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Abstract

Many topological spaces exist as the total spaces of real vector bundles over some base spaces.

Topological properties like Hausdorffness, connectedness, the first axiom of countability, path

connectedness, local connectedness of the total space of a vector bundle can be studied by

knowing these topological properties of the base space. We want to classify vector bundles up

to vector bundle isomorphism. It is very difficult to classify vector bundles using topological

properties. We would be using algebraic topology concepts like singular homology and

singular cohomology of base space to classify vector bundles. We have used axioms of

Stiefel-Whitney classes to classify some vector bundles.
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Chapter 1

Smooth manifold

1.1 Some problems from smooth manifold

Let M be a smooth manifold. We will denote the set of all smooth functions from M to R
by C∞(M,R).

Exercise 1. Show that C∞(M,R) can be made into a ring, and for each x ∈ M , we will get

a ring homomorphism C∞(M,R)→ R whose kernel is a maximal ideal in C∞(M,R). If M

is compact, show that every maximal ideal in C∞(M,R) is the kernel of some homomorphism

mentioned above.

Solution. For any f, g ∈ C∞(M,R), define

f + g : M → R

x 7→ f(x) + g(x)

and

fg : M → R

x 7→ f(x)g(x)

With the addition and multiplication defined above, C∞(M,R) is a ring.
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For x ∈M , define

φ : C∞(M,R)→ R

f 7→ f(x)

Then φ is a ring homomorphism and is also surjective. Therefore, C∞(M,R)� kernel(φ) is

isomorphic to R.

Since R is a field, Kernel(φ) is a maximal ideal. If φ is defined for x ∈ M , we will denote

kernel(φ) by mx. Suppose m is a maximal ideal in C∞(M,R) such that m 6= mx for all

x ∈ M . Since m 6= mx for all x ∈ M , there exists a fx ∈ C∞(M,R) for each x ∈ M such

that fx(x) 6= 0. Since fx 6= 0, there exists a neighborhood Ux of x such that fx(y) 6= 0 for

all y ∈ Ux. Since M =
⋃
x∈M

Ux and M is compact, M =
n⋃
i=1

Uxi for some natural number n.

Define f = f 2
x1

+ ..... + f 2
xn . Then f ∈ m and f 6= 0 for all x ∈ M . f 6= 0 for all x ∈ M

implies f is invertible. Therefore m = C∞(M,R) . This is a contradiction.
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Chapter 2

Vector bundle

2.1 Vector bundle

Let E and B be topological spaces. Let Λ, I and J be index sets. Let R and Z denote the

real numbers and ring of integers respectively.

Definition 2.1.1. An n-dimensional vector bundle over B is a surjective continuous

map π : E → B satisfying the following conditions,

1. For each x ∈ B, π−1(x) is an n-dimensional vector space over R.

2. For each x ∈ B, there exists a neighborhood Uα of x and a homeomorphism hα : Uα ×
Rn → π−1(Uα) such that for each y ∈ Uα, the restriction of hα on {y}×Rn is a linear

isomorphism of {y} × Rn with π−1(y).

E is known as total space of the vector bundle, B is known as its base space, π is known as

its projection, π−1(x) is known as fiber over x and (Uα, hα) is known as local trivialization at

x.

hαy will denote the restriction of hα on {y} × Rn.

Example 1. B × Rn is an n-dimensional vector bundle over B. It is called trivial bundle.

We will denote the n-dimensional trivial vector bundle over B by εn
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Example 2. Let M be an n-dimensional smooth manifold. Then the tangent bundle of M

is an n-dimensional vector bundle of M .

Example 3. Let E be the tangent bundle of Sn for n ≥ 1. We have E = {(x, v) ∈
Sn × Rn+1 | < x, v >= 0} where <,> is the dot product on Rn+1. Here π : E → Sn is

given by (x, v) 7→ x. Let Ui = {x ∈ Sn | xi 6= 0} for 1 ≤ i ≤ n + 1. Then hi : Ui × Rn →
π−1(Ui) is given by (x, v) 7→ (x, fi(v)− < x, fi(v) > x) where fi : Rn → Rn+1 is given by

(x1, . . . , xi, . . . , xn) 7→ (x1, . . . , xi−1, 0, xi, . . . , xn). Therefore E is an n-dimensional vector

bundle of Sn

Remark 2.1.1. Let π : E → B be an n-dimensional vector bundle with a local trivialization

{(Uα, hα)}α∈Λ. Define gα and gβ as the restriction of hα and hβ respectively on Uα ∩ Uβ ×
Rn whenever Uα ∩ Uβ 6= φ. Then gα, gβ are homeomorphism and restriction of gα, gβ on

{a} × Rn is a linear isomorphism of {a} × Rn with π−1(a) for each a ∈ Uα ∩ Uβ. Therefore

the following composition Uα ∩ Uβ × Rn
gα
// π−1(Uα ∩ Uβ)

g−1
β
// Uα ∩ Uβ × Rn will give a

homeomorphism g−1
β gα : Uα ∩ Uβ ×Rn → Uα ∩ Uβ ×Rn. We will denote it by gβα. Since the

restriction of gβα on {a} ×Rn is a linear isomorphism of {a} ×Rn with itself, we can write

gβα as

gβα : Uα ∩ Uβ × Rn → Uα ∩ Uβ × Rn

(a, r) 7→ (a, τβα(a)r)

where τβα : Uα∩Uβ → GLn(R) is a continuous map. If Uα∩Uβ∩Uγ 6= 0, we get a commutative

diagram

Uα ∩ Uβ ∩ Uγ × Rn
gα
//

gγα
**

π−1(Uα ∩ Uβ ∩ Uγ)
g−1
β
//

g−1
γ

��

Uα ∩ Uβ ∩ Uγ × Rn

gγβ
tt

Uα ∩ Uβ ∩ Uγ × Rn

This implies that gγβ ◦ gβα = gγα and τγβ ◦ τβα = τγα. τβα is known as transition function.

Exercise 2. Let B be a topological space. For a given open cover {Uα}α∈Λ of B satisfying

the following conditions,

1. If Uα ∩ Uβ 6= φ, then there is a homeomorphism hαβ : Uα ∩ Uβ × Rn → Uα ∩ Uβ × Rn

with hγβ ◦ hβα(x, r) = hγα(x, r) for (x, r) ∈ Uα ∩ Uβ ∩ Uγ × Rn.
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2. P1(hαβ(x, r)) = x, where (x, r) ∈ Uα ∩ Uβ × Rn and P1 is the projection map on the

first coordinate.

3. For each x ∈ Uα ∩ Uβ, the restriction of hαβ on {x} × Rn is a linear isomorphism of

{x} × Rn with itself; i.e. there exists a transition function.

There exists a vector bundle π : E → B for which {hαβ}α,β∈Λ are the transition functions.

Solution. Let F =
⊔
α∈Λ

Uα × Rn. For each Uα, define hαα = Iα where Iα is the identity

function on Uα × Rn. Define an equivalence relation on F by (x, v) ∼ (x,w) if and only if

there exists an hαβ such that hαβ(x, v) = (x,w). Let E be the quotient space resulting from

the equivalence relation.

Define

π : E → B

(x, v) 7→ x

and

fγ : Vγ × Rn → π−1(Vγ)

(x, v) 7→ [x, v]

where Vγ is an element of the open cover {Uα}α∈Λ of B and [x, v] is the equivalence class of

(x, v). Then we can define the inverse map of f by

f−1
γ : π−1(Vγ)→ Vγ × Rn

[x, r] 7→ (x, s)

where (x, s) is an element of Vγ×Rn that belongs to the equivalence class [x, r]. If Uα∩Uβ 6= 0,

then the composition Uα ∩ Uβ × Rn
fα
// π−1(Uα ∩ Uβ)

f−1
β
// Uα ∩ Uβ × Rn is the map hαβ.

Therefore π : E → B is a vector bundle with the transition functions {hαβ}α,β∈Λ.
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2.1.1 Bundle map

Definition 2.1.2. A bundle map between two n-dimensional vector bundles π1 : E1 → B1

and π2 : E2 → B2 is a continuous map F : E1 → E2 for which there exist a continuous map

f : B1 → B2 such that the below digram is commutative and restriction of F on π−1
1 (b) is a

linear isomorphism of π−1
1 (b) with π−1

2 (f(b)).

E1
F //

π1
��

E2

π2
��

B1 f
// B2

f is called a map covered by a bundle map from E1 to E2

Definition 2.1.3. Two vector bundles π1 : E1 → B and π2 : E2 → B are said to be isomorphic

if there exists a bundle F : E1 → E2 which is a homeomorphism and f is the identity map

of B.

Example 4. For n ≥ 1, let E = {(x, v) ∈ Sn × Rn | v = rx, r ∈ R}. Then π : E → Sn

given by (x, v) 7→ x is a 1-dimensional vector bundle. It is called normal bundle over Sn.

h : E → Sn × R given by (x, v) 7→ (x,< x, v >) is a homeomorphism. h|π−1(x) : π−1(x)→ R
given by v 7→< x, v > is a linear isomorphism for all x ∈ X. Therefore normal bundle of Sn

is isomorphic to the trivial bundle for all n ≥ 1.

Lemma 2.1.1. Let π1 : E1 → B and π2 : E2 → B be two vector bundles. If f : E1 → E2 is

a continuous map which maps π−1
1 (b) linearly isomorphic to π−1

2 (b) for each b ∈ B, then f

is a homeomorphism.

Proof. f is a bijective map. Let f−1 : E ′ → E be the inverse of f . We need to show that

f−1 is continuous. Let {(Uα, hα)}α∈Λ and {(Vi, gi)}i∈I be local trivializations of π and π′

respectively. For e ∈ E with π(e) = b and f(e) = e′, choose Uα and Vi for α ∈ Λ and

i ∈ I such that b ∈ Uα ∩ Vi. Define f ′ = f |π−1(Uα∩Vi) : π−1(Uα ∩ Vi) → π′−1(Uα ∩ Vi). f ′

is continuous and bijective as f maps π−1(b) linearly isomorphic to π′−1(b). Then we get a
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commutative diagram

π−1(Uα ∩ Vi)
f ′
//

hα
��

π′−1(Uα ∩ Vi)
hi
��

Uα ∩ Vi × Rn
hi◦f ′◦h−1

α

// Uα ∩ Vi × Rn

We can write hi ◦ f ′ ◦ h−1
α explicitly as

hi ◦ f ′ ◦ h−1
α : Uα ∩ Ui × Rn → Uα ∩ Ui × Rn

(a, r) 7→ (a, τiα(a)r)

where τiα(a) ∈ GLn(R). Then we can define

(hi ◦ f ′ ◦ h−1
α )−1 : Uα ∩ Ui × Rn → Uα ∩ Ui × Rn

(a, r) 7→ (a, τiα(a)−1r)

(hi◦f ′◦h−1
α )−1 is continuous because the inverse map from GLn(R) to GLn(R) is a continuous

map. Therefore f ′−1 = h−1
α ◦ (hi ◦ f ′ ◦ h−1

α )−1 ◦ hi is continuous. This implies that f−1 is

continuous on a neighborhood of e′ for each e′ ∈ E ′. Therefore f−1 is continuous.

Corollary 2.1.2. Let π : E → B be an n-dimensional vector bundle with a local trivializa-

tion {(Uα, hα)}α∈Λ. If a vector bundle π′ : E ′ → B is constructed with {(Uα, hα)}α∈Λ using

exercise 2, then the vector bundles π : E → B and π′ : E ′ → B are isomorphic.

Proof. Define

h : E → E ′

e 7→ [h−1
α (e)]

where e ∈ π−1(Uα) for some α ∈ Λ and [h−1
α (e)] is the equivalence class of h−1

α (e). h is

well defined because of the transitivity of transition function. h also maps π−1(b) linearly

isomorphic to π′−1(b) for each b ∈ B. Let q :
⊔
α∈Λ

Uα × Rn → E ′ be the quotient map. For

any open set U ′ of E ′, q−1(U ′) is open and q−1(U ′) =
⊔
α∈Λ

Vα×Rα with Vα×Rα open subset

Uα×Rn for each α ∈ Λ. Therefore h−1(U ′) = ∪α∈Λhα(Vα×Rα). h−1(U ′) is open as each hα

is a homeomorphism. This implies that h is continuous. Using lemma 2.1.1, we get that h

is a homeomorphism.
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Corollary 2.1.3. Let π : E → B be an n-dimensional vector bundle with a local trivialization

{(Uα, hα)}α∈Λ. If all the transition functions of {(Uα, hα)}α∈Λ map to the identity element

of GLn(R), then π : E → B is isomorphic to the trivial vector bundle.

Proof. Define h : E → B by h(e) = h−1
α (e) if e ∈ π−1(Uα). Then h|π−1(Uα) = hα and

hα|π−1(Uα∩Uβ) = hβ|π−1(Uα∩Uβ). Therefore h is continuous. Lemma 2.1.1 implies that h is a

vector bundle isomorphism.

2.1.2 Section of a vector bundle

Definition 2.1.4. A section of a vector bundle π : E → B is a continuous map S : B → E

with S(b) ∈ π−1(b) for each b ∈ B.

Section of the tangent bundle of a smooth manifold M is called a vector field on M.

Example 5. S : B → E given by x 7→ hx(x, 0) is a section of vector bundle π : E → B where

hx is a local trivialization defined for a neighborhood of x. It is called zero section.

Definition 2.1.5. A section S of vector bundle π : E → B is called nowhere zero if S(b)

is a non-zero vector of π−1(b) for all b ∈ B.

Definition 2.1.6. k sections S1, . . . , Sn of a vector bundle π : E → B is called nowhere

dependent if S1(b), . . . , Sk(b) are linearly independent for each b ∈ B.

Theorem 2.1.4. An n-dimensional vector bundle π : E → B is isomorphic to the trivial vec-

tor bundle if and only if there exist n sections S1, . . . , Sn such that the set {S1(b), S2(b), . . . , Sn(b)}
is a basis of π−1(b) for each b ∈ B.

Proof. An n-dimensional vector bundle π : E → B is isomorphic to the trivial vector bundle.

Then there exists an isomorphism h : B × Rn → E.

Define

Si : B → E

b 7→ h(b, (0, . . . , 1, 0, . . . , 0))
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where 1 is at ith position. Then S1, . . . , Sn are nowhere dependent sections.

Conversely, let S1, S2, . . . , Sn be n sections such that the set {S1(b), S2(b), . . .

, Sn(b)} is a basis of π−1(b) for each b ∈ B.

Define

h : B × Rn → E

(b, (x1, . . . , xn)) 7→ (b, S1(b)x1 + · · ·+ Sn(b)xn)

h is continuous because si’s are continuous. From lemma 2.1.1, we get that h is a homeo-

morphism. Therefore h is a vector bundle isomorphism.

2.1.3 Subbundle of a vector bundle

Definition 2.1.7. A vector bundle π1 : E1 → B is called a subbundle of a vector bundle

π : E → B if E1 ⊂ E and π−1
1 (b) is a vector subspace of π−1(b) for each b ∈ B.

Exercise 3. For a given vector bundle π : E → B, show that the projection map π : E → B

is a homotopy equivalence.

Solution. We need to show that there exists a map f : B → E such that π◦f is homotopic to

IB and f ◦π is homotopic IE where IB and IE are the identity maps of B and E respectively.

Let {(Uα, hα)}α∈Λ be a local trivialization of π : E → B. Take f to be the zero section. We

will get π ◦ f = IB. Define

H : [0, 1]× E → E

(t, e) 7→ hα(b, ((1− t)v))

whenever π(e) = b ∈ Uα and hα(b, v) = e. The function H is defined because Rn is a convex

set. H is continuous because each hα is a continuous function. Therefore H is a homotopy

between IE and f ◦ π.

Exercise 4. If π : E → Sn is an 1-dimensional vector bundle over S1, then it is either

isomorphic to Möbius bundle or trivial bundle.
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Solution. Let {(Uα, hα)}α∈Λ be a local trivialization of π : E → S1. From the open cover

{Uα}α∈Λ, we will always get an open cover {Vi}i∈I such that Vi’s are connected and for each

i ∈ I, Vi ⊂ Uα for some α. If Vi ⊂ Uα for more that one α, then fix an α and define gi = hα|Vi .
Therefore we get a local trivialization {(Vi, gi)}i∈I of π : E → S1. Since S1 is compact, the

open cover {Vi}i∈I has a finite subcover. Let {Vj}nj=1 covers S1. Then {(Vj, fj)}nj=1 is a

local trivialization of π : E → S1. Choose Vk from {Vj}nj=1 with Vk * Vj for k 6= j. Let

A =
⋃

1≥j≤n,j 6=k

Vj. Using exercise 2 and {(Vj, fj)}1≥j≤n,j 6=k, we get an 1-dimensional vector

bundle π1 : E1 → A with the local trivialization {(Vj, fj)}1≥j≤n,j 6=k. Since A is contractible,

π1 : E1 → A is a trivial bundle. Let h : π−1
1 (A) → A × R be a vector bundle isomorphism.

Now we have {(A, h), (Vk, hk)} as a local trivialization of π : E → S1. A
⋂
Vk = N1

⋃
N2

where N1 and N2 are disjoint open sets. There are following four possibilities of the transition

function τ : N1

⋃
N2 → GL1(R) = (R\{0})

τ(a) = 1 ∀ a ∈ N1

⋃
N2 (2.1)

τ(a) = −1 ∀ a ∈ N1

⋃
N2 (2.2)

τ(a) =

1 for a ∈ N1

−1 for a ∈ N2

(2.3)

τ(a) =

−1 for a ∈ N1

1 for a ∈ N2

(2.4)

as τ is continuous. The first two cases implies that π : E → S1 is trivial and the last two

cases implies that π : E → S1 is the Möbius bundle.

2.2 Constructing new vector bundles

2.2.1 Restriction of a vector bundle on a subspace of the base

space

Let π : E → B be an n-vector bundle and A be a subspace of B. Let {(Uα, hα)}α∈Λ be a

local trivialization of π : E → B. Define E1 = π−1(A), π1 = π|π−1
1 (A), Vα = A ∩ Uα and gα =

hα|Vα×Rn for each α ∈ Λ. Since the restriction of hα on {a}×Rn is isomorphic to π−1(a) for
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each a ∈ Vα, gα : Vα×Rn → π−1
1 (Vα) is well defined and is also a homeomorphism. Therefore

π1 : E1 → A is an n-dimensional vector bundle with a local trivialization {(Vα, gα)}α∈Λ.

2.2.2 Induced vector bundle

Let π : E → B be an n-dimensional vector bundle and f : A→ B be a continuous map. Let

{(Uα, hα)}α∈Λ be a local trivialization of π : E → B. Define E1 = {(a, e) ∈ A × E | f(a) =

π(e)}. Define π1 : E → B as π1((a, e)) = a. Let Vα = f−1(Uα). Define

gα : Vα × Rn → π−1
1 (Vα)

(a, v) 7→ (a, hα(f(a), v))

Then g−1
α is given by

g−1
α : π−1

1 (Vα)→ Vα × Rn

(a, e) 7→ (a, p(h−1
α (e)))

where p : Uα × Rn → Rn is defined as p(b, v) = v.

gα and g−1
α are continuous because these maps are compositions of continuous maps. There-

fore π1 : E1 → A is an n-dimensional vector bundle with a local trivialization {(Vα, gα)}α∈Λ.

f ∗π : f ∗E → A will denote the induced bundle π1 : E1 → A. This vector bundle is known as

the vector bundle induced by f.

Lemma 2.2.1. Let π1 : E1 → A and π2 : E2 → B be two n-dimensional vector bundles and

F : E1 → E2 be a bundle map. If f : A → B be a map covered by the bundle map F , then

the induced bundle f ∗π2 : f ∗E2 → A and π1 : E1 → A are isomorphic.

Proof. Define

φ : E1 → f ∗E2

e 7→ (π1(e), F (e))

φ is continuous because π1 and F are continuous. Since restriction of φ on π−1
1 (a) is a linear

isomorphism of π−1
1 (a) with ({a} × π−1

2 (f(b))) = (f ∗π1)−1(a) for each a ∈ A, F is a vector

11



bundle isomorphism. The previous statement follows from the lemma 2.1.1.

2.2.3 Cartesian product of vector bundles

Let π1 : E1 → A and π2 : E2 → B be two vector bundles of dimensions m and n respectively.

Let {(Uα, hα)}α∈Λ and {(Vi, gi)}i∈I be local trivializations of π1 : E1 → A and π2 : E2 → B

respectively. Define

π : E1 × E2 → A×B
(e1, e2) 7→ (π1(e1), π2(e2))

and

Hα,i : Uα × Vi × Rm × Rn → π−1
1 (Uα)× π−1

2 (Vi)

(a, b, v1, v2) 7→ (hα(a, v1), hi(b, v2))

Then π : E1×E2 → A×B is an (m+n)-dimensional vector bundle with a local trivializations

{(Uα × Vi, Hα,i)}α∈Λ,i∈I .

Whitney sum

Let π1 : E1 → B and π2 : E2 → B be two vector bundles. Let τ = {(a, b) ∈ B × B | a = b}.
Let π′ : E1 × E2 → B × B be the Cartesian product of vector bundles π1 : E1 → B and

π2 : E2 → B. Since τ ⊂ B × B, we get the restriction vector bundle π′′ : E ′ → τ of

π′ : E1 × E2 → B × B. A map f : τ → B given by f(b, b) = b is a homeomorphism.

Therefore f ◦π′′ : E ′ → B is a vector bundle. The vector bundle f ◦π′′ : E ′ → B is known as

the Whitney sum of π1 : E1 → B and π2 : E2 → B and is denoted by π1⊕π2 : E1⊕E2 → B.

We can write E1⊕E2 and π1⊕π2 explicitly as E1⊕E2 = {(v1, v2) ∈ E1×E2 | π1(v1) = π2(v2)}
and

π1 ⊕ π2 : E1 ⊕ E2 → B

(v1, v2) 7→ π1(v1) = π2(v2)

Lemma 2.2.2. Let π1 : E1 → B and π2 : E2 → B be two subbundles of a vector bundle

π : E → B. If the direct sum of π−1
1 (b) and π−1

2 (b) is equal to π−1(b) for each b ∈ B, then

12



π1 ⊕ π2 : E1 ⊕ E2 → B is isomorphic to π : E → B.

Proof. Define

h : E1 ⊕ E2 → E

(e1, e2) 7→ e1 + e2

h is well defined because π1(e1) = π2(e2) = π(e1 + e2). h is also continuous. Lemma 2.1.1

implies that h is a vector bundle isomorphism.

2.2.4 Euclidean vector bundle

Definition 2.2.1. Let π : E → B be a vector bundle. If there exists a continuous map

ν : E ⊕E → R such that restriction of ν over (π⊕ π)−1(b) is a symmetric, positive definite,

bilinear form for each b ∈ B, then π : E → B is called euclidean vector bundle.

ν is called euclidean metric on π : E → B. If B is a smooth manifold, then a euclidean

metric on the tangent bundle of B is called Riemannian metric and B is called Riemannian

manifold.

Example 6. Let π : B × Rn → B be the trivial bundle over B. Define

ν : B × Rn ⊕B × Rn → R

((a, r1), (a, r2)) 7→< r1, r2 >

where <,> is the dot product on Rn. Then π : B × Rn → B is a euclidean vector bundle

with a euclidean metric ν.

Lemma 2.2.3. If π : E → B be an n-dimensional trivial vector bundle with a euclidean

metric ν, then there are n sections {S1, . . . , Sn} such that ν(Si(b), Sj(b)) = δij for each

b ∈ B, where δij is the Kronecker delta function.

Proof. From theorem 3.1.3, we know that there are n nowhere dependent sections s1, . . . , sn.

After applying the Gram-Schmidt process to {s1(b), . . . , sn(b)}, we will get a normal orthog-

onal basis {S1(b), . . . , Sn(b)} of π−1(b) for each b ∈ B. Since ν is continuous, S1, . . . , Sn are

continuous map.
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Lemma 2.2.4. Let π1 : E1 → B be a subbundle of a euclidean vector bundle π : E → B

with a euclidean metric ν. Define (π−1
1 (b))⊥ = {e ∈ π−1(b) | ν(e, e1) = 0 ∀e1 ∈ E1} and

E⊥1 =
⊔
b∈B

(π−1
1 (b))⊥. Then π⊥1 : E⊥1 → B given by π⊥1 (e) = π(e), is a vector bundle.

Proof. Let dimensions π1 : E1 → B and π : E → B be m and n respectively. We want to

construct a local trivialization of π⊥1 : E⊥1 → B. For x ∈ B, let U be a neighborhood b on

which π1 : E1 → B and π : E → B are trivial bundle. There are m normal orthogonal local

sections S1, . . . , Sm and n normal orthogonal local sections s1, . . . , sn of π1 : E1 → B and

π : E → B respectively. Define an m × n matrix T (b) =
[
ν(Si(b)sj(b))

]
. Let Mm×n(R)

denote the set of all m × n matrices with real entries. Define φ : U → Mm×n(R) given

by φ(b) = T (b). φ is a continuous map as Si’s and sj’s are continuous maps. Let M be

the set of m × n matrices with first m columns linearly independent. Then M is open in

Mm×n(R). φ−1(M) is open in U as φ is continuous. Since U is open in B, φ−1(M) is open

in B. Then first m columns of T (b) are linearly independent for each b ∈ φ−1(M). Then

S1(b), . . . , Sm(b), sm+1(b), . . . , sn(b) are linearly independent for each b ∈ φ−1(M) because if

not, we can write Si(b) for some i, in terms of sm+1, . . . , sn and the ith column of T (b) will be

0. After applying the GramSchmidt process to S1(b), . . . , Sm(b), sm+1(b), . . . , sn(b), we will

get a normal orthogonal basis S1(b), . . . , Sn(b) of π−1(b) for each b ∈ φ−1(M). Define

h : φ−1(M)× R(n−m) → (π⊥1 )−1(φ−1(M))

(b, (rm+1, . . . , rn)) 7→
(n−m)∑
k=1

rm+kSm+k(b)

Then h is a homeomorphism and restriction of h on {b} × R(n−m) is a linear isomorphism.

Therefore π⊥1 : E⊥1 → B is a locally trivial bundle at each x ∈ B.

Corollary 2.2.5. If π1 : E1 → B is a subbundle of a euclidean vector bundle π : E → B,

then π : E → B is isomorphic to π1 ⊕ π⊥1 : E1 ⊕ E⊥1 → B.

Proof. From lemma 3.2.4, we get that π⊥1 : E⊥1 → B is a subbundle of π : E → B and the

direct sum of π−1
1 (b) and (π⊥1 )−1(b) is equal to π−1(b) for each b ∈ B. Therefore lemma 3.2.2

implies that π : E → B is isomorphic to π1 ⊕ π⊥1 : E1 ⊕ E⊥1 → B.

Definition 2.2.2. The vector bundle π⊥1 : E⊥1 → B is known as the normal bundle of

π1 : E1 → B in π : E → B.
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2.2.5 Hom-vector bundle and tensor product of vector bundles

Let π1 : E1 → B and π2 : E2 → B be vector bundles. Define Hom(E1, E2) =⊔
b∈B

Hom(π−1
1 (b), π−1

2 (b)) and E1⊗E2 =
⊔
b∈B

π−1
1 (b)⊗π−1

2 (b) where Hom(π−1
1 (b), π−1

2 (b)) is the

set all linear transformation from π−1
1 (b) to π−1

2 (b) and π−1
1 (b)⊗π−1

2 (b) is the tensor product

of π−1
1 (b) and π−1

2 (b).

Let C be a category in which objects are all finite dimensional vector spaces over R and

morphisms are all isomorphism between such vector spaces. Since GLn(R) has a natural

topology for n ≥ 0, the set of all isomorphisms between two finite dimensional vector spaces

has a natural topology. A functor T : C × . . .× C → C in m variable is called continuous if

T is continuous map of morphisms.

Let π1 : E1 → B, . . . , πm : Em → B bem vector bundles. Let F (b) = T (π−1
1 (b), . . . , π−1

m (b)).

Let E =
⊔
b∈B

F (b). Define a map π : E → B by π(e) = b if e ∈ F (b).

Theorem 2.2.6. There exists a topology on E such that π : E → B is a vector bundle.

Proof. For x ∈ B, let (U, h1), . . . , (U, hm) be local trivializations of π1 : E1 → B, . . . , πm : Em

respectively at x. Then hib : Rni → π−1
1 (b) is linear isomorphism for 1 ≤ i ≤ m. Define

h : U × T (Rn1 , . . . ,Rnm)→ π−1(U)

(b, v) 7→ T (h1b, . . . , hmb)(v)

Then h is a bijective map. Define quotient topology on π−1(U) induced by h. Let V be an

open subset of B with V ∩U nonempty and with local trivialization function gi : V ×Rni → B

for 1 ≤ i ≤ m. Define a map g : V × T (Rn1 , . . . ,Rnm) → π−1(V ) using g1, . . . , gm same

as we defined h. Then π−1(V ) also has a quotient topology induced by g. We have

π−1(U) ∩ π−1(V ) = π−1(U ∩ V ). The composition

U ∩ V × T (Rn1 , . . . ,Rnm) h // π−1(U ∩ V )
g−1
// U ∩ V × T (Rn1 , . . . ,Rnm) is continuous be-

cause T is a continuous functor. Since g−1 ◦h is continuous, the quotient topologies induced

by g and h on π−1(U ∩ V ) are same. Now we take these π−1(U)’s as a basis of a topol-

ogy of E. With respect to the topology defined on E, π is a continuous map and h is a

homeomorphism. Therefore π : E → B is a vector bundle.
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Define Hom: C ×C → C by (V1, V2) 7→ Hom(V1, V2) for finite dimensional vector spaces

V1, V2. If f : V1 → V2 and g : W1 → W2 are isomorphisms, then Hom(f, g) : Hom(V1,W1)→
Hom(V2,W2) is given by φ 7→ g ◦ φ ◦ f−1. Hom is a continuous functor as Hom(f, g) is

multiplications of matrices. Therefore π : Hom(E1, E2)→ B is a vector bundle constructed

from π1 : E1 → B and π2 : E2 → B. π : Hom(E1, E2) → B is known as the dual vector

bundle of π1 : E1 → B and π2 : E2 → B.

Define the tensor product functor ⊗ : C × C → C by (V1, V2) 7→ V1 ⊗ V2 for finite

dimensional vector spaces V1, V2 and (f, g) 7→ f ⊗ g for isomorphisms f, g. If f : V1 → V2

and g : W1 → W2 are linear maps, then f⊗g : V1×W1 → V2⊗W2 is given by f⊗g(v1, w1) =

f(v1)⊗ g(w1). ⊗ is also a continuous functor. Therefore π : E1⊗E2 → B is a vector bundle

constructed from π1 : E1 → B and π2 : E2 → B. π : E1 ⊗ E2 → B is known as the tensor

product vector bundle of π1 : E1 → B and π2 : E2 → B. A local trivialization {(Nj, fj)}j∈J
for the tensor product vector bundle is constructed from local trivializations {(Uα, hα)}α∈Λ

and {(Vi, gi)}i∈I of π1 : E1 → B and π2 : E2 → B respectively. The transition functions of

{(Nj, fj)}j∈J are given by {τα1α2 ⊗ σi1i2}α1,α2∈Λ;i1,i2∈I where {τα1α2}α1,α2∈Λ and {σi1i2}i1,i2∈I
are transition functions of {(Uα, hα)}α∈Λ and {(Vi, gi)}i∈I respectively.

Exercise 5. If π : E → B is an 1-dimensional vector bundle, then π1 : Hom(E,E) → B is

a trivial bundle.

Solution. We will show that there exists a nowhere zero section. Let {(Uα, hα)}α∈Λ be a

local trivialization of π : E → B. A local trivializations of π1 : Hom(E,E)→ B is given by

{(Uα,Hom(hα))}α∈Λ where

Hom(hα) : Uα × Hom(R,R)→ π−1
1 (Uα)

(x, φ) 7→ Hom(hαx)(φ) = hα ◦ φ ◦ h−1
α

We can observe that Hom(hα)(x, idR) = idπ−1
1 (x) where idR and idπ−1

1 (x) are the identity

homomorphisms of R and π−1
1 (x) respectively. Define

s : B → Hom(E,E)

x 7→ idπ1−1(x)
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and

f : Uα → Uα × Hom(R,R)

x 7→ (x, idR)

Then Hom(hα) ◦ f = s|Uα where s|Uα is restriction of s on Uα. Since Hom(hα) and f are

continuous, s|Uα is continuous. s is continuous as s is continuous on each Uα for α ∈ Λ.

Therefore s is a nowhere zero section of the vector bundle π : Hom(E,E)→ B.

Exercise 6. If an n-dimensional vector bundle π : E → B has a euclidean metric, then

π : E → B is isomorphic to the dual bundle π1 : Hom(E, ε1) → B where π2 : ε1 → B is the

trivial vector bundle.

Solution. Let ν be a euclidean metric on π : E → B. For v ∈ π−1(b), define φv : π−1(b)→ R
by φv(u) = ν(v, u). Then φv is a linear map. Define φ : π−1(b) → Hom(π−1(b), b × R) by

φ(v) = (b, φv). Then φ is also a linear map. φ is an isomorphism because ν is positive

definite and dimensions of vector spaces π−1(b) and Hom(π−1(b), b× R) are equal. Define

h : E → Hom(E, ε1)

v 7→ (b, φv)

Restriction of h on fibers is a linear isomorphism. Let {(Uα, hα)}α∈Λ be a local trivialization

of π : E → B. Since Hom(Rn,R) is isomorphic to Rn, we can also give quotient topology on

π−1
1 (Uα) using the map q : Uα×Rn → π−1

1 (Uα) given by q(b, v) = (b, φhα(v)). In the topology

defined on Hom(E, ε1), π1 : Hom(E, ε1)→ B is a vector bundle and h a is continuous map.

It follows from lemma 2.1.1 that h is a vector bundle isomorphism.

Exercise 7. Let A and B be smooth manifolds of dimensions m and n respectively. If

f : A→ B is a submersion and Kf =
⊔
x∈A

kernel(Dfx), then π : K → A given by π(e) = x if

x ∈ kernel(Dfx), is an (m− n)-dimensional vector bundle.

Solution. Since Kf ⊂ TA, K has the subspace topology of TA. Using Implicit function

theorem, we will get coordinate charts {(Uα, φα)}α∈Λ and {(Vi, ψi)}i∈I of A and B respec-

tively such that the composition φα(Uα)
φ−1
α // Uα

f
// Vi

ψi // ψi(Vi) is given by ψi ◦ f ◦
φ−1
α (x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn) for some α and i. Let g = ψi ◦ f ◦ φ−1

α . Then
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Dgφα(x) = (Dψi)f(x)Dfx(Dφ
−1
α )φα(x) =

[
In×n 0(m−n)×n

]
for each x ∈ Uα, where In×n and

0(m−n)×n are the n × n identity matrix and (m − n) × n zero matrix respectively. Then

ker(Dgφα(x)) = {(0, . . . , 0, rn+1, . . . , rm) ∈ Rm} ∼= R(m−n) for each x ∈ Uα. The map

q : Uα × R(m−n) →
⊔
x∈Uα

kernel(Dgφα(x))

(x, (rn+1, . . . , rm))→ (0, . . . , 0, rn+1, . . . , rm)

is a homeomorphism. Define

hα : Uα × R(m−n) → π−1(Uα)

(x, v) 7→ (Dφ−1
α )φα(x)(q(x, v))

and

h−1
α : π−1(Uα)→ Uα × Rn

e 7→ q−1((Dφα)x(e))

if e ∈ kernel(Dfx). h and h−1 are well defined because Dfx = (Dψ−1
i )f(x)Dgφα(x)(Dφα)x

and Dgφα(x) = (Dψi)f(x)Dfx(Dφ
−1
α )φα(x). h and h−1 are continuous because h and h−1

are composition of continuous functions. Restriction of hα over {x} × R(m−n) is a linear

isomorphism with π−1(x) because kernel(Dfx) ∼= {x} × R(m−n). Therefore π : Kf → A is a

vector bundle with a local trivialization {(Uα, hα)}α∈Λ.
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Chapter 3

Singular homology theory

3.1 Singular theory

Take e0 = (0, . . . , 0, . . .), e1 = (1, 0, . . . , 0, . . .), . . . , eq = (0, . . . , 1, 0, . . . , 0, . . .) i.e. for q > 0 ,

1 is at qth place and all other entries are 0.

Definition 3.1.1. The standard n-simplex is defined as the set 4n =

{ n∑
i=0

aiei | ai ≥ 0

∀i,
n∑
i=0

ai = 1

}
.

Definition 3.1.2. For any topological space X, a continuous map σ : 4n → X is defined as

a singular n-simplex.

For n > 0, define

F j
n : 4n−1 →4n

n−1∑
0

aiei 7→
n−1∑

0

aif(ei)

where f(ei) = ei, 0 ≤ i ≤ j − 1 and f(ei) = ei+1, j ≤ i ≤ n− 1

Definition 3.1.3. Let X be a topological space and σ be a singular n-simplex in X. The

ith-face of σ is defined as σ(i) = σ ◦ F j
n.
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It means that σ(i) is a singular (n-1)-simplex.

For a commutative ring R with unity, we will denote the free R-module generated by the

set of all singular n-simplexes in X by Sn(X).

Definition 3.1.4. An element of Sn(X) is known as a singular n-chain.

Definition 3.1.5. For n > 0, the boundary of a singular n-simplex σ, is defined as

∂(σ) =
n∑
i=0

(−1)iσ(i). For a singular 0-simplex σ, define ∂(σ) = 0.

We can also define the boundary of a singular n-chain, c =
m∑
j=1

ajσj by ∂(
m∑
j=1

ajσj) =

m∑
j=1

aj∂(σj). So, we get a homomorphism

∂n : Sn(X)→ Sn−1(X)
m∑
j=1

ajσj 7→
m∑
j=1

aj∂(σj)

We have a sequence of homomorphisms . . . Sn+1(X)
∂n+1

// Sn(X)
∂n // Sn−1(X) . . .

Proposition 3.1.1. ∂n∂n+1 = 0

Proof. See proposition 9.2 of [1]

From above proposition, we will get image(∂n+1) ⊂ kernel(∂n).

Definition 3.1.6. Zn(X) = kernel(∂n) and Bn(X) = image(∂n+ 1).

Definition 3.1.7. An element of Zn(X) is called n-cycle and an element of Bn(X) is called

n-boundary.

Since Bn(X) ⊂ Zn(X), we can define quotient module Hn(X) = Zn(X)/Bn(X).

Definition 3.1.8. Hn(X) is defined as the nth singular homology module of X.
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Example 7. For a single point x, Hn(x) = 0 for all n > 0 and H0(x) ∼= R. There is

a unique singular n-simplex for all n ≥ 0. Therefore Sn(x) ∼= R for all n ≥ 0. Let xm

denotes the singular m-simplex for all m ≥ 0. If q is even, ∂q(xq) = xq−1 6= 0. This

implies that Zq(x) = 0. Therefore Hq(x) = 0. If n is odd, then ∂n(xn) = 0. This implies

that Zn(x) = Sn(x). Since n + 1 is even, we have ∂n+1(xn+1) = xn. This implies that

Bn(x) = Sn(x). Therefore Hn(x) = 0. Since the boundary of a 0-chain is defined to be 0,

Z0(x) = S0(x). ∂1(x1) = 0 implies that B0(x) = 0. Therefore H0(x) ∼= S0(x) ∼= R.

Proposition 3.1.2. Hn(X) ∼= ⊕kHn(Xk) where (Xk) is the family of path connected com-

ponents of X.

Proof. See proposition 9.5 of [1].

Proposition 3.1.3. If X is path connected, then H0(X) ∼= R.

Proof. See proposition 9.6 of [1].

Given a continuous map f : X → Y between two topological spaces X and Y , we get a

homomorphism

Sn(f) : Sn(X)→ Sn(Y )
m∑
j=1

ajσj 7→
m∑
j=1

ajf ◦ σj

If g : Y → Z is a map, then Sn(fg) = Sn(f)Sn(g). Since (f ◦ σ) ◦ F j
n = f ◦ (σ ◦ F j

n), we will

get that ∂nSn(f) = Sn−1(f)∂n. If c ∈ Zn(X), then ∂nSn(f)(c) = Sn−1(f)∂n(c) = 0. This

implies that Sn(f)(c) ∈ Zn(Y ). Therefore we will get a homomorphism

Hn(f) : Hn(X)→ Hn(Y )

c 7→ Sn(f)c

3.2 Chain complexes

Definition 3.2.1. A chain complex over R is a sequence M = {Mn, dn} where {Mn} is

a sequence of free R-modules and {dn : Mn → Mn−1} is a sequence of homomorphisms with
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dn−1dn = 0.

Example 8. For a topological space X, the sequence S = {Sn(X), ∂n} is a chain complex.

Define Zn(M) = kernel(dn) and Bn(M) = image(dn+1). dndn+1 = 0 implies that Bn(M)

is a submodule of Zn(M). Therefore we can define Hn(M) = Zn(M)/Bn(M).

Definition 3.2.2. Hn(M) is called nth homology module of M .

Definition 3.2.3. A chain map is a sequence h = {hn} where {hn : Mn → M ′
n} is a

sequence of homomorphisms between chain complexes M = {Mn, dn} and M ′ = {M ′
n, d

′
n}

with d′nhn = hn−1dn.

Example 9. If f : X → Y is a continuous map between topological spaces X and Y , then

the sequence S(f) = {Sn(f)} is a chain map.

Since d′nhn = hn−1dn, hn sends Zn(M) into Zn(M ′) and Bn(M) into Bn(M ′). Therefore

we get a homomorphism

Hn(h) : Hn(M)→ Hn(M)

m 7→ hn(m)

Definition 3.2.4. Two chain maps {fn : Mn → M ′
n} and {gn : Mn → M ′

n} are said to be

chain homotopic if there exists a sequence of homomorphisms {Dn : Mn → M ′
n+1} with

d′n+1Dn +Dn−1dn = fn − gn.

Proposition 3.2.1. If two chain maps f = {fn} and g = {gn} are chain homotopic, then

Hn(f) = Hn(g) for all n ≥ 0.

Proof. See proposition 10.6 of [1].

Theorem 3.2.2. For a topological space X, the two chain maps S(i0) and S(i1) are chain

homotopic where i0 and i1 is given by

i0 : X → X × I
x 7→ (x, 0)
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and

i1 : X → X × I
x 7→ (x, 1)

Proof. See proposition 11.4 of [1].

Theorem 3.2.3. If f and g are homotopic maps between topological spaces X and Y , then

S(f) and S(g) are chain homotopic.

Proof. Since f and g are homotopic maps, there is a homotopy H : X × I → Y between f

and g. We have f = H ◦ i0 and g = H ◦ i1 where i0 and i1 are the same maps defined in

previous theorem. From previous theorem, we get a chain homotopy {Dn} between S(i0)

and S(i1). Define D′n = Sn+1(H)Dn. Then d′n+1D
′
n +D′n−1dn = Sn(H)(d′n+1Dn +Dn−1dn) =

Sn(H)(Sn(i0)− Sn(i1)) = Sn(H ◦ i0)− Sn(H ◦ i1) = Sn(f)− Sn(g). Therefore the sequence

{D′n} is a chain homotopy between S(f) and S(g).

Definition 3.2.5. A topological space X is aspherical if every continuous map f : Sn → X

can be extended to F : En+1 → X for all n ≥ 0. Sn is the unit sphere in Rn+1 and En+1 is

the unit ball in Rn+1.

If X is aspherical, then X is path connected. We have S0 = {−1, 1} and E1 = [−1, 1]. For

x, y ∈ X, define

f : S0 → X

−1 7→ x

1 7→ y

Then f is continuous and therefore it can be extended to continuous F : [−1, 1] → X with

F (−1) = x and F (1) = y.

Example 10. A convex subset of Rn+1 is aspherical. A contractible space is also aspherical.

Theorem 3.2.4. If X is aspherical, then Hn(X) = 0 for all n > 0 and H0(X) ∼= R.

Proof. See theorem 10.13 of [1].
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Theorem 3.2.5. If X is path connected, then H1(X,Z) is the Abelianization of π1(X).

Proof. See theorem 12.1 of [1].

3.3 Relative homology

Let X be a topological space and A be a subspace of X. We see that Sq(A) is a submodule

of Sq(X) ∀q ≥ 0. We get a chain complex {Cq = Sq(X)/Sq(A), ∂̄q} where

∂̄q : Sq(X)/Sq(A)→ Sq−1(X)/Sq−1(A)

z̄ → ∂qz mod Sq−1(A)

Definition 3.3.1. qth relative homology module of X mod A, Hq(X,A) is defined as

kernel(∂̄q)/ image(∂̄q+1).

If ∂qc ∈ Sq−1(A) for c ∈ Sq(X), then c̄ ∈ kernel(∂̄q). Define Zq(X,A) =
{
c ∈ Sq(X) |

∂qc ∈ Sq−1(A)
}

. Elements of Zq(X) are called relative q-cycles on X mod A. Define

Bq(x,A) =
{
c ∈ Sq(X) | c − ca = ∂q+1(z) for some ca ∈ Sq(A) and z ∈ Sq+1(X)

}
. An el-

ement of Bq(X,A) is called relative q-boundary on X mod A.

Lemma 3.3.1. Hq(X,A) ∼= Zq(X,A)/Bq(X,A)

Proof. Kernel(∂̄q) = Zq(X,A)/Sq(A) and Image(∂̄q) = Bq(X,A)/Sq(A). By the third

isomorphism theorem, Hq(X,A) ∼= Zq(X,A)/Bq(X,A).

Proposition 3.3.2. If X is path connected and A is nonempty subset of X, then H0(X,A) =

0.

Proof. If c =
∑
vxx ∈ S0(X), then ∂1(

∑
vxσx) = c −

∑
vxx0. for x0 ∈ A and σx is a path

joining x and x0. Therefore c ∈ B0(X,A).
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Let A ⊂ X and A′ ⊂ X ′. We will denote a continuous map f : X → X ′ with f(A) ⊂
A′ by a map f : (X,A) → (X ′, A′). Given a map f : (X,A) → (X ′, A′), the chain map

Sq(f) : Sq(X)→ Sq(X
′) takes Zq(X,A) to Zq(X

′, A′) and Bq(X,A) to Bq(X
′, A′). Therefore

we will get a homomorphism Hq(f) : Hq(X,A)→ Hq(X
′, A′).

3.4 The exact homology sequence

Let A be a subspace of a topological space X, i : A→ X be the inclusion map and iX : X →
X be the identity map.

Corollary 3.4.1. ∂̄q : Hq(X,A)→ Hq−1(A) is a homomorphism.

Proof. If z̄ ∈ Hq(X,A), then z ∈ Zq(X,A). From definition of Zq(X,A), ∂qz ∈ Sq−1(A).

∂q−1∂q = 0 implies ∂qz ∈ Zq(A) and ∂̄qz̄ ∈ Hq−1(A). If z̄1 = z̄2, then z̄1 − z̄2 = 0. We have

z1 − z2 ∈ Bq(X,A). From definition of Bq(X,A), z1 − z2 = ca + ∂q+1c for some ca ∈ Sq(A)

and c ∈ Sq+1(X). ∂q(z1 − z2) = ∂qca ∈ Bq(A) implies ∂̄qz̄1 = ∂̄qz̄2. Therefore ∂̄q is well

defined and ∂̄q is a homomorphism because ∂q is a homomorphism.

We get an infinite sequence of homomorphisms

· · · // Hq(A)
Hq(i)

// Hq(X)
Hq(iX)

// Hq(X,A)
∂̄q
// Hq−1(A) // · · ·

Theorem 3.4.2.

· · · // Hq(A)
Hq(i)

// Hq(X)
Hq(iX)

// Hq(X,A)
∂̄q
// Hq−1(A) // · · ·

is an exact sequence.

Proof. Since the composition Hq(iX)Hq(i) = Hq(iXi) : Hq(A)→ Hq(X,A) is induced by the

inclusion map and Zq(A) ⊂ Sq(A) ⊂ Bq(X,A), Hq(iXi) is the zero homomorphism. It gives

image(Hq(i)) ⊂ kernel(Hq(iX)). For z̄ ∈ kernel(Hq(iX)), z ∈ Zq(X) and z ∈ Bq(X,A). We

have z = ca+∂q+1c for some ca ∈ Sq(A) and c ∈ Sq+1(X). Since ∂q+1c ∈ Bq(X) and ∂qz = 0,

z̄ is the image of c̄a. We have z̄ ∈ image(Hq(i)). Therefore kernel(Hq(iX)) ⊂ image(Hq(i)).

It implies that image(Hq(i)) = kernel(Hq(iX)). The sequence is exact at Hq(X).
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For ∂̄qHq(iX) : Hq(X) → Hq−1(A), ∂qz = 0 for all z̄ ∈ Hq(X). Therefore ∂̄qHq(iX) = 0.

It gives image(Hq(iX)) ⊂ kernel(∂̄q). If z̄ ∈ kernel(∂̄q), then z ∈ Zq(X,A) and ∂qz ∈
Bq−1(A). Therefore ∂qz = ∂qca for some ca ∈ Sq(A). Since ∂q(z − ca) = 0, z − ca ∈ Zq(X).

ca ∈ Sq(A) implies ca ∈ Bq(X,A). Therefore ∂̄qHq(iX)c̄a = 0. It implies that z̄ is the

image of z̄ − c̄a under the map Hq(iX). It gives kernel(∂̄q) ⊂ image(Hq(iX)). Therefore

kernel(∂̄q) = image(Hq(iX)). It is exact at Hq(X,A).

For Hq−1(i)∂̄q : Hq(X,A)→ Hq−1(X), it is the zero homomorphism because ∂q takes ele-

ments of Sq(X) to Bq−1(X). We have image(∂̄q) ⊂ kernel(Hq−1(i)). If z̄ ∈ kernel(Hq−1(i)),

then z ∈ Zq−1(A) and z ∈ Bq−1(X). Therefore z = ∂qc for some c ∈ Sq(X). z̄ is the

image of c̄ under the map ∂̄q. It gives kernel(Hq−1(i)) ⊂ image(∂̄q). Therefore image(∂̄q) =

kernel(Hq−1(i)). It is also exact at Hq−1(A). Hence the sequence of homomorphisms is

exact.

Five lemma 3.4.3. The diagram given below is a diagram of R-modules and homomor-

phisms with all rectangles commutative.

M1

α

��

f1
//M2

β
��

f2
//M3

γ

��

f3
//M4

δ
��

f4
//M5

ε

��

N1 h1
// N2 h2

// N3 h3
// N4 h4

// N5

If the rows are exact at joints 2, 3, 4 and α, β, δ, ε are isomorphism, then γ is an isomor-

phism.

Proof. We will show that γ is injective. Take a ∈ kernel(γ). Then γ(a) = 0. Since

rectangles are commutative, δf3(a) = h3γ(a) = 0. Since δ is injective, f3(a) = 0. Therefore

a ∈ kernel(f3) = image(f2). We have a = f2(b) for some b ∈ M2. Now h2β(b) = γf2(b) =

γ(a) = 0 implies that β(b) ∈ kernel(h2) = image(h1). We have β(b) = h1(c) for some

c ∈ N1. Since α is surjectve, c = α(a′) for some a′ ∈ M1. Now we have β(b) = h1(c) =

h1α(a′) = βf1(a′). Therefore β(b − f1(a′)) = 0. β is injective implies that b − f1(a′) = 0.

f2(b) = a, f2f1 = 0 and f2(b− f1(a′)) = 0, implies that a = 0. Therefore kernel(γ) = 0.

Now we will show that γ is surjective. Take m ∈ N3. h3(m) ∈ N4 and δ is surjective

implies that h3(m) = δ(m′) for some m′ ∈ M4. We have 0 = h4h3(m) = h4δ(m
′) = εf4(m′).
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Since ε is injective, f4(m′) = 0. Then m′ ∈ kernel(f4) = image(f3). Therefore m′ = f3(m′′)

for some m′′ ∈ M3. Applying δ to previous equation, δ(m′) = δf3(m′′). h3(m) = δ(m′) and

δf3 = h3γ implies that h3(m) = h3γ(m′′). Since m − γ(m′′) ∈ kernel(h3) = image(h2),

m− γ(m′′) = h2(m′′′) for some m′′′ ∈ N2. Since β is surjective, m′′′ = β(u) for some u ∈M2.

Therefore m − γ(m′′) = h2(m′′′) = h2β(u) = γf2(u). We have m = γ(m′′ − f2(u)) where

m′′ − f2(u) ∈M3. Therefore γ is surjective.

Definition 3.4.1. A short exact sequence is an exact sequence of R-modules of the form

0 //M1
i //M2

j
//M3

// 0 .

Proposition 3.4.4. If 0 //M1
i //M2

j
//M3

// 0 is a short exact sequence, then

the following statements are equivalent:

1. There is a homomorphism p : M2 →M1 such that pi = idM1.

2. There is a homomorphism q : M3 →M2 such that jq = idM3.

Proof. See proposition 14.11 of [1].

Definition 3.4.2. A short exact sequence 0 //M1
i //M2

j
//M3

// 0 is split if it

satisfies either statement 1 or statement 2 of the previous proposition.

Direct sum lemma 3.4.5. Given below is a diagram of R-modules. All triangles are

commutative with kernel(ft) = image(gt) and ht is an isomorphism for t = 1, 2.

M1

h1

��

f1

!!

M2

h2

��

f2

}}

M

g2
}}

g1
!!

M ′
2 M ′

1

Then the compositions

M1 ⊕M2
f1⊕f2

//M ⊕M φ
//M

M
ψ
//M ⊕M g1⊕g2

//M ′
1 ⊕M ′

2

are isomorphisms where φ(m,m′) = m+m′ and ψ(m) = (m,m).
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Proof. If m1 ∈ kernel(f1), then h1(m) = g2f1(m1) = 0. Since h1 is an isomorphism, m = 0.

This implies that kernel(f1) = {0}. Therefore f1 is injective. For m′2 ∈ M ′
2, there is a

m1 ∈ M1 such that m′2 = h1(m1) = g2f1(m1). Therefore g2 is surjective. Similarly, f2 is

injective and g1 is surjective.

If (m1,m2) ∈ kernel(φ(f1 ⊕ f2)), then φ(f1 ⊕ f2)(m1,m2) = f1(m1) + f2(m2) = 0.

Applying g2 to the previous equation, g2f1(m1)+g2f2(m2) = 0. Since g2f2 = 0 and h1 = g2f1,

we have h1(m1) = 0. h1 is an isomorphism implies thatm1 = 0. After applying g1 to the same

equation to which we applied g2, we will get m2 = 0. Therefore kernel(φ(f1⊕f2)) = {(0, 0)}.
For m ∈ M , g2(m) ∈ M ′

2. Since h1 is surjective, g2(m) = h1(m1) = g2f1(m1) for some

m1 ∈M1. Therefore m− f1(m1) ∈ kernel(g2) = image(f2). Since m− f1(m1) ∈ image(f2),

m− f1(m1) = f2(m2) for some m2 ∈M2. Therefore m = f1(m1) + f2(m2) =

φ(f1 ⊕ f2)(m1,m2). This implies that φ(f1 ⊕ f2) is surjective. We showed that the first

composition is an isomorphism.

For m ∈ kernel((g1 ⊕ g2)ψ), (g1(m), g2(m) = (0, 0). This implies that g1(m) = 0 and

g2(m) = 0. Since kernel(g1) = image(f1), m = f1(m1) for some m1 ∈ M1. We have

0 = g2(m) = g2f1(m1) = h1(m1). Since h1 is an isomorphism, m1 = 0 and therefore

m = f1(m1) = 0. We have kernel((g1 ⊕ g2)ψ) = {0}. Take (m′1,m
′
2) ∈ M ′

1 ⊕M ′
2. Since

m′1 ∈ M ′
1 and g1 is surjective, m′1 = g1(m′) for some m′ ∈ M . kernel(g1) = image(f1)

implies that m′1 = g1(m′ + f1(m1)) for all m1 ∈ M1. Applying g2 to m′ + f1(m1), we

will get g2(m′) + g2f1(m1) = g2(m′) + h1(m1). Since h1 is surjective, there is n1 ∈ M1

such that m′2 = g2(m′) + h1(n1). Therefore we can write n1 = h−1
1 (m′2) − h−1

1 g2(m′). For

m = m′ + f1(n1), f1(m) = m′1 and f2(m) = m′2. We have (g1 ⊕ g2)ψ(m) = (m′1,m
′
2).

Therefore (g1 ⊕ g2)ψ(m) is surjective. We showed that the second composition is also an

isomorphism.

Example 11. Given a split short exact sequence 0 //M1
i //M2

j
//M3

// 0 . If

p : M2 → M1 with pi = idM1 is given, then we can construct q : M3 → M2 with jq = idM3.

From the proof of proposition 3.4.4, q is defined as q(m3) = m2 − ip(m2) where m3 = j(m2)

for some m2 ∈ M2. When we apply p to q(m3), we will get pq(m3) = p(m2) − pip(m2).

Since pi = idM2, we will get pq(m3) = 0. This implies that image(q) ⊂ kernel(p). Take

m ∈ kernel(p). Then qj(m) = m − ip(m) = m implies that m ∈ image(q). Therefore

kernel(p) ⊂ image(q). We have kernel(p) = image(q). Similarly given q : M3 → M2 with
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jq = idM3, we can construct p : M2 → M3 with pi = idm1 and kernel(p) = image(q).

Therefore we get a diagram satisfying previous proposition.

M1

idM1

��

i

!!

M3

idM3

��

q

}}

M2

p
}}

j
!!

M1 M3

We have M2
∼= M1⊕M3 for a split short exact sequence 0 //M1

i //M2
j
//M3

// 0 .

Proposition 3.4.6. If A is a retract of X, then Hn(X) ∼= Hn(A)⊕Hn(X,A).

Proof. We have ri = idA where i is the inclusion map of A and r is a retraction map.

Hn(r)Hn(i) = Hn(idA) implies that Hn(i) is injective. Therefore the exact sequence

· · · // Hn+1(X,A)
∂n+1

// Hn(A)
Hn(i)

// Hn(X)
Hn(iX)

// Hn(X,A)
∂n // Hn−1(A) // · · ·

gives a split short exact sequence

0 // Hn(A)
Hn(i)

--
Hn(X)

Hn(iX)
//

Hn(r)
mm Hn(X,A) // 0

for all n ≥ 0. Using the previous example, we get Hn(X) = Hn(A)⊕Hn(X,A).

3.5 The excision theorem

Let B ⊂ A ⊂ X. We say that U can be excised if the inclusion map i : (X\B,A\B)→ (X,A)

induces an isomorphism Hn(i) : Hn(X\B,A\B)→ Hn(X,A) for all n ≥ 0.

Theorem 3.5.1. If the closure of B is contained in the interior A, then A can be excised.

Proof. See theorem 15.1 of [1].
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Theorem 3.5.2. Let U ⊂ B ⊂ A. If U can be excised and (X\B,A\B) is deformation

retract of (X\U,A\U), then B can be excised.

Proof. See theorem 15.2 of [1].

Let E+
n = {x ∈ Sn | xn+1 ≥ 0} and E−n = {x ∈ Sn | xn+1 ≤ 0}.

Theorem 3.5.3. If U = {x ∈ Sn | xn+1 < 0}, then U can be excised from (Sn, E−n ) for all

n ≥ 1.

Proof. See theorem 15.3 of [1].

Corollary 3.5.4. For n ≥ 1, Hq(S
n) ∼= Hq−1(Sn−1) for all q ≥ 2.

Proof. From the previous theorem, we have Hq(E
+
n , S

n−1) ∼= Hq(S
n, E−n ) for all q ≥ 0. Since

E−n is contractible, Hq(E
−
n ) = 0 for all q ≥ 1. We get a exact sequence

0 // Hq(S
n)

Hq(in)
// Hq(S

n, E−n ) // 0 for all q ≥ 2. Therefore Hq(S
n) ∼= Hq(S

n, E−n ) for all

q ≥ 2. Since the unit ball En is a convex set, Hq(E
n) = 0 for all q ≥ 1. The exact sequence

0 // Hq(E
n, Sn−1)

∂n // Hq−1(Sn−1) // 0 gives that Hq(E
n, Sn−1) ∼= Hq−1(Sn−1) for all

q ≥ 2. (E+
n , S

n−1) is homeomorphic to (En, Sn−1) implies that Hq(E
+
n , S

n−1) ∼= Hq(E
n, Sn−1)

for all q ≥ 0. Therefore we get Hq(S
n) ∼= Hq(S

n, E−n ) ∼= Hq(E
+
n , S

n−1) ∼= Hq(E
n, Sn−1) ∼=

Hq−1(Sn−1) for all q ≥ 2.

For q = 1 and n ≥ 1, we have 0 // H1(En, Sn−1)
∂n // H0(Sn−1)

H0(i)
// H0(En) // 0 .

For n > 1, Sn−1 and En are path connected. Therefore H0(Sn−1) ∼= R, H0(En) ∼= R and

H0(i) is an isomorphism. We get H1(En, Sn−1) ∼= Kernel(H0(i)) = 0. For n = 1, S0 has two

path components. Therefore H0(S0) ∼= R⊕R. We get H1(E1, S0) ∼= kernel(H0(i)) ∼= R.

H1(En, Sn−1) ∼=

0 n > 1

R n = 1

We have Hq(S
n, E−n ) ∼= Hq(E

+
n , S

n−1) and Hq(E
+
n−1, S

n−1) ∼= Hq(E
n, Sn−1) for all q ≥ 0.

This implies that Hq(S
n, E−n ) ∼= Hq(E

n, Sn−1) for all q ≥ 0. We have the exact sequence

30



0 // H1(Sn)
H1(iSn )

// H1(Sn, E−n )
∂1 // H0(E−n )

H0(i)
// H0(Sn) // 0 . H0(i) is isomorphism

implies that ∂1 = 0. We get H1(S1) ∼= H1(Sn, E−n ). Therefore

H1(S1) ∼=

0 n > 1

R n = 1

Corollary 3.5.5. For q ≥ 1 and n ≥ 1,

Hq(S
n) ∼=

R q = n

0 q 6= n

Proof. It comes from Hq(S
n) ∼= Hq−1(Sn−1) ∼= · · · ∼= H1(Sn−(q−1)).

3.6 Mayer-Vietoris sequence

Barratt-Whitehead Lemma 3.6.1.

· · · // Cn+1
hn+1

//

γn+1

��

An
fn
//

αn
��

Bn
gn
//

βn
��

Cn //

γn

��

· · ·

· · · // C ′n+1 h′n+1

// A′n f ′n

// B′n g′n

// C ′n // · · ·

If the rows of the given diagram are long exact sequences of R-modules and γn are isomor-

phisms, then there exists a long exact sequence given by

· · · // An
φn
// A′n ⊕Bn

ψn
// B′n

δn // An−1
// · · ·

where φn(a) = (αn ⊕ fn)(a, a), ψn(a, b) = −f ′n(a) + βn(b) and δn(b) = hn ◦ γ−1
n ◦ g′n(b)

Proof. Firstly we will show the exactness at A′n. For b′ ∈ B′n+1, φn◦δn+1(b′) = φn◦hn+1◦γ−1
n+1◦

g′n+1(b′) = (αn ◦hn+1 ◦γ−1
n+1 ◦g′n+1(b′), fn ◦hn+1 ◦γ−1

n+1 ◦g′n+1(b′)). Since αn ◦hn+1 = h′n+1 ◦γn+1

and fn ◦ hn+1 = 0, we get φn ◦ δn+1(b′) = (0, 0). Therefore image(δn+1) ⊂ kernel(φn).

For a ∈ kernel(φn), αn(a) = 0 and fn(a) = 0. Since the rows are exact, there exists

c ∈ Cn+1 such that hn+1(c) = a. Commutativity of the diagram implies that h′n+1◦γn+1(c) =
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αn ◦ hn+1(c) = αn(a) = 0. γn+1(c) ∈ kernel(h′n+1) implies that there exists b′ ∈ B′n+1

such that gn+1(b′) = γn+1(c). Applying hn+1 ◦ γ−1
n+1 on both side of the previous equation,

we get hn+1 ◦ γ−1
n+1 ◦ gn+1 = αn(c) = a. Therefore a ∈ image(δn+1). This implies that

kernel(φn) ⊂ image(δn+1). Therefore image(δn+1) = kernel(φn).

Now we will show the exactness at A′n⊕Bn. Since ψn◦φn(a) = −f ′n◦αn(a)+βnfn(a) = 0,

we get image(φn) ⊂ kernel(ψn). For (a′, b) ∈ kernel(ψn), f ′n(a′) = βn(b). Applying g′n on the

previous equation, g′n ◦ f ′n(a′) = g′n ◦ βn(b) = γn ◦ gn(b) = 0. Since γn is an isomorphism, we

get gn(b) = 0. Therefore there exists x ∈ An such that fn(x) = b. After applying βn, we

get βn ◦ fn(x) = f ′n ◦ αn(x) = βn(b) = f ′n(a′). We get (a′ − αn(x)) ∈ kernel(f ′n). Therefore

a′ − αn(x) = h′n+1(c′) for some c′ ∈ C ′n+1. Since γn+1 is an isomorphism, c′ = γn+1(c)

for some c ∈ Cn+1. Therefore a′ − αn(x) = h′n+1 ◦ γn+1(c) = αn ◦ hn+1(c). Then for

a = x − hn+1(c), φn(a) = (a′, b). This implies that kernel(ψn) ⊂ image(φn). Therefore

image(φn) = kernel(ψn).

Now we will show the exactness at B′n. Since δn ◦ ψn(a′, b) = −hn ◦ γ−1
n ◦ g′n ◦ f ′n(a′) +

hn ◦ γ−1
n ◦ g′n ◦ βn(b) = 0 + hn ◦ γ−1

n ◦ γ′n ◦ gn(b) = 0, we get image(ψn) ⊂ kernel(δn). For

b′ ∈ kernel(δn), γ−1
n ◦ g′n(b′) ∈ kernel(hn). Therefore γ−1

n ◦ g′n(b′) = gn(b) for some b ∈ Bn.

After applying γn, we get g′n(b′) = γn ◦ gn(b) = g′n ◦ βn(b). Since βn(b) − b′ ∈ kernel(g′n),

βn(b) − b′ = f ′n(a′) fro some a′ ∈ A′n. This implies that b′ = −f ′n(a′) + βn(b) ∈ image(ψn).

Therefore kernel(δn) ⊂ image(ψn).

Let X1 and X2 be a subspaces of a topological space X. If the homomorphisms of

homology modules induced by the inclusion maps i1 : (X2, X1 ∩ X2) → (X1 ∪ X2, X1) and

i2 : (X1, X1∩X2)→ (X1∪X2, X2) are isomorphisms, then (X1, X2, X) is called exact triad.

If a triple (X1, X2, X) is an exact triad, then it means that we can excise X1−X1∩X2 from

(X1 ∪X2, X1) and X2 −X1 ∩X2 from (X1 ∪X2, X2). Let A = X1 ∩X2 and Y = X1 ∪X2

We know from the theorem 3.4.2 that the rows of the below diagram are exact,

· · · // Hq(A)
Hq(i)

//

Hq(i)

��

Hq(X1)
Hq(iX1

)
//

Hq(i)

��

Hq(X1, A)
∂̄q
//

Hq(i2)

��

Hq−1(A) //

Hq−1(i)

��

· · ·

· · · // Hq(X2)
Hq(i)

// Hq(Y )
Hq(iY )

// Hq(Y,X2)
∂̄q
// Hq−1(X2) // · · ·

If (X1, X2, X) is an exact triad, then Hq(i2) is an isomorphism for q ≥ 0. Therefore we will

get an exact sequence using Barrat-Whitehead lemma for a given exact triad.
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Chapter 4

Cohomology

Let M = {Mn, dn} be a chain complex over R and G be an R-module. Let M∗
n denote

Hom(Mn, G). M∗
n is known as chain module We get a homomorphism

d∗n : M∗
n−1 →M∗

n

f 7→ f ◦ dn

d∗n is known as coboundary map. d∗n is a module homomorphism. d∗n+1 ◦ d∗n = 0 as

dn ◦ dn+1 = 0. We obtain a sequence · · · −→Mn−1
d∗n //Mn

d∗n+1
//Mn+1 −→ · · · of chain

modules and coboundary maps. We will denote the sequence by M∗ = {M∗
n, d

∗
n}.

Definition 4.0.1. The sequence M∗ = {M∗
n, d

∗
n} is called cochain complex of the chain

complex M = {Mn, dn}.

Definition 4.0.2. Hn(M,G) is defined as kernel(d∗n)/ image(d∗n). Hn(B,G) is called the nth

cohomology module of M .

For a topological space X, take M = {Sn(X,R), ∂n}. Then M∗ is denoted by S∗ =

{Sn(X,G), ∂n} and Hn(M,G) is denoted by Hn(X,G). Hn(X,G) is called nth cohomology

module of X.

33



4.0.1 Cup product

See chapter 24 of [1].

Exercise 8. If A
φ−→ B

ψ−→ C → 0 be exact sequence of R-modules A, B, C, then the dual

sequence A∗
φ←− B∗

ψ←− C∗ ← 0 is also exact.

Solution. First we will check exactness at C∗. We need to show that kernel(ψ∗) = 0. If

f ∈ kernel(ψ∗), then f ◦ ψ(b) = 0 for all b ∈ B. Since ψ is surjective, f(c) = 0 for all

c ∈ C. This implies that f = 0. Therefore, kernel(ψ∗) = 0. We showed that the sequence

is exact at C∗. Now we will check exactness at B∗. If g ∈ image(ψ∗), then g = f ◦ ψ for

some f ∈ B∗. Since kernel(ψ) = image(φ), φ∗(g) = g ◦ φ = f ◦ ψ ◦ φ = 0. Therefore,

image(ψ∗) ⊂ kernel(φ∗). Finally, we will show that kernel(φ∗) ⊂ image(ψ∗). For showing

this, we will take g ∈ kernel(φ∗) and show that g = f ◦ ψ for some f ∈ C∗. Since ψ is

surjective and kernel(ψ) = image(φ),

ψ : B/ image(φ)→ C

b 7→ ψ(b)

is an isomorphism. For any g ∈ kernel(φ∗), define

g : B/ image(φ)→ C

b 7→ g(b)

B/ image(φ)
ψ

yy

g

%%
C

f
// R

From the above diagram, we got a homomorphism f = g ◦ (ψ)
−1

such that g = f ◦ ψ and

f ∈ C∗. Therefore kernel(φ∗) ⊂ image(ψ∗), and hence kernel(φ∗) = image(ψ∗). This implies

that the sequence is also exact at B∗.
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Chapter 5

Stiefel-Whitney classes

Let Λ, I and J be index sets. Let R and Z denotes the real numbers and ring of integers

respectively.

We will first state the four axioms of Stiefel-Whitney classes. Then we will see the

consequences and application of the four axioms.

Followings are the four axioms of Stiefel-Whitney classes

Axiom 1 For an n-dimensional vector bundle π : E → B, there is a sequence of cohomology

classes w0(π), w1(π), . . . , wn(π), . . . with wi(π) ∈ H i(B,Z/2Z) for i ≥ 0, w0(π) is the

identity element of H0(B) and wk(π) = 0 for k > n. The sequence of cohomology

classes w0(π), w1(π), . . . , wn(π), . . . is called Stiefel-Whitney classes of the vector

bundle π : E → B.

Axiom 2 If f : A → B be a map covered by a bundle map from the total space of π′ : E ′ → A

to the total space of π : E → B, then wi(π
′) = f ∗wi(π) for i ≥ 0.

Axiom 3 For vector bundles π1 : E1 → B and π2 : E2 → B, wk(π1 ⊕ π2) =
k∑
i=1

wi(πi) ∪ wk−i(π2)

where wi(πi) ∪ wk−i(π2) is the cup product of wi(πi) and wk−i(π2).

Axiom 4 For the line bundle π1
1 : γ1

1 → RP1, w1(π1
1) 6= 0.

Proposition 5.0.1. If vector bundles π1 : E1 → B and π2 : E2 → B are isomorphic, then

wi(π1) = wi(π2) for i ≥ 0.
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Proof. Let h : E1 → E2 be a vector bundle isomorphism. Then the identity map iA : A→ A

is covered by h. Therefore wi(π1) = i∗Awi(π2) = wi(π2) for i ≥ 0.

Proposition 5.0.2. If π : E → B is an n-dimensional trivial vector bundle, then wi(π) = 0

for i > 0.

Proof. Let b ∈ B. Define a map h : E → {b} × Rn by h(x, v) = (b, v). Then h is a bundle

map and the constant map f : B → {b} is covered by h. Since H i({b},Z/2Z) = 0 for i > 0,

wi(π) = f ∗0 = 0 for i > 0.

Proposition 5.0.3. If π : E → B is a trivial vector bundle, then wk(π1⊕ π) = wk(π1) for a

vector bundle π1 : E1 → B.

Proof. wk(π1 ⊕ π) =
k∑
i=1

wi(π1) ∪ wk−i(π) = wk(π1) as wi(π1) ∪ 0 = 0 and wi(π1) ∪ w0(π) =

wi(π1).

Proposition 5.0.4. If π : E → B is an n-dimensional euclidean vector bundle with k

nowhere dependent sections, then wn−k+1(π) = · · · = wn(π) = 0.

Proof. Let S1, . . . , Sk be k nowhere dependent sections of π : E → B. Let F (b) be vector

subspace of π−1(b) spanned by S1(b), . . . , Sk(b) for each b ∈ B. Let E1 =
⊔
b∈B

F (b). Define a

map π1 : E1 → B by π1(e) = (b) if e ∈ F (b). Then π1 : E1 → B is an k-dimensional trivial

subbundle of π : E → B. Let π⊥1 : E⊥1 → B be the normal bundle of π1 : E1 → B. It follows

from proposition 6.0.3 that wi(π) = wi(π1 ⊕ π⊥1 ) = wi(π
⊥
1 ). Since π⊥1 : E⊥1 → B is n − k

dimensional vector bundle, wn−k+1(π) = · · · = wn(π) = 0.

Definition 5.0.1. Define HΠ(B;Z/2Z) as the set of all formal infinite series w0 +w1 + . . .+

wn + . . . with wi ∈ H i(B;Z/2Z).

HΠ(B;Z/2Z) with the additive operation (w0 + w1 + w2 + . . . ) + (v0 + v1 + v2 + . . . ) =

w0+v0+w1+v1+. . . and the multiplicative operation (w0+w1+w2+. . . )(v0+v1+v2+. . . ) =

(w0 ∪ w0) + (w0 ∪ v1 + w1 ∪ v0) + (w0 ∪ v2 + w1 ∪ v1 + w2 ∪ v0) + . . . is a commutative ring.

Definition 5.0.2. For an n-dimensional vector bundle π : E → B, the element w(π) =

1 +w1(π) + · · ·+wn(π) + 0 + . . . of HΠ(B;Z/2Z) is defined as the total Stiefel-Whitney

class of the vector bundle π : E → B.
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Lemma 5.0.5. The set G = {w0 + w1 + w2 + . . . ∈ HΠ(B;Z/2Z) | w0 = 1} is an abelian

group under multiplication.

Proof. Since 1 ∪ 1 = 1, G is closed under addition. G is abelian and associative as

HΠ(B;Z/2Z) is abelian and associative. For 1+w1+. . . ∈ G, let (1+w1+w2+. . .)(1+v1+v2+

. . .) = 1. Then w1+v1 = 0;w2+w1∪v1+v2 = 0; . . . ;wn+wn−1∪v1+. . .+w1∪vn−1+vn = 0; . . ..

Since coefficients are in Z/2Z, v1 = w1; v2 = w2 + w1 ∪ w1; . . . ; vn = wn + wn−1 ∪ v1 + . . . +

w1 ∪ vn−1; . . .. Therefore 1 + v1 + . . . is the inverse of 1 + w1 + . . ..

It is the consequence of the product operation on HΠ(B;Z/2Z) that w(π1 ⊕ π2) =

w(π1)w(π2) for vector bundles π1 : E1 → B and π2 : E2 → B.

Lemma 5.0.6. If A is a smooth manifold in Rn, π : TA → A is the tangent bundle of A

and π⊥ : TA⊥ → A is the normal bundle of π : TA→ A, then w(π⊥) = w(π)−1

Proof. Since π⊕π⊥ : TA⊕TA⊥ → A is isomorphic to the n-dimensional trivial vector bundle

over B, w(π)w(π⊥) = w(π ⊕ π⊥) = 1. Therefore w(π⊥) = w(π)−1.

Example 12. w(π) = 1 for the tangent bundle π : TSn → Sn. Since Sn ⊂ Rn+1 and the

normal bundle of π : TSn → Sn is the 1-dimensional trivial vector bundle, w(π) = w(π⊥)−1 =

1.

Example 13. We have w1(π1
1) 6= 0 for the line bundle π1

1 : γ1
1 → RP1. Since the inclusion

map i : γ1
1 → γ1

n is a bundle map, the inclusion map f : RP1 → RPn is covered by the bundle

map i. f ∗w1(π1
n) = w1(π1

1) 6= 0 implies that w1(π1
n) 6= 0. Therefore w(π1

n) = 1 +w1 for some

non-zero element w1 of H1(B,Z/2Z).

Example 14. The vector bundle π1
n : γ1

n → RPn is a subbundle of the trivial bundle

π : RPn×Rn+1 → RPn. π1
n ⊕ (π1

n)⊥ : γ1
n ⊕ (γ1

n)⊥ → RPn is isomorphic to the trivial bundle

π : RPn×Rn+1 → RPn. Therefore w((π1
n)⊥) = w(π1

n)−1 = (1+w1)−1 = 1+w1 +w2
1 + . . .+wn1

where wn1 is the n-fold cup product of w1.

Lemma 5.0.7. The tangent bundle π : T RPn → RPn and the vector bundle

π′ : Hom(γ1
n, (γ

1
n)⊥)→ RPn are isomorphic.

Proof. The canonical map f : Sn → RPn given by f(x) = {±x} is locally a diffeomorphism.

Therefore the tangent spaces of Sn at x and −x map isomorphically to the tangent space of
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RPn at {±x}. We can identify the tangent space of RPn at {±x} with the tangent spaces of

Sn at x and x. Therefore the tangent space of RPn at {±x} is the set of equivalence classes of

pairs {(x, v), (−x,−v)} with x ∈ Sn and < x, v >= 0. Let L{±x} be the line passing through

x and −x in Rn+1. Let L⊥{±x} be the orthogonal complement of L{±x} in Rn+1. Define

lx : L{±x} → L⊥{±x}

x 7→ v

for a fixed v ∈ L⊥{±x}. Denote lx by lxv if x maps to v. Then lxv is a linear map. Define

h : T RPn → Hom(γ1
n, (γ

1
n)⊥)

{(x, v), (−x,−v)} 7→ lxv

Then h maps the tangent space of RPn at {±x} isomorphically to Hom(L{±x}, L
⊥
{±x}). h is bi-

jective. Since bases of topology on T RPn and Hom(γ1
n, (γ

1
n)⊥) have quotient topology induce

from U ×Rn where U is an element of coordinate open sets of RPn, h is a homeomorphism.

Therefore h is a vector bundle isomorphism.

Theorem 5.0.8. The Whitney sum of the tangent bundle π : T RPn → RPn and the trivial

vector bundle π1 : ε1 → RPn is isomorphic to the (n+ 1)-fold Whitney sum γ1
n ⊕ · · · ⊕ γ1

n.

Proof. From exercise 5, we get that Hom(γ1
n, γ

1
n) is isomorphic to the trivial vector bundle

π1 : ε1 → RPn. Since the tangent bundle of RPn is isomorphic to Hom(γ1
n, (γ

1
n)⊥), T RPn⊕ε1

is isomorphic to Hom(γ1
n, (γ

1
n)⊥)⊕Hom(γ1

n, γ
1
n). Hom(γ1

n, (γ
1
n)⊥)⊕Hom(γ1

n, γ
1
n) is isomorphic

to Hom(γ1
n, (γ

1
n)⊥⊕γ1

n). Hom(γ1
n, (γ

1
n)⊥⊕γ1

n) is isomorphic to Hom(γ1
n, ε

n+1). Hom(γ1
n, ε

n+1)

is isomorphic to Hom(γ1
n, ε

1⊕ . . .⊕ε1). Hom(γ1
n, ε

1⊕ . . .⊕ε1) is isomorphic to Hom(γ1
n, ε

1)⊕
. . .⊕ Hom(γ1

n, ε
1). From exercise 6, we get that Hom(γ1

n, ε
1) is isomorphic to γ1

n. Therefore

T RPn⊕ε1 is isomorphic to (n+ 1)-fold Whitney sum γ1
n ⊕ . . .⊕ γ1

n.

It follows from the previous theorem that the total Stiefel-Whitney class of the tangent

bundle of RPn is w(π1
n)(n+1) = (1 + w1)(n+1). We will denote the total Stiefel-Whitney class

of tangent bundle of RPn by w(RPn).

Corollary 5.0.9. w(RPn) = 1 if and only if n+ 1 = 2k for some positive integer k.

Proof. Assume w(RPn) = 1. Suppose n + 1 is not a power of 2. If n + 1 is a odd positive
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integer, then w(RPn) = (1 + w1)n+1 = 1 + (n + 1)w1 + . . . 6= 1 as the coefficient of w1

is a non-zero modulo 2. If n + 1 is an even positive integer, then n + 1 = 2km for some

odd positive integer m. Since (1 + w1)2k = 1 + w2k

1 modulo 2, w(RPn) = (1 + w1)2km =

(1 + w2k

1 )m = 1 + mw2k

1 + . . . 6= 1 as m is odd and 2k < n. Therefore n + 1 = 2k for some

positive integer k.

Conversely if n+1 = 2k for some positive integer k, then w(RPn) = (1+w1)2k = 1+w2k

1 =

1 + wn+1
1 = 1 as T RPn is an n-dimensional vector bundle.

It follows from the previous corollary that if the tangent bundle of RPn is the trivial

vector bundle, then n+ 1 must be 2k for some positive integer k.

Theorem 5.0.10. If there is a bilinear product operation ρ : Rn × Rn → Rn without zero

divisors, then the tangent bundle of RPn−1 is the trivial vector bundle.

Proof. See theorem 4.7 of [2].

Exercise 9. For two vector bundles π1 : E1 → A and π2 : E2 → B, wk(π1 × π2) =
k∑
i=0

wi ∪ wk−i.

Solution. Consider the two maps p1 : A×B → A given by p1(a, b) = a and p2 : A×B → B

given by p2(a, b) = b. Then p∗1π1 : p∗1E1 → A×B and p∗2π2 : p∗2E2 → A×B are vector bundles

induced by p1 and p2 respectively. From axiom 2 of Stiefel-Whitney classes, wi(p
∗
1π1) = wi(π1)

and wi(p
∗
2π2) = wi(π2) for each i ≥ 0. Consider p∗1π1⊕p∗2π2 : p∗1E2⊕p∗2E2 → A×B, Whitney

sum of the two induced vector bundles. We know that

p∗1E1 = {(a, b, e1) ∈ A×B × E1 | p1(a, b) = π1(e1)}
p∗2E2 = {(a, b, e2) ∈ A×B × E2 | p2(a, b) = π2(e2)}

p∗1E1 ⊕ p∗2E2 = {((a1, b1, e1), (a2, b2, e2)) ∈ p∗1E1 × p∗2E2 | p∗1π1((a1, b1, e1)) = p∗2π2((a2, b2, e2))}
= {((a1, b1, e1), (a2, b2, e2)) ∈ p∗1E1 × p∗2E2 | a1 = a2, b1 = b2}

Define

h : p∗1E1 ⊕ p∗2E2 → E1 × E2

((a, b, e1), (a, b, e2))→ (e1, e2)

39



h is continuous and restriction of h on (p∗1π1 ⊕ p∗2π2)−1(a, b) = (p∗1π1)−1(a, b)× (p∗2π2)−1(a, b)

is linear isomorphism of (p∗1π1)−1(a, b) × (p∗2π2)−1(a, b) with π−1
1 (a) × π−1

2 (b). Lemma 3.1.1

implies that h is a vector bundle isomorphism. Therefore wk(π1 × π2) = wk(p
∗
1π1 ⊕ p∗2π2) =

k∑
i=0

wi(p
∗
1π1) ∪ wk−i(p∗2π2) =

k∑
i=0

wi(π1) ∪ wk−i(π2).
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