dc.contributor.author |
BHAKTA, MOUSOMI |
en_US |
dc.contributor.author |
DAS, PARAMANANDA |
en_US |
dc.contributor.author |
Ganguly, Debdip |
en_US |
dc.date.accessioned |
2025-07-11T06:06:54Z |
|
dc.date.available |
2025-07-11T06:06:54Z |
|
dc.date.issued |
2025-06 |
en_US |
dc.identifier.citation |
Journal of Geometric Analysis, 35, 245. |
en_US |
dc.identifier.issn |
1050-6926 |
en_US |
dc.identifier.issn |
1559-002X |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s12220-025-02081-6 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10287 |
|
dc.description.abstract |
We study the fractional Schrodinger equations with a vanishing parameter: { (-Delta)(s) u + u = |u|(p-2 )u + lambda|u|(q-2 )u in R-N u is an element of H-s(R-N), (P-lambda) where s is an element of (0, 1), N > 2s, 2 < q < p <= 2(s)* = 2N/N-2s are fixed parameters and lambda > 0 is a vanishing parameter. We investigate the asymptotic behaviour of positive ground state solutions for A small, when p is subcritical, or critical Sobolev exponent 2(s)*. For p < 2(s)*, the ground state solution asymptotically coincides with unique positive ground state solution of (-Delta)(s )u + u = |u|(p-2 )u, whereas for p = 2(s)* the asymptotic behaviour of the solutions, after a rescaling, is given by the unique positive solution of the nonlocal critical Emden-Fowler type equation. Additionally, for lambda > 0 small, we show the uniqueness and nondegeneracy of the positive ground state solution using these asymptotic profiles of solutions. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Critical |
en_US |
dc.subject |
Subcritical nonlinearity |
en_US |
dc.subject |
Blow-up |
en_US |
dc.subject |
Uniqueness |
en_US |
dc.subject |
Nondegeneracy |
en_US |
dc.subject |
Asymptotic profile |
en_US |
dc.subject |
Rate of convergence |
en_US |
dc.subject |
Fractional Schrödinger |
en_US |
dc.subject |
2025-JUL-WEEK2 |
en_US |
dc.subject |
TOC-JUL-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Fractional Schrödinger Equations with Mixed Nonlinearities: Asymptotic Profiles, Uniqueness and Nondegeneracy of Ground States |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathemattics |
en_US |
dc.identifier.sourcetitle |
Journal of Geometric Analysis |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |