dc.contributor.author |
DHAMORE, SUJEET |
en_US |
dc.contributor.author |
HOGADI, AMIT |
en_US |
dc.contributor.author |
Pawar, Rakesh |
en_US |
dc.date.accessioned |
2025-06-11T05:01:41Z |
|
dc.date.available |
2025-06-11T05:01:41Z |
|
dc.date.issued |
2025-04 |
en_US |
dc.identifier.citation |
Journal of Algebra, 668, 265-277 |
en_US |
dc.identifier.issn |
1090-266X |
en_US |
dc.identifier.issn |
0021-8693 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.jalgebra.2024.12.036 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10138 |
|
dc.description.abstract |
We consider the notion of finite type-ness of a site introduced by Morel and Voevodsky, for the étale site of a field. For a given field k, we conjecture that the étale site of is of finite type if and only if the field k admits a finite extension of finite cohomological dimension. We prove this conjecture in some cases, e.g. in the case when k is countable, or in the case when the p-cohomological dimension is infinite for infinitely many primes p. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Simplicial homotopy theory |
en_US |
dc.subject |
Galois cohomology |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Non-finite type étale sites over fields |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Algebra |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |