Abstract:
SARS-CoV-2 transmission and detection on academic campuses in low- to middle-income countries has not been explored. The present study explored wastewater surveillance of SARS-CoV-2 in a campus setting in Pune, Maharashtra, India, offering insights into variant-specific trends and their correlation with clinical cases over a 2.5 year period from November 2021 to April 2024. We collected 242 wastewater samples from the campus sewershed and processed them to extract RNA and perform RT-qPCR and sequencing, followed by lineage assignment using the LCS tool. Early signals of different SARS-CoV-2 variants, such as BA.2.X, JN.1.X, and KP.2.X, were detected in wastewater prior to its first clinical report in Maharashtra, India. Wastewater viral load strongly correlated with clinical cases during the Omicron phase (ρ = 0.73–0.81) compared to the post-Omicron phase (ρ = −0.06 to 0.31). This study also highlights that alerts and warnings issued on the basis of wastewater viral hikes have proven instrumental in preventing outbreaks of SARS-CoV-2 variants on campus. However, downgrading COVID-19 from pandemic status by the WHO resulted in a subsequent decrease in public vigilance, changing the viral dynamic in the last phase of the study. This study showcases the utility of wastewater surveillance in a campus setting as an early warning system and understands the interplay of public health policy effects in viral dynamics within controlled ecosystems, such as campuses or offices.