dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
MODASIYA, MITESH |
en_US |
dc.date.accessioned |
2025-07-25T05:25:59Z |
|
dc.date.available |
2025-07-25T05:25:59Z |
|
dc.date.issued |
2025-07 |
en_US |
dc.identifier.citation |
Journal d'Analyse Mathématique |
en_US |
dc.identifier.issn |
0021-7670 |
en_US |
dc.identifier.issn |
1565-8538 |
en_US |
dc.identifier.uri |
https://doi.org/10.1007/s11854-025-0375-2 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/10327 |
|
dc.description.abstract |
In this article we consider a class of non-degenerate elliptic operators obtained by superpositioning the Laplacian and a general nonlocal operator. We study the existence-uniqueness results for Dirichlet boundary value problems, maximum principles and generalized eigenvalue problems. As applications to these results, we obtain Faber–Krahn inequality and a one-dimensional symmetry result related to the Gibbons’ conjecture. The latter results substantially extend the recent results of Biagi et al. [12, 10] who consider the operators of the form −Δ + (−Δ)s with s ∈ (0, 1). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Viscosity Solutions |
en_US |
dc.subject |
Equations |
en_US |
dc.subject |
Inequality |
en_US |
dc.subject |
Regularity |
en_US |
dc.subject |
Symmetry |
en_US |
dc.subject |
PDES |
en_US |
dc.subject |
2025-JUL-WEEK4 |
en_US |
dc.subject |
TOC-JUL-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Mixed local-nonlocal operators: maximum principles, eigenvalue problems and their applications |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal d'Analyse Mathématique |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |