is called Riemannian manifold.

Example 6. Let $\pi: B \times \mathbb{R}^{n} \rightarrow B$ be the trivial bundle over B. Define

$$
\begin{aligned}
\nu: B \times \mathbb{R}^{n} \oplus B \times \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
\left(\left(a, r_{1}\right),\left(a, r_{2}\right)\right) & \mapsto<r_{1}, r_{2}>
\end{aligned}
$$

where $<,>$ is the dot product on \mathbb{R}^{n}. Then $\pi: B \times \mathbb{R}^{n} \rightarrow B$ is a euclidean vector bundle with a euclidean metric ν.

Lemma 2.2.3. If $\pi: E \rightarrow B$ be an n-dimensional trivial vector bundle with a euclidean metric ν, then there are n sections $\left\{S_{1}, \ldots, S_{n}\right\}$ such that $\nu\left(S_{i}(b), S_{j}(b)\right)=\delta_{i j}$ for each $b \in B$, where $\delta_{i j}$ is the Kronecker delta function.

Proof. From theorem 3.1.3, we know that there are n nowhere dependent sections s_{1}, \ldots, s_{n}. After applying the Gram-Schmidt process to $\left\{s_{1}(b), \ldots, s_{n}(b)\right\}$, we will get a normal orthogonal basis $\left\{S_{1}(b), \ldots, S_{n}(b)\right\}$ of $\pi^{-1}(b)$ for each $b \in B$. Since ν is continuous, S_{1}, \ldots, S_{n} are continuous map.

Lemma 2.2.4. Let $\pi_{1}: E_{1} \rightarrow B$ be a subbundle of a euclidean vector bundle $\pi: E \rightarrow B$ with a euclidean metric ν. Define $\left(\pi_{1}^{-1}(b)\right)^{\perp}=\left\{e \in \pi^{-1}(b) \mid \nu\left(e, e_{1}\right)=0 \forall e_{1} \in E_{1}\right\}$ and $E_{1}^{\perp}=\bigsqcup_{b \in B}\left(\pi_{1}^{-1}(b)\right)^{\perp}$. Then $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$ given by $\pi_{1}^{\perp}(e)=\pi(e)$, is a vector bundle.

Proof. Let dimensions $\pi_{1}: E_{1} \rightarrow B$ and $\pi: E \rightarrow B$ be m and n respectively. We want to construct a local trivialization of $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$. For $x \in B$, let U be a neighborhood b on which $\pi_{1}: E_{1} \rightarrow B$ and $\pi: E \rightarrow B$ are trivial bundle. There are m normal orthogonal local sections S_{1}, \ldots, S_{m} and n normal orthogonal local sections s_{1}, \ldots, s_{n} of $\pi_{1}: E_{1} \rightarrow B$ and $\pi: E \rightarrow B$ respectively. Define an $\mathrm{m} \times \mathrm{n}$ matrix $T(b)=\left[\nu\left(S_{i}(b) s_{j}(b)\right)\right]$. Let $M_{m \times n}(\mathbb{R})$ denote the set of all $m \times n$ matrices with real entries. Define $\phi: U \rightarrow M_{m \times n}(\mathbb{R})$ given by $\phi(b)=T(b) . \phi$ is a continuous map as S_{i} 's and s_{j} 's are continuous maps. Let M be the set of $\mathrm{m} \times \mathrm{n}$ matrices with first m columns linearly independent. Then M is open in $M_{m \times n}(\mathbb{R}) . \phi^{-1}(M)$ is open in U as ϕ is continuous. Since U is open in $B, \phi^{-1}(M)$ is open in B. Then first m columns of $T(b)$ are linearly independent for each $b \in \phi^{-1}(M)$. Then $S_{1}(b), \ldots, S_{m}(b), s_{m+1}(b), \ldots, s_{n}(b)$ are linearly independent for each $b \in \phi^{-1}(M)$ because if not, we can write $S_{i}(b)$ for some i, in terms of s_{m+1}, \ldots, s_{n} and the $i^{\text {th }}$ column of $T(b)$ will be 0. After applying the GramSchmidt process to $S_{1}(b), \ldots, S_{m}(b), s_{m+1}(b), \ldots, s_{n}(b)$, we will get a normal orthogonal basis $S_{1}(b), \ldots, S_{n}(b)$ of $\pi^{-1}(b)$ for each $b \in \phi^{-1}(M)$. Define

$$
\begin{aligned}
h: \phi^{-1}(M) \times \mathbb{R}^{(n-m)} & \rightarrow\left(\pi_{1}^{\perp}\right)^{-1}\left(\phi^{-1}(M)\right) \\
\left(b,\left(r_{m+1}, \ldots, r_{n}\right)\right) & \mapsto \sum_{k=1}^{(n-m)} r_{m+k} S_{m+k}(b)
\end{aligned}
$$

Then h is a homeomorphism and restriction of h on $\{b\} \times \mathbb{R}^{(n-m)}$ is a linear isomorphism. Therefore $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$ is a locally trivial bundle at each $x \in B$.

Corollary 2.2.5. If $\pi_{1}: E_{1} \rightarrow B$ is a subbundle of a euclidean vector bundle $\pi: E \rightarrow B$, then $\pi: E \rightarrow B$ is isomorphic to $\pi_{1} \oplus \pi_{1}^{\perp}: E_{1} \oplus E_{1}^{\perp} \rightarrow B$.

Proof. From lemma 3.2.4, we get that $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$ is a subbundle of $\pi: E \rightarrow B$ and the direct sum of $\pi_{1}^{-1}(b)$ and $\left(\pi_{1}^{\perp}\right)^{-1}(b)$ is equal to $\pi^{-1}(b)$ for each $b \in B$. Therefore lemma 3.2.2 implies that $\pi: E \rightarrow B$ is isomorphic to $\pi_{1} \oplus \pi_{1}^{\perp}: E_{1} \oplus E_{1}^{\perp} \rightarrow B$.

Definition 2.2.2. The vector bundle $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$ is known as the normal bundle of $\pi_{1}: E_{1} \rightarrow B$ in $\pi: E \rightarrow B$.

2.2.5 Hom-vector bundle and tensor product of vector bundles

Let $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ be vector bundles. Define $\operatorname{Hom}\left(E_{1}, E_{2}\right)=$ $\bigsqcup_{b \in B} \operatorname{Hom}\left(\pi_{1}^{-1}(b), \pi_{2}^{-1}(b)\right)$ and $E_{1} \otimes E_{2}=\bigsqcup_{b \in B} \pi_{1}^{-1}(b) \otimes \pi_{2}^{-1}(b)$ where $\operatorname{Hom}\left(\pi_{1}^{-1}(b), \pi_{2}^{-1}(b)\right)$ is the set all linear transformation from $\pi_{1}^{-1}(b)$ to $\pi_{2}^{-1}(b)$ and $\pi_{1}^{-1}(b) \otimes \pi_{2}^{-1}(b)$ is the tensor product of $\pi_{1}^{-1}(b)$ and $\pi_{2}^{-1}(b)$.

Let C be a category in which objects are all finite dimensional vector spaces over \mathbb{R} and morphisms are all isomorphism between such vector spaces. Since $\mathrm{GL}_{n}(\mathbb{R})$ has a natural topology for $n \geq 0$, the set of all isomorphisms between two finite dimensional vector spaces has a natural topology. A functor $T: C \times \ldots \times C \rightarrow C$ in m variable is called continuous if T is continuous map of morphisms.

Let $\pi_{1}: E_{1} \rightarrow B, \ldots, \pi_{m}: E_{m} \rightarrow B$ be m vector bundles. Let $F(b)=T\left(\pi_{1}^{-1}(b), \ldots, \pi_{m}^{-1}(b)\right)$. Let $E=\bigsqcup_{b \in B} F(b)$. Define a map $\pi: E \rightarrow B$ by $\pi(e)=b$ if $e \in F(b)$.

Theorem 2.2.6. There exists a topology on E such that $\pi: E \rightarrow B$ is a vector bundle.

Proof. For $x \in B$, let $\left(U, h_{1}\right), \ldots,\left(U, h_{m}\right)$ be local trivializations of $\pi_{1}: E_{1} \rightarrow B, \ldots, \pi_{m}: E_{m}$ respectively at x. Then $h_{i b}: \mathbb{R}^{n_{i}} \rightarrow \pi_{1}^{-1}(b)$ is linear isomorphism for $1 \leq i \leq m$. Define

$$
\begin{aligned}
h: U \times T\left(\mathbb{R}^{n_{1}}, \ldots, \mathbb{R}^{n_{m}}\right) & \rightarrow \pi^{-1}(U) \\
(b, v) & \mapsto T\left(h_{1 b}, \ldots, h_{m b}\right)(v)
\end{aligned}
$$

Then h is a bijective map. Define quotient topology on $\pi^{-1}(U)$ induced by h. Let V be an open subset of B with $V \cap U$ nonempty and with local trivialization function $g_{i}: V \times \mathbb{R}^{n_{i}} \rightarrow B$ for $1 \leq i \leq m$. Define a map $g: V \times T\left(\mathbb{R}^{n_{1}}, \ldots, \mathbb{R}^{n_{m}}\right) \rightarrow \pi^{-1}(V)$ using g_{1}, \ldots, g_{m} same as we defined h. Then $\pi^{-1}(V)$ also has a quotient topology induced by g. We have $\pi^{-1}(U) \cap \pi^{-1}(V)=\pi^{-1}(U \cap V)$. The composition $U \cap V \times T\left(\mathbb{R}^{n_{1}}, \ldots, \mathbb{R}^{n_{m}}\right) \xrightarrow{h} \pi^{-1}(U \cap V) \xrightarrow{g^{-1}} U \cap V \times T\left(\mathbb{R}^{n_{1}}, \ldots, \mathbb{R}^{n_{m}}\right)$ is continuous because T is a continuous functor. Since $g^{-1} \circ h$ is continuous, the quotient topologies induced by g and h on $\pi^{-1}(U \cap V)$ are same. Now we take these $\pi^{-1}(U)$'s as a basis of a topology of E. With respect to the topology defined on E, π is a continuous map and h is a homeomorphism. Therefore $\pi: E \rightarrow B$ is a vector bundle.

Define Hom: $C \times C \rightarrow C$ by $\left(V_{1}, V_{2}\right) \mapsto \operatorname{Hom}\left(V_{1}, V_{2}\right)$ for finite dimensional vector spaces V_{1}, V_{2}. If $f: V_{1} \rightarrow V_{2}$ and $g: W_{1} \rightarrow W_{2}$ are isomorphisms, then $\operatorname{Hom}(f, g): \operatorname{Hom}\left(V_{1}, W_{1}\right) \rightarrow$ $\operatorname{Hom}\left(V_{2}, W_{2}\right)$ is given by $\phi \mapsto g \circ \phi \circ f^{-1}$. Hom is a continuous functor as $\operatorname{Hom}(f, g)$ is multiplications of matrices. Therefore $\pi: \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow B$ is a vector bundle constructed from $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B . \pi: \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow B$ is known as the dual vector bundle of $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$.

Define the tensor product functor $\otimes: C \times C \rightarrow C$ by $\left(V_{1}, V_{2}\right) \mapsto V_{1} \otimes V_{2}$ for finite dimensional vector spaces V_{1}, V_{2} and $(f, g) \mapsto f \otimes g$ for isomorphisms f, g. If $f: V_{1} \rightarrow V_{2}$ and $g: W_{1} \rightarrow W_{2}$ are linear maps, then $f \otimes g: V_{1} \times W_{1} \rightarrow V_{2} \otimes W_{2}$ is given by $f \otimes g\left(v_{1}, w_{1}\right)=$ $f\left(v_{1}\right) \otimes g\left(w_{1}\right) . \otimes$ is also a continuous functor. Therefore $\pi: E_{1} \otimes E_{2} \rightarrow B$ is a vector bundle constructed from $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B . \pi: E_{1} \otimes E_{2} \rightarrow B$ is known as the tensor product vector bundle of $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$. A local trivialization $\left\{\left(N_{j}, f_{j}\right)\right\}_{j \in J}$ for the tensor product vector bundle is constructed from local trivializations $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ and $\left\{\left(V_{i}, g_{i}\right)\right\}_{i \in I}$ of $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ respectively. The transition functions of $\left\{\left(N_{j}, f_{j}\right)\right\}_{j \in J}$ are given by $\left\{\tau_{\alpha_{1} \alpha_{2}} \otimes \sigma_{i_{1} i_{2}}\right\}_{\alpha_{1}, \alpha_{2} \in \Lambda ; i_{1}, i_{2} \in I}$ where $\left\{\tau_{\alpha_{1} \alpha_{2}}\right\}_{\alpha_{1}, \alpha_{2} \in \Lambda}$ and $\left\{\sigma_{i_{1} i_{2}}\right\}_{i_{1}, i_{2} \in I}$ are transition functions of $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ and $\left\{\left(V_{i}, g_{i}\right)\right\}_{i \in I}$ respectively.

Exercise 5. If $\pi: E \rightarrow B$ is an 1-dimensional vector bundle, then $\pi_{1}: \operatorname{Hom}(E, E) \rightarrow B$ is a trivial bundle.

Solution. We will show that there exists a nowhere zero section. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ be a local trivialization of $\pi: E \rightarrow B$. A local trivializations of $\pi_{1}: \operatorname{Hom}(E, E) \rightarrow B$ is given by $\left\{\left(U_{\alpha}, \operatorname{Hom}\left(h_{\alpha}\right)\right)\right\}_{\alpha \in \Lambda}$ where

$$
\begin{aligned}
\operatorname{Hom}\left(h_{\alpha}\right): U_{\alpha} \times \operatorname{Hom}(\mathbb{R}, \mathbb{R}) & \rightarrow \pi_{1}^{-1}\left(U_{\alpha}\right) \\
(x, \phi) & \mapsto \operatorname{Hom}\left(h_{\alpha x}\right)(\phi)=h_{\alpha} \circ \phi \circ h_{\alpha}^{-1}
\end{aligned}
$$

We can observe that $\operatorname{Hom}\left(h_{\alpha}\right)\left(x, i d_{\mathbb{R}}\right)=i d_{\pi_{1}^{-1}(x)}$ where $i d_{\mathbb{R}}$ and $i d_{\pi_{1}^{-1}(x)}$ are the identity homomorphisms of \mathbb{R} and $\pi_{1}^{-1}(x)$ respectively. Define

$$
\begin{aligned}
s: B & \rightarrow \operatorname{Hom}(E, E) \\
x & \mapsto i d_{\pi_{1}-1(x)}
\end{aligned}
$$

and

$$
\begin{aligned}
f: U_{\alpha} & \rightarrow U_{\alpha} \times \operatorname{Hom}(\mathbb{R}, \mathbb{R}) \\
x & \mapsto\left(x, i d_{\mathbb{R}}\right)
\end{aligned}
$$

Then $\operatorname{Hom}\left(h_{\alpha}\right) \circ f=\left.s\right|_{U_{\alpha}}$ where $\left.s\right|_{U_{\alpha}}$ is restriction of s on U_{α}. Since $\operatorname{Hom}\left(h_{\alpha}\right)$ and f are continuous, $\left.s\right|_{U_{\alpha}}$ is continuous. s is continuous as s is continuous on each U_{α} for $\alpha \in \Lambda$. Therefore s is a nowhere zero section of the vector bundle $\pi: \operatorname{Hom}(E, E) \rightarrow B$.

Exercise 6. If an n-dimensional vector bundle $\pi: E \rightarrow B$ has a euclidean metric, then $\pi: E \rightarrow B$ is isomorphic to the dual bundle $\pi_{1}: \operatorname{Hom}\left(E, \varepsilon^{1}\right) \rightarrow B$ where $\pi_{2}: \varepsilon^{1} \rightarrow B$ is the trivial vector bundle.

Solution. Let ν be a euclidean metric on $\pi: E \rightarrow B$. For $v \in \pi^{-1}(b)$, define $\phi_{v}: \pi^{-1}(b) \rightarrow \mathbb{R}$ by $\phi_{v}(u)=\nu(v, u)$. Then ϕ_{v} is a linear map. Define $\phi: \pi^{-1}(b) \rightarrow \operatorname{Hom}\left(\pi^{-1}(b), b \times \mathbb{R}\right)$ by $\phi(v)=\left(b, \phi_{v}\right)$. Then ϕ is also a linear map. ϕ is an isomorphism because ν is positive definite and dimensions of vector spaces $\pi^{-1}(b)$ and $\operatorname{Hom}\left(\pi^{-1}(b), b \times \mathbb{R}\right)$ are equal. Define

$$
\begin{aligned}
h: E & \rightarrow \operatorname{Hom}\left(E, \varepsilon^{1}\right) \\
v & \mapsto\left(b, \phi_{v}\right)
\end{aligned}
$$

Restriction of h on fibers is a linear isomorphism. Let $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ be a local trivialization of $\pi: E \rightarrow B$. Since $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is isomorphic to \mathbb{R}^{n}, we can also give quotient topology on $\pi_{1}^{-1}\left(U_{\alpha}\right)$ using the map $q: U_{\alpha} \times \mathbb{R}^{n} \rightarrow \pi_{1}^{-1}\left(U_{\alpha}\right)$ given by $q(b, v)=\left(b, \phi_{h_{\alpha}(v)}\right)$. In the topology defined on $\operatorname{Hom}\left(E, \varepsilon^{1}\right), \pi_{1}: \operatorname{Hom}\left(E, \varepsilon^{1}\right) \rightarrow B$ is a vector bundle and h a is continuous map. It follows from lemma 2.1.1 that h is a vector bundle isomorphism.

Exercise 7. Let A and B be smooth manifolds of dimensions m and n respectively. If $f: A \rightarrow B$ is a submersion and $K_{f}=\bigsqcup_{x \in A} \operatorname{kernel}\left(D f_{x}\right)$, then $\pi: K \rightarrow A$ given by $\pi(e)=x$ if $x \in \operatorname{kernel}\left(D f_{x}\right)$, is an $(m-n)$-dimensional vector bundle.

Solution. Since $K_{f} \subset T A$, K has the subspace topology of $T A$. Using Implicit function theorem, we will get coordinate charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ and $\left\{\left(V_{i}, \psi_{i}\right)\right\}_{i \in I}$ of A and B respectively such that the composition $\phi_{\alpha}\left(U_{\alpha}\right) \xrightarrow{\phi_{\alpha}^{-1}} U_{\alpha} \xrightarrow{f} V_{i} \xrightarrow{\psi_{i}} \psi_{i}\left(V_{i}\right)$ is given by $\psi_{i} \circ f \circ$ $\phi_{\alpha}^{-1}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{n}\right)$ for some α and i. Let $g=\psi_{i} \circ f \circ \phi_{\alpha}^{-1}$. Then
$D g_{\phi_{\alpha}(x)}=\left(D \psi_{i}\right)_{f(x)} D f_{x}\left(D \phi_{\alpha}^{-1}\right)_{\phi_{\alpha}(x)}=\left[\begin{array}{ll}I_{n \times n} & 0_{(m-n) \times n}\end{array}\right]$ for each $x \in U_{\alpha}$, where $I_{n \times n}$ and $0_{(m-n) \times n}$ are the $n \times n$ identity matrix and $(m-n) \times n$ zero matrix respectively. Then $\operatorname{ker}\left(D g_{\phi_{\alpha}(x)}\right)=\left\{\left(0, \ldots, 0, r_{n+1}, \ldots, r_{m}\right) \in \mathbb{R}^{m}\right\} \cong \mathbb{R}^{(m-n)}$ for each $x \in U_{\alpha}$. The map

$$
\begin{aligned}
q: U_{\alpha} \times \mathbb{R}^{(m-n)} & \rightarrow \bigsqcup_{x \in U_{\alpha}} \operatorname{kernel}\left(D g_{\phi_{\alpha}(x)}\right) \\
\left(x,\left(r_{n+1}, \ldots, r_{m}\right)\right) & \rightarrow\left(0, \ldots, 0, r_{n+1}, \ldots, r_{m}\right)
\end{aligned}
$$

is a homeomorphism. Define

$$
\begin{aligned}
h_{\alpha}: U_{\alpha} \times \mathbb{R}^{(m-n)} & \rightarrow \pi^{-1}\left(U_{\alpha}\right) \\
(x, v) & \mapsto\left(D \phi_{\alpha}^{-1}\right)_{\phi_{\alpha}(x)}(q(x, v))
\end{aligned}
$$

and

$$
\begin{aligned}
h_{\alpha}^{-1}: \pi^{-1}\left(U_{\alpha}\right) & \rightarrow U_{\alpha} \times \mathbb{R}^{n} \\
e & \mapsto q^{-1}\left(\left(D \phi_{\alpha}\right)_{x}(e)\right)
\end{aligned}
$$

if $e \in \operatorname{kernel}(D f x) . h$ and h^{-1} are well defined because $D f_{x}=\left(D \psi_{i}^{-1}\right)_{f(x)} D g_{\phi_{\alpha}(x)}\left(D \phi_{\alpha}\right)_{x}$ and $D g_{\phi_{\alpha}(x)}=\left(D \psi_{i}\right)_{f(x)} D f_{x}\left(D \phi_{\alpha}^{-1}\right)_{\phi_{\alpha}(x)} . \quad h$ and h^{-1} are continuous because h and h^{-1} are composition of continuous functions. Restriction of h_{α} over $\{x\} \times \mathbb{R}^{(m-n)}$ is a linear isomorphism with $\pi^{-1}(x)$ because $\operatorname{kernel}\left(D f_{x}\right) \cong\{x\} \times \mathbb{R}^{(m-n)}$. Therefore $\pi: K_{f} \rightarrow A$ is a vector bundle with a local trivialization $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \Lambda}$.

Chapter 3

Singular homology theory

3.1 Singular theory

Take $e_{0}=(0, \ldots, 0, \ldots), e_{1}=(1,0, \ldots, 0, \ldots), \ldots, e_{q}=(0, \ldots, 1,0, \ldots, 0, \ldots)$ i.e. for $q>0$, 1 is at $q^{\text {th }}$ place and all other entries are 0 .

Definition 3.1.1. The standard n-simplex is defined as the set $\triangle_{n}=\left\{\sum_{i=0}^{n} a_{i} e_{i} \mid a_{i} \geq 0\right.$ $\left.\forall i, \sum_{i=0}^{n} a_{i}=1\right\}$.
Definition 3.1.2. For any topological space X, a continuous map $\sigma: \triangle_{n} \rightarrow X$ is defined as a singular n-simplex.

For $n>0$, define

$$
\begin{aligned}
F_{n}^{j}: \triangle_{n-1} & \rightarrow \triangle_{n} \\
\sum_{0}^{n-1} a_{i} e_{i} & \mapsto \sum_{0}^{n-1} a_{i} f\left(e_{i}\right)
\end{aligned}
$$

where $f\left(e_{i}\right)=e_{i}, 0 \leq i \leq j-1$ and $f\left(e_{i}\right)=e_{i+1}, j \leq i \leq n-1$
Definition 3.1.3. Let X be a topological space and σ be a singular n-simplex in X. The ith-face of σ is defined as $\sigma^{(i)}=\sigma \circ F_{n}^{j}$.

It means that $\sigma^{(i)}$ is a singular (n-1)-simplex.
For a commutative ring R with unity, we will denote the free R -module generated by the set of all singular n-simplexes in X by $S_{n}(X)$.

Definition 3.1.4. An element of $S_{n}(X)$ is known as a singular n-chain.
Definition 3.1.5. For $n>0$, the boundary of a singular n-simplex σ, is defined as $\partial(\sigma)=\sum_{i=0}^{n}(-1)^{i} \sigma^{(i)}$. For a singular 0-simplex σ, define $\partial(\sigma)=0$.

We can also define the boundary of a singular n-chain, $c=\sum_{j=1}^{m} a_{j} \sigma_{j}$ by $\partial\left(\sum_{j=1}^{m} a_{j} \sigma_{j}\right)=$ $\sum_{j=1}^{m} a_{j} \partial\left(\sigma_{j}\right)$. So, we get a homomorphism

$$
\begin{aligned}
\partial_{n}: S_{n}(X) & \rightarrow S_{n-1}(X) \\
\sum_{j=1}^{m} a_{j} \sigma_{j} & \mapsto \sum_{j=1}^{m} a_{j} \partial\left(\sigma_{j}\right)
\end{aligned}
$$

We have a sequence of homomorphisms $\ldots S_{n+1}(X) \xrightarrow{\partial_{n+1}} S_{n}(X) \xrightarrow{\partial_{n}} S_{n-1}(X) \ldots$
Proposition 3.1.1. $\partial_{n} \partial_{n+1}=0$

Proof. See proposition 9.2 of [1]

From above proposition, we will get image $\left(\partial_{n+1}\right) \subset \operatorname{kernel}\left(\partial_{n}\right)$.
Definition 3.1.6. $Z_{n}(X)=\operatorname{kernel}\left(\partial_{n}\right)$ and $B_{n}(X)=\operatorname{image}(\partial n+1)$.
Definition 3.1.7. An element of $Z_{n}(X)$ is called n-cycle and an element of $B_{n}(X)$ is called n-boundary.

Since $B_{n}(X) \subset Z_{n}(X)$, we can define quotient module $H_{n}(X)=Z_{n}(X) / B_{n}(X)$.
Definition 3.1.8. $H_{n}(X)$ is defined as the $n^{\text {th }}$ singular homology module of X.

Example 7. For a single point $x, H_{n}(x)=0$ for all $n>0$ and $H_{0}(x) \cong R$. There is a unique singular n-simplex for all $n \geq 0$. Therefore $S_{n}(x) \cong R$ for all $n \geq 0$. Let x_{m} denotes the singular m-simplex for all $m \geq 0$. If q is even, $\partial_{q}\left(x_{q}\right)=x_{q-1} \neq 0$. This implies that $Z_{q}(x)=0$. Therefore $H_{q}(x)=0$. If n is odd, then $\partial_{n}\left(x_{n}\right)=0$. This implies that $Z_{n}(x)=S_{n}(x)$. Since $n+1$ is even, we have $\partial_{n+1}\left(x_{n+1}\right)=x_{n}$. This implies that $B_{n}(x)=S_{n}(x)$. Therefore $H_{n}(x)=0$. Since the boundary of a 0-chain is defined to be 0 , $Z_{0}(x)=S_{0}(x) . \partial_{1}\left(x_{1}\right)=0$ implies that $B_{0}(x)=0$. Therefore $H_{0}(x) \cong S_{0}(x) \cong R$.

Proposition 3.1.2. $H_{n}(X) \cong \oplus_{k} H_{n}\left(X_{k}\right)$ where $\left(X_{k}\right)$ is the family of path connected components of X.

Proof. See proposition 9.5 of [1].
Proposition 3.1.3. If X is path connected, then $H_{0}(X) \cong R$.

Proof. See proposition 9.6 of [1].

Given a continuous map $f: X \rightarrow Y$ between two topological spaces X and Y, we get a homomorphism

$$
\begin{aligned}
S_{n}(f): S_{n}(X) & \rightarrow S_{n}(Y) \\
\sum_{j=1}^{m} a_{j} \sigma_{j} & \mapsto \sum_{j=1}^{m} a_{j} f \circ \sigma_{j}
\end{aligned}
$$

If $g: Y \rightarrow Z$ is a map, then $S_{n}(f g)=S_{n}(f) S_{n}(g)$. Since $(f \circ \sigma) \circ F_{n}^{j}=f \circ\left(\sigma \circ F_{n}^{j}\right)$, we will get that $\partial_{n} S_{n}(f)=S_{n-1}(f) \partial_{n}$. If $c \in Z_{n}(X)$, then $\partial_{n} S_{n}(f)(c)=S_{n-1}(f) \partial_{n}(c)=0$. This implies that $S_{n}(f)(c) \in Z_{n}(Y)$. Therefore we will get a homomorphism

$$
\begin{aligned}
H_{n}(f): H_{n}(X) & \rightarrow H_{n}(Y) \\
\bar{c} & \mapsto \overline{S_{n}(f) c}
\end{aligned}
$$

3.2 Chain complexes

Definition 3.2.1. A chain complex over R is a sequence $M=\left\{M_{n}, d_{n}\right\}$ where $\left\{M_{n}\right\}$ is a sequence of free R-modules and $\left\{d_{n}: M_{n} \rightarrow M_{n-1}\right\}$ is a sequence of homomorphisms with
$d_{n-1} d_{n}=0$.
Example 8. For a topological space X, the sequence $S=\left\{S_{n}(X), \partial_{n}\right\}$ is a chain complex.

Define $Z_{n}(M)=\operatorname{kernel}\left(d_{n}\right)$ and $B_{n}(M)=\operatorname{image}\left(d_{n+1}\right) . d_{n} d_{n+1}=0$ implies that $B_{n}(M)$ is a submodule of $Z_{n}(M)$. Therefore we can define $H_{n}(M)=Z_{n}(M) / B_{n}(M)$.

Definition 3.2.2. $H_{n}(M)$ is called $n^{\text {th }}$ homology module of M.
Definition 3.2.3. A chain map is a sequence $h=\left\{h_{n}\right\}$ where $\left\{h_{n}: M_{n} \rightarrow M_{n}^{\prime}\right\}$ is a sequence of homomorphisms between chain complexes $M=\left\{M_{n}, d_{n}\right\}$ and $M^{\prime}=\left\{M_{n}^{\prime}, d_{n}^{\prime}\right\}$ with $d_{n}^{\prime} h_{n}=h_{n-1} d_{n}$.

Example 9. If $f: X \rightarrow Y$ is a continuous map between topological spaces X and Y, then the sequence $S(f)=\left\{S_{n}(f)\right\}$ is a chain map.

Since $d_{n}^{\prime} h_{n}=h_{n-1} d_{n}, h_{n}$ sends $Z_{n}(M)$ into $Z_{n}\left(M^{\prime}\right)$ and $B_{n}(M)$ into $B_{n}\left(M^{\prime}\right)$. Therefore we get a homomorphism

$$
\begin{aligned}
H_{n}(h): H_{n}(M) & \rightarrow H_{n}(M) \\
\bar{m} & \mapsto \overline{h_{n}(m)}
\end{aligned}
$$

Definition 3.2.4. Two chain maps $\left\{f_{n}: M_{n} \rightarrow M_{n}^{\prime}\right\}$ and $\left\{g_{n}: M_{n} \rightarrow M_{n}^{\prime}\right\}$ are said to be chain homotopic if there exists a sequence of homomorphisms $\left\{D_{n}: M_{n} \rightarrow M_{n+1}^{\prime}\right\}$ with $d_{n+1}^{\prime} D_{n}+D_{n-1} d_{n}=f_{n}-g_{n}$.

Proposition 3.2.1. If two chain maps $f=\left\{f_{n}\right\}$ and $g=\left\{g_{n}\right\}$ are chain homotopic, then $H_{n}(f)=H_{n}(g)$ for all $n \geq 0$.

Proof. See proposition 10.6 of [1].

Theorem 3.2.2. For a topological space X, the two chain maps $S\left(i_{0}\right)$ and $S\left(i_{1}\right)$ are chain homotopic where i_{0} and i_{1} is given by

$$
\begin{aligned}
i_{0}: X & \rightarrow X \times I \\
x & \mapsto(x, 0)
\end{aligned}
$$

and

$$
\begin{aligned}
i_{1}: X & \rightarrow X \times I \\
x & \mapsto(x, 1)
\end{aligned}
$$

Proof. See proposition 11.4 of [1].
Theorem 3.2.3. If f and g are homotopic maps between topological spaces X and Y, then $S(f)$ and $S(g)$ are chain homotopic.

Proof. Since f and g are homotopic maps, there is a homotopy $H: X \times I \rightarrow Y$ between f and g. We have $f=H \circ i_{0}$ and $g=H \circ i_{1}$ where i_{0} and i_{1} are the same maps defined in previous theorem. From previous theorem, we get a chain homotopy $\left\{D_{n}\right\}$ between $S\left(i_{0}\right)$ and $S\left(i_{1}\right)$. Define $D_{n}^{\prime}=S_{n+1}(H) D_{n}$. Then $d_{n+1}^{\prime} D_{n}^{\prime}+D_{n-1}^{\prime} d_{n}=S_{n}(H)\left(d_{n+1}^{\prime} D_{n}+D_{n-1} d_{n}\right)=$ $S_{n}(H)\left(S_{n}\left(i_{0}\right)-S_{n}\left(i_{1}\right)\right)=S_{n}\left(H \circ i_{0}\right)-S_{n}\left(H \circ i_{1}\right)=S_{n}(f)-S_{n}(g)$. Therefore the sequence $\left\{D_{n}^{\prime}\right\}$ is a chain homotopy between $S(f)$ and $S(g)$.

Definition 3.2.5. A topological space X is aspherical if every continuous map $f: S^{n} \rightarrow X$ can be extended to $F: E^{n+1} \rightarrow X$ for all $n \geq 0 . S^{n}$ is the unit sphere in \mathbb{R}^{n+1} and E^{n+1} is the unit ball in \mathbb{R}^{n+1}.

If X is aspherical, then X is path connected. We have $S^{0}=\{-1,1\}$ and $E^{1}=[-1,1]$. For $x, y \in X$, define

$$
\begin{aligned}
f: S^{0} & \rightarrow X \\
-1 & \mapsto x \\
1 & \mapsto y
\end{aligned}
$$

Then f is continuous and therefore it can be extended to continuous $F:[-1,1] \rightarrow X$ with $F(-1)=x$ and $F(1)=y$.

Example 10. A convex subset of \mathbb{R}^{n+1} is aspherical. A contractible space is also aspherical.
Theorem 3.2.4. If X is aspherical, then $H_{n}(X)=0$ for all $n>0$ and $H_{0}(X) \cong R$.

Proof. See theorem 10.13 of [1].

Theorem 3.2.5. If X is path connected, then $H_{1}(X, \mathbb{Z})$ is the Abelianization of $\pi_{1}(X)$.

Proof. See theorem 12.1 of [1].

3.3 Relative homology

Let X be a topological space and A be a subspace of X. We see that $S_{q}(A)$ is a submodule of $S_{q}(X) \forall q \geq 0$. We get a chain complex $\left\{C_{q}=S_{q}(X) / S_{q}(A), \bar{\partial}_{q}\right\}$ where

$$
\begin{aligned}
\bar{\partial}_{q}: S_{q}(X) / S_{q}(A) & \rightarrow S_{q-1}(X) / S_{q-1}(A) \\
\bar{z} & \rightarrow \partial_{q} z \bmod S_{q-1(A)}
\end{aligned}
$$

Definition 3.3.1. $q^{\text {th }}$ relative homology module of $X \bmod A, H_{q}(X, A)$ is defined as $\operatorname{kernel}\left(\bar{\partial}_{q}\right) / \operatorname{image}\left(\bar{\partial}_{q+1}\right)$.

If $\partial_{q} c \in S_{q-1}(A)$ for $\mathrm{c} \in S_{q}(X)$, then $\bar{c} \in \operatorname{kernel}\left(\bar{\partial}_{q}\right)$. Define $Z_{q}(X, A)=\left\{c \in S_{q}(X) \mid\right.$ $\left.\partial_{q} c \in S_{q-1}(A)\right\}$. Elements of $Z_{q}(X)$ are called relative q-cycles on $X \bmod A$. Define $B_{q}(x, A)=\left\{c \in S_{q}(X) \mid c-c_{a}=\partial_{q+1}(z)\right.$ for some $c_{a} \in S_{q}(A)$ and $\left.z \in S_{q+1}(X)\right\}$. An element of $B_{q}(X, A)$ is called relative q-boundary on $X \bmod A$.

Lemma 3.3.1. $H_{q}(X, A) \cong Z_{q}(X, A) / B_{q}(X, A)$
 isomorphism theorem, $H_{q}(X, A) \cong Z_{q}(X, A) / B_{q}(X, A)$.

Proposition 3.3.2. If X is path connected and A is nonempty subset of X, then $H_{0}(X, A)=$ 0 .

Proof. If $c=\sum v_{x} x \in S_{0}(X)$, then $\partial_{1}\left(\sum v_{x} \sigma_{x}\right)=c-\sum v_{x} x_{0}$. for $x_{0} \in A$ and σ_{x} is a path joining x and x_{0}. Therefore $c \in B_{0}(X, A)$.

Let $A \subset X$ and $A^{\prime} \subset X^{\prime}$. We will denote a continuous map $f: X \rightarrow X^{\prime}$ with $f(A) \subset$ A^{\prime} by a map $f:(X, A) \rightarrow\left(X^{\prime}, A^{\prime}\right)$. Given a map $f:(X, A) \rightarrow\left(X^{\prime}, A^{\prime}\right)$, the chain map $S_{q}(f): S_{q}(X) \rightarrow S_{q}\left(X^{\prime}\right)$ takes $Z_{q}(X, A)$ to $Z_{q}\left(X^{\prime}, A^{\prime}\right)$ and $B_{q}(X, A)$ to $B_{q}\left(X^{\prime}, A^{\prime}\right)$. Therefore we will get a homomorphism $H_{q}(f): H_{q}(X, A) \rightarrow H_{q}\left(X^{\prime}, A^{\prime}\right)$.

3.4 The exact homology sequence

Let A be a subspace of a topological space $X, i: A \rightarrow X$ be the inclusion map and $i_{X}: X \rightarrow$ X be the identity map.

Corollary 3.4.1. $\bar{\partial}_{q}: H_{q}(X, A) \rightarrow H_{q-1}(A)$ is a homomorphism.

Proof. If $\bar{z} \in H_{q}(X, A)$, then $z \in Z_{q}(X, A)$. From definition of $Z_{q}(X, A), \partial_{q} z \in S_{q-1}(A)$. $\partial_{q-1} \partial_{q}=0$ implies $\partial_{q} z \in Z_{q}(A)$ and $\bar{\partial}_{q} \bar{z} \in H_{q-1}(A)$. If $\bar{z}_{1}=\bar{z}_{2}$, then $\bar{z}_{1}-\bar{z}_{2}=0$. We have $z_{1}-z_{2} \in B_{q}(X, A)$. From definition of $B_{q}(X, A), z_{1}-z_{2}=c_{a}+\partial_{q+1} c$ for some $c_{a} \in S_{q}(A)$ and $c \in S_{q+1}(X) . \partial_{q}\left(z_{1}-z_{2}\right)=\partial_{q} c_{a} \in B_{q}(A)$ implies $\bar{\partial}_{q} \bar{z}_{1}=\bar{\partial}_{q} \bar{z}_{2}$. Therefore $\bar{\partial}_{q}$ is well defined and $\bar{\partial}_{q}$ is a homomorphism because ∂_{q} is a homomorphism.

We get an infinite sequence of homomorphisms

$$
\cdots \longrightarrow H_{q}(A) \xrightarrow{H_{q}(i)} H_{q}(X) \xrightarrow{H_{q}\left(i_{x}\right)} H_{q}(X, A) \xrightarrow{\bar{\partial}_{q}} H_{q-1}(A) \longrightarrow \cdots
$$

Theorem 3.4.2.

$$
\cdots \longrightarrow H_{q}(A) \xrightarrow{H_{q}(i)} H_{q}(X) \xrightarrow{H_{q}\left(i_{X}\right)} H_{q}(X, A) \xrightarrow{\bar{\partial}_{q}} H_{q-1}(A) \longrightarrow \cdots
$$

is an exact sequence.

Proof. Since the composition $H_{q}\left(i_{X}\right) H_{q}(i)=H_{q}\left(i_{X} i\right): H_{q}(A) \rightarrow H_{q}(X, A)$ is induced by the inclusion map and $Z_{q}(A) \subset S_{q}(A) \subset B_{q}(X, A), H_{q}\left(i_{X} i\right)$ is the zero homomorphism. It gives $\operatorname{image}\left(H_{q}(i)\right) \subset \operatorname{kernel}\left(H_{q}\left(i_{X}\right)\right)$. For $\bar{z} \in \operatorname{kernel}\left(H_{q}\left(i_{X}\right)\right), z \in Z_{q}(X)$ and $z \in B_{q}(X, A)$. We have $z=c_{a}+\partial_{q+1} c$ for some $c_{a} \in S_{q}(A)$ and $c \in S_{q+1}(X)$. Since $\partial_{q+1} c \in B_{q}(X)$ and $\partial_{q} z=0$, \bar{z} is the image of \bar{c}_{a}. We have $\bar{z} \in \operatorname{image}\left(H_{q}(i)\right)$. Therefore $\operatorname{kernel}\left(H_{q}\left(i_{X}\right)\right) \subset \operatorname{image}\left(H_{q}(i)\right)$. It implies that $\operatorname{image}\left(H_{q}(i)\right)=\operatorname{kernel}\left(H_{q}\left(i_{X}\right)\right)$. The sequence is exact at $H_{q}(X)$.

For $\bar{\partial}_{q} H_{q}\left(i_{X}\right): H_{q}(X) \rightarrow H_{q-1}(A), \partial_{q} z=0$ for all $\bar{z} \in H_{q}(X)$. Therefore $\bar{\partial}_{q} H_{q}\left(i_{X}\right)=0$. It gives $\operatorname{image}\left(H_{q}\left(i_{X}\right)\right) \subset \operatorname{kernel}\left(\bar{\partial}_{q}\right)$. If $\bar{z} \in \operatorname{kernel}\left(\bar{\partial}_{q}\right)$, then $z \in Z_{q}(X, A)$ and $\partial_{q} z \in$ $B_{q-1}(A)$. Therefore $\partial_{q} z=\partial_{q} c_{a}$ for some $c_{a} \in S_{q}(A)$. Since $\partial_{q}\left(z-c_{a}\right)=0, z-c_{a} \in Z_{q}(X)$. $c_{a} \in S_{q}(A)$ implies $c_{a} \in B_{q}(X, A)$. Therefore $\bar{\partial}_{q} H_{q}\left(i_{X}\right) \bar{c}_{a}=0$. It implies that \bar{z} is the image of $\bar{z}-\bar{c}_{a}$ under the map $H_{q}\left(i_{X}\right)$. It gives $\operatorname{kernel}\left(\bar{\partial}_{q}\right) \subset \operatorname{image}\left(H_{q}\left(i_{X}\right)\right)$. Therefore $\operatorname{kernel}\left(\bar{\partial}_{q}\right)=\operatorname{image}\left(H_{q}\left(i_{X}\right)\right)$. It is exact at $H_{q}(X, A)$.

For $H_{q-1}(i) \bar{\partial}_{q}: H_{q}(X, A) \rightarrow H_{q-1}(X)$, it is the zero homomorphism because ∂_{q} takes elements of $S_{q}(X)$ to $B_{q-1}(X)$. We have $\operatorname{image}\left(\bar{\partial}_{q}\right) \subset \operatorname{kernel}\left(H_{q-1}(i)\right)$. If $\bar{z} \in \operatorname{kernel}\left(H_{q-1}(i)\right)$, then $z \in Z_{q-1}(A)$ and $z \in B_{q-1}(X)$. Therefore $z=\partial_{q} c$ for some $c \in S_{q}(X)$. \bar{z} is the image of \bar{c} under the map $\bar{\partial}_{q}$. It gives $\operatorname{kernel}\left(H_{q-1}(i)\right) \subset \operatorname{image}\left(\bar{\partial}_{q}\right)$. Therefore $\operatorname{image}\left(\bar{\partial}_{q}\right)=$ $\operatorname{kernel}\left(H_{q-1}(i)\right)$. It is also exact at $H_{q-1}(A)$. Hence the sequence of homomorphisms is exact.

Five lemma 3.4.3. The diagram given below is a diagram of R-modules and homomorphisms with all rectangles commutative.

If the rows are exact at joints 2, 3, 4 and $\alpha, \beta, \delta, \varepsilon$ are isomorphism, then γ is an isomorphism.

Proof. We will show that γ is injective. Take $a \in \operatorname{kernel}(\gamma)$. Then $\gamma(a)=0$. Since rectangles are commutative, $\delta f_{3}(a)=h_{3} \gamma(a)=0$. Since δ is injective, $f_{3}(a)=0$. Therefore $a \in \operatorname{kernel}\left(f_{3}\right)=\operatorname{image}\left(f_{2}\right)$. We have $a=f_{2}(b)$ for some $b \in M_{2}$. Now $h_{2} \beta(b)=\gamma f_{2}(b)=$ $\gamma(a)=0$ implies that $\beta(b) \in \operatorname{kernel}\left(h_{2}\right)=\operatorname{image}\left(h_{1}\right)$. We have $\beta(b)=h_{1}(c)$ for some $c \in N_{1}$. Since α is surjectve, $c=\alpha\left(a^{\prime}\right)$ for some $a^{\prime} \in M_{1}$. Now we have $\beta(b)=h_{1}(c)=$ $h_{1} \alpha\left(a^{\prime}\right)=\beta f_{1}\left(a^{\prime}\right)$. Therefore $\beta\left(b-f_{1}\left(a^{\prime}\right)\right)=0 . \beta$ is injective implies that $b-f_{1}\left(a^{\prime}\right)=0$. $f_{2}(b)=a, f_{2} f_{1}=0$ and $f_{2}\left(b-f_{1}\left(a^{\prime}\right)\right)=0$, implies that $a=0$. Therefore $\operatorname{kernel}(\gamma)=0$.

Now we will show that γ is surjective. Take $m \in N_{3} . h_{3}(m) \in N_{4}$ and δ is surjective implies that $h_{3}(m)=\delta\left(m^{\prime}\right)$ for some $m^{\prime} \in M_{4}$. We have $0=h_{4} h_{3}(m)=h_{4} \delta\left(m^{\prime}\right)=\varepsilon f_{4}\left(m^{\prime}\right)$.

Since ε is injective, $f_{4}\left(m^{\prime}\right)=0$. Then $m^{\prime} \in \operatorname{kernel}\left(f_{4}\right)=\operatorname{image}\left(f_{3}\right)$. Therefore $m^{\prime}=f_{3}\left(m^{\prime \prime}\right)$ for some $m^{\prime \prime} \in M_{3}$. Applying δ to previous equation, $\delta\left(m^{\prime}\right)=\delta f_{3}\left(m^{\prime \prime}\right) . h_{3}(m)=\delta\left(m^{\prime}\right)$ and $\delta f_{3}=h_{3} \gamma$ implies that $h_{3}(m)=h_{3} \gamma\left(m^{\prime \prime}\right)$. Since $m-\gamma\left(m^{\prime \prime}\right) \in \operatorname{kernel}\left(h_{3}\right)=\operatorname{image}\left(h_{2}\right)$, $m-\gamma\left(m^{\prime \prime}\right)=h_{2}\left(m^{\prime \prime \prime}\right)$ for some $m^{\prime \prime \prime} \in N_{2}$. Since β is surjective, $m^{\prime \prime \prime}=\beta(u)$ for some $u \in M_{2}$. Therefore $m-\gamma\left(m^{\prime \prime}\right)=h_{2}\left(m^{\prime \prime \prime}\right)=h_{2} \beta(u)=\gamma f_{2}(u)$. We have $m=\gamma\left(m^{\prime \prime}-f_{2}(u)\right)$ where $m^{\prime \prime}-f_{2}(u) \in M_{3}$. Therefore γ is surjective.

Definition 3.4.1. A short exact sequence is an exact sequence of R-modules of the form $0 \longrightarrow M_{1} \xrightarrow{i} M_{2} \xrightarrow{j} M_{3} \longrightarrow$.

Proposition 3.4.4. If $0 \longrightarrow M_{1} \xrightarrow{i} M_{2} \xrightarrow{j} M_{3} \longrightarrow 0$ is a short exact sequence, then the following statements are equivalent:

1. There is a homomorphism $p: M_{2} \rightarrow M_{1}$ such that $p i=i d_{M_{1}}$.
2. There is a homomorphism $q: M_{3} \rightarrow M_{2}$ such that $j q=i d_{M_{3}}$.

Proof. See proposition 14.11 of [1].
Definition 3.4.2. A short exact sequence $0 \longrightarrow M_{1} \xrightarrow{i} M_{2} \xrightarrow{j} M_{3} \longrightarrow 0$ is split if it satisfies either statement 1 or statement 2 of the previous proposition.

Direct sum lemma 3.4.5. Given below is a diagram of R-modules. All triangles are commutative with $\operatorname{kernel}\left(f_{t}\right)=\operatorname{image}\left(g_{t}\right)$ and h_{t} is an isomorphism for $t=1$, 2.

Then the compositions

$$
\begin{aligned}
& M_{1} \oplus M_{2} \xrightarrow{f_{1} \oplus f_{2}} M \oplus M \xrightarrow{\phi} M \\
& M \xrightarrow{\psi} M \oplus M \xrightarrow{g_{1} \oplus g_{2}} M_{1}^{\prime} \oplus M_{2}^{\prime}
\end{aligned}
$$

are isomorphisms where $\phi\left(m, m^{\prime}\right)=m+m^{\prime}$ and $\psi(m)=(m, m)$.

Proof. If $m_{1} \in \operatorname{kernel}\left(f_{1}\right)$, then $h_{1}(m)=g_{2} f_{1}\left(m_{1}\right)=0$. Since h_{1} is an isomorphism, $m=0$. This implies that $\operatorname{kernel}\left(f_{1}\right)=\{0\}$. Therefore f_{1} is injective. For $m_{2}^{\prime} \in M_{2}^{\prime}$, there is a $m_{1} \in M_{1}$ such that $m_{2}^{\prime}=h_{1}\left(m_{1}\right)=g_{2} f_{1}\left(m_{1}\right)$. Therefore g_{2} is surjective. Similarly, f_{2} is injective and g_{1} is surjective.

If $\left(m_{1}, m_{2}\right) \in \operatorname{kernel}\left(\phi\left(f_{1} \oplus f_{2}\right)\right)$, then $\phi\left(f_{1} \oplus f_{2}\right)\left(m_{1}, m_{2}\right)=f_{1}\left(m_{1}\right)+f_{2}\left(m_{2}\right)=0$. Applying g_{2} to the previous equation, $g_{2} f_{1}\left(m_{1}\right)+g_{2} f_{2}\left(m_{2}\right)=0$. Since $g_{2} f_{2}=0$ and $h_{1}=g_{2} f_{1}$, we have $h_{1}\left(m_{1}\right)=0$. h_{1} is an isomorphism implies that $m_{1}=0$. After applying g_{1} to the same equation to which we applied g_{2}, we will get $m_{2}=0$. Therefore $\operatorname{kernel}\left(\phi\left(f_{1} \oplus f_{2}\right)\right)=\{(0,0)\}$. For $m \in M, g_{2}(m) \in M_{2}^{\prime}$. Since h_{1} is surjective, $g_{2}(m)=h_{1}\left(m_{1}\right)=g_{2} f_{1}\left(m_{1}\right)$ for some $m_{1} \in M_{1}$. Therefore $m-f_{1}\left(m_{1}\right) \in \operatorname{kernel}\left(g_{2}\right)=\operatorname{image}\left(f_{2}\right)$. Since $m-f_{1}\left(m_{1}\right) \in \operatorname{image}\left(f_{2}\right)$, $m-f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)$ for some $m_{2} \in M_{2}$. Therefore $m=f_{1}\left(m_{1}\right)+f_{2}\left(m_{2}\right)=$ $\phi\left(f_{1} \oplus f_{2}\right)\left(m_{1}, m_{2}\right)$. This implies that $\phi\left(f_{1} \oplus f_{2}\right)$ is surjective. We showed that the first composition is an isomorphism.

For $m \in \operatorname{kernel}\left(\left(g_{1} \oplus g_{2}\right) \psi\right),\left(g_{1}(m), g_{2}(m)=(0,0)\right.$. This implies that $g_{1}(m)=0$ and $g_{2}(m)=0$. Since $\operatorname{kernel}\left(g_{1}\right)=\operatorname{image}\left(f_{1}\right), m=f_{1}\left(m_{1}\right)$ for some $m_{1} \in M_{1}$. We have $0=g_{2}(m)=g_{2} f_{1}\left(m_{1}\right)=h_{1}\left(m_{1}\right)$. Since h_{1} is an isomorphism, $m_{1}=0$ and therefore $m=f_{1}\left(m_{1}\right)=0$. We have $\operatorname{kernel}\left(\left(g_{1} \oplus g_{2}\right) \psi\right)=\{0\}$. Take $\left(m_{1}^{\prime}, m_{2}^{\prime}\right) \in M_{1}^{\prime} \oplus M_{2}^{\prime}$. Since $m_{1}^{\prime} \in M_{1}^{\prime}$ and g_{1} is surjective, $m_{1}^{\prime}=g_{1}\left(m^{\prime}\right)$ for some $m^{\prime} \in M . \operatorname{kernel}\left(g_{1}\right)=\operatorname{image}\left(f_{1}\right)$ implies that $m_{1}^{\prime}=g_{1}\left(m^{\prime}+f_{1}\left(m_{1}\right)\right)$ for all $m_{1} \in M_{1}$. Applying g_{2} to $m^{\prime}+f_{1}\left(m_{1}\right)$, we will get $g_{2}\left(m^{\prime}\right)+g_{2} f_{1}\left(m_{1}\right)=g_{2}\left(m^{\prime}\right)+h_{1}\left(m_{1}\right)$. Since h_{1} is surjective, there is $n_{1} \in M_{1}$ such that $m_{2}^{\prime}=g_{2}\left(m^{\prime}\right)+h_{1}\left(n_{1}\right)$. Therefore we can write $n_{1}=h_{1}^{-1}\left(m_{2}^{\prime}\right)-h_{1}^{-1} g_{2}\left(m^{\prime}\right)$. For $m=m^{\prime}+f_{1}\left(n_{1}\right), f_{1}(m)=m_{1}^{\prime}$ and $f_{2}(m)=m_{2}^{\prime}$. We have $\left(g_{1} \oplus g_{2}\right) \psi(m)=\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$. Therefore $\left(g_{1} \oplus g_{2}\right) \psi(m)$ is surjective. We showed that the second composition is also an isomorphism.

Example 11. Given a split short exact sequence $0 \longrightarrow M_{1} \xrightarrow{i} M_{2} \xrightarrow{j} M_{3} \longrightarrow 0$. If $p: M_{2} \rightarrow M_{1}$ with $p i=i d_{M_{1}}$ is given, then we can construct $q: M_{3} \rightarrow M_{2}$ with $j q=i d_{M_{3}}$. From the proof of proposition 3.4.4, q is defined as $q\left(m_{3}\right)=m_{2}-i p\left(m_{2}\right)$ where $m_{3}=j\left(m_{2}\right)$ for some $m_{2} \in M_{2}$. When we apply p to $q\left(m_{3}\right)$, we will get $p q\left(m_{3}\right)=p\left(m_{2}\right)-p i p\left(m_{2}\right)$. Since $p i=i d_{M_{2}}$, we will get $p q\left(m_{3}\right)=0$. This implies that image $(q) \subset \operatorname{kernel}(p)$. Take $m \in \operatorname{kernel}(p)$. Then $q j(m)=m-i p(m)=m$ implies that $m \in \operatorname{image}(q)$. Therefore $\operatorname{kernel}(p) \subset \operatorname{image}(q)$. We have $\operatorname{kernel}(p)=\operatorname{image}(q)$. Similarly given $q: M_{3} \rightarrow M_{2}$ with
$j q=i d_{M 3}$, we can construct $p: M_{2} \rightarrow M_{3}$ with $p i=i d_{m_{1}}$ and $\operatorname{kernel}(p)=\operatorname{image}(q)$. Therefore we get a diagram satisfying previous proposition.

We have $M_{2} \cong M_{1} \oplus M_{3}$ for a split short exact sequence $0 \longrightarrow M_{1} \xrightarrow{i} M_{2} \xrightarrow{j} M_{3} \longrightarrow 0$.
Proposition 3.4.6. If A is a retract of X, then $H_{n}(X) \cong H_{n}(A) \oplus H_{n}(X, A)$.

Proof. We have $r i=i d_{A}$ where i is the inclusion map of A and r is a retraction map. $H_{n}(r) H_{n}(i)=H_{n}\left(i d_{A}\right)$ implies that $H_{n}(i)$ is injective. Therefore the exact sequence

$$
\cdots \longrightarrow H_{n+1}(X, A) \xrightarrow{\bar{\partial}_{n+1}} H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(X) \xrightarrow{H_{n}\left(i_{X}\right)} H_{n}(X, A) \xrightarrow{\partial_{n}} H_{n-1}(A) \longrightarrow \cdots
$$

gives a split short exact sequence

$$
0 \longrightarrow H_{n}(A) \underset{H_{n}(r)}{\stackrel{H_{n}(i)}{\longleftrightarrow}} H_{n}(X) \xrightarrow{H_{n}\left(i_{X}\right)} H_{n}(X, A) \longrightarrow 0
$$

for all $n \geq 0$. Using the previous example, we get $H_{n}(X)=H_{n}(A) \oplus H_{n}(X, A)$.

3.5 The excision theorem

Let $B \subset A \subset X$. We say that U can be excised if the inclusion map $i:(X \backslash B, A \backslash B) \rightarrow(X, A)$ induces an isomorphism $H_{n}(i): H_{n}(X \backslash B, A \backslash B) \rightarrow H_{n}(X, A)$ for all $n \geq 0$.

Theorem 3.5.1. If the closure of B is contained in the interior A, then A can be excised.

Proof. See theorem 15.1 of [1].

Theorem 3.5.2. Let $U \subset B \subset A$. If U can be excised and $(X \backslash B, A \backslash B)$ is deformation retract of $(X \backslash U, A \backslash U)$, then B can be excised.

Proof. See theorem 15.2 of [1].

Let $E_{n}^{+}=\left\{x \in S^{n} \mid x_{n+1} \geq 0\right\}$ and $E_{n}^{-}=\left\{x \in S^{n} \mid x_{n+1} \leq 0\right\}$.
Theorem 3.5.3. If $U=\left\{x \in S^{n} \mid x_{n+1}<0\right\}$, then U can be excised from $\left(S^{n}, E_{n}^{-}\right)$for all $n \geq 1$.

Proof. See theorem 15.3 of [1].
Corollary 3.5.4. For $n \geq 1, H_{q}\left(S^{n}\right) \cong H_{q-1}\left(S^{n-1}\right)$ for all $q \geq 2$.

Proof. From the previous theorem, we have $H_{q}\left(E_{n}^{+}, S^{n-1}\right) \cong H_{q}\left(S^{n}, E_{n}^{-}\right)$for all $q \geq 0$. Since E_{n}^{-}is contractible, $H_{q}\left(E_{n}^{-}\right)=0$ for all $q \geq 1$. We get a exact sequence
$0 \longrightarrow H_{q}\left(S^{n}\right) \xrightarrow{H_{q}\left(i_{n}\right)} H_{q}\left(S^{n}, E_{n}^{-}\right) \longrightarrow 0$ for all $q \geq 2$. Therefore $H_{q}\left(S^{n}\right) \cong H_{q}\left(S^{n}, E_{n}^{-}\right)$for all $q \geq 2$. Since the unit ball E^{n} is a convex set, $H_{q}\left(E^{n}\right)=0$ for all $q \geq 1$. The exact sequence $0 \longrightarrow H_{q}\left(E^{n}, S^{n-1}\right) \xrightarrow{\bar{\partial}_{n}} H_{q-1}\left(S^{n-1}\right) \longrightarrow 0$ gives that $H_{q}\left(E^{n}, S^{n-1}\right) \cong H_{q-1}\left(S^{n-1}\right)$ for all $q \geq 2$. $\left(E_{n}^{+}, S^{n-1}\right)$ is homeomorphic to $\left(E^{n}, S^{n-1}\right)$ implies that $H_{q}\left(E_{n}^{+}, S^{n-1}\right) \cong H_{q}\left(E^{n}, S^{n-1}\right)$ for all $q \geq 0$. Therefore we get $H_{q}\left(S^{n}\right) \cong H_{q}\left(S^{n}, E_{n}^{-}\right) \cong H_{q}\left(E_{n}^{+}, S^{n-1}\right) \cong H_{q}\left(E^{n}, S^{n-1}\right) \cong$ $H_{q-1}\left(S^{n-1}\right)$ for all $q \geq 2$.

For $q=1$ and $n \geq 1$, we have $0 \longrightarrow H_{1}\left(E^{n}, S^{n-1}\right) \xrightarrow{\bar{\partial}_{n}} H_{0}\left(S^{n-1}\right) \xrightarrow{H_{0}(i)} H_{0}\left(E^{n}\right) \longrightarrow 0$. For $n>1, S^{n-1}$ and E^{n} are path connected. Therefore $H_{0}\left(S^{n-1}\right) \cong R, H_{0}\left(E^{n}\right) \cong R$ and $H_{0}(i)$ is an isomorphism. We get $H_{1}\left(E^{n}, S^{n-1}\right) \cong \operatorname{Kernel}\left(H_{0}(i)\right)=0$. For $n=1, S^{0}$ has two path components. Therefore $H_{0}\left(S^{0}\right) \cong R \oplus R$. We get $H_{1}\left(E^{1}, S^{0}\right) \cong \operatorname{kernel}\left(H_{0}(i)\right) \cong R$.

$$
H_{1}\left(E^{n}, S^{n-1}\right) \cong \begin{cases}0 & n>1 \\ R & n=1\end{cases}
$$

We have $H_{q}\left(S^{n}, E_{n}^{-}\right) \cong H_{q}\left(E_{n}^{+}, S^{n-1}\right)$ and $H_{q}\left(E_{n-1}^{+}, S^{n-1}\right) \cong H_{q}\left(E^{n}, S^{n-1}\right)$ for all $q \geq 0$. This implies that $H_{q}\left(S^{n}, E_{n}^{-}\right) \cong H_{q}\left(E^{n}, S^{n-1}\right)$ for all $q \geq 0$. We have the exact sequence
$0 \longrightarrow H_{1}\left(S^{n}\right) \xrightarrow{H_{1}\left(i_{S} S^{n}\right.} H_{1}\left(S^{n}, E_{n}^{-}\right) \xrightarrow{\bar{\partial}_{1}} H_{0}\left(E_{n}^{-}\right) \xrightarrow{H_{0}(i)} H_{0}\left(S^{n}\right) \longrightarrow 0 . \quad H_{0}(i)$ is isomorphism implies that $\bar{\partial}_{1}=0$. We get $H_{1}\left(S^{1}\right) \cong H_{1}\left(S^{n}, E_{n}^{-}\right)$. Therefore

$$
H_{1}\left(S^{1}\right) \cong \begin{cases}0 & n>1 \\ R & n=1\end{cases}
$$

Corollary 3.5.5. For $q \geq 1$ and $n \geq 1$,

$$
H_{q}\left(S^{n}\right) \cong \begin{cases}R & q=n \\ 0 & q \neq n\end{cases}
$$

Proof. It comes from $H_{q}\left(S^{n}\right) \cong H_{q-1}\left(S^{n-1}\right) \cong \ldots \cong H_{1}\left(S^{n-(q-1)}\right)$.

3.6 Mayer-Vietoris sequence

Barratt-Whitehead Lemma 3.6.1.

If the rows of the given diagram are long exact sequences of R-modules and γ_{n} are isomorphisms, then there exists a long exact sequence given by

$$
\cdots \longrightarrow A_{n} \xrightarrow{\phi_{n}} A_{n}^{\prime} \oplus B_{n} \xrightarrow{\psi_{n}} B_{n}^{\prime} \xrightarrow{\delta_{n}} A_{n-1} \longrightarrow \cdots
$$

where $\phi_{n}(a)=\left(\alpha_{n} \oplus f_{n}\right)(a, a), \psi_{n}(a, b)=-f_{n}^{\prime}(a)+\beta_{n}(b)$ and $\delta_{n}(b)=h_{n} \circ \gamma_{n}^{-1} \circ g_{n}^{\prime}(b)$

Proof. Firstly we will show the exactness at A_{n}^{\prime}. For $b^{\prime} \in B_{n+1}^{\prime}, \phi_{n} \circ \delta_{n+1}\left(b^{\prime}\right)=\phi_{n} \circ h_{n+1} \circ \gamma_{n+1}^{-1} \circ$ $g_{n+1}^{\prime}\left(b^{\prime}\right)=\left(\alpha_{n} \circ h_{n+1} \circ \gamma_{n+1}^{-1} \circ g_{n+1}^{\prime}\left(b^{\prime}\right), f_{n} \circ h_{n+1} \circ \gamma_{n+1}^{-1} \circ g_{n+1}^{\prime}\left(b^{\prime}\right)\right)$. Since $\alpha_{n} \circ h_{n+1}=h_{n+1}^{\prime} \circ \gamma_{n+1}$ and $f_{n} \circ h_{n+1}=0$, we get $\phi_{n} \circ \delta_{n+1}\left(b^{\prime}\right)=(0,0)$. Therefore image $\left(\delta_{n+1}\right) \subset \operatorname{kernel}\left(\phi_{n}\right)$. For $a \in \operatorname{kernel}\left(\phi_{n}\right), \alpha_{n}(a)=0$ and $f_{n}(a)=0$. Since the rows are exact, there exists $c \in C_{n+1}$ such that $h_{n+1}(c)=a$. Commutativity of the diagram implies that $h_{n+1}^{\prime} \circ \gamma_{n+1}(c)=$
$\alpha_{n} \circ h_{n+1}(c)=\alpha_{n}(a)=0 . \quad \gamma_{n+1}(c) \in \operatorname{kernel}\left(h_{n+1}^{\prime}\right)$ implies that there exists $b^{\prime} \in B_{n+1}^{\prime}$ such that $g_{n+1}\left(b^{\prime}\right)=\gamma_{n+1}(c)$. Applying $h_{n+1} \circ \gamma_{n+1}^{-1}$ on both side of the previous equation, we get $h_{n+1} \circ \gamma_{n+1}^{-1} \circ g_{n+1}=\alpha_{n}(c)=a$. Therefore $a \in$ image $\left(\delta_{n+1}\right)$. This implies that $\operatorname{kernel}\left(\phi_{n}\right) \subset \operatorname{image}\left(\delta_{n+1}\right)$. Therefore image $\left(\delta_{n+1}\right)=\operatorname{kernel}\left(\phi_{n}\right)$.

Now we will show the exactness at $A_{n}^{\prime} \oplus B_{n}$. Since $\psi_{n} \circ \phi_{n}(a)=-f_{n}^{\prime} \circ \alpha_{n}(a)+\beta_{n} f_{n}(a)=0$, we get image $\left(\phi_{n}\right) \subset \operatorname{kernel}\left(\psi_{n}\right)$. For $\left(a^{\prime}, b\right) \in \operatorname{kernel}\left(\psi_{n}\right), f_{n}^{\prime}\left(a^{\prime}\right)=\beta_{n}(b)$. Applying g_{n}^{\prime} on the previous equation, $g_{n}^{\prime} \circ f_{n}^{\prime}\left(a^{\prime}\right)=g_{n}^{\prime} \circ \beta_{n}(b)=\gamma_{n} \circ g_{n}(b)=0$. Since γ_{n} is an isomorphism, we get $g_{n}(b)=0$. Therefore there exists $x \in A_{n}$ such that $f_{n}(x)=b$. After applying β_{n}, we get $\beta_{n} \circ f_{n}(x)=f_{n}^{\prime} \circ \alpha_{n}(x)=\beta_{n}(b)=f_{n}^{\prime}\left(a^{\prime}\right)$. We get $\left(a^{\prime}-\alpha_{n}(x)\right) \in \operatorname{kernel}\left(f_{n}^{\prime}\right)$. Therefore $a^{\prime}-\alpha_{n}(x)=h_{n+1}^{\prime}\left(c^{\prime}\right)$ for some $c^{\prime} \in C_{n+1}^{\prime}$. Since γ_{n+1} is an isomorphism, $c^{\prime}=\gamma_{n+1}(c)$ for some $c \in C_{n+1}$. Therefore $a^{\prime}-\alpha_{n}(x)=h_{n+1}^{\prime} \circ \gamma_{n+1}(c)=\alpha_{n} \circ h_{n+1}(c)$. Then for $a=x-h_{n+1}(c), \phi_{n}(a)=\left(a^{\prime}, b\right)$. This implies that $\operatorname{kernel}\left(\psi_{n}\right) \subset$ image $\left(\phi_{n}\right)$. Therefore $\operatorname{image}\left(\phi_{n}\right)=\operatorname{kernel}\left(\psi_{n}\right)$.

Now we will show the exactness at B_{n}^{\prime}. Since $\delta_{n} \circ \psi_{n}\left(a^{\prime}, b\right)=-h_{n} \circ \gamma_{n}^{-1} \circ g_{n}^{\prime} \circ f_{n}^{\prime}\left(a^{\prime}\right)+$ $h_{n} \circ \gamma_{n}^{-1} \circ g_{n}^{\prime} \circ \beta_{n}(b)=0+h_{n} \circ \gamma_{n}^{-1} \circ \gamma_{n}^{\prime} \circ g_{n}(b)=0$, we get image $\left(\psi_{n}\right) \subset \operatorname{kernel}\left(\delta_{n}\right)$. For $b^{\prime} \in \operatorname{kernel}\left(\delta_{n}\right), \gamma_{n}^{-1} \circ g_{n}^{\prime}\left(b^{\prime}\right) \in \operatorname{kernel}\left(h_{n}\right)$. Therefore $\gamma_{n}^{-1} \circ g_{n}^{\prime}\left(b^{\prime}\right)=g_{n}(b)$ for some $b \in B_{n}$. After applying γ_{n}, we get $g_{n}^{\prime}\left(b^{\prime}\right)=\gamma_{n} \circ g_{n}(b)=g_{n}^{\prime} \circ \beta_{n}(b)$. Since $\beta_{n}(b)-b^{\prime} \in \operatorname{kernel}\left(g_{n}^{\prime}\right)$, $\beta_{n}(b)-b^{\prime}=f_{n}^{\prime}\left(a^{\prime}\right)$ fro some $a^{\prime} \in A_{n}^{\prime}$. This implies that $b^{\prime}=-f_{n}^{\prime}\left(a^{\prime}\right)+\beta_{n}(b) \in \operatorname{image}\left(\psi_{n}\right)$. Therefore $\operatorname{kernel}\left(\delta_{n}\right) \subset \operatorname{image}\left(\psi_{n}\right)$.

Let X_{1} and X_{2} be a subspaces of a topological space X. If the homomorphisms of homology modules induced by the inclusion maps $i_{1}:\left(X_{2}, X_{1} \cap X_{2}\right) \rightarrow\left(X_{1} \cup X_{2}, X_{1}\right)$ and $i_{2}:\left(X_{1}, X_{1} \cap X_{2}\right) \rightarrow\left(X_{1} \cup X_{2}, X_{2}\right)$ are isomorphisms, then $\left(X_{1}, X_{2}, X\right)$ is called exact triad. If a triple $\left(X_{1}, X_{2}, X\right)$ is an exact triad, then it means that we can excise $X_{1}-X_{1} \cap X_{2}$ from $\left(X_{1} \cup X_{2}, X_{1}\right)$ and $X_{2}-X_{1} \cap X_{2}$ from $\left(X_{1} \cup X_{2}, X_{2}\right)$. Let $A=X_{1} \cap X_{2}$ and $Y=X_{1} \cup X_{2}$ We know from the theorem 3.4.2 that the rows of the below diagram are exact,

If $\left(X_{1}, X_{2}, X\right)$ is an exact triad, then $H_{q}\left(i_{2}\right)$ is an isomorphism for $q \geq 0$. Therefore we will get an exact sequence using Barrat-Whitehead lemma for a given exact triad.

Chapter 4

Cohomology

Let $M=\left\{M_{n}, d_{n}\right\}$ be a chain complex over R and G be an R-module. Let M_{n}^{*} denote $\operatorname{Hom}\left(M_{n}, G\right) . M_{n}^{*}$ is known as chain module We get a homomorphism

$$
\begin{aligned}
d_{n}^{*}: M_{n-1}^{*} & \rightarrow M_{n}^{*} \\
f & \mapsto f \circ d_{n}
\end{aligned}
$$

d_{n}^{*} is known as coboundary map. d_{n}^{*} is a module homomorphism. $d_{n+1}^{*} \circ d_{n}^{*}=0$ as $d_{n} \circ d_{n+1}=0$. We obtain a sequence $\ldots \longrightarrow M_{n-1} \xrightarrow{d_{n}^{*}} M_{n} \xrightarrow{d_{n+1}^{*}} M_{n+1} \longrightarrow \ldots$ of chain modules and coboundary maps. We will denote the sequence by $M^{*}=\left\{M_{n}^{*}, d_{n}^{*}\right\}$.

Definition 4.0.1. The sequence $M^{*}=\left\{M_{n}^{*}, d_{n}^{*}\right\}$ is called cochain complex of the chain complex $M=\left\{M_{n}, d_{n}\right\}$.

Definition 4.0.2. $\mathrm{H}^{n}(M, G)$ is defined as $\operatorname{kernel}\left(d_{n}^{*}\right) / \operatorname{image}\left(d_{n}^{*}\right) . \mathrm{H}^{n}(B, G)$ is called the $n^{t} h$ cohomology module of M.

For a topological space X, take $M=\left\{S_{n}(X, R), \partial_{n}\right\}$. Then M^{*} is denoted by $S^{*}=$ $\left\{S^{n}(X, G), \partial^{n}\right\}$ and $\mathrm{H}^{n}(M, G)$ is denoted by $\mathrm{H}^{n}(X, G) . \mathrm{H}^{n}(X, G)$ is called $n^{\text {th }}$ cohomology module of X.

4.0.1 Cup product

See chapter 24 of [1].
Exercise 8. If $A \xrightarrow{\phi} B \xrightarrow{\psi} C \rightarrow 0$ be exact sequence of R-modules A, B, C, then the dual sequence $A^{*} \stackrel{\phi}{\leftarrow} B^{*} \stackrel{\psi}{\leftarrow} C^{*} \leftarrow 0$ is also exact.

Solution. First we will check exactness at C^{*}. We need to show that $\operatorname{kernel}\left(\psi^{*}\right)=0$. If $f \in \operatorname{kernel}\left(\psi^{*}\right)$, then $f \circ \psi(b)=0$ for all $b \in B$. Since ψ is surjective, $f(c)=0$ for all $c \in C$. This implies that $f=0$. Therefore, $\operatorname{kernel}\left(\psi^{*}\right)=0$. We showed that the sequence is exact at C^{*}. Now we will check exactness at B^{*}. If $g \in \operatorname{image}\left(\psi^{*}\right)$, then $g=f \circ \psi$ for some $f \in B^{*}$. Since $\operatorname{kernel}(\psi)=\operatorname{image}(\phi), \phi^{*}(g)=g \circ \phi=f \circ \psi \circ \phi=0$. Therefore, $\operatorname{image}\left(\psi^{*}\right) \subset \operatorname{kernel}\left(\phi^{*}\right)$. Finally, we will show that $\operatorname{kernel}\left(\phi^{*}\right) \subset \operatorname{image}\left(\psi^{*}\right)$. For showing this, we will take $g \in \operatorname{kernel}\left(\phi^{*}\right)$ and show that $g=f \circ \psi$ for some $f \in C^{*}$. Since ψ is surjective and $\operatorname{kernel}(\psi)=\operatorname{image}(\phi)$,

$$
\begin{aligned}
\bar{\psi}: B / \operatorname{image}(\phi) & \rightarrow C \\
\bar{b} & \mapsto \psi(b)
\end{aligned}
$$

is an isomorphism. For any $g \in \operatorname{kernel}\left(\phi^{*}\right)$, define

From the above diagram, we got a homomorphism $f=\bar{g} \circ(\bar{\psi})^{-1}$ such that $g=f \circ \psi$ and $f \in C^{*}$. Therefore $\operatorname{kernel}\left(\phi^{*}\right) \subset \operatorname{image}\left(\psi^{*}\right)$, and hence $\operatorname{kernel}\left(\phi^{*}\right)=\operatorname{image}\left(\psi^{*}\right)$. This implies that the sequence is also exact at B^{*}.

Chapter 5

Stiefel-Whitney classes

Let Λ, I and J be index sets. Let \mathbb{R} and \mathbb{Z} denotes the real numbers and ring of integers respectively.

We will first state the four axioms of Stiefel-Whitney classes. Then we will see the consequences and application of the four axioms.

Followings are the four axioms of Stiefel-Whitney classes

Axiom 1 For an n-dimensional vector bundle $\pi: E \rightarrow B$, there is a sequence of cohomology classes $w_{0}(\pi), w_{1}(\pi), \ldots, w_{n}(\pi), \ldots$ with $w_{i}(\pi) \in H^{i}(B, \mathbb{Z} / 2 \mathbb{Z})$ for $i \geq 0, w_{0}(\pi)$ is the identity element of $H^{0}(B)$ and $w_{k}(\pi)=0$ for $k>n$. The sequence of cohomology classes $w_{0}(\pi), w_{1}(\pi), \ldots, w_{n}(\pi), \ldots$ is called Stiefel-Whitney classes of the vector bundle $\pi: E \rightarrow B$.

Axiom 2 If $f: A \rightarrow B$ be a map covered by a bundle map from the total space of $\pi^{\prime}: E^{\prime} \rightarrow A$ to the total space of $\pi: E \rightarrow B$, then $w_{i}\left(\pi^{\prime}\right)=f^{*} w_{i}(\pi)$ for $i \geq 0$.
Axiom 3 For vector bundles $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B, w_{k}\left(\pi_{1} \oplus \pi_{2}\right)=\sum_{i=1}^{k} w_{i}\left(\pi_{i}\right) \cup w_{k-i}\left(\pi_{2}\right)$ where $w_{i}\left(\pi_{i}\right) \cup w_{k-i}\left(\pi_{2}\right)$ is the cup product of $w_{i}\left(\pi_{i}\right)$ and $w_{k-i}\left(\pi_{2}\right)$.

Axiom 4 For the line bundle $\pi_{1}^{1}: \gamma_{1}^{1} \rightarrow \mathbb{R P}^{1}, w_{1}\left(\pi_{1}^{1}\right) \neq 0$.
Proposition 5.0.1. If vector bundles $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$ are isomorphic, then $w_{i}\left(\pi_{1}\right)=w_{i}\left(\pi_{2}\right)$ for $i \geq 0$.

Proof. Let $h: E_{1} \rightarrow E_{2}$ be a vector bundle isomorphism. Then the identity map $i_{A}: A \rightarrow A$ is covered by h. Therefore $w_{i}\left(\pi_{1}\right)=i_{A}^{*} w_{i}\left(\pi_{2}\right)=w_{i}\left(\pi_{2}\right)$ for $i \geq 0$.

Proposition 5.0.2. If $\pi: E \rightarrow B$ is an n-dimensional trivial vector bundle, then $w_{i}(\pi)=0$ for $i>0$.

Proof. Let $b \in B$. Define a map $h: E \rightarrow\{b\} \times \mathbb{R}^{n}$ by $h(x, v)=(b, v)$. Then h is a bundle map and the constant map $f: B \rightarrow\{b\}$ is covered by h. Since $H^{i}(\{b\}, \mathbb{Z} / 2 \mathbb{Z})=0$ for $i>0$, $w_{i}(\pi)=f^{*} 0=0$ for $i>0$.

Proposition 5.0.3. If $\pi: E \rightarrow B$ is a trivial vector bundle, then $w_{k}\left(\pi_{1} \oplus \pi\right)=w_{k}\left(\pi_{1}\right)$ for a vector bundle $\pi_{1}: E_{1} \rightarrow B$.

Proof. $w_{k}\left(\pi_{1} \oplus \pi\right)=\sum_{i=1}^{k} w_{i}\left(\pi_{1}\right) \cup w_{k-i}(\pi)=w_{k}\left(\pi_{1}\right)$ as $w_{i}\left(\pi_{1}\right) \cup 0=0$ and $w_{i}\left(\pi_{1}\right) \cup w_{0}(\pi)=$ $w_{i}\left(\pi_{1}\right)$.

Proposition 5.0.4. If $\pi: E \rightarrow B$ is an n-dimensional euclidean vector bundle with k nowhere dependent sections, then $w_{n-k+1}(\pi)=\cdots=w_{n}(\pi)=0$.

Proof. Let S_{1}, \ldots, S_{k} be k nowhere dependent sections of $\pi: E \rightarrow B$. Let $F(b)$ be vector subspace of $\pi^{-1}(b)$ spanned by $S_{1}(b), \ldots, S_{k}(b)$ for each $b \in B$. Let $E_{1}=\bigsqcup_{b \in B} F(b)$. Define a $\operatorname{map} \pi_{1}: E_{1} \rightarrow B$ by $\pi_{1}(e)=(b)$ if $e \in F(b)$. Then $\pi_{1}: E_{1} \rightarrow B$ is an k-dimensional trivial subbundle of $\pi: E \rightarrow B$. Let $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$ be the normal bundle of $\pi_{1}: E_{1} \rightarrow B$. It follows from proposition 6.0.3 that $w_{i}(\pi)=w_{i}\left(\pi_{1} \oplus \pi_{1}^{\perp}\right)=w_{i}\left(\pi_{1}^{\perp}\right)$. Since $\pi_{1}^{\perp}: E_{1}^{\perp} \rightarrow B$ is $n-k$ dimensional vector bundle, $w_{n-k+1}(\pi)=\cdots=w_{n}(\pi)=0$.

Definition 5.0.1. Define $\mathrm{H}^{\Pi}(B ; \mathbb{Z} / 2 \mathbb{Z})$ as the set of all formal infinite series $w_{0}+w_{1}+\ldots+$ $w_{n}+\ldots$ with $w_{i} \in H^{i}(B ; \mathbb{Z} / 2 \mathbb{Z})$.
$\mathrm{H}^{\Pi}(B ; \mathbb{Z} / 2 \mathbb{Z})$ with the additive operation $\left(w_{0}+w_{1}+w_{2}+\ldots\right)+\left(v_{0}+v_{1}+v_{2}+\ldots\right)=$ $w_{0}+v_{0}+w_{1}+v_{1}+\ldots$ and the multiplicative operation $\left(w_{0}+w_{1}+w_{2}+\ldots\right)\left(v_{0}+v_{1}+v_{2}+\ldots\right)=$ $\left(w_{0} \cup w_{0}\right)+\left(w_{0} \cup v_{1}+w_{1} \cup v_{0}\right)+\left(w_{0} \cup v_{2}+w_{1} \cup v_{1}+w_{2} \cup v_{0}\right)+\ldots$ is a commutative ring.

Definition 5.0.2. For an n-dimensional vector bundle $\pi: E \rightarrow B$, the element $w(\pi)=$ $1+w_{1}(\pi)+\cdots+w_{n}(\pi)+0+\ldots$ of $\mathrm{H}^{\Pi}(B ; \mathbb{Z} / 2 \mathbb{Z})$ is defined as the total Stiefel- Whitney class of the vector bundle $\pi: E \rightarrow B$.

Lemma 5.0.5. The set $G=\left\{w_{0}+w_{1}+w_{2}+\ldots \in \mathrm{H}^{\Pi}(B ; \mathbb{Z} / 2 \mathbb{Z}) \mid w_{0}=1\right\}$ is an abelian group under multiplication.

Proof. Since $1 \cup 1=1, G$ is closed under addition. G is abelian and associative as $\mathrm{H}^{\Pi}(B ; \mathbb{Z} / 2 \mathbb{Z})$ is abelian and associative. For $1+w_{1}+\ldots \in G$, let $\left(1+w_{1}+w_{2}+\ldots\right)\left(1+v_{1}+v_{2}+\right.$ $\ldots)=1$. Then $w_{1}+v_{1}=0 ; w_{2}+w_{1} \cup v_{1}+v_{2}=0 ; \ldots ; w_{n}+w_{n-1} \cup v_{1}+\ldots+w_{1} \cup v_{n-1}+v_{n}=0 ; \ldots$. Since coefficients are in $\mathbb{Z} / 2 \mathbb{Z}, v_{1}=w_{1} ; v_{2}=w_{2}+w_{1} \cup w_{1} ; \ldots ; v_{n}=w_{n}+w_{n-1} \cup v_{1}+\ldots+$ $w_{1} \cup v_{n-1} ; \ldots$ Therefore $1+v_{1}+\ldots$ is the inverse of $1+w_{1}+\ldots$.

It is the consequence of the product operation on $\mathrm{H}^{\Pi}(B ; \mathbb{Z} / 2 \mathbb{Z})$ that $w\left(\pi_{1} \oplus \pi_{2}\right)=$ $w\left(\pi_{1}\right) w\left(\pi_{2}\right)$ for vector bundles $\pi_{1}: E_{1} \rightarrow B$ and $\pi_{2}: E_{2} \rightarrow B$.

Lemma 5.0.6. If A is a smooth manifold in $\mathbb{R}^{n}, \pi: T A \rightarrow A$ is the tangent bundle of A and $\pi^{\perp}: T A^{\perp} \rightarrow A$ is the normal bundle of $\pi: T A \rightarrow A$, then $w\left(\pi^{\perp}\right)=w(\pi)^{-1}$

Proof. Since $\pi \oplus \pi^{\perp}: T A \oplus T A^{\perp} \rightarrow A$ is isomorphic to the n-dimensional trivial vector bundle over B, $w(\pi) w\left(\pi^{\perp}\right)=w\left(\pi \oplus \pi^{\perp}\right)=1$. Therefore $w\left(\pi^{\perp}\right)=w(\pi)^{-1}$.

Example 12. $w(\pi)=1$ for the tangent bundle $\pi: T S^{n} \rightarrow S^{n}$. Since $S^{n} \subset \mathbb{R}^{n+1}$ and the normal bundle of $\pi: T S^{n} \rightarrow S^{n}$ is the 1-dimensional trivial vector bundle, $w(\pi)=w\left(\pi^{\perp}\right)^{-1}=$ 1.

Example 13. We have $w_{1}\left(\pi_{1}^{1}\right) \neq 0$ for the line bundle $\pi_{1}^{1}: \gamma_{1}^{1} \rightarrow \mathbb{R P}^{1}$. Since the inclusion map i : $\gamma_{1}^{1} \rightarrow \gamma_{n}^{1}$ is a bundle map, the inclusion map $f: \mathbb{R} \mathrm{P}^{1} \rightarrow \mathbb{R} \mathrm{P}^{n}$ is covered by the bundle map i. $f^{*} w_{1}\left(\pi_{n}^{1}\right)=w_{1}\left(\pi_{1}^{1}\right) \neq 0$ implies that $w_{1}\left(\pi_{n}^{1}\right) \neq 0$. Therefore $w\left(\pi_{n}^{1}\right)=1+w_{1}$ for some non-zero element w_{1} of $H^{1}(B, \mathbb{Z} / 2 \mathbb{Z})$.

Example 14. The vector bundle $\pi_{n}^{1}: \gamma_{n}^{1} \rightarrow \mathbb{R P}^{n}$ is a subbundle of the trivial bundle $\pi: \mathbb{R} \mathrm{P}^{n} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R P}^{n}$. $\pi_{n}^{1} \oplus\left(\pi_{n}^{1}\right)^{\perp}: \gamma_{n}^{1} \oplus\left(\gamma_{n}^{1}\right)^{\perp} \rightarrow \mathbb{R} \mathrm{P}^{n}$ is isomorphic to the trivial bundle $\pi: \mathbb{R P}^{n} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R P}^{n}$. Therefore $w\left(\left(\pi_{n}^{1}\right)^{\perp}\right)=w\left(\pi_{n}^{1}\right)^{-1}=\left(1+w_{1}\right)^{-1}=1+w_{1}+w_{1}^{2}+\ldots+w_{1}^{n}$ where w_{1}^{n} is the n-fold cup product of w_{1}.

Lemma 5.0.7. The tangent bundle $\pi: T \mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R} \mathrm{P}^{n}$ and the vector bundle $\pi^{\prime}: \operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right) \rightarrow \mathbb{R} P^{n}$ are isomorphic.

Proof. The canonical map $f: S^{n} \rightarrow \mathbb{R} \mathrm{P}^{n}$ given by $f(x)=\{ \pm x\}$ is locally a diffeomorphism. Therefore the tangent spaces of S^{n} at x and $-x$ map isomorphically to the tangent space of
$\mathbb{R P}^{n}$ at $\{ \pm x\}$. We can identify the tangent space of $\mathbb{R P}^{n}$ at $\{ \pm x\}$ with the tangent spaces of S^{n} at x and x. Therefore the tangent space of $\mathbb{R P}^{n}$ at $\{ \pm x\}$ is the set of equivalence classes of pairs $\{(x, v),(-x,-v)\}$ with $x \in S^{n}$ and $\langle x, v\rangle=0$. Let $L_{\{ \pm x\}}$ be the line passing through x and $-x$ in \mathbb{R}^{n+1}. Let $L_{\{ \pm x\}}^{\perp}$ be the orthogonal complement of $L_{\{ \pm x\}}$ in \mathbb{R}^{n+1}. Define

$$
\begin{aligned}
l^{x}: L_{\{ \pm x\}} & \rightarrow L_{\{ \pm x\}}^{\perp} \\
x & \mapsto v
\end{aligned}
$$

for a fixed $v \in L_{\{ \pm x\}}^{\perp}$. Denote l^{x} by l_{v}^{x} if x maps to v. Then l_{v}^{x} is a linear map. Define

$$
\begin{aligned}
h: T \mathbb{R P}^{n} & \rightarrow \operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right) \\
\{(x, v),(-x,-v)\} & \mapsto l_{v}^{x}
\end{aligned}
$$

Then h maps the tangent space of $\mathbb{R} \mathrm{P}^{n}$ at $\{ \pm x\}$ isomorphically to $\operatorname{Hom}\left(L_{\{ \pm x\}}, L_{\{ \pm x\}}^{\perp}\right) . h$ is bijective. Since bases of topology on $T \mathbb{R P}^{n}$ and $\operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right)$ have quotient topology induce from $U \times \mathbb{R}^{n}$ where U is an element of coordinate open sets of $\mathbb{R P}^{n}, h$ is a homeomorphism. Therefore h is a vector bundle isomorphism.

Theorem 5.0.8. The Whitney sum of the tangent bundle $\pi: T \mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R P}^{n}$ and the trivial vector bundle $\pi_{1}: \varepsilon^{1} \rightarrow \mathbb{R P}^{n}$ is isomorphic to the $(n+1)$-fold Whitney sum $\gamma_{n}^{1} \oplus \cdots \oplus \gamma_{n}^{1}$.

Proof. From exercise 5, we get that $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)$ is isomorphic to the trivial vector bundle $\pi_{1}: \varepsilon^{1} \rightarrow \mathbb{R P}^{n}$. Since the tangent bundle of $\mathbb{R P}^{n}$ is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right), T \mathbb{R P}^{n} \oplus \varepsilon^{1}$ is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right) \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)$. $\operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp}\right) \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)$ is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp} \oplus \gamma_{n}^{1}\right) . \operatorname{Hom}\left(\gamma_{n}^{1},\left(\gamma_{n}^{1}\right)^{\perp} \oplus \gamma_{n}^{1}\right)$ is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{n+1}\right)$. $\operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{n+1}\right)$ is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{1} \oplus \ldots \oplus \varepsilon^{1}\right)$. $\operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{1} \oplus \ldots \oplus \varepsilon^{1}\right)$ is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{1}\right) \oplus$ $\ldots \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{1}\right)$. From exercise 6, we get that $\operatorname{Hom}\left(\gamma_{n}^{1}, \varepsilon^{1}\right)$ is isomorphic to γ_{n}^{1}. Therefore $T \mathbb{R P}^{n} \oplus \varepsilon^{1}$ is isomorphic to $(n+1)$-fold Whitney sum $\gamma_{n}^{1} \oplus \ldots \oplus \gamma_{n}^{1}$.

It follows from the previous theorem that the total Stiefel-Whitney class of the tangent bundle of $\mathbb{R P}^{n}$ is $w\left(\pi_{n}^{1}\right)^{(n+1)}=\left(1+w_{1}\right)^{(n+1)}$. We will denote the total Stiefel-Whitney class of tangent bundle of $\mathbb{R} \mathrm{P}^{n}$ by $w\left(\mathbb{R} \mathrm{P}^{n}\right)$.

Corollary 5.0.9. $w\left(\mathbb{R} \mathrm{P}^{n}\right)=1$ if and only if $n+1=2^{k}$ for some positive integer k.

Proof. Assume $w\left(\mathbb{R P}^{n}\right)=1$. Suppose $n+1$ is not a power of 2 . If $n+1$ is a odd positive
integer, then $w\left(\mathbb{R} \mathrm{P}^{n}\right)=\left(1+w_{1}\right)^{n+1}=1+(n+1) w_{1}+\ldots \neq 1$ as the coefficient of w_{1} is a non-zero modulo 2 . If $n+1$ is an even positive integer, then $n+1=2^{k} m$ for some odd positive integer m . Since $\left(1+w_{1}\right)^{2^{k}}=1+w_{1}^{2^{k}}$ modulo 2 , $w\left(\mathbb{R P}^{n}\right)=\left(1+w_{1}\right)^{2^{k} m}=$ $\left(1+w_{1}^{2^{k}}\right)^{m}=1+m w_{1}^{2^{k}}+\ldots \neq 1$ as m is odd and $2^{k}<n$. Therefore $n+1=2^{k}$ for some positive integer k.

Conversely if $n+1=2^{k}$ for some positive integer k, then $w\left(\mathbb{R P}^{n}\right)=\left(1+w_{1}\right)^{2^{k}}=1+w_{1}^{2^{k}}=$ $1+w_{1}^{n+1}=1$ as $T \mathbb{R P}^{n}$ is an n-dimensional vector bundle.

It follows from the previous corollary that if the tangent bundle of $\mathbb{R} \mathrm{P}^{n}$ is the trivial vector bundle, then $n+1$ must be 2^{k} for some positive integer k.

Theorem 5.0.10. If there is a bilinear product operation $\rho: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ without zero divisors, then the tangent bundle of \mathbb{R}^{n-1} is the trivial vector bundle.

Proof. See theorem 4.7 of [2].
Exercise 9. For two vector bundles $\pi_{1}: E_{1} \rightarrow A$ and $\pi_{2}: E_{2} \rightarrow B, w_{k}\left(\pi_{1} \times \pi_{2}\right)=$ $\sum_{i=0}^{k} w_{i} \cup w_{k-i}$.

Solution. Consider the two maps $p_{1}: A \times B \rightarrow A$ given by $p_{1}(a, b)=a$ and $p_{2}: A \times B \rightarrow B$ given by $p_{2}(a, b)=b$. Then $p_{1}^{*} \pi_{1}: p_{1}^{*} E_{1} \rightarrow A \times B$ and $p_{2}^{*} \pi_{2}: p_{2}^{*} E_{2} \rightarrow A \times B$ are vector bundles induced by p_{1} and p_{2} respectively. From axiom 2 of Stiefel-Whitney classes, $w_{i}\left(p_{1}^{*} \pi_{1}\right)=w_{i}\left(\pi_{1}\right)$ and $w_{i}\left(p_{2}^{*} \pi_{2}\right)=w_{i}\left(\pi_{2}\right)$ for each $i \geq 0$. Consider $p_{1}^{*} \pi_{1} \oplus p_{2}^{*} \pi_{2}: p_{1}^{*} E_{2} \oplus p_{2}^{*} E_{2} \rightarrow A \times B$, Whitney sum of the two induced vector bundles. We know that

$$
\begin{aligned}
p_{1}^{*} E_{1} & =\left\{\left(a, b, e_{1}\right) \in A \times B \times E_{1} \mid p_{1}(a, b)=\pi_{1}\left(e_{1}\right)\right\} \\
p_{2}^{*} E_{2} & =\left\{\left(a, b, e_{2}\right) \in A \times B \times E_{2} \mid p_{2}(a, b)=\pi_{2}\left(e_{2}\right)\right\} \\
p_{1}^{*} E_{1} \oplus p_{2}^{*} E_{2} & =\left\{\left(\left(a_{1}, b_{1}, e_{1}\right),\left(a_{2}, b_{2}, e_{2}\right)\right) \in p_{1}^{*} E_{1} \times p_{2}^{*} E_{2} \mid p_{1}^{*} \pi_{1}\left(\left(a_{1}, b_{1}, e_{1}\right)\right)=p_{2}^{*} \pi_{2}\left(\left(a_{2}, b_{2}, e_{2}\right)\right)\right\} \\
& =\left\{\left(\left(a_{1}, b_{1}, e_{1}\right),\left(a_{2}, b_{2}, e_{2}\right)\right) \in p_{1}^{*} E_{1} \times p_{2}^{*} E_{2} \mid a_{1}=a_{2}, b_{1}=b_{2}\right\}
\end{aligned}
$$

Define

$$
\begin{aligned}
h: p_{1}^{*} E_{1} \oplus p_{2}^{*} E_{2} & \rightarrow E_{1} \times E_{2} \\
\left(\left(a, b, e_{1}\right),\left(a, b, e_{2}\right)\right) & \rightarrow\left(e_{1}, e_{2}\right)
\end{aligned}
$$

h is continuous and restriction of h on $\left(p_{1}^{*} \pi_{1} \oplus p_{2}^{*} \pi_{2}\right)^{-1}(a, b)=\left(p_{1}^{*} \pi_{1}\right)^{-1}(a, b) \times\left(p_{2}^{*} \pi_{2}\right)^{-1}(a, b)$ is linear isomorphism of $\left(p_{1}^{*} \pi_{1}\right)^{-1}(a, b) \times\left(p_{2}^{*} \pi_{2}\right)^{-1}(a, b)$ with $\pi_{1}^{-1}(a) \times \pi_{2}^{-1}(b)$. Lemma 3.1.1 implies that h is a vector bundle isomorphism. Therefore $w_{k}\left(\pi_{1} \times \pi_{2}\right)=w_{k}\left(p_{1}^{*} \pi_{1} \oplus p_{2}^{*} \pi_{2}\right)=$ $\sum_{i=0}^{k} w_{i}\left(p_{1}^{*} \pi_{1}\right) \cup w_{k-i}\left(p_{2}^{*} \pi_{2}\right)=\sum_{i=0}^{k} w_{i}\left(\pi_{1}\right) \cup w_{k-i}\left(\pi_{2}\right)$.

Bibliography

[1] Marvin J. Greenberg, John R. Harper, Algebraic Topology A First Course, Perseus Publishing, Cambridge, Massachusetts, Revised edition, 1981.
[2] John Willard Milnor, James D. Stasheff, Characteristic Classes, Princeton University Press, Princeton, New Jersey
[3] Allen Hatcher, Vector Bundles and K-Theory, Version 2.1, May 2009
[4] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002
[5] John Lee, Introduction to Smooth Manifolds, Springer Science and Business Media, Second Edition, 2012
[6] Amiya Mukherjee, Differential Topology, Hindustan Book Agency, 2015
[7] Norman Steenrod, The Topology of Fibre bundles, Princeton University Press, 1951

