Digital Repository

Mixed local-nonlocal operators: maximum principles, eigenvalue problems and their applications

Show simple item record

dc.contributor.author BISWAS, ANUP en_US
dc.contributor.author MODASIYA, MITESH en_US
dc.date.accessioned 2025-07-25T05:25:59Z
dc.date.available 2025-07-25T05:25:59Z
dc.date.issued 2025-07 en_US
dc.identifier.citation Journal d'Analyse Mathématique en_US
dc.identifier.issn 0021-7670 en_US
dc.identifier.issn 1565-8538 en_US
dc.identifier.uri https://doi.org/10.1007/s11854-025-0375-2 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10327
dc.description.abstract In this article we consider a class of non-degenerate elliptic operators obtained by superpositioning the Laplacian and a general nonlocal operator. We study the existence-uniqueness results for Dirichlet boundary value problems, maximum principles and generalized eigenvalue problems. As applications to these results, we obtain Faber–Krahn inequality and a one-dimensional symmetry result related to the Gibbons’ conjecture. The latter results substantially extend the recent results of Biagi et al. [12, 10] who consider the operators of the form −Δ + (−Δ)s with s ∈ (0, 1). en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Viscosity Solutions en_US
dc.subject Equations en_US
dc.subject Inequality en_US
dc.subject Regularity en_US
dc.subject Symmetry en_US
dc.subject PDES en_US
dc.subject 2025-JUL-WEEK4 en_US
dc.subject TOC-JUL-2025 en_US
dc.subject 2025 en_US
dc.title Mixed local-nonlocal operators: maximum principles, eigenvalue problems and their applications en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal d'Analyse Mathématique en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account