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ABSTRACT 
 

The immune network is modulated by an n-dimensional matrix of genetic, epigenetic 

and environmental factors. In neonates, development occurs in an immunologically 

sterile environment. Their immune landscape is modelled predominantly by genetic and 

ethno-geographical factors. These inherent variations give rise to populations of 

immune subsets that are both tightly and loosely regulated. One such human population 

study, from 6 villages near Pune, showed interesting trends in frequencies of B, T, and 

innate cell subsets. Moreover, the data also presented correlations between frequencies 

of immune subsets that developmentally belong to distinct lineages, therefore raising 

questions about probable “common” interacting pathways. Conversely, post infection in 

vertebrates, a febrile response is generated on immunological challenge. Previous 

reports have demonstrated that hyperthermia augments immune responses of the 

innate and adaptive arms. However, the effect of temperature on T-cell fate 

determination is not known. The data presented here, suggests that the Th2 response is 

likely to be affected more significantly than the Th1 response at raised temperatures. 

Further quantitative studies need to be undertaken to decipher the molecular players 

that sense temperature fluctuations and activate downstream signaling in this pathway. 
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OVERVIEW 
 

The vertebrate immune system orchestrates a complex set of responses in different 

microenvironments. The gene expression in immune cells is governed by both genetic 

and epigenetic factors. The composition of the immune cells in the blood, variable in an 

individual and population within certain limits, at any given point, plays a key role in 

understanding the health status of the individual. Thus, this project is looking at two 

aspects of the immune system in starkly different contexts. 

The thesis work described here has been subdivided into two parts, in an attempt to 

study the immune system in real physiological conditions: 

Part I: Analysis of neonatal leucocyte subset landscapes: sterile environment 

This section deals with the characterization of immune cells in an immunologically 

sterile environment, viz, during fetal development. During intrauterine development, the 

baby is heavily protected from pathogens and harmful exposures, yet there are many 

other variables such as maternal nutrition and genome composition that produce 

variations among the leucocyte subsets.  

Part II: Effect of Temperature on T cell differentiation: post infection 

This section deals with understanding the role of fever in the differentiation of T cells. 

On encountering infection, one of the most common responses of the body is to reset 

the basal body temperature and induce whole-body fever. This rise in temperature by 

just a few degrees has subtle yet pronounced effects on the immune cells.  
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INTRODUCTION 
 

“The thin-fat Indian” (Yajnik et al., 2003) 

A significantly large percentage of about 30% babies are born with low birth weight in 

India. This directly reflects poor intrauterine nourishment during neonatal development 

and fetal programming. These Indian babies, despite being born with low birth weight 

have relatively low muscle mass and more subcutaneous fat (thin-fat phenotype) as 

compared to their European counterparts (Yajnik et al., 2003). This central obesity and 

higher insulin resistance, coupled with intrauterine malnourishment predispose these 

babies to lifestyle disorders in the adulthood such as type 2 diabetes and cardiovascular 

ailments which are non-communicable diseases (NCDs) (Yajnik et al., 2008). However, 

the molecular mechanisms underlying fetal programming and the molecular pathways 

connecting intrauterine nutrient intake to NCDs like type 2 diabetes are not well 

understood.  

Why are dietary nutrients important?  

In the Pune Maternal Nutritional Study (PMNS) undertaken by Dr. Yajnik from KEM 

Hospital, Pune, it was established that folate and Vitamin B12, which are central players 

of the one-carbon metabolism (OCM) pathway regulate methylation capacity of the cell 

by affecting the homocysteine levels that play a role as methyl donors/acceptors (Yajnik 

et al., 2008)  

Vitamin B12 plays a central role at the intersection of the folate and methionine cycle 

within the cell cytoplasm. The end product of the folate cycle, 5-CH3-tetrahydrofolate (5-

CH3-THF) donates a methyl group to homocysteine which leads to the generation of 

methionine. At this step, Vitamin B12 is an essential cofactor for the enzyme, 

methionine synthase. Low levels or absence of Vitamin B12 traps 5-CH3-THF resulting 

in an increase in homocysteine concentrations and its by-products. This has a two-fold 

effect on the cell metabolism. Firstly, cell toxicity builds up due to increased 

homocysteine concentrations, and secondly, methionine deficiency results in reduced 

methylation potential of the cell (Scott et al., 1999). This potentially affects DNA 
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methylation and thus dysregulates gene expression (Fowden et al., 2006; Choi et al., 

2005). These methylation patterns if established during intrauterine fetal development 

could generate stable gene expression alterations that could lead to long-lasting 

repercussions during adult life (Fowden et al., 2005; Harding et al., 1995; Ciappio et al., 

2011; Lillycrop et al., 2005).   

Nutriepigenomics and fetal programming 

Nutriepigenomics is a fairly new discipline that inspects the overlap between nutrition 

and gene expression patterns that are modelled by nutrient intake. There has been 

growing evidence indicating the role of nutrition in establishing and altering gene 

expression patterns via epigenetic mechanisms. A study undertaken by Waterland et al. 

(Waterland and Jirtle, 2003) elucidated that the offspring of genetically obese Agouti 

mice showed a reduction in obesity along with an alteration in their coat colour. This 

was achieved by introducing dietary changes in the pregnant Agouti mice, that is by 

feeding them with methyl supplements, thus altering the methylation status of the 

offspring. They further went on to show that this change in offspring phenotype was the 

result of promoter methylation of the Agouti gene, which led to its suppression despite 

inheritance from the parents. Another similar report showed that sheep fed with a 

Vitamin B12, folate and methionine-restricted diet before conception and during early 

pregnancy, produced offspring that later in adult life developed insulin resistance, high 

blood pressure, were heavier and produced an altered immune response. (Sinclair et 

al., 2007). These studies reveal the subtle yet profound effect that maternal diet has on 

the health status of offspring in animal models. 

With increased awareness, observational studies in humans have also started 

emerging. One such study has been described earlier: PMNS. In this study, 700 

pregnant women from six villages near Pune were monitored, and their dietary intake 

was measured (Vitamin B 12, folate, homocysteine levels, etc.). These measures were 

then correlated with the detailed anthropometry of offspring, fat-muscle body 

composition and insulin resistance at 6years age. The data revealed that high folate 

diets coupled with low Vitamin B12 intake culminated in the offspring developing higher 
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insulin resistance and adiposity. This demonstrated that the “thin-fat” Indian phenotype 

predisposes them to diseases such as type 2 diabetes (Yajnik et al., 2003, 2006, 2008). 

Peripheral blood mononuclear cells as a proxy for immune system development 

Several genetic and epigenetic factors regulate the composition of peripheral blood 

mononuclear cells (PBMCs) in humans (Huang et al., 2014; Orru et al., 2013; Evans et 

al., 1999; MacGillivray et al., 2014; Paparo et al., 2014). This PBMC composition is 

likely to be affected in neonates by the genetic factors and health status of the mother 

during the pregnancy. In India, detailed immunophenotyping of a population has been 

undertaken by a handful of groups (Prabhu et al., 2016; Rathore et al., 2015; Chan et 

al., 2009). These characterized immune subsets from cord blood act as a proxy for fetal 

development, and their distributions can be affected by a number of variables such as 

gene compositions, socio-economic background, geographical location, and nutritional 

intake, rather than direct environmental impacts, since during intrauterine development, 

neonates are extensively protected from pathogens and detrimental exposures.  

The current study has been undertaken in an attempt to decipher the role of nutrition 

particularly Vitamin B12 and micronutrients in fetal programming and pregnancy 

outcome via a detailed OMICS analysis (transcriptome, epigenome, and genome) 

carried out on cord blood samples taken from the babies of the rural females from 6 

villages near Pune, that were part of the PMNS project. These females received 

different nutrition supplements from adolescent period onwards in a randomized trial 

before and during the course of the pregnancy. One of the aims of this study is to 

evaluate the direct effect of nutritional supplementation on the neonatal immune system 

development and examine if the leucocyte subset distributions are affected by maternal 

nutritional intake. This will help us gather insight into the pathophysiology and 

manifestations of non-communicable diseases and may come up with effective 

intervention plans to prevent these NCDs. 
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MATERIALS AND METHODS 
 

Study Design and Ethics Statement: 

The immunophenotyping of cord blood samples was done as part of an ongoing mega 

inter-generational nutritional intervention trial undertaken by Dr. Yajnik from KEM 

hospital, Pune. The cohort comprises the babies born to rural women who as 

adolescent girls were a part of the Pune Maternal Nutritional Study (PMNS), and belong 

to six villages near Pune, Maharashtra. The KEM Hospital Ethical Committee and local 

village leaders granted permission to carry out this study. For each cord blood sample 

collected, informed consent was taken from the mothers.  

The cord blood samples from babies were collected, the peripheral blood mononuclear 

cells (PBMCs) were isolated and stored in the freezing mix: 10% Dimethyl sulphoxide 

(DMSO) in fetal bovine serum (FBS) in liquid nitrogen. PBMCs from each cord blood 

sample were thawed, cells washed in 1x phosphate buffer saline (PBS) and divided into 

five equal parts and stained using four cocktails of pre-optimized concentrations of 

fluorophore-labeled monoclonal antibodies (eBiosciences and BD Pharmigen) and one 

cocktail containing a viability dye (7AAD). The cocktail compositions used for staining 

are as follows: 

Cocktail 1: B cell subsets (To detect CD10-PECy7, CD19-V500, CD20-APC780, CD27-

V450, CD38-PECy5, CD43-FITC, IgM-APC as phenotypic markers) 

Cocktail 2: Innate cell subsets (To detect CD3-V500, CD11c-PECy5, CD16-PECy7, 

CD14-V450, CD19-V500, CD56-PE, CD123-APC, HLA DR-APC780 as phenotypic 

markers) 

Cocktail 3: T cell and NKT cell subsets (To detect CCR7-V450, CD3-PECy5, CD4-

APC780, CD8-BV510, CD45RO-PECy7, CD56-APC, iNKT-FITC, γδTCR-PE, as 

phenotypic markers) 

Cocktail 4: Treg subsets (To detect CD4-APC780, CD8-V500, CD25-PECy5, CD39-

BV421, CD45RO-PECy7, CD127-APC, FoxP3-PE, Helios-FITC as phenotypic markers) 
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The concentrations of antibodies added to each cocktail was pre-determined by titration 

and optimization. Each sample was stained for the cell surface markers with Cocktails 

1, 2 and 3. For Cocktail 4, first, the cells were stained for the cell surface markers, then 

fixed with eBiosciences 1x Fixation/Permeabilization buffer in the dark, washed and 

subsequently stained for intracellular markers diluted in the eBiosciences 1x 

Permeabilization buffer. Then, the excess antibodies were washed off, and all the 

samples were resuspended in the staining buffer (1% BSA in 1x PBS) and acquired on 

FACSAria III, BD Biosciences. The data analysis was done using FlowJo (TreeStar, 

Ashland, OR), and statistical analysis was done using GraphPad Prism software. 

The data acquired was then subjected to a serial gating strategy, which was used to 

identify leucocyte subsets, using cell surface and intracellular markers (Table 1) within 

the cord blood samples along with their respective frequencies. A primary FSC-SSC 

gate was applied to all the cocktails (Figure 1, A) to eliminate false signals from cell 

clumps. Further gating strategy has been illustrated in Figure 1-4 for each cocktail 

separately. 

Table 1: Flow cytometric phenotypic markers used to identify leucocyte subsets. 

Cell subset Phenotypic marker 

Total leucocytes FSC-SSC gate 

Cocktail 1: B cell subsets  

All B cells CD19+ 

All B cells (excluding plasmablasts) CD19+CD20+ 

Plasmablasts CD19+ CD20 dull CD38+ 

Transitional B cells CD19+ IgM+ CD10 

Memory B cells CD19+ CD20+ CD43 dull CD27+ 

B1 B cells CD19+ CD20+ CD43 bright CD27+  

Naïve B cells CD19+ CD20+ CD27 dull 

Immature naïve B cells CD19+ CD20+ CD27 dull CD10+ 

Cocktail 2: Innate cell subsets  

Total monocytes CD14+ CD11c+ 
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Classical monocytes (CM) CD14+ CD11c+ CD16 dull 

Patrolling monocytes (PM)  CD14 dull CD11c+ CD16+ 

Inflammatory monocytes (IM) CD14 bright CD11c+ CD16+ 

Natural killers (NKs) CD56+ 

Dendritic cells (DCs) Lineage- HLA-DR bright 

Myeloid DCs Lineage- HLA-DR bright CD11c bright CD123 

dull 

Plasmacytoid DCs Lineage- HLA-DR bright CD11c dull CD123+ 

Cocktail 3: T cell and NKT cell subsets  

Total T cells CD3+ 

γδT cells CD3+ γδTCR+ 

Natural Killer T cells (NKT) CD3+ γδTCR- CD4- CD8- CD56+  

Invariant NKT cells (iNKT) CD3+ γδTCR- CD4- CD8- CD56+ iNKT+ 

CD4 T cells CD3+ γδTCR- CD4+ CD8- 

CD8 T cells CD3+ γδTCR- CD8+ CD4- 

Central memory CD4 T cells (CD4 CM) CD3+ γδTCR- CD4+ CD8- CD45RO+ CCR7+ 

Effector memory CD4 T cells (CD4 EM) CD3+ γδTCR- CD4+ CD8- CD45RO+ CCR7 

dull 

Effector memory recall CD4 T cells 

(CD4 EMRA) 

CD3+ γδTCR- CD4+ CD8- CD45RO dull 

CCR7- 

Naïve CD4 T cells CD3+ γδTCR- CD4+ CD8- CD45RO dull 

CCR7+ 

Central memory CD8 T cells (CD8 CM) CD3+ γδTCR- CD8+ CD4- CD45RO+ CCR7+ 

Effector memory CD8 T cells (CD8 EM) CD3+ γδTCR- CD8+ CD4- CD45RO+ CCR7 

dull 

Effector memory recall CD8 T cells 

(CD8 EMRA) 

CD3+ γδTCR- CD8+ CD4- CD45RO dull 

CCR7- 

Naïve CD8 T cells CD3+ γδTCR- CD8+ CD4- CD45RO dull 

CCR7+ 

Cocktail 4: Regulatory T cell subsets    
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Regulatory T cells (Tregs) CD4+ CD127 dull CD25+ Foxp3+ 

Activated Tregs CD4+ CD127 dull CD25+ Foxp3+ CD45RO+ 

CD39+ 

Natural Tregs (nTregs) CD4+ CD127 dull CD25+ Foxp3+ Helios+ 

Activated nTregs CD4+ CD127 dull CD25+ Foxp3+ Helios+ 

CD45RO+ CD39+ 

Induced Tregs (iTregs) CD4+ CD127 dull CD25+ Foxp3+ Helios- 

 

Leucocyte subsets which were identified based on antibodies listed in cocktail 1 above 

are primarily B cell subsets. A representative gating strategy is shown in Figure 1.   

From total leucocytes [A], total B cells are identified using CD19+ [B]. Transitional B cells [C] 
are gated as CD19+ IgM+ CD10+ on total B cells. The CD20+ B cells are further gated [E] as 
memory B cells (CD19+ CD20+ CD43 dull CD27+), B1 B cells (CD19+ CD20+ CD43 bright 
CD27+) and naïve B cells (CD19+ CD20+ CD27 dull). Subsequently, plasmablasts (CD20 dull 
CD38+) are separated [D]. The naïve B cells are further gated with CD10 [F] to identify 
immature naïve B cells (CD19+ CD20+ CD27 dull CD10+).  

A 

B C 

D E 

F 

Figure 1: Flow cytometric gating strategies for B cell subsets in cord blood.  
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Antibodies used in cocktail 2 helped in identifying various innate cell subsets. A 

representative image has been shown in Figure 2. 

 

 

 

 

 

 

 

From total leucocytes, NK cells are identified using CD56+ [A]. Dendritic cells (DCs) are 
separated [B] as HLA-DR bright Lineage- on total leucocytes. DCs are further classified [C] as 
myeloid (CD11c bright CD123 dull) and plasmacytoid (CD11c dull CD123+). From total 
leucocytes, Monocytes [D] are identified as CD14+ CD11c+. Subsequently, the monocytes are 
separated [E] as classical (CD14+ CD11c+ CD16 dull), inflammatory (CD14 bright CD11c+ 
CD16+), and patrolling (CD14 dull CD11c+ CD16+). 

E 

A B 

D 
C 

Figure 2:  Flow cytometric gating strategies for innate cell subsets in cord blood. 
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Antibodies used in cocktail 3 helped in identifying various T and NKT cell subsets. A 

representative image has been shown in Figure 3. 

 

 

 

 

 

 

 

 

  

Total T cells [A] are identified as CD3+ cells in total leucocytes. Γδ T-cells [B] are separated 
using the ΓδTCR+ marker. The remaining T cells are segregated as CD4+ T cells and CD8+ T 
cells [C]. The CD8 [D] and CD4 [E] subsets are recognized as effector memory (CD45RO+ 
CCR7 dull), central memory (CD45RO+ CCR7+), EMRA (CD45RO dull CCR7-), and naïve cells 
(CD45RO dull CCR7+). NKT subsets [G] are distinguished as CD4- CD8- CD56+ in the ΓδTCR- 
T cell subset. The NKT subset is further gated to isolate iNKT subset [F]. 

A B C D

G E
F

Figure 3: Flow cytometric gating strategy for T and NKT cell subsets in cord blood. 
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Antibodies used in cocktail 4 helped in identifying various Treg cell subsets. A 

representative image has been shown in Figure 4. 

 

 

Subset Frequency Distribution Analysis: 

The subset frequencies obtained via the aforementioned gating strategy were collated 

and plotted using Microsoft Excel and Prism GraphPad. The subsets that had an event 

count (actual cell numbers acquired during Flow cytometry) lower than 100 were not 

used for further analysis to avoid false interpretations due lack of substantial input. 

These subsets are CD4 CM, CD4 EM, CD4 EMRA, CD8 CM, CD8 EM, CD8 EMRA, 

iNKT cells, and iTregs. 

E 

A B C 

F D 

CD4 T cells [A] are recognized from total leucocytes using CD4+ gate. Tregs [B] are identified 
as CD25+ CD127- on the CD4 T cells. Tregs are confirmed [C] by noting FoxP3+ in the 
subsequent gate. Activated Tregs [D] are distinguished as CD39+ CD45RO+. Treg subsets [E] 
are separated as nTregs (Helios+) and iTregs (Helios-) based on the Helios marker. The nTregs 
[F] are also distinguished as CD39+ CD45RO+. 

Figure 4: Flow cytometric gating strategy for Treg cell subsets in cord blood. 
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Group Analysis: 

These cord blood samples were divided into three treatment groups, as per maternal 

nutritional supplementation: placebo, Vitamin B12 supplementation, and Vitamin 

B12+micronutrients supplementation. While the identity of each group will be disclosed 

at the end of the trial, an attempt was made to see if the patterns of various subsets 

differ in these groups. These groups shall be referred to as Group I, II, III. Using 

statistical tools such as ANOVA and Tukey’s multiple comparison tests, the leucocyte 

subset population distributions were compared between groups to check if there were 

any significant differences.  

 

Correlation Analysis: 

The various leucocyte subset distributions were further analyzed to check if there 

existed any correlation between the percent distributions. The significant associations 

(p<0.05) were trimmed and re-analyzed to confirm if the linear relation (positive or 

negative) was a result of the values at the extremities or a trend shown by the whole 

population. 
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RESULTS 
 

Participant Population Features: 

The cord blood samples collected are part of an inter-generational nutritional 

intervention study undertaken by Dr. Chittaranjan Yajnik from KEM Hospital, Pune. This 

study is based on understanding the effects of maternal nutrition on the neonatal 

susceptibility to cardiovascular diseases, Type 2 diabetes, and fetal growth. The present 

cord blood samples belong to the third generation of a population which has been 

carefully monitored as part of the Pune Maternal Nutrition Study (PMNS) and the Pune 

Rural Intervention in Young Adolescents (PRIYA) study. A total of 81 cord blood 

samples were received stored in liquid nitrogen.  

Table 2: The participant population characteristics 

Neonatal Characteristics Total: n=81 

Female: n (%) 35 (46%) 

Gestational age at birth (weeks) Median= 39.14; Range= 28.29-41.57 

Birth weight (kg) Median= 2.695; Range= 0.925-3.6 

 

Frequency Distributions of Leucocyte Subsets: 

The frequencies of all PBMC subsets were estimated as a percent of the total PBMCs 

(identified as shown in the gating strategy: Figure 1-4). The major proportion of PBMCs 

is made up of T cells (about 50-60%), followed by B cells (about 15-25%), while the 

monocyte, NK cell, and DC proportions are comparatively smaller (less than 15%) as 

seen in Figure 5. The major subsets described below were examined because they 

differ vastly in their functions. B and T cells are part of the adaptive immune arm. B cells 

on exposure differentiate to form plasmablasts that produce antibodies. T cells integrate 

the adaptive and innate arm by priming cells with the help of cytokines (TH), and they 

also show cytotoxic abilities (Tc). Monocytes and DCs, on the other hand, are part of the 

innate immune arm. Monocytes are a group of heterogenous cells that carry out the 

function of phagocytosis (after differentiating into macrophages), cytokine production (to 
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activate other immune cells) and antigen presentation (to prime the adaptive immune 

arm). DCs are professional antigen-presenting cells (APCs). They collect antigens at 

the site of the attack, process it and present it to the T cells. Conversely, regulatory T 

cells are immunosuppressive in nature. Moreover, CD4:CD8 ratio was used as a marker 

because it has been reported to have developmental significance (Amadori et al., 1995). 

Table 3: Reference statistics for frequencies of immune subsets in cord blood.  

Cell Subsets 
 

  
25th 

percentile 
Median 

75th 

percentile 

B cells B cells (% Total Leucocytes) 10.85 16.90 22.73 

B1 B cells (% B cells) 0.24 0.59 1.19 

Memory B cells (% B cells) 0.07 0.13 0.31 

Naïve B cells (% B cells) 88.00 93.63 96.29 

Immature B cells  

(% Naïve B cells) 
12.60 16.70 21.20 

Plasmablasts (% B cells) 1.04 2.04 3.32 

Transitional B cells (% B cells) 8.86 12.55 15.93 

Monocyte, 

Dendritic, 

and 

Natural 

Killer cells 

Monocytes 

(% Total Leucocytes) 
1.67 3.90 7.78 

Classical monocytes  

(% Monocytes) 
70.30 83.90 92.73 

Inflammatory monocytes  

(% Monocytes) 
1.75 3.81 8.51 

Patrolling monocytes  

(% Monocytes) 
3.30 7.39 14.85 

Classical monocytes/ 

Patrolling monocytes ratio 
5.13 12.16 28.52 

Dendritic cells  

(% Total Leucocytes) 
1.03 1.61 2.85 
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Plasmacytoid DC (% DCs) 3.80 6.77 11.73 

Myeloid DC (% DCs) 14.15 23.70 34.50 

Myeloid DC/ Plasmacytoid DC 

ratio 
1.76 3.26 6.48 

Natural Killer cells  

(% Total Leucocytes) 
6.06 9.72 13.73 

T cells T cells (% Total Leucocytes) 32.10 46.20 56.30 

CD4 T cells (% T cells) 62.55 66.78 72.02 

EM (% CD4 T cells) 0.71 1.19 1.65 

CM (% CD4 T cells) 0.20 0.40 0.54 

EMRA (% CD4 T cells) 0.78 1.50 3.50 

Naïve (% CD4 T cells) 94.10 96.90 97.75 

CD8 T cells (% T cells) 11.25 14.54 20.03 

EM (% CD8 T cells) 0.29 0.63 1.17 

CM (% CD8 T cells) 0.63 1.20 2.42 

EMRA (% CD8 T cells) 7.96 12.90 23.10 

Naïve (% CD8 T cells) 74.35 84.50 89.80 

CD4/CD8 ratio 3.28 4.36 6.03 

Gamma-delta T cells  

(% T cells) 
6.01 8.13 11.90 

NKT cells (% T cells) 0.24 0.61 1.42 

iNKT cells (% T cells) 0.00 0.00 0.19 

Tregs Tregs (% CD4 T cells) 3.86 5.60 7.21 

Activated Tregs (% of Tregs) 10.90 18.00 28.40 

nTregs (% of Tregs) 99.30 99.80 100.00 

iTregs (% of Tregs) 0.00 0.19 0.66 

Activated nTregs  (% of 

nTregs) 
14.70 27.60 39.70 
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Figure 5: Major subset frequency distributions. 

As indicated, Dendritic cell [A], Natural Killer cell [B], Monocyte [C], T cell [D], 

and B cell [H] frequencies are expressed as percent of PBMCs. The CD8 T cell 

[E] and CD4 T cell [E] frequencies are expressed as percent of T cells, and the 

CD4/CD8 ratios [G] are shown here. The data is represented with the median 

and interquartile range. Each dot represents values from individual cord blood 

sample.    

E 

H G 

F 

D C 

A B 



  

24 
 

Frequency distribution of B, T, NKT, Tregs, monocyte and dendritic cell subsets: 

The B cell subsets that have been segregated are naïve B cells, B1 B cells, immature 

naïve B cells, transitional B cells, Plasmablasts and memory B cells. The most 

predominant subset as seen in Figure 6, is that of naïve B cells. 

 

About 15-20% of these naïve cells are immature naïve cells recognized by the presence 

of CD10 on their cell surfaces. A significant yet comparatively smaller proportion of B 

All subset [A-E] frequencies are expressed as a percent of B cells. The immature B cell [F] 

frequencies are expressed as a percent of naïve B cells. The data is represented with the 

median and interquartile range. Each dot represents values from individual cord blood 

sample.    

Figure 6: B cell subset frequency distributions. 
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cells is constituted by transitional B cells. Transitional B cells range from 10-20%, while 

only rare individuals show starkly higher frequencies ranging from 25-50%. The B1 B 

cells frequency ranges from 0.2-8%, showing an immense amount of variability within 

the population. A surprising observation made as part of this analysis was the 

seemingly high proportions of plasmablasts in some neonatal samples, ranging from 

0.25% to 16%. The frequencies of memory B cell for the majority of the population was 

lower than 1%; however, even in this case, there were some individuals that showed 

higher frequencies of up to 4%. 

The CD4 and CD8 T cell subsets comprise of naïve, central memory, effector memory, 

and effector memory recently activated cells as seen in Figure 7 and 8. About 80-100% 

of the CD4 and CD8 T cells are naïve CD4 and CD8 T cells. The CD4 memory cells 

range from 0.1-8%, while there is a considerably higher proportion of CD8 memory 

cells. However, since the actual cell count (number of events within the gate) for all 

these memory subsets was less than 100, no further analysis was done to determine if 

these were real trends, due to lack of robust data.  

 

The subset [A-D] frequencies are expressed as a percent of CD4 T cells. The data is represented 

with median and interquartile range. Each dot represents values from individual cord blood sample. 

Figure 7: CD4 T cell subset frequency distributions. 
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The other T cell subsets that were analyzed were gamma-delta T cells, NKT cells and 

regulatory T cells (Tregs) as shown in Figure 9. The gamma delta T cells frequencies 

showed a spread between 4-16% of total T cells. The NKT cell frequencies were 

ranging between 0.1-4% of total T cells. These subset populations are comparatively 

rarer than CD4 or CD8 T cells as expected. The last T cell subset, Tregs comprised of 

2-16% of the CD4 T cells. Of these Tregs, about 99% were nTregs, as expected and 0-

1% were iTregs. However, since the actual cell counts for iTregs were less than 100, 

this subset was not studied further. Surprisingly, there was a substantial proportion of 

about 8-32% of activated Tregs.  

The subset [A-D] frequencies are expressed as a percent of CD8 T cells. The 

data is represented with the median and interquartile range. Each dot 

represents values from individual cord blood sample. 

 

Figure 8: CD8 T cell subset frequency distributions. 
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The last subsets analyzed were monocytes and dendritic cell populations as depicted in 

Figure 10. While 80-100% of the total monocytes were classical monocytes and 4-16% 

were patrolling monocytes, the inflammatory monocytes made up a comparatively small 

proportion of 2-10% of total monocytes. The plasmacytoid dendritic cell subsets and 

myeloid dendritic cell subsets made up 4-16% and 8-32% of the total DCs respectively. 

Figure 9: T cell subset frequency distributions. 

E F 

D C 

A B 

The frequencies of gamma-delta T cells [A] and NKT cells [B] are expressed as a percent of 

T cells. Treg frequencies are expressed as a percent of CD4 T cells. Activated Treg and 

nTreg frequencies are expressed as a percent of Tregs and activated nTregs frequencies 

are expressed as a percent of nTregs. The data is represented with the median and 

interquartile range. Each dot represents values from individual cord blood sample. 
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The other DC subsets could not be identified since only CD123, and CD11c were used 

The subset [A-C] frequencies are expressed as a percent of monocytes, and the subset [E-

F] frequencies are expressed as a percent of DCs. The classical monocytes: patrolling 

monocytes ratio is depicted in [D] and the myeloid DC: plasmacytoid DC ratio is shown in 

[G]. The data is represented with the median and interquartile range. Each dot represents 

values from individual cord blood sample. 

Figure 10: Monocyte and DC subset frequency distributions. 
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as markers during staining.   

Although highly variable, the mDC/pDC ratio averaged at 4, and the CM/PM ratio had a 

mean of about 16. The frequencies of these cell subsets show a tremendous amount of 

variability within the population. 

Mean normalized standard deviation of PBMC subsets showed enormous 

variation: 

The coefficient of variation (CV) for each subset was calculated as 

Coefficient of variation =
Standard deviation of subset frequency

Mean of subset frequency
× 100 

 

The coefficient of variance signifies a normalized dimensionless parameter used to 

compare quantities with starkly different units of measurement. The variability in the 

CVs ranges from 5-140% of the mean. Hence, it must be noted that the spread of the 

relative frequencies of each subset shows a great deal of variation. As seen from Figure 

11, nTregs, naïve CD4 and CD8 T cells, naïve B cells, CD4 and CD8 T cells, T cells 

and classical monocytes show a comparatively lower relative variability in the range of 

Values on the y-axis show the coefficient of variation calculated as indicated above. The x-

axis shows the various immune subsets being analyzed. 

Figure 11: Coefficient of variation of immune subset frequencies in cord blood. 
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5-20% of the mean, while plasmablasts, memory B cells, B1 B cells, CD4 EMRA T cells, 

and inflammatory monocytes show a much higher amount of variability in the range of 

120-140% of the mean. 

Some PBMC subsets show significant correlations: 

Transitional B cells show tight correlations with immature naïve B cells. As seen in 

Figure 12, A: The relative frequency of transitional B cells increases proportionately with 

immature naïve B cell frequencies. Additionally, another positive correlation is seen 

between NK cells and DCs. Here NK cell frequencies are increasing with a much 

steeper slope with an increase in DC frequencies.   

The p-values are indicated in each individual panel [A-F].  The best fit trendline has been 

inserted. Each dot represents values from individual cord blood sample. 

Figure 12: Correlations between cord blood immune subset frequencies. 
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Next, T cell frequencies show a negative correlation with a number of subsets such as 

activated Tregs, NKTs, monocytes, DCs. Here, as the relative frequency of T cells 

increase, the corresponding subset’s relative frequencies drop significantly. The 

correlations that arise as a result of the gating strategy used have been eliminated. The 

ones elaborated on here are significant and non-spurious in nature. 

No statistically significant differences were observed in the immune subset 

frequency distributions of the three test groups: 

As described earlier, the entire test population was subdivided into three treatment 

groups: Group I, II, and III. No significant difference in means was observed in any of 

the subset frequencies between the groups within a 95% confidence interval. For all 

immune cell subsets, the Brown-Forsythe test indicated comparable variances. 

Furthermore, multiple comparisons such as I vs. II, II vs. III and I vs. III reported no 

significant differences in the mean frequencies (Data not shown here). 
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DISCUSSION 
 

As part of this cross-sectional interventional study, a large number of immune cell 

lineages and sub-lineages have been immunophenotyped in detail for 81 cord blood 

samples. These data will provide statistics on cord blood immune cell frequencies from 

6 villages around Pune, thus establishing a standard for this ethno-geographical and 

socio-economical population. Since this cohort has been monitored for over three 

generations as part of the ongoing PMNS and PRIYA studies, it has generated a lot of 

data not only highlighting the role of maternal nutrition in fetal programming (Yajnik et 

al., 2008) but also to study the variation observed in a population belonging to the same 

socio-economic background and ethno-geographical group.  

Sample collection has been continuing and until that ends the actual treatment received 

by the mothers in the three groups will not be disclosed. Hence, interim analysis has 

been carried out to look for obvious major differences in the three groups, if any. At this 

stage, the immunophenotyped data doesn’t show any significant differences between 

the three treatment groups, namely; placebo, Vitamin B12 supplementation, Vitamin 

B12 and micronutrient supplementation; in terms of the immune subset frequencies. 

However, some interesting trends have been observed in the immune sub-lineages 

within this population. Since these are cord blood samples, the variation seen within the 

frequencies of each subset can be primarily attributed to genetic variation, as the 

neonate is expected to develop in an immunologically sterile environment. However, 

this being said the data shows some individuals to have a significant percentage of 

plasmablasts which means that these neonates have encountered foreign antigens. 

Moreover, it is also surprising that there was no correlation observed between 

increasing plasmablast frequencies and memory B cells if at all the neonate had been 

exposed to pathogens. 

As expected, the highest frequencies of immune sub-lineages observed are that of 

naïve B cells, naïve CD4 and CD8 T cells. Also, the high CD4/CD8 ratios with a median 

between 2-4 observed in cord blood are in agreement with data shown from another 

cross-sectional study in Delhi (Prabhu et al., 2016).  
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Regulatory T cells (Tregs) are broadly divided into two subgroups: natural Tregs 

(nTregs) and induced Tregs (iTregs). nTregs are generated in the thymus from T cell 

precursors and are committed to the Treg phenotype. iTregs, on the other hand, are 

generated from naïve T cells on stimulation in the periphery in the presence of TGF-β 

and IL-2. These iTregs take over the immunosuppressive roles of nTregs as and when 

their response turns anergic or defective (Fontenot et al., 2003; Chen et al., 2003). 

Moreover, iTregs generate antigen-specific suppression in immune responses and in 

neonates, there is possibly no ongoing in-utero immune assault, thus explaining their 

absence/ very low frequencies.  

Monocytes are broadly divided into three subsets: classical, inflammatory and patrolling. 

Classical monocytes (CM) majorly carry out phagocytic activities while producing basal 

levels of pro-inflammatory cytokines. Inflammatory monocytes (IM) as the name 

suggests actively produce pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α. 

Patrolling monocytes (PM) are anti-inflammatory in nature and produce IL-1RA 

predominantly. In the present cord blood samples, CMs make up the majority of the 

population as expected. IMs show similar percentages to data shown from another 

population study in Delhi (Prabhu et al., 2016). PMs on the other hand show elevated 

percentages than that reported in the Prabhu et al. study. A possible explanation could 

be that raised PM percentages are related to immune exposures seen in some babies 

of this population as described above in the context of plasmablast percentages.  

The coefficient of variation plotted for each immune sub-lineage highlighted a 

noteworthy trend. There were some lineages like nTregs, naïve CD4 and CD8 T cells, 

naïve B cells, CD4 and CD8 T cells, T cells and classical monocytes that showed very 

limited variation as compared to the mean (about 5-20%), suggesting that these subset 

frequencies are genetically more tightly regulated than the others. Conversely, there 

were some lineages such as plasmablasts, memory B cells, B1 B cells, CD4 EMRA T 

cells, and inflammatory monocytes, that showed an immense amount of variation up to 

140% of the mean frequency. A probable reason for this could be the developmental 

differences in temporal terms since some of the babies in this study are premature with 

low birth weight. 
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Furthermore, the inter-subset correlations that arose out of this study highlighted a 

possibility of establishing relationships between “apparently” unrelated subsets, since 

their relative frequencies showed a significant positive or negative correlation. There 

was a tight positive correlation between transitional B cells and immature naïve B cells. 

In the developmental pathway, transitional B cells form an intermediate between 

immature B cells and mature naïve B cells. Intuitively (as shown in Figure 12, A) as the 

immature naïve B cell frequencies rise, there is a parallel increase in transitional B cell 

frequencies. Moreover, in order to identify whether these subsets are actually distinct 

sub-populations of B cells, we need to look at differentiating markers such as CD5, 

CD43 and IgD (Sims et al., 2005; Agarwal and Smith et al., 2013).  

Another significant positive correlation is seen between NK cells and DCs (as shown in 

Figure 12, C). The trend as seen demonstrates that relative prominence of both these 

subsets increases. This could either mean that their actual cell numbers linked or that 

another population is vastly varying altering the total PBMC numbers as a result of 

which their respective niches could be interlinked. Either way, there seems to exist a 

quantitative linkage. NK cells are from the lymphoid lineage and most cord blood DCs 

are from the myeloid lineage (Lee et al., 2015). This suggests that there may exist 

common signaling factors that positively regulate both myeloid and lymphoid lineages. 

The data shows a negative association between activated Treg and T cell frequencies 

(as shown in Figure 12, B). Also, there is no significant correlation between T cells and 

Treg percentages. Therefore, probably there is an apparent link between the ‘activated’ 

phenotype and T cell numbers. One probable explanation could be that when T cell 

numbers are high, (since T cells and Tregs get primed in the secondary lymphoid 

organs) the probability of Tregs encountering antigens dramatically decreases because 

of the space constraint in lymph nodes.  

Furthermore, a negative correlation can be seen between NKT cells and T cells (as 

shown in Figure 12, D). NKT cells form a subset of T cells, thus there could be a relative 

increase in the other T cell subsets such as γδ T cells, CD4 T and CD8 T cells, which 

emerges as an effective decrease in NKT cells, which appears to be significant because 

NKT cell frequencies are primarily very low (1-3%).  
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Lastly, there exists a negative correlation between T cell frequencies and DC/monocyte 

frequencies as shown in Figure 12, E and F). Like in the case of NKs and DCs 

correlation, the probable link is that of a common signaling factor that connects the 

myeloid and lymphoid lineage regulations. In this case, however, the factor has an 

inhibitory effect on the myeloid lineage (as DC and monocyte relative frequencies 

decrease) and a stimulatory effect on the lymphoid lineage (as T cell frequencies go 

up). This effectively translates in DC and monocyte prominence being negatively 

associated with T cell prominence.  

Therefore, this interim analysis has provided us with valuable insights on the inherent 

variations within the immune system of this population, while highlighting some 

meaningful correlations which could generate useful data on further analysis. 
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Part II: Effect of Temperature 
on T cell differentiation 
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INTRODUCTION 
 

Fever initiation: Common to endotherms and ectotherms 

Raised body temperatures have been considered one of the four chief indicators of 

inflammation and is produced in response to an immune challenge by pathogens. It is 

characterized by a rise in body temperatures typically by 1-4°C. This fever response is 

seen in all vertebrates, both endotherms, and ectotherms. Despite having completely 

different thermic strategies, and fever production being a costly response since 10-

12.5% extra energy needs to be expended to raise the temperature by 1°C, on the 

whole, the cost-benefit ratios incline in favour of raised body temperatures. Moreover, 

since fever is a whole-body systemic response, it affects the innate as well as the 

adaptive immune arms (Evans et al., 2015). 

Current research has been focused on trying to understand the role of fever in immune 

responses to pathogens, by attempting to decipher the molecular networks involved and 

the key players in this complex cascade. Also, it is important to trace this effect from the 

sensory pathways that detect variations in temperature to the downstream events that 

trigger amplified immune responses. Thus, this is a very important and dynamic study. 

Fever boosts the innate immune arm 

The innate immune arm plays the role of a “first responder.” Some of the important 

innate immune cells that are positively affected by whole-body hyperthermia include 

neutrophils and natural killer (NK) cells. These cells respond to foreign antigen 

stimulation via bacteriolytic and cytotoxic activities.  Furthermore, a “burst” of leukocytes 

from the bone marrow is induced in response to a rise in body temperature. This results 

in an increased number of neutrophils in circulation, allowing for better recruitment to 

local inflammatory sites with the aid of cytokines like IL-1β, TNF-α, which are also 

endogenous pyrogens (Tulapurkar et al., 2012; Jiang et al., 1999). 

 Moreover, the febrile response also upregulates toll-like receptors (TLRs) expression 

on the cell surface which is compounded with an enhanced phagocytic ability of 

macrophages and dendritic cells. An in vitro study revealed that heat treatment 
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produced a two-fold increase in L-selectin-like adhesion and rolling of leukocytes to the 

endothelial membrane. This enhanced adhesion translates directly into the better 

recruitment of cells to inflammatory sites (Appenheimer et al., 2007).  

Another study demonstrated that high temperatures downregulated MHC Class I 

expression and enhanced HSP70 (Heat shock protein-70) formation in vivo, both of 

which are associated with enhanced cytotoxic abilities and recruitment of NK cells to 

tumor sites (Kappel et al., 1991; Burd et al., 1998; Multhoff et al., 1995). Hyperthermia 

also augments the ability of antigen presenting cells (APCs) to assist the adaptive 

immune arm. A mice study showed that the maturation of skin dendritic cells 

(Langerhans cells) was boosted by fever which allowed their faster migration to lymph 

nodes for antigen presentation to the naïve lymphocytes and initiation of an adaptive 

response (Basu et al., 2003). 

Fever and T cell responses 

T lymphocytes play a crucial role in adaptive immune response generation. On primary 

exposure, naïve CD4 T cells get stimulated and differentiate into effector CD4 T cells 

depending upon the stimulation cue and microenvironment. During this differentiation 

process, epigenetic reprogramming of the cell takes place which polarizes its lineage 

fate to either a Th1, Th2, Th17, Tregs, or Tfh phenotype (Zhu et al., 2010) 

The febrile response has been reported to intensify T cell stimulation and differentiation 

to produce a faster, more robust reaction. A mice study revealed that whole body 

hyperthermia induces a surge in circulating T lymphocytes in tissues. Furthermore, this 

study also showed these T cells to possess polarized cytoskeletal spectrins, uropods 

and increased protein kinase C (PKC) activity suggesting that thermal stress can 

regulate essential signal transduction pathways for activation and differentiation (Wang 

et al., 1999). Another report demonstrated beneficial effects of fever-range 

temperatures on lymphocyte homing to lymph nodes and spleen within about 4 hours in 

an L-selectin and α4β7-integrin-dependent manner. This altered response affected the 

interaction of these lymphocytes with high endothelial venules (HEVs). Moreover, it was 

noted that the adhesion receptors on lymphocytes and ligands on HEVs were bimodally 
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modulated, indicating direct evidence connecting thermal stress with improved immune 

surveillance post infection (Evans et al., 2001; Wang et al., 1998).  

These findings highlight the role of fever as an immune amplifier. Therefore, there is a 

need to understand the exact molecular pathways via which T cells sense temperature 

changes and alter their effector responses. 

Temperature sensing mechanisms in T cells 

For any downstream response to be produced, T cells first need to sense temperature 

fluctuations. There could be multiple, degenerate, alternative or synergistic pathways for 

temperature sensing in T cells.  

From recent studies, one such pathway that has emerged is via alterations in the fluidity 

of the phospholipid bilayer. Temperature modulations manifest as changes in 

membrane fluidity depending on the phospholipid composition of the membrane. Both in 

vitro and in vivo studies have shown that hyperthermia enhances CD microdomain 

clustering and reorganizes cytoskeletal elements by directly altering membrane fluidity. 

Both these effects play a vital role in T cell stimulation. Furthermore, in CD4 T cells, it 

has been demonstrated that mild hyperthermia acts as a surrogate for CD28 co-

stimulation and enhances IL-2 production. Parallelly, in CD8 T cells the naïve to effector 

transition has been shown to be temperature sensitive, and at high temperatures, there 

is an increased IFN-γ production which enhances the formation of immunological 

synapses. These results suggest that temperature plays a role in lowering T cell 

activation thresholds. However, the exact downstream cascade at play has not been 

identified (Zynda et al., 2015; Mace et al., 2011). 

Another proposed mechanism for temperature sensing in T cells is via temperature-

sensitive transient receptor potential (TRPs) channels, in particular, TRPV1 which has 

shown to be expressed in CD4 T cell plasma membranes. A mouse study recently 

showed that TCR stimulation and cytokine production is significantly reduced in TRPV1 

knockout mice. This highlights an emerging role of TRPs as thermosensitive TCR-

stimulating channels (Bertin et al., 2014; Majhi et al., 2015). 
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In the current study, efforts have been made to understand the role of fever in T cell 

effector fate (Th1 vs. Th2) decisions, which are governed by the transcription factors 

Tbet and Gata3 and understand whether fever directs differentiation preferentially 

towards one fate relative to the other.  
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MATERIALS AND METHODS 
 

The cell line used: Human T lymphocyte cell line, Jurkat (Clone E6-1; ATCC TIB-152) 

was used for all the experiments involving studying effects of temperature on T cell 

response. This is a pseudodiploid human cell line derived from a 14-year-old male. This 

cell line originates from an acute T cell leukemia and is morphologically a lymphoblast.  

Jurkat Culture and maintenance: The human T cell line, Jurkat is grown at 37°C in 

RPMI 1640 (PAN BioTech: Catalogue no- P04-22100) with additional 10% FBS 

(Thermo Fisher Scientific: Catalogue no- 16000-044), 1% Antibiotic-Antimycotic solution 

(Sigma: Catalogue no- A5955): 100U/ml Penicillin, 100μg/ml Streptomycin and 0.25 

μg/ml amphotericin B; and 2mM L-Glutamine (Sigma: Catalogue no- G7513). During 

every subculture, 0.1million cells/ml are seeded in fresh medium. The cells are sub-

cultured when the flask reached 70-80% confluency. 

Jurkat Activation: Jurkat cells are activated with CD3 and CD28 antibodies. The well 

plates are first incubated at 37°C for 60 minutes with the antibodies CD3 (5µg/ml) and 

CD28 (1µg/ml) in 1x PBS. The antibodies adhere to the well plate surface. Next, the 

excess antibodies are washed off, and appropriate density of Jurkat cells are seeded 

into these treated wells. 

Primer Design and Validation: Primers for the following transcription factors were 

designed using Splign and Primer3Plus online tools: Gata3, Tbet, ROR-γ, Stat6, Gfi-1, 

cMaf, FoxP3 and 18s rRNA. The primers were then BLASTed using Primer-BLAST to 

ensure that all gene isoforms are recognized. 

Primer sequences for human transcription factors designed are as follows: 

➢ Gata3: Amplicon size- 130bp 

Forward: 5’-AACTGTCAGACCACCACAACCACAC-3’ 

Reverse: 5’-GGATGCCTTCCTTCTTCATAGTCAGG-3’ 

➢ T-bet: Amplicon size- 111bp 

Forward: 5’-GTGACTGCCTACCAGAATGCC-3’ 
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Reverse: 5’-GCTGGTGTCAACAGATGTGTA-3’ 

➢ ROR-γ: Amplicon size- 181bp 

Forward: 5’-CAGAGCGTCTGCAAGTCCTA-3’ 

Reverse: 5’-CGAACTCCACCACGTACTGA-3’ 

➢ Stat6: Amplicon size- 176bp 

Forward: 5’-GGAAGGGCACTGAGTCTGTC-3’ 

Reverse: 5’-GGCATTGTCCCACAGGATAG-3’ 

➢ Gfi-1: Amplicon size- 160bp 

Forward: 5’-ACAGCGGTACCAGACCCTTT-3’ 

Reverse: 5’-AGGTGTGTGGACAGTGTGGA-3’ 

➢ cMaf: Amplicon size- 173bp 

Forward: 5’-CCAGGACTTCGCTATTTTGC-3’ 

Reverse: 5’-TCCTCTTCTGCTTGGCTCTC-3’ 

➢ FoxP3: Amplicon size- 173bp 

Forward: 5’-CAGAGCTCCTACCCACTGCT-3’ 

Reverse: 5’-TGCTGCTCCAGAGACTGTACC-3’ 

➢ 18s rRNA: Amplicon size- 101bp 

Forward: 5’-CGCCGCTAGAGGTGAAATTCT-3’ 

Reverse: 5’-CGAACCTCCGACTTTCGTTCT-3’ 

All primers, custom synthesized from Sigma were PCR amplified using cDNA 

synthesized from Jurkat cells and analyzed on an agarose gel for expression. Each 

primer pair has a different annealing temperature (55-65°C), and optimum temperature 

was determined. 

Since 18s rRNA is constitutively active, it was used as a positive control for all 

experiments. For testing effects on Jurkat cells incubated at 37°C and 40°C RT-PCR 

analysis was carried out only on transcription factors GATA3 and Tbet.  

RT-PCR: Cells were incubated for 6h, 16h, and 24h with/without CD3/28 stimulation at 

either 37 or 40°C. Harvested cells were stored at -80°C in TRIzol reagent (Thermo-

Fischer Scientific: Catalogue no- 15596026). The cells were also counted (using Trypan 
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Blue staining) and viability was calculated before freezing. On an average, viability was 

in the range of 80-95%. 

RNA was extracted by the TRIzol-Choloform method, and isopropanol-ethanol was 

used to precipitate the RNA. The RNA was quantified on the NanoDrop2000 using 

spectrophotometry (nucleic acids have an absorbance at 260nm). The average 260/280 

ratio was ~1.8. 

For cDNA synthesis, 500ng of input RNA was used along with the Verso cDNA 

synthesis kit (Thermo Fisher Scientific: Catalogue no- AB1453A). The cDNA quality was 

evaluated by doing PCR with constitutively expressed 18s rRNA primers.  

RT-PCR was performed using Pfu enzyme (A gift from Dr. Gayathri Pananghat) and 

10x Pfu buffer (100mM Tris-HCl, 20mM MgCl2, 500mM KCl; buffer pH 8.3 at 25°C) for 

both GATA3 and Tbet. The PCR set up had 20ng of the enzyme in 20µl final volume. 

The reaction mixture also contained 0.2mM dNTP mix, 0.5µM of respective gene 

primers (forward and reverse), 1x Pfu buffer, 8.3ng cDNA template, and nuclease-free 

water. The PCR program set up was as follows: 

Temperature 

(°C) 
95 95 64 72 72 4 

Time (s) 120 15 15 30 60 ∞ 

  
Cycles: x25 for 18s rRNA,  

x33 for Gata3, x35 for Tbet 
  

 

Agarose gel electrophoresis was performed to visualize the PCR products. A 2% 

agarose (MP Biomedicals, Catalogue no-02100267) gel in 1x TAE was cast. A total of 

5µl of the PCR products mixed with 1µl of 6x Cyan-Orange loading dye were then 

loaded onto the gel, along with a 100bp ladder (ThermoFisher Scientific: Catalogue no- 

10488058). The gel was run in 1x TAE buffer at a constant voltage of 100V, imaged and 

analyzed using ImageJ and GraphPad Prism.  
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RESULTS 
 

Basal expression of Gata3 mRNA in Jurkat cells seems to increase at 40°C: 

The 37°C and 40°C unstimulated samples seem to show lower Gata3 expression than 

the stimulated samples as shown in Figure 13. The 40°C stimulated samples seem to 

indicate the highest expression of Gata3 amongst all the treatments. The 40°C 

unstimulated samples seem to show higher expression of Gata3 as compared to the 

37°C unstimulated samples. Moreover, the difference between stimulated:unstimulated 

at 37°C seem to be more than the difference between stimulated:unstimulated at 40°C.   

 

Even though, visually, from the gel image in Figure 14, it can be seen that the 40°C 

stimulated and unstimulated Gata3 bands are darker than the 37°C stimulated and 

As indicated the y-axis represents normalized arbitrary intensity units. The intensity is 

normalized by band intensity of 18s rRNA. The x-axis represents the treatment parameter. Each 

bar is colour coded for the temperature parameter. The mean intensity is plotted and error bars 

show standard deviation. Here, n=3 biological replicates were used. There was no significant 

difference in the intensities at 37°C and 40°C. 

 

Figure 13: Comparison of Gata3 mRNA levels in 37°C and 40°C Jurkat cells 
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unstimulated, quantitatively this difference is not significant. Thus, these are preliminary 

indications of differences in Gata3 expression with temperature. 

 

Expression of Tbet mRNA in Jurkat cells seems comparable at 40°C and 37°C: 

The Tbet expression pattern changes seem to lie within a tighter range as compared to 

the Gata3 expression pattern. The Tbet expression seems to be highest in the 37°C 

stimulated condition as seen in Figure 15. The Tbet expression is seemingly lower at 

40°C than at 37°C, contrary to the observation in case of Gata3. Even in the 

unstimulated condition, the basal Tbet level is comparable to the stimulated Tbet 

expression at both 37°C and 40°C. Moreover, as seen visually from the gel image in 

Figure 16, all the bands have similar intensities. This tallies up quantitatively as no 

significant differences in Tbet expression with either stimulation or temperature 

changes. Thus, more experiments need to be done to confirm these trends.  

Figure 14: Representative gel image for Gata3 PCR using Jurkat cDNA 

        1       2      3       4      5      6      7      8       9     10      11     12      

100bp 

200bp 

The gel image lane legends are as follows: 1-100bp ladder; 2-37°C stimulated Gata3 

band; 3-37°C unstimulated Gata3 band; 4-40°C stimulated Gata3 band; 5-40°C 

unstimulated Gata3 band; 6-Gata3 NTC band; 7-blank; 8-37°C stimulated 18s rRNA 

band; 9-37°C unstimulated 18s rRNA band; 10-40°C stimulated 18s rRNA band; 11-40°C 

stimulated 18s rRNA band; 12-18s rRNA NTC band. The amplicon sizes are indicated in 

materials and methods along with primer details.  
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As indicated the y-axis represents normalized arbitrary intensity units. The intensity is 

normalized by band intensity of 18s rRNA. The x-axis represents the treatment parameter. 

Each bar is colour coded for the temperature parameter. The mean intensity is plotted and 

error bars show standard deviation. Here, n=3 biological replicates were used. There was no 

significant difference in the intensities at 37°C and 40°C. 

 

Figure 15: Comparison of Tbet mRNA levels in 37°C and 40°C Jurkat cells 

 

Figure 16: Representative gel image for Tbet PCR using Jurkat cDNA 

        1       2       3        4        5       6       7       8        9       10    11         

100bp 

200bp 

The gel image lane legends are as follows: 1-100bp ladder; 2-37°C stimulated Tbet band; 

3-37°C unstimulated Tbet band; 4-40°C stimulated Tbet band; 5-40°C unstimulated Tbet 

band; 6-Tbet NTC band; 7-37°C stimulated 18s rRNA band; 8-37°C unstimulated 18s 

rRNA band; 9-40°C stimulated 18s rRNA band; 10-40°C stimulated 18s rRNA band; 11-

18s rRNA NTC band. The amplicon sizes are indicated in materials and methods along 

with primer details.  
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DISCUSSION 
 

Naïve T cells have the ability to polarize to either Th1 or Th2 fate depending on the 

immune priming and cytokine milieu. Tbet and GATA3 are critical transcription factors 

that drive naïve T cells to Th1 and Th2 phenotypes respectively post stimulation. 

Previous data in the lab has demonstrated that in ex vivo purified, mouse naïve CD4 T 

cells; this response seems to be dramatically affected by temperatures changes within a 

tight 0.5°C window of 38.5°C and 39°C (unpublished work). It was observed that there 

was a Th1 dominant polarization of naïve T cells primed at 37°C (using IFNγ readouts) 

and a Th2 dominant polarization of naïve T cells primed at 40°C (using IL-13 readouts). 

These studies also propose that this temperature modulation is regulated via transient 

receptor potential channels (TRPVs), in particular, TRPV1. 

With this background, the current study was undertaken to observe the effects of 

temperature on human T cells, using Jurkat cell line as a model system. The semi-

quantitative data on Jurkat experiments show that there is a change in Gata3 

expression at 40°C in both unstimulated and stimulated conditions. Moreover, the 

corresponding Tbet expression shows no change between 37°C and 40°C. This, 

however, needs to be quantified using qRT-PCRs, since gel band intensities show a lot 

of variation. Therefore, in order to evaluate whether the same trend is seen in Jurkats 

as in mouse T cells, there is a need to quantitatively measure mRNA and protein 

differences in Gata3 and Tbet with temperature stimulation.  
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